

An Ensemble Machine Learning Approach for Network

Intrusion Detection

By

Md. Raihan-Al-Masud

MASTER OF SCIENCE

IN

INFORMATION AND COMMUNICATION TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

December, 2019

ii

TABLE OF CONTENTS

List of Tables. vi

List of Figures. vii

List of Abbreviations. x

Acknowledgement xi

Abstract. xii

CHAPTER 1 Introduction. .. .1

 1.1 Introduction .. .1

 1.2 Background and Motivation 1

1.3 Research Objective. 4

1.4 Literature Review .5

1.5 Contribution. .. 8

1.6 Organization of the Thesis. 9

1.7 Summary .. 9

CHAPTER 2 Intrusion Detection10

2.1 Introduction.10

2.2 Intrusion Detection. .10

2.3 Intrusion Detection System. 12

2.4 Types of IDS. 13

2.4.1 Detection Method. .15

2.5 Physical Network. .17

2.5.1 Packet Header Information. 18

2.6 Network Attacks.19

2.6.1 Buffer Overflow.20

2.6.2 Tear Drop.20

2.6.3 Ping of Death. 20

2.7 Types of Attacks. 21

iii

2.7.1 Probe.21

2.7.2 User to Root (U2R).21

2.7.3 Denial of Service (DoS). 21

2.7.3 Remote to User (R2U) 22

2.8 Zero-day Attack.22

2.9 Open Source Intrusion Detection System. 23

 2.9.1 SNORT. 23

 2.9.2 RULE.23

 2.9.3 BRO.24

2.10 Commercial Intrusion Detection System. .24

 2.10.1 Net Prowler.24

 2.10.2 Net Ranger. .24

 2.10.3 CF Engineer2 . … 24

 2.10.4 HogZilla.25

 2.11 Summary 25

CHAPTER 3 Classifiers .26

3.1 Introduction.26

3.2 Machine Learning. ……..26

3.2.1 Application of Machine Learning.26

3.3 Types of Machine Learning28

3.3 .1 Supervised Learning28

3.3 .2 Unsupervised Learning . 29

3.3 .3 Semi-Supervised Learning . 30

3.3 .4 Reinforcement Learning 31

3.4 Base Label Classifier31

3.4 .1 Support Vector Machine.31

3.4 .2 Logistic Regression ….... . . 35

iv

3.4 .3 KNN36

3.5 Ensemble Machine Learning 38

 3.6 Types of Ensemble Learning Methods.39

 3.6.1 Bagging Ensemble Learning.39

 3.6.2 Boosting Ensemble Learning.40

 3.6.3 Voting Ensemble Learning.41

3.6.4 Stacking Ensemble Learning.42

 3.7 Summary42

CHAPTER 4 Proposed Methodology43

4.1 Introduction43

4.2 Proposed Algorithm. ….. . .43

4.2.1 Dataset Description 44

4.2.2 Data Extraction. .53

4.2.3 Data Cleaning.53

4.2.4 Data Labeling.54

4.2.5 Data Scaling.54

4.2.6 Feature Selection.55

4.2.7 Selection of Classifier.59

4.2.7.1 Design of Ensemble Classifier. 59

4.2.7.1.1 Voting59

4.2.7.1.2 Stacking .61

4.2.7.1.3 Boosting63

4.2.7.1.4 Bagging.64

 4.2.7.1.4 Hybrid Model . 64

4.3 Block Diagram. … . 65

4.4 Model Evaluation.66

4.4.1 Confusion Matrix.67

v

4.4.2 ROC-AUC.68

4.4.3 Precision Recall Curve. 68

4.5 Implementation environment. ….68

4.6 Summary68

CHAPTER 5 Result and Discussion69
5.1 Introduction.69

5.2 Executing the Ensemble Classifier.69

5.2.1 Detection Without Cross Validation.69

5.2.2 Detection Using Cross Validation.86

5.2.2.1 Voting.86

5.2.2.1.1 Findings of Voting-1.87

5.2.2.1.2 Performance of Voting Methods.94

5.2.2.1.3 Detection rate of Voting Methods.97

5.2.2.2 Stacking.98

5.2.2.2.1 Detection rate of Stacking Methods.100

5.2.2.3 Boosting. .. ….... . 101

5.2.2.3.1 Detection rate of Boosting Methods. . . . 104

5.2.2.4 Bagging. …..... . 104

5.2.2.4.1 Detection rate of Bagging Methods.107

5.2.2.5 Hybrid model. 107

5.2.2.5.1 Detection Rate of Hybrid Models. 109

5.3 Performance Comparison of Classifiers....111

5.4 Summary 116

CHAPTER 6 Conclusion and Future Works117

 6.1 Conclusion. 117

 6.3 Future Works. 118

References 119

Appendix A 129

 A.1 129

 A.2 ….... 133

vi

List of Tables

Table 4.1: List of NSL-KDD dataset files and their description45

Table 4.2: basic features of each network connection vector.46

Table 4.3: content related features of each network connection vector.47

Table 4.4: time related traffic features of each network connection vector.49

Table 4.5: host based traffic features in a network Connection vector.49

Table 4.6: attribute value type. …...51

Table 4.7: mapping of attack class with attack type.52

Table 4.8: details of normal and attack data in different types of NSL-KDD- dataset.52

Table 4.9: Order of 39 important features. ….. 57

Table 4.10: Boosting Classifiers……. …64

Table 4.11: Specification of confusion matrix66

Table 4.12: confusion matrix. 67

Table 5.1: Detection Rate by feature importance using Bagging_NB classifier.70

Table 5.2: Detection Rate by feature importance using Boosting_DT classifier.76

Table 5.3: DR of ensemble methods without cross validation 85

Table 5.4: DR of Voting methods without cross validation.87

Table 5.5: Detection Rate by feature importance. …. 87

Table 5.6: Detection rate for Voting with 36 features.97

Table 5.7: Four Stacking arrangements. ……98

Table 5.8: Detection rate for Stacking with 36 features100

Table 5.9: Detection rate for Boosting with 36 features104

Table 5.10: Three Bagging arrangements. …..105

Table 5.11: Detection rate for Bagging with 36 features.107

Table 5.12: hybrid models. ……....108

Table 5.13: Detection rate for hybrid model with 36 features 109

Table 5.14: voting vs Bagging_voting. …….. 110

Table 5.15: Comparison of DR of normal traffic and four types among16 new arrangement of

ensemble machine learning115

Table 5.16: Proposed classifiers for different types of network attacks116

Table 5.17: Proposed classifiers for all types of attacks.117

vii

List of Figures
Figure 1.1: Increases on the number of devices connected to the Internet over years.1

Figure 2.1: Basic types of IDS.14

Figure 2.2: Network packet. …. …18

Figure 2.3: Packet header information. ……......19

Figure 2.4: Overlapping Packet.21

Figure 3.1: Application areas of machine learning. …….27

Figure 3.2: Block diagram of supervised machine learning algorithm.28

Figure 3.3: Block diagram of unsupervised learning algorithm.29

Figure 3.4: Block diagram of semi-supervised learning algorithm.30

Figure 3.5: Block diagram of reinforcement learning algorithm.31

Figure 3.6: Linear decision plane in SVM. …32

Figure 3.7: Non-linear decision plane in SVM.32

Figure 3.8: Mapping of data points from the input space to another feature space in SVM...33

Figure 3.9: logit function.36

Figure 3.10: Example of KNN classification method.37

Figure 3.11: Typical prediction by ensemble learners.38

Figure 3.12: prediction by Bagging.39

Figure 3.13: Prediction by Boosting.41

Figure 3.14: prediction by voting.41

Figure 3.15: prediction by Stacking.42

Figure 4.1: Basic block diagram for our workflow.43

Figure 4.2: Network vector distribution in various NSL-KDD train and test data set. 53

Figure 4.3: Voting-1.60

Figure 4.4: Voting-2. ….60

Figure 4.5: Voting-3.61

Figure 4.6: Voting -4.61

Figure 4.7: Stacking-1.62

Figure 4.8: Stacking-2.62

Figure 4.9: Stacking-3.63

Figure 4.10: Stacking-4.63

Figure 4.11: Hybrid-1.64

Figure 4.12: Block diagram of various stages of proposed work66

viii

Figure 5.1: DR of Normal traffic by feature selection. 72

Figure 5.2: DR of DoS attack by feature selection (a) 0 to 1 scale (b) Zoom view 73

Figure 5.3: DR of Probe attack by feature selection74

Figure 5.4: DR of R2L attack by feature selection74

Figure 5.5: DR of U2R attack by feature selection 75

Figure 5.6: Confusion matrix of Bagging_NB75

Figure 5.7: DR of Normal Traffic by feature selection (a) 0 to 1 scale (b) Zoom view 79

Figure 5.8: DR of DoS attack by feature selection (a) 0 to 1 scale (b) Zoom view 80

Figure 5.9: DR of Probe attack by feature selection (a) 0 to 1 scale (b) Zoom view81

Figure 5.10: DR of R2L attack by feature selection (a) 0 to 1 scale (b) Zoom view 82

Figure 5.11: DR of U2R attack by feature selection (a) 0 to 1 scale (b) Zoom view 83

Figure 5.12: Confusion Matrix of Boosting_DT 83

Figure 5.13: Confusion Matrix of Voting classifier84

Figure 5.14: DR of Voting methods without cross validation. 85

Figure 5.15: Precision-Recall Curve of Boosting_DT. ……….. 86

Figure 5.16(a): DR of Normal traffic by feature selection90

Figure 5.16(b): DR of Normal traffic by feature selection90

Figure 5.17(a): DR of DoS attack by feature selection. 91

Figure 5.17(b): DR of DoS attack by feature selection.92

Figure 5.18: DR of Probe attack by feature selection. …92

Figure 5.19(a): DR of R2L attack by feature selection. 93

Figure 5.19(b): DR of R2L attack by feature selection. 93

Figure 5.20: DR of U2R attack by feature selection.94

Figure 5.21: Confusion matrix of Voting-1 (using 36 features) 95

Figure 5.22: Confusion matrix of Voting - 2 (using 36 features)95

Figure 5.23: Confusion matrix of Voting - 3 (using 36 features)96

Figure 5.24: Confusion matrix of Voting -4 (using 36 features)96

Figure 5.25: Detection rate for Voting with 36 features.97

Figure 5.26: Confusion matrix of Stacking-1 (using 36 features)98

Figure 5.27: Confusion matrix of Stacking-2 (using 36 features)99

Figure 5.28: Confusion matrix of Stacking-3 (using 36 features) ….. 99

Figure 5.29: Confusion matrix of Stacking-4 (using 36 features)100

Figure 5.30: Detection rate for Stacking with 36 features.101

Figure 5.31: Confusion matrix of Boosting-1 (using 36 features)102

ix

Figure 5.32: Confusion matrix of Boosting-2 (using 36 features)102

Figure 5.33: ROC_AUC of Boosting-2 classifier …………103

Figure 5.34: Confusion matrix of Boosting-3 (using 36 features) ….103

Figure 5.35: Detection rate for Boosting with 36 features. …... 104

Figure 5.36: Confusion matrix of Bagging-1 (using 36 features)105

Figure 5.37: Confusion matrix of Bagging-2 (using 36 features)106

Figure 5.38: Confusion matrix of Bagging-3 (using 36 features) …..106

Figure 5.39: Detection rate for Bagging with 36 features.107

Figure 5.40: Confusion matrix of Model-1. …….108

Figure 5.41: Confusion matrix of Model-2. …….109

Figure 5.42: Detection rate for hybrid model with 36 features.110

Figure 5.43: voting vs Bagging_voting. … … 111

Figure 5.44: Comparison of normal traffic detection among 16 new arrangement of ensemble

machine learning. 112

Figure 5.45: Comparison of DoS attack detection among new arrangement of ensemble

machine learning.112

Figure 5.46: Comparison of Probe attack detection among 16 new arrangement of ensemble

machine learning. 113

Figure 5.47: Comparison of R2L attack detection among 16 new arrangement of ensemble

machine learning.113

Figure 5.48: Comparison of U2R attack detection among 16 new arrangement of ensemble

machine learning.114

x

List of Abbreviations

NIDS =Network Intrusion Detection System

CIC = Canadian Institute for Cybersecurity

DR = Detection Rate

DT = Decision Tree

RF = Random Forest

LR = Logistic Regression

SVM = Support Vector Machine

SVC = Support Vector Classifier

DoS = Denial of Service

R2L = Remote to Local

U2R = User to Root

NB = Naive Bayes

CNN = Convolutional Neural Network

ANN = Artificial Neural Network

KNN = K-nearest Neighbor

DNN = Deep Neural Network

DBN = Deep Belief Network

LSTM = Long Short Term Memory

ML = Machine Learning

IOT = Internet of Things

GA = Genetic Algorithm

RBF kernel = Radial Basis Function kernel

IP = Internet Protocol

TCP = Transmission Control Protocol

xi

Acknowledgement

All perfect praises belong to the Almighty alone.

I would like to express my sincere gratitude to my honorable thesis supervisor Dr. Hossen
Asiful Mustafa, Assistant Professor, Institute of Information and Communication Technology
(IICT), Bangladesh University of Engineering and Technology (BUET), for his invaluable
support, strong guidance, patience, availability and trust throughout the research work. I highly
appreciate his insight, encouragement and suggestions during my research work, which helped
me to build confidence and courage to overcome difficulties. I am also grateful to my course
teachers of IICT, BUET for their encouragement and guidelines. Furthermore, I would like to
thank all the members of the board of examiners for their precious time in understanding my
work and their insightful comments.

xii

Abstract

Due to increasing amount of cyber attack, there is a growing demand for Network intrusion

detection systems (NIDSs) which are necessary for defending from potential attacks. Cyber

attacks can harm in different sectors including small and large business, institutions and also

an individual. By stealing confidential data and harvesting login credentials, attackers can turn

an organization into destitute. Those attacks can occupy the network by traffic flooding which

results in denial of service to its users. Besides, when an institution is hacked, they lose their

reputation and customers. Detecting and preventing cyber attacks is one of the key research

areas. Existing NIDSs use traditional machine learning algorithms with low detection rate and

are also not suitable for the new unknown cyber attacks. In this thesis, we propose a detection

model with ensemble machine learning methods. Ensemble method is a machine learning

technique that combines several base models in order to produce one optimal predictive model.

Ensemble machine learning methods have the potential to detect and prevent different types of

attacks compared to traditional machine learning methods. Our proposed system uses ensemble

machine learning methods with Voting, Stacking, Bagging and Boosting methodology. In this

research work we have designed 16 new types of ensemble machine learning classifiers: 4

Voting, 4 Stacking, 3 Boosting, 3 Bagging and 2 Hybrid classifiers. We have used the full

training and testing NSL-KDD dataset to evaluate the performance of multiclass classification

and we also compare the performance with deep learning as well as traditional base level

machine learning techniques. NSL-KDD dataset provides data with DoS, Probe, R2L and U2R

attacks. Result shows that detection rate of DoS, Probe, R2L and U2R network attacks vary

with different types of classifiers. Different classifiers perform better for different types of

attacks. Moreover, we also identified that the detection rate changes with the change of the

number of features. To design, develop and evaluate our proposed ensemble ML classifiers,

we have used Scikit learn library which is mainly based on python language. Our proposed

system can detect known attacks as well as prevent unknown attacks. Experimental results

show that the proposed intrusion detection classifier is superior to the performance of existing

methods. Our models can improve the detection rate of the IDS which is vital for network

intrusion detection systems.

1

 CHAPTER 1
 Introduction

1.1 Introduction

Computers and networks have been under threat from viruses, worms and attacks from

hackers since they were first used. Securing these devices and the data passing

between them is a challenging task because the number of intrusions is also increasing

sharply year by year.

1.2 Background and Motivation

In 2008, the number of devices connected to the Internet exceeded the number of

human beings and this increasing trend will see about 50 billion devices by 2020

(Figure 1.1) [1].

Figure 1.1: Increases on the number of devices connected to the Internet over years [1]

Furthermore, the amount of computer malware has increased rapidly in recent years

from about 333,000 in 2005 to 972,000 in 2006, and 5,490,000 in 2007 [2].

2

When anybody is not connected to the internet, he is at some risk of intrusion due to

the physical access (access by someone when the owner is not present) of any others.

This threat is more when we are connected to the network, particularly the Internet.

At this time, anyone can access that computer remotely to take the credential or to

make an attack on that system. To exploit a system using intrusion does not need

execution of manual attack by a person. It can be done by automated engineered

software. A well-known example of this attack is Slammer worm. It was mainly a

Denial of Service (DoS) attack in 2003 performed in Microsoft’s SQL Server [3]. This

attack disabled the Microsoft database and overloaded its network. This work is

capable to infect approximately 75,000 computer systems within 10 minutes. Not only

that, but it also can cancel airline flights, interference with elections, and ATM failures

[3].

Professional companies and government organizations suffer more than a private

person during cyber attacks. There are many examples of cyber attack. In 2009, using

malware, the intruder was capable of shutting down an entire power grid of USA [4].

Later year, the GhostNet was discovered located in china, and it infiltrated to almost

1000 organizational computers including foreign ministries and embassies. Another

government related attack was reported in 2008, when Russia launched a cyber attack

against Georgia during war [5]. Due to the cyber attack to the government agencies,

President Barack Obama formed a national cyber security body in the USA in May

2009 [6], followed by the UK [7].

There are several mechanisms that can be adopted to increase the security in computer

systems. We can consider three levels protection:

● Attack prevention: Firewalls, usernames and passwords, and user rights.

● Attack avoidance: Encryption.

● Attack detection: Intrusion detection systems.

Despite adoption of different mechanisms, such as cryptography and protocols to make

the computer network secure, it is not possible to prevent all intrusion. Firewalls can

block and filter certain types of data used on a host or a network of computer. It cannot

3

handle the misuse within a network. Thus, IDS does not replace other mechanism, but

complement them when malicious behavior occurs. Before 1990, the IDS was operated

by system administrator manually, but now automated IDS software system is

available.

A wide range of Artificial Intelligence (AI) techniques have been adopted in IDSs, as

reviewed in section 1.4. Initially, Rule Based Systems (RBSs) were the first to be

employed successfully, but the drawback of RBSs is that they are inflexible (due to the

rigid rules), and, thus, cannot detect new intrusions, or variations of known intrusions

[8] [9].

Another area of AI, machine learning / data mining, such as base algorithms, Ensemble

learning and deep learning with techniques of anomaly detection offer some desired

flexibility. It can detect intrusion automatically by analyzing the behavior of user or

network traffic. A benefit of this technique is that it can detect unknown or any new

types of intrusion.

Recent research takes advantage of hybridization techniques to improve the detection
rates of machine learning classifiers. Sabhnani et al. [10] examines 9 Machine Learning
(ML) algorithms on a commonly used KDD-Cup dataset. The NSL-KDD (updated
version of KDD Cup ’99) data set has been widely used to evaluate intrusion detection
prototypes in the last decade.

In the literature, all studies indicate that there is a significant problem in detecting two

particular classes of intrusion: User to Root (U2R) and Remote to Local (R2L).

Imbalance classes is a problem in many real life application, and has been considered

in medical diagnosis [11-13], credit scoring [14], customer churn [15], [16], natural

language processing [17], lexical acquisition [18] and text recognition [19]. The general

problem is that the minor class (es) are not classified well when there is a significant

imbalance among the classes. Artificial Neural Networks (ANNs) and Decision Trees

(DTs) have been popularly applied to intrusion detection, but both have been shown to

be biased towards the major class(es) [20], [21]. This corresponds with the observations

in the literature on intrusion detection, in which ANNs have been reported to be unable

4

to detect the minor class U2R [22] [23]. Furthermore, an alternative approach to train

Ensemble Machine Learning (EML) is proposed to better learn from imbalanced data.

Most of the network-based intrusion detection research is going on base level machine

learning (for example SVM, KNN, Logistic Regression, etc.) and deep learning (such

as CNN, DBN, LSTM, etc.). There is very less work using Ensemble machine learning

in this field. In this research our main focus in on ensemble machine learning which

is one of the most powerful classifiers in the artificial intelligence domain.

This thesis presents a new set of solutions on ensemble classifier (classifier

ensembles). Furthermore, the approach taken here shows a novel perspective on the

analysis of the selection process for classifier ensembles and on the detection rate in

the network intrusion detection systems using ensemble machine learning classifier.

The Ensemble Machine Learning successfully learns from imbalanced data, which

demonstrates that these classifiers are capable of detecting the minor classes with more

detection rate. Another part of our research work is proposing a range of solutions with

different Ensemble machine learning classifiers. Furthermore, the approach taken here

shows a novel perspective on the analysis of the selection process for ensemble

classifier.

1.3 Research Objective

Motivated by the present state of machine learning based network intrusion detection

system, the objective of this thesis work is to develop a new design of Ensemble

Machine Learning for better detection of malware in the network traffic. To fulfill this

objective, the following aims have been considered:

1. To identify an order of importance of features for detecting malware by

packet header inspection found within network traffic.

2. To design an efficient classifier algorithm for identifying malware in target

networks based on their features.

3. To compare the algorithm with existing works in the literature.

5

1.4 Literature Review

Anderson, in 1980, first introduced anomaly-based intrusion detection methodology

to detect abnormal activity [24]. After that, lots of researchers use machine learning to

detect intrusion and make some improvements in this field. In [25], Kuang et al.

proposed support vector machine (SVM) model combining with kernel trick principal

with genetic algorithm (GA). K-nearest neighbor (KNN) was proposed to detect

intrusion in a wireless sensor network in 2014 [26]. ANN was applied on NSL-KDD,

where the detection rate was slightly higher in the classification of five classes [27]. A

Random Forest (RF) model which is mainly an ensemble classifier was presented in

[28]. Comparing the performance of Naive Bayes (NB) and a Decision Tree (DT), an

empirical investigation was conducted on the KDD Cup ’99 dataset in [29]. The DT

obtains a higher accuracy (92.28% compared with 91.47%), but NB obtains better

detection rates on the three minor classes, namely Probing, U2R and R2L intrusions.

Most significantly, the DT detects merely 0.52% R2L intrusions whilst NB detects

7.11%. Similar observations are made by [30], as they compare NB with an ANN.

ANNs and DTs are biased towards the major class(es) [20] [21], and, therefore, are

prone to perform worse on the minor class(es). Therefore, this can be seen as a benefit

of the NB, provided that the FPR does not become too high.

NB has also been found to be more robust than some other machine learning

techniques. The performance of two probabilistic techniques, NB and a Gaussian

classifier, and two predictive techniques, a DT and Random Forest (RF, an ensemble

of DTs) was compared in [31]. They analyze the performance of the techniques on

three different training sets of the 10% KDD Cup ’99 data set (all tested on the original

test set). Each training set consists of 90,000 instances, but with different proportions

of normal and intrusive data. For each set, 10 randomly created versions were selected

to examine the sensitivity of the techniques. In the best cases, NB and the Gaussian

classifier performed significantly better on the minor classes, U2R and R2L, but NB

performed worst on DoS. However, the DT and RF were very sensitive to the training

data selected, and the mean performance was lower than the probabilistic classifiers.

6

The performance of NB with an Adaptive Bayesian Network (ABN) was compared in

[32]. They use a different subset of the KDD Cup ’99 data set than [29], which led to

significantly different results. Hence, direct comparisons are not made across these

studies. However, the behavior of the algorithms is similar, i.e., NB obtains higher

detection rates on the minor classes. The greatest difference is clear from the detection

of U2R and R2L intrusions. Due to the low proportion of instances of these two classes,

the ABN does obtain the highest accuracy by correctly classifying more Normal and

DoS instances, which are the major classes.

The findings of [33] suggests that NB with Kernel Estimation (NBKE) is

advantageous. They compare the performance of NB with and without kernel

estimation on data gathered at Wuhan University in July 2008, with a focus on

detecting flooding attacks and port scans. NBKE obtains 98.80% accuracy compared

with 94.40% for the basic NB algorithm. Furthermore, the authors propose using an

additional feature, a Hurst exponential, which is a measure of the traffic rate and port

dispersion (how many ports were used in a specific time window). Experiments on

detecting UDP flooding gave a 6% higher accuracy with Hurst.

In [29] and [30], the authors motivate potential hybridizations of techniques. For

example, Benferhat et al. similarly to [29], also observe that NB is better at detecting

some intrusions than a DT. They emphasize on the above issue, which lead them to

propose a hybrid system of anomaly detection and misuse detection.

Application of deep learning especially Deep Belies Network (DBN) was used for

analysing NSL-KDD dataset [34]. In [35], Kim et al. used short term memory (LSTM)

architecture to RNN, and LSTM-RNN IDS provides better accuracy with higher FAR.

They used partial data from the full dataset and they also used the training set as a test

set. In [36], Abolhasanzadeh et al. Proposed several methodologies using

dimensionality reduction techniques on NSL-KDD. In [37], Fiore et al. presented a

new technique of Discriminative Restricted Boltzmann Machine (DBM) with well

classification ability. In [38], Ding et al. introduced CNN for intrusion detection and

compared with different ML classifiers.

7

In 2018, Mirza et al. [39] implements ensemble classifier combining neural networks,

decision trees and logistic regression. He used the KDD Cup 99 data set to measure

the overall accuracy by combining the different types of attacks. Therefore he works

with binary classification: normal traffic and attack traffic. Finally, he measures only

three types of accuracy namely accuracy of attack traffic detection, accuracy of normal

traffic detection and the overall accuracy.

In 2019, Hu et al. [40] proposed an ensemble technique named Dynamic Deep Forest

which is a tree-based approach. In his work, there are two parts. One is Dynamic Multi-

Grained Traversing where he does some feature selection work in the preprocessing

stage using entropy. In this part he works with different set of features. Another part

of his work is the Cascade Forest. In this part, he applied tree-based ensemble

classifiers using cascades layered architecture to measure precision, recall and

accuracy. In their research work, they evaluate their model using KDD’99 (KDD

CUP 99) dataset.

Sharma et al. [41], in 2019, proposed an ensemble approach using ExtraTree feature

selection mechanism. In their research work, at first they focused on present research

scenario of intrusion detection using imbalance dataset and they mention that due to

the multi-class detection using imbalance dataset, the previous work accuracy was not

satisfactory. They propose three layers architecture of their work. In the first layer,

they detect every attack individually and in the second layer they combine the previous

layer using softmax to detect intrusion in the network. In their research work, they

measure accuracy using the KDDcup99 and UNSW datasets.

In 2019, GAO et al. [111], proposed ensemble approach using NSL-KDD dataset.

Among different types of classifiers, they measure detection rate when used the

Random Forest ensemble classifier; and also they work with voting ensemble

technique. When they work with voting ensemble classifier, they measure accuracy of

their model for detecting intrusion. In their work, they set multiple decision tree and

8

construct MultiTree classifier, and they also used different base classifiers to construct

the ensemble classifiers.

In our research work, we propose ensemble machine learning approach using NSL-

KDD dataset to measure the detection rate for detecting intrusion. In our work, we will

compare our output with most recent research work where detection rate will be

measured using ensemble machine learning approach and when they use the NSL-

KDD dataset. In most recent, Hu et al. [40] and Sharma et al. [41] used the KDD CUP

99 dataset; in contrast GAO et al. [111] used RF ensemble classifier to measure the

detection rate and used NSL-KDD dataset. However, all those methods have some

limitations on performance, especially in detection rate.

1.5 Contribution

There are three empirical parts to this thesis. This research has made contributions to

both the intrusion detection and machine learning domains. Although the focus of this

thesis is on the application of machine learning to intrusion detection, several

contributions have been made to the general machine learning domain.

● Learning from imbalanced data has been identified as one of the reasons for

poor detection of certain classes of intrusion. The empirical research conducted

in this thesis demonstrates how commonly adopted techniques such as Base

classifier and deep learning perform poorly compared to our proposed

classifier. We provide some designs of ensemble classifiers which perform

with the new combination of base level classifiers. We also propose a new

hybrid ensemble classifier which is mainly combination of two ensemble

classifier.

● All the features on a dataset are not equally important for training and testing

a classifier. We provide a new set of features according to their importance to

improve the detection rate of the ensemble classifiers.

9

● The combination of base classifiers had not been considered previously in the

literature. Addressing this is an important contribution to intrusion detection

research. Furthermore, a novel approach to evolving ensembles classifier has

been proposed, which successfully learns from imbalanced data and offers the

user a wide range of solutions that exhibit different classification. From this,

the user can select the solution that gives the best performance for the particular

application.

1.6 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 provides an introduction

to the domain of intrusion detection, which is followed by different types of attacks,

detection system and existing product in the market. Different types of machine

learning classifier particularly ensemble machine learning classifier is discussed in

chapter 3. Chapter 3 also considers classifier combination, which is widely employed

in recent literature to improve upon the performance of single classifiers. Chapter 4

discusses the dataset used by this research work and the methodology of this research

work is also discussed in this chapter. Chapter 5 presents the experimental results of

the algorithms. The performance of the algorithm was evaluated on independent

training and testing dataset and was compared with existing classifiers. Chapter 6

concludes the thesis and offers suggestions for further work.

1.7 Summary
This thesis considers the application of machine learning to network based intrusion

detection. Section 1.2 outlines the background and motivation for the work presented

in this thesis. The research objective is discussed in Section 1.3. The literature is

discussed in Section 1.4, followed by the contribution of this thesis work in section

1.5. The structure of the remainder of this thesis is discussed in Section 1.6.

10

CHAPTER 2
Intrusion Detection

2.1 Introduction

An overview of potential intrusions to computers and computer networks is presented

in this chapter. A taxonomy of intrusion detection systems is provided here. As an

emerging area of research, intrusion detection in networks is discussed in this chapter.

2.2 Intrusions Detection

The high demand for usage of internet is growing rapidly and so is an increase of

threats on the network. A report by Symantec from 2016 implies that they have

discovered more than 430 million new malwares just in 2015, an increase of 36 percent

more than the year before [43].

Attacks can be varied in a long range such as Brute Force Attack, Heartbleed Attack,

DoS Attack, DDoS Attack, Web Attack etc. The bandwidth of the network is

increasing rapidly as the number of users of the internet are increasing. There is a huge

variation of standard speed today which is from 1Gbps to 10Gbps for an average data

center. The Download speed and Upload speed is different for big tech. companies like

Google, Facebook, etc., or big corporate companies, which is from 40 Gbps to

100Gbps [44] [45].

Network-based Intrusion Detection System (NIDS), is a security tool which protects

from an inside attack, outside attack and unauthorized access into the network. Which

is designed by software and/or hardware. The most familiar concept is firewall which

is built to protect the entire network from unauthorized access by IP address and port

number and managing these activities by NIDS. It has extensive and wide range

working applications which includes identifying the number of intrusion attempts on

the network; for example, denial of service attack, hacking, etc.

11

NIDS is generally placed outside the firewall where the entire external traffic can be

monitored by sensing and detecting the anomaly activities. When in a complex

network, for example, a device connected to 1000 nodes, due to the complexity of

network, it is the best decision to opt for a NIDS to keep track of changing network

environment. Which brings to a conclusion as only one IDS in any network can

compromise of confidential or sensitive data.

An overwhelmed NIDS can easily become a bottleneck in a network. During this case,

incoming and outgoing packets may experience long delays due to the inspection of

last packets or in the worst case, NIDS can drop the packet. An attacker can take this

advantage easily. For example, any intrusion cannot be detected if the dropped packet

has some properties for intrusion which results an incomplete packet matching.

Furthermore, to protect the confidentiality of any network for example, an organization

network structure from an attack and make sure the privacy of all users, network

administrator is protected. There are large varieties of machine learning algorithms

that have been widely used for detecting anomaly. For example, Artificial Neural

Network (ANN), Support Vector Machine (SVM), Random Forest, Self Organized,

Naive-Bayesian, and Deep learning. There has been a subsequent development of

Network Intrusion Detection System as classifiers to differentiate any anomaly from

normal traffic.

Our approach proposes ensemble machine learning based approach which can provide

a new insight to overcome the difficulties and challenges of developing a reliable and

efficient Network Intrusion Detection System. We have used the latest NSL-KDD

dataset of Canadian Institute for Cybersecurity (CIC) [46]. We also provide a

comparison to other techniques.

In general terms, intrusive behavior can be considered as any behavior that deviates

from the normal and expected use of the system. There are many types of intrusion,

which makes it difficult to give a single definition of the term. Asaka et al. [47] [48]

offer the following breakdown of a successful intrusion:

12

Surveillance/probing stage: The intruder attempts to gather information about potential

target computers by scanning for vulnerabilities in software and configurations that

can be exploited. This includes password cracking.

▪ Activity (exploitation) stage: Once weaknesses have been identified in the

previous stage, they can be exploited to obtain administrator rights to the

selected host(s). This will give the intruder free access to violate the system.

This stage may also include Denial of Service (DoS) attacks, as detailed further

below.

▪ Mark stage: After the exploitation stage, the attacker may be free to steal

information from the system, destroy data (including logs that may reveal that

the attack took place), plant a virus or spyware software, or use the host as a

medium for conducting further attacks. After which, this marks the stage where

the attacker has achieved his or her goal(s) of the attack [47].

▪ Masquerading stage: In this final stage, the intruder will attempt to remove

traces of the attack by, for example, deleting log entries that reveal the

intrusion.

The two first stages are further refined into an attack taxonomy that is widely adopted

in the literature to classify attacks into four categories: Probing, Denial of Service

(DoS), User to Root (U2R), Remote to Local (R2L) [49] [50].

2.3 Intrusion Detection System

The specific architectures of IDSs are not discussed here, as these are diverse and

continue to evolve with time. In general terms, Verwoerd et al. [51] have identified the

following common building blocks of an IDS:

● Sensor probes: gather data from the system under inspection.

13

● Monitor: receives events from a number of sensors and forwards suspicious

content to a ‘resolver’.

● Resolver: determines a suitable response to suspicious content.

● Controller: provides administrative functions.

2.4 Types of IDS

An IDS may be described according to different characteristics, [48]:

● Data Source: host based, or network based.

● Structure: centralized or distributed

● Detection method: signature or anomaly detection.

● Reaction: passive or active.

▪ Usage frequency: real-time or off-line.

There are also some other types of IDS which will be described below one by one.

For detecting abnormality of a network IDS tool is used. It monitors the behavior or

pattern of the network or system and notifies the administrator regarding any kind of

abnormal activities; Figure 2.1 reflects the total classification of an IDS.

Firstly, IDS can be classified on basis of input data source. NIDS monitors the pattern

or behavior of whole network whereas HIDS (Host-Based IDS) mainly monitors the

activities of a system or network for instance: incoming TCP connection attempts,

traffic flow of the network, login information and CPU, Memory, RAM usage, etc.

In general, there are only two types of IDS: One is Signature based and another is

Anomaly based.

14

Figure 2.1: Basic types of IDS

There is another perspective of classifying IDS system which is based on reaction. In

that way, there are two types of IDS system one is active, and another is passive. Active

15

IDS is able to take immediate action on any attack and inform the administrator. On

the other hand, passive IDS stores the log details of intrusion and after that notify to

the administrator.

Lastly, based on usage of frequency, we can classify an IDS system as offline IDS and

Online IDS. Offline IDS is used for analyzing pre-logged data to detect any attack

whereas an Online IDS use continues runtime new data to detect an attack.

Also considered here is ‘detection approach’, which describes, at a lower level, the

strategies used to detect intrusions, and this is related to ‘detection method’.

2.4.1 Detection Method

The intrusion may be detected by many different techniques like signature pattern

matching, anomaly detection, and many other techniques. The main two detection

methods, referred to as signature detection and anomaly detection [52], [53], [54].

These terms are also known as knowledge based and behavior based intrusion

detection [55], [56]. The former attempts to encode knowledge of known intrusions

(misuses), typically as rules, and use this to screen events (also known as a misuse

based IDS). The latter attempts to ‘learn’ the features of event patterns that constitute

normal behavior, and, by observing patterns that deviate from established norms,

detect when an intrusion has occurred [57]. Some IDSs offer both capabilities,

typically via a hybridization of techniques [58]. However, a system may also be

modeled according to both normal and intrusive data, which has become a common

approach in recent research adopting machine learning techniques [59-63].

However, the performance of Signature based NIDS starts to decrease and becomes

challenging whenever there is any unknown attack or when there is an anomaly traffic

in the network. The signatures are pre-installed into the IDS system which has to be

matched in order to detect any attack. For the case of Anomaly based NIDS

(ADNIDS), it is possible to identify any unknown attack where this idea is widely

acceptable among the research community.

16

However, rule/signature/misuse based approach cannot detect attacks for which it has

not been programmed, and, thus, it is prone to issue false negatives if the system is not

kept up to date with the latest intrusions [52] [64]. One of the benefits of anomaly

detection is the ability to detect new attacks, since the system is modeled according to

normal behavior.

Anomaly detection is an intrusion detection technique in which normal network

behavior is captured and any abnormality in the network or malicious activity is

detected. This abnormality in the network can be a sudden increase in network traffic

rate (number of IP packets per second).

Signature pattern matching is an intrusion detection method where the network data is

compared and analyzed with the known attack techniques that are saved in a database.

For example, an Intrusion Detection System which monitors web servers might be

programmed to have an attention. When an intrusion is detected and it alerts the system

administrator about the details of the intrusion,

The uses cases for IDS as below:

▪ User: User sends a request to server and server responds by providing the

requested service.

▪ Network: In a network, IP packets are carried from the source to destination.

▪ IDS: An Intrusion Detection System catches the packets from the network,

analyses the packets.

▪ System Administrator: System Administrator is alerted by the IDS of any

suspicious activity or whenever an intrusion is detected.

Uses cases description for IDS as below:

1) IP Packet: A Network gives the IP Packets to Intrusion Detection System which

further processes these packets.

2) Anomaly Detection: If an Intrusion Detection System detects any abnormality

in the network traffic such as changes in traffic volume, bandwidth, traffic

pattern, etc. Then, it triggers the alert system.

17

3) Signature recognition: An Intrusion Detection System monitors and examines

the traffic looking for well-known attack patterns or unknown attack, which

are saved in the database and if a match is found, it triggers the alert system.

4) Alert System: It alerts the system administrator, whenever triggered by

anomaly detection or signature recognition.

In the Pattern or Signature detection type IDS, it has all information about the attack

to detect them [65]. On the other hand, anomaly detection type IDS has all log of

normal activity of network traffic and it detects any deviation from normal activity.

When it finds any abnormal activity, it treats it as attack [66]. Another type of IDS is

frequency detection technique which has a fixed threshold and checks whether

anything crosses the threshold.

2.5 Physical Network

There are several of methods in which the security of a system can be compromised.

While physically compromising a computer is an important security threat, we will

focus on the problem of detecting intrusions across the network. All data come to a

network as packet; our aim is to analyses all parts of that data to determine whether

any attack is in progress or not. Intrusion detection often considered attacks from

outside network or external network and the term misuse is then assigned to describe

attacks from the internal network [67]. In order to understand what type of data is

useful for detecting intrusions, it is very important to acknowledge the basic route that

both appropriate and malicious users may traverse to use a specific system. There are

three fundamental methods of accessing to a computer which are physical access to

the host computer, using physical network, and a wireless network. This thesis will

focus on using a physical network, which is described below.

In physical network, data is transmitting in the form of packets through any physical

media unlike wireless communication. A unit of data is called packet and packet routed

from host to destination on internet or any kind of packet-switched network. The

packets carry the data in the protocols. Transmission Control Protocol/Internet

Protocol (TCP/IP). Each packet contains part of the body of the message. A normal

18

packet contains 1000 to 1400 bytes. A packet consists of three parts which are header,

payload, and trailer [68]. The header is the beginning of the data and consists of

information about the destination. The trailer is the end of the packet and payload is

the actual information. Internet protocol (IP) is used to connect users on the Internet

through an IP address.

2.5.1 Packet Header Information

Figure 2.2 shows the construction of a network packet and Figure 2.3 shows the header
information of IP and TCP which is situated into the network packet.

Figure 2.2: Network packet

19

Figure 2.3: Packet header information

2.6 Network Attacks

The attack types are very huge according to number and variety. For example, any

intruder may get or guess the user’s password or may also monitor the traffic and after

analyzing the traffic pattern, they may launch an attack. Sometimes intruder may set

up an unauthorized program into the system that they managed access to that network.

Furthermore, attacker also steals information and tries to make denial of service which

make the system to become zombie. Various types of attack will be explained in this

section.

20

2.6.1 Buffer Overflow

The attack which exploits code that writing data to a buffer, swamp the boundary of

the buffers also overwrites the memory location. This may cause confidentiality of

sensitive data of an organization. For instance, the pointer of the instruction on stack

may be overwritten in a way that the intruder wishes to execute.

2.6.2 Teardrop

This is one type of denial of service attack. In this attack, attacker exploits incorrect

handling of overlapping packets. It is considered as a DoS attack because it crashes

any vulnerable machine. There are some reports of being attacked by this attack on

older windows or Linux operating system.

2.6.3 Ping of Death

Ping of Death attack is also one kind of Denial of service attack that uses unformatted

or improperly formatted ping. When the octets of the ping is greater than 65535, this

attack may happen. Linux, Windows OS are vulnerable for this attack.

Attack varies across different OS. We will discuss here for Linux and Windows

operating system. The cause of variation of attacks depends of several factors. Every

operating system handling their incoming packets in their way with their default rules

in the network.

All packets do not maintain order while arriving. To deal with it and avoid

miscommunication, packets from the same connection has given a number by the

sender and rearrange by the receiving computer after arriving according to the rule of

OS. The main problem is that, different receivers arrange their incoming packet

differently. For instance, in the overlapping packet, if two arriving packet has the same

SEQ number, they will face packet overlapping. In this situation, operating system

must take decision on how to handle packets that are overlapped. The default rule for

Linux is consider new packet where the default rule for windows is consider old

packets [103].

21

Figure 2.4: Overlapping Packet [42]

In Figure 2.4, in number 4, slot there are two packets arrived at a time and one packet

is denied. Here, it shows Linux and Windows OS systems structure.

2.7 Types of Attack

The number of attacks has a large variety but most of them will fit into four main

categories [69].

1. Probe

2. Denial of Service (DoS)

3. User to Root

4. Remote to User

2.7.1 Probe

Learning specific setup information of a computer or network is known as probe. We

cannot say this is exactly an attack but with this information any attacker can launch

an attack. Probe could be a sign of future attack. Many attacks mostly start from probe

[70].

2.7.2 User to Root (U2R)

These attacks exploit vulnerabilities in operating systems and software to obtain root

(administrator) access to the system.

2.7.3 Denial of Service (DoS)

This attack overloads the resources by sending unimportant information in the system

and prevents actual users from accessing in the system [71]. Commercial application

has been affected mostly by this attack. For example, Sony play station network has

been affected by DDoS [72]. The general purpose of DoS attacks is to interrupt some

22

service on a host to prevent it from dealing with certain requests. This may be a step

in a multi-stage attack. Three types of DoS attacks are (1) “abuse legitimate features”,

(2) “create malformed packets that confuse the TCP/IP stack of the machine that is

trying to reconstruct the packet”, or (3) “take advantage of bugs in a particular network

daemon” [71].

2.7.4 Remote to User (R2U)

In this category, when an attacker wants to have user permission while he doesn’t have

any permission to access that network. This type of attack then forwards to user to root

attack. There are some similarities between this class of intrusion and U2R, as similar

attacks may be carried out. However, in this case, the intruder does not have an account

on the host and attempts to obtain local access across a network connection. To achieve

this, the intruder can execute buffer overflow attacks, exploit misconfigurations in

security policies or engage in social engineering (i.e., obtaining data by tricking a

human operator, rather than targeting software flaws [49]).

The four classes above may be used in IDS for classifying intrusions, rather than only

differentiating between ‘normal’ and ‘intrusion’.

2.8 Zero Day Attack

One of our research questions consists of Zero-day attack. It can be any attack or any

type of packets. From the earlier section, the attack which is not included in the first

four categories is treated as the zero-day attack. This usually occurs when the time

between the vulnerability found first and then exploited and the time of the application

developers releases the fundamental solution to encounter the exploitation. This

timeline is usually termed as the vulnerability window. These attacks can assume

malware forms such as Trojan horses or worms and they are not always viruses.

Updates of latest anti-malware software are often recommended, though it can only

provide a minimum security against a zero day attack. The Network Based IDS(NIDS)

uses raw packets as the data source and after analyzing the incoming packets it makes

a pattern to decide an attack.

23

2.9 Open Source Intrusion Detection Systems

2.9.1 Snort

Snort is an open source software for intrusion detection and prevention system which

is created by Martin Roesch in 1998. At this time, it is deployed by the sourcefire snort

team [73]. This snort is single threaded which means only one job can be executed in

one session without interruption. Snort uses only signature based intrusion detection

from the users and the community maintains the rules like Snort VRT. The ruleset also

called database [73].

First step of snort functioning is that packet acquisition. In this step, all network traffic

is captured every packet is identified by structure. Snort doesn’t have built-in facility,

so it uses libpcap library. When data is collected, it is forwarded to next step which is

preprocessor.

One type pre-processor adds another layer for complex analysis when signature based

snort cannot express the rule to detect intrusion. Other type of preprocessor accepts

modular plugin to view any suspicious activity into the network.

Detection Engine detects the signature and its validity according to the rule. Detection

engine checks the header and payload of the arriving data to check the pattern matching

and give a decision to the output. Output will set detection alert which is informed by

the detection engine and show the result.

2.9.2 Rule

Snort rule is available in the databases from snort research community (VRT) and can

be downloaded. They created and updated new rules for new attack on network for

snort users. There may be a possibility to create any personalize signature rules for any

desired packets.

Snort Sample Rule:

“alert tcp any any -> any 80 (content "|00 00 00 00|"; depth 10; msg "Bad Bytes"

sid:111000111; rev:2;)”

24

In details of this rule, if the packet uses TCP protocol from any source address and ip

address to any destination address and destination port number 80 with only four null

bytes in the beginning, then alert will be triggered out. It also marked as "Bad Bytes"

and with signature identification of 111000111 with revision 2.

2.9.3 Bro

Bro IDS is a passive open source analyzer. It monitors all incoming traffic looking for

any suspicious activity. Normally, Bro supports a wide range of traffic analysis even

it analyses outside of security domain including troubleshooting and performance

measurement [74].

2.10 Commercial Intrusion Detection Systems

2.10.1 NetProwler

NetProwler is a network-based intrusion detection system by Symantec. This is a

Network based IDS designed by Symantac. It uses distributed architecture and it

consists of three parts

1.Agent

2.Manager

3.Console

2.10.2 NetRanger

This is designed by CISCO and also known as CISCO Netranger. It comes with all

suite of software and hardware installation information and can easily set up into the

network. Its maintenance and upgradation has been done by CISCO [75].

2.10.3 CFEngine 2

In 1998, Burgess wrote "Computer Immunology", a paper at the USENIX/LISA98

conference [5]. It laid out a manifesto for creating self-healing systems, reiterated a

few years later by IBM in their form of Autonomic Computing. This started a research

effort which led to a major re-write, CFEngine 2, which added features for machine

learning, anomaly detection and secure communications.

25

2.10.4 Hogzilla

Hogzilla is an open source Intrusion Detection System (IDS) supported by Snort,

SFlows, GrayLog, Apache Spark, HBase and libnDPI, which provides Network

Anomaly Detection. Hogzilla also gives visibility of the network.

2.11 Summary

In this chapter, we have discussed regarding Intrusion Detection System (IDS) and

also its different types. Packed header information discussed in section 2.5.2. In section

2.7, we discussed regarding various types of network attacks. We present a brief

overview regarding open source IDS in section 2.9 whereas the commercial IDS

discussed in section 2.10.

26

Chapter 3
Classifiers

3.1 Introduction

Machine learning, nowadays, is popular in various fields of computer science [76-79].

Because of new computing technologies, machine learning today is not like machine

learning of the past. It was born from pattern recognition and the theory that computers

can learn without being programmed to perform specific tasks; researchers interested

in artificial intelligence wanted to see if computers could learn from data. Ensemble

machine learning is one of the effective types in this field which can combine the base

classifiers.

3.2 Machine Learning

Machine learning needs to provide a huge amount of data for training the model where

to predict the future aspects. When the model learns from the data perfectly, there is a

high probability to predict the future correctly. Machine learning techniques are

normally used when any problem cannot be solved by any mathematical calculation

or writing any script alone. There are two categories of machine learning problems

that can be addressed: one is supervised learning and other is unsupervised learning.

3.2.1 Applications of Machine Learning

While many machine learning algorithms have been around for a long time, the ability

to automatically apply complex mathematical calculations to big data – over and over,

faster and faster – is a recent development: [76-80]. Here are a few application areas

of machine learning people are familiar with:

1. Data Security - predict malware

2. Personal Security - spot things human screeners might miss

3. Financial Trading - predict what the stock markets will do

4. Healthcare - spot cancers sooner than they are officially diagnosed

5. Marketing Personalization - lead consumers reliably towards a sale

27

6. Fraud Detection - PayPal is using machine learning to fight money

laundering

All of these things mean that it is possible to quickly and automatically produce models

that can analyze bigger, more complex data and deliver faster, more accurate results,

even on a very large scale. And by building precise models, an organization has a better

chance of identifying profitable opportunities or avoiding unknown risks. Most

industries working with large amounts of data have recognized the value of machine

learning technology. By gleaning insights from this data, often in real time,

organizations are able to work more efficiently or gain an advantage over competitors.

For example: Financial services, Health care, Oil and gas, Government, Marketing and

sales, Transportation, etc.

Some of the fields who use machine learning applications are shown in the Figure 3.1

below.

Figure 3.1: Application areas of machine learning (Source: [80])

28

3.3 Types of Machine Learning

Some popular types of machine learning algorithms are:

3.3.1 Supervised Learning

Supervised machine learning algorithms [81-83] are trained using labeled examples,

such as an input where the desired output is known (Figure 3.2). For example, a piece

of equipment could have data points labeled either “F” (failed) or “R” (runs). The

learning algorithm receives a set of inputs along with the corresponding correct

outputs, and the algorithm learns by comparing its actual output with correct outputs

to find errors. It then modifies the model accordingly. Through methods like

classification, regression, prediction and gradient boosting, supervised learning uses

patterns to predict the values of the label on additional unlabeled data.

Figure 3.2: Block diagram of supervised machine learning algorithm (Source: [84])

Supervised learning is commonly used in applications where historical data predicts

likely future events. For example, it can anticipate when credit card transactions are

likely to be fraudulent or which insurance customer is likely to file a claim. In

supervised learning, predefined dataset has been provided before training the

algorithms. Firstly, these datasets are labeled and based on the labels or tags, the

algorithms learn. After learning from the dataset, model can predict any future

expectations [85].

29

3.3.2 Unsupervised Learning

Unsupervised machine learning [81-83] is used against data that has no historical

labels (Figure 3.3). The system is not told the "right answer." The algorithm must

figure out what is being shown. The goal is to explore the data and find some structure

within. Unsupervised learning works well on transactional data. For example, it can

identify segments of customers with similar attributes who can then be treated

similarly in marketing campaigns. Or, it can find the main attributes that separate

customer segments from each other.

Figure 3.3: Block diagram of unsupervised learning algorithm (Source: [81])

Popular techniques of unsupervised learning include self-organizing maps, nearest-

neighbor mapping, k-means clustering and singular value decomposition. These

algorithms are also used to segment text topics, recommend items and identify data

outliers.

In this thesis, we propose a supervised NIDS with ensemble learning algorithm, which

is compatible with the known attack as well as an unknown attack. Which we call zero-

day attack. Because based on the unknown attack in the NSL-KDD test dataset, which

doesn’t need any experience, sees every attack, i.e., known attack or unknown attack

as a new attack. Our proposed model has the capability to detect various types of new

attacks, for example, DoS, Heartbleed, port scanning or any other types of attack which

30

may cause a huge amount of network traffic. Within that time, pattern or behavior of

network traffic has been analyzed by the intruder which may cause an attack. Based

on previous research on this, NIDS needs to improve the detection rate particularly

R2L and U2L attack.

3.3.3 Semi Supervised Learning

Semi supervised learning [81] [82] is used for the same applications as supervised

learning. But it uses both labeled and unlabeled data for training (Figure 3.4). Typically

it uses a small amount of labeled data with a large amount of unlabeled data (because

unlabeled data is less expensive and takes less effort to acquire).This type of learning

can be used with methods such as classification, regression and prediction.

Figure 3.4: Block diagram of semi-supervised learning algorithm (Source:[82])

Semi supervised learning is useful when the cost associated with labeling is too high

to allow for a fully labeled training process. Early examples of this include identifying

a person's face on a web cam.

31

3.3.4 Reinforcement Learning

Reinforcement learning [81-83] is often used for robotics, gaming and navigation.

With reinforcement learning, the algorithm discovers through trial and error which

actions yield the greatest rewards (Figure 3.5).

Figure 3.5: Block diagram of reinforcement learning algorithm (Source: [83])

This type of learning has three primary components: the agent (the learner or decision

maker), the environment (everything the agent interacts with) and actions (what the

agent can do). The objective is for the agent to choose actions that maximize the

expected reward over a given amount of time. The agent will reach the goal much

faster by following a good policy. So, the goal in reinforcement learning is to learn the

best policy.

3.4 Base Level Classifier

In machine learning, there are different base classifier which can be used to work with

ensemble machine learning. Some of the base classifiers are described below

3.4.1 Support Vector Machine (SVM)

Support Vector Machines [86] [87] are based on the concept of decision planes that

define decision boundaries. A decision plane is one that separates between a set of

objects having different class memberships. A schematic example is shown in Figure

3.6. In this example, the objects belong either to class GREEN or RED. The separating

line defines a boundary on the right side of which all objects are GREEN and to the

32

left of which all objects are RED. Any new object (white circle) falling to the right

will be labeled/classified, as GREEN (or classified as RED if it falls to the left of the

separating line).

Figure 3.6: Linear decision plane in SVM (Source: [87])

Figure 3.7 is a classic example of a linear classifier, i.e., a classifier that separates a set

of objects into their respective groups (GREEN and RED in this case) with a line. Most

classification tasks, however, are not that simple, and often more complex structures

are needed in order to make an optimal separation, i.e., correctly classify new objects

(test cases) on the basis of the examples that are available (train cases). This situation

is depicted in Figure 3.8. Compared to the previous schematic, it is clear from Figure

3.8 that a full separation of the GREEN and RED objects would require a curve which

is more complex than a line. Classification tasks based on drawing separating lines to

distinguish between objects of different class memberships are known as hyperplane

classifiers. Support Vector Machines are particularly suited to handle such tasks.

Figure 3.7: Non-linear decision plane in SVM (Source: [87])

Figure 3.8 shows the basic idea behind Support Vector Machines. Here, the original

objects (left side of the schematic) are mapped, i.e., rearranged, using a set of

33

mathematical functions, known as kernels. The process of rearranging the objects is

known as mapping (transformation). Note that in this new setting, the mapped objects

(right side of the schematic) is linearly separable and, thus, instead of constructing the

complex curve (left schematic), all one need to do is to find an optimal line that can

separate the GREEN and the RED objects.

Figure 3.8: Mapping of data points from the input space to another feature space in SVM (Source: [87])

If the data is not linearly separable, then a kernel trick is used. Kernels are functions

that quantify similarities between observations. Common types of kernels used to

separate non-linear data are polynomial kernels, radial basis kernels, and linear kernels

[88-90]. Simply, these kernels transform the data in order to pass a linear hyperplane

and thus classify the data. So, the rule of thumb is to use linear SVMs (or logistic

regression) for linear problems, and nonlinear kernels such as the Radial Basis

Function kernel for non-linear problems. Extensions of support vector machines can

be used to solve a variety of other problems, such as - multiple class SVMs using One-

Versus-One Classification or One-Versus-All Classification. The chosen kernel

defines the function class one is working with. The squared exponential kernel (radial

basis function kernel) defines a function space that is a lot larger than that of the linear

kernel or the polynomial kernel. A linear kernel allows the users to use linear functions,

which are really impoverished. As the order of the polynomial kernel increases, the

size of the function class increases. An nth order polynomial kernel gives all analytic

functions whose derivatives of order (n+1) are constant, and hence all derivatives of

and above order (n+2) are zero. The RBF kernel gives access to all analytic functions

(that is, all infinitely differentiable functions). So, sense the RBF kernel can be viewed

as powerful as an infinite order polynomial kernel. Technically if users use squared

34

exponential kernel, then the method is nonparametric. And if the kernel is polynomial,

the model is parametric. In a way, nonparametric model means that the complexity of

the model is potentially infinite, its complexity can grow with the data. If the users

give it more and more data, it will be able to represent more and more complex

relationships. In contrast, a parametric model's size is fixed. So, after a certain point

this model will be saturated, and giving it more and more data won't help. So

asymptotically assuming users have unlimited data and very weak assumptions about

the problem, a nonparametric method is always better.

In the basic classification, SVM classifies the data into two categories. Given a training

set of instances, labeled pairs {(x, y)}, where y is the label of instance x, SVM works

by maximizing the margin to obtain the best performance in classification. More

thorough descriptions can be found in [84], [91].

However, typical examples of kernels used in SVM, which have been successfully

applied to a wide variety of applications, are linear, polynomials and radial basic

functions.

In this study, linear functions kernel has been adopted because we believe that it is a

suitable choice for our problem. We also apply other kernels (RBF and Poly) to work

with this issue. The RBF kernel nonlinearly maps samples into a higher-dimensional

space, Furthermore, the linear kernel is a special case of RBF as [92] shows that the

linear kernel with a penalty parameter C has the same performance as the RBF kernel

with some parameters. In addition, the sigmoid kernel behaves like RBF for certain

parameters [93]. Moreover, the number of hyperparameters influences the complexity

of model selection. The polynomial kernel has more hyperparameters than the RBF

kernel. Finally, the linear kernel has less numerical difficulties.

The solution of the model parameters of SVM corresponds to a convex optimization

problem.

Thus, k(w,x) = wTx is a valid kernel function. (Known as the linear kernel). We can

write down as g(x) = wTx + b

35

Polynomial Kernel Functions: The Polynomial kernel is defined as

K(x,y) = (x.y+c)n

Where n is the “order” of the kernel, and c is a constant that allows to trade off the

influence of the higher order and lower order terms.

Radial Basis Function (RBF): Also known as a Gaussian Kernel, Radial Basis

Function (RBF) kernels are often used in Computer Vision. The RBF Kernel function

has the form:

 K(x,y) = exp {(-||x-y||2)/(2σ)2}

The term ||x-y|| is the Euclidean distance from the set of points {y}. The σ (sigma)

parameter acts as a smoothing parameter that determines the influence of each of the

points, y.

3.4.2 Logistic Regression

Logistic regression is firstly developed by statistician D. R. Cox in 1958 as a statistical

method, and after that it is used widely in many fields [94]. In the early 1980’s, it has

become routinely available in statistical packages.

Logistic regression deals with the relationship existing between a dependent variable

and one or more independent variables. It provides a method for modeling a binary

response variable which takes values 1 and 0. Logistic regression analysis extends the

technique of multiple regression analysis to research situations in which the outcome

variable is categorical. Situation involving categorical outcomes are quite common in

practice. Logistic regression model has been applied in a number of contexts; which

includes applications to adjust for bias, in comparing two groups in observational

studies. Logistic regression analysis is part of a category of statistical model known as

generalized linear models which consist of fitting a logistic regression model to an

observed proportion in order to measure the relationship between the response variable

and set of explanatory variables.

36

There are some cases where dependent variables can have more than two outcomes,

are classified as multinomial logistic regression. The logit function (sigmoid function)

is calculated as

Figure 3.9: logit function

3.4.3 KNN

K nearest neighbors (KNN) [95] [96] is a simple algorithm that stores all available

cases and classifies new cases based on a similarity measure (e.g., distance functions).

KNN is a non-parametric, lazy learning algorithm. Its purpose is to use a database in

which the data points are separated into several classes to predict the classification of

a new sample point. How closely out-of-sample features resemble the training set

determines how accurately the algorithm classifies a given data point [95]. When KNN

is used for classification - the output is a class membership (predicts a class — a

37

discrete value). An object is classified by a majority vote of its neighbors, with the

object being assigned to the class most common among its k nearest neighbors.

Suppose there is a dataset with n classified examples. Each classified example acts as

a point in the feature space. A way to calculate the k-nearest neighbors for unclassified

examples would be to find the k already classified examples that are closest to the

unclassified data. Once the k neighbors have been identified, a majority class vote will

take place among them to classify the new instances.

Figure 3.10 shows a graphical representation of KNN classification. The test sample

(green circle) should be classified either to the first class of blue squares or to the

second class of red triangles. If k=3 (solid line circle), it is assigned to the second class

because there are 2 triangles and only 1 square inside the inner circle.

Figure 3.10: Example of KNN classification method (Source: [96])

38

3.5 Ensemble Machine Learning

An ensemble is itself a supervised learning algorithm, because it can be trained and

then used to make predictions. Ensemble learning techniques attempt to make the

performance of the predictive models better by improving their accuracy. Ensemble

Learning is a process using which multiple machine learning models (such as

classifiers) are strategically constructed to solve a particular problem.

An ensemble is the art of combining a diverse set of learners (individual models)

together to improvise on the stability and predictive power of the model. In the above

example, the way we combine all the predictions collectively will be termed as

Ensemble learning.

Figure 3.11 presents a basic Ensemble structure:

Figure 3.11: Typical prediction by ensemble learners

39

3.6 Types of Ensemble Learning Methods

Although there are several types of Ensemble learning methods, the following four are

the most-used ones in the industry.

3.6.1 Bagging Ensemble Learning

Bagging is one of the Ensemble construction techniques which is also known

as Bootstrap Aggregation. Bootstrap establishes the foundation of Bagging technique.

Bootstrap is a sampling technique in which we select “n” observations out of a

population of “n” observations. But the selection is entirely random, i.e., each

observation can be chosen from the original population so that each observation is

equally likely to be selected in each iteration of the bootstrapping process. After the

bootstrapped samples are formed, separate models are trained with the bootstrapped

samples. In real experiments, the bootstrapped samples are drawn from the training

set, and the sub-models are tested using the testing set. The final output prediction is

combined across the projections of all the sub-models. Figure 3.12 gives a brief idea

of Bagging:

Figure 3.12: prediction by Bagging (Source: [97])

40

Bootstrap Aggregating is an ensemble method. First, we create random samples of the

training data set with replacement (sub sets of training data set). Then, we build a

model (classifier or Decision tree) for each sample. Finally, results of these multiple

models are combined using average or majority voting.

As each model is exposed to a different subset of data and we use their collective

output at the end, so we are making sure that problem of overfitting is taken care of by

not clinging too closely to our training data set. Thus, Bagging helps us to reduce the

variance error.

Combinations of multiple models decrease variance, especially in the case of unstable

models, and may produce a more reliable prediction than a single model.

3.6.2 Boosting Ensemble Learning

Boosting is a form of sequential learning technique. The algorithm works by training

a model with the entire training set, and subsequent models are constructed by fitting

the residual error values of the initial model. In this way, Boosting attempts to give

higher weight to those observations that were poorly estimated by the previous model.

Once the sequences of the models are created the predictions made by models are

weighted by their accuracy scores and the results are combined to create a final

estimation. Models that are typically used in Boosting technique are XGBoost

(Extreme Gradient Boosting), GBM (Gradient Boosting Machine), ADABoost

(Adaptive Boosting), etc.

Boosting is an iterative technique which adjusts the weight of an observation based on

the last classification. If an observation was classified incorrectly, it tries to increase

the weight of this observation and vice versa.

Boosting is a sequential technique in which, the first algorithm is trained on the entire

data set and the subsequent algorithms are built by fitting the residuals of the first

algorithm, thus giving higher weight to those observations that were poorly predicted

by the previous model. It relies on creating a series of weak learners each of which

might not be good for the entire data set but is good for some part of the data set. Thus,

each model actually boosts the performance of the ensemble. Figure 3.13 gives a brief

idea of Boosting.

41

Figure 3.13: Prediction by Boosting (Source: [98])

3.6.3 Voting Ensemble Learning

Voting is one of the most straightforward Ensemble learning techniques in which

predictions from multiple models are combined. The method starts with creating two

or more separate models with the same dataset. Then, a Voting based Ensemble model

can be used to wrap the previous models and aggregate the predictions of those models.

After the Voting based Ensemble model is constructed, it can be used to make a

prediction on new data. The predictions made by the sub-models can be assigned

weights. Stacked aggregation is a technique which can be used to learn how to weigh

these predictions in the best possible way. Figure 3.14 gives an idea of Voting-based

Ensembles:

Figure 3.14: prediction by voting (Source: [97])

42

For voting classifiers, we used different combination of DT, KNN, LR SVM as base
level classifiers and design 4 different voting classifiers

3.6.4 Stacking Ensemble Learning

Stacking is an ensemble learning technique that combines multiple classification or

regression models via a meta-classifier or a meta-regressor. The base level models are

trained based on a complete training set, then the meta-model is trained on the outputs

of the base level model as features. The base level often consists of different learning

algorithms and therefore stacking ensembles are often heterogeneous.

Figure 3.15: prediction by Stacking (Source: [99])

The ensemble of models will give better performance on the test case scenarios

(unseen data) as compared to the individual models in most of the cases. The aggregate

result of multiple models is always less noisy than the individual models. This leads

to model stability and robustness.

3.7 Summary

In this chapter, we discussed regarding various Machine Learning Classifiers (MLC).
At first we presented a brief discussion on supervised and unsupervised learning and
after that we also discussed about the base machine learning classifiers. At the end of
this chapter, we discussed various types of ensemble machine learning classifiers
including Voting, Stacking, Bagging and Boosting classifiers in section 3.6.

43

Chapter 4
Proposed Methodology

4.1 Introduction
This chapter will discuss regarding the methodology of the proposed algorithm. At

first, the basic block diagram will be discussed and at the end of this chapter, every

step will be discussed.

The techniques of data collection, feature extraction and feature selection will also be

discussed in this chapter. After selecting significant features, the final feature set has

been constructed. Now, a classification algorithm needs to be developed which will

maximize the detection rate. For this purpose, a number of classification algorithms

are required to be tested for this dataset. Their description and working procedure will

be discussed in this chapter. Their performance will be presented in the next chapter.

At the end, the best classifier for this dataset will be selected for the proposed method.

A basic block diagram of the proposed algorithm is presented in Figure 4.1

Figure 4.1: Basic block diagram for our workflow

4.2 Proposed Algorithm
This thesis proposes a set of new methods for intrusion detection based on network

traffic. It uses the header information of a packet (IP and TCP header as discussed in

section 2.5.1) extracted from the network traffic. They create an opportunity to start a

new era of working with less complex features and developing newer algorithms. So,

 Data collection

and data

preprocessing

Identification of

Significant

features

Developing

Classification

Algorithm

Performance

Evaluation

44

some important feature selection techniques have been incorporated here to select

optimal features, e.g., F-test (filter method). Feature selection has a significant impact

on subsequent stages of the learning. The selection of appropriate classification

techniques is one of the most important aspects for prediction issues. To find out the

appropriate one for the proposed method, several ensemble classification algorithms

(Voting, Stacking, Bagging Boosting) have been experimented with and then the best

one was selected. Use of cross-validation technique [49] here ensured random split of

data into test set. Then, performance of the proposed algorithm has been checked.

Results are discussed in chapter 6. Before discussing the proposed methodology of this

research work step by step, the dataset used in this research work will be described

first.

4.2.1 Dataset Description
The inherent drawbacks in the KDD cup 99 dataset [100] have been revealed by

various statistical analyses has affected the detection accuracy of many IDS modeled

by researchers. NSL-KDD data set [101] is a refined version of its predecessor.

It contains essential records of the complete KDD data set. There is a collection of

downloadable files at the disposal for the researchers. They are listed in the Table 4.1

Table 4.1: List of NSL-KDD dataset files and their description

S.No. Name of the file Description
1 KDDTrain+.ARFF The full NSL-KDD train set with binary labels in

ARFF format
2 KDDTrain+.TXT The full NSL-KDD train set including attack-type

labels and difficulty level in CSV format
3 KDDTrain+_20Perce

nt.ARFF
A 20% subset of the KDDTrain+.arff file

4 KDDTrain+_20Perce
nt.TXT

A 20% subset of the KDDTrain+.txt file

5 KDDTest+.ARFF The full NSL-KDD test set with binary labels in
ARFF format

45

S.No. Name of the file Description
6 KDDTest+.TXT The full NSL-KDD test set including attack-type

labels and difficulty level in CSV format
7 KDDTest-21.ARFF A subset of the KDDTest+.arff file which does

not include records with difficulty level of 21 out
of 21

8 KDDTest-21.TXT A subset of the KDDTest+.txt file which does not
include records with difficulty level of 21 out of
21

In each record, there are 41 attributes unfolding different features of the flow and a

label assigned to each, either as an attack type or as normal.

The details of the attributes namely the attribute name, their description and sample

data are listed in the Tables 4.2, 4.3, 4.4, 4.5. The Table 4.6 contains type information

of the 41 attributes available in the NSL-KDD data set. These attribute contains data

about the various 5 classes of network connection vectors and they are categorized as

one normal class and four attack classes. The 4 attack classes are further grouped as

DoS, Probe, R2L and U2R.

Table 4.2: basic features of each network connection vector

Attribut

e
No.

Attribute
Name

Description Sample
Data

1 Duration Length of time duration of
the connection

0

2 Protocol_type Protocol used in the
connection

Tcp

3 Service Destination network
service used

ftp_data

4 Flag Status of the connection –
Normal or Error

SF

5 Src_bytes Number of data bytes
transferred
from source to destination
in single connection

491

46

Attribut

e
No.

Attribute
Name

Description Sample
Data

6 Dst_bytes Number of data bytes
transferred
From destination to source
in
Single connection

0

7 Land if source and destination IP
addresses and port numbers
are equal then, this variable
takes value 1 else 0

0

8 Wrong_fragm
ent

Total number of wrong
fragments in this
connection

0

9 Urgent Number of urgent packets
in this connection. Urgent
packets are packets with the
urgent bit
activated

0

Table 4.3: content related features of each network connection vector

Attribut

e
No.

Attribute
Name

Description Sample
Data

10 Hot Number of hot‟ indicators in
the content such as: entering a
system directory, creating
programs and executing
programs

0

11 Num_failed
_logins

Count of failed login attempts 0

12 Logged_in Login Status :
1 if successfully logged in;
0 otherwise

0

13 Num_comp
romised

Number of compromised
conditions

0

47

Attribut

e
No.

Attribute
Name

Description Sample
Data

14 Root_shell 1 if root shell is obtained;
0 otherwise

0

15 Su_attempt
ed

1 if ``su root'' command
attempted or used;
0 otherwise

0

16 Num_root Number of root accesses or
number of operations
performed as a root in the
connection

0

17 Num_file_c
reations

Number of file creation
operations in the connection

0

18 Num_shells Number of shell prompts 0
19 Num_acces

s_files
Number of operations on access
control files

0

20 Num_outbo
und_cmds

Number of outbound
commands in an ftp session

0

21 Is_hot_logi
n

1 if the login belongs to the
``hot'' list i.e., root or admin;
else 0

0

22 Is_guest_lo
gin

1 if the login is a ``guest'' login;
0 otherwise

0

Table 4.4: time related traffic features of each network connection vector

Attribut

e
No.

Attribute
Name

Description Sample
Data

23 Count Number of connections to the same
destination host as the current
connection in the past two seconds

2

24 Srv_count Number of connections to the same
service (port number) as the current
connection in the past two seconds

2

48

Attribut

e
No.

Attribute
Name

Description Sample
Data

25 Serror_rate The percentage of connections
that have activated the flag (4) s0, s1,
s2 or s3, among the connections
aggregated in
count (23)

0

26 Srv_serror_rate The percentage of connections
that have activated the flag (4) s0, s1,
s2 or s3, among the connections
aggregated in
srv_count (24)

0

27 Rerror_rate The percentage of connections
that have activated the flag (4) REJ,
among the connections
aggregated in count (23)

0

28 Srv_rerror_rate The percentage of connections
that have activated the flag (4) REJ,
among the connections
aggregated in srv_count (24)

0

29 Same_srv_rate The percentage of connections
that were to the same service, among
the connections aggregated in count
(23)

1

30 Diff_srv_rate The percentage of connections that
were to different services,
among the connections aggregated
in count (23)

0

31 Srv_diff_host_
rate

The percentage of connections
that were to different destination
machines among the connections
aggregated in srv_count (24)

0

49

Table 4.5: host based traffic features in a network Connection vector

Attribute
No.

Attribute
Name

Description Sample
Data

32 Dst_host_coun
t

Number of connections having
the same destination
host IP address

150

33 Dst_host_srv_
count

Number of connections having
the same port number

25

34 Dst_host_same
_srv_rate

The percentage of connections
that were to the same service,
among the connections
aggregated in dst_host_count
(32)

0.17

35 Dst_host_diff_
srv_rate

The percentage of connections
that were to different services,
among the connections
aggregated in dst_host_count
(32)

0.03

36 Dst_host_same
_src_port_rate

The percentage of connections
that were to the same source
port, among the connections
aggregated in dst_host_srv_c
ount (33)

0.17

37 Dst_host_srv_
diff_host_rate

The percentage of connections
that were to different
destination machines, among
the connections aggregated in
dst_host_srv_c ount (33)

0

38 Dst_host_serro
r_rate

The percentage of connections
that have activated the flag (4)
s0, s1, s2 or s3, among the
connections aggregated in
dst_host_count (32)

0

50

Attribute
No.

Attribute
Name

Description Sample
Data

39 Dst_host_srv_s
error_rate

The percent of connections that
have activated the flag (4) s0,
s1, s2 or s3, among the
connections aggregated in
dst_host_srv_c ount (33)

0

40 Dst_host_rerro
r_rate

The percentage of connections
that have activated the flag (4)
REJ, among the connections
aggregated in dst_host_count
(32)

0.05

41 Dst_host_srv_r
error_rate

The percentage of connections
that have activated the flag (4)
REJ, among the connections
aggregated in dst_host_srv_c
ount (33)

0

The attack classes present in the NSL-KDD data set are grouped into four categories

[102] [100]:

1. DOS: Denial of service is an attack category, which depletes the victim’s

resources thereby making it unable to handle legitimate requests – e.g., syn

flooding.

2. Probing: Surveillance and other probing attack’s objective is to gain

information about the remote victim e.g., port scanning.

3. U2R: unauthorized access to local super user (root) privileges is an attack

type, by which an attacker uses a normal account to login into a victim system

and tries to gain root/administrator privileges by exploiting some vulnerability

in the victim e.g., buffer overflow attacks.

51

4. R2L: unauthorized access from a remote machine, the attacker intrudes into

a remote machine and gains local access of the victim machine. E.g., password

guessing.

Table 4.6: attribute value type

Type Features
Nominal Protocol_type(2),

Service(3),
Flag(4)

Binary Land(7), logged_in(12),
root_shell(14), su_attempted(15),
is_host_login(21),
is_guest_login(22)

Numeric Duration(1), src_bytes(5),
dst_bytes(6), wrong_fragment(8),
urgent(9), hot(10),
num_failed_logins(11),
num_compromised(13),
num_root(16),
num_file_creations(17),
num_shells(18),
num_access_files(19),
num_outbound_cmds(20), count(23)
srv_count(24), serror_rate(25),
srv_serror_rate(26), rerror_rate(27),
srv_rerror_rate(28), same_srv_rate(29)
diff_srv_rate(30),
srv_diff_host_rate(31),
dst_host_count(32),
dst_host_srv_count(33),
dst_host_same_srv_rate(34),
dst_host_diff_srv_rate(35),
dst_host_same_src_port_rate(36),
dst_host_srv_diff_host_rate(37),
dst_host_serror_rate(38),
dst_host_srv_serror_rate(39),
dst_host_rerror_rate(40),
dst_host_srv_rerror_rate(41)

52

The specific types of attacks are classified into four major categories. Table 4.7 shows

this detail.

Table 4.7: mapping of attack class with attack type

Category Training Set Testing Set

DoS
back, land, Neptune, pod,
smurf, teardrop

apache2, back, land, mailbomb,
Neptune, pod, smurf, teardrop,
worm processtable, udpstorm

Probe
ipsweep, nma, portsweep,
satan

ipsweep, mscan, nmap,
portsweep, saint, satan

R2L
spy, warezclient, ftpwrite,
guesspasswd, imap,
multihop, phf, warezmaster

ftpwrite, guesspasswd,
httptunnel, imap, multihop,
named, phf, sendmail,
snmpgetattack, snmpguess,
wxlock, warezmaster, xsnoop

U2R
bufferoverflow, ps,
loadmodule, rootkit

bufferoverflow, ps, perl,
loadmodule, sqlattack, xterm

normal normal normal

The Table 4.7 shows the distribution of the normal and attack records available in the

various NSL-KDD datasets.

Table 4.8: details of normal and attack data in different types of NSL-KDD dataset

Attack type KDDTrai

n+
KDDTest+ KDDTrain+_2

0Percent
KDDTes

t-21
DoS 45,927 7460 9234 4342

Probe 11,656 2421 2289 2402
U2R 52 67 11 200
R2L 995 2885 209 2754

Normal 67,343 9711 13,449 2152
Total 125,973 22,544 25,192 11,850

Figure 4.2 clearly exhibits the count of normal and various attack class records in the

different train and test NSL KDD data sets.

53

Figure 4.2: Network vector distribution in various NSL-KDD train and test data set

4.2.2 Data Extraction
The dataset which we have used in our research work was extracted from Canadian

cyber crime website [46], the network traffic dataset named NSL-KDD. This dataset

is an improved version by solving various lacking of KDD CUP 99 dataset. NSL-KDD

dataset includes four files: KDDTrain+, KDDTest+, KDDTest-21 and KDDTest-20.

There are 125,973 network traffic samples in the KDDTrain+ dataset, 22,554 network

traffic samples in the KDDTest+ dataset and 11,850 network traffic samples in the

KDDTest-21 dataset. There are 43 features which include 10 basic features, 12 content

features, and 19 traffic features.

When the dataset is not balanced, it is difficult to classify using class label; therefore,

they can be categorized into 5 network attacking groups: Normal, Probe, R2L, U2R

and DoS. There are some attacks which are not present in the training set but exist in

test set, which make it more realistic.

 4.2.3 Data Cleaning
By using Python language programming, the first procedure or technique that been

used throughout this research after extracting the dataset is data cleaning. One of the

54

methods of data cleaning is by replacing all the attributes that only filled with

categorical numeric attribute, with the name of features. By extracting the Canadian

NSL-KDD dataset, we get 43 features. Among them, we remove two features which

mainly contain some continuous value instead of categorical data. And, we also

remove another feature which contains constant value. Finally, after cleaning the

dataset, we obtained 40 useful features. Among 40 features, one feature is used as a

target feature.

4.2.4 Data Labeling
One of the methods of data labeling is by replacing all the attributes that only filled

with numeric indicators. Among the 40 features, there are 3 attributes which are non-

numeric. They are “class”, “flag” and “protocol_type”. For instance, the feature

protocol type has tcp, udp, and icmp types of attributes and after labeling, it is turned

into 0, 1, and 2 respectively. Similarly, the feature “class” has 5 types of attributes and

“flag” have 11 types of attributes. In the same way, all non-numerical values are

transformed into numerical values after labeling and finally, our prediction target is

mapped into 5 categories of classification.

4.2.5 Data Scaling
The important step after transformation is scaling. Data normalization is a process of

scaling. Data scaling can avoid attributes with greater values dominating those

attributes with smaller values, and also avoid numerical problems in computation. Data

normalization is a process of scaling the value of each attribute into a well-

proportioned range, so that the bias in favor of features with greater values is

eliminated from the dataset without altering their statistical properties. Feature

normalization is essential for scaling the values of each feature into a certain range

(e.g., [0, 1] or any others).

The standard scores (also called z scores) of the features are calculated as follows:

z = (x - μ) / σ

55

Where μ is the mean of the training samples, and σ is the standard deviation of the

training samples.

Min-Max scaling, also referred to as normalization, consists of data being scaled to a

fixed range, typically [0,1]. The only issue with this type of scaling method is that

there will be smaller standard deviations, which can work to suppress the effectiveness

of outliers.

In this work, Standardization is used to normalize the features during this step.

4.2.6 Feature Selection
The method that is used during this thesis work for selecting significant features is

statistical significance test (F-test, filter method).

Feature Selection is essentially the process of selecting a subset of relevant and

informative features from a larger collection of features that produce a better

characterization of patterns belonging to different classes. Whereas principal

component analysis (PCA) combines similar (correlated) attributes and creates new

ones which is superior to original attributes. Feature selection technique can eliminate

irrelevant and redundant features. Redundant features are those that provide no

additional information beyond what is already provided by the currently selected

features. Irrelevant features are those that do not provide any useful information in the

given context. This has the advantage of decreasing storage requirements, reduces

overfitting, improves accuracy, reduces processing time and improves the detection

rate. Some examples of some filter methods include the Chi squared test, information

gain and correlation coefficient scores, etc.

Filter: Filters determine the best feature subsets by using statistical approaches. Input

features with a strong statistical relationship with the output feature are kept. Each

feature is scored individually on certain specified criteria and the features are then

ranked based on the scores and the highest ranked features are selected. Feature

selection then simply becomes a manner of selecting the features based on this ranking.

The methods are often univariate and consider the feature independently, or with

https://machinelearningmastery.com/how-to-use-correlation-to-understand-the-relationship-between-variables/

56

regard to the dependent variable. Univariate feature selection works by selecting the

best features based on univariate statistical tests. This feature selection examines each

feature individually to determine the strength of the relationship of the feature with the

response variable. These methods are simple to run and understand and are in general

particularly good for gaining a better understanding of data. There are lots of different

options for univariate selection.

Wrapper: Wrapper methods consider the selection of a set of features as a search

problem, where different combinations are prepared, evaluated and compared to other

combinations. A predictive model is used to evaluate a combination of features and

assign a score based on model accuracy. The search process may be methodical such

as a best-first search; it may be stochastic such as a random hill-climbing algorithm,

or it may use heuristics, like forward and backward passes to add and remove features.

Embedded: With embedded methods, feature selection is performed as part of the

model construction process. An embedded method is usually specific to a given

classification algorithm [104]. Some view embedded approaches as a type of wrapper

method [105], while others view them as lying between filters and wrappers in terms

of computational complexity. For instance, some embedded methods perform more

efficiently than wrapper methods by directly optimizing an objective function, often

defined by two or more parameters – one to encourage the goodness-of-fit and the

other to penalize for a large number of variables [106] [107]. From the foregoing, we

can see that each category of techniques has its own benefits and drawbacks [104]

[105]. Thus, each class of techniques still has its place in the general problem of feature

selection.

In this study, we focus on filter methods for identifying network attacks. Filter

techniques are highly scalable (important and critical for high-dimensional datasets),

relatively simple and efficient, and independent of the underlying classification

algorithms [108]; Filter techniques are much faster than the other methods since they

evaluate each feature once, rather than evaluating a large number of feature subsets.

The filter method does not require a particular learning algorithm. It uses a heuristic

to evaluate a feature subset. Filter algorithms utilize an independent measure (such as,

57

information measures, distance measures, or consistency measures) as a criterion for

estimating the relation of a set of features, while wrapper algorithms make use of

particular learning algorithms to evaluate the value of features. Features filters are

known to be faster than feature wrappers because heuristics are faster than induction

learning. Due to the continuous growth of data dimensionality, feature selection as a

pre-processing step is becoming an essential part in building intrusion detection

systems.

Regarding the scoring functions, we have different functions from Scikit learn library

for classification. In our research work, we have used the chi() function [109]. This

function returns 2 arrays: one contains the F-Scores which are then evaluated against

the chi2 distribution to obtain the p-value. If p-value is small, the parameters are said

to be significant. Here, we have used the SelectKBest() class. Using this class, we can

select a fixed number of significant features according to the next smallest p-value of

the feature ranking.

According to the p-value, the order of 39 important features is shown in Table 4.9

Table 4.9: order of 39 important features

Number of

features

Number according

to section 4.2.1

Feature Name

1 22 'is_guest_login'

2 39 'dst_host_srv_serror_rate'

3 38 'dst_host_serror_rate'

4 35 'dst_host_diff_srv_rate'

5 34 'dst_host_same_srv_rate'

6 33 'dst_host_srv_count'

7 31 'srv_diff_host_rate'

8 30 'diff_srv_rate'

9 29 'same_srv_rate'

10 28 'srv_rerror_rate'

11 27 'rerror_rate'

12 26 'srv_serror_rate'

58

Number of

features

Number according

to section 4.2.1

Feature Name

13 25 'serror_rate'

14 23 'count'

15 40 'dst_host_rerror_rate'

16 41 'dst_host_srv_rerror_rate'

17 9 'urgent'

18 4 'flag'

19 12 'logged_in'

20 14 'root_shell'

21 16 'num_shells'

22 32 'dst_host_count'

23 11 'num_failed_logins'

24 36 'dst_host_same_src_port_rate'

25 21 'is_host_login'

26 37 'dst_host_srv_diff_host_rate'

27 24 'srv_count'

28 2 'protocol_type'

29 19 'num_access_files'

30 1 'duration'

31 17 'num_file_creations'

32 10 'hot'

33 16 'num_root' real'

34 13 'num_compromised'

35 6 'dst_bytes'

36 8 'wrong_fragment'

37 7 'land'

38 5 'src_bytes'

39 15 'su_attempted'

59

4.2.7 Selection of Classifier
Once the optimal features are sorted by their importance, these features are then taken

into the classifier training stage where ensemble machine learning are employed. The

classifier distinguishes attacks data from Normal traffics. Ensemble learning are

categorized under the same umbrella of supervised machine learning. The main

difference between classification and regression is that the output variable in

regression is numerical (or continuous) while that for classification is categorical (or

discrete). Common classification algorithms include logistic regression, Naïve Bayes,

decision trees, and K Nearest Neighbors (KNN), Support Vector Machine (SVM), etc.

Among them, we used various base classifiers as an input of ensemble learning in our

work. We are selecting categorical data to do our work.

During execution of the algorithm, we used separate dataset for training and testing.

After selecting the classifier, the training samples will first be fed to the developed

model for learning the features of network attacks and normal network traffics. After

that, the test set will be used to evaluate the trained model. The steps required for the

execution of the algorithm are shown in the flowchart (Figure 4.12). To work with

cross-validation, we used the full testing dataset and to work without cross validation

we used the full training and testing dataset separately.

4.2.7.1 Design of Ensemble Classifier

In this section, design of classifiers namely Voting, stacking, bagging and Boosting

has been discussed in detail. We design and develop our model by trial and error basis.

4.2.7.1.1 Voting

Figure 4.3 shows the design of Voting-1 classifier. In Voting-1 classifier, the base
classifiers are DT, KNN and LR.

60

Figure 4.3: Voting-1

Figure 4.4 shows that the base classes for Voting-2 classifier is DT, SVM(kernel =
poly) and LR

Figure 4.4: Voting-2

Figure 4.5 shows that the base class of Voting -3 is DT, SVM(kernel = rbf) and LR

The base classes of Voting-4 is DT, SVM (kernel = linear) and LR. All base classes
arrangement is shown in Table 5.1

61

Figure 4.5: Voting-3

Figure 4.6: Voting -4

Voting has two types Hard Voting or Max Voting and Soft Voting. In a Hard voting
system, it aggregate the predictions of each classifier and predict the class that gets the
most votes. If all classifiers are able to estimate the probability of classes
(predict_proba() method) then predict class with the highest class probability,
averaged over individual classifiers. In our work, we used the hard voting that works
on most votes.

4.2.7.1.2 Stacking

To design Stacking we need base classes as well as a meta class. Figure 4.7 shows the
base classes of Stacking-1 which use SVC (kernel = linear) and Logistic regression
and its meta class is also SVC (kernel = linear)

62

Figure 4.7: Stacking-1

Figure 4.8 shows that the base classes of Stacking-2 with SVC (kernel = rbf) and

Logistic regression and its meta class is SVC (kernel = rbf)

Figure 4.8: Stacking-2

From Figure 4.9 shows that the base classes of Stacking-3 with SVC (kernel = rbf)

and Logistic regression and its meta class is Naïve Bayes.

63

Figure 4.9: Stacking-3

From Figure 4.10 shows that the base classes of Stacking-4 with SVC (kernel = linear)

and Logistic regression and its meta class is RandomForest classifier

Figure 4.10: Stacking-4

4.2.7.1.3 Boosting

Boosting can take only one classifier. We designed 3 Boosting classifiers namely

Boosting-1, Boosting-2 and Boosting-3 using Logistic Regression, DT and Gradient

Boosting respectively. Table 4.9 shows the name of Boosting classifiers and their

respective base classes.

64

Table 4.10: Boosting Classifiers

Classifier Base Classifier

Boosting-1 Adaboost (LR)

Boosting -2 Adaboost (DT)

Boosting -3 GradientBoosting

4.2.7.1.4 Bagging

Bagging also can take only one classifier. We designed 3 Bagging classifiers namely

Bagging -1, Bagging-2 and Bagging-3 using Logistic Regression, Random Forest and

Naïve Bayes respectively.

4.2.7.1.5 Hybrid Model

We also designed two hybrid models as shown in 4.11. Hybrid Model-1 is a Voting

classifier, however it takes two Boosting classifiers (AdaBoost and Gradient-Booston)

as its base classifier. Figure 4.11 shows Hybrid Model-1.

Figure 4.11: Hybrid-1

The Hybrid-2 is a Bagging classifier, and it takes voting-1 as its base classifier.

65

4.3 Block Diagram

(a)

66

(b)

Figure 4.12: Block diagram of various stages of proposed work (a) without cross-validation (b)
with cross-validation

This is the workflow diagram of our research work.

4.4 Model Evaluation
For the performance evaluation in the experiment, first, we denote TP, FP, TN and FN

as true positive, false positive, true negative and false negative, respectively.

Table 4.11: Specification of confusion matrix

Measures Specification

P Total number of samples classified as positive
N Total number of samples classified as negative

True Positive (TP) The number of samples correctly classified as attack

67

Measures Specification

True Negative
(TN)

Number of samples correctly classified as normal

False Positive (FP) Number of samples wrongly classified as attack
False Negative

(FN)
Number of samples wrongly classified as normal

Then, we can obtain the detection rate or sensitivity as follows:

Detection Rate (DR)

DR is indicating the proportion of actual positives values being correctly identified. It

is the ratio of correctly classified network attacks to the total number of network traffic.

This is given by

DR = TP/ (TP+ FN)

DR is also synonymous with sensitivity. The DR measures the rate of malware samples

(i.e., positive instances) correctly classified by the classification model

In intrusion detection, sometimes we pay more attention to the detection rate rather

than accuracy. The higher the detection rate, the lower the probability that a network

which will have the risk of attack is predicted to have no attack.

4.4.1 Confusion Matrix
In simple terms, confusion matrix is a result table that summarizes results of

classification algorithm when actual true values are known.

Table 4.12: confusion matrix

Actual Predicted
Attack Normal

Attack TP FP
Normal FN TN

As the dataset has 4 types of attacks, each attack was labeled as a class. An

evaluation of the proposed algorithm has been made to check the classification

68

performance by computing the confusion matrix, considering the class labels of the

training dataset as the reference and the predicted class labels as the outcome of the

proposed algorithm. The output of ensemble machine learning algorithms should

remain in any of the four categories in the confusion matrix: True Positive (TP), True

Negative (TN), False Positive (FP) and False Negative (FN). Then, these values were

used to calculate the detection rate or sensitivity of the classification.

4.4.2 ROC-AUC
In addition to the aforementioned evaluation criteria, the receiver operating

characteristic (ROC) curve and the area under curve (AUC) can evaluate the pros and

cons of the classier. The ROC curve shows the trade-off between the true positive rate

(TPR) and the false positive rate (FPR). If the ROC curve is closer to the upper left

corner of the graph, the model is better. The AUC is the area under the curve. When

the area is closer to 1, the model is better.

4.4.3 Precision Recall Curve
Precision-Recall curves summarize the trade-off between the true positive rate and the

positive predictive value for a predictive model using different probability thresholds.

4.5 Implementation Environment

For the implementation of this algorithm, Scikit Learn has been used. Jupiter notebook

IDE has been used for executing the python [110] code.

4.6 Summary

In this research work, we used the KSL-KDD dataset. At the beginning of this chapter,

we presented a brief discussion of this dataset. After that, we discussed the

methodology step by step of our research work. We also discussed regarding various

types of features selection technique in section 4.2.6. In section 4.2.7.1, we discussed

regarding different types of new design of ensemble classifiers. At the end of this

chapter, we discussed regarding model evaluation and the implementation

environment of our research work.

69

Chapter 5
Results and Discussion

5.1 Introduction
This is the last stage and one of the most significant tasks of the thesis work where all

of the data is analyzed. At first, we work without cross validation and compare the

result with literature. After that we use the cross validation to train and test the dataset.

When we work without cross validation, we used the full NSL-KDD train and test

dataset separately. In contrast, when we use the cross validation, we used the full test

dataset.

5.2 Executing the Ensemble Classifier
In this stage, we analyze and verify the data that was extracted during the experiment

in-depth. We analyze the data to see if the objective set in this thesis is met. We show

that how well the algorithm performed by comparing the attributes in the detection of

network attacks.

5.2.1 Detection Without Cross Validation
At first, the dataset is tested without cross validation using the Voting, Bagging and

Boosting ensemble machine learning classifiers.

Bagging_NB

When we have used the Bagging classifier, the base class of the bagging is Naïve

Bayes. Using this Bagging_NB classifier, we calculate the detection rate according to

increasing the number of feature. The number of feature is increased according to the

Table 4.9. Table 5.1 shows the detection rate using Bagging_NB classifier. The

Random State parameter value is 3, when we calculate the detection rate below.

70

Table 5.1: Detection Rate by feature importance using Bagging_NB classifier

No. of

feature
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4)

First 1

feature
0.89 0.00 0.00 0.00 0.01

First 2

features
0.89 0.00 0.00 0.04 0.10

First 3

features
0.82 0.00 0.00 0.51 0.05

First 4

features
0.82 0.00 0.00 0.55 0.05

First 5

features
0.81 0.00 0.00 0.54 0.22

First 6

features
0.81 0.00 0.00 0.60 0.44

First 7

features
0.81 0.00 0.00 0.58 0.41

First 8

features
0.81 0.00 0.00 0.63 0.42

First 9

features
0.80 0.01 0.00 0.67 0.45

First 10

features
0.79 0.00 0.00 0.72 0.55

First 11

features
0.76 0.00 0.00 0.76 0.75

First 12

features
0.75 0.00 0.00 0.78 0.79

First 13

features
0.75 0.00 0.01 0.66 0.81

First 14

features
0.75 0.01 0.01 0.66 0.80

First 15

features
0.78 0.03 0.04 0.63 0.70

First 16

features
0.78 0.06 0.06 0.60 0.69

First 17

features
0.78 0.08 0.06 0.60 0.69

71

No. of

feature
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4)

First 18

features
0.77 0.07 0.06 0.60 0.73

First 19

features
0.75 0.10 0.06 0.61 0.73

First 20

features
0.75 0.53 0.07 0.61 0.72

First 21

features
0.74 0.51 0.10 0.63 0.72

First 22

features
0.74 0.49 0.11 0.58 0.73

First 23

features
0.74 0.48 0.11 0.60 0.73

First 24

features
0.74 0.48 0.12 0.60 0.74

First 25

features
0.77 0.50 0.19 0.60 0.67

First 26

features
0.77 0.52 0.19 0.60 0.67

First 27

features
0.78 0.54 0.19 0.66 0.67

First 28

features
0.77 0.77 0.19 0.66 0.69

First 29

features
0.77 0.88 0.19 0.66 0.69

First 30

features
0.76 0.88 0.19 0.66 0.70

First 31

features
0.78 0.89 0.19 0.67 0.69

First 32

features
0.79 0.89 0.32 0.66 0.47

First 33

features
0.79 0.90 0.32 0.67 0.30

First 34

features
0.79 0.91 0.33 0.67 0.29

First 35

features
0.80 0.91 0.33 0.67 0.20

72

No. of

feature
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4)

First 36

features
0.82 0.91 0.33 0.60 0.16

First 37

features
0.82 0.91 0.33 0.60 0.13

First 38

features
0.79 0.91 0.39 0.61 0.10

First 39

features
0.80 0.91 0.40 0.57 0.07

We can understand the Table 5.1 more easily by graphical representation. Figure 5.1

to Figure 5.5 are the graphical representation of Table 5.1.

Figure 5.1: DR of Normal traffic by feature selection

73

(a)

(b)

Figure 5.2: DR of DoS attack by feature selection (a) 0 to 1 scale (b) Zoom view

74

Figure 5.3: DR of Probe attack by feature selection

Figure 5.4: DR of R2L attack by feature selection

75

Figure 5.5: DR of U2R attack by feature selection

From Table 5.1, and from Figure 5.1 to Figure 5.5, we can understand that using

Bagging_NB classifier, the get the better detection rate using first 36 features. The

confusion matrix for the better case is as follows in Figure 5.6.

Figure 5.6: Confusion matrix of Bagging_NB

76

Boosting_DT

Boosting_DT is another ensemble classifier. Here, the base classifier of Boosting is

Decision Tree. Using this Boosting_DT classifier, the detection rate is represented in

Table 5.2. In that case the value of Random State is 1234.

Table 5.2: Detection Rate by feature importance using Boosting_DT classifier

No. of

feature
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4)

First 1

feature
0.81 0.00 0.00 0.04 0.94

First 2

features
0.76 0.25 0.00 0.15 0.96

First 3

features
0.76 0.23 0.00 0.31 0.96

First 4

features
0.76 0.52 0.03 0.37 0.97

First 5

features
0.72 0.55 0.02 0.28 0.96

First 6

features
0.75 0.55 0.02 0.07 0.97

First 7

features
0.75 0.58 0.06 0.30 0.97

First 8

features
0.75 0.53 0.06 0.15 0.97

First 9

features
0.78 0.61 0.06 0.09 0.97

First 10

features
0.77 0.55 0.06 0.12 0.97

First 11

features
0.76 0.55 0.06 0.12 0.97

First 12

features
0.77 0.58 0.05 0.10 0.97

First 13

features
0.80 0.62 0.07 0.10 0.97

First 14

features
0.76 0.60 0.01 0.06 0.97

First 15

features
0.77 0.62 0.00 0.07 0.97

77

No. of

feature
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4)

First 16

features
0.76 0.60 0.01 0.07 0.97

First 17

features
0.78 0.60 0.01 0.04 0.97

First 18

features
0.77 0.61 0.01 0.06 0.97

First 19

features
0.81 0.57 0.01 0.03 0.97

First 20

features
0.74 0.59 0.03 0.03 0.97

First 21

features
0.77 0.59 0.01 0.04 0.97

First 22

features
0.77 0.59 0.04 0.03 0.97

First 23

features
0.75 0.60 0.04 0.04 0.97

First 24

features
0.75 0.61 0.03 0.03 0.97

First 25

features
0.75 0.59 0.01 0.03 0.97

First 26

features
0.75 0.60 0.01 0.03 0.97

First 27

features
0.75 0.62 0.01 0.06 0.97

First 28

features
0.75 0.62 0.01 0.04 0.97

First 29

features
0.75 0.60 0.03 0.04 0.97

First 30

features
0.75 0.60 0.02 0.06 0.97

First 31

features
0.77 0.59 0.02 0.04 0.97

First 32

features
0.75 0.62 0.01 0.04 0.97

First 33

features
0.80 0.59 0.02 0.06 0.97

78

No. of

feature
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4)

First 34

features
0.76 0.60 0.02 0.07 0.97

First 35

features
0.78 0.61 0.03 0.12 0.97

First 36

features
0.78 0.60 0.01 0.06 0.97

First 37

features
0.78 0.65 0.02 0.07 0.97

First 38

features
0.82 0.63 0.05 0.03 0.97

First 39

features
0.81 0.62 0.03 0.09 0.97

The Table 5.2 is graphically represented from Figure 5.7 to Figure 5.11.

(a)

79

(b)
Figure 5.7: DR of Normal Traffic by feature selection (a) 0 to 1 scale (b) Zoom view

(a)

80

(b)

Figure 5.8: DR of DoS attack by feature selection (a) 0 to 1 scale (b) Zoom view

(a)

81

(b)

Figure 5.9: DR of Probe attack by feature selection (a) 0 to 1 scale (b) Zoom view

(a)

82

(b)

Figure 5.10: DR of R2L attack by feature selection (a) 0 to 1 scale (b) Zoom view

(a)

83

(b)

Figure 5.11: DR of U2R attack by feature selection (a) 0 to 1 scale (b) Zoom view

From Figure 5.6 to Figure 5.11, we can understand that the combination of first 38

features get the better detection rate that other features combination when used the

Boosting_DT ensemble classifier. The confusion matrix for the better case is as

follows in Figure 5.12.

Figure 5.12: Confusion Matrix of Boosting_DT

84

Voting

The base classes of voting classifiers are DT, KNN and LR. The detection rate of

voting classifier using the first 34 features is presented in Table 5.3. The confusion

matrix of this classifier is presented below in Figure 5.13.

Figure 5.13: Confusion Matrix of Voting classifier

We compare with only recent literature that implement ensemble machine learning

classifiers and also measure the detection rate. Table 5.3 shows our implemented result

and the literature result of detection rate. From Table 5.3, we can see that in 2019 the

Random Forest ensemble machine learning classifier implemented to find out the

detection rate. In that table, we show three ensemble machine learning classifiers

namely Boosting_DT, Voting and Bagging_NB. For Boosting_DT, the base class of

Boosting is Decision Tree; for Voting, the base classes are same as Voting-1 (Figure

4.3); for Bagging_NB, the base class of Bagging classifier is Naïve Bayes.

85

Table 5.3: DR of ensemble methods without cross validation

Classifiers Normal

(%)

DoS

(%)

Probe

(%)

R2L

(%)

U2R

(%)

Random Forest [111] 97.37 81.47 68.86 2.73 1.50

Boosting_DT 97 82 63 5 3

Voting 97 78 71 01 15

Bagging_NB 16 82 91 33 60

Figure 5.14: DR of Voting methods without cross validation

From Figure 5.14, it is clear that among four types of ensemble classifiers, the

Bagging_NB performs the best in case to detect the DoS, Probe, R2l and U2R attacks;

however, the detection rate of normal traffic is low of Bagging_NB classifiers. Thus,

Boosting_DT performs also similar in the case to detect the normal traffic and DoS

attack. This classifier performs better than recent literature to detect R2L and U2R, the

only exception is to detect the probe attack. In that case, we would like to propose the

Boosting_DT. To execute this work, we have used the full training and testing dataset

separately.

86

Figure 5.15: Precision-Recall Curve of Boosting_DT

From the Precision-Recall curve (Figure 5.15), we can observe the individual area of

detection of normal traffic and 4 types of attacks. Here, the area of R2L attack (class

3, Figure 5.15) was the lowest and area for DoS attack (Class 0, Figure 5.15) was the

highest.

5.2.2 Detection Using Cross Validation
In this step, 3-fold cross validation has been implemented. At first, using 3-fold cross

validation, the Voting-1 ensemble classifier is implemented. For Voting-1, the base

classifier is the combination of Decision Tree (DT), K Nearest Neighbour (KNN) and

Logistic Regression (LR). According to the importance of features (p-value, described

in chapter 5) every time one more feature has been added and Voting-1 ensemble

classifier is executed.

5.2.2.1 Voting

Voting methods discussed in section 3.6.3 and our proposed design depicted in section
3.7.1. Four types of voting and their base classes are shown in Table 5.4.

87

Table 5.4: DR of voting methods without cross validation

Methodo

logy
Base

Classifier-1
Base

Classifier-2
Base

Classifier-3
Voting

type
Voting-1 DT KNN LR Hard
Voting-2 DT SVC(kernel =

Poly)
LR Hard

Voting-3 DT SVC(kernel =
RBF)

LR Hard

Voting-4 DT SVC(kernel =
Linear)

LR Hard

5.2.2.1.1 Findings of Voting-1

For voting-1 method, the findings in terms of detection rate has shown in Table 5.5

Table 5.5: Detection Rate by feature importance

No. of

feature
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4)

First 1

feature
0.99 0.22 0.79 0.06 0.94

First 2

features
0.99 0.32 0.89 0.10 0.98

First 3

features
1.00 0.38 0.88 0.07 0.98

First 4

features
0.97 0.83 0.88 0.12 0.94

First 5

features
0.93 0.83 0.82 0.04 0.91

First 6

features
0.95 0.86 0.83 0.04 0.92

First 7

features
0.95 0.86 0.81 0.00 0.92

First 8

features
0.95 0.83 0.87 0.00 0.93

First 9

features
0.96 0.90 0.89 0.00 0.95

First 10

features
0.96 0.90 0.89 0.00 0.96

88

No. of

feature
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4)

First 11

features
0.96 0.91 0.89 0.01 0.96

First 12

features
0.96 0.92 0.89 0.01 0.96

First 13

features
0.96 0.92 0.89 0.09 0.96

First 14

features
0.97 0.94 0.92 0.12 0.95

First 15

features
0.97 0.95 0.92 0.16 0.95

First 16

features
0.97 0.95 0.92 0.19 0.95

First 17

features
0.97 0.94 0.92 0.15 0.95

First 18

features
0.97 0.95 0.93 0.18 0.95

First 19

features
0.99 0.95 0.93 0.13 0.95

First 20

features
0.99 0.96 0.94 0.12 0.95

First 21

features
0.99 0.96 0.94 0.10 0.95

First 22

features
0.99 0.96 0.94 0.09 0.95

First 23

features
0.99 0.96 0.94 0.10 0.95

First 24

features
0.99 0.97 0.95 0.12 0.95

First 25

features
0.99 0.96 0.94 0.25 0.95

First 26

features
0.99 0.97 0.94 0.27 0.96

First 27

features
0.99 0.97 0.94 0.40 0.96

First 28

features
0.99 0.97 0.94 0.42 0.96

89

No. of

feature
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4)

First 29

features
0.99 0.97 0.94 0.40 0.96

First 30

features
0.99 0.97 0.95 0.40 0.96

First 31

features
0.99 0.97 0.95 0.49 0.96

First 32

features
0.99 0.97 0.94 0.48 0.96

First 33

features
0.99 0.97 0.94 0.55 0.96

First 34

features
0.99 0.97 0.94 0.55 0.97

First 35

features
1.00 0.97 0.94 0.54 0.97

First 36

features
1.00 0.97 0.94 0.57 0.97

First 37

features
0.99 0.97 0.94 0.55 0.97

First 38

features
1.00 0.97 0.94 0.55 0.97

First 39

features
1.00 0.97 0.94 0.57 0.97

It is easy to understand Table 5.5 by graphical visualization from Figure 5.16 to Figure

5.20.

90

(a)

(b)

Figure 5.16: DR of Normal traffic by feature selection (a) 0 to 1 scale (b) Zoom view

It is easy to understand from Table 5.5 and Figure 5.16 that only first 2 or 3 features

are enough to detect the normal traffic with 98% detection accuracy using voting-1

algorithm. Using 36 features, we again get the better detection rate. The lowest

91

detection rate is obtained when number of features are 5 which indicate that the number

5 feature contains some noise data to predict the normal traffic. The number 5 features

make the classifier get confused to predict the normal traffic accurately. We will

observe the same scenario in Figure 5.17 and Figure 5.19. Now, we will show how DR

rate is changing with the number of features to detect the DoS, Probe, R2L and U2R

attacks.

(a)

92

(b)

Figure 5.17: DR of DoS attack by feature selection (a) 0 to 1 scale (b) Zoom view

From Figure 5.17 and Table 5.5, it is clear that only first 3 features are enough to detect

DoS attack with 100% detection accuracy using voting-1 algorithm.

Figure 5.18: DR of Probe attack by feature selection

93

From Figure 5.18, it can be clearly seen that using first 5 important features the
detection rate of probe attack increases rapidly. Using first 5 to 25 important features
the detection rate increases slowly. After taking first 26 important features the
detection rate is constant. So, first 26 important features are enough to get the highest
detection rate of probe attack using voting-1 algorithm.

(a)

(b)

Figure 5.19: DR of R2L attack by feature selection (a) 0 to 1 scale (b) zoom view

94

From Figure 5.19, it is clear that Voting-1 provide the highest detection rate by 95%
when it takes first 24 important features and also when takes first 30 important features.

Figure 5.20: DR of U2R attack by feature selection

From Figure 5.20, it can be seen that using lower number of features, voting-1 does
not perform well to detect U2R attack. The highest detection rate is 57% when it takes
first 36 important features.

Form Figure 5.16 to 5.20, we can see that using first 36 important features can perform
better if it is trained by the classifier to detect normal traffic and four types of network
attacks.

After implementing voting-1 classifier, another three voting classifiers has been

implemented. For all of the voting classifiers, their base classifiers is shown in Table

5.4

5.2.2.1.2 Performance of Voting Methods

Confusion matrix of four voting classifiers is shown in Figure 5.21, Figure 5.22, Figure

5.23 and Figure 5.24.

95

Confusion Matrix of Voting-1

Figure 5.21: Confusion matrix of Voting-1 (using 36 features)

Confusion Matrix of Voting-2

Figure 5.22: Confusion matrix of Voting - 2 (using 36 features)

96

Confusion Matrix of Voting-3:

Figure 5.23: Confusion matrix of Voting - 3 (using 36 features)

Confusion Matrix of Voting-4

Figure 5.24: Confusion matrix of Voting -4 (using 36 features)

97

5.2.2.1.3 Detection Rate of Voting Methods

Detection rate of normal traffic and four types of attacks using four types of voting

classifiers is shown in Table 5.6.

Table 5.6: Detection rate for Voting with 36 features

Classifier Normal (4) DoS (0) Probe (1) R2L (2) U2R (3)

Voting-1 0.97 1.00 0.97 0.94 0.57
Voting-2 0.96 0.98 0.97 0.72 0.52

Voting-3 0.96 0.99 0.98 0.72 0.48

Voting-4 0.94 0.97 0.98 0.70 0.46

Figure 5.25: Detection rate of Voting classifiers with 36 features

Using cross validation, most of the cases voting-1 perform well except probe attack

detection. Interestingly, this classifier performs very well in the case of R2L and U2R

attack detection.

98

5.2.2.2 Stacking

Stacking method discussed in section 3.6.4 and our proposed design depicted in section

3.7.2. As mentioned earlier that the stacking classifier can take more than one classifier

and take a meta classifier to predict from the base classifiers. Table 5.7 shows four

types stacking classifier arrangements

Table 5.7: Four Stacking arrangements

Classifier Base Classifier-1 Base Classifier-2 Meta classifier
Stacking-1 SVC (kernel =

Linear)
LR SVC (kernel =

Linear)
Stacking-2 SVC (kernel = RBF) LR SVC (kernel =

RBF)
Stacking-3 SVC (kernel = RBF) LR NB
Stacking-4 SVC (kernel = RBF) LR RandomForest

Confusion matrix of four types of stacking classifiers is shown in Figure 5.26, Figure

5.27, Figure 5.28 and Figure 5.29.

Confusion Matrix of Stacking-1

Figure 5.26: Confusion matrix of Stacking-1 (using 36 features)

99

Confusion Matrix of Stacking-2

Figure 5.27: Confusion matrix of Stacking-2 (using 36 features)

Confusion Matrix of Stacking-3:

Figure 5.28: Confusion matrix of Stacking-3 (using 36 features)

100

Confusion Matrix of Stacking-4

Figure 5.29: Confusion matrix of Stacking-4 (using 36 features)

5.2.2.2.1 Detection Rate of Stacking Methods

The performance in terms of detection rate of normal traffic and four types of attacks

using four stacking classifiers has shown in Table 5.8. To clearly visualize, bar chart

has depicted in Figure 5.30.

Table 5.8: Detection rate for Stacking with 36 features

Classifier Normal(4) DoS(0) Probe(1) R2L(2) U2R(3)
Stacking -1 0.93 0.97 0.98 0.70 0.00
Stacking -2 0.95 0.99 0.97 0.70 0.28
Stacking -3 0.92 0.97 0.94 0.72 0.00
Stacking -4 0.95 0.99 0.97 0.70 0.28

101

Figure 5.30: Detection rate for Stacking classifiers with 36 features

From Figure 5.30, it can be clearly seen that Stacking-2 and Stacking-4 perform same

in every case and their detection rate is in satisfactory level. When use stacking-1, the

DR of probe attack is the highest, in contrast when using stacking-3, the detection rate

of R2l is the highest. However, Stacking-1 and Stacking-3 perform very poor in case

of U2R attack.

5.2.2.3 Boosting

Boosting method discussed in section 3.6.2 and our proposed classifiers is shown in

Table 3.1. In our thesis work, three type of Boosting methods are used, and their

confusion matrices is depicted in Figure 5.31, Figure 5.32, Figure 5.34.

102

Confusion Matrix of Boosting-1

Figure 5.31: Confusion matrix of Boosting-1 (using 36 features)

Confusion Matrix of Boosting-2

Figure 5.32: Confusion matrix of Boosting-2 (using 36 features)

103

ROC_AUC curve of Boosting-2

Since multiclass does not allow to plot ROC_AUC curve. Therefore, we sum up the

DoS, Probe, R2L and U2R attacks and the combination named as Malware. After that,

the ROC_AUC curve of Boosting-2 classifiers using normal traffic and malware traffic

data is plotted in Figure 5.33.

Figure 5.33: ROC_AUC of Boosting-2 classifier

Confusion Matrix of Boosting-3

Figure 5.34: Confusion matrix of Boosting-3 (using 36 features)

104

5.2.2.3.1 Detection Rate of Boosting Methods

Detection rate of Boosting classifiers have shown in Table 5.9

Table 5.9: Detection rate for Boosting with 36 features

Classifier Normal(4) DoS(0) Probe(1) R2L(2) U2R(3)
Boosting -1 0.46 0.56 0.88 0.28 0.55
Boosting -2 0.99 1.00 0.99 0.95 0.69
Boosting -3 0.97 0.99 0.90 0.81 0.42

Figure 5.35: Detection rate for Boosting classifiers with 36 features

From Figure 5.35, it is clearly seen that the Boosting-2 classifier perform better in

every case among other types of Boosting classifiers

5.2.2.4 Bagging

Bagging method is discussed in section 3.6.1. Three types of Bagging classifiers

arrangement are shown in Table 5.10.

105

Table 5.10: three Bagging arrangements

Classifier Base Classifier

Bagging-1 LR

Bagging-2 RandomForest

Bagging-3 Naïve Bayes

Confusion matrix of three types of bagging classifiers are shown in Figure 5.36, Figure

5.37 and in Figure 5.38

Confusion Matrix of Bagging-1

Figure 5.36: Confusion matrix of Bagging-1 (using 36 features)

106

Confusion Matrix of Bagging-2

Figure 5.37: Confusion matrix of Bagging-2 (using 36 features)

Confusion Matrix of Bagging-3

Figure 5.38: Confusion matrix of Bagging-3 (using 36 features)

107

5.2.2.4.1 Detection Rate of Bagging Methods

Detection rate using three types of Bagging classifiers is shown in Table 5.11

Table 5.11: Detection rate for Bagging with 36 features
Classifier Normal(4) DoS(0) Probe(1) R2L(2) U2R(3)
Bagging -1 0.93 0.97 0.94 0.59 0.49
Bagging -2 0.98 0.82 0.25 0.01 0.00
Bagging -3 0.08 0.27 1.00 0.28 0.85

Figure 5.39: Detection rate of Bagging with 36 features

From Figure 5.39, Bagging-1 perform better in case of Normal traffic, Bagging-2

perform well in case of DoS and R2L attack detection and bagging-3 performs better

in case of Probe and U2R attacks

5.2.2.5 Hybrid Model

Two hybrid models are shown in Table 5.12. For model-1 finally predict the result by

voting method; however, as a base classifier it takes two ensemble methods (Adaboost

and GradietBoosting) and one base level classifier (SVM). It is mainly a combination

of Boosting and voting methods. Hybrid model-2 finally predicts by bagging

108

algorithms, but it takes voting-1 as its base classifier which itself an ensemble

classifier. It is mainly a combination of Voting and Bagging classifiers.

Table 5.12: hybrid models

Classifier description
Hybrid-1
(Model-1)

- Base classifiers: Adaboost+ svc (kernel
=RBF)+ GradietBoosting

- Finally predicted by voting
Hybrid-2
(Model-2)

- Base Classifier: Voting-1
- Finally predicted by Bagging

Confusion matrix of model-1 and model-2 depicted in Figure 5.40 and in Figure 5.41

respectively

Confusion Matrix for Hybrid Model-1

Figure 5.40: Confusion matrix of Model-1

109

Confusion Matrix for Hybrid Model-2

Figure 5.41: Confusion matrix of Model-2

5.2.2.5.1 Detection Rate of Hybrid Models

DR of every types of traffic shown in Table 5.13

Table 5.13: Detection rate for hybrid model with 36 features

Classifier Normal(4) DoS(0) Probe(1) R2L(2) U2R(3)
Model -1
(Boosting +

Voting)

0.96 0.99 0.96 0.69 0.46

Model -2
(Bagging +

voting)

0.98 0.99 0.98 0.95 0.63

110

Figure 5.42: Detection rate for hybrid model with 36 features

From Figure 5.42, we can see that in every case, the Hybrid-2 performs better. Hybrid-

2 mainly a Bagging of Voting-1. Now comparison of DR between Voing-1 and

Hybrid-2 is shown in Table 5.14.

Table 5.14: Voting vs Bagging_voting

Classifier Normal(4) DoS(0) Probe(1

)
R2L(2

)
U2R(3

)
Voting-1 0.97 1.00 0.97 0.94 0.57

Hybrid-2
(Bagging_voti
ng)

0.98 0.99 0.98 0.95 0.63

111

Figure 5.43: Voting vs Bagging_voting

It is clear from Figure 5.43 that bagging of voting-1 (Hybrid-2, Bagging+Voting)

performs better than voting-1 except for DoS attack.

From Figure 5.25, we can see that voting-1 perform the best among four voting

classifiers. Stacking-4 performs the best among four stacking classifiers (Figure 5.30).

From figure 5.35, we can see that Boosting-2 performs the best to detect the network

attacks. From figure 5.39, we can see that Bagging-1 performs the best to detect DoS

and R2l attack; in contrast Bagging-3 performs the best to detect Probe and U2R

attack. From Figure 5.42, we can see that the hybrid model-2 performs better than

hybrid model-2 for detecting network attacks.

5.3 Performance Comparison of Classifiers
Comparison among 16 new designs of ensemble classifiers is shown in Figure 5.44,

Figure 5.45, Figure 5.46, Figure 5.47 and in Figure 5.48.

112

Figure 5.44: Comparison of normal traffic detection among 16 new arrangement of ensemble machine

learning

From Figure 5.4, we can see that among 16 new design ensemble classifier Boosting-

2 performs the best to detect normal traffic. Besides, Bagging-2 and Hybrid-2

classifiers perform better. Among classifiers, Bagging-3 performs the worst.

Figure 5.45: Comparison of DoS attack detection 16 new arrangement of ensemble machine learning

From Figure 5.45, we can see that to detect the DoS attack, voting-1 and Boosting-2

perform the best. Besides, Stacking-2, Stacking-4, Hybrid-1 and Hybrid-2 perform

better. Among classifiers, Bagging-3 performs the worst.

113

Figure 5.46: Comparison of Probe attack detection among 16 new arrangement of ensemble machine
learning

To detect the probe attack, Bagging-3 performs the best. Besides, Boosting-2 performs

better depicted in Figure 5.46. Among classifiers, Bagging-2 performs the worst.

Figure 5.47: Comparison of R2L attack detection among16 new arrangement of ensemble machine

learning

We can see from Figure 5.47 that Boosting-2 and Hybrid-2 performs the best to detect

R2L attack whereas, the performance of Bagging-2 is the lowest.

114

Figure 5.48: Comparison of U2R attack detection among 16 new arrangement of ensemble machine
learning

Among 16 new design ensemble classifiers from Figure 5.48, Bagging-3 performs the

best to detect U2R attack.

From Figure 5.44 to 5.48, we can see that for detecting the normal and DoS attack

Bagging-3 perform the lowest. And Bagging-2 performs the lowest to detect the Probe,

R2L and U2R attacks. The base class of Bagging-3 is Naïve Bayes which perform very

worse when the data overlap each other, in contrast, the base class of Bagging-2 is a

Tree-based classifier which does not bother when data is overlapping. For the first two

cases, detecting normal and DoS attach Bagging-3 perform the worst due to the

overlapping of normal and DoS attack data. On the other hand, for Probe, R2L and

U2R the data does not overlap each other and Bagging-3 perform better. Due to not

bother with data overlapping, Tree-base Bagging-2 performs opposite.

The all findings regarding detection rate of network attacks shown together in Table

5.15.

115

Table 5.15: Comparison of DR of normal traffic and four types of attacks among 16 new arrangement
of ensemble machine learning

Classifiers Normal DoS Probe R2L U2R

Voting 1 0.97 1.00 0.97 0.94 0.57

Voting 2 0.96 0.98 0.97 0.72 0.52

Voting 3 0.96 0.99 0.98 0.72 0.48

Voting 4 0.94 0.97 0.98 0.70 0.46

Stacking -1 0.93 0.97 0.98 0.70 0.00

Stacking -2 0.95 0.99 0.97 0.70 0.28

Stacking -3 0.92 0.97 0.94 0.72 0.00

Stacking -4 0.95 0.99 0.97 0.70 0.28

Boosting -1 0.46 0.56 0.88 0.28 0.55

Boosting -2 0.99 1.00 0.99 0.95 0.69

Boosting -3 0.97 0.99 0.90 0.81 0.42

Bagging -1 0.93 0.97 0.94 0.59 0.49
Bagging -2 0.98 0.82 0.25 0.01 0.00
Bagging -3 0.08 0.27 1.00 0.28 0.85
Hybrid-1

(Boosting of

Voting-1)

0.96 0.99 0.96 0.69 0.46

Hybrid-2

(Bagging of

voting-1)

0.98 0.99 0.98 0.95 0.63

From these research findings, it is clear that all of the features is not important for

every types of network attacks. The detection rate can vary according to the number

116

of features. Besides, every classifier does not perform well for every type of attack.

The detection rate also can vary according to the choosing of classifier in every case.

Table 5.16 shows four types of attacks and proposed classifiers to detect those attacks

separately and Table 5.17 shows the detection rate of one classifier which perform

moderately to detect all types of attacks.

Table 5.16: Proposed classifiers for different types of network attacks

Network Attacks Proposed classifiers and DR
DoS Voting-1 (100%), Boosting-2(100%), Hybrid-1 (99%),

Hybrid-2 (99%), Stacking-2 (99%), Stacking-4 (99%)
Probe Bagging-3 (100%), Boosting-2 (99%)
R2L Boosting-2 (95%), Hybrid-2(95%)
U2R Bagging-3 (85%), Boosting-2 (69%)

Table 5.17 shows the detection rate of every types of attacks using Boosting-2
classifiers and we have used the first 36 important features to evaluate this model.

Table 5.17: Proposed classifiers for all types of attacks

Network Attacks DR (Boosting -2)
DoS 100 %

Probe 99 %
R2L 95 %
U2R 69 %

5.4 Summary
According to the above discussion, we can see that different classifiers perform better

for different types of attacks; however, we would like to propose a classifier which

will perform moderately better for every type of attacks. We can see that the Boosting-

2 classifier do this work better. Performance of this classifier is shown in Table 5.17.

117

Chapter 6
Conclusion and Future Works

6.1 Conclusion

In this thesis work, a novel approach has been proposed to predict intrusion in the

network traffic based on packet header information that finally helps to develop

effective classifiers. We used both without and with cross-validation to implement the

ensemble classifiers. When we worked without cross validation, we used the full KSL-

KDD training and testing dataset, and when we worked with-cross validation, we used

the full KSL-KDD testing dataset. The proposed method without cross-validation

achieves the improved detection rate in the case of R2L and U2R attacks compared to

recent literature. In this paper, our main focus is on detection rate; therefore we

compare our findings with recent literature that works on the detection rate using

ensemble machine learning classifiers. For detecting normal and DoS attacks the

detection rate of our proposed classifier is almost the same except Probe attack.

The proposed ensemble classifiers with cross validation have two parts. In the first

part, after preprocessing, we do some feature engineering to get the best detection rate

with reduces number of features. In the second part, we compare our 16 types of new

design ensemble classifiers with each other. This work achieves detection rate of 100%

for DoS attack, 100% for Probe attack, 95% for R2L attack and 85% for U2R attack.

The proposed method starts working with a new set of features, which can be easily

extracted from the network traffic. It introduces 36 features as a set to be used for the

first time to detect the network attacks; those show impressive results and improve the

performance of the proposed algorithm. Thus, the proposed algorithm proves to be

better in terms of detection rate compared to other classifiers detecting network

attacks.

118

6.2 Future Works

Despite its better performance than other similar algorithms, few limitations of the

proposed algorithm have been found out during the thesis work. They will help to find

out the scopes for further development of the algorithm. A list of these limitations is

given below:

a) Not trying out platforms other than R, which could have led towards new

discoveries by providing more control over the classifier parameters

b) Some other popular classifiers, such as deep learning with artificial neural

networks and base level algorithms, could have been tested with

c) Architecture and data collection of intrusion detection that are not considered

here, since the NSL-KDD data set is adopted in this work.

d) Using the detection rate of other algorithms reported in the literature, while

comparing them with the newly proposed algorithm in this thesis work; as

those algorithms could not be implemented due to lack of related information

in the literature

Using the method detection rate of other algorithms reported by their authors in the

literature, while comparing them with the newly proposed algorithm in this thesis

work; as those algorithms could not be implemented due to lack of related information

in the literature

To improve the algorithm functionality and provide additional evaluation of its

performance, there are several areas of future work that can be served. They are:

a) Further improvements can be obtained by preparing data sets of higher quality.

It should be possible to increase the number of data entries from updated

databases.

b) Adding new network attacks or defining finer classifications will also be

important in practical applications of predicting intrusion.

c) Other features of network traffic can be introduced and tested with

119

References

[1] Evans, D. (2011). The internet of things. How the Next Evolution of the
Internet is Changing Everything, Whitepaper, Cisco Internet Business
Solutions Group (IBSG).

[2] A. Marx. 2008. Malware vs. Anti-Malware: (How) Can We Still Survive?
Virus Bulletin, 2.2

[3] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford and N.Weaver.
2003. Inside the SlammerWorm. IEEE Security and Privacy, 1, 33–39.

[4] BBC. Spies ’infiltrate US power grid’, 2009c. Available online:
http://news.bbc.co.uk/1/hi/technology/7990997.stm.

[5] CNet news. Georgia accuses Russia of coordinated cyberattack, 2008.
Available online: http://news. cnet.com/8301-1009_3-10014150-83.html.

[6] BBC. US launches cyber security plan , 2009d. Available online:
http://news.bbc.co.uk/1/hi/world/americas/8073654.stm.

[7] BBC. Cyber-security strategy launched, 2009a. Available online:
http://news.bbc.co.uk/1/hi/uk_politics/8118348.stm.

[8] L. M. Lewis. A Case-Based Reasoning Approach to the Resolution of Faults
in Communication Networks. In Proceedings of the IFIP TC6/WG6.6 Third
International Symposium on Integrated Network Management with
participation of the IEEE Communications Society CNOM and with support
from the Institute for Educational Services, pages 671–682. North-Holland,
1993.

[9] S.F. Owens and R.R. Levary. 2006. An adaptive expert system approach for
intrusion detection. Int. J. Secur. Netw., 1, 206–217. ISSN 1747-8405.

[10] M. Sabhnani and G. Serpen. Application of Machine Learning Algorithms to
KDD Intrusion Detection Dataset within Misuse Detection Context. In
Proceedings of the International Conference on Machine Learning, Models,
Technologies and Applications (MLMTA 2003), volume 1, pages 209–215,
2003.

[11] G. Cohen, M. Hilario, H. Sax, S. Hugonnet and A. Geissbuhler. 2006. Learning
from imbalanced data in surveillance of nosocomial infection. Artificial
Intelligence in Medicine, 37, 7–18.

[12] M.A. Mazurowski, P.A. Habas, J.M. Zurada, J.Y. Lo, J.A. Baker and G.D.
Tourassi. 2008. Training neural network classifiers for medical decision

http://news/

120

making: The effects of imbalanced datasets on classification performance.
Neural Networks, 21, 427–436.

[13] L. Mena and J.A. Gonzalez. Machine learning for imbalanced datasets:
Application in medical diagnostic. In Proceedings of the 19th International
FLAIRS Conference, 2006.

[14] Y-M. Huang, C-M. Hung and H.C. Jiau. 2006. Evaluation of neural networks
and data mining methods on a credit assessment task for class imbalance
problem. Nonlinear Analysis: Real World Applications, 7, 720–747.

[15] J. Burez and D. van den Poel. April 2009. Handling Class Imbalance in
Customer Churn Prediction. Expert Systems with Applications, 36, 4626–4636.

[16] Y. Xie, X. Li, E.W.T. Ngai and W. Ying. 2009. Customer Churn Prediction
using Improved Balanced Random Forests. Expert Systems with Applications,
36, 5445–5449.

[17] L. Kobyli´nski and A. Przepiórkowski. Definition Extraction with Balanced
Random Forests. In Advances in Natural Language Processing: Proceedings
of the 6th International Conference on Natural Language Processing, pages
237–247. Springer-Verlag, 2008.

[18] K. Kermanidis, M. Maragoudakis, N. Fakotakis and G. Kokkinakis. Learning
Greek verb complements: addressing the class imbalance. In COLING ’04:
Proceedings of the 20th international conference on Computational
Linguistics, page 1065, Morristown, NJ, USA, 2004. Association for
Computational Linguistics.

[19] E. Stamatatos. 2008. Author identification: Using text sampling to handle the
class imbalance problem. Information Processing and Management, 44, 790–
799.

[20] N.V. Chawla. C4.5 and Imbalanced Data sets: Investigating the effect of
sampling method, probabilistic estimate, and decision tree structure. In
ICMLWorkshop on Learning from Imbalanced Datasets II, 2003.

[21] T. Jo and N. Japkowicz. 2004. Class Imbalances versus Small Disjuncts.
SIGKDD Explorations Newsletter, 6, 40–49.

[22] Y. Bouzida and F. Cuppens. Detecting Known and Novel Network Intrusions.
In IFIP/SEC 2006, 21st IFIP TC-11 International Information Security
Conference, 2006a.

121

[23] Y. Bouzida and F. Cuppens. Neural networks vs. decision trees for intrusion
detection. In IEEE / IST Workshop on Monitoring, Attack Detection and
Mitigation (MonAM), 2006b.

[24] A Javaid,Q Niyaz, Sun W, et al. “A Deep Learning Approach for Network
Intrusion Detection System,” Eai International Conference on Bio-Inspired
Informa.

[25] F. Kuang,W. Xu, S. Zhang. “A novel hybrid KPCA and SVM with GA model
for intrusion detection,” Applied Soft Computing Journal, 2014, 18(C):178-
184.

[26] W. Li, P. Yi, Y. Wu et al. “A New Intrusion Detection System Based on KNN
Classification Algorithm in Wireless Sensor Network”. Journal of Electrical
and Computer Engineering, 2014, 2014(5):1-8.

[27] B. Ingre, A. Yadav. “Performance analysis of NSL-KDD dataset using ANN”,
International Conference on Signal Processing and Communication
Engineering Systems. IEEE, 2015:92-96.

[28] A. L. Buczak,E. Guven. “A Survey of Data Mining and Machine Learning
Methods for Cyber Security Intrusion Detection,” IEEE Communications
Surveys and Tutorials, 2017, 18(2):1153-1176.

[29] N. Ben Amor, S. Benferhat and Z. Elouedi. Naive Bayes vs Decision Trees in
Intrusion Detection Systems. In SAC ’04: Proceedings of the 2004 ACM
symposium on Applied computing, pages 420–424, New York, NY, USA,
2004. ACM. ISBN 1-58113-812-1.

[30] M. Panda and M.R. Patra. 2007. Network intrusion detection using naive
bayes. IJCSNS International Journal of Computer Science and Network
Security, 7, 258–263.

[31] F. Gharibian and A.A. Ghorbani. Comparative Study of Supervised Machine
Learning Techniques for Intrusion Detection. In CNSR ’07: Proceedings of the
Fifth Annual Conference on Communication Networks and Services Research,
pages 350–358,Washington, DC, USA, 2007. IEEE Computer Society. ISBN
0-7695-2835-X.

[32] A. Bosin, N. Dessì and B. Pes. Intelligent Bayesian Classifiers in Network
Intrusion Detection. In Proceedings of the 18th international conference on
Innovations in Applied Artificial Intelligence, pages 445–447, London, UK,
2005. Springer-Verlag. ISBN 3-540-26551-1.

[33] D-P. Liu, M-W. Zhang and T. Li. Network Traffic Analysis Using Refined
Bayesian Reasoning to Detect Flooding and Port Scan Attacks. In ICACTE

122

’08: Proceedings of the 2008 International Conference on Advanced Computer
Theory and Engineering, pages 1000–1004, Washington, DC, USA, 2008a.
IEEE Computer Society. ISBN 978-0-7695-3489-3.

[34] F. Qu,J. Zhang and Z. Shao. “An Intrusion Detection Model Based on Deep
Belief Network,” Vi International Conference. 2017:97-101.

[35] J. Kim, J. Kim and H. T. L. Thu. “Long Short Term Memory Recurrent Neural
Network Classifier for Intrusion Detection,” International Conference on
Platform Technology and Service. IEEE, 2016:1-5.

[36] B. Abolhasanzadeh. “Nonlinear dimensionality reduction for intrusion
detection using auto-encoder bottleneck features,” Information and
Knowledge Technology. IEEE, 2015.

[37] U. Fiore, F. Palmieri and A. Castiglione. “Network anomaly detection with the
restricted Boltzmann machine,” Neurocomputing, 2013, 122:13-23.

[38] Y. Ding, Y. Zhai, “Intrusion Detection System for NSL-KDD Dataset Using
Convolutional Neural Networks,” The International Conference on Computer
Science and Artificial Intelligence (CSAI), DOI:
https://doi.org/10.1145/3297156.3297230, ISBN 978-1-4503-6606-9/18/12,
ACM , 2018.

[39] Ali H. Mirza, “Computer Network Intrusion Detection using various
Classifiers and Ensemble Learning,” 26th Signal Processing and
Communications Applications Conference (SIU), IEEE, 2018

[40] Bo Hu, JinxiWang, Yifan Zhu and Tan Yang, “Dynamic Deep Forest: An
Ensemble Classification Method for Network Intrusion Detection,”
doi:10.3390/electronics8090968, Electronics 2019.

[41] Jivitesh Sharma1, Charul Giri1, Ole-Christoffer Granmo1 and Morten
Goodwin, “Multi-layer intrusion detection system with ExtraTrees feature
selection, extreme learning machine ensemble, and softmax aggregation,”
EURASIP Journal on Information Security, doi.org/10.1186/s13635-019-
0098-y, 2019.

[42] P.G. Neumann and P.A.. Porras. Experience with EMERALD to Date. In First
USENIX Workshop on Intrusion Detection and Network Monitoring, pages 73–
80, Santa Clara, California, apr 1999.

123

[43] Abdulbasit Ahmed, Alexei Lisitsa, and Clare Dixon. A misuse-based network
intrusion detection system using temporal logic and stream processing. 2011
5th International Conference on Network and System Security, 2011.

[44] Tran and Huy Nhut. A dynamic scalable parallel network-based intrusion
detection system using intelligent rule ordering, Aug 2017.

[45] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful intrusion detection
for high-speed networks. Proceedings 2002 IEEE Symposium on Security and
Privacy.

[46] “ids 2017 | datasets | research | canadian institute for cybersecurity | unb.”
[online]. available: http://www.unb.ca/cic/datasets/ids-2017.html. [accessed:
12- oct-2019].

[47] M. Asaka, A. Taguchi and S. Goto. The Implementation of IDA: An Intrusion
Detection Agent System. In Proceedings of the 11th Annual FIRST Conference
on Computer Security Incident Handling and Response (FIRST’99), 1999.

[48] C. Kruegel, F. Valeur and G. Vigna. Intrusion Detection and Correlation:
Challenges and Solutions. Springer-Verlag Telos, 2004.

[49] K. Kendall. A Database of Computer Attacks for the Evaluation of Intrusion
Detection Systems. Master’s thesis, Massachusetts Institute of Technology,
1999.

[50] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber,
S. Webster, D. Wyschogrod, R. Cunningham and M. Zissman. Evaluating
Intrusion Detection Systems: The 1998 DARPA Off-line Intrusion Detection
Evaluation. In Proceedings of the DARPA Information Survivability
Conference and Exposition, volume 2, pages 12–26. IEEE Computer Society
Press, 2000a.

[51] R. Verwoerd and R. Hunt. September 2002. Intrusion Detection Techniques
and Approaches. Computer Communications, 25, 1356–1365.

[52] D. Gollmann. Computer Security. Wiley, 2nd edition, 2006.

[53] R.A. Kemmerer and G. Vigna. April 2002. Intrusion Detection: A Brief History
and Overview. Computer, 35, 27–30.

[54] W. Lee and D. Xiang. Information Theoretic Measures for Anomaly Detection.
In IEEE Symposium on Security and Privacy, Oakland, CA, May 2001.

[55] H. Debar, M. Dacier and A. Wespi. 1999. Towards a Taxonomy of Intrusion
Detection Systems. Computer Networks, 31, 805–822.

124

[56] H. Debar. An Introduction to Intrusion Detection Systems. In Connect 2000,
2000.

[57] D.E. Denning. 1987. An intrusion-detection model. IEEE Transactions on
Software Engineering, 13, 222–232. ISSN 0098-5589.

[58] D. Endler. Intrusion Detection: Applying Machine Learning to Solaris Audit
Data. In Proceedings of the Annual Computer Security Applications
conference, pages 267–279, 1998.

[59] Y. Bouzida and F. Cuppens. Detecting Known and Novel Network Intrusions.
In IFIP/SEC 2006, 21st IFIPTC-11 International Information Security
Conference, 2006a.

[60] M. Panda and M.R. Patra. 2007. Network intrusion detection using naive
bayes. IJCSNS International Journal of Computer Science and Network
Security, 7, 258–263.

[61] M. Panda and M.R. Patra. Ensemble of classifiers for detecting network
intrusion. In ICAC3 ’09: Proceedings of the International Conference on
Advances in Computing, Communication and Control, pages 510–515, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-351-8.

[62] C. Xiang, P.C. Yong and L.S. Meng. 2008. Design of multiple-level hybrid
classifier for intrusion detection system using Bayesian clustering and decision
trees. Pattern Recogn. Lett., 29, 918–924. ISSN 0167-8655.

[63] J. Zhang and M. Zulkernine. A Hybrid Network Intrusion Detection Technique
Using Random Forests. In ARES ’06: Proceedings of the First International
Conference on Availability, Reliability and Security, pages 262–269,
Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2567-9.

[64] L. M. Lewis. A Case-Based Reasoning Approach to the Resolution of Faults
in Communication Networks. In Proceedings of the IFIP TC6/WG6.6 Third
International Symposium on Integrated Network Management with
participation of the IEEE Communications Society CNOM and with support
from the Institute for Educational Services, pages 671–682. North-Holland,
1993.

[65] “network intrusion detection signatures, part one | symantec connect
community.” [online]. available:
https://www.symantec.com/connect/articles/networkintrusion- detection
signatures-part-one.

https://www.symantec.com/connect/articles/networkintrusion-

125

[66] “ids: Signature versus anomaly detection,” searchsecurity. [online]. available:
https://searchsecurity.techtarget.com/tip/ids-signature-versus-
anomalydetection.

 [67] “sans: Website security.” [online]. available: https://www.sans.org/security/.
[Accessed 21 December 2019]

[68] D. Zhang M. Zhang H. Li, Y. Wang and E. Y. Chang. “pfp: parallel fp-growth
for query recommendation,” in proceedings of the 2008 acm conference on
recommender systems - recsys ’08, lausanne, switzerland, 2008, p. 107.

[69] Tadashi Ogino. Evaluation of machine learning method for intrusion detection
system. International Journal of Machine Learning and Computing, 5(2):137–
141, 2015.

[70] “promiscuous mode (linktionary term).” [online]. available:
http://www.linktionary.com/p/promiscuous.html.

[71] Zhang Chao-Yang. Dos attack analysis and study of new measures to prevent.
2011 International Conference on Intelligence Science and Information
Engineering, 2011.

[72] Jeremy Seth Davis. Sony psn downed; hacking group claims ddos attack | sc
media, Jul 2018.

[73] Tran and Huy Nhut. A dynamic scalable parallel network-based intrusion
detection system using intelligent rule ordering, Aug 2017.

[74] “introduction — bro 2.5.5 documentation.” [online]. available:
https://www.bro.org/sphinx/intro/index.html.

[75] Jparaiso. “cisco - netranger intrusion detection system.”, Dec 1998.

[76] S. Hua and Z. Sun, "Support vector machine approach for protein subcellular
localization prediction," Bioinformatics, vol. 17, no. 1, pp. 721-728, 2001.

[77] T. H. Lin, R. F. Murphy and Z. Bar-Joseph , "Discriminative motif finding for
predicting protein subcellular localization," IEEE/ACM Transaction of
Computational Biology and Bioinformatics, vol. 8, no. 2, pp. 441-451, 2011.

[78] R. N. Kalate, S. S. Tambe and B. D. Kulkarni, "Artificial neural networks for
prediction of mycobacterial promoter sequences," Computational Biology and
Chemistry, vol. 27, no. 6, pp. 555-564, 2003.

[79] X. Xiao, Z.-C. Wu and K.-C. Chou, "A multi-label classifier for predicting the
subcellular localization of gram-negative bacterial proteins with both single
and multiple sites," PLoS ONE, vol. 6, 2011.

https://searchsecurity.techtarget.com/tip/ids-signature-versus-anomalydetection
https://searchsecurity.techtarget.com/tip/ids-signature-versus-anomalydetection
https://www.sans.org/security/

126

[80] P. Shah, "Insights into Machine Learning," 8 1 2018. [Online]. Available:
https://opensourceforu.com/2018/01/insights-machine-learning/.

[81] P. Hassani, "An Insight into 26 Big Data Analytic Techniques: Part 2," 30 11
2016. [Online]. Available: https://blogs.systweak.com/2016/11/an-insight-
into-26-big-data-analytic-techniques-part-2/. [Accessed 21 December 2019]

[82] Priyadharshini, "Machine Learning: What it is and Why it Matters," 18 3 2018.
[Online]. Available: https://www.simplilearn.com/what-is-machine-learning-
and-why-it-matters-article.

[83] R. van Loon, "Machine Learning Explained: Understanding Supervised,
Unsupervised, and Reinforcement Learning," 6 1 2018. [Online]. Available:
https://www.datasciencecentral.com/profiles/blogs/machine-learning-
explained-understanding-supervised-unsupervised.

[84] Burges, C. J. C. (1998). A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.

[85] Sbrownlee, “supervised and unsupervised machine learning algorithms,”
machine learning mastery, 15-mar-2016., Sep 2016.

[86] T. Hill and P. Lewicki, "Support Vector Machines," in Electronic Statistics
Textbook, StatSoft Inc. 1995.

[87] C. M. Bishop, Pattern Recognition and Machine Learning, Springer.

[88] B. Yekkehkhany, A. Safari, S. Homayouni and M. Hasanlou, "A Comparison
Study of Different Kernel Functions for SVM-based Classification of," The
International Archives of the photogrammetry, Remote Sensing and Spatial
Information Sciences, 2014.

[89] Y. Liu and K. K. Parhi, "Computing RBF kernel for SVM classification using
stochastic logic," Proceedings - IEEE International Workshop on Signal
Processing Systems, SiPS 2016, pp. 327-332.

[90] M. Ring and B. M. Eskofier, "An approximation of the Gaussian RBF kernel
for efficient classification with SVMs," Pattern Recognition Letters, vol. 84,
no. C, pp. 107-113, 2016.

[91] C.-W. Hsu, C.-C. Chang, C.-J. Lin et al., “A practical guide to support vector
classification,” 2003.

[92] Keerthi, S. S., & Lin, C. J. (2003). Asymptotic behaviors of support vector
machines with Gaussian kernel. Neural Computation, 15(7), 1667–1689.

https://blogs.systweak.com/2016/11/an-insight-into-26-big-data-analytic-techniques-part-2/
https://blogs.systweak.com/2016/11/an-insight-into-26-big-data-analytic-techniques-part-2/
https://www.simplilearn.com/what-is-machine-learning-and-why-it-matters-article
https://www.simplilearn.com/what-is-machine-learning-and-why-it-matters-article

127

[93] Lin, H. T., and Lin, C. J. (2003). A study on sigmoid kernels for SVM and the
training of non-PSD kernels by SMO-type methods. Taipei: Department of
Computer Science and Information Engineering, National Taiwan University.

[94] R. Jin, F. Yan and J. Zhu, Application of Logistic Regression Model in an
Epidemiological Study, Science Journal of Applied Mathematics and
Statistics, 3 (2015), no. 5, 225-229.
https://doi.org/10.11648/j.sjams.20150305.12

[95] V. Losing, B. Hammer and H. Wersing, "KNN Classifier with Self Adjusting
Memory for Heterogeneous Concept Drift," in IEEE 16th International
Conference on Data Mining (ICDM), 2016.

[96] A. Bronshtein, "A Quick Introduction to K-Nearest Neighbors Algorithm,"
2017. [Online]. Available: https://medium.com/@adi.bronshtein/a-quick-
introduction-to-k-nearest-neighbors-algorithm-62214cea29c7.

[97] https://www.datacamp.com/community/tutorials/ensemble-learning-python
[Accessed 21 December 2019]

[98] https://blog.bigml.com/2017/03/14/introduction-to-boosted-trees/ [Accessed
21 December 2019]

[99] https://medium.com/@rrfd/boosting-bagging-and-stacking-ensemble-
methods-with-sklearn-and-mlens-a455c0c982de [Accessed 21 December
2019]

[100] Sapna S. Kaushik, Dr. Prof.P.R.Deshmukh,” Detection of Attacks in an
Intrusion Detection System”, International Journal of Computer Science and
Information Technologies, Vol. 2 (3), 2011, 982-986

[101] http://nsl.cs.unb.ca/NSL-KDD/ [Accessed 21 December 2019]

[102] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani “A
Detailed Analysis of the KDD CUP 99 Data Set”, Proceedings of the 2009
IEEE Symposium on Computational Intelligence in Security and Defense
Applications (CISDA 2009)

[103] S. Velliangiri and J. Premalatha. Intrusion detection of distributed denial of
service attack in cloud. Cluster Computing, Apr 2017.

[104] Isabelle Guyon and Andr Elisseeff. 2003. An introduction to variable and
feature selection. Jouranl of Machine Learning Research 3 (March 2003),
1157–1182.

https://doi.org/10.11648/j.sjams.20150305.12
http://nsl.cs.unb.ca/NSL-KDD/

128

[105] Randall Wald, Taghi M. Khoshgoftaar, and Amri Napolitano. 2013.
Comparison of stability for different families of filter-based and wrapper-based
feature selection. In ICMLA.

[106] Alain Rakotomamonjy. 2003. Variable selection using SVM-based criteria.
JMLR 3 (March 2003), 1357–1370.

[107] Simon Perkins, Kevin Lacker, and James Theiler. 2003. Grafting: Fast
incremental feature selection by gradient descent in function space. JMLR 3
(March 2003), 1333–1356.

[108] Yvan Saeys, Inaki Inza, and Pedro Larranaga. 2007. A review of feature
selection techniques in bioinformatics. Bioinformatics 23, 19 (2007), 2507–
2517.

[109] https://scikit-learn.org/stable/modules/feature_selection.html#univariate-
feature-selection [Accessed 21 December 2019]

[110] “scikit-learn: machine learning in python — scikit-learn 0.20.0
documentation.” [online]. available: http://scikit-learn.org/stable/. [Accessed
21 December 2019]

[111] Xianwei Gao , Chun Shan , Changzhen Hu, Zequn Niu , And Zhen Liu, “An
Adaptive Ensemble Machine Learning Model for Intrusion Detection,”
doi.10.1109/ACCESS.2019.2923640, IEEE Access, June 19, 2019.

https://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection
https://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection
http://scikit-learn.org/stable/

129

Appendix A

A.1

The first few pages of accepted thesis proposal

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

OFFICE OF THE MEMBER SECRETARY OF THE COMMITTEE FOR

ADVANCED STUDIES & RESEARCH, BUET, DHAKA.

Application form (Guide lines) for approval of M.Sc. in ICT. Thesis proposal by the CASR. All the items,
which are applicable of the following list, must be mentioned and filled in properly. You can submit your soft
copy to Email: casr@daers.buet.ac.bd

Date : 18/11/2019

1. Name of the student: MD. RAIHAN-AL-MASUD Status: Full-Time

 Roll No. 1015312017 Session: October, 2015

2. Present Address: 372/6, South Kafrul, Dhaka Cantt Cell: 01723336143

3. Name of the Dept/Inst.: IICT Programme : M.Sc. in ICT

4. Name of the Supervisor: Dr. Hossen Asiful Mustafa Designation: Assistant Professor

5. Name of the Co-Supervisor (if any): N/A Designation :N/A

6. Date of First Enrolment in the Program: OCTOBER-2015

7. Tentative Title: AN ENSEMBLE MACHINE LEARNING APPROACH FOR
NETWORK INTRUSION DETECTION

8. Background and present state of the problem:

Network Intrusion Detection Systems (NIDSs), particularly, Anomaly Detection Systems
(ADSs) [1], have become more significant in detecting novel attacks than Signature Detection
Systems (SDSs) [2]. One of the key intrusion detection systems is to inspect the network traffic
flow between hosts, and the network packets to discriminate between the observations: normal
or abnormal. Currently, due to the massive growth in computer networks and applications,
many challenges arise for network security research. Intrusions/attacks are able to compromise
the principles of computer systems, e.g., availability, authority, confidentiality and integrity.
Firewall systems cannot detect modern attack environments and are not able to analyze
network packets in depth. A NIDS monitors network traffic flow to identify attacks. The
signature-based NIDS matches the existing of known attacks to detect intrusions. However, in
the anomaly-based NIDS, a normal profile is created from the normal behavior of the network

130

and any deviation from this is considered as an attack. Further, the signature-based NIDSs
cannot detect unknown attacks, and for these anomalies, anomaly-based NIDS are
recommended in many studies [3] [4]. In this context, anomaly-based network intrusion
detection techniques are a valuable technology to protect target systems and networks against
malicious activities. However, despite the variety of such methods described in the literature
[5-9] in recent years, security tools incorporating anomaly detection functionalities are just
starting to appear, and attack detection accuracy still not good enough. Researchers have used
different machine learning methodologies for NIDS but ensemble machine learning approach
has not been applied effectively. Ensemble method combines several base models in order to
produce one optimal predictive model. Additionally, considering the inclusion of large number
of features and complexity of the algorithms with respect to the classification, further
improvement is required in classifier design and feature engineering for better performance in
malicious network traffic classification.

9. (a) Objectives with specific aims:

The objective of this thesis is to develop an algorithm using ensemble machine learning
techniques for better detection of malware in the network traffic. To achieve this objective, the
following specific aims are identified.

1. To identify an order of importance of features for effective detection of malware
by packet header inspection found within network traffic.

2. To design an efficient classifier algorithm for identifying malware in target
networks based on their features.

3. To implement the algorithm for simulation and compare the performance with
existing works in the literature.

 (b) Possible outcome:

Successful completion of this research will result in a machine learning algorithm which can

detect malware in the network traffic data with high accuracy.

10. Outline of Methodology/ Experimental Design:

In this research, standard network packet header information available on the web for normal
traffic will be considered and 4 different types of attacks such as Denial of Service (DoS),
Probe, Remote to Local (U2R) and User to Root (R2L) in the network will be addressed.
Below is a list of activities which will be followed throughout this research:

i. An order of importance of features will be derived from the packet
header information for ease of the feature computation and simplicity of
the method. Feature significance will be studied through hypothesis
testing and computing parameters such as p-value.

ii. An Ensemble machine learning classification algorithm based on Voting,
Stacking, Bagging and Boosting will be developed considering its wide

131

range of applicability and superior performances for intrusion detection
in network traffic compared to other algorithms.

iii. A Python based library Scikit Learn will be used for pre-processing,
feature engineering, classification algorithm design, training and testing
to develop the algorithms based on ensemble machine learning
algorithms to improve the security in a network intrusion detection
system.

iv. The performance of the algorithm (e,g., sensitivity or detection rate) will
be evaluated on independent training and testing dataset and will be
compared with existing other algorithms.

v. Then, a detailed analysis will be performed to find the suitability of the

available machine learning algorithms for intrusion detection system. Best

performing machine learning algorithms including base level[6] as well as deep

learning[7-9] on literature will be explored for suitability (e. g., Support Vector

machine (SVM) [6], Discriminative Restricted Boltzmann Machine (DBM) [7],

long short-term memory (LSTM) [8], Convolutional neural network (CNN))[9].

vi. The Strength of the proposed system will be shown in terms of area
under of receiver operating characteristics (ROC-AUC) curve,
sensitivity, specificity as well as Precision-Recall curve (PR-Curve).

11. References:

[1] Bhuyan, H. M., Bhattacharyya, K. D., Kalita, K. J., "Network Anomaly Detection:
Methods, Systems and Tools," IEEE Communication Surveys and Tutorials, 2013.

[2] Mujumdar, A., Masiwal, G., Meshram, B. B., "Analysis of Signature-Based and
Behavior-Based Anti-Malware Approaches," International Journal of Advanced
Research in Computer Engineering and Technology, 2013.

[3] Dartigue, C. , Jang , H., Zeng, W., "A new data-mining based approach for network
intrusion detection," Seventh Annual Communications Networks and Services
Research Conference, SACNSRC, 2009.

[4] Zhang, J., Mohammad, Z., "Anomaly based network intrusion detection with
unsupervised outlier detection," ICC'06. IEEE International Conference , ICC, 2006.

[5] Buczak, L. A., Guven, E., "A Survey of Data Mining and Machine Learning Methods
for Cyber Security Intrusion Detection," International Journal of Research, IJOR,
2017.

[6] Kuang, F., Xu, W., Zhang, S., "A novel hybrid KPCA and SVM with GA model for
intrusion detection," Applied Soft Computing , ELSEVIER, pp. 179, 2014.

132

[7] Qu, F., Zhang, J., Shao , Z., "An Intrusion Detection Model Based on Deep Belief
Networks," Second International Conference on Advanced Cloud and Big Data,
IEEE, pp. 247, 2014.

[8] Kim, J., Kim, J., Thu et al, L. T. H., "Long Short Term Memory Recurrent Neural
Network Classifier for Intrusion Detection," International Conference on Platform
Technology and Service, IEEE, pp. 1-5 2016.

[9] Ding, Y., Zhai, Y., "Intrusion Detection System for NSL-KDD Dataset Using
Convolutional Neural Networks," The International Conference on Computer Science
and Artificial Intelligence (CSAI), ACM, pp. 81, 2018.

133

A.2

Part of the thesis has been accepted in the 3rd IEEE International Conference on

Telecommunications and Photonics (ICTP) 2019 which explores the voting classifiers

in the results reported in this research work using Scikit learn.

Md. Raihan-Al-Masud and Hossen Asiful Mustafa. “Network Intrusion Detection

System Using Voting Ensemble Machine Learning”, in the 3rd IEEE International

Conference on Telecommunications and Photonics (ICTP), December 2019.

134

