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Abstract

The mathematical models derived from the physical models are the pivot ingre-

dient in science and engineering, especially, in the control theory. Most of the

physical models have a large number of components with critical combinations

and sophisticated designs. These models are infeasible for the computing tools ac-

cording to the time dealing and memory allocation. To find the remedy of current

adversity and attain desired execution results, the models are to be approximated

as structure-preserving Reduced-Order Models (ROM) and machine-executable

designs. Memory allocation and time management are the most eye-catching

factors in the simulations of the large-scale sparse Linear Time-Invariant (LTI)

systems, especially, the descriptor systems. Numerical techniques can be applied

practically to control, stabilize and optimize the physical models.

In this thesis, firstly, the projection-based Rational Krylov Subspace Method

(RKSM) has been proposed to compute the solution of Continuous Algebraic

Riccati Equations (CARE) governed from large sparse index-1 descriptor systems.

Iterative RKSM is not only time saving but also computationally feasible for mem-

ory allocation in finding the solution of the CAREs utilizing the Reduced-Order

Models (ROM). The novelties of RKSM are sparsity preserving techniques and the

implementation of time convenient recursive adaptive shift parameters. Secondly,

the machine-independent Alternating Direction Implicit (ADI) technique based

nested iterative Kleinman-Newton (KN) method has been modified and adjusted

to solve the CAREs governed from large sparse index-1 descriptor systems. Then

compare results achieved by the Kleinman-Newton method with that of using the

RKSM.

The objective has been mainly focused on finding optimal feedback matrix for

Riccati based feedback stabilization for the unstable index-1 descriptor systems

applying the proposed methods. The applicability and adaptability of the pro-

posed methods have been justified through the power system models and their

transient behaviors have been analyzed.

Finally, numerical results have been shown both in tabular and graphical form

to verify the robustness and accuracy of the proposed methods In addition, their

comparative analysis for the target models has been illustrated in detail.
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Chapter 1

Introduction

1.1 Motivation

Nowadays mathematical modeling is a vital part of engineering interest e.g., con-

trol theory, system analysis, optimization, signal processing, large space flexible

structures, game theory and design of physical systems. Multi-tasking systems

having various components arise in many fields of engineering applications, such

as microelectronics, micro-electro-mechanical systems, aerospace, computer con-

trol of industrial processes, chemical processes, communication systems, etc. are

composed of branches of sub-systems and they are functioned by very large math-

ematical models utilizing the interrelated inner mathematical system of very large

dimensions.

The Continuous Algebraic Riccati Equation (CARE) is strongly connected with

the Linear Time-Invariant (LTI) system. CAREs appear in many areas of science

and engineering, and in particular in control problems. The quadratic cost func-

tional is an important part of modern mathematical models. The solution matrix

of CARE used to optimize the Linear Quadratic Regulator (LQR) problem, which

consists of an optimal control function that associated with the continuous LTI

system, at which quadratic cost functional attains its infimum. Optimization of

LQR in association with descriptor systems (unstable in particular) arise from

engineering applications, there is still lacking efficient computational solvers or

analytical tools.



Chapter 1: Introduction

In the conversion of the physical models into mathematical models, often their

dimensions become extremely large and because of those models, analysis of the

systems goes through the unsuitable approaches. The size of the matrices in

CAREs is the most challenging aspect to store in computational tools. Because

of large-scale matrix dimensions, simulation techniques require expensive time

dealings and invade by the poor rate of convergence. Also, the accuracy of the

solution reduces over time for very large and sophisticated continuous LTI systems.

There are some Newton-based methods that exist, which are very complicated,

time-consuming and preconditioned structures are required.

Though in the modern era of technology, faster and robust procedures for simula-

tion, optimization and other engineering designs for systems large dimensions are

available, computational complexity and wide range of memory requirements keep

the techniques infeasible. Thus, the real-world models need to be replaced by some

sort of lower-dimensional models. This alternative process of converting a large-

scale model into a small-scale model is called Model Order Reduction (MOR),

which has a wide variety of applications in engineering systems. The techniques

of MOR are to approximate a large-dimensional model by a lower-dimensional

Reduced-Order Model (ROM), while the system pattern is kept invariant to the

largest possible extent. The reduction process does not require knowledge about

the nature of the underlying systems and system properties such as stability and

passivity are preserved. The algorithm must be robust and the global error bound,

measured by some suitable norm must be minimized to a certain margin.

1.2 Literature Review

Depending on the characteristics of mathematical models, a number of techniques,

for instance, Pade Approximation, Modal Truncation, Rational Interpolation, Op-

timal Hankel Norm Approximation, Singular Perturbation Approximation, Mo-

ment Matching Approximation and Balanced Truncation (BT) are commonly used

as MOR approaches. Among those techniques, the theoretic BT method is one

of the well-accepted methods for large sparse LTI systems [1, 2, 3, 4]. One of the

great advantages of this projection-based BT method is that it does preserve the

stability of the original systems. Most of the MOR techniques depend on the so-

lution of the Continuous Algebraic Lyapunov Equation (CALE) as the projection

generating tool. Moreover, it has a global error bound by choosing the prior error

Page 2 of 93
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tolerances. So, in the BT method, one can adapt the dimension of the ROMs. The

key idea of this method is to delete the unnecessary states, which can be detected

if the system is in balanced coordinates.

The implementation of Krylov subspace-based projection methods raising in the

modern technologies for simulating the large-scale mathematical models arising

from the complicated and automated physical systems [5]. The crucial role of

these approaches to computing ROMs from the original models such that the

pattern of the systems remains invariant [6]. The ROM is feasible in time-dealings

and suitable for storing in the computing tools. Rational Krylov Subspace Method

(RKSM) is one of the updated and efficient processes for solving matrix equations

[7]. Iterative Rational Krylov Algorithm (IRKA) is an interpolatory projection

method to find ROMs with invariant features such as stability, definiteness and

transient behaviors as the original models and enhance the rate of computational

convergence [8, 9].

Over the last decades, several iterative methods were proposed to solve large scale

Riccati equation, e.g., earlier, the LQR approach applied that described an efficient

way to find the optimal control for power systems. A brief discussion of the large-

scale power system models subject to LTI systems have discussed and reduced-

order transfer matrices from RLC network models of electric power grids subjecting

the descriptor systems were analyzed by Freitas et al. [10, 11]. A number of MOR

approaches are illustrated by Li in detail to achieve the ROMs for the large-scale

LTI systems [12]. To solve large-scale CARE, Jbilou has applied the block Krylov

subspace method and the work has been extended by block Arnoldi algorithm by

Heyouni et al. [13, 14].

Fundamental discussion on the eligibility of RKSM for the large-scale LTI systems

has provided by Simoncini and the application of adaptive RKSM to solve large-

scale CARE for finding optimal control of the LTI systems narrated by Druskin

et al. [15, 16]. Also, Simoncini introduced two newer approaches of RKSM by

means of Newton iterates [17]. Analysis of the basic properties of RKSM for solv-

ing large-scale CAREs subject to LTI systems investigated by Simoncini, where

the author briefed a new concept of shift parameters [18]. Very detailed discussion

on the numerical solution of large-scale Riccati equations and LQR based optimal

control problems are given in Benner et al., where the author narrated the Newton

methods and their extensions by means of Alternating Direction Implicit (ADI)

method, the shift selection process, stopping criteria and comparison between the

Page 3 of 93



Chapter 1: Introduction

ADI and RKSM techniques with supporting proofs [19]. Hylla discussed exten-

sions of the inexact Kleinman-Newton method and their convergences for solving

CARE with analogous theorems in [20]. MOR techniques of descriptor systems

by interpolatory projection methods were introduced by Gugercin et al. [21]. The

Matrix Sign function method for solving CAREs derived from descriptor systems

was introduced by Huang et al., which is helpful to find the LQR based optimal

controls [22].

In the present decades, the works on optimal control based on descriptor systems

flourished dramatically, for instance, Monir introduced a novel idea about the

MOR technique for descriptor systems of higher indices using projected Cholesky

factorization [23]. A balancing based MOR approach applying RKSM for the

index-1 descriptor system was discussed by Monir et al., and the work has been

extended for second-order LTI systems by projecting onto the dominant Eigen-

space by Hasan et al. [24, 25]. The ROM based feedback stabilization of the large-

scale sparse power system models based on the descriptor systems was introduced

by Hasan et al. [26]. Analysis of the shift parameters and their applicability were

discussed by Benner et al., the reformulation of in accordance with different types

of shift parameters have been done with detailed numerical evidence [27].

Riccati based boundary feedback stabilization of incompressible Navier-Stokes flow

was introduced by Bansch et al., where a detailed analysis of mathematical model

formulation, numerical conversion, ROM construction and the impact of non-

dimensional parameters and the shift parameters were narrated [28]. The numer-

ical comparison of solvers for large-scale CARE has been shown by Benner et al.,

where several low-rank approximations of large-scale LTI systems were illustrated

with numerical evidence for justifying the robustness, rate of convergence, mem-

ory allocation and pattern preservation of the ROMs in comparison to the original

models [29]. Very recent work on the solution of large-scale CARE by means of pro-

jected Newton-Kleinman method has been published by Palitta, where extended

forms of RKSM were introduced and extensions of Newton-Kleinman method uti-

lizing extended RKSM were established for generalized CARE subject to LTI

systems arise from engineering applications [30].

Page 4 of 93
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1.3 Objective

To overcome the difficulties in the conventional computations and achieve feasible

outputs, projection-based techniques implementing the low-rank approximation

approaches for the solution of large-scale CAREs are introduced. In this thesis,

attention is mainly focused on finding Riccati based feedback stabilization for the

systems subject to descriptor systems applying the projection-based RKSM. The

RKSM approach is proposed to find ROMs for solving CAREs associated with very

large sparse descriptor systems, using iterative techniques utilizing adaptive shifts.

The computations allow the sparsity pattern and can be applied within closed-loop

simulations. Also, a simplified version of the nested iterative Kleinman-Newton

(KN) method combined with the Low-Rank Cholesky-Factor ADI (LRCF-ADI)

technique is proposed to justify the effectiveness of RKSM technique.

By implementing the proposed techniques the low-rank approximation approaches

for large-scale continuous LTI systems are achieved, where the unstable index-1

descriptor systems are stabilized through the Riccati based feedback stabilization

process. The optimal feedback matrices are gained to stabilize the target systems.

A detailed analysis of the solution of CAREs with the proposed techniques is

assessed by numerical computation using the MATLAB simulations. Moreover,

the efficiency of the proposed algorithm is investigated by applying them to the

unstable descriptor systems governed by power system models.

1.4 Outlines of the Thesis

This thesis consists of 6 chapters including this introductory Chapter-1. In Chapter-

2, the derivation and fundamental concepts of the systems and control theory are

discussed. The basic ideas of linear algebra, matrix equations, and instabilities

are thoroughly narrated. Some existing methods for solving matrix equations and

real-world models are provided in brief. The terms and concepts of this chapter

are used throughout the rest of the chapters.

Chapter-3 and Chapter-4 consist of the principal work of the thesis. In Chapter-3,

RKSM techniques for solving CARE derived from the standard and generalized

system are discussed. The conversion of the index-1 descriptor system into the
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structured generalized system is described. RKSM approaches for structured gen-

eralized CARE including adjustment adaptive shift parameters, convergence cri-

teria, treatment for the unstable systems and sparsity pattern of the techniques

are investigated in this chapter. Chapter-4 consists of the derivation of LRCF-

ADI based Kleinman-Newton approaches. LRCF-ADI algorithms for generalized

CALE and its modified form including real version is explained. The conver-

gence criteria and corresponding recurrence relations are derived for the general-

ized CALE. The conversion of CARE to CALE and settlement of the LRCF-ADI

algorithms in the Kleinman-Newton approaches in the sparse form are described.

The numerical computation of the optimal feedback matrices for the models de-

rived from unstable index-1 descriptor systems and corresponding Riccati based

feedback stabilization techniques are analyzed in the Chapter-5. Both RKSM and

KN-LRCF-ADI methods are applied and the effectiveness of them is justified by

means of stabilization of eigenvalues and step-responses. The comparative analysis

of the proposed methods is provided in this chapter with graphical explanations.

Finally, Chapter-6 contains the conclusions of the thesis. The possibilities for the

improvements and future researches are highlighted in brief.
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Chapter 2

Preliminaries

2.1 Systems and Control Theory

In control theory, the state-space representation is a mathematical model gov-

erned by a physical system as a set of input, output and state variables related

by first-order differential equations or difference equations. State variables are

regularized by time and the values of input variables, whereas output variables

can be generated by the state variables. If the dynamical system is linear, time-

invariant, and finite-dimensional, then the differential and algebraic equations can

be formed as matrices [31]. The state-space method is distinguished by significant

algebraization of general system theory, which makes it possible to use Kronecker

vector-matrix structures. The capacity of these structures can be efficiently ap-

plied to research systems with modulation or without it. The details about the

state-space systems and control problems are provided in [32].

2.1.1 State-Space Systems

The space-state representation of any physical system is an important part of the

analysis of controllability, observability, and stability of the system. The structure

of space-state representations indicates the pattern of the target systems.

Assume a state-space system that involves n integrators combined with p inputs

u1(t), u2(t), · · · , up(t) and m outputs y1(t), y2(t), · · · , ym(t). Define n outputs of
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the integrators as state variables x1(t), x2(t), · · · , xn(t) [33]. Then the system can

be described as

e1(t)ẋ1(t) = f1(x1, x2, · · · , xn;u1, u2, · · · , up; t),

e2(t)ẋ2(t) = f2(x1, x2, · · · , xn;u1, u2, · · · , up; t),
...

...
...

en(t)ẋn(t) = fn(x1, x2, · · · , xn;u1, u2, · · · , up; t).

(2.1)

The outputs of the system may be given as

y1(t) = g1(x1, x2, · · · , xn;u1, u2, · · · , up; t),

y2(t) = g2(x1, x2, · · · , xn;u1, u2, · · · , up; t),
...

...
...

ym(t) = gm(x1, x2, · · · , xn;u1, u2, · · · , up; t).

(2.2)

If we define the following matrices

E(t) =


e1(t)

e2(t)
...

en(t)

 , x(t) =


x1(t)

x2(t)
...

xn(t)

 , y(t) =


y1(t)

y2(t)
...

ym(t)

 , u(t) =


u1(t)

u2(t)
...

up(t)

 ,

f(x, u, t) =


f1(x1, x2, · · · , xn;u1, u2, · · · , up; t)
f2(x1, x2, · · · , xn;u1, u2, · · · , up; t)

...
...

fn(x1, x2, · · · , xn;u1, u2, · · · , up; t)

 ,

g(x, u, t) =


g1(x1, x2, · · · , xn;u1, u2, · · · , up; t)
g2(x1, x2, · · · , xn;u1, u2, · · · , up; t)

...
...

gm(x1, x2, · · · , xn;u1, u2, · · · , up; t)

 .

(2.3)

Then equations (2.1) and (2.2) become a pair of equations as

E(t)ẋ(t) = f(x, u, t),

y(t) = g(x, u, t),
(2.4)
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where the equations in (2.4) represent state equation and output equation, respec-

tively. If the functions f and g do not involve the time t explicitly, the system is

called a time-invariant system. If the equations in (2.4) are linearized about the

operating state, then the following linear time-invariant state-space system with

input-output equations

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(2.5)

where E,A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n and D ∈ Rm×p with very large1 n and

p,m� n; represent mass matrix, system matrix, control multiplier matrix, state

multiplier matrix and direct transmission map (gain), respectively [34]. In the

system (2.5), x(t) : R 7→ Rn and u(t) : R 7→ Rp are the state vector and control

(input) vector, while y(t) : R 7→ Rm is the output vector, consider x(t0) = x0 as

the initial state. In most of the state-space systems the direct transmission remain

absent and because of that D = O.

The dimension of the system (2.5) is determined by the dimension of the state vec-

tor x(t) is n. For p = m = 1, the system is identified as Single-Input Single-Output

(SISO) system and Multi-Input Multi-Output (MIMO) system for p,m > 1. The

system (2.5) is the arrangement of several differential and algebraic equations but

for the convenience of further manipulation, the system will be treated as a com-

pact pair of input and output equations.

2.1.1.1 Generalized and Standard System

The system (2.5) is said to be generalized for invertible and symmetric positive

definite matrix E. If E = In, is the n-dimensional identity matrix, the system

(2.5) is classified as standard. Again, since E is invertible, the generalized system

can be converted to the standard system of the following form

ẋ(t) = Āx(t) + B̄u(t),

y(t) = Cx(t) +Du(t),
(2.6)

where Ā = E−1A and B̄ = E−1B. Because of time consuming inversion process,

the conversion (2.6) in not suitable for real-time practice.

1The meaning of large is changing over time due to the increasing capability of the simulation
tools.
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2.1.1.2 Descriptor System

In the present control theory, a special form of generalized space-state systems

with singular matrix E, i.e., det(E) = 0, arising from many physical models, are

called descriptor systems. The descriptor systems are also known as the singular

LTI systems or Differential-Algebraic Equations (DAE) [35]. Such systems are

governed in the modeling of power systems, chemical engineering, and mechanical

systems. A particular descriptor system is solvable if the corresponding matrix

pencil is regular, i.e., det(λE−A) 6= 0. According to matrix algebra for the regular

matrix pencil, there exist non-singular (invertible) transformation matrices TL and

TR such that the matrices E and A have the Weierstrass canonical form as follows

E = TL

[
Inf

O

O N

]
TR and A = TL

[
J1 O

O In∞

]
TR, (2.7)

where N is nil-potent with nil-potency v, i.e., N v−1 6= O but N v = O, and

nf + n∞ = n. The number v is referred as the algebraic index. The details of the

descriptor systems and their derivation is narrated in [36].

This thesis is concerned with the special structured descriptor systems considering

their applications in the fields of engineering. The descriptor systems that we focus

on the block matrix form can be structured as[
E1 E2

O O

]
︸ ︷︷ ︸

E

[
ẋ1(t)

ẋ2(t)

]
︸ ︷︷ ︸

ẋ(t)

=

[
J1 J2

J3 J4

]
︸ ︷︷ ︸

A

[
x1(t)

x2(t)

]
︸ ︷︷ ︸

x(t)

+

[
B1

B2

]
︸ ︷︷ ︸
B

u(t),

y(t) =
[
C1 C2

]
︸ ︷︷ ︸

C

[
x1(t)

x2(t)

]
+Dau(t),

(2.8)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 with n1+n2 = n are state vectors and J1, J2, J3 & J4

are block matrices of A with appropriate dimensions. Here, E1 and J1 have full

rank. If the block matrix E2 6= O, the system (2.8) is called semi-explicit descriptor

system. In some particular cases, E2 = O needs to be assumed in the descriptor

system (2.8).

According to physical attributes and transient behaviors, the corresponding math-

ematical models can be formed in various patterns. The descriptor systems (2.8)

can be classified as
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� index-1, if det(J4) 6= 0,

� index-2, if J4 = O and det(J3J2) 6= 0, and

� index-3, if J4 = O and det(J3J2) = 0.

2.1.2 Input-Output Relations

The step response and the frequency response are the two most common inputs

in the time domain analysis. By applying the Laplace transformation2, the state-

space system (2.5) can be expressed in the frequency domain. Then for the complex

variable s the system gets the form as

sEX(s)− x0 = AX(s) +BU(s),

Y (s) = CX(s) +DU(s).
(2.9)

where X(s), U(s) and Y (s) are the Laplace transformations of x(t), u(t) and y(t),

respectively. For x0 = O, the system (2.9) can be written as

X(s) = (sE − A)−1BU(s),

Y (s) = G(s)U(s).
(2.10)

In SISO systems, the function G(s) can be defined as

G(s) = C(sE − A)−1B +D. (2.11)

In MIMO systems, G(s) is the p×m matrix, can be written as

G(s) =


G11(s) G12(s) · · · G1m(s)

G21(s) G22(s) · · · G2m(s)
...

... · · · ...

Gp1(s) Gp2(s) · · · Gpm(s)

 (2.12)

where Gij = C(i, :)(sE − A)B(:, j) + D(i, j) with the indices i = 1, 2, · · · , p and

j = 1, 2, · · · ,m .

2The Laplace transformation of the function f(t) is defined as for all t ≥ 0 ∈ R, is the function
F (s) = L[f(t)] =

∫∞
0
f(t)e−stdt for the number s ∈ C.
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2.1.2.1 Transfer Function

The function G(s) introduced in (2.10) and defined in (2.11) and (2.12) are called

the transfer functions of the system (2.5) for SISO and MIMO structures, respec-

tively. The transfer function indicates the input-output relations of the state-space

systems. In the control theory, the error bounds of the reduced-order models are

established by means of their transfer functions [37].

The transfer function G(s) is called proper if limx→∞G(s) <∞ and called strictly

proper if limx→∞G(s) = 0, otherwise G(s) is called improper. The point sp at

which G(sp)→∞ is called the pole of the system.

2.1.2.2 Impulse Response and Frequency Response

The relationship between input and output is known as the impulse response and

denoted by h(t), which is the transfer function of the system (2.5) in the time

domain. The impulse response corresponding to (2.5) can be defined as

h(t) = y(t)u(t)−1; t ∈ R. (2.13)

If the input and the impulse response of a system are available, the system output

can be estimated by the following convolution3 operation

y(t) = h(t) ∗ u(t). (2.14)

Again, the frequency response of a system is as the same as the transfer function

but the input-output relations of the system in the complex Fourier domain, i.e.,

s = jω; ω ∈ R. Thus, the frequency response of a system can be found from the

transfer function (2.11), by setting s = jω; ω ∈ R.

The frequency response of the state-space system (2.5) can be defined as

G(jω) = C(jωE − A)−1B +D. (2.15)

where ω ∈ R is the frequency of the system that provides the value of transfer

function on the imaginary axis.

3The convolution of two function, f1(t) and f2(t) is (f1 ∗ f2)(t) =
∫∞
−∞ f1(τ)f2(t− τ)dτ
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2.1.3 Reduced Order Model

The large-scale space-state systems are governed from very large dimensional real-

world engineering models with sophisticated ingredients and have very complex

arrangements. In this situation, the dimensions of the differential coefficient and

system matrices become very high. Simulation techniques for these systems require

highly expensive time dealings and invade by the infeasible rate of convergence [38].

The size of the matrices in large-scale state-space systems is the most challenging

aspect to store in computational tools. Though the faster technologies and robust

simulation techniques for large dimensional systems are available, computational

complexity and a wide range of memory requirements keep the computations in-

feasible.

So, the large-scale real-world models need to be converted into the Reduced-Order

Models (ROM) through the iterative techniques, e.g., ADI, RKSM and IRKA [39],

which has a wide variety of applications in engineering systems.

The ROM corresponding to the system (2.5) can be derived as

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t),
(2.16)

where the reduced order matrices can be obtained by proper transformation pro-

vided by the simulation techniques.

In the techniques, system pattern is kept invariant to the largest possible extent

and size of the ROMs should be allocable in the sense of memory and time dealings

[40]. The algorithm must be robust and have the global error bound, measured by

suitable norm must be minimized to a certain margin. Also, the transfer functions

of (2.5) and (2.16) must be same.

2.2 Matrix Equations

In this section, some linear and quadratic matrix equations will be introduced,

those have important applications in control theory. Also, the concept of the

linear quadratic regulator problem will be discussed in short.
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2.2.1 Lyapunov Equation

In the MOR approaches, Lyapunov equations are the key tools for the large-scale

state-space systems. The Continuous Algebraic Lyapunov Equations (CALE) are

the essential parts of controllability and observability analysis [41]. The generalized

CALEs can be structured in the following ways

APET + EPAT +BBT = O. (2.17)

ATQE + ETQA+ CTC = O. (2.18)

where P and Q are the controllability and observability Gramians, respectively,

and can be defined as

P =

∫ ∞
0

eAtBBT eA
T tdt (2.19)

Q =

∫ ∞
0

eA
T tCTCeAtdt (2.20)

2.2.2 Riccati Equation

In the present advancement of engineering fields, such as in control theory, the

continuous LTI system is a vital part of interest. The Continuous Algebraic Riccati

Equation (CARE) has a wide range of applications in the control problems [42].

Riccati based feedback matrix has a pivotal role in the state-space stabilization

techniques. The generalized CARE is defined as

ATXE + ETXA− ETXBR−1BTXE + CTC = O. (2.21)

Here E,A,B, and C, are defined in (2.5), whereas the control cost matrix4 R ∈
Rp×p is symmetric positive definite.

For the standard state-space system the CARE can be defined as

ATX +XA−XBR−1BTX + CTC = O. (2.22)

4For the power system models, the cost matrix R is considered as the identity matrix.
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2.2.3 Bernoulli Equation

To find a special form of the CARE (2.21), consider the term CTC is not present,

i.e., CTC = O. This form is called the Continuous Algebraic Bernoulli Equation

(CABE) [43]. The generalized CABE is defined as

ATXE + ETXA− ETXBR−1BTXE = O. (2.23)

The Bernoulli equation has various applications of stability analysis in the control

theory [44]. The trivial solution X = O is always a solution of the CABE (2.23),

whereas this solution is not a matter of interest.

2.2.4 Linear Quadratic Regulator Problem

Linear Quadratic Regulator (LQR) problem is an essential tool of the control

problems [45]. The setup of a self-generated regulator or controller governing

from an engineering application, especially in mechanical and electrical systems,

is utilized by applying a mathematical algorithm to minimize a cost functional

and controls run-time perturbations by means of appropriate constraints.

The LQR algorithm minimizes the work-load of the control systems to optimize

the controller. The system needs to be initiated with raw parameters and test

the efficiency of the control system for the desired aim. The execution process

is iterative and needs to find an optimal control through simulation and then

rearrange the parameters to achieve a feasible output of the objective system.

The quadratic cost functional is defined as

J(u, x0) =

∫ ∞
0

(xT (t)CTCx(t) + uT (t)Ru(t))dt. (2.24)

The function (2.24) can be optimized as J(u0, x0) = x0
TXx0 by applying an

optimal control uo = −Kox(t) generated by the optimal feedback matrix Ko =

R−1BTXE associated with the solution matrix X of the CARE (2.21).
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2.3 Stability and Related Topics

System stability is one of the most important performance specifications of a

control system. Some of the basic concepts of the stability of a system are discussed

below.

2.3.1 Stable and Unstable System

The stability of a system relates to its response to inputs or disturbances. A system

that remains in a constant state unless affected by an external action and which

returns to a constant state when the external action is removed can be considered

to be stable.

A system is said to be stable if its output is under control. Otherwise, it is said

to be unstable. A stable system produces a bounded output for a given bounded

input. In control theory, stability is defined as a measure of the tendency of a

system’s response return to zero after being disturbed.

The matrix pair (A,E) is said to be Hurwitz-stable if all of its eigenvalues are

lie in the open left half of the complex plane, i.e., λ ∈ C− and the system is

unstable if any eigenvalues of matrix pair (A,E) lie in the open right half of the

complex plane, i.e., λ ∈ C+. The Hamiltonian matrix plays an important role in

determining the attributes of system stability.

Moreover, if a few eigenvalues of the matrix pair (A,E) lie in the open right half of

the complex plane but very close to the imaginary axis and rest of the eigenvalues

lie in the open left half of the complex plane, the matrix pair (A,E) is said to be

semi-stable [46].

2.3.2 Hamiltonian Matrix

Hamiltonian matrices corresponding to the CARE (2.21) and CABE (2.23) are

defined as

HR =

[
AE−1 −BR−1BT

−E−TCTCE−1 −E−TAT

]
(2.25)
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HB =

[
AE−1 −BR−1BT

O −E−TAT

]
(2.26)

where E is a non-singular matrix. For the standard state-space systems E = In,

i.e., identity matrix.

If, the Hamiltonian matrix (2.25) has no pure imaginary eigenvalues, the matrix

triple (A,B;E) is called stabilizable, the matrix A−(BR−1BT )XE is called stable

and the CARE (2.21) has a unique solution X [47]. In contrast, if some eigenvalues

of the Hamiltonian matrix (2.25) lie on the imaginary axis, the CARE (2.21) has

no unique or finite solution. As like as CARE, the stabilizing solution X of the

CABE (2.23) provides A− (BR−1BT )XE is stable.

Detectability is the dual concept of the stabilizability. The matrix triple (C,A;E)

is said to be detectable if the matrix triple (AT , CT ;E) is stabilizable.

The following theorems depict the criterion of the stabilizability and detectability

in brief [48].

Theorem 2.1 (Stabilizability Characterization). The following statements

are equivalent,

� (A,B;E) is stabilizable,

� Rank
[
λE − A,B

]
= n for all Re(λ) ≥ 0,

� For all λ and x 6= O such that x∗A = λx∗E and Re(λ) ≥ 0, provided

x∗B 6= O.

Theorem 2.2 (Detectability Characterization). The following statements are

equivalent,

� (C,A;E) is detectable,

� The matrix

[
A− λE
C

]
has full column rank for all Re(λ) ≥ 0,

� For all λ and x 6= O such that Ax = λEx and Re(λ) ≥ 0, provided Cx 6= O,

� (AT , CT ;E) is stabilizable.

The following theorem illustrates the characteristics of the system stability accord-

ing to the Hamiltonian matrix [49].
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Theorem 2.3 (Unique Stabilizing Solution of CARE). Suppose (A,B;E) is

stabilizable and (C,A;E) is detectable, assume R > O. Then there exists a unique

positive semi-definite stabilizing solution X of the CARE (2.5). This solution is

given by X = X2X
−1
1 , where the columns of the matrix

[
X1

X2

]
span the invariant

subspace of the Hamiltonian matrix (2.25) associated with its stable eigenvalues.

2.3.3 Feedback Stabilization

The control system in which the output has an effect on the input quantity in such

a manner that the input quantity will adjust itself based on the output generated

is called a closed-loop control system. Feedback is a common and powerful tool

when designing a control system. The feedback stabilization is a concept that

consisted of a feedback element that gives information on the present state of the

system and then adjustments to the system’s present operation. In any control

system, the output is affected due to the change in environmental conditions or

any kind of disturbance. So the feedback element constantly receives updates from

the output and is return-back to the input [50].

The fundamental point remains, however, that it is the power of feedback to

combat uncertainty which makes it so useful for the purposes of control.

2.3.3.1 Bernoulli Stabilization

If the matrix pencil (A,E) is not stable in general but to solve the CARE (2.21),

a stable pencil is required. Then an initial feedback matrix K0 is needs to be

attained in the way provided in [51]. Most of the nv − np finite eigenvalues of

the matrix pencil (A,E) are stable and only nus eigenvalues are unstable with

nus � nv. Initially, all unstable finite eigenvalues λ
(i)
us ∈ C+ of the matrix pencil

(A,E) are required together with their corresponding left and right eigenvalues

ω(i), η(i) ∈ Cnv+np for i = 1, 2, ..., nus.

To solve large-scale generalized eigenvalue problems, implicitly restarted shift-and-

invert Arnoldi method can be implemented in the eigs command of MATLAB

with matrix shifting approach. In this technique, all infinite eigenvalues will be

transferred to fixed finite eigenvalues, whereas other eigenvalues will remain un-

changed.
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By means of the left and right eigenvectors, the following projection matrices can

be defined as
W : =

[
ω(1), ω(2), · · · , ωnus

]
∈ C(nv+np)×nus ,

V : =
[
η(1), η(2), · · · , ηnus

]
∈ C(nv+np)×nus .

(2.27)

The using the matrices W and V , the nus-dimensional generalized CABE can be

written as

ÂTX0Ê + ÊTX0Â− ÊTXB̂R−1B̂TX0Ê = O, (2.28)

where Ê = W TEV, Â = W TAV and B̂ = W TB. After solving (2.28) for X0, the

initial feedback matrix K0 = BT (WX0W
T )E ∈ Rnr×nv can be estimated.

Using the initial feedback matrix K0, the desired stabilized closed-loop matrix

pencil can be written as (A − BK0, E), and all the initially unstable eigenvalues

λ
(i)
us converted (mirrored image) to the stabilized eigenvalues as

λ
(i)
stab = −Re(λ(i)us) + jIm(λ(i)us) ∈ C−; ∀i = 1, 2, · · · , nus. (2.29)

2.3.3.2 Riccati Stabilization

Riccati-based feedback stabilization is the most rising approach for the stabiliza-

tion in large-scale system simulations. The convergence of computationally gained

feedback matrix depends on the actual model [52]. In recent researches, the stabi-

lization of the unstable systems around a stationary solution using a Riccati-based

feedback matrix has achieved significant attention regarding control theory as well

as numerical methods [53, 54].

The difficulty in the LQR approach for the target model under investigation is

to compute the feedback matrix Kf , such that the stabilized system has some

specific forms. In the Riccati-based feedback stabilization technique, to solve the

CARE (2.21) arising from the large-scale model is the most challenging task. So,

the reduced-order model (2.16) will be employed to compute an approximation to

the optimal feedback matrix of the full system by means of the LQR approach.

Based on the ROM (2.16) the generalized CARE can be written in the form

ÂT X̂Ê + ÊT X̂Â− ÊT X̂B̂R−1B̂T X̂Ê + ĈT Ĉ = O, (2.30)
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The generalized CARE (2.30) is feasible in the sense of matrix dimensions, that

can be solved efficiently for X̂ using any conventional solvers as, e.g., the MATLAB

care command.

Then, the stabilizing feedback matrix for the ROM (2.16) can be computed as

K̂f = B̂T X̂Ê. The ROM based approximation to the stabilizing feedback matrix

for the full order model can now be retrieved as Kf = K̂fV
TE, where V is the

transformation matrix used to compute the ROM (2.16).

2.4 Background of Linear Algebra

To understand the theoretical concept of system and control theory, basic ideas of

the linear algebra are essential. In this section we will discuss some fundamentals

of the linear algebra.

2.4.1 Eigenvalue Problem

For the matrix pair (A,E), where A,E ∈ Cn×n, an eigenvalue λ ∈ C and its right

eigenvector x ∈ Cn \ {0} and the left eigenvector y ∈ Cn \ {0} together form

an eigen-triple (λ, x, y) of the matrix pair (A,E), which satisfies the generalized

Eigenvalue Problem (EVP) is defined as

Ax = λEx, y∗A = λy∗E. (2.31)

The eigenvalues are the roots of the characteristic polynomial p(λ) = det(A−λE)

and the spectrum is the set of all eigenvalues λ1, λ2, · · · , λn corresponding to the

matrix pair (A,E), denoted by Λ(A,E) [55]. If E is singular, Λ(A,E) contains

eigenvalues at infinity and the finite spectrum Λf (A,E) denotes the set of all finite

eigenvalues of the matrix pair (A,E).

A matrix pair (A,E) is called singular if A−λE is singular for all λ ∈ C, otherwise

it called regular.

Theorem 2.4 (Eigenvalue Criteria). Let the matrix pair (A,E) with A,E ∈
Cn×n and λ ∈ C. Then the following statements are equivalent,
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� λ is an eigenvalue of (A,E) if and only if 1
λ

is an eigenvalue of (E,A),

� ∞ is an eigenvalue of (A,E) if and only if E is singular matrix,

� ∞ is an eigenvalue of (A,E) if and only if 0 is an eigenvalue of (E,A),

� If E is non-singular, the eigenvalues of (A,E) are exactly the eigenvalues of

AE−1 and E−1A.

The algebraic multiplicity α(λ) of a particular eigenvalue is the number of times

λ appears as the root of p(λ). The number of linearly independent right and left

eigenvectors x, y associated to λ is called the geometric multiplicity and denoted

by ζ(λ), which satisfies 1 ≤ ζ(λ) := dim{ker(A − λE)} ≤ α(λ). If ζ(λ) = α(λ)

then λ is called the simple eigenvalue and the corresponding matrix pair (A,E) is

called diagonalizable.

The following lemmas illustrate the properties of the diagonalizable matrix pair

(A,E) [56].

Lemma 2.5. A matrix pair (A,E) with A,E ∈ Cn×n is diagonalizable if and

only if there exists a non-singular matrix X ∈ Cn×n and λ1, λ2, · · · , λn are the

eigenvalues of the matrix pair (A,E) such that X−1AX = diag(λ1, λ2, · · · , λn),

where the columns of X are eigenvectors of the matrix pair (A,E).

Lemma 2.6. Let the matrix pair (A,E) with A,E ∈ Cn×n be diagonalizable having

distinct eigenvalues Λ(A,E) = {λ1, λ2, · · · , λn̂} with n ≤ n̂. Then for the all

i = 1, 2, · · · , n̂, the relation ζ(λi) = α(λi) holds.

A matrix pair (A,E), where A,E ∈ Cn×n with non-singular E, is called normal

matrix pair if it is diagonalizable and its left eigenvectors coincide with the right

eigenvectors. The following theorem depicts the properties of the normal matrix

pair [57].

Theorem 2.7 (Normal Matrix Pair). Let the matrix pair (A,E) with A,E ∈
Cn×n be the regular matrices with non-singular E. Then the following statements

are true

� (A,E) is a normal matrix pair,

� There exists Q ∈ Cn×n such that QTAQ = diag(λ1, λ2, · · · , λn) and satisfies

QTEQ = In.
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If E = In eigenvalue problem can be re-defined for the matrix A ∈ Cn×n as

Ax = λx, y∗A = λy∗. (2.32)

Here, the characteristic polynomial can be defined as p(λ) = det(A − λIn) and

the corresponding spectrum can be denoted by Λ(A). The other properties will

remain the same as the generalized EVP.

2.4.2 Matrix Definiteness

A symmetric matrix M ∈ Rn×n is said to be positive definite if the scalar zTMz

is strictly positive for every non-zero column vector z of n real numbers. When

interpreting Mz as the output of an operator M , z is acting on an input. The

property of positive definiteness implies that the output always has a positive inner

product with the input, as often observed in physical processes [58].

Again, a Hermitian matrix M ∈ Cn×n is said to be positive definite if the scalar

z∗Mz is strictly positive for every non-zero column vector z of n complex numbers,

where z∗ denotes the conjugate transpose of z.

Positive semi-definite matrices are defined similarly, except that the above scalars

zTMz or z∗Mz must be non-negative. Negative definite and negative semi-definite

matrices are defined analogously. A matrix that is not positive semi-definite and

not negative semi-definite is called indefinite.

2.4.3 Structure of the Matrices

The structure of the matrices has an important impact on system adaptation and

computational convergence. Different types if matrix structure can be generated

by the governing models. To apply convenient simulation techniques the matrices

of a target system can be converted to the user-defined structure [59].
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2.4.3.1 Sparse Matrix

A matrix is sparse if many of its coefficients are zero and there is no memory

allocation for those coefficients. The interest in sparsity arises because its ex-

ploitation can lead to enormous computational savings and because many large

matrix problems that occur in engineering applications are sparse.

In practice, most large matrices are sparse, i.e., almost all entries are zeros. The

number of zero values in the matrix divided by the total number of elements in

the matrix is called the sparsity of a matrix, which is useful in combinations and

application areas such as network theory.

Large sparse matrices are common in general and especially in applied machine

learning, such as in data that contains counts, data encoding that map categories

to counts, and even in whole sub-fields of machine learning such as natural lan-

guage processing. The sparse matrices are feasible for memory allocation and

computation speed on the computer simulations. It is beneficial and often neces-

sary to use specialized algorithms and data structures that take advantage of the

sparse structure of the matrices.

2.4.3.2 Dense Matrix

A matrix is said to be dense if it is not sparse. In other words, if most of the ele-

ments are nonzero, then the matrix is considered as dense. In the dense matrices, a

large number of elements are zero values and this is a waste of memory resources as

those zero values do not contain any information. Some very large matrix systems

are infeasible to manipulate using standard dense matrix algorithms.

2.4.3.3 Projection Matrix

The projection on a vector space V is a linear operator P : V 7→ V such that

P 2 = P . Then the square matrix P is called a projection matrix. The projec-

tion matrix P is called an orthogonal projection matrix if P 2 = P = P T for a

real matrix, and P 2 = P = P ∗ for a complex matrix, where P ∗ denotes the Her-

mitian transpose of P . By definition, a projection matrix P is idempotent and

corresponding eigenvalues must be 0 or 1.
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The following lemma represents the properties of an orthogonal projector [60].

Lemma 2.8. A projector projects onto a subspace S1 along a subspace S2, it said

to be orthogonal projector if and only if, S1, S2 ∈ Cn are orthogonal sub-spaces

such that S1 ∩ S2 = {0} and S1 + S2 = Cn, where S1 + S2 denotes the span of S1

and S2, i.e., the set of vectors s1 + s2 with s1 ∈ S1 and s2 ∈ S2, respectively.

If P is a projector, I − P is also a projector, called the complementary projector

that satisfies (I − P )2 = I − P .

2.4.4 Matrix Decomposition Techniques

In the control theory, matrix decomposition (factorization) is a computing tool for

deriving ROMs of the large-scale systems. There are several matrix decomposition

approaches and in this section, some of the leading techniques will be discussed.

2.4.4.1 Eigenvalue Decomposition

Eigenvalue decomposition is the factorization of a matrix into a canonical form,

whereas the matrix is expressed by means of eigenvalues and eigenvectors. eigen-

value decomposition also called spectral decomposition [61].

If the columns V ∈ Cn×n contain linearly independent eigenvectors of a square

matrix A ∈ Cn×n, the eigenvalue decomposition of A can be defined as

A = V ΛV −1, (2.33)

where Λ ∈ Cn×n is a diagonal matrix whose elements are the eigenvalues of A.

2.4.4.2 Singular-Value Decomposition

Singular-Value Decomposition (SVD) is one of the most useful matrix decomposi-

tion tools applied in the control systems, signal processing, and statistics. It can

be efficiently used to generate ROMs. It is the generalization of the eigenvalue

decomposition of a positive semi-definite normal matrix to any m× n matrix via

an extension of the polar decomposition [62].
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For a matrix A ∈ Cm×n; m,n ∈ R, the SVD of A as the matrix factorization can

be defined as

A = UΣV ∗, (2.34)

where U ∈ Cm×m and V ∈ Cn×n are unitary, and Σ ∈ Rm×n is a diagonal matrix.

The diagonal elements σj; j = 1, 2, · · · , k of Σ are the singular values of A, which

are non-negative and in decreasing order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0, where

k = min(m,n).

The SVD obtained by taking only the first m singular values of A is called the

thin SVD.

The following theorem represents the properties of the SVD [60].

Theorem 2.9 (Properties of SVD). For the singular-value decomposition of a

matrix A, the following statements are true,

� The singular-values σj of A are the square roots of the eigenvalues of the

symmetric positive semi-definite matrix ATA,

� The right singular-vectors are the eigenvectors of the matrix ATA, and the

left singular-vectors are the eigenvectors of the matrix AAT ,

� The rank of A is r, the number of non-zero singular-values and A is the sum

of rank-one matrices,

� If A = A∗, then the singular-values of A are the absolute values of the

eigenvalues of A,

� For A ∈ Cn×n, det(A) =
∏n

j=1 σj,

� ‖A‖2 = σ1 and ‖A‖F =
√∑r

k=1 σ
2
k.

2.4.4.3 Schur Decomposition

Schur decomposition is the matrix decomposition that allows writing any arbi-

trary matrix as unitarily equivalent to an upper triangular matrix whose diagonal

elements are the eigenvalues of the original matrix [63]. It also called the Schur

triangulation.
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For a square matrix A ∈ Cn×n, the Schur decomposition can be defined as

A = UTU∗, (2.35)

where U ∈ Cn×n is a unitary matrix and T is an upper triangular matrix, which

is called a Schur form of A. Since T is triangular and similar to A, it has the same

spectrum and eigenvalues of A are the diagonal entries of T .

2.4.4.4 QR Decomposition

QR decomposition is a tool to find an orthogonal matrix with respect to some

given matrices. QR decomposition is often used to solve the linear least square

problems and is the basis for a particular eigenvalue algorithm [64].

QR decomposition is a factorization of a matrix A ∈ Cm×n into a matrix product

defined as

A = QR (2.36)

where Q is an orthogonal matrix, i.e., QQT = I = QTQ and R is an upper

triangular matrix. For an invertible matrix A the factorization is unique and the

diagonal elements of R are positive definite.

There are several approaches for computing QR decomposition, such as the mod-

ified Gram-Schmidt process and Householder transformations.

2.4.4.5 Cholesky Decomposition

Cholesky decomposition is the factorization of a Hermitian, positive-definite ma-

trix into the product of a lower triangular matrix and its conjugate transpose,

which is useful for several efficient numerical computations, for example, Monte-

Carlo simulations [65].

Let A ∈ Cm×n be a Hermitian, positive-definite matrix. The Cholesky decompo-

sition of A is defined as

A = LL∗ (2.37)

where L is a lower triangular matrix with real and positive diagonal entries and L∗

is its conjugate transpose. Every Hermitian positive-definite matrix has a unique

Cholesky decomposition.
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Cholesky decomposition can be used to solve the system of linear equations Ax = b,

where A is the real symmetric and positive-definite matrix.

2.4.4.6 Arnoldi Decomposition

Arnoldi decomposition is an efficient iterative solver and a vital tool for generating

the basis for the Krylov subspace. Typically, it is a large sparse matrix algorithm

that does not execute the matrix elements directly, instead utilizes the matrix map

vectors. To compute the eigenvalues of large sparse matrices, the Krylov-based

Arnoldi process is one of the most powerful tools.

Choose A ∈ Rn×n and an orthogonal projector V ∈ Rn×p. Then the m-th dimen-

sional Krylov matrix based on A and V is defined as

Km(A, V ) =
[
V,AV,A2V, · · · , Am−1V

]
. (2.38)

Matrix-vector products play the key role in generating the Krylov subspace (2.38)

by a recursive technique. The orthogonal columns of the matrix Vm+1 =
[
Vm, vm+1

]
form an orthogonal basis for the Krylov subspace Km.

There exists an unreduced upper Hesenberg matrix Ĥm ∈ R(m+1)×m such that

AVm = Vm+1Ĥm [66]. By a suitable partition of Ĥm, we can write

AVm =
[
Vm vm+1

] [ Hm

hm+1,me
T
m

]
,

= VmHm + hm+1,mvm+1e
T
m.

(2.39)

Here, Hm can be obtained from Ĥm by removing the last row and em in the matrix

of the last p columns of the mp-th order identity matrix Im×p and after m steps

hm+1,m will be vanished. So that, after a certain number of iterations the second

term of (2.39) will be converged to zero.

Thus, by the orthogonality property of vm+1, (2.39) provides the projection

Hm = V T
mAVm. (2.40)
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Algorithm 1: Arnoldi decomposition (Modified Gram-Schimdt).

Input : A,C, orthogonal matrix Vm.
Output: Matrix Zm ∈ Rn×m such that Xm ≈ ZmZ

T
m.

1 Compute CT = QR (QR factorization).
2 Assume V1 = Q = v1.
3 for j ← 1 to m do
4 Compute wj = Avj.
5 for i← 1 to j do
6 Compute hi,j = vi

Twj.
7 Update wj = wj − hi,jvi.
8 end for
9 Compute hj+1,j = ‖Wj‖2.

10 Update vj+1 =
wj

hj+1,j
.

11 Compute Hj =

[
Hj−1 hj
O hj+1,j

]
.

12 Update Vj+1 =
[
Vj, vj+1

]
.

13 Partition Ĥm =

[
Hm

hm+1,me
T
m

]
.

14 end for

Hence, the termHm represents the projectionA onto the Krylov subspaceKm(A, V )

[67]. The Arnoldi decomposition is summarized in the Algorithm-1.

The eigenvalues λi of a projection matrix Hm in the Krylov subspace Km(A, V ),

are known as the Ritz values and if χ is an eigenvector of Hm associate with λ ,

then Vmχ is called the Ritz vector belong to λ [68].

2.5 System Norms

The norms of the vectors and matrices are useful in the stability analysis and

corresponding applications, i.e., stopping criteria and convergence analysis of the

iterative techniques. In this section, some vector and matrix norms will be dis-

cussed with their properties.

2.5.1 Vector Norms

For the vector space X ∈ Rn, a real valued function ‖.‖ : Rn → R is said to be

norm of X if for any x, y ∈ X and α ∈ R [69]. The norm of ‖.‖ it satisfies the
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following properties

� ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = O,

� ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

� ‖αx‖ = |α|‖x‖.

The vector p-norm of x ∈ C is defined as

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

; 1 ≤ p ≤ ∞ (2.41)

In particular, when p = 1, 2, · · · ,∞, the norm can be defined as

‖x‖1 =
n∑
i=1

|xi|,

‖x‖2 =

√√√√ n∑
i=1

|xi| =
√
xTx,

‖x‖∞ = max
1≤i≤n

|xi|.

2.5.2 Matrix Norms

Let A = [aij] ∈ Rn×n, then the matrix norm ‖.‖ : Rn×n → R induced by a vector

p-norm is defined as

‖A‖p = sup
x6=O

‖Ax‖p
‖x‖p

. (2.42)

The most important matrix norm which is not induced by a vector norm is called

Frobenius norm. The Frobenius norm of a matrix A = [aij] ∈ Rn×n is denoted by

‖A‖F and defined as

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 =
√

tr(AA∗) =
√

tr(A∗A). (2.43)

The matrix norms induced by vector p-norms are sometimes called induced p-

norms satisfying the properties of the vector norm [70].
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In particular, the column-sum norm, spectral norm, and row-sum norm can be

defined as

‖A‖1 = max
j

n∑
i=1

|aij|;

‖A‖2 =
√
λmax(A∗A),

‖A‖∞ = max
i

n∑
j=1

|aij|.

2.6 Existing Methods

In control theory, the CARE plays a leading role in the study of system stability

and structural phenomena. To analyze the transient behaviors of many branches

of engineering fields, the solution of CARE governed by corresponding system

matrices is required [71]. Due to the gradual increase in the system size and

complexity, the simulation techniques are upgrading over the years. Projection-

based iterative methods have shown very effective for large-scale systems as they

permit the sparsity pattern and provide low-rank approximated systems preserving

properties of original systems [72]. A number of iterative methods employ the

Galerkin projection technique to find a feasible solution for CARE.

In this section, some fundamental and newly developed methods for solving CARE

will be introduced.

2.6.1 Schur Decomposition Method

Schur decomposition method based on Real Schur Factorization (RSF) of the

Hamiltonian matrix for the CARE is one of the fundamental and oldest methods.

Consider the converted to the standard system (2.6) and corresponding CARE

can be defined as

ĀTX +XĀ−XB̄R−1B̄TX + CTC = O, (2.44)

where Ā ∈ Rn×n, B̄ ∈ Rn×p, C ∈ Rm×n and R ∈ Rp×p.
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Algorithm 2: Schur decomposition method.

Input : Ā, B̄, C and R.
Output: The unique stabilizing solution X of the CARE.

1 Form the Hamiltonian matrix H =

[
Ā −B̄R−1B̄T

−CTC −ĀT
]
.

2 Transform H to the RSF S = UTHU =

[
S11 S12

O S22

]
.

3 Partition U comformably U =

[
U11 U12

U21 U22

]
.

4 Compute X = U21U
−1
11 .

Assuming (A,B) is a stabilizable pair and (C,A) is detectable pair, whereas both

of the pairs have full rank. So, the CARE (2.44) has a unique non-negative definite

solution X. For the CARE (2.44) the Hamiltonian matrix can be written as

H =

[
Ā −B̄R−1B̄T

−CTC −ĀT

]
∈ R2n×2n. (2.45)

To find the finite solution X of (2.44), it should be ensured that H has no pure

imaginary eigenvalues [73]. Thus an orthogonal transformation matrix U ∈ R2n×2n

need to be found that puts H in ordered RSF as

S = UTHU =

[
S11 S12

O S22

]
, (2.46)

where Sij ∈ Rn×n. The eigenvalues of H with negative real parts have been stacked

in S11 and those with positive real parts are stacked in S22. Let U is comfortably

partitioned into four n× n blocks as

U =

[
U11 U12

U21 U22

]
, (2.47)

where the following relation is true

H

[
U11

U21

]
=

[
U11

U21

]
S11. (2.48)

Then, X = U21U
−1
11 is the unique stabilizing solution of the CARE (2.44). The

Schur decomposition method is summarized in the Algorithm-2.
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2.6.2 Matrix-Sign Function Method

Matrix-sign function of a Hamiltonian matrix Hn×n is denoted by sign(H) and

indicates the stable invariant subspace of H [74]. If H has no zero or purely

imaginary eigenvalues, the Jordan Canonical Form (JCF) of H can be defined as

J = X−1HX = D +N, (2.49)

where D = diag{d1, d2, · · · , dn} and N is nil-potent and commutes with D. Then,

sign(H) can be defined as

sign(H) = Xdiag[sign(d1), sign(d2), · · · , sign(dn)]X−1, (2.50)

where sign(di) = ±1 for Re(di) > 0 and Re(di) < 0, respectively.

Using the matrix sign function method, the positive definite solution of generalized

CARE can be obtained. Consider the generalized CARE (2.21) corresponding

to the generalized state-space system (2.5) with E is non-singular. Then the

corresponding Hamiltonian matrix can be factorized as

H̄ =

[
AE−1 −BR−1BT

−E−TCTCE−1 −E−TAT

]
,

=

[
I O

O E−T

][
A −BR−1BT

−CTC −AT

][
E−1 O

O I

]
,

= E−11 HE−12 .

(2.51)

The matrix pencil H−λE1E2 = H−λL for L =

[
E O

O ET

]
needs to be considered.

Now, the sign(H̄) can be defined as

sign(H̄) = W̄ =

[
W̄11 W̄12

W̄21 W̄22

]
. (2.52)
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Then, the positive definite solution X of the CARE (2.21) can be achieved from

the matrix equation in the form[
W̄12

W̄22 + I

]
X = −

[
W̄11 + I

W̄21

]
. (2.53)

Since E is non-singular, (2.53) can be written as[
W̄12

ET W̄22 + ET

]
XE = −

[
W̄11E + E

ET W̄21E

]
. (2.54)

Assume X̄ = XE and consider the following matrix decomposition

W = E1

[
sign(H̄)

]
E2 =

[
W̄11E W̄12

ET W̄21E ET W̄22

]
=

[
W11 W12

W21 W22

]
. (2.55)

Thus, equation (2.54) can be written as[
W12

W22 + ET

]
X̄ = −

[
W11 + E

W21

]
. (2.56)

Finally, the desired solution X of the generalized CARE (2.21) can be found as

X = X̄E−1. The matrix sign function method is summarized in the Algorithm-3.

2.6.3 Rational Krylov Subspace Method

The Krylov subspace and the methods based on Krylov subspace were invented

by the famous Russian naval engineer and applied mathematician A. N. Krylov

(1863–1945) [75]. In this method, the aim is to approximate a large-scale system

with a lower-dimensional system that has invariant characteristics with comparison

to the original system. The ROMs can be used to replace the original system,

as a component in larger simulations that are suitable for real-time applications.

Several MOR techniques for state-space systems were developed recently, Rational

Krylov Subspace Method (RKSM) is one of the most efficient approaches [76].
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Algorithm 3: Matrix sign function method.

Input : E,A,B,C, and R.
Output: The unique positive definite solution X of the CARE.

1 Choose W0 = JH such that J =

[
O I
−I O

]
and H =

[
A −BR−1BT

−CTC −AT
]
.

2 for k ← 1 to m do

3 Compute c =
(
|det(Wk)|
|det(E1E2)|

)
, where E1 & E2 are defined in (2.51).

4 Compute Wk+1 = 1
2c

[
Wk + c2(JE1E2)W

−1
k (JE1E2)

]
.

5 end for

6 Partition W = JE1

[
sign(E−11 HE−12 )

]
E2 =

[
W11 W12

W21 W22

]
.

7 For X̄ solve

[
W12

W22 + ET

]
X̄ = −

[
W11 + E
W21

]
.

8 Compute X = X̄E−1.

RKSM is a projection based iterative approach via block Arnoldi or Lanczos pro-

cess. This iterative technique becomes competitive with ADI based techniques due

to the recent developments and extensions. According to the real-world applica-

tions, RKSM has better results with the flexibility of the selection of interpolation

points with comparison to the conventional methods for solving linear matrix

equations [77].

In RKSM, an appropriate solution to the CARE is determined in the form of

X ≈ V X̂V T for X ∈ Rn×m, V ∈ Rn×m, and X̂ ∈ Rm×m. At first, the columns of

the projector V need to be determined, which span an orthonormal basis for the

mp-dimensional Krylov subapace defined by

Km(A,B) = span
(
B,AB,A2B, · · · , Am−1B

)
. (2.57)

The orthogonal basis Vm = [v1, v2, · · · , vm] can be computed by the Arnoldi algo-

rithm based on modified Gram-Schimdt process given in Algorithm-(1) from the

Krylov subspace Km. Now, the main task is to derive a reduced-order Riccati

equation

HT
mYmGm +GT

mYmHm −GT
mYmV

T
mBB

TVmYmGm + V T
mC

TCVm = O, (2.58)

which has a unique solution if and only if λi + λj 6= 0 for every pair of eigenvalues

λi and λj for the real matrix Hm.
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If A is sparse, computing the orthogonal columns of Vm by modified Gram-

Schmidt, is the toughest part of the computation. The convergence of the Arnoldi

method for solving CARE depends on the residual Rm corresponding to Ym is

defined by

Rm = ATVmYmV
T
mE + ETVmYmV

T
mA− ETVmYmV T

mBB
TVmYmV

T
mE + CTC. (2.59)

By the techniques of RKSM, the solution Ym of (2.58) can be computed such that the

Galerkin condition V T
mRmVm = O will be satisfied.

The detailed analysis of the Arnoldi decomposition-based rational Krylov subspace

method will be discussed in Chapter-(3).

2.6.4 Kleinman-Newton Method

The solution of CARE is a laborious and complicated task, especially for equations

arising from large-scale control systems. The CARE is often solved by means of well

known Kleinman-Newton method. To reduce the simulation time, the execution of

iterative solvers for the solution of the linear systems occurring at each Newton step is

obvious. In the computation, control the accuracy of the solution of the linear systems

and to gain efficiency without losing rate of convergence are the vital achievements

[78]. The Kleinman-Newton iterative approach provides the desired goals and keeps the

suitable inner iteration termination, which is time demanding [79].

In the Klenman-Newton method, the generalized CARE (2.21) is needed to be converted

to the following generalized CALE as

ÃTXE + ETXÃ = −WW T , (2.60)

where Ã = A − BBTXE and W =
[
CT ETXB

]
. The generalized CALE (2.60) can

be solved by any existing Lyapunov solvers, i.e., Bartels-Stewart’s method [80].

Due to the gradually increased size of the control system matrices, the simulations of

the generalized CALE (2.60) are not affordable for the direct solvers. So that, iterative

solvers including MOR techniques are needed to be introduced. ADI method is one

of the widely used techniques for solving the generalized CALE (2.60) by an iterative

process.

The detailed analysis of Kleinman-Newton method implementing LRCF-ADI iterations

will be discussed in Chapter-(4).
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2.7 Shift Parameters

Shift parameters are the numerical weapon for the compensation of the system pertur-

bations. They are the pre-conditioned and system-oriented random constants. For the

quick and smooth convergence of the simulation process, adjustable shift selection is cru-

cial. Usually, conventional Penzl’s heuristic shifts and Wachspress’s optimal shifts are

commonly used for the large-scale descriptor systems. Nowadays, adaptive ADI shift

selection approach has been adopted for sophisticated and larger descriptor systems.

The ADI min-max problem is the key tool for generating shift parameters [81], which is

defined as

min
µ1,...,µj∈C−

(
max
1≤l≤n

∣∣∣∣∣
J∏
i=1

µi − λl
µi + λl

∣∣∣∣∣
)

; λl ∈ Λ(A,E), (2.61)

where Λ(A,E) represents the spectrum of the matrix pencil λE −A.

In this section, we will introduce some of the techniques for finding useful shift param-

eters.

2.7.1 Penzl Heuristic Shifts

The heuristic approach is the most frequent approach to obtain shift parameters. In this

case, the spectrum Λ(A,E) is replaced recursively by a smaller set consisting k+ Ritz

and k− reciprocal Ritz values with respect to E−1A and A−1E, respectively by Arnoldi

steps [82].

Penzl heuristic shifts are computationally unstable as even small changes in any of

the parameters can cause significant alteration in the system performance. Computed

Ritz values can have positive real parts if ATE + ETA is indefinite and these must be

neglected.

2.7.2 Wachspress Optimal and Sub-optimal Shifts

An analytic solution for the min-max problem (2.61) is proposed in [83], which uses

the values a := mini Re(λi), b := maxi Re(λi) and Φ := maxi

(
tan−1

∣∣∣ Im(λi)
Re(λi)

∣∣∣) for λi ∈
Λ(A,E) to generate the structure of the spectrum Λ(A,E). The computation of the

Wachspress optimal shifts through the elliptic integral consisting the tolerance τ and

the spectral data a, b and Φ. If the spectrum Λ(A,E) is real or real part dominant
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always provides real shift parameters, whereas for imaginary dominant a modification

will be done to produce complex shift parameters [84].

For large-scale matrices, it is suitable to obtain sub-optimal shift parameters from the

spectrum Λ(A,E) by a small number of k+ Ritz and k− harmonic Ritz values with

respect to E−1A and A−1E, respectively [85]. These Ritz values can be attained by

Arnoldi or Lanczos processes and then the other computation will remain the same as

before.

2.7.3 Adaptive ADI Shifts

In the case of adaptive shifts, the shifts are initially investigated by the eigenvalues of

the matrix pencil λE − A projected to the span of CT , where E, A and C are sparse

and of appropriate dimensions. Once, all the shifts in the set have been used, the pencil

is needed to be projected to the span of the current basis Vi and the current eigenvalues

are used as the next set of shifts. The process required to be recursive and in each step

the subspace to all the bases Vi generated with the current set of shifts will be extended

[86]. note that, it can not be guaranteed that all of the projected eigenvalues will be

contained in C−.

Let us consider W to be the orthogonal basis of the extended subspace and evaluate

the eigenvalues of λW TEW −W TAW . Choose a number of optimal shifts {µi}Ji=1 by

solving the min-max problem (2.61) in the similar approach of the heuristic process. The

recursive process will continue until the algorithm converged to the desired tolerance.
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Rational Krylov Subspace

Method for the CARE Arising

from Index-1 Descriptor System

3.1 Rational Krylov Subspace Method

For a very large dimensional system, the procedure of solving the CARE is highly time-

consuming and needs an immense memory for storing it. Therefore, a low-rank approx-

imate solution needs to be computed. The process can be manipulated by projecting

the system onto a lower-dimensional rational Krylov subspace, which is an iterative

approach and a crucial numerical weapon to get adequate efficiency. To do this, the

rational Krylov subspace method (RKSM) can be used as an efficient tool.

Projection-based methods, such as RKSM, yield low-rank approximations and have ap-

plied effectively for solving linear matrix equations. The linearization strategy by ignor-

ing the quadratic term and initial ad-hoc parameter implementation enhance the rapid

convergence of the RKSM approach [87]. RKSM is a multi-step and recursive algorithm

due to the span large approximation spaces to get a feasible solution but this iterative

technique can be applied efficiently in the perturbed systems.
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3.1.1 RKSM for Solving Standard CARE

Simoncini5 applied RKSM approach for solving the CARE

ATX +XA−XBR−1BTX + CTC = O, (3.1)

associated with the standard continuous-time LTI system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(3.2)

If the eigenvalues of the matrix A satisfy λi+ λ̄j 6= 0,∀i, j = 1, 2, · · · , n, that ensures the

solution X of the CARE (3.1) exists and unique. Through RKSM, the low-rank factor

Z can be estimated for finding approximate solution X̂ of the CARE (3.1), such that

X ≈ V X̂V T ; V ∈ Rn×r, X̂ ∈ Rr×r.

The orthogonal projector V spanned by the m-dimensional rational Krylov subspace for

a set of shift parameters µi ∈ C+; i = 1, 2, · · · ,m is defined as

Km = span

(
CT , (AT − µ1I)

−1
CT , · · · ,

m∏
i=1

(AT − µiI)
−1
CT

)
.

If θj are the eigenvalues of V T
mAVm; Sm ∈ C+ approximates the mirrored eigen-space of

A−BBTXm and δSm is its border, the shifts are computed from

µm+1 = arg

(
max
µ∈δSm

∣∣∣∣∏m
i=1 (µ− µj)∏m
i=1 (µ− θj)

∣∣∣∣) .
According to the Galerkin condition

V T (ATX +XA−XBR−1BTX + CTC)V = O.

After simplification, the low-rank CARE can be obtained as

ÂT X̂ + X̂Â− X̂B̂R−1B̂T X̂ + ĈT Ĉ = O, (3.3)

5http://www.dm.unibo.it/ simoncin/welcome.html
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where X̂ = V TXV, Â = V TAV, B̂ = V TB and Ĉ = CV . The equation (3.3) is an

approximated low-rank CARE and can be solved by MATLAB care command.

Here X̂ is taken as the low-rank approximation of X, corresponding to the low-rank

CARE (3.3). Then residual of the (m+ 1)-th iteration is

‖Rm‖F = ‖SJST ‖F ; J =


O I O

I O I

O I O

 ,
where S is a block upper triangular matrix in the QR factorization of the matrix U

derived as

U =


vm+1µm+1

VmX̂H
−1
m emh

T
m+1,m

−(I − VmV T
m )AT vm+1


T

,

where Hm is a block upper Hessenberg matrix and em is the matrix formed by the last

p columns of the mp-order identity matrix.

For CT = QR such that R = β, the relative-residual can be estimated as

‖Rm‖(relative) =
‖Rm‖F
‖βTβ‖F

.

The low-rank solution X̂ of (3.3) is symmetric, positive definite and can be factorized

as X̂ = Y Y T . Using the matrix property, the original solution X can be reproduced as

X = V X̂V T .

By the eigenvalue decomposition to the approximate solution X̂ and truncating the

negligible eigenvalues, the possible lowest order factor Z of X can be estimated. The

factorization will be carried out as

X = V X̂V T = V (SΛST )V T

= V
[
S1 S2

] [Λ1 O

O Λ2

][
ST1

ST2

]
V T

= V S1Λ1S
T
1 V

T = (V S1Λ
1
2
1 )(V S1Λ

1
2
1 )T

= ZZT .

Here the truncated Λ2 contains the negligible eigenvalues. The summary of the above

process is given in the Algorithm-4.
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Algorithm 4: S-RKSM.

Input : A,B,C,R, imax (number of iterations) and µi (initial shifts).
Output: Low-rank factored solution Z such that X ≈ ZZT .

1 Compute QR = CT (QR factorization).
2 Choose V1 = Q.
3 while not converged or m ≤ imax do

4 Solve vm = (AT − µm+1I)
−1
Vm.

5 Compute shift for the next iteration.
6 Using Arnoldi algorithm orthogonalize vm against Vm to obtain vm+1, such

that Vm+1 =
[
Vm, vm+1

]
.

7 Assuming Â = V T
m+1AVm+1, B̂ = V T

m+1B and Ĉ = CVm+1, for X̂ solve the

reduced order Riccati equation ÂT X̂ + X̂Â− X̂B̂R−1B̂T X̂ = −ĈT Ĉ.
8 Compute ‖Rm‖(relative) for convergence.

9 end while

10 Compute eigenvalue decomposition X̂ = TΛT T =
[
T1 T2

] [Λ1 O
O Λ2

] [
T T1
T T2

]
.

11 For negligible eigenvalues truncate Λ2 and compute Z = Vm+1T1Λ
1
2
1 .

3.1.2 RKSM for Solving Generalized CARE

The generalized CARE can be defined as

ATXE + ETXA− ETXBR−1BTXE + CTC = O, (3.4)

and the corresponding generalized continuous-time LTI system is

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(3.5)

In this case, the existence of the unique solution X of the generalized CARE (3.4) can

be ensured if eigenvalues of the matrix pair (A,E) satisfy λi+ λ̄j 6= 0,∀i, j = 1, 2, · · · , n.

Also, θj are the eigenvalues of (V T
mAVm, V

T
mEVm).

Then the orthogonal projector V spanned by them dimensional rational Krylov subspace

for a set of shift parameters µi ∈ C+; i = 1, 2, · · · ,m can be generalized as

Km = span

(
CT , (AT − µ1E)

−1
CT , · · · ,

m∏
i=1

(AT − µiE)
−1
CT

)
.
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Algorithm 5: G-RKSM.

Input : E,A,B,C,R, imax (number of iterations) and µi (initial shifts).
Output: Low-rank factored solution Z such that X ≈ ZZT .

1 Compute QR = CT (QR factorization).
2 Choose V1 = Q.
3 while not converged or m ≤ imax do

4 Solve vm = (AT − µm+1E
T )
−1
Vm.

5 Compute shift for the next iteration.
6 Using Arnoldi algorithm orthogonalize vm against Vm to obtain vm+1, such

that Vm+1 =
[
Vm, vm+1

]
.

7 Assuming Ê = V T
m+1EVm+1, Â = V T

m+1AVm+1, B̂ = V T
m+1B and Ĉ = CVm+1,

for X̂ solve the reduced order Riccati equation
ÂT X̂Ê + ÊT X̂Â− ÊT X̂B̂R−1B̂T X̂Ê = −ĈT Ĉ.

8 Compute ‖Rm‖(relative) for convergence.

9 end while

10 Compute eigenvalue decomposition X̂ = TΛT T =
[
T1 T2

] [Λ1 O
O Λ2

] [
T T1
T T2

]
.

11 For negligible eigenvalues truncate Λ2 and compute Z = Vm+1T1Λ
1
2
1 .

As before, assuming X̂ = V TXV, Ê = V TEV, Â = V TAV, B̂ = V TB and Ĉ = CV , the

approximated low-rank CARE for the generalized CARE (3.4) can be formed as

ÂT X̂Ê + ÊT X̂Â− ÊT X̂B̂R−1B̂T X̂Ê + ĈT Ĉ = O. (3.6)

The matrix U needs to be rearranged as

U =


vm+1µm+1

ETVmX̂H
−1
m emh

T
m+1,m

−(I − VmV T
m )AT vm+1


T

,

Because of the above extensions, Algorithm-(4) needs to be updated for the generalized

CARE, which is given in Algorithm-(5).

3.2 Structured Generalized System Derived from

Index-1 Descriptor System

The index-1 descriptor system needs to be structured into the generalized system and

apply RKSM to find the low-rank solution of the corresponding CARE. The semi-explicit
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form of a index-1 descriptor system can be represented in sparse form as[
E1 E2

O O

]
︸ ︷︷ ︸

E

[
ẋ1(t)

ẋ2(t)

]
︸ ︷︷ ︸
ẋ(t)

=

[
J1 J2

J3 J4

]
︸ ︷︷ ︸

A

[
x1(t)

x2(t)

]
︸ ︷︷ ︸
x(t)

+

[
B1

B2

]
︸ ︷︷ ︸
B

u(t),

y(t) =
[
C1 C2

]
︸ ︷︷ ︸

C

[
x1(t)

x2(t)

]
+Dau(t).

(3.7)

Here x1(t) ∈ Rn1 , x2(t) ∈ Rn2 with n1 + n2 = n are state vectors called differential and

algebraic variables, respectively. The sub-matrices E1, E2, J1, J2, J3, B1, B2, C1, C2 and

Da are sparse in appropriate dimensions with E1 and J1 are of full rank. Since J4 is

non-singular (i.e. det(A) 6= 0), the system (3.7) is an index-1 descriptor system.

The equations in (3.7) are equivalent to the DAEs given below

E1ẋ1 + E2ẋ2 = J1x1(t) + J2x2(t) +B1u(t),

O = J3x1(t) + J4x2(t) +B2u(t),

y(t) = C1x1(t) + C2x2(t) +Dau(t).

(3.8)

From the algebraic (second) equation of the (3.8), X2 can be eliminated as

x2(t) = −J−14 J3x1(t)− J−14 B2u(t). (3.9)

By proper substitution of (3.9) in the DAEs (3.8) can be structured to the generalized

system as

E ẋ(t) = Ax(t) + Bū(t),

y(t) = Cx(t) +Dū(t),
(3.10)

where, the following Schur complements have been considered

E : = E1 − E2J4
−1J3, A := J1 − J2J4−1J3,

B : = [B1 − J2J4−1B2, E2J4
−1B2], C := C1 − C2J4

−1J3,

D : = [Da − C2J4
−1B2, O], x := x1, ū(t) := [uT (t), u̇T (t)]T .

(3.11)

Therefore, the index-1 descriptor system (3.7) can be structured as the generalized

system (3.10) by proper elimination as substitution as above. It to be noted that the

structured matrices in (3.10) are formed in dense form.
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Following lemma shows that the structured generalized system (3.10) is equivalent to

the corresponding index-1 descriptor system (3.7) in the sense of their transfer functions

and finite spectrum.

Lemma 3.1 (Equivalence of Transfer Functions). Assume the transfer functions

G(s) = C(sE − A)−1 + Da and G(s) = C(sE − A)−1 + D are obtained from the semi-

explicit index-1 descriptor system (3.7) and the structured generalized system (3.10),

respectively. Then, the transfer functions G(s) and G(s) are identical.

Then, the generalized CARE corresponding to (3.10) can be defined as

ATXE + ETXA− ETXBR−1BTXE + CTC = O, (3.12)

In case of power system model E2 = O, then the system (3.7) can be written as[
E1 O

O O

]
︸ ︷︷ ︸

E

[
ẋ1(t)

ẋ2(t)

]
︸ ︷︷ ︸
ẋ(t)

=

[
J1 J2

J3 J4

]
︸ ︷︷ ︸

A

[
x1(t)

x2(t)

]
︸ ︷︷ ︸
x(t)

+

[
B1

B2

]
︸ ︷︷ ︸
B

u(t),

y(t) =
[
C1 C2

]
︸ ︷︷ ︸

C

[
x1(t)

x2(t)

]
+Dau(t).

(3.13)

In this case, the DAEs (3.8) can be re-defined as

E1ẋ1 = J1x1(t) + J2x2(t) +B1u(t),

O = J3x1(t) + J4x2(t) +B2u(t),

y(t) = C1x1(t) + C2x2(t) +Dau(t).

(3.14)

In the similar manner, the index-1 descriptor system (3.13) defined for power system

model can be structured into the generalized system (3.10) considering the following

Schur complements

E : = E1, A := J1 − J2J4−1J3,

B : = B1 − J2J4−1B2, C := C1 − C2J4
−1J3,

D : = Da − C2J4
−1B2, x := x1, ū(t) := u(t).

(3.15)
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3.3 RKSM for Solving Structured Generalized

CARE

Let us introduce an orthogonal projector V spanned by the m dimensional rational

Krylov subspace for a set of given adaptive shift parameters µi ∈ C; i = 1, 2, · · · ,m
defined as

Km = span

(
CT , (AT − µ1E)

−1CT , · · · ,
m∏
i=1

(AT − µiE)
−1CT

)
.

According to the Galerkin condition, we have

V T (ATXE + ETXA− ETXBR−1BTXE + CTC)V = O.

After simplification, the low-rank CARE can be written as

ÂT X̂Ê + ÊT X̂Â − ÊT X̂B̂R−1B̂T X̂Ê + ĈT Ĉ = O. (3.16)

Here, X̂ = V TXV, Ê = V TEV, Â = V TAV, B̂ = V TB and Ĉ = CV . The equation

(3.16) is the low-rank CARE and can be solved by any existing method, such as Schur-

decomposition or MATLAB care command. X̂ is taken as the low-rank approximation

of X, corresponding to the low-rank CARE (3.16).

3.3.1 Convergence Criteria and Related Theorems

Arnoldi relation is a very essential tool for the computation of residual of the RKSM

iterations. Following lemma highlights the formulation of the Arnoldi relation for the

shifts µi ∈ C; i = 1, 2, · · · ,m [88, 89].

Lemma 3.2 (Arnoldi Relation). The rational Krylov subspace Km = span(Vm) for

m ≥ 1 satisfies the Arnoldi relation as follows

ATVm = VmTm + vm+1g
T
m; V T

mVm = I, (3.17)

where v̂m+1β = vm+1µm − (I − VmV
T
m )AT vm+1 is the QR decomposition of the right

hand side matrix with gTm = βhm+1,me
T
mH

−1
m .
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To avoid extra matrix-vector multiplies per iteration, the computation of Tm can be

performed more efficiently than the explicit product Tm = V T
mAVm. The following

lemma describes the procedure suggested by Ruhe, where an extra multiplication by A
is only performed to build the projected matrix [90].

Lemma 3.3 (Building the Projected Matrix). Let the columns of Vm be an or-

thonormal basis of the rational Krylov subspace Km with Dm = diag(µ1, µ2, · · · , µm).

Then the following relation holds for the projected matrix Tm.

Tm = V T
mAVm =

(
I +HmDm − V T

mAvm+1hm+1,me
T
m

)
H−1m . (3.18)

In the Lemma-(3.2) and Lemma-(3.3), the matrix Hm+1,m =

[
Hm

hm+1,me
T
m

]
contains the

orthogonalization co-efficient that generates the orthogonal columns of Vm+1 and em is

the last p columns of the mp-th order identity matrix.

Theorem 3.4 (Residual of the RKSM Iterations). Let Vm be the orthogonal pro-

jector spanned by the rational Krylov subspace Km and X ≈ V X̂V T is the solution of the

continuous algebraic Riccati equation using the low-rank solution X̂. Then, the residual

of m-th iteration can be computed as

‖Rm‖F = ‖SJST ‖F ; J =


O I O

I O I

O I O

 , (3.19)

where ‖.‖F denotes the Frobenius norm and S is a block upper triangular matrix in the

QR factorization of the matrix U defined as

U =
[
vm+1µm+1 ETVmX̂H−1m emh

T
m+1,m − (I − VmV T

m )AT vm+1

]
. (3.20)

Proof. Assume g = (I − VmV
T
m )AT vm+1 and consider the reduced QR factorization

CT = V1β0. Then, by putting the relations in equation (3.17) of Lemma-(3.2), the

relation can be defined

ATVm = VmTm + vm+1µmhm+1,me
T
mH

−1
m − ghm+1,me

T
mH

−1
m . (3.21)

The residual of the CARE (3.12) can be written as

R = ATXE + ETXA+ ETXBR−1BTXE + CTC. (3.22)

Page 46 of 93



Chapter 3: RKSM for the CARE arising from index-1 descriptor system

Consider the approximate solution using the low-rank solution X̂ as X = VmX̂V
T
m and

equation-(3.18) in Lemma-(3.3), then applying (3.21) in (3.22), we get

Rm = vm+1µmhm+1,me
T
mH

−1
m X̂mV

T
mE − ghm+1,me

T
mH

−1
m X̂mV

T
mE

+ ETVmX̂mH
−T
m emh

T
m+1,mµ

T
mv

T
m+1 − ETVmX̂mH

−T
m emh

T
m+1,mg

T + VmT
T
mX̂mV

T
mE

+ ETVmX̂mTmV
T
m + ETXBR−1BTXE + CTC,

= ETVmX̂mH
−T
m emh

T
m+1,mµ

T
mv

T
m+1 + (vm+1µm − g)hm+1,me

T
mH

−1
m X̂T

mV
T
mE

− ETVmX̂mH
−T
m emh

T
m+1,mg

T + VmV
T
mATVmX̂mV

T
mE + ETVmX̂mV

T
mAVmV T

m

+ ETXBR−1BTXE + CTC,

= ETVmX̂mH
−T
m emh

T
m+1,mµ

T
mv

T
m+1 + (vm+1µm − g)hm+1,me

T
mH

−1
m X̂T

mV
T
mE

− ETVmX̂mH
−T
m emh

T
m+1,mg

T + (AVmV T
m )TXE + ETX(AVmV T

m )

+ ETXBR−1BTXE + CTC,

=
[
ETVmX̂mH

−T
m emh

T
m+1,m vm+1µm − g ETVmX̂mH

−T
m emh

T
m+1,m

]

×


µTmv

T
m+1

hm+1,me
T
mH

−1
m X̂T

mV
T
mE

−gT

+O,

=
[
vm+1µm ETVmX̂mH

−T
m emh

T
m+1,m − g

]
O I O

I O I

O I O




µTmv
T
m+1

hm+1,me
T
mH

−1
m X̂T

mV
T
mE

−gT


= SJST .

(3.23)

Thus, the proof follows from equation (3.23).

Then, using the reduced QR factorization CT = V1β0 the relative-residual can be esti-

mated as follows

‖Rm‖(relative) =
‖RmF
‖βT0 β0F

. (3.24)

The computation of the norm of the approximate solution is high time expensive and set-

ting stopping criteria based on direct simulation is impractical due to several constraints.

To overcome these difficulties and have smooth convergence, the relative residual (3.24)

can be used efficiently.

Thus, the simulation process must be stopped, if the value of relative residual under a

certain margin of tolerance, i.e. ‖Rm‖(relative) ≤ tol.
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3.3.2 Treatment for the Unstable Systems

If system (3.10) is unstable an initial feedback stabilization is required by using the

initial-feedback matrix K = K0 and for each iteration, it needs to be updated as K =

(BT X̂)V E by the solution of (3.16). Then, A needs to be replaced by Af = A − BK.

Thus, the rational Krylov subspace for the projector V needs to be redefined as

Km = span

(
CT , (ATf − µ1E)

−1CT , · · · ,
m∏
i=1

(ATf − µiE)
−1CT

)
.

Furthermore, if the power system that governs the descriptor system has very critical

components of large dimensions, it is a very time consuming and complex process to

find the initial feedback matrix K0. In this circumstance, introduce K0 = O initially

and update the value of K at each iteration as K = (BT X̂)V E , where the other steps

will remain same.

3.3.3 Sparse Form of the Basis of the Krylov Subspace

The matrix A in (3.10) is in dense form and the convergence of the structured system

becomes slow and has ill-conditioned efficiency. To bypass these drawbacks at each

iteration, a shifted linear system needs to be solved in the form

(AT − µiE)vi = Vi−1,

or, ((J1 − J2J4−1J3)T − µiE1)vi = Vi−1.
(3.25)

Thus, for vi the following linear system needs to be solved

[
J1 − µiE1 J2

J3 J4

]T [
vi

∗

]
=

[
Vi−1

O

]
. (3.26)

Here ∗ is the truncated term, which is connected to the algebraic part of the descriptor

system. Though the linear system (3.26) is higher dimensional, it is sparse and can be

solved by the sparse-direct solver very efficiently [91].

The whole procedure to solve CARE using the low-rank factored solution is summarized

in the Algorithm-6.
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Algorithm 6: G-RKSM (Structured).

Input : E1, J1, J2, J3, J4, B1, B2, C1, C2, R, imax (number of iterations) and µi
(initial shifts).

Output: Low-rank factored solution Z such that X ≈ ZZT and optimal
feedback matrix Ko.

1 Compute QR = (C1 − C2J4
−1J3)

T (QR factorization).
2 Choose V1 = Q.
3 while not converged or m ≤ imax do
4 Solve the linear system (3.26) for vm.
5 Compute adaptive shifts for the next iterations (if store is empty).
6 Using Arnoldi algorithm orthogonalize vm against Vm to obtain vm+1, such

that Vm+1 =
[
Vm, vm+1

]
.

7 Assuming Ê , Â, B̂ and Ĉ are defined in (3.29), for X̂ solve the reduced order

Riccati equation ÂT X̂Ê + ÊT X̂Â − ÊT X̂B̂R−1B̂T X̂Ê = −ĈT Ĉ.
8 Compute ‖Rm‖(relative) for convergence.

9 end while

10 Compute eigenvalue decomposition X̂ = TΛT T =
[
T1 T2

] [Λ1 O
O Λ2

] [
T T1
T T2

]
.

11 For negligible eigenvalues truncate Λ2 and construct Z = Vm+1T1Λ
1
2
1 .

12 Compute the optimal feedback matrix Ko = R−1(B1 − J2J4−1B2)
T (ZZT )E1.

For the stabilized system using the initial-feedback matrix K0, the expressions (3.25)

and (3.26) can be written as

(ATf − µiE)vi = Vi−1,

or, (((J1 −B1K0)− J2J4−1(J3 −B2K0))
T − µiE1)vi = Vi−1,

(3.27)

[
(J1 −B1K0)− µiE1 J2

J3 −B2K0 J4

]T [
vi

∗

]
=

[
Vi−1

O

]
. (3.28)

To evaluate the shifted linear system (3.27), explicit inversion of (A − BK) (usually

dense) should be avoided in practice, instead the Sherman-Morrison-Woodbury formula

needs to be used as follows

(A− BK)−1 = A−1 +A−1B(I −KA−1B)−1KA−1.

This iterative process will be continued until the desired convergence achieved. The

stabilization approach with the implementation of the initial feedback matrix K0 is

summarized in the Algorithm-7.
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Algorithm 7: G-RKSM-FB (Structured).

Input : E1, J1, J2, J3, J4, B1, B2, C1, C2, R,K0 (initial feedback matrix) imax
(number of iterations) and µi (initial shifts).

Output: Low-rank factored solution Z such that X ≈ ZZT and optimal
feedback matrix Ko.

1 Compute QR = (C1 − C2J4
−1J3)

T (QR factorization).
2 Choose V1 = Q.
3 Choose K = K0.
4 while not converged or m ≤ imax do
5 Solve the linear system (3.28) for vm.
6 Compute adaptive shifts for the next iterations (if store is empty).
7 Using Arnoldi algorithm orthogonalize vm against Vm to obtain vm+1, such

that Vm+1 =
[
Vm, vm+1

]
.

8 Assuming Ê , Â, B̂ and Ĉ are defined in (3.29), for X̂ solve the reduced order

Riccati equation ÂT X̂Ê + ÊT X̂Â − ÊT X̂B̂R−1B̂T X̂Ê = −ĈT Ĉ.
9 Update K = (B̂T X̂)Vm+1E1.

10 Compute ‖Rm‖(relative) for convergence.

11 end while

12 Compute eigenvalue decomposition X̂ = TΛT T =
[
T1 T2

] [Λ1 O
O Λ2

] [
T T1
T T2

]
.

13 For negligible eigenvalues truncate Λ2 and construct Z = Vm+1T1Λ
1
2
1 .

14 Compute the optimal feedback matrix Ko = R−1(B1 − J2J4−1B2)
T (ZZT )E1.

3.3.4 Sparse Form of the Matrices in the Reduced Order

System

The matrices in the structured generalized system are in the dense form and this is con-

tradictory to the aim of the work. To resolve this issue, explicit form of the reduced order

matrices will not be used to construct reduced order system. The sparsity preserving

reduced order matrices can be attained by following way

Ê = V TE1V, Â = V TJ1V − (V TJ2)J4
−1(J3V ),

B̂ = V TB1 − (V TJ2)J4
−1B2, Ĉ = C1V − C2J4

−1(J3V ).
(3.29)

For the improvement of the consistency of the proposed algorithms, the matrix formu-

lations in (3.29) will be implemented.
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3.3.5 Optimally Stabilized System

The low-rank solution X̂ is symmetric and positive definite and can be factorized as

X̂ = Y Y T . Using the matrix property, the original solution can be reproduced as

X = V X̂V T . Then, the desired low-rank factored solution Z = V Y of the CARE (3.12)

can be stored.

At the end, the optimal feedback matrix Ko = R−1BTXE = R−1BT (ZZT )E can be

achieved from the final low-rank factored solution Z and assuming As = A − BKo the

system (3.10) can be optimally stabilized as

E ẋ(t) = Asx(t) + Bu(t),

y(t) = Cx(t) +Du(t).
(3.30)
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Chapter 4

Kleinman-Newton Method Based

on LRCF-ADI for the CARE

Arising from Index-1 Descriptor

System

4.1 Alternative Direction Implicit Method

Alternative Direction Implicit (ADI) iteration was developed by Peaceman et al. in

1955, for solving the linear system MX = b, where the matrix M = M1 +M2 ∈ Rn×n is

symmetric, positive definite arising in the numerical solution of partial differential equa-

tions [92]. If M represents a centered finite difference discretization in two-dimensional

space, then M1 and M2 can be chosen as finite difference dicretizations with respect to

x and y direction, respectively. The ADI iteration is for i = 1, 2, · · · (when converges).

defined in terms of double steps as

(M1 + µiIn)Xi− 1
2

= (µiIn −M2)Xi−1 + b,

(M2 + µiIn)Xi = (µiIn −M1)Xi− 1
2

+ b,
(4.1)

where µi ∈ R+ are the shift parameters such that the above ADI iteration converges

with super-linear convergence rate [93].
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4.1.1 Single-step ADI Scheme for Solving Generalized CALE

Consider the generalized CALE for the ADI model problem defined as

ATXE + ETXA = −CTC, (4.2)

associated with the generalized continuous-time LTI system

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(4.3)

Then, the original ADI scheme (4.1) can be redefined as

(AT + µiE
T )Xi− 1

2
= −CTC −Xi−1(A− µiE),

(AT + µiE
T )XT

i = −CTC −XT
i− 1

2

(A− µiE),
(4.4)

where the shift parameters µi ∈ C− are allowed and the initial iteration is taken as

X0 = X0
T ∈ Rn×n .

After elimination and simplification of the equations in (4.4), the single-step ADI scheme

can be derived as

Xi = (AT + µiE
T )−1(AT − µ̄iET )Xi−1(A

T − µ̄iET )T (AT + µiE
T )−T

− 2Re(µi)(A
T + µiE

T )−1CTC(AT + µiE
T )−T .

(4.5)

4.1.2 LRCF-ADI Method for Solving Generalized CALE

Let Zi ∈ Rn×ip is a low-rank Cholesky-factor of Xi ∈ Rn×n such that Xi = ZiZ
T
i . The

matrix Zi does not have to be a square matrix nor have a lower triangular structure.

Then by applying the Cholesky factorization in (4.5), the low-rank ADI scheme can be

found as

Z0 = On×p,

ZiZ
T
i = {(AT + µiE

T )−1(AT − µ̄iET )Zi−1}{((AT + µiE
T )−1(AT − µ̄iET )Zi−1}T

− 2Re(µi){(AT + µiE
T )−1CT }{(AT + µiE

T )−1CT }T ∈ Rn×ip.
(4.6)
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So, Zi on the left side of (4.5) can be obtained by the combination of two factors on the

right as

Zi =
[√
−2Re(µi)(A

T + µiE
T )−1CT (AT + µiE

T )−1(AT − µ̄iET )Zi−1

]
. (4.7)

Thus, the ADI algorithm can be reformulated in terms of Cholesky-factor Zi of Xi and

there will be no need to estimate or store Xi at each iteration as only Zi is required. The

initial form of low-rank ADI in terms of Cholesky-factor, which computes the Cholesky-

factor Zi of Xi as

Z1 =
√
−2Re(µ1)(A

T + µ1E
T )−1CT ∈ Rn×p,

Zi =
[√
−2Re(µi)(A

T + µiE
T )−1CT (AT + µiE

T )−1(AT − µ̄iET )Zi−1

]
∈ Rn×ip.

(4.8)

Following lemma depicts one of the vital aspects for the formulation of the LRCF-ADI

iterates [84].

Lemma 4.1 (Commutative Identity). For all matrices M,N ∈ Cn×n and α, β, the

matrices (M ± αN)±1 and (M ± βN)±1 commute, provided the inverses exist.

Consider the following assumption

γi =
√
−2Re(µi),

Fi = (AT + µiE
T )−1CT ,

Gi = (AT + µiE
T )−1(AT − µ̄iET ),

Hi,j = (AT − µ̄iET )(AT + µiE
T )−1.

(4.9)

Then the low-rank Cholesky-factor Zi in the above scheme can be written as

Zi =
[
γiFi, γi−1GiFi−1, γi−2GiGi−1Fi−2, · · · , γ1GiGi−1 · · ·G1F1

]
. (4.10)

Using GiFi = Hi,jFi, GiGj = Hi,jHj,i,∀i, j and Lemma-(4.1), the equation (4.10) can

be re-written as

Zi =
[
γiFi, γi−1Hi−1,iFi, γi−2Hi−2,i−1Hi−1,iFi, · · · , γ1H1,2 · · ·Hi−1,iFi

]
. (4.11)
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Algorithm 8: G-LRCF-ADI.

Input : E,A,C, imax (number of iterations) and shift parameters {µj}imax
j=1 .

Output: Low-rank Cholesky-factor Z such that X ≈ ZZT .
1 Consider Z0 = [ ].
2 for i← 1 to imax do
3 if i = 1 then
4 Solve V1 = (AT + µ1E

T )−1CT .
5 else
6 Compute Vi = Vi−1 − (µi + µ̄i−1)(A

T + µiE
T )−1ETVi−1.

7 end if

8 Update Zi =
[
Zi−1

√
−2Re(µi)Vi

]
.

9 end for

Thus, considering i ≥ 1 and reversing the order of the shift parameters LRCF-ADI

iterations yields the form as

V1 = (AT + µ1E
T )−1CT ,

Z1 = γ1V1 =
√
−2Re(µ1)(A

T + µ1E
T )−1CT ,

Vi = Hi−1,iVi−1 = Vi−1 − (µi + µ̄i−1)(A
T + µiE

T )−1ETVi−1,

Zi =
[
Zi−1 γiVi

]
=
[
Zi−1

√
−2Re(µi)Vi

]
.

(4.12)

Summary of the above process summarized in Algorithm-(8).

4.1.3 Modified Form of LRCF-ADI Method for Solving

Generalized CALE

To find the modified form of the LRCF-ADI method for the generalized system, consider

the following theorem.

Theorem 4.2 (Modified LRCF-ADI Iterates). Assuming a set of adjustable shift

parameters, for two subsequent block iterates Vi, Vi+1 of Algorithm-(8) related to the pair

of complex conjugated shifts {µi, µi+1 := µ̄i} it holds

Vi+1 = V̄i + 2δiIm(Vi), (4.13)

with δi = Re(µi)
Im(µi)

and iterates associated to real shifts are always purely real.

Proof. See [86] and references therein.
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Algorithm 9: Modified G-LRCF-ADI.

Input : E,A,C, imax (number of iterations) and shift parameters {µj}imax
j=1 .

Output: Low-rank Cholesky-factor Z such that X ≈ ZZT .
1 Consider Z0 = [ ].
2 for i← 1 to imax do
3 if i = 1 then
4 Solve V1 = (AT + µ1E

T )−1CT .
5 else
6 Compute Vi = Vi−1 − (µi + µ̄i−1)(A

T + µiE
T )−1ETVi−1.

7 end if
8 if Im(µi) = 0 then
9 Update Zi =

[
Zi−1

√
−2µiVi

]
.

10 else

11 Assume γi =
√
−2Re(µi), δi = Re(µi)

Im(µi)
,

12 Update Zi+1 =
[
Zi−1 γi(Re(Vi) + δiIm(Vi)) γi

√
δ2i + 1Im(Vi)

]
,

13 Compute Vi+1 = V̄i + 2δi Im(Vi).
14 i = i+ 1

15 end if

16 end for

Applying Theorem-(4.2), the following matrix can be obtained[
Vi Vi+1

]
=
[√
−2Re(µi)(Re(Vi) + δiIm(Vi))

√
−2Re(µi)

√
δ2i + 1 Im(Vi)

]
. (4.14)

Then, for a pair of complex conjugate shifts at any iteration, the low-rank Cholesky-

factor Zi can be computed as

Zi+1 =
[
Zi−1

√
−2Re(µi)(Re(Vi) + δiIm(Vi))

√
−2Re(µi)

√
δ2i + 1 Im(Vi)

]
. (4.15)

Summary of the above process summarized in Algorithm-(9).

4.1.4 Convergence Criteria and Recurrence Relations

The computation of residuals of the LRCF-ADI iterations can be achieved using a sim-

plified technique implementing the shift parameters. This approach will be efficient for

time and memory allocation.

Theorem 4.3 (Residual of the ADI Iterations). The residual for CALE (4.2) at

i-th step of LRCF-ADI method is of rank at most m and given by

R(Zi) = ATZiZ
T
i E + ETZiZ

T
i A+ CTC = WiW

T
i , (4.16)
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with Wi =
(∏m

i=1 (AT − µ̄iET )(AT + µiE
T )−1

)
CT , such that µi /∈ Λ(A,E) for all i then

the rank is exactly m.

Proof. Consider the residual of the CALE (4.2) in terms of the low-rank Cholesky-factor

Zi in the i-th iteration

R(Zi) = ATZiZ
T
i E + ETZiZ

T
i A+ CTC. (4.17)

For all µi /∈ Λ(A,E) , the equation (4.2) is equivalent to the Stein equation

ZZT = (AT − µ̄iET )(AT + µiE
T )−1ZiZ

T
i (AT − µ̄iET )(AT + µiE

T )−T + Z1Z
T
1 ,

(4.18)

where, Z1 is the first low-rank Cholesky-factor of the solution of (4.2) obtained with

Algorithm-(9) and the complex Cayley type transformation Hi,j .

Using (4.18) and Lemma-5.2 & Lemma-5.3 in [94], (4.17) can be written as

R(Zi) = AT (ZiZ
T
i − ZZT )E + ET (ZiZ

T
i − ZZT )A,

=

(
m∏
i=1

(AT − µ̄iET )(AT + µiE
T )−1

)
CTC

(
m∏
i=1

(AT − µ̄iET )(AT + µiE
T )−1

)T
,

= WiW
T
i ,

(4.19)

with Wi =
(∏m

i=1 (AT − µ̄iET )(AT + µiE
T )−1

)
CT .

Thus, for WiW
T
i ≤ τ the ADI iterations in the LRCF-ADI algorithm needs to be

stopped, where τ is a given margin of tolerance.

Now, apply Lemma-(4.1) and Theorem-(4.3) to find Vi in terms of the residual factor

Wi−1 by the following relation

Vi = (AT − µ̄iET )(AT + µiE
T )−1Vi−1,

= (AT + µiE
T )−1

i−1∏
j=1

(AT − µ̄jET )(AT + µjE
T )−1

CT ,

= (AT + µiE
T )−1Wi−1.

(4.20)
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Algorithm 10: Modified G-LRCF-ADI (updated).

Input : E,A,C, τ (tolerance), imax (number of iterations) and shift
parameters {µj}imax

j=1 .
Output: Low-rank Cholesky-factor Z such that X ≈ ZZT .

1 Consider W0 = CT , Z0 = [ ] and i = 1.
2 while ‖Wi−1W

T
i−1‖ ≥ τ or i ≤ imax do

3 Solve Vi = (AT + µiE
T )−1Wi−1.

4 if Im(µi) = 0 then
5 Update Zi =

[
Zi−1

√
−2µiVi

]
,

6 Compute Wi = Wi−1 − 2µiE
TVi.

7 else

8 Assume γi =
√
−2Re(µi), δi = Re(µi)

Im(µi)
,

9 Update Zi+1 =
[
Zi−1 γi(Re(Vi) + δiIm(Vi)) γi

√
δ2i + 1 Im(Vi)

]
,

10 Compute Wi+1 = Wi−1 − 4Re(µi)E
T [Re(Vi) + δiIm(Vi)].

11 i = i+ 1

12 end if
13 i = i+ 1

14 end while

Then, using (4.20) the residual factor Wi can be derived in a recursive form as

Wi =

(
m∏
i=1

(AT − µ̄iET )(AT + µiE
T )−1

)
CT ,

= (AT − µ̄iET )(AT + µiE
T )−1

i−1∏
j=1

(AT − µ̄jET )(AT + µjE
T )−1

CT ,

= (AT − µ̄iET )(AT + µiE
T )−1Wi−1,

=
[
I − (µi + µ̄i)E

T (AT + µiE
T )−1

]
Wi−1,

= Wi−1 − 2Re(µi)E
TVi.

(4.21)

In the case of real setting, µi+1 := µ̄i needs to be considered and using Theorem-(4.2)

the following form can be defined

Wi+1 = Wi − 2Re(µi+1)E
TVi+1,

= Wi−1 − 2Re(µi)E
TVi − 2Re(µi+1)E

TVi+1,

= Wi−1 − 2Re(µi)E
T
[
Vi + V̄i + 2δiIm(Vi)

]
,

= Wi−1 − 4Re(µi)E
T [Re(Vi) + δiIm(Vi)] .

(4.22)

The summary is given in Algorithm-(10).
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4.2 LRCF-ADI Based Kleinman-Newton Method

for Solving Structured Generalized CARE

Since the LRCF-ADI method is mainly derived for the generalized CALE, the LRCF-

ADI based Kleinman-Newton method needs to be divided into two steps. Initially,

the generalized CARE needs to be converted to the generalized CALE and then can

be solved by Kleinman-Newton method. At each Newton iterations, the LRCF-ADI

technique needs to be applied for once.

4.2.1 Conversion from CARE to CALE for the Structured

Generalized System

The structured generalized CARE corresponding to the system (3.10) is

ATXE + ETXA− ETXBR−1BTXE + CTC = O. (4.23)

The residual R(X) of the CARE (4.23) is

R(X) = ATXE + ETXA− ETXBR−1BTXE + CTC. (4.24)

From the Fre’chet derivative, we have

R′(Y ) = (A− BBTXE)TY E + ETY (A− BBTXE). (4.25)

Again, consider the Newton iteration and apply (4.25), we have

R′(∆Xi) +R(Xi) = O. (4.26)

Assuming ∆Xi = Xi+1 −Xi to (4.26) and simplification of (4.26) gives

(A− BBTXiE)TXi+1E + ETXi+1(A− BBTXiE) = −CTC − ETXiBR−1BTXiE . (4.27)

Now consider Ãi = A−BBTXiE and Wi =
[
CT ETXiB

]
, then equation (4.27) reduces

to a generalized CALE such as

ÃTi Xi+1E + ETXi+1Ãi = −WiWT
i . (4.28)
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Algorithm 11: G-KN.

Input : E ,A,B, C and X0 (initial assumption).
Output: Approximate solution X and feedback matrix K.

1 while i ≤ imax do

2 Compute Ãi = A− BBTXiE and Wi =
[
CT ETXiB

]
.

3 For Xi+1, solve ÃTi Xi+1E + ETXi+1Ãi = −WiWT
i .

4 Compute Ki+1 = BTXi+1E .

5 end while

The generalized CALE (4.28) can be solved for Xi+1 by any conventional method and

the corresponding feedback matrix Ki+1 = BTXi+1E can be estimated. The whole

mechanism for solving generalized CARE is called the Kleinman-Newton method. The

summary of the method is given in Algorithm-11.

4.2.2 LRCF-ADI Based Kleinman-Newton Method (KN-

LRCF-ADI) for Solving Converted Generalized CALE

In each iteration of Algorithm-11, the generalized CALE needs to be solved for once and

there are several techniques available to do it. In his Ph.D. thesis [95], Patrick discussed

LRCF-ADI approaches (Algorithm-3.2 Chapter-3 and Algorithm-6.2 in Chapter-6) for

solving generalized CALE derived from generalized CARE in the iterative loops of the

Kleinman-Newton algorithm. Now, the above mechanisms need to be implemented for

the index-1 descriptor system. For the adjustment, some modifications are required as

given below.

For the unstable index-1 descriptor systems, the initial feedback matrix K0 needs to

be introduced and instead of (Ã(i), E), corresponding shift parameters can be computed

from the eigen-pair (Ã(i) − BK0, E). The sparse form of the desired eigen-pair can be

structured as

(Ã(i) − BK0, E) = ((A− BK0)− BBT (Z(i)(Z(i))T )E , E),

=

([
(J1 −B1K0)−B1B

T
1 (Z(i)(Z(i))T )E1 J2

(J3 −B2K0)−B2B
T
1 (Z(i)(Z(i))T )E1 J4

]
,

[
E1 O

O O

])
.

(4.29)
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To find V
(i)
j , in each LRCF-ADI (inner) iteration a shifted linear system is needs to be

solved as

((Ã(i) − BK0) + µ
(i)
j E)TV

(i)
j =W(i)

j−1,

or, ((A− BK0)− BBT (Z
(i)
j−1(Z

(i)
j−1)

T )E + µ
(i)
j E)TV

(i)
j =W(i)

j−1.
(4.30)

Thus, V
(i)
j can be obtained from the following sparse form of the shifted linear system

[
(J1 −B1K0)−B1B

T
1 (Z

(i)
j−1(Z

(i)
j−1)

T )E1 + µjE1 J2

(J3 −B2K0)−B2B
T
1 (Z

(i)
j−1(Z

(i)
j−1)

T )E1 J4

]T [
V

(i)
j

∗

]

=

[
CT1 ET1 (Z

(i)
j−1(Z

(i)
j−1)

T )B1

CT2 O

]
.

(4.31)

The feedback matrix K(i) = BTX(i)E = BT (Z(i)(Z(i))T )E needs to be computed in each

LRCF-ADI (inner) iteration and the optimal feedback matrix Ko = K(imax) needs to be

stored after the final Newton (outer) iteration. The summary of the desired LRCF-ADI

based Kleinman-Newton method is given in the Algorithm-(12).

Finally, considering As = A−BKo the target system (3.10) can be optimally stabilized

as the system (3.30).
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Algorithm 12: G-KN-LRCF-ADI.

Input : E1, J1, J2, J3, J4, B1, B2, C1, C2, K0 (initial feedback matrix), and τ
(tolerance).

Output: Low-rank Cholesky-factor Z such that X ≈ ZZT and optimal feedback
matrix Ko.

1 for i← 1 to imax do

2 Choose Z
(i)
0 = [ ], K

(i)
0 = K0 and j = 0.

3 Assume W(i)
0 =

[
CT

1 (K(i−1))T

CT
2 O

]
.

4 Compute adaptive shifts
{
µ
(i)
1 , ......, µ

(i)
J

}
from the eigenpair defined in (4.29).

5 while
(
‖W(i)

j ‖2 > τ‖W(i)
0 ‖2

)
do

6 j = j + 1

7 Solve the linear system (4.31) for V
(i)
j .

8 if Im(µ
(i)
j ) = 0 then

9 Update Z
(i)
j =

[
Z

(i)
j−1

√
−2µiV

(i)
j

]
,

10 Compute W(i)
j =W(i)

j−1 − 2µ
(i)
j E

T
1 V

(i)
j ,

11 Compute K
(i)
j = K

(i)
j−1 − 2µ

(i)
j (B1 − J2J4−1B2)

TV
(i)
j (V

(i)
j )TE1.

12 else

13 Assume γ
(i)
j =

√
−2Re(µ

(i)
j ), β

(i)
j =

Re(µ
(i)
j )

Im(µ
(i)
j )

,

δ
(i)
j = Re(V

(i)
j ) + β

(i)
j Im(V

(i)
j ),

14 Compute Zd =
[
γ
(i)
j δ

(i)
j γ

(i)
j

√
(β

(i)
j )2 + 1 Im(µ

(i)
j )
]
,

15 Update Z
(i)
j+1 =

[
Z

(i)
j−1 Zd

]
,

16 Compute W(i)
i+1 =W(i)

i−1 − 4Re(µ
(i)
j )ET

1 δ
(i)
j ,

17 Compute K
(i)
j+1 = K

(i)
j−1 + (B1 − J2J4−1B2)

TZdZd
TE1,

18 j = j + 1.

19 end if

20 end while

21 Update Z(i) = Z
(i)
j and K(i) = K

(i)
j .

22 end for
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Chapter 5

Numerical Result

In this chapter we analyze the practical benefits of the RKSM and LRCF-ADI based

Kleinaman-Newton method, which are discussed in Chapter-3 and Chapter-4 respec-

tively. We illustrate the numerical results to asses the applicability and compatibility of

the proposed techniques. The vital aspects of the numerical computation are memory

allocation and the rate of convergence. Also, the robustness of the simulation process is

under the focus.

To justify the efficiency and accuracy of the proposed methods, we implement the pro-

posed methods to the real-world power models.

5.1 Brazilian Inter-connected Power System (BIPS)

Models

Power system models are an essential part of engineering fields that consists of simula-

tions based on power systems and grid networks. The computation required in order to

analyze electrical power systems by means of mathematical models utilizing real-time

data. There are a number of applications of the power system model, i.e., electric power

generation, utility transmission and distribution, railway power systems and industrial

power generation [96]. The power system models can be represented by the DAEs with

appropriate constraints.

The Brazilian Inter-connected Power System (BIPS) models are one of the most conve-

nient examples of the power system models [97]. The models in BIPS systems can be
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represented as the block matrix representation of DAEs as follows[
E1 O

O O

]
︸ ︷︷ ︸

E

[
ẋ1(t)

ẋ2(t)

]
︸ ︷︷ ︸
ẋ(t)

=

[
J1 J2

J3 J4

]
︸ ︷︷ ︸

A

[
x1(t)

x2(t)

]
︸ ︷︷ ︸
x(t)

+

[
B1

B2

]
︸ ︷︷ ︸
B

u(t),

y(t) =
[
C1 C2

]
︸ ︷︷ ︸

C

[
x1(t)

x2(t)

]
+Dau(t).

(5.1)

where E1 ∈ Rn1 , J4 ∈ Rn2 with n1+n2 = n are non-singular sub-matrices and other sub-

matrices are sparse in appropriate dimensions. As n1 < n, a number of finite eigenvalues

in the spectrum Λ(A,E) lie in the C−. The above special structure of the power model

(5.1) provides an index-1 descriptor system.

Since the inverse of E does not exist, the formulation of the matrix equations is not as

conventional as before. Eliminating the algebraic variables in (5.1), the system can be

reduced to the generalized state-space system as

E ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) +Du(t).
(5.2)

Here, the matrices formed in terms of Schur compliments as

x = x1, E = E1, A = J1 − J2J4−1J3,

B = B1 − J2J4−1B2, C = C1 − C2J4
−1J3, D = Da − C2J4

−1B2.

Here, our aim is to apply the proposed methods to some of the BIPS model derived from

the test systems BIPS98 and BIPS07 [98, 99]. The models considered for the numerical

computations are all of the index-1 descriptor systems. The following Table-5.1 provides

the details about the models 6.

The models mod − 606, mod − 1998, mod − 2476 and mod − 3078 have the unstable

eigenvalues, whereas the models mod − 1142, mod − 1450 and mod − 1963 have stable

eigenvalues [100]. Here name of the models are considered according to their number of

states. In the numerical computation we will target the unstable models only.

The stability of the target models is investigated and the unstable models are stabilized

through the Riccati based feedback stabilization process. The proposed methods are

employed to find the solution of Riccati equation arising from the BIPS models and

6https://sites.google.com/site/rommes/software
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Table. 5.1. Structure of the Models derived from BIPS test systems

Test systems BIPS98 BIPS07
Dimensions 7135 9735 11265 13545 15066 16861 21128

States 606 1142 1450 1963 1998 2476 3078
Algebraic variables 6529 8593 9815 11582 13068 14385 18050

Inputs 4 4 1 4 4 4 4
Outputs 4 4 1 4 4 4 4

corresponding feedback matrices are generated for system stabilization. Also, initial

Bernoulli feedback stabilization is implemented for the models having unstable eigen-

values.

All the results have been achieved using the MATLAB 8.5.0 (R2015a) on a Windows

machine having Intel-Xeon Silver 4114 CPU 2.20 GHz clock speed, 2 cores each and 64

GB of total RAM.

5.2 Graphical Comparison of the Properties of

Original and Structured System

Since the target models are derived from the index-1 descriptor systems, they can not

be simulated by the conventional approaches. The target models need to be structured

according to the techniques discussed in the Section-(3.2). The analytical validation of

the structured systems has been done in the mentioned section. In this section, the

graphical validation will be discussed.

Since all the models in the BIPS test systems have the same pattern, to reduce the time

and volume of the work we will show the properties of the mod − 1998 only for the

graphical validation.

Figure-(5.1) depicts the pattern of the matrices A and E in the original system with

dimension 13068. Figure-(5.2) depicts the pattern of the matrices A and E in the

structured system with dimension 1998. The matrices A and E in the original system

was sparse, whereas the matrix A in the structured system is dense. As mentioned in

the Sub-section (3.3.3), the dense form of the matrix A in the structured system will

not be computed explicitly.

The pattern preservation of the structured model for mod−1998 illustrates in the Figure-

(5.3). In the Figure-(5.3a), the similarity of the transfer functions of the original system

and structured system are displayed, whereas the Figure-(5.3b) and Figure-(5.3c) are
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(a) Matrix A (b) Matrix E

Figure. 5.1. Sparse form of the matrices A and E

(a) Matrix A (b) Matrix E

Figure. 5.2. Dense form of the matrices A and E

represented the absolute error and the relative error between the original system and

structured system for mod− 1998.

From the figurative evidence, we can conclude that the structured system is the proper

representative of the original system and can be used for further manipulations.
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(a) Transfer function (sigma plots)

(b) Absolute error

(c) Relative error

Figure. 5.3. Comparisons of the original system and the structured system
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Table. 5.2. Results of RKSM applied BIPS models

Model
No of

iterations
Tolerance

Space
dimension

Numerical
rank

CPU time
(second)

mod− 606 100 10−10 400 195 1.8079× 102

mod− 1998 200 10−10 800 266 1.4121× 103

mod− 2476 248 10−10 992 265 3.0553× 103

mod− 3078 257 10−5 1028 295 3.0065× 103

5.3 Comparison of the RKSM and KN-LRCF-

ADI Methods

In this section, we discuss the comparison of the numerical results achieved by applying

RKSM and KN-LRCF-ADI methods for the unstable BIPS models.

The CAREs arising from the models mod−606, mod−1998 and mod−2476 are efficiently

solved and stabilized the corresponding models by both RKSM and KN-LRCF-ADI

techniques. As the model mod− 3078 is semi-stable, the computation of CARE derived

from this model is not possible by LRCF-ADI techniques but by the RKSM approach

the model mod − 3078 successfully stabilized and the numerical result for the model

mod− 3078 is investigated for RKSM only.

The Table-5.2 depicts the numerical results of the stabilization process via RKSM for the

unstable BIPS models and various properties of the stabilized systems are illustrated,

whereas the Table-5.3 displays the several modes of ADI techniques in KN-LRCF-ADI

method for stabilizing the unstable BIPS models including characteristics of the stabi-

lized models.

In both of the tables Table-5.2 and Table-5.3 we analyze the same features of the sta-

bilized BIPS models so that we can easily compare the efficiency and robustness of the

proposed methods.

From the tables Table-5.2 and Table-5.3, it can be said that the proposed RKSM ap-

proach has quick convergence ability and occupy very small solution spaces to provide

efficient solutions of the CAREs. In contrast LRCF-ADI based Kleinman-Newton has

several approaches for finding the solutions of the CAREs, where almost all of the ap-

proaches required higher computation time.

Also, there are deviations of the numerical ranks of the factored solution of CAREs in

the Kleinman-Newton approaches and in all of the cases RKSM provides significantly

better results.
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Table. 5.3. Results of KN-LRCF-ADI applied BIPS models

Model
No of

Newton
iterations

Tolerance
Total

iterations
Numerical

rank
CPU time
(second)

mod− 606
5

10−5 311 481 2.7408× 102

10−10 544 953 7.2103× 102

10
10−5 508 473 4.1036× 102

10−10 853 969 7.9149× 102

mod− 1998
5

10−5 277 663 2.2981× 103

10−10 485 1201 5.8261× 103

10
10−5 514 497 3.2732× 103

10−10 1003 1417 1.1709× 104

mod− 2476
5

10−5 254 473 3.1296× 103

10−10 363 937 5.7464× 103

10
10−5 366 441 3.0172× 103

10−10 698 849 9.5013× 104

5.4 Graphical Comparisons of Stabilization of the

Unstable Systems

In this section, we show the stabilization of the unstable BIPS models in terms of

eigenvalues and step-responses. The comparative discussion for the RKSM and KN-

LRCF-ADI are illustrated as well.

From the sub-figures in Figure-5.4, Figure-5.5 and Figure-5.6, it can be concluded that

both the RKSM and LRCF-ADI based Kleinman-Newton techniques have adequate

efficiency to stabilize the unstable index-1 descriptor systems by closed-loop structures

via Riccati based feedback stabilization. But the Figure-5.7 illustrates the applicability

of the RKSM for the semi-stable index-1 descriptor system, whereas LRCF-ADI based

techniques are ineffective in this case.

Here, for the simulation tool capacity and visual convenience, the magnified view of the

eigenspaces are considered.

The investigation of the figures from Figure-5.8 to Figure-5.13 consists of the step-

responses of the unstable index-1 descriptor systems for several input-output relations

to compare the RKSM and LRCF-ADI based Kleinman-Newton approaches via of the

system stabilization. From those figures, it is evident that the Riccati based feedback sta-

bilization by RKSM is suitably robust. Contrariwise, though sometimes the Kleinman-

Newton approaches provide very good accuracy it has some scattered behaviors.
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(a) Stabilized by RKSM

(b) Stabilized by KN-LRCF-ADI

Figure. 5.4. Comparisons of the eigenvalues for the model mod− 606
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(a) Stabilized by RKSM

(b) Stabilized by KN-LRCF-ADI

Figure. 5.5. Comparisons of the eigenvalues for the model mod− 1998
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(a) Stabilized by RKSM

(b) Stabilized by KN-LRCF-ADI

Figure. 5.6. Comparisons of the eigenvalues for the model mod− 2476
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Figure. 5.7. Comparisons of the eigenvalues (stabilized by RKSM) for the model
mod− 3078

Moreover, the Figure-5.14 and Figure-5.15 show the applicability of the RKSM tech-

nique for the Riccati based feedback stabilization for the semi-stable index-1 descriptor

systems.

It to be noted that for the effective comparison step-responses of the only significant

input-output relations are investigated.
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(a) First-input/Third-output

(b) Second-input/First-output

Figure. 5.8. Comparisons of step-responses for the model mod− 606 (1st part)
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(a) Third-input/First-output

(b) Fourth-input/Third-output

Figure. 5.9. Comparisons of step-responses for the model mod− 606 (2nd part)
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(a) First-input/Third-output

(b) Second-input/First-output

Figure. 5.10. Comparisons of step-responses for the model mod−1998 (1st part)
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(a) Third-input/First-output

(b) Fourth-input/Third-output

Figure. 5.11. Comparisons of step-responses for the model mod − 1998 (2nd
part)
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(a) First-input/Third-output

(b) Second-input/First-output

Figure. 5.12. Comparisons of step-responses for the model mod−2476 (1st part)
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(a) Third-input/First-output

(b) Fourth-input/Third-output

Figure. 5.13. Comparisons of step-responses for the model mod − 2476 (2nd
part)
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(a) First-input/Third-output

(b) Second-input/First-output

Figure. 5.14. Comparisons of step-responses for the model mod−3078 (1st part)
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(a) Third-input/First-output

(b) Fourth-input/Third-output

Figure. 5.15. Comparisons of step-responses for the model mod − 3078 (2nd
part)
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Chapter 6

Conclusion and Future Research

In this chapter, we discuss the findings and limitations of the research work and draw

the concluding remarks. Also, we highlight some future research work in brief.

6.1 Conclusion

The thesis is mainly divided into two parts. Rational Krylov Subspace Method (RKSM)

is discussed for the solution of Continuous Algebraic Riccati Equation (CARE) and

LRCF integrated Alternative Direction Implicit (LRCF-ADI) technique based Kleinman-

Newton method is discussed as the comparative method.

A Krylov subspace-based projection method for solving Continuous Algebraic Riccati

Equations (CARE) derived from the large-scale sparse index-1 descriptor system and

hence apply Riccati based feedback stabilization to the unstable systems. Implementa-

tion of the adaptive shift parameters enhanced the feasible construction of the Krylov

subspaces in the sense of computation time and rapid convergence. Application of the

Sherman-Morrison-Woodbury formula made the iterative steps smother. A normalized

residual technique for the stopping condition of the proposed method is derived as well.

Sparsity preserving LRCF-ADI techniques is introduced to solve the Continuous Alge-

braic Lyapunov Equation (CALE). The conversion of CARE into CALE is discussed for

the index-1 descriptor systems and hence Kleinman-Newton method is applied to solve

the converted CALE, where the inner iterations are executed via the structured LRCF-

ADI technique. Also, a factorized residual technique is introduced as the convergence

criteria.
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Applicability, efficiency, and robustness of the proposed methods are validated by ap-

plying them to the unstable index-1 descriptor systems derived from Brazilian Inter-

connected Power Systems (BIPS). Stabilization of the unstable index-1 descriptor sys-

tems is investigated through the eigenvalue comparisons and stabilization of the step-

responses of several dominant input-output relations.

From the analytical and graphical comparisons of the results of numerical computations,

the findings are as follows:

� By both RKSM and KN-LRCF-ADI techniques CAREs arising from the unstable

index-1 descriptor systems are efficiently solved and the corresponding models are

stabilized.

� The semi-stable index-1 descriptor system successfully stabilized through Riccati

based feedback stabilization by RKSM, whereas KN-LRCF-ADI is still not suitable

for it.

� There are deviations of the numerical ranks of the factored solutions of CAREs in

the Kleinman-Newton approaches and RKSM provides significantly better results

for all the cases.

� RKSM approach has quick convergence ability and occupies very small solu-

tion spaces to provide the efficient solutions of the CAREs. In contrast LRCF-

ADI based Kleinman-Newton has several approaches for finding the solutions of

CAREs, where almost all of the approaches required higher computation time.

� Riccati based feedback stabilization for the index-1 descriptor systems by the

RKSM approach is very effective and robust. Contrariwise, LRCF-ADI based

Kleinman-Newton method is slightly scattered in case of the stabilization of step-

responses.

Thus, it can be concluded that the RKSM is suitably applicable to unstable index-1

descriptor systems for Riccati based feedback stabilization and this method is more

preferable than the Kleinman-Newton method in the sense of computation time and

memory allocation.
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6.2 Future Research

The research of the thesis can be extended for the future. The projection-based iterative

techniques through Krylov subspace will be a vital part of the reduced-order model

generation and system stabilization. In control theory, applications of the RKSM will

be very effective for the cheap computation time and minimized storage requirement.

The techniques proposed in this thesis can be applied for the descriptor systems of the

higher indices. The proposed techniques can be applied to the converted first-order form

of the second-order systems as well.

In this thesis the MATLAB library command care is used in RKSM to find the solution

of the Riccati equation governed from the reduced-order model. In the future, we will

try to find the self-sufficient RKSM algorithm for solving Riccati equations. Also, the

LRCF-ADI techniques are not applicable to the semi-stable systems, we have a goal to

work on it as well.

In future research, we will try to apply the Iterative Rational Krylov Algorithm (IRKA)

to find the solution of the Riccati equation governed from large-scale sparse descrip-

tor systems of different indices and higher orders. Moreover, the development of a

machine-independent iterative solver will be tried for the matrix equations (i.e., Riccati,

Lyapunov) arising from large-scale sparse descriptor systems.
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