
M.Sc. Engg. (CSE) Thesis

A Load Balanced Collaborative Content Caching Strategy
in Named Data Network

Submitted by

Mina

0413052108

Supervised by
Dr. Mahmuda Naznin

Submitted to
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering

September 2019

Candidate’s Declaration

I, do, hereby, certify that the work presented in this thesis, titled, “A Load Balanced Collaborative
Content Caching Strategy in Named Data Network”, is the outcome of the investigation and
research carried out by me under the supervision of Dr. Mahmuda Naznin, Professor, Department
of CSE, BUET.

I also declare that neither this thesis nor any part thereof has been submitted anywhere else for
the award of any degree, diploma or other qualifications.

Mina

0413052108

i

Smallpdf User
Stamp

The thesis titled “A Load Balanced Collaborative Content Caching Strategy in Named Data
Network”, submitted by Mina, Student ID 0413052108, Session April 2013, to the Department
of Computer Science and Engineering, Bangladesh University of Engineering and Technology,
has been accepted as satisfactory in partial fulfilment of the requirements for the degree of
Master of Science in Computer Science and Engineering and approved as to its style and contents
on September 29, 2019.

Board of Examiners

1.
Dr. Mahmuda Naznin Chairman
Professor (Supervisor)
Department of CSE, BUET, Dhaka

2.
Dr. Md. Mostofa Akbar Member
Professor and Head (Ex-Officio)
Department of CSE, BUET, Dhaka

3.
Dr. Md. Shohrab Hossain Member
Associate Professor
Department of CSE, BUET, Dhaka

4.
Dr. Rifat Shahriyar Member
Associate Professor
Department of CSE, BUET, Dhaka

5.
Dr. Lutfa Akter Member
Professor (External)
Department of EEE
BUET, Dhaka

ii

Smallpdf User
Stamp

Acknowledgement

I am thankful to my honorable thesis supervisor, Dr. Mahmuda Naznin for her valuable guidance,
kind nurture, colossal effort and mental support. She spared her time to guide and motivated
me, held the torch at the time of my darkest phases during this research. Without her guidance, I
wouldn’t be able to complete my research. I cannot thank her more.

Dhaka
September 29, 2019

Mina
0413052108

iii

Contents

Candidate’s Declaration i

Board of Examiners ii

Acknowledgement iii

List of Figures vi

List of Tables viii

List of Algorithms ix

Abstract x

1 Introduction 1
1.1 Named Data Networking (NDN) Architecture 1
1.2 How NDN Works . 2
1.3 Interest Forwarding Process . 3
1.4 Caching in NDN . 4

1.4.1 In-Network Caching . 4
1.4.2 Benefits of In-Network Caching . 5

1.5 Challenges in In-Network Caching . 7
1.6 Motivation . 8
1.7 Our Contributions . 9
1.8 Organization of the Thesis . 10

2 Related Work 11
2.1 Probability Based Caching Strategy . 11
2.2 Popularity Based Caching Strategy . 12
2.3 Age Based Caching Strategy . 13
2.4 Collaborative Caching Strategy . 14
2.5 Centrality Based In-Network Caching Strategy 16
2.6 MAx-Gain In-Network Caching Strategy . 17

iv

3 Problem Domain 19
3.1 Preliminaries . 19
3.2 Update Popularity . 21
3.3 Node Selection . 22
3.4 Our Solution Framework . 24

3.4.1 Data Tables of Nodes . 24

4 Results and Analysis 28
4.1 Experimental Setup . 28

4.1.1 Simulation Parameters . 31
4.1.2 Metrics . 31
4.1.3 Impact of CS size on Cache Hit Ratio 32
4.1.4 Impact of the Number of Nodes on Cache Hit Ratio 32
4.1.5 Impact of Run Time on Cache Hit Ratio 33
4.1.6 Impact on Interest Satisfaction Ratio 34
4.1.7 Impact of Number of Nodes on Interest Satisfaction Rate 36
4.1.8 Impact on the Average Response Time (CS 100 to 600) 36
4.1.9 Impact of Cache Size on the Average Response Time (CS 1000 to 6000) 37

5 Conclusion 39
5.1 Future Improvement . 39

References 41

A Raw Data 44
A.1 Cache Hit Ratio vs Content Store(CS) Size . 44
A.2 Cache Hit Ratio vs Number of Nodes . 45
A.3 Interest Satisfaction Rate vs Number of Interest Per Second 46
A.4 Cache Hit Ratio vs Running Time . 47
A.5 Interest Satisfaction Rate vs Number of Nodes 48
A.6 Average Response Time(s) vs Cache Size . 49

B Codes 50
B.1 NDN Content Store . 50
B.2 NDN Content Store Header File . 57
B.3 Popularity Based LBCC Caching File . 63
B.4 Popularity Based LBCC Caching Header File 68
B.5 LBCC Simulation File . 71

v

List of Figures

1.1 Internet and NDN Architecture [kay]. 2
1.2 Step 1: Working process of NDN. 3
1.3 Step 2: Working process of NDN. 4
1.4 Step 3: Working process of NDN. 4
1.5 Interest Forwarding Process. 5
1.6 In-network caching. 6
1.7 On-path cache. 6
1.8 Off-path cache. 6
1.9 Edge-path cache. 6

2.1 Probability based content caching. 12
2.2 Popularity based content caching. 12
2.3 Age Based Content Caching [MXW12]. 14
2.4 Popularity Based Collaborative Caching [DHL+12]. 16
2.5 Cache less for more [CHPP13]. 17
2.6 MAGIC Operation [RQ+14]. 17

3.1 Requested content. 19
3.2 Update popularity. 22
3.3 Cache Router. 24
3.4 User request for contents. 25
3.5 Initial content caching. 26
3.6 Content Caching Based on Popularity Ranking. 27

4.1 NDN Simulation Components [MAZ17] . 29
4.2 A sample NDN topology. 29
4.3 CS Module in NDN . 30
4.4 Cache Policy . 30
4.5 Consumers . 30
4.6 Providers . 30
4.7 Consumer Installation . 30
4.8 Cache Hit Ratio vs. Content Store Size . 33

vi

4.9 Cache Hit Ratio vs. Number of Nodes . 34
4.10 Cache Hit Ratio vs Running Time . 35
4.11 Interest Satisfaction Rate vs No. of Interest Per Second 35
4.12 Interest Satisfaction Rate vs. Number of Nodes 36
4.13 Average Response Time(s) vs Cache Size . 37
4.14 Cache Hit Ratio vs Cache Size . 38
4.15 Avg. Response Time vs Cache Size . 38

vii

List of Tables

3.1 Trend Value . 21
3.2 Updated Trend Value . 26
3.3 Initial Content popularity. 26
3.4 Updated Content popularity. 26
3.5 Cache Router Position. 27

4.1 Simulation Parameters . 31

A.1 Cache Hit Ratio vs Content Store(CS) Size(LBCC). 44
A.2 Cache Hit Ratio vs Content Store(CS) Size (CPRL). 44
A.3 Cache Hit Ratio vs Content Store(CS) Size (LRU). 45
A.4 Cache Hit Ratio vs Number of Nodes (LBCC). 45
A.5 Cache Hit Ratio vs Number of Nodes(CPRL). 45
A.6 Cache Hit Ratio vs Number of Nodes(LRU). 45
A.7 Interest Satisfaction Rate vs No. of Interest Per Second(LBCC) 46
A.8 Interest Satisfaction Rate vs No. of Interest Per Second(CPRL) 46
A.9 Interest Satisfaction Rate vs No. of Interest Per Second(LRU) 46
A.10 Cache Hit Ratio vs Running Time(LBCC) . 47
A.11 Cache Hit Ratio vs Running Time(CPRL) . 47
A.12 Cache Hit Ratio vs Running Time(LRU) . 47
A.13 Interest Satisfaction Rate vs No. of Nodes (LBCC) 48
A.14 Interest Satisfaction Rate vs No. of Nodes (CPRL) 48
A.15 Interest Satisfaction Rate vs No. of Nodes (LRU) 48
A.16 Average Response Time(s) vs Cache Size (LBCC). 49
A.17 Average Response Time(s) vs Cache Size (CPRL). 49
A.18 Average Response Time(s) vs Cache Size (LRU). 49

viii

List of Algorithms

1 Request Trend Calculation . 20
2 Interest Request Method . 22
3 Find Caching Router Position . 23
4 Data Packet Reply Algorithm . 23

ix

Abstract

Named Data Networking (NDN) is the named based networking system for next
generation network architecture. In-network caching in NDN is a very challenging
problem due to computational cost for finding the proper node to store the content in
the resource constrained NDN. Moreover, limited resource caches and the distributed
locations of cache storage have made the problem complex. NDN content caching
is done in network layer which makes packet forwarding and routing more difficult.
The important part of NDN is to find the best locations to cache the best content. In
this research we analyze some content caching strategies in NDN and put forward a
caching strategy based on content popularity, then compare the effect of different
caching strategies through simulation experiments. In our research, we propose a
caching policy what we call Load Balanced Collaborative Content Caching (LBCC)
strategy in NDN based on content popularity. To compute content popularity we
use two deciding factors which are content request rate and request pattern. Cache
performance is estimated in provision of cache hit ratio. We find that in our method
cache hit ratio, response time and interest satisfaction ratio are better.

x

Chapter 1

Introduction

In this chapter, we provide the introduction of our research field. Here, we briefly describe
the name data networking, the architecture of internet and NDN, major components of NDN,
network caching in NDN and its role, advantages and challenges of in-network caching, novelty
of our contribution.

1.1 Named Data Networking (NDN) Architecture

Named data networking (NDN) is a part of information-centric networking architecture in which
data or content is identified by a unique name instead of IP address [kay,VLSY15,AMZ12]. This
new architecture is no longer concentrates on where the information is located, but emphasizes
on what” or the information (content) is needed. Data are exchanged within the network nodes
by specifying their names in interest packets and data or content packets. In NDN, consumers

send interest packets as a query to request the content they needed. Routers receive the interest
packets and search the matched content in their Content Store (CS). If a matched content is
discovered, the nodes send the data back to consumers. Otherwise, the nodes forward the interest
packages to the next routers using Forwarding Information Base (FIB).

Figure 1.1 shows the hourglass architecture of internet and NDN. NDN uses in-network caching
of user requested content. A typical NDN node consists of three components, namely Content
Storage (CS), Pending Interest Table (PIT) and Forwarding Information Based (FIB).

• Content Store (CS, a local cache): Content Storage (CS) is one of the important components
in the NDN router node. CS work as a storage unit that is established structure in all the
nodes. At the point when a node gets a content, based on the standard cache strategies of
the node, system will store a copy of this content in its content store (CS). CS is one of the
limited resources on NDN routers. Therefore, it should be utilized as efficiently as much
as possible in order to improve NDN performance.

1

1.2. HOW NDN WORKS 2

Figure 1.1: Internet and NDN Architecture [kay].

• Pending Interest Table (PIT): It records all requests arrived at the router those not served
yet. A NDN router that receives the request from the consumer, will check whether the
content is in its CS. If the requested data is found there, the router will immediately send
the requested data to the consumer. If the requested data is not found in CS, then the router
checks the PIT to match the request of that content previously and not served yet. If in
PIT, there is such information then the information will be updated by adding information
that other consumer also requested the same data. The information on this PIT makes a
reverse path for sending data to the consumer. PIT contains two main processes. At first,
it temporarily stores the requested packet before transmitting them to the next node. By
using this table, the content can explore the invert ways to achieve the customers who have
requested for the data.

• Forwarding Information Base (FIB): FIB handles Interest packets forwarding. FIB
maintains a table like IP routing table. Based on this table, it transfers the information of
data request messages to sources those have the requested contents. If in the PIT there is no
same data request from other consumers, then checking is done in Forwarding Information
Based (FIB). The interest packet will be forwarded to the data provider node according to
the information in FIB. If FIB does not store the content provider’s node data, the interest
packet will be discarded by the NDN router.

1.2 How NDN Works

Consumers firstly send out Interest packets. Routers keep track of the pending interests using
Pending Interest Table (PIT) to guide data packets back to the consumers. Data packets are
returned back along the equivalent way in the inverse direction.

For example, five routers R1, R2, R3, R4 and R5 are connected in a network (shown in Figure

1.3. INTEREST FORWARDING PROCESS 3

1.2). There are two consumers and one data provider. Firstly, consumers request for data by
sending an interest packet through the network. Providers receive the interest packet, and send
the data packet through the reverse path. When data are back to the reverse path all router are on
reverse path cache that data. In the example we find the following paths.

Interest packet path: R1→ R2→ R3→ R4.

Data packet path: R4→ R3→ R2→ R1.

Caching nodes are (R1, R2, R3, R4.) When second consumer sends the interest request for the
same data through the router R5 and R2, R2 provide the expected data packet from its cache.

Figure 1.2, Figure 1.3, and Figure 1.4 show the step by step working process of NDN.

Figure 1.2: Step 1: Working process of NDN.

1.3 Interest Forwarding Process

Figure 1.5 shows the detailed forwarding process of NDN by an activity diagram. At the first of
Step 1, consumer sends a interest packet to the intermediate router. In Step 2, router looks into
CS table. If matches are found in CS table, than data is provided to the nodes which requested
for it. In Step 3, PIT lookup is done. If matches are found in PIT, then interest is discarded. But
if there is no match found in PIT, then Step 4, lookup in FIB is done. If matches are not found in
FIB, then the interest is discarded. But if matches are found in FIB, then in Step 5, it is added to
PIT. In Step 6, interest is forwarded. In Step 7, lookup is done CS table is done for matching. If
it is found, then data is forwarded in Step 8. In Step 9, PIT is checked for unsatisfied pending
requests, then it is added to CS table in Step 10. Finally, data is forwarded to consumer.

1.4. CACHING IN NDN 4

Figure 1.3: Step 2: Working process of NDN.

Figure 1.4: Step 3: Working process of NDN.

1.4 Caching in NDN

An important feature of NDN is to manage the in-networking caches with caching strategies.

1.4.1 In-Network Caching

Content caching at intermediate nodes is called in-network caching. Request catching and
content catching appear in NDN. Cache capacities of routers are relatively small compared with
delivered data size. Figure 1.6 shows in-network caching.

1.4. CACHING IN NDN 5

Figure 1.5: Interest Forwarding Process.

Types of In-Network Caching:

• On-Path Caching: In this method, the retrieved contents are cached at the intermediate
routers those fall on the symmetrical way back from server to the requester nodes.
Figure 1.7 shows the On-path caching technique.

• Off-Path Caching: Here, nodes within a specific domain or all the nodes in the network are
utilized to cache contents collaboratively. And requests can be forwarded to the nearest
copy which is not on path. Figure 1.8 shows the Off-path caching technique.

• Edge Caching: Here, nodes which are situated on the boundary position of a network,
these nodes are enabled to cache the content. Figure 1.9 shows the edge caching technique.

1.4.2 Benefits of In-Network Caching

In-network caching is popular in NDN because of some unique benefits described as follows.
Firstly, intermediate routers can share the concern of providing contents which will lighten the
load of the original content servers.
Secondly, peer-to-peer traffic involves minimum paths and this may reduce the risk of congestion.
Finally, the response time and the transmission overhead for conveying contents are minimized
because the required contents can be found from the nearest cache instead.

1.4. CACHING IN NDN 6

Figure 1.6: In-network caching.

Figure 1.7: On-path cache.

Figure 1.8: Off-path cache.

Figure 1.9: Edge-path cache.

1.5. CHALLENGES IN IN-NETWORK CACHING 7

We can summarize the advantages as follows.

• It reduces the unnecessary fetching of content from the original content server.

• It improves user response time.

• It reduces data access latency and network load since content are stored intermediate
nodes.

• It improves network resource utilization.

• It is cost effective data retrieval process.

1.5 Challenges in In-Network Caching

In this section, we provide the some challenges for in-network caching method.

• Cache Placement or Allocation

It is a challenge where to cache the content (i.e. content stores) Selected nodes may be
Edge nodes / core nodes / central nodes / strategically selected nodes

• Cache Size Dimension : What should be the size of caches? To select the homogeneous
or heterogeneous caches is very challenging task. In case of heterogeneous where to raise
cache size relatively

• Content Placement : Where to store a retrieved data within a network? Cache the retrieved
content for better performance is very challenging due to identify the Centralized or
decentralized manner

• Content Packet Selection: What to cache from the huge flow of content packet? To
identify profitable contents from the huge volume of contents. Content request patterns
repeatedly change from time to time (thus content-object popularity also changes)

• How long the content will be stored? - There are issued how long the content will be
cached. (short time lived vs. long time lived content-objects)

• There are some challenges in handling dynamic nature of real-world content-object
requests.

1.6. MOTIVATION 8

1.6 Motivation

An important feature of NDN is to manage the in-networking caches according to caching
strategies. Several cache management techniques appear in NDN. For example, MAGIC or
maximum-gain in-network caching [RQ+14], hop-based probabilistic caching (HPC) [WXF13],
most popular cache (MPC) [ZWWQ17], and ProbCache [PCP12].
The default in-network caching strategy is Leave Copy Everywhere (LCE) [kay] caches all the
contents in all en-route routers. It cause two problems as follows: The adjacent routers cache
the same contents that have caused a large amount of redundant data in the network and reduce
the diversity of data. The routers on the path of data replying are treated equally to cache same
contents and the importance of each routers location is not considered. It greatly wastes the
storage space of caches on the routers, and as a result, the load in not balanced.
The authors of [PCP12] proposed ProbCache- the strategy takes account of distance from
content source to users, and caches content at the users nearest router with larger possibility thus
reducing transmission delay when other users request the same data.
Age based caching strategy [MXW12] reduces the network delay and traffic. but it works on
only for read-only objects. Age-based caching still cannot avoid the redundant caches.
Centrality, is a graph theory-based concept is used to social network to find important nodes in a
graph. A high centralilty score is given. The sizing the content store is based upon centrality.
In this centrality based caching strategies, we find several centrality deciding parameters.
For example betweenness centrality, closeness centrality, stress, graph, and degree etc. to
heterogeneously distribute content at routers instead of homogeneous distribution. Simple degree
centrality based allocation is proposed that it is sufficient to distribute content store. Similarly,
[YGS16], if content is stored in between centrality nodes, then it offers a higher cache hit ratio.
But it does not mention any content popularity.
CL4M [CHPP13] perceives the state of topology and chooses the router with the largest
betweenness centrality as the cache router. The network topology is considered in Prob-Cache
and CL4M, while the popular contents still cannot be acquired quickly.
Literature’s [YLLL17, WSG+14] take both content popularity and node level into account.
CPRL Strategy [YLLL17] proposes a popularity based caching strategy which is based on
content popularity and matched node level. Popularity of content has been calculated in advance
according to Zipf law, where content popularity is static, which does not take the dynamic
changes of the content requests into consideration in the network. It cache only one content in
a router and it does not define the caching position for same or corresponding popular content.
[WSG+14] designs a dynamic, self-adaptive method to calculate the content popularity and
proposes a novel caching scheme (CRCache) that utilizes a cross-layer design to cache content
in a subset of routers that depends on the correlation of content popularity and the network
topology. However, [YLLL17, WSG+14] needs a lot of extra information or topology of the
entire network when calculating the router level, which increases the storage and computing

1.7. OUR CONTRIBUTIONS 9

overhead of routers.

We enlist major findings based on the major drawbacks:

• In popularity based caching strategy, we face problem when the popularity is same for two
or corresponding contents. It becomes challenging what to cache.

• Cache hit ratio is low in collaborative caching framework because of its architecture.

• Time factor is missing on-path based caching.

1.7 Our Contributions

In order to solve this challenging problems, we propose an in-network caching strategy named
load balanced collaborative content caching strategy (LBCC) based on content popularity to
improve the overall performance of NDN network. The strategy makes full use of the popularity
of the content, cache node selection based on hop count and content popularity and then
selectively caches the contents according to their popularity on the selected routers. It improves
the utilization of cache resources and reduces the frequency of contents replacement. In addition,
on the path of data replying, only one router will be selected to cache the same type of contents.
It avoids the same data caching on the adjacent nodes, reduces the amount of redundant data in
the network, increases the diversity of data, and improves the cache hit rate.
We summarized the our contributions as follows:

• We propose a popularity-based collaborative content caching scheme for NDN, which
combines popularity based on-path caching decision and time duration constant.

• The popularity estimation and comparison process are optimized as the requirement of
quick process for in-network nodes. To inuence the popularity estimation there is also a
detailed analysis of the overhead and statistics of cases.

• We propose a popularity based content caching strategy that can significantly boost cache
performance. We use Request Trend (RT) to calculate position of the content and its
relative measure.

• We use time factor k to cache most popular content for a time.

• We propose a cache node selection algorithm for caching popular contents near the
consumers.

• Using NDN standard simulator ndnSIM, we measure the performance of our proposed
model. For this, we use different standard performance measures.

1.8. ORGANIZATION OF THE THESIS 10

1.8 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the related work and their
drawback. The detailed proposed strategy is illustrated in Chapter 3, and the simulation results
and performance measures are shown in Chapter 4. Finally, Chapter 5 provides the conclusion.

Chapter 2

Related Work

Caching in NDN plays vital role because it ensures the availability of data to the network users
based on the stored appropriate data in the storage. Therefore, data or content must be available
whenever the user requests for it. Researchers are very interested to find a suitable caching
strategy.

Caching is the most productive methodology that can be utilized for accessing information
oriented services and technologies to reduce the data traffic and storage overhead. Named data
networking uses caching technique in several levels based on the different caching strategies.
In this chapter, we discuss several caching strategies, caching types, their advantages and
disadvantages.

2.1 Probability Based Caching Strategy

Probability based caching strategy is mainly the caching node location selection strategy based
on some probability computation. Caching content is done at every node towards the conveying
path with a specific probability.
Probabilistic Cache (ProbCache) offers higher probability to store the contents when a node is
closer to the destination nodes [PCP12].

Hop-based Probabilistic Caching (HPC) uses the number of the hops between the content
providers or intermediate nodes and the router to regulate the caching probability [YGS16,
WXF13]. Figure 2.1 shows the probability based content caching where user requests for a
content to server via path R1, R2, R4. Content caching on delivery path on router R1 and R4 are
done based on certain probability.

Drawbacks of this methods are described as follows.

• It omits the physical location of routers when making caching decision.

11

2.2. POPULARITY BASED CACHING STRATEGY 12

Figure 2.1: Probability based content caching.

• It always allow more cached contents closer to the destinations an it causes overload to
those routers [YGS16, PCP12, WXF13].

2.2 Popularity Based Caching Strategy

Caching the content is done based on the popularity of the content. We can mention two types of
popularity-based caching strategies. These are Content Popularity and Users Popularity content
caching discussed by authors [YLLL17, CHPP13, LWL+12, WSG+14, RQ+14, YL18].

Figure 2.2 shows the popularity based content caching framework where a popularity table is
added on server side, and popularity is measured based on the user requests. Here content c3 is
most popular, content c2 is more popular and content c1 is less popular. Based on popularity
table router R1 caches c3 content and R4 caches c2 content.

Figure 2.2: Popularity based content caching.

Major drawbacks of the system are described as follows.

• It causes too much occupancy in edge routers for caching which leads to high overhead
there.

• It may use only elected nodes in network backbone more than network edge router where
quick response can be offered.

2.3. AGE BASED CACHING STRATEGY 13

• The computation cost is very high due to calculation the popularity of each content at each
node.

2.3 Age Based Caching Strategy

In age-based caching [MXW12], the contents are marked with age in the network. The principle
of the scheme is as follows.

• Each piece of content has an fixed time which is called age. The lifetime of a replica in a
router is decided by its age.

• Content copy obtains its age when it is added into the cache, and is removed from the
cache when the age expires.

• Routers implicitly collaborate by modifying the age.

Age is used to decide the caching which agrees the following rules:

• The closer a copy is to the network edge, the longer age it has to stay.

• The more popular a copied content is, the higher age it has.

Figure 2.3 shows how the age based scheme works. In this figure, one client and one server are
connected by two routers node (R1 and R2) [MXW12]. The server provides mainly two types
of contents, most popular content and less popular content. The consumer gradually requests
the two contents according to their popularity. For the intentions of simplicity, we assume both
that routers have the storage capacity of copy one content. We start at the initial phase that two
routers have no content cached Figure 2.3 (a). At a certain time, the popular content is requested
by the consumer and both routers have the content cached, which leads the system to Figure 2.3
(b). According to this scheme, for the same content, R1 assigns it a longer age than R2. After
some time, the popular content in R2 expires but R1 still cached the content (shown in Figure
2.3 (c)). If at this time, the less popular content is required, then R2 will obviously cache the
copy of the requested content. Now, the system migrates to Figure 2.3(d). This status is optimal,
as aggregated network delay and publisher load are minimized. Because we provide the popular
content with longer time than the less popular one, the popular content will have less opportunity
to be replaced, which tend to maintain the system in this state.
This policy adaptively attempts content objects to the network edge by using dynamically
changing caching time that controls the lifetime of the content copies in the router. The time
of the content copy is determined along the routing way and there is no signaling information
between nodes or extensive computational overhead. In fact, it spreads popular contents to the

2.4. COLLABORATIVE CACHING STRATEGY 14

network edge and simultaneously eliminates unnecessary copies of content in the middle of the
network.

Drawbacks of the strategy are described as follows.

• This is applicable only for read-only objects.

• Age-based caching still cannot avoid the redundant caches.

Figure 2.3: Age Based Content Caching [MXW12].

2.4 Collaborative Caching Strategy

Instead of individual decision making for caching, collaborative caching strategy attempts to
introduce collaboration among routers to make caching decision for lower redundancy in content
caching. This method usually involves in a certain message exchanges among devices to jointly
make caching decision.

Age-based cooperative caching [MXW12] extends popular contents to the network nearest node
by progressively changing the caching time of contents in an implicitly cooperation manner. In
[WZB13], an intra-AS cache cooperation scheme is proposed to offer neighbor routers to discard
redundancy after storing content and combine in assisting each others requests. Intra-Domain
cooperative caching (IDCC) scheme in [JXY14] combines probabilistic based caching and
gradually caching. In IDCC, cached content advertisements are diffused in the intra-domain to

2.4. COLLABORATIVE CACHING STRATEGY 15

reduce cache redundancy for enhanced cache utilization.
In [DHL+12], authors explore the capacity populating problem and propose a collaborative
hierarchical caching technique accordingly.
Popularity-based neighborhood collaborative caching scheme, combines popularity based on-path
caching decision and assist caching by using the bloom lter [ZWWQ17]. For the requirement
of quick process for in network nodes the popularity estimation and comparison process are
optimized. In the evaluations to examine the performance of algorithms [ZWWQ17] real world
internet topologies are used. This scheme is compared to not only efficient existing on-path and
o-path algorithms but also the ideal situation that requests can be forwarded to the closest copy
in the network with no extra information and query delay [ZWWQ17].

A simple example of caching decision is shown in Figure 2.4. Each node can store one content
and the popularity rate is A >B >C >D >E in this example. And the current cache status is
also shown in Figure 2.4. The client sends a request for content B into the network. There is no
change to the request as the popularity of B is lower than A at R3. Then the request is forwarded
to R2. Content B is not appears in R2 or one-hop neighborhood nodes of R2. As the popularity
of B is higher than C which is stored at R2, R2 changes the compare tag of the request to false
and adds its name to the request. After completing the above process the request is forwarded to
R1. and we see that, there is no cache hit at R1. In router R1 there is no cache decision as the
compare tag has been changed to false. The request is nally forwarded to the server to get the
content B. And content B will be stored at R2 when it comes back to the client with the name of
R2 stored in the content B.

The main principle of this scheme is given bellow:

• Individual decision is made for caching [MXW12]

• Collaboration among routers are made for caching decision for minimizing redundancy in
content caching [WZB13].

• It involves a fixed message exchanges among devices to combine making caching
decision [MXW12].

• It dynamically configure contentś age among NDN routers [MXW12, WZB13, JXY14,
DHL+12].

• The copy acquires its age when it is added into the cache.

• The copy is removed from the cache when the age time-out.

• Routers implicitly collaborate by modifying the caching time i.e age [MXW12, WZB13,
JXY14, DHL+12].

Drawbacks are as follows.

2.5. CENTRALITY BASED IN-NETWORK CACHING STRATEGY 16

Figure 2.4: Popularity Based Collaborative Caching [DHL+12].

• Collaborative caching approach needs message exchanges which introduces additional
overheads [MXW12, WZB13, JXY14, DHL+12, ZWWQ17].

2.5 Centrality Based In-Network Caching Strategy

Universal caching strategy is unnecessarily costly and sub-optimal. High content replacement
frequency may result in content being replaced before getting a hit. Cache less for more scheme is
a popular centrality based method. This scheme enhance the overall content delivery performance
by caching only specific subset of nodes en-route the delivery path [CHPP13]. This scheme
is based on the concept of betweenness centrality [CHPP13] which determines the number of
times a specific router which stay on the content supplying path between all pairs of nodes in
a network topology [CHPP13, LWL+12]. The basic idea is that if a node stays along a high
number of content delivery paths, then it is more possibility to get a cache hit. By caching only at
those more important nodes, these reduce the cache replacement rate while still caching content
where a cache hit is most probable to happen[8]. Figure 2.5 shows that at time t=0, all cache
node stores are empty and client A requests a content at s1 and at t=1, client B requests a content
from S1. If frequent caching happens at v1,v2,v3 and v4, v3 becomes necessary for the request
from consumer B. v3 being the important node in this case. This can be verified by using the
betweenness centrality, whereby v3 has the highest centrality value because it lies in delivery
paths of the network.
Drawbacks of this method are described as follows.

2.6. MAX-GAIN IN-NETWORK CACHING STRATEGY 17

Figure 2.5: Cache less for more [CHPP13].

• It caches content only at the top centrality routers, which will increase the load on that
router.

• It causes high frequency of cache replacement.

2.6 MAx-Gain In-Network Caching Strategy

MAx-Gain In-network Caching (MAGIC) [RQ+14] introduces benefits of number of hop
reduction and cache replacement penalty for caching content. Contents are identified for caching
using the utility to maximal of the cache gain [RQ+14, MXW12]. To do this, authors compute
cache placement gain (the gain if caching a new content at the node) and cache replacement
penalty (the loss if evicting a cached content from the node) by jointly evaluating the content
popularity and hop reduction which deliberates the saved bandwidth consumption. This method
defines the effect of local cache gain for a node which combines the effective cache placement
gain and cache replacement penalty to minimize the number of caching operations. Finally, the
authors designed a distributed caching technique MAGIC to cooperate in-network caches along
a path.

Figure 2.6: MAGIC Operation [RQ+14].

Figure 2.6 shows the basic operations of MAGIC which operates per request. To determine the
router with the maximal local cache gain for content, the special message to carry the maximal
local cache gain along the path in the newly defined maximum gain field. To request content, an

2.6. MAX-GAIN IN-NETWORK CACHING STRATEGY 18

INTEREST packet is sent and MaxGain value is set to 0 in the header. When the INTEREST
packet is received, each router computes LocalGain, and compares it with the value recorded in
the MaxGain portion. If the local cache gain of router is larger than the recorded MaxGain value,
router will update the MaxGain value in the INTEREST packet. When the INTEREST message
reaches the original server, the MaxGain field in the INTEREST message is the maximum local
cache gain along the delivery path.

The major drawbacks are as follows.

• MAGIC is very costly because it needs to calculate each content at each node.

As discussed above, it is a very challenging problem to find the proper node to cache the
proper content. In order to make more popular contents near to the user, replica is needed
which introduces redundancy. If replication is least, computation and search time is increased.
Therefore, we propose a load balanced content caching strategy based on content popularity
and using some collaboration information about the content. The content will be located
hierarchically by the popularity and load is balanced by caching unique content in all routers.

Chapter 3

Problem Domain

In this chapter, we provide the formulation of the problem and discuss the details of our solution
approach.

3.1 Preliminaries

An important feature of NDN is to manage in-network caching with different caching strategies.
However, finding a good in-network caching strategy is a very challenging problem. We
now present some preliminaries which are required to formulate the problem. Our proposed
framework for content caching can significantly boost cache performance. It comprises of two
main components which we call Request Rate and Request Trend.

• Request Rate (RR): It is the total number of individual requests of a content divided by
overall request counts. In our strategy, we find he initial popularity of that content from
the Request Rate.

• Request trends(RT) means the content request patterns in a period of time. For example, a
content trend refers to the most used keywords denoting the content on the network during
a given period of time. A trend is a subject that appears on one or more for a limited
duration of time. There is no limit that how long a content stays as popular.

We can explain with an example as follows. We find the request on Router 1 for content A and
content B on the Content Request Table shown in Figure 3.1.

Figure 3.1: Requested content.

19

3.1. PRELIMINARIES 20

Now, we show how to use these two parameters. We compute these two values.
Request Rate(RR) Computation: We compute RR from number of user requests. It is calculated
by mean value of user requests. For Example, in Router 1 for content A and content B be on the
content request table shown in Figure 3.1, the request rate is calculated as follows. Request Rate
(RR) for content A is : 11/22 = 0.5(Initial popularity of content A)

Request Rate (RR) for content B is : 11/22 = 0.5(Initial popularity of content B)

Here, Popularity ranking of content A is 1 and content B is also 1, that means it shows same
popularity rank for content A and B. It is difficult to find the caching position for same popularity
ranking, to solve this problem we use another factor named Request Trend.

Request Trend (RT) Computation: Request Trends are related to the appearance of the same
content request. Let us find the all continuous content blocks. Therefore, Request Trend =
Individual Trend / Total Trend

Algorithm 1 show the details process of computing Request Trend, where k is a constant for
time duration for the current popular content. Based on k, we increase the caching time for
accommodating more popular contents.

Algorithm 1 Request Trend Calculation
Initialization:
Trend = 1;
TrendsValue = 1;
if Current Request == Last Request then

Trend = Trend + 1;
else

if Trend >1 then
TrendsValue = Trend * k; [k=Constant]
Save to table

end if
end if

According to Algorithm 1, individual trend is computed when we find current request and the
latest request is the same, and then trend value increases for the same content. If the content is
not the same and trend value is greater than 1 than we multiply the trend value to content value k
and then trend value is saved to trend table.
We can take a look on our content request table in 3.1. In this figure, the trend value for A is
computed according to the following procedure. Firstly, we match the current request A with
the last request, since A is the first content than last value is null, so nothing to add here. Now,
current request is B and A is not equal to B then we go to A and we find B is not equal to A. When
matching is found, we increase the trend value 1. But when B is found and trend is greater than 1
then multiply the time duration constant K (where K=1) with trend value and we save the value
3 for A on the table. In this way, we find the individual trend value for all contents and Table 3.1
shows the trend calculation results.

3.2. UPDATE POPULARITY 21

For Example, content A and content B on the content request table are shown in 3.1. Here, we
find that A is found 3 times continuously, B is found 2 times, then again A is found 4 times and
so on. All results are shown on Table called Trend Value Table.

Table 3.1 shows the trend calculation results.

Table 3.1: Trend Value

Content Trend
A 3
B 2
A 4
B 2
B 2
B 3

After finding the trend value for all contents, we calculate the content trend by using following
formula:

Content Trend = Individual Trend / Total Trend

For content A,
Trend = (3+4) / (7 + 9) = 7 / 16 = 0.44
For content B,
Trend = (2 +2+2+3) / (7 + 9) = 9 / 16 = 0.56

3.2 Update Popularity

In this section, we show the how to update popularity.
Updated Popularity = (Initial Popularity + Request Trend) /2
For content A, popularity = (0.5 + 0.44) / 2= 0.47 (Popularity ranking 2)
For content B, popularity = (0.5 + 0.56) / 2= 0.53 (Popularity ranking 1)

We find that update popularity of content A is 0.47 and B is 0.56, if we rank the popularity then
we find that popularity rank is 1 for content A and rank 2 for content B based on the highest
update popularity. This popularity ranking solve the same content popularity caching problem
and provide unique content cache on each router.

Content A and content B are cached on Router R2 and Router R1 correspondingly based on the
proposed method shown in Figure 3.2.

We now, provide the next step in Algorithm 2.

After finding the updated popularity of the content, we add the update popularity on the edge

router node and set the hop value zero for this router. The other routers who have received

3.3. NODE SELECTION 22

Figure 3.2: Update popularity.

Algorithm 2 Interest Request Method
for Each (received interest packet) do

Calculate content popularity
if (Data matching is found in CS) then

It sends (data)
else

Hop count is increased.
if (Find matching content name in PIT) then

Add interface of previous router to PIT
else

if (Find match content name in FIB) then
Forward interest request according to FIB

else
Drop the interest request

end if
end if

end if
end for

the interest packet will just forward the interest packet after adding 1 to route hops count. The
operation of the Interest request phase and the related pseudo-code is shown in algorithm 2.

3.3 Node Selection

Basically, a user requests a content, edge router calculates the content popularity. After finding
the updated content popularity, the routers on the forwarding path count the number of hops
from the user. From content popularity and hop count, router calculates the caching position.
The routers which are closer to the users will be assigned the highest priority, and the router that
is farther from the user will get less priority. The popularity level of the routers is available only
during a certain request and reply period on the path. Since, we work only on-path routing, other
routers in the network will not be assigned router level when they are not on the route.

Algorithm 3 shows the details process of node selection method for content caching.

3.3. NODE SELECTION 23

Algorithm 3 Find Caching Router Position
while Get Popularity position do

if Popularity Rank is less than or equal to hop then
return Popularity Rank - 1

else
return -1

end if
end while

We can explain with an example.

Hop count: R1 = 0, R2 = 1, R3 = 2, R4 = 3
and from Table 3.4 we find the popularity rank of the contents.

For example, we compute the cache position of content A.
Scenario 1:

Content A is found on R2; then we check the condition, (popularity rank <= hop) ; (2 <= 1).
Condition false, content A is already cached on R2 and there is no need to cache it again.
Scenario 2:

Content A is found on R4; then we check the condition, popularity rank <= hop ; 2 <= 3;
condition true; so, cache node position for content A is (2-1) = 1 Therefore, the caching node is
R2.

Accordingly;
Cache node Position for content B is (1-1)= 0
Cache node Position for content C is (3-1)= 2
Cache node Position for content D is (4-1)= 3
We now explain. Algorithm 4 shows the details data packet forwarding process.

Algorithm 4 Data Packet Reply Algorithm
for Each (received data packet) do

if (Content match found on PIT) then
if (Router position is equal to caching router position) then

Router position found
else

Forward data packet according to the PIT
end if

else
Drop the data packet

end if
end for

The caching router positions are shown in Figure 3.3

3.4. OUR SOLUTION FRAMEWORK 24

Figure 3.3: Cache Router.

3.4 Our Solution Framework

Our proposed caching strategy which progressively caches the content with the high popularity in
the proximity router nodes closer to the users in order to improve the cache hit rate and to reduce
the average request time. This strategy aims to cache the content according to its popularity level
on the corresponding node. Request counts of contents with high popularity will continue to
increase, and the popular content will gradually move to the nodes nearest to the users.

3.4.1 Data Tables of Nodes

We use four table structures: CS, FIB, Pending Interest Table (PIT) and a new table named
Consumer Request Table (CRT) which is maintained by the first level router [YLLL17].
Consumer Request Table (CRT): In the first hop, the router which is next to the user, the content
Name and User Request Count is stored into CRT for calculating content popularity and cache
router node.

We now provide the steps as follows.

• Step 1: The consumers send interest packet to seek the content they needed.

• Step 2: After receiving the interest packet, the first router looks for the number of requests
in the CRT table.
Then it calculates the content popularity by calculating the request rate and request trend
according to the Section 3.1 and Section 3.2.
Then, cache router node according to Section 3.3.
Then, it adds the content popularity and cache router node in interest packet.

• Step 3: The other routers which receive the interest packet will forward the interest packet
after adding 1 to route hops count.

• Step 4: The operation of the interest request phase and the related pseudo-code is shown
in Algorithm 1.

3.4. OUR SOLUTION FRAMEWORK 25

• Step 5: When providers which own the content that consumers need receive the interest
packet, these will calculate the cache location according to Algorithm 3.

• Step 6: The routers receive the data packet and checked popularity value to cache the data
packet or not. The operation of the data reply and the related pseudo-code are shown in
Algorithm 4.

For example, we request 200 contents and content flow appears on 3.4

Figure 3.4: User request for contents.

Request Rate(RR) Calculation:

Number of User Requests for A = 40
Number of User Requests for B = 90
Number of User Requests for C = 45
Number of User Requests for D = 25
Total number of requests =200
Therefore, Request Rate = Individual Request / Total Request
For content A, Initial Popularity be = 40/200 = 0.2
For content B, Initial Popularity be = 90/200 = 0.45
For content C, Initial Popularity be = 45/200 = 0.23
For content D, Initial Popularity be = 25/200 = 0.13
Request Trend(RT) Computation

Content Trend = Individual Trend / Total Trend
For content A, Trend = (23+14) / 95) = 37 / 95 = 0.39
For content B, Trend (10+7+2) / 95= 19 / 95 = 0.2
For content C, Trend = (6+13) / 95 = 19 / 95 = 0.2
For content D, Trend (8+12) / 95 = 20 / 95 = 0.21
Updating Popularity

Updated Popularity = (Popularity + Trend) /2
Table 3.4 shows the updated popularity of a content.
Figure 3.6 shows the expected content caching approach.

3.4. OUR SOLUTION FRAMEWORK 26

Figure 3.5: Initial content caching.

Table 3.2: Updated Trend Value

Content Trend
A 23
B 10
C 6
B 7
D 8
B 2
A 14
C 13
D 12

Table 3.3: Initial Content popularity.

Content Popularity
A 3
B 1
C 2
D 4

Table 3.4: Updated Content popularity.

Content Updated Popularity Popularity Rank
A (0.2+0.39)/2=0.299 2
B (0.45+0.2)/2=0.325 1
C (0.23+0.2)/2=0.2 3
D (0.13+0.21)=0.17 4

3.4. OUR SOLUTION FRAMEWORK 27

Table 3.5: Cache Router Position.

Content Router Position Router
A (2-1)=1 R2
B (1-1)=0 R1
C (3-1)=2 R3
D (4-1)=3 R4

Figure 3.6: Content Caching Based on Popularity Ranking.

After we find the content popularity, we calculate the router position and cache the content
accordingly. Table 3.5 shows the router position and caching node.
For example, since B is the last request, we find the cache position of B.
Hop Number:
R1→ 0, R2→ 1, R3→ 2; R4→ 3
For example, we find content B on R2. Therefore, we check the condition popularity rank ≤
hop; 1 ≤ 1
Condition true.
Therefore, cache node position for content B is (1-1) = 0
Therefore, the caching router node is R1
Accordingly, we find the router position of content A, C, and D.

In this chapter we shows our details proposed method and clarified example of LBCC method.

Chapter 4

Results and Analysis

In this chapter, we provide the results received from simulation study. We use ndnSIM simulator
to evaluate the performance of our proposed method Load Balanced Collaborative Caching

(LBCC) strategy.

4.1 Experimental Setup

This section represents the setup in which we have implemented our algorithm and run
simulations. We compare our method to some of the existing caching strategies Content

Popularity and Router Level (CPRL) caching method and widely used Least Recently Used

(LRU) caching algorithm.
ndnSIM is based on NS-3 simulator that supports NDN communication model. ndnSIM is
specially extensible to internal structure for NDN implementation.

NDN simulatorś architecture is shown in Figure 4.1 [MAZ17], ndnSIM has been implemented
as a network-layer protocol model in NS-3, which can run on top of any available link-layer
protocol model. The simulator is implemented in a modular fashion, separate C++ classes are
used to model behavior of each network-layer entity in NDN like Pending Interest Table (PIT),
Forwarding Information Base (FIB), Content Store (CS), network and application interfaces,
Interest forwarding strategies, etc [MAIZ15, SNRJE18].

Next section describes different parameters used in simulations. Our algorithm can be applied to
any topology. Here, we use default tree topology of ndnSIM (shown in Figure 4.2.)

28

4.1. EXPERIMENTAL SETUP 29

Figure 4.1: NDN Simulation Components [MAZ17]

Figure 4.2: A sample NDN topology.

Content Store Module and Customization:

Figure 4.3 shows the customization of NDN parameters. Our customized policy LBCC is shown
in Figure 4.4, where we show the topology and policy settings. Here, we define caching policy as
well as define the cache size. To show the impact of cache size we change the value of this field.

4.1. EXPERIMENTAL SETUP 30

Figure 4.3: CS Module in NDN

Figure 4.4: Cache Policy

Figure 4.5 shows the consumer declaration in our simulation model.

Figure 4.5: Consumers

Figure 4.6 shows the service provider declaration.

Figure 4.6: Providers

In figure Figure 4.7 we define interest rate as 200 per second.

Figure 4.7: Consumer Installation

4.1. EXPERIMENTAL SETUP 31

4.1.1 Simulation Parameters

Now, we provide the simulation parameters used for our simulations in Table 4.1.

Table 4.1: Simulation Parameters

Parameter Value
Packet size 1024 byte
Number of nodes 62
Number of contents 1000
Request Rate 200 requests/sec
Producers 6
Consumers 32
Routers 24

The request arrival rate at each content requester follows Poisson arrival process. The simulation
time is set to 1000s. Simulations go through a warm-up phase where the content popularity,
trends calculation are completed and the information is distributed.

4.1.2 Metrics

We now describe the performance metrics as follows. Three metrics are used to measure the
performance of our algorithms. These are Cache Hit Ratio, Latency, and Interest Satisfaction

Ratio. We give the details of the metrics as follows.

• Cache hit ratio measures the portion of content requests served by a cache. And a higher
cache hit ratio means that the contents have been found which ultimately reduces the
servers load.

• Interest satisfaction ratio implies the number of interests satisfied. Higher interest
satisfaction ratio indicates the better performance of NDN.

• Latency or response time reflects the delay in getting content, which is the intuitive metric
to compute the network performance.

Now, we check the impact on cache hit ratio of by varying the following attributes:

• Cache size

• Number of interests

• Experiment run time

4.1. EXPERIMENTAL SETUP 32

We simulate by varying the number of interests and the data load. Besides, we also looked
into the impact of number of nodes, interest satisfaction rate and time delay. In the following
subsections, we have added the simulation results in graphical form. The details and the raw
data for simulation are reported in Appendix. We check the impact on interest satisfaction ratio

by changing the following parameters.

• Number of interests

We check the impact on the average response time by varying the following attribute:

• Cache size

4.1.3 Impact of CS size on Cache Hit Ratio

To measure cache hit ratio we maintain the number of interests to 200 per second, packet size
1024 byte. We vary cache size in each iteration to collect the trace data from 100 kbit, 200 kbit,
300 kbit, 400 kbit, 500 kbit and 600 kbit of CS. When cache size is increased from 100 kbits, the
cache hit ratio is increased by 31.75% and simultaneously after increasing CS size 600 kbits,
cache hit ratio increases to 50%. If cache size gets better, hit ratio gets better because more
contents can be cached and found easily. Figure 4.8 shows the graphical representation of cache
hit ratio vs. CS size.

Compared with the performance of our proposed method, we select two other caching strategies
CPRL and LRU. When the content store (CS) size is 100 kbit, 200 kbit, 300 kbit, the cache hit
rate of LBCC looks almost same as CPRL strategy. But when CS size is increased from 400 kbits
to 600 kbits, cache hit ratio is increased compared to CPRL and LRU. If CS increases, cache
hit ratio increases because more contents can be cached. The LRU policy actively caches the
content block without any selection, which may causes cache redundancy through the network,
thereby decreasing the cache hit ratio of the network.
The cache hit ratio in LBCC is directly proportional to Request Trend, encouraging that the
competitive advantage of LBCC comes from the areas where users share popular content
through caching networks. We use request trend algorithm to calculate content popularity in our
LBCC strategy, but in CPRL strategy author use zipf distribution to calculate content popularity
technique. In LBCC, we cache content by selecting the important node by using node selection
algorithm, but in CPRL, popularity based caching is used.

4.1.4 Impact of the Number of Nodes on Cache Hit Ratio

We keep the cache Size 1000 Kbit, packet size 1024 byte and we set the number of router nodes
to 10,20,30,40, and 50. When the node number is 10 we find the cache hit ratio is 30 % and

4.1. EXPERIMENTAL SETUP 33

Figure 4.8: Cache Hit Ratio vs. Content Store Size

when the node number is increased to 50, the cache hit ratio is also increased to 55%. Figure 4.9
shows the graphical representation of the number of nodes on cache hit ratio.

We compare the performance of our proposed method with other caching strategies CPRL and
LRU also. Cache hit ratio is increased with the increase in the number of nodes. Simulation
shows proposed LBCC is better than CPRL and LRU. We use request trend for content popularity
calculating that provide best cache hit ratio for LBCC than CPRL and LRU.

4.1.5 Impact of Run Time on Cache Hit Ratio

We keep the cache size to 1000 Kbit, number of interests 200 per second and packet size 1024
byte. We record results in 5s,10s,15s 20s, 25s and 30s. Figure 4.10 is a comparison of the cache
hit ratio of the proposed strategy and the CPRL and LRU strategy. When the running time is 5s,
the cache hit rate of proposed strategy is lower than that of CPRL strategy. With the increasing
of time, the content popularity is increasing, and the cache hit ratio of proposed strategy is higher
than that of the existing CPRL and LRU strategy. Simulation results show that our method plays
better role in improving the cache hit ratio of NDN, which satisfies our original intention of
designing this strategy. The results denote that in LBCC, packet delivery is increased (smaller
delay and higher availability). Due to higher hit ratio, more requests are served within network
domains. Thus the traffic in backbone network and the workload of content servers are reduced.

4.1. EXPERIMENTAL SETUP 34

Figure 4.9: Cache Hit Ratio vs. Number of Nodes

Our proposed LBCC uses CRT table on edge nodes to calculate content popularity, so that all
other nodes are free from all other computation costs. That is why run time becomes better than
the run time of CPRL and LRU strategy.

4.1.6 Impact on Interest Satisfaction Ratio

We keep the number of interests per second 200 and packet size 1024 byte. Figure 4.11 shows
better result compared with existing CPRL and LRU strategy.

We compare the performance of LBCC method with CPRL and LRU by varying the number of
interests. The number of interests satisfaction ratio is decreased with the increase of the number
of interests per second which is natural because increased load decreases service quality. NDN
has a mechanism to monitor traffic when multiple users access to the same or different interests,
which may lead the PIT overflow. As a result, the delay is increased. Our proposed method is to
adjust incoming Interest packet in the early phase of occurrence to propose possible response
decisions to realize PIT overflow recovery. We use time duration parameter to calculate the
interest lifetime for enhancing the management operations of PIT. For this reason, PIT is not
overloaded and data packet is found in less delay. Users will frequently need for popular content
rather than unpopular content. Caching popular content on the nodes closer to the users will
greatly reduce the userś request latency. Our time duration parameter cache most popular content

4.1. EXPERIMENTAL SETUP 35

Figure 4.10: Cache Hit Ratio vs Running Time

Figure 4.11: Interest Satisfaction Rate vs No. of Interest Per Second

in large time and less popular content cache for short time.

4.1. EXPERIMENTAL SETUP 36

4.1.7 Impact of Number of Nodes on Interest Satisfaction Rate

We keep the cache Size 1000 Kbit, number of interest request 200/s and packet size 1024 byte.
Figure 4.12 is a comparison of the interest satisfaction rate among the proposed LBCC strategy
and the CPRL and LRU strategy. We set the number of nodes 10, 20, 30, 40, 50 and 60 in our
simulator. The graphical result of simulator shows that with the increase of node number, interest
satisfaction rate is increased accordingly. When the node number is 10 proposed strategy shows
almost same result as existing CPRL strategy. But increasing the node number our proposed
strategy shows better result over the existing two. We use a new factor trend to calculate content
popularity where content is filtered before caching and for this reason, unique content is cached
on each router. Since unique content is cache on all router so we cache large number of content
in our system and finally to find interest satisfaction rate is high on our proposed LBCC method.

Figure 4.12: Interest Satisfaction Rate vs. Number of Nodes

4.1.8 Impact on the Average Response Time (CS 100 to 600)

We keep the cache Size 1000 Kbit, number of interest per second 200 and packet size 1024 byte.
Figure 4.13 is a comparison of the average response time per second of the proposed strategy
and the CPRL and LRU strategy. When the cache size is low, the response time or delay is high.
In our simulation study, when cache size is 100 kbit, the average response time is low in existing
CPRL. With the increase of cache size our proposed LBCC shows better result compared to

4.1. EXPERIMENTAL SETUP 37

CPRL and LRU. The LBCC has a good advantage in terms of average response time and it
reduces the average response time, because of LBCC caches most popular content in routers
who is closer to the users, while LCE strategy caches all contents in closest routers where the
popular contents may be frequently replaced.

Figure 4.13: Average Response Time(s) vs Cache Size

4.1.9 Impact of Cache Size on the Average Response Time (CS 1000 to
6000)

Increasing CS size 1000 to 6000 Kbit and it is found that cache hit ratio is increased compared
to CPRL and LRU. But when the CS size is increased from 1000 to 6000, Avg. response time is
increased compared to CPRL. It should be noted that, our strategy gives better response time for
cache size 1000. It may need extra computation cost for searching the requested contents.

Figure 4.14 and Figure 4.15 shows the impact of large scale data.

4.1. EXPERIMENTAL SETUP 38

Figure 4.14: Cache Hit Ratio vs Cache Size

Figure 4.15: Avg. Response Time vs Cache Size

Chapter 5

Conclusion

In-network caching offers quick response and easy packet access in Name Data Network (NDN).
Since in-network caching operates in a distributed environment, challenges exist in designing
an efcient in-network caching for a large-scale network. In this research, we provide a hybrid
framework content caching strategy. Our strategy jointly considers the content popularity for
caching node selection process for better outcome on caching strategy. To overcome the data
redundancy, we use request trend parameter to calculate content popularity. We select caching
nod e for the requested contents. Our method is distributed and scalable. Our algorithm is
suitable for any network topology.

We summarize our contribution in this research as follows.

• We have studied several content caching strategies, such as probability based, popularity
based and age based strategy for caching content in NDN.

• We have proposed a content caching method based on content popularity technique where
two new parameters have been. Our newly designed parameters are Request Rate and
Request Trend to calculate content popularity in Named Data Network. After calculating
the content popularity we select the router node where to cache the popular content. For
selecting router position, we use hop counting and popularity ranking technique.

• We validate our method providing simulation based results using standard NDN simulator
ndnSIM.

.

5.1 Future Improvement

We will extend this research to handle other network parameters. We will find the behaviour
pattern by using exible update intervals. For that we will use sliding window instead of static

39

5.1. FUTURE IMPROVEMENT 40

update period, which will make caching decision more accurately.
In future, we try to use a dynamic popularity-based caching permission strategy which will
take advantages of dynamic nature of interest packets. It will facilitate in that way that, on-path
routers can obtain the information about the content popularity and use dynamic popularity
threshold to make cache permission plans.
We will explore the impact of cache control flag to tune the redundancy.

References

[AMZ12] Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. ndnsim: Ndn simulator
for ns-3. Department of Computer Science, University of California at Los Angeles,

CA, USA,, NDN-0005, 2012.

[CHPP13] Wei Koong Chai, Diliang He, Ioannis Psaras, and George Pavlou. Cache less
for more in information-centric networks (extended version). In Computer

Communication, volume 36, pages 758–770, 2013.

[DHL+12] Jie Dai, Zhan Hu, Bo Li, Jiangchuan Liu, and Baochun Li. Collaborative
hierarchical caching with dynamic request routing for massive content distribution.
In IEEE INFOCOM, pages 2444–2452. IEEE, 2012.

[JXY14] Jia Ji, Mingwei Xu, and Yuan Yang. Content-hierarchical intra-domain cooperative
caching for information-centric networks. In 8th International Conference on

Future Internet Technology. IEEE, 2014.

[kay] Named data networking. http://named-data.net/. Last Accessed: 2019-
02-02.

[LWL+12] Jun Li, Hao Wu, Bin Liu, et al. Popularity-driven coordinated caching in named
data networking. In 8th ACM/IEEE Symposium. on Architecture, Network and

Communication Systems (ANCS), pages 15–26. IEEE, 2012.

[MAIZ15] Spyridon Mastorakis, Alexander Afanasyev, Moiseenko Ilya, and Lixia Zhang.
ndnsim 2.0: A new version of the ndn simulator for ns-3. In NDN, Technical Report

NDN-0028,, 2015.

[MAZ17] Spyridon Mastorakis, Alexander Afanasyev, and Lixia Zhang. On the evolution of
ndnsim: an open-source simulator for ndn experimentation. In ACM SIGCOMM

Computer Communication Review, Volume 47 Issue 3, pages 19–33. IEEE, July
2017.

[MXW12] Zhongxing Ming, Mingwei Xu, and Dan Wang. Age-based cooperative caching
in information-centric networks,. In IEEE International Conference on Computer

41

http://named-data.net/

REFERENCES 42

Communications (INFOCOM WKSHPS), pages 268–273. INFOCOM WKSHPS,
March 2012.

[PCP12] Ioannis Psaras, Wei Koong Chai, and George Pavlou. Probabilistic in-network
caching for information-centric networks. In ACM Workshop on Information-

Centric Networking (ICN), pages 55–60. ICN, 2012.

[RQ+14] Jing Ren, Wen Qi, et al. Magic: A distributed max-gain in-network caching strategy
in information-centric networks. In IEEE Conference on Computer Communication.

Workshops (INFOCOM WKSHPS), pages 470–475. INFOCOM WKSHPS, April
2014.

[SNRJE18] Hamonangan Situmorang, Syambas Nana Rachmana, Tutun Juhana, and Ian
Edward. A simulation of cache replacement strategy on named data network.
In 12th International Conference on Telecommunication Systems, Services, and

Applications (TSSA). IEEE, 2018.

[VLSY15] Athanasios V Vasilakos, Zhe Li, Gwendal Simon, and Wei You. Information
centric network: Research challenges and opportunities. Journal of Network and

Computer Applications, 52:1–10, 2015.

[WSG+14] Wei Wang, Yi Sun, Yang Guo, et al. Crcache: Exploiting the correlation between
content popularity and network topology information for icn caching. In IEEE

International Conference on Computer Communication (INFOCOM), pages 3191–
3196. IEEE, June 2014.

[WXF13] Yu Wang, Mingwei Xu, and Zhen Feng. Hop-based probabilistic caching for
information-centric networks. In IEEE Global Communication Conference.

(GLOBECOM), pages 2102–2107. IEEE, December 2013.

[WZB13] Jason Min Wang, Jun Zhung, and Brahim Bensaou. Intra-as cooperative caching
for content-centric networks,. In 3rd ACM SIGCOMM Workshop on Information-

Centric Networking (ICN), pages 61–66. ICN, 2013.

[YGS16] Huan Yan, Deyun Gao, and Wei Su. A hierarchical cluster-based caching for named
data networking. In IEEE/CIC International Conference on Communications in

China (ICCC), pages 1–6. IEEE, 2016.

[YL18] Meiju Yu and Ru Li. Dynamic popularity-based caching permission strategy for
named data networking. In 2018 IEEE 22nd International Conference on Computer

Supported Cooperative Work in Design ((CSCWD)). IEEE, 2018.

REFERENCES 43

[YLLL17] Meiju Yu, Ru Li, Yinggi Liu, and Yinggi Li. A caching strategy based on content
popularity and router level for ndn. In 7th IEEE International Conference on

Electronics Information and Emergency Communication (ICEIEC). IEEE, 2017.

[ZWWQ17] Xiaodong Zhu, Jinlin Wang, Lingfang Wang, and Weining Qi. Popularity-based
neighborhood collaborative caching for information-centric networks. In IEEE 36th

International Performance Computing and Communications Conference (IPCCC).
IEEE, 2017.

Appendix A

Raw Data

A.1 Cache Hit Ratio vs Content Store(CS) Size

Table A.1: Cache Hit Ratio vs Content Store(CS) Size(LBCC).

Content Store(CS) Size Cache Hit Ratio
100 0.3175
200 0.37634
300 0.41760
400 0.44536
500 0.48974
600 0.50551

Table A.2: Cache Hit Ratio vs Content Store(CS) Size (CPRL).

Content Store(CS) Size Cache Hit Ratio
100 0.26925
200 0.354838
300 0.395598
400 0.416104
500 0.435967
600 0.467451

44

A.2. CACHE HIT RATIO VS NUMBER OF NODES 45

Table A.3: Cache Hit Ratio vs Content Store(CS) Size (LRU).

Content Store Size Cache Hit Ratio
100 0.24750
200 0.29782
300 0.33533
400 0.39385
500 0.41071
600 0.4494413

A.2 Cache Hit Ratio vs Number of Nodes

Table A.4: Cache Hit Ratio vs Number of Nodes (LBCC).

Number of Nodes Cache Hit Ratio
10 0.3175
20 0.37634
30 0.41760
40 0.472083021
50 0.524027014
60 0.545948923

Table A.5: Cache Hit Ratio vs Number of Nodes(CPRL).

Number of Nodes Cache Hit Ratio
10 0.26925
20 0.354838
30 0.395598
40 0.436909227
50 0.462126063
60 0.500172759

Table A.6: Cache Hit Ratio vs Number of Nodes(LRU).

Number of Nodes Cache Hit Ratio
10 0.24750
20 0.312715679
30 0.33533
40 0.39385
50 0.41071
60 0.4494413

A.3. INTEREST SATISFACTION RATE VS NUMBER OF INTEREST PER SECOND 46

A.3 Interest Satisfaction Rate vs Number of Interest Per
Second

Table A.7: Interest Satisfaction Rate vs No. of Interest Per Second(LBCC)

No. of Interest Per Second Interest Satisfaction Rate
100 50.5508
200 48.9745
300 47.1618
400 44.1860
500 38.4846
600 33.975

Table A.8: Interest Satisfaction Rate vs No. of Interest Per Second(CPRL)

No. of Interest Per Second Interest Satisfaction Rate
100 45.943915
200 44.497248
300 42.2105526
400 37.45936484
500 32.25806452
600 27.5

Table A.9: Interest Satisfaction Rate vs No. of Interest Per Second(LRU)

No. of Interest Per Second Interest Satisfaction Rate
100 39.48422634
200 36.89344672
300 34.78369592
400 32.10802701
500 25.10627657
600 22.075

A.4. CACHE HIT RATIO VS RUNNING TIME 47

A.4 Cache Hit Ratio vs Running Time

Table A.10: Cache Hit Ratio vs Running Time(LBCC)

Running Time Cache Hit Ratio
5 0.414
10 0.485
15 0.5
20 0.508
25 0.521
30 0.523

Table A.11: Cache Hit Ratio vs Running Time(CPRL)

Running Time Cache Hit Ratio
5 0.391
10 0.456
15 0.474
20 0.458
25 0.478
30 0.462

Table A.12: Cache Hit Ratio vs Running Time(LRU)

Running Time Cache Hit Ratio
5 0.444
10 0.408
15 0.429
20 0.405
25 0.441
30 0.426

A.5. INTEREST SATISFACTION RATE VS NUMBER OF NODES 48

A.5 Interest Satisfaction Rate vs Number of Nodes

Table A.13: Interest Satisfaction Rate vs No. of Nodes (LBCC)

No. of Nodes Interest Satisfaction Rate
10 30.33049574
20 39.17958979
30 42.4456114
40 48.60465116
50 53.87846962
60 57.7575

Table A.14: Interest Satisfaction Rate vs No. of Nodes (CPRL)

No. of Nodes Interest Satisfaction Rate
10 27.56634952
20 35.5977989
30 37.98949737
40 44.95123781
50 48.38709677
60 49.5

Table A.15: Interest Satisfaction Rate vs No. of Nodes (LRU)

No. of Nodes Interest Satisfaction Rate
10 23.6905358
20 29.51475738
30 31.30532633
40 35.31882971
50 35.1487872
60 37.5275

A.6. AVERAGE RESPONSE TIME(S) VS CACHE SIZE 49

A.6 Average Response Time(s) vs Cache Size

Table A.16: Average Response Time(s) vs Cache Size (LBCC).

Cache Size Time
100 0.41
200 0.388
300 0.374
400 0.354
500 0.347
600 0.3323

Table A.17: Average Response Time(s) vs Cache Size (CPRL).

Cache Size Time
100 0.4
200 0.39
300 0.3828
400 0.3745
500 0.362
600 0.354

Table A.18: Average Response Time(s) vs Cache Size (LRU).

Cache Size Time
100 0.414
200 0.408
300 0.4
400 0.391
500 0.388
600 0.3812

Appendix B

Codes

B.1 NDN Content Store

1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */

2 /*

3 * Copyright (c) 2014-2018, Regents of the University of California,

4 * Arizona Board of Regents,

5 * Colorado State University,

6 * University Pierre & Marie Curie, Sorbonne University,

7 * Washington University in St. Louis,

8 * Beijing Institute of Technology,

9 * The University of Memphis.

10 *

11 * This file is part of NFD (Named Data Networking Forwarding Daemon).

12 * See AUTHORS.md for complete list of NFD authors and contributors.

13 *

14 * NFD is free software: you can redistribute it and/or modify it under the terms

15 * of the GNU General Public License as published by the Free Software Foundation,

16 * either version 3 of the License, or (at your option) any later version.

17 *

18 * NFD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

19 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

20 * PURPOSE. See the GNU General Public License for more details.

21 *

22 * You should have received a copy of the GNU General Public License along with

23 * NFD, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>.

24 */

50

B.1. NDN CONTENT STORE 51

25

26 #include "cs.hpp"

27 #include "core/algorithm.hpp"

28 #include "core/logger.hpp"

29

30 #include <ndn-cxx/lp/tags.hpp>

31 #include <ndn-cxx/util/concepts.hpp>

32

33 namespace nfd {

34 namespace cs {

35

36 NDN_CXX_ASSERT_FORWARD_ITERATOR(Cs::const_iterator);

37

38 NFD_LOG_INIT("ContentStore");

39

40 unique_ptr<Policy>

41 makeDefaultPolicy()

42 {

43 //const std::string DEFAULT_POLICY = "lfu";

44 //const std::string DEFAULT_POLICY = "cprl";

45 const std::string DEFAULT_POLICY = "lbcc";

46 return Policy::create(DEFAULT_POLICY);

47 }

48

49 Cs::Cs(size_t nMaxPackets)

50 : m_shouldAdmit(true)

51 , m_shouldServe(true)

52 {

53 this->setPolicyImpl(makeDefaultPolicy());

54 m_policy->setLimit(nMaxPackets);

55 }

56

57 void

58 Cs::insert(const Data& data, bool isUnsolicited)

59 {

60 if (!m_shouldAdmit || m_policy->getLimit() == 0) {

61 return;

62 }

B.1. NDN CONTENT STORE 52

63 NFD_LOG_DEBUG("insert " << data.getName());

64

65 // recognize CachePolicy

66 shared_ptr<lp::CachePolicyTag> tag = data.getTag<lp::CachePolicyTag>();

67 if (tag != nullptr) {

68 lp::CachePolicyType policy = tag->get().getPolicy();

69 if (policy == lp::CachePolicyType::NO_CACHE) {

70 return;

71 }

72 }

73

74 iterator it;

75 bool isNewEntry = false;

76 std::tie(it, isNewEntry) = m_table.emplace(data.shared_from_this(), isUnsolicited);

77 EntryImpl& entry = const_cast<EntryImpl&>(*it);

78

79 entry.updateStaleTime();

80

81 if (!isNewEntry) { // existing entry

82 // XXX This doesn’t forbid unsolicited Data from refreshing a solicited entry.

83 if (entry.isUnsolicited() && !isUnsolicited) {

84 entry.unsetUnsolicited();

85 }

86

87 m_policy->afterRefresh(it);

88 }

89 else {

90 m_policy->afterInsert(it);

91 }

92 }

93

94 void

95 Cs::erase(const Name& prefix, size_t limit, const AfterEraseCallback& cb)

96 {

97 BOOST_ASSERT(static_cast<bool>(cb));

98

99 iterator first = m_table.lower_bound(prefix);

100 iterator last = m_table.end();

B.1. NDN CONTENT STORE 53

101 if (prefix.size() > 0) {

102 last = m_table.lower_bound(prefix.getSuccessor());

103 }

104

105 size_t nErased = 0;

106 while (first != last && nErased < limit) {

107 m_policy->beforeErase(first);

108 first = m_table.erase(first);

109 ++nErased;

110 }

111

112 if (cb) {

113 cb(nErased);

114 }

115 }

116

117 void

118 Cs::find(const Interest& interest,

119 const HitCallback& hitCallback,

120 const MissCallback& missCallback) const

121 {

122 BOOST_ASSERT(static_cast<bool>(hitCallback));

123 BOOST_ASSERT(static_cast<bool>(missCallback));

124

125 if (!m_shouldServe || m_policy->getLimit() == 0) {

126 missCallback(interest);

127 return;

128 }

129 const Name& prefix = interest.getName();

130 bool isRightmost = interest.getChildSelector() == 1;

131 NFD_LOG_DEBUG("find " << prefix << (isRightmost ? " R" : " L"));

132

133 iterator first = m_table.lower_bound(prefix);

134 iterator last = m_table.end();

135 if (prefix.size() > 0) {

136 last = m_table.lower_bound(prefix.getSuccessor());

137 }

138

B.1. NDN CONTENT STORE 54

139 iterator match = last;

140 if (isRightmost) {

141 match = this->findRightmost(interest, first, last);

142 }

143 else {

144 match = this->findLeftmost(interest, first, last);

145 }

146

147 if (match == last) {

148 NFD_LOG_DEBUG(" no-match");

149 missCallback(interest);

150 return;

151 }

152 NFD_LOG_DEBUG(" matching " << match->getName());

153 m_policy->beforeUse(match);

154 hitCallback(interest, match->getData());

155 }

156

157 iterator

158 Cs::findLeftmost(const Interest& interest, iterator first, iterator last) const

159 {

160 return std::find_if(first, last, bind(&cs::EntryImpl::canSatisfy, _1, interest));

161 }

162

163 iterator

164 Cs::findRightmost(const Interest& interest, iterator first, iterator last) const

165 {

166 // Each loop visits a sub-namespace under a prefix one component longer than Interest Name.

167 // If there is a match in that sub-namespace, the leftmost match is returned;

168 // otherwise, loop continues.

169

170 size_t interestNameLength = interest.getName().size();

171 for (iterator right = last; right != first;) {

172 iterator prev = std::prev(right);

173

174 // special case: [first,prev] have exact Names

175 if (prev->getName().size() == interestNameLength) {

176 NFD_LOG_TRACE(" find-among-exact " << prev->getName());

B.1. NDN CONTENT STORE 55

177 iterator matchExact = this->findRightmostAmongExact(interest, first, right);

178 return matchExact == right ? last : matchExact;

179 }

180

181 Name prefix = prev->getName().getPrefix(interestNameLength + 1);

182 iterator left = m_table.lower_bound(prefix);

183

184 // normal case: [left,right) are under one-component-longer prefix

185 NFD_LOG_TRACE(" find-under-prefix " << prefix);

186 iterator match = this->findLeftmost(interest, left, right);

187 if (match != right) {

188 return match;

189 }

190 right = left;

191 }

192 return last;

193 }

194

195 iterator

196 Cs::findRightmostAmongExact(const Interest& interest, iterator first, iterator last) const

197 {

198 return find_last_if(first, last, bind(&EntryImpl::canSatisfy, _1, interest));

199 }

200

201 void

202 Cs::dump()

203 {

204 NFD_LOG_DEBUG("dump table");

205 for (const EntryImpl& entry : m_table) {

206 NFD_LOG_TRACE(entry.getFullName());

207 }

208 }

209

210 void

211 Cs::setPolicy(unique_ptr<Policy> policy)

212 {

213 BOOST_ASSERT(policy != nullptr);

214 BOOST_ASSERT(m_policy != nullptr);

B.1. NDN CONTENT STORE 56

215 size_t limit = m_policy->getLimit();

216 this->setPolicyImpl(std::move(policy));

217 m_policy->setLimit(limit);

218 }

219

220 void

221 Cs::setPolicyImpl(unique_ptr<Policy> policy)

222 {

223 NFD_LOG_DEBUG("set-policy " << policy->getName());

224 m_policy = std::move(policy);

225 m_beforeEvictConnection = m_policy->beforeEvict.connect([this] (iterator it) {

226 m_table.erase(it);

227 });

228

229 m_policy->setCs(this);

230 BOOST_ASSERT(m_policy->getCs() == this);

231 }

232

233 void

234 Cs::enableAdmit(bool shouldAdmit)

235 {

236 if (m_shouldAdmit == shouldAdmit) {

237 return;

238 }

239 m_shouldAdmit = shouldAdmit;

240 NFD_LOG_INFO((shouldAdmit ? "Enabling" : "Disabling") << " Data admittance");

241 }

242

243 void

244 Cs::enableServe(bool shouldServe)

245 {

246 if (m_shouldServe == shouldServe) {

247 return;

248 }

249 m_shouldServe = shouldServe;

250 NFD_LOG_INFO((shouldServe ? "Enabling" : "Disabling") << " Data serving");

251 }

252

B.2. NDN CONTENT STORE HEADER FILE 57

253 } // namespace cs

254 } // namespace nfd

B.2 NDN Content Store Header File

1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */

2 /*

3 * Copyright (c) 2014-2018, Regents of the University of California,

4 * Arizona Board of Regents,

5 * Colorado State University,

6 * University Pierre & Marie Curie, Sorbonne University,

7 * Washington University in St. Louis,

8 * Beijing Institute of Technology,

9 * The University of Memphis.

10 *

11 * This file is part of NFD (Named Data Networking Forwarding Daemon).

12 * See AUTHORS.md for complete list of NFD authors and contributors.

13 *

14 * NFD is free software: you can redistribute it and/or modify it under the terms

15 * of the GNU General Public License as published by the Free Software Foundation,

16 * either version 3 of the License, or (at your option) any later version.

17 *

18 * NFD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

19 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

20 * PURPOSE. See the GNU General Public License for more details.

21 *

22 * You should have received a copy of the GNU General Public License along with

23 * NFD, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>.

24 */

25

26 #ifndef NFD_DAEMON_TABLE_CS_HPP

27 #define NFD_DAEMON_TABLE_CS_HPP

28

29 #include "cs-policy.hpp"

30 #include "cs-internal.hpp"

31 #include "cs-entry-impl.hpp"

32 #include <ndn-cxx/util/signal.hpp>

33 #include <boost/iterator/transform_iterator.hpp>

B.2. NDN CONTENT STORE HEADER FILE 58

34

35 namespace nfd {

36 namespace cs {

37

38 /** \brief implements the Content Store

39 *

40 * This Content Store implementation consists of a Table and a replacement policy.

41 *

42 * The Table is a container (\c std::set) sorted by full Names of stored Data packets.

43 * Data packets are wrapped in Entry objects. Each Entry contains the Data packet itself,

44 * and a few additional attributes such as when the Data becomes non-fresh.

45 *

46 * The replacement policy is implemented in a subclass of \c Policy.

47 */

48 class Cs : noncopyable

49 {

50 public:

51 explicit

52 Cs(size_t nMaxPackets = 10);

53

54 /** \brief inserts a Data packet

55 */

56 void

57 insert(const Data& data, bool isUnsolicited = false);

58

59 using AfterEraseCallback = std::function<void(size_t nErased)>;

60

61 /** \brief asynchronously erases entries under \p prefix

62 * \param prefix name prefix of entries

63 * \param limit max number of entries to erase

64 * \param cb callback to receive the actual number of erased entries; it may be empty;

65 * it may be invoked either before or after erase() returns

66 */

67 void

68 erase(const Name& prefix, size_t limit, const AfterEraseCallback& cb);

69

70 using HitCallback = std::function<void(const Interest&, const Data&)>;

71 using MissCallback = std::function<void(const Interest&)>;

B.2. NDN CONTENT STORE HEADER FILE 59

72

73 /** \brief finds the best matching Data packet

74 * \param interest the Interest for lookup

75 * \param hitCallback a callback if a match is found; must not be empty

76 * \param missCallback a callback if there’s no match; must not be empty

77 * \note A lookup invokes either callback exactly once.

78 * The callback may be invoked either before or after find() returns

79 */

80 void

81 find(const Interest& interest,

82 const HitCallback& hitCallback,

83 const MissCallback& missCallback) const;

84

85 /** \brief get number of stored packets

86 */

87 size_t

88 size() const

89 {

90 return m_table.size();

91 }

92

93 public: // configuration

94 /** \brief get capacity (in number of packets)

95 */

96 size_t

97 getLimit() const

98 {

99 return m_policy->getLimit();

100 }

101

102 /** \brief change capacity (in number of packets)

103 */

104 void

105 setLimit(size_t nMaxPackets)

106 {

107 return m_policy->setLimit(nMaxPackets);

108 }

109

B.2. NDN CONTENT STORE HEADER FILE 60

110 /** \brief get replacement policy

111 */

112 Policy*

113 getPolicy() const

114 {

115 return m_policy.get();

116 }

117

118 /** \brief change replacement policy

119 * \pre size() == 0

120 */

121 void

122 setPolicy(unique_ptr<Policy> policy);

123

124 /** \brief get CS_ENABLE_ADMIT flag

125 * \sa https://redmine.named-data.net/projects/nfd/wiki/CsMgmt#Update-config

126 */

127 bool

128 shouldAdmit() const

129 {

130 return m_shouldAdmit;

131 }

132

133 /** \brief set CS_ENABLE_ADMIT flag

134 * \sa https://redmine.named-data.net/projects/nfd/wiki/CsMgmt#Update-config

135 */

136 void

137 enableAdmit(bool shouldAdmit);

138

139 /** \brief get CS_ENABLE_SERVE flag

140 * \sa https://redmine.named-data.net/projects/nfd/wiki/CsMgmt#Update-config

141 */

142 bool

143 shouldServe() const

144 {

145 return m_shouldServe;

146 }

147

B.2. NDN CONTENT STORE HEADER FILE 61

148 /** \brief set CS_ENABLE_SERVE flag

149 * \sa https://redmine.named-data.net/projects/nfd/wiki/CsMgmt#Update-config

150 */

151 void

152 enableServe(bool shouldServe);

153

154 public: // enumeration

155 struct EntryFromEntryImpl

156 {

157 typedef const Entry& result_type;

158

159 const Entry&

160 operator()(const EntryImpl& entry) const

161 {

162 return entry;

163 }

164 };

165

166 /** \brief ContentStore iterator (public API)

167 */

168 typedef boost::transform_iterator<EntryFromEntryImpl, iterator, const Entry&> const_iterator;

169

170 const_iterator

171 begin() const

172 {

173 return boost::make_transform_iterator(m_table.begin(), EntryFromEntryImpl());

174 }

175

176 const_iterator

177 end() const

178 {

179 return boost::make_transform_iterator(m_table.end(), EntryFromEntryImpl());

180 }

181

182 private: // find

183 /** \brief find leftmost match in [first,last)

184 * \return the leftmost match, or last if not found

185 */

B.2. NDN CONTENT STORE HEADER FILE 62

186 iterator

187 findLeftmost(const Interest& interest, iterator left, iterator right) const;

188

189 /** \brief find rightmost match in [first,last)

190 * \return the rightmost match, or last if not found

191 */

192 iterator

193 findRightmost(const Interest& interest, iterator first, iterator last) const;

194

195 /** \brief find rightmost match among entries with exact Names in [first,last)

196 * \return the rightmost match, or last if not found

197 */

198 iterator

199 findRightmostAmongExact(const Interest& interest, iterator first, iterator last) const;

200

201 void

202 setPolicyImpl(unique_ptr<Policy> policy);

203

204 PUBLIC_WITH_TESTS_ELSE_PRIVATE:

205 void

206 dump();

207

208 private:

209 Table m_table;

210 unique_ptr<Policy> m_policy;

211 signal::ScopedConnection m_beforeEvictConnection;

212

213 bool m_shouldAdmit; ///< if false, no Data will be admitted

214 bool m_shouldServe; ///< if false, all lookups will miss

215 };

216

217 } // namespace cs

218

219 using cs::Cs;

220

221 } // namespace nfd

222

223 #endif // NFD_DAEMON_TABLE_CS_HPP

B.3. POPULARITY BASED LBCC CACHING FILE 63

B.3 Popularity Based LBCC Caching File

1 #include "cs-policy-lbcc.hpp"

2 #include "cs.hpp"

3

4 namespace nfd {

5 namespace cs {

6 namespace lbcc {

7

8 const std::string LbccPolicy::POLICY_NAME = "lbcc";

9 NFD_REGISTER_CS_POLICY(LruPolicy);

10

11 struct PopularityTable

12 {

13 Ptr<Item> item;

14 float popularity;

15 };

16

17 struct order_by_popularity

18 {

19 inline bool operator() (const PopularityTable& t1, const PopularityTable& t2)

20 {

21 return (t1.popularity < t2.popularity);

22 }

23 };

24

25

26 LbccPolicy::LbccPolicy()

27 : Policy(POLICY_NAME)

28 {

29 }

30

31 std::list<PopularityTable> _PopularityTable;

32

33 void

34 LbccPolicy::doAfterInsert(iterator i)

35 {

36 this->insertToQueue(i, true);

B.3. POPULARITY BASED LBCC CACHING FILE 64

37 this->evictEntries();

38 }

39

40 void

41 LbccPolicy::doAfterRefresh(iterator i)

42 {

43 this->insertToQueue(i, false);

44 }

45

46 void

47 LbccPolicy::doBeforeErase(iterator i)

48 {

49 m_queue.get<1>().erase(i);

50 }

51

52 void

53 LbccPolicy::doBeforeUse(iterator i)

54 {

55 this->insertToQueue(i, false);

56 }

57

58 void

59 LbccPolicy::evictEntries()

60 {

61 BOOST_ASSERT(this->getCs() != nullptr);

62 while (this->getCs()->size() > this->getLimit()) {

63 BOOST_ASSERT(!m_queue.empty());

64 iterator i = m_queue.front();

65 int position = calculateContentStorePosition(i);

66 if(position == this->getCs().position())

67 {

68 m_queue.pop_front();

69 m_queue.push_back(i);

70 this->emitSignal(beforeEvict, i);

71 }

72 }

73 }

74

B.3. POPULARITY BASED LBCC CACHING FILE 65

75 iterator

76 LbccPolicy::calculateRequestTrend(Queue m_queue, Ptr<Item> item)

77 {

78 float _iTrend= 1.00; // Initial Content Trend,

79 float _k= 1.00; // Constant, that will used to prioritize recent content popularity

80 float _iTrendValue= 1.00; // Initial Content Trend,

81

82 Ptr<Item> lastRequest = null;

83 Ptr<Item> currentRequest = null;

84

85 for(int i=0;i<this->getLimit();i++)

86 {

87 currentRequest = m_queue.DoPeek(i);

88

89 if(currentRequest != item){

90 continue;

91 }

92

93 if(i > 0){

94 lastRequest = m_queue.DoPeek(i - 1);

95 }

96

97 if(currentRequest == lastRequest)

98 {

99 _iTrend = _iTrend + 1;

100 }

101 else

102 {

103 if(_iTrend > 1.00){

104 _iTrendValue +=_iTrend * _k;

105 }

106 }

107 }

108 return _iTrendValue;

109 }

110

111

112 iterator

B.3. POPULARITY BASED LBCC CACHING FILE 66

113 LbccPolicy::calculateTotalTrend(Queue m_queue)

114 {

115 float _iTrend= 1.00; // Initial Content Trend,

116 float _k= 1.00; // Constant, that will used to prioritize recent content popularity

117 float _iTrendValue= 1.00; // Initial Content Trend,

118

119 Ptr<Item> lastRequest = null;

120 Ptr<Item> currentRequest = null;

121

122 for(int i=0;i<this->getLimit();i++)

123 {

124 currentRequest = m_queue.DoPeek(i);

125 if(i > 0){

126 lastRequest = m_queue.DoPeek(i - 1);

127 }

128

129 if(currentRequest == lastRequest)

130 {

131 _iTrend = _iTrend + 1;

132 }

133 else

134 {

135 if(_iTrend > 1.00){

136 _iTrendValue +=_iTrend * _k;

137 }

138 }

139 }

140 return _iTrendValue;

141 }

142

143

144 iterator

145 LbccPolicy::calculateRequestRate(Queue m_queue,Ptr<Item> item)

146 {

147 float _iRequestrate = 0.0;

148 for(int i=0;i<this->getLimit();i++)

149 {

150 currentRequest = m_queue.DoPeek(i);

B.3. POPULARITY BASED LBCC CACHING FILE 67

151 if(currentRequest == item){

152 _iRequestrate = _iRequestrate + 1;

153 }

154 }

155 return _iRequestrate;

156 }

157

158 iterator

159 LbccPolicy::calculatePopularity(Queue m_queue, Ptr<Item> item)

160 {

161 float _popularity = 0.0;

162 float _requestRate = calculateRequestRate(m_queue,item) / m_queue.size();

163 float _requestTrend = calculateRequestTrend(m_queue,item) / calculateTotalTrend(m_queue);

164 _popularity = (_requestRate + _requestTrend)/2;

165 return _popularity;

166 }

167

168 iterator

169 LbccPolicy::calculateContentStorePosition(Ptr<Item> item){

170

171 std::sort(_PopularityTable.begin(), _PopularityTable.end(), order_by_popularity());

172 PopularityTable _popularityItem = std::find(_PopularityTable.begin(), _PopularityTable.end(), item);

173 int index = std::distance(_PopularityTable.begin(), _popularityItem);

174 return index -1;

175 }

176

177 void

178 LbccPolicy::insertToQueue(iterator i, bool isNewEntry)

179 {

180 Queue::iterator it;

181 bool isNew = false;

182

183 // push_back only if iterator i does not exist

184 std::tie(it, isNew) = m_queue.push_back(i);

185

186 // check element exist or not in _PopularityTable

187 PopularityTable pTable = NULL;

188

B.4. POPULARITY BASED LBCC CACHING HEADER FILE 68

189 float _popularity = calculatePopularity(it,i);

190 pTable->popularity = _popularity;

191 pTable->item = i;

192 // check element exist or not in _PopularityTable

193 bool found = (std::find(_PopularityTable.begin(), _PopularityTable.end(), i) != _PopularityTable.end());

194 if(!found){

195 _PopularityTable.insert(pTable);

196 }else{

197 _PopularityTable.erase(std::find(_PopularityTable.begin(), _PopularityTable.end(), i));

198 _PopularityTable.insert(pTable);

199 }

200 BOOST_ASSERT(isNew == isNewEntry);

201 if (!isNewEntry) {

202 m_queue.relocate(m_queue.end(), it);

203 }

204 }

205

206 } // namespace lbcc

207 } // namespace cs

208 } // namespace nfd

B.4 Popularity Based LBCC Caching Header File

1 #ifndef NFD_DAEMON_TABLE_CS_POLICY_LBCC_HPP

2 #define NFD_DAEMON_TABLE_CS_POLICY_LBCC_HPP

3

4 #include "cs-policy.hpp"

5

6 #include <boost/multi_index_container.hpp>

7 #include <boost/multi_index/sequenced_index.hpp>

8 #include <boost/multi_index/hashed_index.hpp>

9

10 namespace nfd {

11 namespace cs {

12 namespace lbcc {

13

14 struct EntryItComparator

15 {

B.4. POPULARITY BASED LBCC CACHING HEADER FILE 69

16 bool

17 operator()(const iterator& a, const iterator& b) const

18 {

19 return *a < *b;

20 }

21 };

22

23 typedef boost::multi_index_container<

24 iterator,

25 boost::multi_index::indexed_by<

26 boost::multi_index::sequenced<>,

27 boost::multi_index::ordered_unique<

28 boost::multi_index::identity<iterator>, EntryItComparator

29 >

30 >

31 > Queue;

32

33 /** \brief Lbcc cs replacement policy

34 *

35 * In this policy we will calculate the request rate

36 * (RR : number of individual request devided by total number of request) of the content. As

37 * well as calculate Request Trend (RT: Block of same request) to identify the popularity of the content.

38 */

39 class LbccPolicy : public Policy

40 {

41 public:

42 LbccPolicy();

43

44 public:

45 static const std::string POLICY_NAME;

46

47 private:

48 virtual void

49 doAfterInsert(iterator i) override;

50

51 virtual void

52 doAfterRefresh(iterator i) override;

53

B.4. POPULARITY BASED LBCC CACHING HEADER FILE 70

54 virtual void

55 doBeforeErase(iterator i) override;

56

57 virtual void

58 doBeforeUse(iterator i) override;

59

60 virtual void

61 evictEntries() override;

62

63 private:

64 /** \brief moves an entry to the end of queue

65 */

66 void

67 insertToQueue(iterator i, bool isNewEntry);

68

69 iterator

70 calculateRequestTrend(Queue m_queue, Ptr<Item> item);

71

72 iterator

73 calculateTotalTrend(Queue m_queue);

74

75 iterator

76 calculateRequestRate(Queue m_queue,Ptr<Item> item);

77

78 iterator

79 calculatePopularity(Queue m_queue, Ptr<Item> item);

80

81 iterator

82 calculateContentStorePosition(Ptr<Item> item);

83

84

85 private:

86 Queue m_queue;

87 };

88

89 } // namespace lru

90

91 using lbcc::LbccPolicy;

B.5. LBCC SIMULATION FILE 71

92

93 } // namespace cs

94 } // namespace nfd

95

96 #endif // NFD_DAEMON_TABLE_CS_POLICY_LBCC_HPP

B.5 LBCC Simulation File

1 #include "ns3/core-module.h"

2 #include "ns3/network-module.h"

3 #include "ns3/ndnSIM-module.h"

4

5 namespace ns3 {

6 int

7 main(int argc, char* argv[])

8 {

9 CommandLine cmd;

10 cmd.Parse(argc, argv);

11

12 AnnotatedTopologyReader topologyReader("", 1);

13 topologyReader.SetFileName("src/ndnSIM/examples/topologies/topo-tree-62-node.txt");

14 topologyReader.Read();

15

16 // Install NDN stack on all nodes

17 ndn::StackHelper ndnHelper;

18 //ndnHelper.SetOldContentStore("ns3::ndn::cs::Lru", "MaxSize","100");

19 ndnHelper.SetOldContentStore("ns3::ndn::cs::lbcc", "MaxSize","1000"); // LBCC Cache Policy

20 ndnHelper.InstallAll();

21

22 // Choosing forwarding strategy

23 ndn::StrategyChoiceHelper::InstallAll("/prefix", "/localhost/nfd/strategy/best-route");

24

25 // Installing global routing interface on all nodes

26 ndn::GlobalRoutingHelper ndnGlobalRoutingHelper;

27 ndnGlobalRoutingHelper.InstallAll();

28

29 // Getting containers for the consumer/producer

30 Ptr<Node> consumers[32] = {

B.5. LBCC SIMULATION FILE 72

31 Names::Find<Node>("Src1"),

32 Names::Find<Node>("Src2"),

33 Names::Find<Node>("Src3"),

34 Names::Find<Node>("Src4"),

35 Names::Find<Node>("Src5"),

36 Names::Find<Node>("Src6"),

37 Names::Find<Node>("Src7"),

38 Names::Find<Node>("Src8"),

39 Names::Find<Node>("Src9"),

40 Names::Find<Node>("Src10"),

41 Names::Find<Node>("Src11"),

42 Names::Find<Node>("Src12"),

43 Names::Find<Node>("Src13"),

44 Names::Find<Node>("Src14"),

45 Names::Find<Node>("Src15"),

46 Names::Find<Node>("Src16"),

47 Names::Find<Node>("Src17"),

48 Names::Find<Node>("Src18"),

49 Names::Find<Node>("Src19"),

50 Names::Find<Node>("Src20"),

51 Names::Find<Node>("Src21"),

52 Names::Find<Node>("Src22"),

53 Names::Find<Node>("Src23"),

54 Names::Find<Node>("Src24"),

55 Names::Find<Node>("Src25"),

56 Names::Find<Node>("Src26"),

57 Names::Find<Node>("Src27"),

58 Names::Find<Node>("Src28"),

59 Names::Find<Node>("Src29"),

60 Names::Find<Node>("Src30"),

61 Names::Find<Node>("Src31"),

62 Names::Find<Node>("Src32")

63 };

64

65 Ptr<Node> producer1 = Names::Find<Node>("Root1");

66 Ptr<Node> producer2 = Names::Find<Node>("Root2");

67 Ptr<Node> producer3 = Names::Find<Node>("Root3");

68 Ptr<Node> producer4 = Names::Find<Node>("Root4");

B.5. LBCC SIMULATION FILE 73

69 Ptr<Node> producer5 = Names::Find<Node>("Root5");

70 Ptr<Node> producer6 = Names::Find<Node>("Root6");

71

72 for (int i = 0; i < 32; i++) {

73 ndn::AppHelper consumerHelper("ns3::ndn::ConsumerCbr");

74 consumerHelper.SetAttribute("Frequency", StringValue("200")); // 200 interests a second

75

76 // Each consumer will express the same data /root/<seq-no>

77 consumerHelper.SetPrefix("/Root");

78 ApplicationContainer app = consumerHelper.Install(consumers[i]);

79 app.Start(Seconds(0.01 * i));

80 }

81

82 ndn::AppHelper producerHelper("ns3::ndn::Producer");

83 producerHelper.SetAttribute("PayloadSize", StringValue("1024"));

84

85

86 ndnGlobalRoutingHelper.AddOrigins("/Root1", producer1);

87 producerHelper.SetPrefix("/Root1");

88 producerHelper.Install(producer1);

89

90 ndnGlobalRoutingHelper.AddOrigins("/Root2", producer2);

91 producerHelper.SetPrefix("/Root2");

92 producerHelper.Install(producer2);

93

94

95 ndnGlobalRoutingHelper.AddOrigins("/Root3", producer3);

96 producerHelper.SetPrefix("/Root3");

97 producerHelper.Install(producer3);

98

99

100 ndnGlobalRoutingHelper.AddOrigins("/Root4", producer4);

101 producerHelper.SetPrefix("/Root4");

102 producerHelper.Install(producer4);

103

104 ndnGlobalRoutingHelper.AddOrigins("/Root5", producer5);

105 producerHelper.SetPrefix("/Root5");

106 producerHelper.Install(producer5);

B.5. LBCC SIMULATION FILE 74

107

108

109 ndnGlobalRoutingHelper.AddOrigins("/Root6", producer6);

110 producerHelper.SetPrefix("/Root6");

111 producerHelper.Install(producer6);

112

113 // Calculate and install FIBs

114 ndn::GlobalRoutingHelper::CalculateRoutes();

115

116 Simulator::Stop(Seconds(20.0));

117

118 ndn::CsTracer::InstallAll("cs-popularity-based-cache.txt", Seconds(1));

119

120 Simulator::Run();

121 Simulator::Destroy();

122

123 return 0;

124 }

125

126 } // namespace ns3

127

128 int

129 main(int argc, char* argv[])

130 {

131 return ns3::main(argc, argv);

132 }

Generated using Postgraduate Thesis LATEX Template, Version 0.97. Department of
Computer Science and Engineering, Bangladesh University of Engineering and

Technology, Dhaka, Bangladesh.

This thesis was generated on Monday 3rd February, 2020 at 4:32am.

75

	Candidate's Declaration
	Board of Examiners
	Acknowledgement
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Introduction
	Named Data Networking (NDN) Architecture
	How NDN Works
	Interest Forwarding Process
	Caching in NDN
	In-Network Caching
	Benefits of In-Network Caching

	Challenges in In-Network Caching
	Motivation
	Our Contributions
	Organization of the Thesis

	Related Work
	Probability Based Caching Strategy
	Popularity Based Caching Strategy
	Age Based Caching Strategy
	Collaborative Caching Strategy
	Centrality Based In-Network Caching Strategy
	 MAx-Gain In-Network Caching Strategy

	Problem Domain
	Preliminaries
	Update Popularity
	Node Selection
	Our Solution Framework
	Data Tables of Nodes

	Results and Analysis
	Experimental Setup
	Simulation Parameters
	Metrics
	Impact of CS size on Cache Hit Ratio
	Impact of the Number of Nodes on Cache Hit Ratio
	Impact of Run Time on Cache Hit Ratio
	Impact on Interest Satisfaction Ratio
	Impact of Number of Nodes on Interest Satisfaction Rate
	Impact on the Average Response Time (CS 100 to 600)
	Impact of Cache Size on the Average Response Time (CS 1000 to 6000)

	Conclusion
	Future Improvement

	References
	Raw Data
	Cache Hit Ratio vs Content Store(CS) Size
	Cache Hit Ratio vs Number of Nodes
	Interest Satisfaction Rate vs Number of Interest Per Second
	Cache Hit Ratio vs Running Time
	Interest Satisfaction Rate vs Number of Nodes
	Average Response Time(s) vs Cache Size

	Codes
	NDN Content Store
	NDN Content Store Header File
	Popularity Based LBCC Caching File
	Popularity Based LBCC Caching Header File
	LBCC Simulation File

