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ABSTRACT

In the present research work the elastic-plastic behavior of a circular rod under

combined tension and torque within the elastic-plastic region has been investigated

theoretically. Here a theoretical model has been developed in order to examine the

elastic-plastic behavior of the rod under the two types of loading. This model is

based on the Prandtl-Reuss incremental stress-strain laws and the von Mises yield

criterion. Finally, a computational program has been developed to obtain the

theoretical results based on the model. To this end two bi-axial loading paths were

considered. In the first type of loading, a circular rod was initially subjected to

various levels of torque, that is, To/Ty=l.O, 0.75, 0.5 and 0.25, and then keeping the

initial angle of twist constant, subsequently it was subjected to gradual increasing

(quasistatic strain rate) axial tension and hence axial strain. In the second type of

loading, a circular rod was initially subjected to various levels of axial load, that is,

Fo/Fy=l.O, 0.75, 0.5 and 0.25, and then keeping the initial extension constant,

subsequently it was subjected to gradual increasing torque and hence shear strain.

Variation of different parameters such as axial and shear stresses, axial tension and

torque were determined. Moreover, results obtained from the present investigation

were compared with the available experimental results for similar types of bi-axial
loading.
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NOMEl\lClATURE

a radius of the rod y shear strain

c elastic core radius C, non-dimensional radius (=r/a)
E Young's modulus '1 non-dimensional elastic core
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F axial load <p the total angle of twist

G shear modulus ('5 axial stress

J polar moment of inertia u effective stress

h second invariant T shear stress
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p non-dimensional shear strain (=yo/yy) Subscript

Q non-dimensional axial strain (=EO/Ey) a initial value

r radius e in elastic region
T torque p in plastic region

Y yield strength oct octahedral
Greek Y,y yield value
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[; effective strain
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CHAPTER - ONE

INTRODUCTION

1.1 GENERAL

The history of plasticity as a sCIence began in 1864 when Tresca [1]

published his results on punching and extrusion experiments and formulated his

famous yield criterion. A few years later, using Tresca's results, Saint-Venant [2] and

Levy [3] laid some of the foundations ofthe modern theory of plasticity. For the next

75 years progress was slow and spotty, although important contributions were made

by von Mises [4], Hencky [5], Prandtl [6], and others. It is only since approximately

1945 that a unified theory began to emerge. Since that time, concentrated efforts by

many researchers have produced a voluminous literature, which is growing at a rapid

rate. Brief but excellent historical sketches are furnished by Hill [7] and Westergaard

[8].

The theories of plasticity fall into two categories: physical theories and

mathematical theories. The physical theories seek to explain why metals flow

plastically. Looking at materials from a microscopic viewpoint, an attempt is made to

determine what happens to the atoms, crystals, and grains of a material when plastic

flow occurs. The mathematical theories, on the other hand, are phenomenological in

nature and attempt to formalize. The eventual hope, of course, is for a merger of

these two approaches into one unified theory of plasticity, which will both explain

the material behavior and provide the engineer and scientist with the necessary tools

for practical application. The present treatise is concerned with the second of these

categories, i.e., the .mathematical theories of plasticity and their application, as

distinct from the physical theories.

In short, plasticity is the behavior of solid bodies in which they deform

permanently under the action of external loads, whereas elasticity is the behavior of

solid bodies in which they return to their original shape when the external force are

removed. Actually, however, the elastic body is an idealization, because all bodies

exhibit more or less plastic behavior even at the smallest loads. For the so-called

Chapter J: Introduction
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elastic body, however, this permanent deformation sufficiently small. Plasticity

theory thus concerns itself with situations in which the loads are sufficiently large so

that a measurable amount of permanent deformation occurs. It should further be

noted that plastic deformation is independent of the time under load.

The theory of p.lasticity can conveniently be divided into two ranges. At one

end are metal-forming processes such as forging, extrusion, drawing, rolling, etc.,

which involve very .large plastic strains and deformations. For these types of

problems the e.lastic strains can usually be neglected and the material can be assumed

to be perfectly plastic. At the other end of the scale are a host of problems involving

small plastic strains on the order of the e.lastic strains. These types of problems are of

prime importance to the structural and machine designer. With the great premium

currently placed on the saving of weight in aircraft, missile, and space appIications,

the designer can no longer use large factors of safety and beef up his design. He must

design for maximum .load to weight ratio, and this inevitably means designing into

the plastic range. Even in more prosaic industrial applications the competitive market

is forcing the application of more efficient design.

When a material is subjected to external forces its behavior depends not only

upon the magnitudes of the forces and the inherent strength of the material itself, but

also upon the way the forces are applied and combined. The particular combination

of forces may cause the material to deform e.lastically, when on release of the forces

it returns to its original dimensions; or the material may deform p.lastically, when a

permanent change of shape occurs; or it may break. The amount of deformation,

elastic or plastic, depends on the intensity of the forces at all points throughout the

materia!.

1.2 JUSTIFICATION

The demands for assurance of quaIity and reliability in engineering structures

or components have steadily increased over the past two decades. In mechanically

fasten assemblies, reIiability has frequently been assured by the simple expedient of

overdesign. This results in additional cost, either in component costs or in running

costs. However, pressure on costs has also been increasing, and there is a need to
Chapter J: Introduction
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eliminate overdesign while, at the same time, maintaining reliability. This can often

be done by detailed analysis of working loads, component stress distribution, and

materials capabilities. The design and assembling of bolted joints must assure that

the joint remains tightly clamped when it is loaded. The fastener must be capable of

withstanding the static and dynamic loads also.

When a bolt is tighten, it is subjected to both axial as well as torsional

loading. From the simple torsion theory we know that maximum shear stress is

developed at the outer surface of a circular rod. So when a bolt is tightened, yielding

will start first at the outer periphery of the bolt. Furthermore, if the bolt is tightened

upto or beyond the combined yields point of the material, how the material will

behave with the application of further tightening or axial loading needs further

investigation. As in the case of a bolted joint, there exists a complex relationship

. among tightening torque, pre-load and lubricant used, in the present investigation a

simple circular rod has been used which has been subjected to similar type of

loading. A lot of research has been done in tightening the bolts and their performance

under combined load.

In assessing the ultimate load carrymg capacity of some structures, it is

frequently necessary to consider the elastic-plastic behavior of those parts. The stress

distribution in most structural members loaded into the elastic-plastic range is

difficult to determine, because the shape of the elastic-plastic interface itself is

related to the stress distribution and is therefore unknown until the complete solution

is found. However, for a solid rod subjected to combined torque and tension, this

restriction is removed since the shape of the interface must be annular to preserve

axial symmetry. If a circular rod is subjected to combined axial load and torsion,

yielding will take place first at the outer surface of the rod. Upon reaching the yield

locus, if further axial load or torque is gradually increased beyond the combined

yield stress within the plastic region, holding the angle of twist or axial displacement

constant, for an initial torque or axial load within the elastic range, the manner in

which the subsequently applied parameter affects the magnitude of the initially

applied parameter requires careful study. The findings of this work have direct

bearing on the relaxation of tightening torque or axial loads as experienced by critical

Chapter 1.'Introduction
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engineering components, such as couplings, bolted joints and rotating shafts, which

are subjected to similar type ofbi-axialloading.

1.3 OBJECTIVES

The present work is done to examine the effects of the subsequently applied

tensile load or torque on the variations of the initially applied torque or axial load of

a circular rod respectively. This study has the following main objectives:

a) To develop a theoretical model for the case when a circular rod will be

subjected to combined torque-tension loading within the plastic region.

b) To develop a computational scheme for obtaining the axial stress, shear

stress, axial load and torque during the application of combined loading.

c) To study the effect of subsequently applied tensile load on the variations

of the initially applied torque.

d) To study the effect of subsequently applied torque on the variations of the

initially applied tensile load.

e) To compare the present results with the available experimental results.

1.4 LAYOUT OF THE THESIS

For the convenience of presentation, the total contents of this thesis are

divided into several chapters. In this chapter a brief introduction has been presented

with aim, objectives and application. Chapter-2 consists of brief discussion on the

available literatures related to the present investigation along with their limitations

and scope of further work. In Chapter-3 and Chapter-4, a mathematical model has

been presented along with numerical techniques and solutions. Chapter-S consists of

results and discussions on the numerical computation of the present investigation.

Finally, conclusions drawn from the present investigation are given 111

Chapter-6. This chapter also contains suggestions for further works in this field.

Chapter 1.' Introduction
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CHAPTER - TWO

LITERATURE SURVEY

2.1 GENERAL

Analysis of stress strain relation in combined loading in the plastic region has

not been investigated to a great extent because of complexity of loading history and

variety of influential parameters. Some of the problems, associated with it, are

discussed in the previous chapter. Researchers put emphasis on a particular condition

and mainly restricted themself within the elastic region.

2.2 PREVIOUS WORK

It is well known that, under a uni-axial state of stress or a state of stress due

to pure torsion, most materials exhibit the Bauschinger effect, i.e., possess a lower

yield stress upon the reversal of the load. While under more general circumstances

(such as a bi-axial state of stress), no experimental evidence seems to be available

with regard to the shape of subsequent yield surfaces (or loading functions) beyond

the initial yield, sufficient information is available to conclude that successive yield

(or loading) surfaces are not merely blown-up versions of the original.

The incremental-strain theories of plasticity in general, and their stress-strain

relations in particular, are dominated by the concept of a loading function which,

corresponding to a given state of increments of stress, predicts the absence (during

unloading and neutral loading) or presence (during loading) of additional increments

of plastic strains. As plastic deformation is physically an anisotropic phenomenon in

character, the loading function for a work-hardening material depends on the history

of loading and exhibits Bauschinger effect as well as strain-hardening anisotropy,

even if the material, in the unstrained state, is isotropic. In fact, as has been pointed

out by Drucker [9] that an isotropic work-hardening theory of plasticity cannot

properly predict a Bauschinger effect during plastic deformation. It is relevant to

mention here that loading functions which account for various degrees of initial and

strain-hardening anisotropy as well as a Bauschinger effect have been considered by

Chapter 2: Literature Survey
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Drucker [10] and Edelman and Drucker[II], and that the difficulties of fitting

mathematical theories of plasticity to experimental results are discussed by Stockton

and Drucker [12]

Monaghan and Duff[13], Newnham el al.[14], Chapman el al.[15], Hagiwara

el al. [16] and Hariri [17] have carried out experimental investigations on the

behavior of the bolted joints in the elastic-plastic region. However, they all tested

fasteners. Recently, Ali el al. [18-19] have carried out experimental investigations on

the behavior of both copper and steel rods, which were subjected to similar type of

bi-axial loading as has been considered in the present investigation. Analytical

solutions for a solid rod of non-straining material under combined torque and tension

loading, based upon the assumption of incompressibility, within the plastic region

have been presented by Prager and Hodge [20] and Sved and Brooks [21]. However,

in the present study a theoretical model has been developed to examine the elastic-

plastic behavior of a circular rod under combined torque-tension loading within the

plastic region for different levels of initial loading. Here particular attention has been

given to observe the effects of subsequently applied axial load or torque on different

levels of initial torque or axial loads of an elastic-perfectly plastic material.

2.3 YIELD CRITERION

2.3.1 Maximum Shear Theory or Tresca Criterion

This theory (sometimes called the Coulomb theory) assumes that yielding

will occur when the maximum shear stress reaches the value of the maximum shear

stress occurring under simple tension. The maximum shear stress is equal to half the

difference between the maximum and minimum principal stresses. For simple

tension, therefore, since Cl"2=Cl"]=0,the maximum shear stress at yield is 1I2Cl"y.The

Tresca criterion then asserts that yielding will occur when anyone of the following

six conditions is reached:

(2.1 )
Cl"2- Cl"]= :tCl"y

Cl"]- Cl"j= :tCl"y

Chapter 2: Literature Survey
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For the bi-axial case with (J3 = 0, we have

(JI = (Jy

(Jj=-(Jy

if (J I > 0, (J2 < 0

if (Jj > 0, (J2> 0

if (J2 > (Jj > 0

if(J1 > (J2> 0
(2.2)

It is to be noted that one limitation of this theory is the requirement that the yield

stresses in tension and compression be equal. The Tresca criterion is in fair

agreement with experiment and is used to a considerable extent by designers. It

suffers, however, from one major difficulty-it is necessary to know in advance which

are the maximum and minimum principal stresses. For the case of pure shear,

or

(JI = -(J2 = k (J3 = 0

the Tresca criterion predicts yielding to occur when

(Jj -(J2 = 2k = (Jy

k = Y, (Jy

This is, the yield stress in pure shear is \12 the yield stress in simple tension.

2.3.2 Distortion Energy Theory, or von Mises Yield Criterion

(2.3)

(2.4)

The distortion energy theory (also associated with Hencky) assumes that

yielding begins when the distortion energy equals the distortion energy at yield in

simple tension. Thus.

I 3 2
Ud = -Ja = ---Toct

2G 4Goct

At the yield point in simple tension, from

Therefore the yield condition becomes

H(O"I -0"2 f + (0"2 -0"3 f + (0"3 -0"1)2 ]= O"~

and, for the biaxial case,

Chapter 2: Literature Survey
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(2.8)

This plots as an ellipse, called the von Mises ellipse, in the <>1 <>2 plane. For the case

of pure shear

<>1 = -<>2 = k <>3 = 0

J2 = ~ [(JI - (J2l + (J2 - (J3)2 + (J3 - (Jj)2 ]
(J

= (Jt = k2

and the von Misses criterion would predict yielding to occur when

k2 = ~(JP
3

(2.9)

or (2.10)

That is, the yield stress in pure shear is 1/.J3 times the yield stress in simple tension.

Thus the von Mises criterion predicts a pure shear yield stress which is about 15

percent higher than predicted by the Tresca criterion. The von Mises yield criterion

usually fits (but not always) the experimental data better than the other theories, and

it is usually easier to apply than the Tresca criterion because no knowledge is needed

regarding the relative magnitudes of the principal stresses. For these reasons, this

criterion is widely used at the present time. If, however, the relative magnitudes of

the principal stresses are known, as, for example, in the case of the thick-walled tube,

the Tresca criterion is easier to apply.

Von Mises originally proposed his criterion because of mathematical

convenience. Hencky later showed that it was equivalent to assuming that yielding

will take place when the distortion or shear strain energy reaches a critical value, as

shown above. Also, since the octahedral shear stress is equal to

which for simple tension at yield becomes

12
Toct 0 = -(Jy, 3

Chapter 2: Literature Survey
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That is, yielding will occur when the octahedral shcar stress reaches the octahedral

shear stress at yield in simple tension,

Alternatively, the criterion can be looked upon as stating that yielding will

occur when the second invariant h of the stress deviator tensor reaches a critical

value, i,e" the value of h at yield in simple tension, The assumption that the yield

criterion should depend on the invariants of the stress deviator tensor is generally

accepted, as will be discussed in the next section,

2.4 PLASTIC STRESS-STRAIN RELATIONS

The strains are linearly related to the stresses by Hooke's law in the elastic

range, the relation will generally be nonlinear in the plastic range, as is evident from

the uniaxial stress-strain curve, A more complicated distinction between elastic and

plastic stress-strain relations arises from the fact they whereas in the elastic range the

strains are uniquely determined by the stresses, i,e" for a given set of stresses we can

compute the strains directly using Hooke's law without any regard as to how this

stress state was attained, in the plastic range the strains are in general not uniquely

determined by the stresses but depend on the whole history of loading or how the

stress state was reached,

Consider the initial yield curve to be as shown in figure 2, I, Let the specimen

be strained in uniaxial tension beyond the initial yield to some point C, where CDE

defines the subsequent yield curve, The plastic strains will then be

"[xy

Subsequent
yield curve

t
initial
yield

~
0 B A C

O"x

E

Fig,2, I Effect of loading path on plastic strains
Chapter 2: Literature Survey
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(2.13)

Let the specimen now be unloaded to the point B and let us apply a shear

stress increasing from B to 0 on the new yield locus. The plastic strains will still be

as given above. Any other path could have been used in arriving at 0 from C such as

OCFO, such as EGO, were stressed to the point O. the plastic strains would be

5~ =Yp

cP = 01' = cP = cp = 0&x Gy &z "yz
(2.14)

(2.15)

which is obviously completely unrelated to the previous strain state. Thus even

though the same stress states at 0 exist for both loading paths, and therefore the

elastic strain states are the same, the plastic strain states are different.

Because of the above dependence of the plastic strains on the loading path, it

becomes necessary, in general, to compute the differentials or increments of plastic

strain throughout the loading history and then obtain the total strains by integration

or summation.

2.5 PRANDTL-REUSS STRESS-STRAIN EQUATIONS

The first approach to plastic stress-strain relations was suggested by Saint-

Venant in 1870[2], who proposed that the principal axes of strain increment

coincided with the principal stress axes. The general three-dimensional equations

relating the increments of total strain to the stress deviations were given by Levy in

1871[3] and independently by von Mises in 1931[4]. These are known as the Levy-

Mises equations. These equations are

d5x d5y d5z "d5yz d5zx d5xy
-=-=-=-~=--=--=dA
Sx Sy Sz Syz Szx Sxy

Chapter 2: Literature Survey
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where Su is the stress deviator tensor and die is a nOlmegative constant, which may

vary throughout the loading history. In these equations the total strain increments are

assumed to be equal to the plastic strain increments, the elastic strains being ignored.

Thus these equations can only be applied to problems of large plastic flow and

cannot be used in the elasto-plastic range. The generalization of equation (2. I5) to

include both elastic and plastic components of strain is due to Prandtl [6] and Reuss

[22] and is known as the Prandtl-Reuss equation.

Reuss assumed that the plastic strain increment is, at any instant of loading,

proportional to the instantaneous stress deviation, i.e.,

d deP d PdP deP d PEx Y Cz cxz yz Ezx- = - = - = -- = -- = -- = d:i
Sx Sy Sz 'xy 'yz 'zx (2.16)

or deC = Sij d:i

Equation (2.15) can then be considered as a special case of (2.16) where the elastic

strain components are neglected.

Equations (2. I6) state that the increments of plastic strain depend on the

current values of the deviatoric stress state, not on the stress increment required to

reach this state. They also imply that the principal axes of stress and of plastic strain

increment tensors coincide. The equations themselves merely give a relationship

between the ratios of plastic strain increments in different directions. If the principal

directions are considered, equation (2. I6) can be written

or (2.17)

or def -det

S2 -S3
= (2.18)

The numerators of the first three term's in equation (2. I 8) are the diameters

of the three Mohr's circles for the plastic strain increments and the denominators are

the diameters of Mohr's stress circles. Equations (2.18) therefore imply that the

Mohr's circles of stress and plastic strain increment are similar. Also from the
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relations for the principal shears, equations (2.18) can be considered as stating that

the ratios of the three principal plastic shear strain increments to the principal shear

stresses are constant at any instant.

Equation (2.16) can be written in terms of the actual stresses as

def = ~ dA [0-x - ~ (0-Y + 0-z l]
de: =~dA[o-y-~(o-z +o-x)]

def =~dA[o-z-~(O-x+o-yl]

de~ = dATxy

de:z = dATyz

defx = dATzx

(2.19)

(2.20)

Therefore, if dA. were known, we would have the desired stress-strain

relations. To determined dA use is made of the yield criterion as follows. By means

of equations (2.16).

(def-def) +(det-d£'f) +(def-de?) +6(dc~,) +6(deeJ +6(defx)

= (d,ll[(O'x -O'yf +(O'y-O'zf +(O'z-O'xl +6T~v+6T~z+6T;x]

The bracketed quantity on the right side of equation (2.20) is seen to be proportional

to the square of the octahedral shear stress and the left side is proportional to the

square of the increment of octahedral plastic shear strain defined by

(2.21 )

The constant dA now becomes

(2.22)

where h is the second invariant of the stress deviator tensor.

It is convenient to define an equivalent or effective stress and an equivalent or

effective plastic strain increment as
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3
= J2 Toc!

=N2
and

dE: =' J2 [(dE:; - dE:; J + (dE:; .:...dE:; J +(dE:;' - dE:;')' +6(dE:;, )'j1/2
I' 3 + 6(dE:;} + 6(dE:~)'
= J2dyC
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(2.23)

(2.24)

For an uni-axial tensile test in the x direction the equivalent stress and equivalent

plastic strain increment reduce to

dE: = dE:PP x (2.25)

The convenience of the above definitions now becomes apparent. The equivalent or

effective stress, Ge and the equivalent or effective plastic strain increment, dEp, will

henceforth be used in this text rather than the octahedral shear stress and octahedral

plastic shear strain increment.

The constant dA can therefore be written

and the stress-strain relations[2.19] become

Chapter 2: Literature Survey
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p _ 3 dE P
dExy --2--Txy

ere
3 dEp

dE:z= -2 --T yz
ere

p 3 dE P
dE," =---T-x-~ 2 ere "-

p 3 dEpdE =--8
lJ 2er lJ

£
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(2_28)

(2_29)

if one compares equation (2_23) for the equivalent stress (Tc with equation (2.7) ,

which gives the von Mises yield criterion, it is seen that just as yielding begins when

cre = CJy (2.30)

where (Ty is the yield stress in simple tension. The equivalent stress is thus the same

as the von Mises yield function, and since equations (2.26) make use this function,

the original Prandtl-Reuss assumptions imply the von Mises yield criterion.
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CHAPTER-THREE

MATHEMATICAL MODEL

3.1 GENERAL

In this chapter mathematical models for pure tension, torsion and combined

tension-torsion are described. The behavior of a material under any combination of

loading can be easily analyzed by using simple tension or pure torsion test. In case of

pure torsion test it is complicated to calculate the shear stress and strain graph from

the torque-angle of twist graph, and vise versa, in the plastic region. So special

relation is used in the plastic region. But in most practical cases, some complexity is

always introduced due to combined loading specially in the plastic region because of

various types of loading and the loading history. In the present investigation two

cases of combined loading are considered, one is torsion followed by tension and the

other is tension followed by torsion, where in the first case the angle of twist is held

constant and in the second case the axial displacement is held constant.

3.2 CYLINDRICAL BARS UNDER DIFFERENT TYPES OF

LOADINGS

3.2.1 Simple Tension Test

To know the mechanical properties of a material the simplest and the most

important experiment is the standard tensile test. Initially the relation between stress

and strain is essentially linear. This linear part of the curve is called the proportional

limit. It is in this range that the linear theory of elasticity, using Hook's law, is valid.

Upon further increase of the load, the strain no longer increases lineady with stress,

but the material still remains elastic; i.e., upon removal of the load the specimen

returns to its original length. This condition will prevail unit some point, called the

elastic limit, or yield point. In most materials there is very little difference between

the proportional limit and the elastic limit. For some materials the yield point is

defined by using a fixed value of permanent strain. Beyond the elastic limit,

permanent deformation, called plastic deformation, takes place. As the load is
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increased beyond the elastic limit, the strain increases at a greater rate. However, the

specimen will not deform further unless the load is increased. This called work

hardening, or strain hardening. The stress required for further plastic flow is called

flow stress. Finally a point is reached, where the load is a maximum. Beyond this

point, called the point of maximum load, or point of instability, the specimen necks

down. The stress at the maximum load point is called the tensile strength, or ultimate

stress.

If at any point between the elastic limit and the maximum load point the load

is removed, unloading will take place along a line parallel to the elastic. Part of the

strain is thus recovered and part remains permanently. The total strain can therefore

be considered as being made up of two parts, se, the elastic component, and sP, the

plastic. component:

(3.1 )

(3.2)

3.2.2 Pure Torsion Test

When a solid cylindrical bar of radius a, subjected to a twisting moment T.

As long as the bar is elastic, the shear stress acting over any cross section is

proportional to the radial distance r from the central axis. The applied torque T is the

resultant moment of the stress distribution about this axis. If the angle of twist per

unit length of the bar is denoted bye, the elastic shear stress may be written as

2Tr
T =Gre =--

Jra4

Since the shear stress has its greatest value at r = a, the bar begins to yield at this

radius when the torque is increased to Te, the corresponding twist being ee. Setting T

= k at r = a, we get

e =~
e Ga (3.3)

If the torque is increased further, a plastic annulus forms near the boundary,

leaving a central zone of elastic material within a radius c (figure 3.1). The stress

distribution in the elastic region is linear, with the shear stress reaching the value k at
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r = c . For a non-hardening material, the shear stress has the constant value k

throughout the plastic region, and the stress distribution becomes

r
T=k-

c
T=k

o :;'r:;' c

c :;'r:;' a
(3.4)

Since the shear stress within the elastic zone is also egual to Gr8, we have B =~ .
Gc

The twisting moment is

(3.5)

As the elastic/plastic torsion continues, the torgue rapidly approaches the fully plastic

value 3. "ka3 . Since 8 tends to infinitv as c tends (0 zero. an elastic core of material3 ..
must exist for all finite values of (he angle of twist.

o II

(3.6)

(a) (b)
Figure 3.1: Torsion of a solid cylindrical bar. (a) Plastic annulus and stress

distribution for H=O; (b) Torgue-angle oftwist relationship

In the case of an annealed material, there is no well-defined yield point, and

the elastic/plastic boundary is therefore absent. Since the engineering shear strain at

any radius r is y = r8, the (orgue may be expressed as

T=21l r rr
2 dr= ~~ r Ty2 dy
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(3.7)

When the shear stress-strain curve of the material is gIven, the torque can be

calculated from above, using the known ("y) relationship. Conversely, if the torque-

twist relationship for a solid bar has been experimentally determined, the shear

stress-strain curve can be easily derived from it. The differentiation of the above

equation with respect 10 e gives

~(Te3)= 2na3e2,ode
where '0 is the value of 1: at r = a where the shear strain is Yo = a8. The relationship
between '0 and Yo is therefore given by

(3.8)Yo = ae, = _1_, (13 dT + 3T)
o 2na' de

The geometrical significance of the first term in the bracket is indicated in Figure

3.1b. Since dT/d8 must be obtained numerically or graphically from the measured

(T, 8) curve, the computation based on equation (3.8) is not very accurate for the

initial part of the curve. The accuracy may, however, be improved by rewriting the

shear stress as

, =~l _{e2 dT(T)+4T}
o 2Jr(J' de 13

(3.9)

The ratio T/8 is constant in the elastic range, and decreases slowly over the initial

part of the plastic range. The contribution of the first term in the bracket is therefore

small over this part.

3.2.3 Combined Torsion and Tension

(3.10)

A solid cylindrical bar of radius a and length I is subjected to any

combination of twist and axial extension. While the deformation is elastic, the

longitudinal stress cr is constant over the cross section, and the shear stress 1: is

directly proportional to the radial distance r from the axis. It follows the yielding first

occurs at r = a when the stresses satisfy the von Mises yield criterion

cr2 +31:2 = y2
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When the loading is continued into the plastic rangc, so that the radius to the elastic-

plastic boundary is c, the stresses in the elastic rcgion for an incompressible material

are

u = 3G&
Grr/J

T=--
1

O:Sr:Sc (3.11 )

where E is he total longitudinal strain and ~ the total angle of twist. In the plastic

region (c:S r:S a), the Prandtl-Reuss stress-strain equations give

dl du 2d&=- =-+-udJe
1 3G 3
rdr/J dT

dY=-=-+TdJe
21 2G

Case-I: Torsion followed by tension

(3.12)

Suppose that a cylindrical bar of radius a is first twisted elastically and then

expended into the elastic/plastic range by an increasing axial load. The angle of twist

of the bar is maintained at a constant value 80 per unit length during the extension.

Yielding begins at the outer radius when the longitudinal strain is Eo, the

corresponding axial stress being 3GEo for an incompressible materia!. Since the shear

stress is Ga80 at r = a, the relationship between 80 and Eois

2
2 2 2 Ya go +3&0=--2

3G
(3.13)

in view of the von Mises yield criterion. Subsequently, when the bar is plastic to a

radius c, the stresses in the elastic zone corresponding to an axial strain Eare

u = 3G& T = Greo O:Sr~c (3.14)

Since the element at r = c must be at the point of yielding, he radius to the
elastic/plastic boundary is given by

y2
c2g2 +3 2 = __o & 2

3G

In the plastic region, the stresses must satisfy the von Mises yield criterion (3.10) and

the Prandtl-Reuss stress-strain equations (3.12), where dy = O. When dy = 0 then
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from equation (3.12), we get dA = -d1/2G1 and for von Mises criterion d1 = -a.da/31.

Eliminating dA, and substituting the value of d111, we obtain

2
3Gd[; = Y da

y2a2

which is readily integrated to

3G -1 (a]y [;= tanh y + const c'S,r'S,o (3.17)

The constant of integration must be determined from the condition that

a = 3G£ = ~y2 _ 3G2r28~ (3.18)

when an element at radius r first becomes plastic. Hence he tensile stress in the

plastic region (c 'S,r 'S,a) is given by

a [3G 3G2
2 2 _]-=tanh -[;- 1---1' eo +tanh

y y y2 (3.19)

The shear stress in the plastic region follows from (3.19) and the von Mises yield

criterion (3.10). The variations of load and torque with extension can be calculated

numerically if required.

If the bar is initially twisted to an extent that makes it just plastic at r = a, then

Ga80 = y.J3 and £0= O. Substituting in equation (3.19), the stress distribution in the

plastic region is obtained as

[ p; gJa 3G r -1 r--=tanh -[;- I--+tanh 1--
y Y \ 02 02 (3.20)

The bar becomes completely plastic (c=O) when £ = Y/3G, giving a/Y = tanh

I - 0.762 at r = a. If the extension is continued in the fully plastic range, equation

(3.20) holds over the entire cross section of the bar. The stresses a and. 1 at the

boundary r = a approach their asymptotic values Y and zero respectively as the strain

is increased. The approach is so rapid that a is within 0.5 percent of Y when £ is only

equal to Y/G.
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Case-II: Tension followed by torsion

Consider now the situation where the bar is first extended to produce an axial

strain Eo elastically, and then twisted by a gradually increasing torque while the

extension is held constant. The bar begins to yield at the outer radius again when the

angle of twist per unit length is 80, given by (3.13). When the specific angle of twist

8 is large enough to render the bar plastic to a radius c, the stresses in the elastic

regIOn are

,= Gr() O:O:r:O:c (3.21 )

(3.22)

(3.23)

Since the material at r = c is at the point yielding,
2

c2()2 +3&2 =~
o 3G2

Setting dE = 0 and d~ = I d8 in the Prandtl-Reuss stress-strain equations (3.12),we get

die = -da/2ya and for von Mises criterion da = -3T.dT/a. Eliminating die and

substituting the value of dTfT, we obtain the differential equation

2
Grd() = Y d,

y2 _ 3,2

in view of(3.10). The integration of the above equation gives

.J3G -l.J3'J
yr() = tanh ly +consl c:O:r:O:a (3.24)

When an element first becomes plastic, its tensile stress IS aD

corresponding shear stress being given by

(3.25)

The constant of integration follows from this initial condition, and the shear stress in

the plastic region (c :0: r :0: a) finally becomes

(3.26)

The tensile stress in the plastic region then follows from the yie'ld criterion. If the bar

is initially extended just to the yield point before the torque is applied, aD = Y and 80
= 0, giving
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(3.27)

(3.29)

These expressions hold throughout the cross section of the bar, which is now

completely plastic. When a8 is equal to 13Y/G, the value of 13 1: at r = a is already

within 0.5 percent ofY.

3.3 EFFECTIVE STRESS AND STRAIN

A convenient mathematical formulation for strain hardening is obtained by

assuming further that the yield surface uniformly expands without change in shape.

Since the yield locus merely increases in size, any given state of hardening may be

defined by the current yield stress in uniaxial tension. It is, therefore, necessary to

relate the current yield yielding. To this end, we replace Y in the yield criterion by cr,

which is known as the equivalent stress, effective stress, or generalized stress.

Referring to the von Mises

For bi-axial tension and torsion, crx=cr, cry=cr,=O, 1:xy=T and 1:yz=T,x=O, putting theses

values in equation 3.30 we get

Ci=~a2+3T2

The simplest measure of generalized strain, suggested by Dorn (1945), is the

"effective strain" Z; defined as

(3.30)

This is proportional to the "octahedral shear strain". According to the

effective-strain measure of generalized strain, a body under multi-axial stress has the

same amount of strain hardening as a tensile specimen when the effective strain c
equals the plastic tensile strain in the tensile specimen co .
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CHAPTER-FOUR

NUMERICAL SOLUTION

4.1 GENERAL

In a deformable body subjected to external loads of gradually increasing

magnitude, plastic flow begins at a stage when the yield criterion is first satisfied in

the most critically stressed element. Further increase in loads causes spreading of the

plastic zone, which is separated form, the elastic material by an elastic-plastic

. boundary. The position of the boundary is an unknown of the problem, and is

generally so complicated in shape that the solution of the boundary-value problem

often involves numerical methods. The solution must carried out in a succession of

small increments of strain even when the deformation restricted to an elastic stresses

and displacements in the elastic and plastic regIOns satisfy the conditions of

continuity across the elastic-plastic boundary. In this chapter mainly numerical

procedure of the solution of two cases of combined torsion and tension loading in the

elastic-plastic region (Case-I: Torsion followed by tension and Case-II: Tension

followed by torsion) are described.

4.2 NUMERICAL PROCEDURE

4.2.1 Torsion Followed by Tension for Constant Angle of Twist

To obtain the numerical values of torque with the change of axial strain, for

different levels of initial torque equation (3.19) can be modified as

(J lEi ~ 2 2 -1 ~ 2 2 J- = tanh --- 1-P ~ +tanh I - P ~
Y Ei Y (4.1)

where Ey is the yield strain in tension, P=Yo/Yy,s=r/a, yo is the corresponding shear

strain of the initially applied torque which is to be calculated at the outer surface of

the cylinder and Yyis the yield shear strain. Thus different values of P for different

levels of initial torque, i.e., different levels of initial shear strains within the elastic

and up to the yield point regime, can be set into the above equation. Then to calculate
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the numerical values of FIFy for a specific value of E (=E/Ey), equation (4.1) is to be

integrated over the entire cross-section of the bar. Considering a axial load, F is

applied to a solid rod with cross-sectional area, A then stress developed is calculated

from

F
0=-

A (4.2)

if the radius of the solid is r then we can write the above equation in the following

form

or dF = a . 2m. dr (4.3)

But r = a~ where a is the outer radius of a rod so, dr = a . d~, putting the value

of dr in the equation (4.3), we get dF = o. 21la2~d~, hence by using equation (4.1) we

get

and finally we found the differential form of equation

dF =2q.tanh[~-~J-P2~2 +tanh-l~J-P2~2ldq
Fy £y

where Fy = 0y. 21la2

Integrating equation (4.5) form ~=O.Oto ~=1.0 we get

£ = 2 £q. tanh[~-~I-p2~2 +tanh-I ~1-p2~2l dq
Fy £y

(4.5)

(4.6)

The values of shear stress can be calculated from the following equation by knowing

the different values of aN from equation (4. J).

~= J3T = p(O"J2
Ty y f-lY') (4.7)

(4.8)

For calculating the values of Illy, considering a torque I is applied to a solid

rod then stresses developed due to the torque is

Ir
T=-

J
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where" = shear stress, r= radius & J= polar moment of inertia = m4/2

Considering an element dr in a distance r, if a force F is applied in the element

to developed a torque dT then dT = " 2m2 dr, but "y = Tya/J = 2Tylna] hence Ty= "y.

na3/2. Now,

So,

Since dr = a d~

dT = 4£2 ~d(
Ty Ty .

(4.9)

(4.10)

However, during the present investigation as variations of torque with the axial

strains are to be plotted, the numerical values of torque can be calculated by direct

integration of equation (4.10) between ~=O.Oto ~=I.O, which is

~=41£2 ~d(
Ty Ty

Finally by using the equation (4.7), we get

(4.11 )

(4.12)

The above equation was numerically calculated using Simpson's rule for the

increment of ""~=O.1.However if the bar becomes plastic only up to 11,where l1=c/a,

then the integration is to be performed over ~ = 11to 1.0 and, torque in the elastic

core (i.e., for the range ~ = 0 to 11)can be found from the elastic theory. Then the

total torque becomes

(4.13)

where "c is the maximum elastic shear stress at the layer ~ = 11,which is a constant,

and "p is the shear stress within the plastic region which varies along ~. During the

determination of the numerical values of torque, it was assumed, that once the

yielding starts at the outer fiber of the bar due to combined loading, the elastic-plastic

boundary 11moves inwards in such a way that ""£ = ""11.However, for any values of
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initial shear stresses for which yielding begins can be found from the yield criteria,

which can be written as

(:y r + (&&yr -1
(4.14)

When E/Ey = 1.0, equation (4.12) is valid over the entire cross-section of the bar. But

for elastic-plastic case equation (4.13) is used to plots TITy for different initial values

ofP, such as P equal to 1.0,0.75,0.50 and 0.25.

4.2.2 Tension Followed by Torsion for Constant Axial Displacement

.To calculate the numerical values of axial load with shear strain, for different

levels of initial load equation (3.26) can be modified as

(4.15)

(4.16)

where Yy is the yield shear strain and Q = EalEy Thus different levels of initial load,

and hence its corresponding different levels of initial axial strains, within elastic and

up to the yield point can be set into the above equation by changing the values of Q.

During the present investigation as variations of torque with the shear strains are to

be plotted, the numerical values of torque are calculated by direct integration of

equation (4.15) between ~=O.Oto ~=J.O, which is (from equation (4.10))

~=41!;2 ~ds"
Ty ly

By using equation (4.15) we get

~=41!;2tanh( ...'i.-!;-JI-Q2 +tanh-1JI-Q2jds"
Ty lYy

(4.17)

The values of axial stress can be calculated hom the following equation by

knowing the different values ofThy from equation (4.15).

(4.18)
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However, during the present investigation as the variations of the axial load

with the shear strain is required to plot, the numerical values of axial load can be

obtained by Integrating dF/Fy form ~=O.Oto ~=1.0 we get

~=21~.~d~
Fy (T y

using equation (4.18), we get

(4.20)

Integration of the above equation was numerically done using Simpson's rule

for the increment of L'.~=0.1.However, when the bar becomes plastic only np to fj,

then to obtain the axial load with in the plastic region the integration is to be

performed over ~ = fj to 1.0. Axial load within the elastic core (i.e., for ~ = 0 to fj)

can be obtained from the elastic theory. Then the total load can be calcnlated as

(4.21)

where Gc is the maximnm elastic axial stress for the cross-section whose radius is fj,

which is a constant, and Gp is the axial stress within the plastic region which varies

along ~. However, to calculate numerical values of load it was assumed that once the

yielding starts at the outer fiber of the bar due to combined loading, the elastic-plastic

boundary fj moves inwards in such a way that L'.y = -L'.fj. For different levels of

values of initial load, the values of the corresponding shear strains when yielding

starts can be obtain fyom equation (4.14). When y/yy = J.O, equation (4.20) is valid

over the entire cross-section of the bar. But for elastic-plastic case equation (4.21) is

used to plots F/Fy for different initial values of Q, such as Q equal to J.O, 0.75, 0.50

and 0.25.
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4.3 STRAIN HARDENING MODEL

For strain hardening material relationship of effective stress-strain is used to

determine the yield loci. In the equation (3.30), effective stress iT is replaced by au

for determination of yield loci based on post-yield flow stress. Hence we get

2 2 2
(Tu =: (J + 3r

For a = ay , T is calculated from the above equation and plotted as a vs. T for

theoretical model. Again for T = Ty, a is calculate from equation (4.22) and plotted

as T vs. a. Finally these model are compared with experimental results.

4.4 COMPUTER PROGRAM

A FORTRAN program has been developed to evaluate the variation of the

axial and shear stresses throughout the x-section as weB as at the outer periphery of

the circular rod for the two types the bi-axial torque-tension loading which have been

considered in the present investigation. Furthermore, technique has been developed

in the same program to evaluate the corresponding force and torque. The integral is

defined as a function and different subroutines are used for integration methods say

f(x)=x*(exp(-x)), upper limit=l.O, lower limit=O.O. Detail of the program is given in

Appendix - A with different subroutines.
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CHAPTER - FIVE

RESULTS AND DISCUSSION

5.1 GENERAL

In the previous chapter, a computational technique along with the details of a

theoretical model is presented. In this chapter, results obtained numerically for

elastic-plastic behavior of a circular rod under combined torque and tensile loading

within the plastic region are being presented and discussed. In the present

investigation the following two cases are considered.

CASE-I: In the first type of loading, the rod is initially subjected to different

levels of torque within and upto the yield point of the material, and then keeping the

angle of twist constant, axial tension and hence axial strain are increased gradually.

CASE-II: In the second type of loading, the rod is initially subjected to

different levels of axial tension within and upto the yield point of the material, and

then keeping the axial extension constant, torque and hence shear strain are increased

gradually.

5.2 THEORETICAL INVESTIGATION

In case of an uni-axial tension test within the elastic range, the axial stress

distribution along the cross-section of the rod is uniform and in simple torsion test

maximum shear stress is developed at the outer periphery of the rod and zero at the

center of the rod. But in case of combined loading different a pattern of stress

distribution is developed depending upon the type and combination of loading.

5.2.1 Variation of Axial and Shear Stresses

Along X-Section of the Rod

Figure 5. J shows the non-dimensional axial and shear stresses distribution

along the cross section of a circular rod for CASE-I, when the bar is twisted up to

yield point first, i.e., Yo/Yy=I.O and then axial load hence axial strain is gradually

increased to E/Ey=I.O, keeping the initial angle of twist constant. Figure 5.2 shows the
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non-dimensional axial and shear stresses distribution along the cross section of a

circular rod for CASE-II, when the bar is axially loaded up to yield point first, i.e.,

EO/Ey=1.0and then torque, hence shear strain is increased to Y/Yy=1.0, holding the

initial axial extension constant. It is seen from figure 5.1, at the center of the rod, the

shear stress is zero & the axial stress is maximum i.e., cr/cry=1.0 at 1',=0.At the outer

periphery i.e., when 1',=1.0,Thy increases to 0.65 and cr/cry decreases to 0.762. Thus

for CASE-I, the axial stress decreases by 23.8% at the outer periphery. For CASE-II

(figure 5.2), at the center of the rod, the shear stress is zero and the axial stress is

maximum i.e., cr/cry=1.0 at 1',=0. At the outer periphery i.e., when 1',=1.0, Thy

increases to 0.762 and cr/cry decreases to 0.65. Thus for CASE-II, the axial stress

decreases by 35% at the outer periphery. The distributions of cr/cryand Thy for the

above mentioned two cases compared and shown in figure 5.3. The first strain path is

represented by solid curves and the second strain path by dotted curves. Although the

final states of deformation in the two cases are same, the stress distribution differs as

a consequence of its path dependence.

At Outer Periphery of the Rod

Figure 5.4 represents the variation of non-dimensional axial and shear

stresses at the outer surface of the circular rod with dimensionless axial strain for

CASE-I, i.e., at first the rod was subjected to various levels of initial torques, within

and upto the yield points of the materials, and then keeping the angle of twist

constant, axial load and hence axial strain was gradually increased. Similarly figure

5.5 shows the variation of non-dimensional axial and shear stresses at the outer

surface of the circular rod with dimensionless shear strain for CASE-II, i.e., at first

the rod was subjected to various levels of initial axial loads, within and upto the yield

points of the materials, and then keeping the axial extension constant, torque and

hence shear strain was gradually increased. To this end, it is worth mentioning here

. that for an elastic-perfectly plastic material under uni-axial tension, the value of cr/cry

is one at E/Ey=I.O. Figure 5.4 shows that when E/Ey=I.O, the value of cr/cry increases

only upto 0.76 and Thy decreases by 35% for CASE-I. However, when E/Ey is

increased to 3.0, the value of cr/cryreaches nearly equal to 1.0 and Thy decreases by

90%. Figure 5.5 shows that when y/yy=I.O, the value of Thy increases only upto 0.76
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and cr/crydecreases by 35% for CASE-II. However, when y/yy is increased to 3.0, the

value ohhy reaches to 0.995 and cr/crydecreases by 90%.

Effect of Different Levels oflnitial Load

Figures 5.6 and 5.7 show the non-dimensional axial and shear stresses

distribution along the X-section of a solid rod for CASE-I for different levels of

initial torque i.e., To/Ty=I.O, 0.75, 0.5 & 0.25 respectively. Figures 5.8 and 5.9 show

the non-dimensional axial and shear stresses distribution along the X-section of a

solid rod for CASE-II for different levels of initially applied axial i.e., Fo/Fy=I.O,

0.75,0.5 and 0.25 respectively. It is seen from figures 5.6 and 5.7 that, at the center

of the rod, the shear stress is zero & the axial stress is maximum i.e., cr/cry=I.O at

s=O. At the outer periphery i.e., when S=I.O, Thy increases to 0.65 and cr/cry

decreases to 0.76, for the case when To/Ty=I.O. However, when the initially applied.;,
torque were equal to 0.75 and 0.50, the corresponding decrease of cr/cryat S=I.O are

18% & 10% respectively. When the initially applied torque is 0.25 times of the yield

torque, the value of cr/cry is very close to 0.97 at S=I.O which implies that if initially

applied torque is very close to zero, then axial stress distribution will be nearly

uniform, which is observed in case of an uni-axial tension test. For CASE-II (figures

5.8 and 5.9), at the center of the rod, the shear stress is zero and the axial stress is

maximum i.e., cr/cry=I.O at S=O,when the bar is axially loaded upto yield point first.

At the outer periphery i.e., when S=I.O, Thy increases to 0.762 and cr/crydecreases to

0.65 for the case when Fo/Fy=I.O. Thus for this case, the axial stress decreases by

35% at the outer periphery. But when the initial applied axial load was lower than the

yield value, the axial stress distribution is uniform upto a specific value (depends on

yield criterion) and after that shear stress distribution is linear.

Figures 5.10 and 5.11 represent the variation of non-dimensional axial and

shear stresses at the outer surface of the circular rod with dimensionless axial strain

for CASE- I for different levels of initial torque. Similarly figures 5.12 and 5.13 show

the variation of non-dimensional shear and axial stresses' at the outer .surface of the

circular rod with dimensionless shear strain for CASE-II, for different levels of axial

load. It is observed from figure 5. I0 that with the increase in the value of initially

applied torque, the modulus of elasticity of the material decreases considerably.
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Similarly figure 5.12 shows that with the increase in the initially applied axial load,

the shear modulus of rigidity of the materials decreases rapidly.

Effect of Different Levels of Subsequently Applied Load

Figure 5.14 shows the non-dimensional axial stress and Figure 5.15 shows the

non-dimensional shear stress distributions along the cross section of a solid rod for

the initial torque To/Ty=1.0, for different levels of subsequently applied axial load.

Here four different levels of subsequently applied axial load and hence axial strain,

were considered, that is, E/Ey=1.0, 1.5,2.0 and 2.5. It is observed from figure 5.14

that at a higher value of subsequently applied axial strain, axial stress distribution

throughout the x-section is closely near to uniform. This happens because at the

higher value of subsequently applied axial strain, axial stress dominates over the

shear stress. Figure 5. 15 shows that the lower the value of E/Ey, the higher the

magnitude of the shear strain, that the material can sustain. Figures 5.16 and 5. 17

show the non-dimensional axial and shear stresses distributions along the cross

section of a solid rod for the initial axial load Fo/Fy=].O respectively, for different

levels of subsequently applied torque and hence shear strain. Here four different

levels of subsequently applied shear strains were considered, that is, y/yy =l .0, 1.5,

2.0 and 2.5. It is observed from figure 5.16 that at a higher value of subsequently

applied shear strain, axial stress decreases rapidly compare to that of at lower values

of y/yy. When y/yy=] .0, axial stress reduced by 35% at the outer periphery of the

circular rod but when y/yy=2.5, axial stress reduced by 84%. Figure 5.17 shows that

shear stress reaches nearly equal to one at the outer surface of the rod when

subsequently applied shear strain y/yy=2.5.

5.2.2 Variation of the Axial Load and Torque

Figure 5.18 represents the variation of the axial load and torque with axial

strain for CASE-I, when the initially applied torque was equal to yield torque, i.e.

yo/yy=1.0, which was kept constant during the subsequently applied axial load and

hence axial strain. Figure 5.19 represents the variation of axial load and torque with

shear strain for CASE-II, when the initially applied axial load was equal to yield

load, i.e., EO/Ey=1.0,which is kept constant during the subsequently applied torque
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and hence shear strain. It is observed from figure 5.18 that when the value of the

axial strain is increased to the yield strain, the axial load reaches 0.84 times of its

yield load. Furthermore, at this point the initially applied torque reduces to 0.75 i.e.,

reduced by 25%. This happens because when the axial load increases, the outer layer

of the material begin to yield and the torque begins to decreases in a specific manner

which is govern by the yield criterion & the stress-strain relationship in the plastic

region. Similarly from figure 5.19, it is observed that when the value of shear strain

is increased to the yield strain, the torque reaches 0.42 times of its yield value.

Furthermore, at this point the initially applied axial load reduces to 0.80 i.e., reduced

by 20%.

Effect of Different Levels of Initial Loading

Figure 5.20 depicts the variation of the initial torque with subsequently

applied axial load and hence axial strain for CASE-I. Here four different levels of

initial torque were considered, that is TalTy =1.0, 0.75, 0.5 and 0.25. It is observed

from the figure that as long as the combined stresses do not reach a specific value,

the initially applied torque does not start to decrease with the subsequently applied

axial strain. However, when the combined stress becomes equal to a specific value,

which is govern by the yield criterion, the initially applied torque starts decreasing

with the axial strain. As seen for the case when TalTy =1.0, the initially applied

torque starts decreasing immediately with the increase in the axial strain, but for the

case T/To=0.75, the initially applied torque does not decrease until the subsequently

applied axial strain nearly increases to 0.66. Similar conclusion can be drawn for the

cases when To/T y =0.5 and 0.25. It is worth mentioning here that when the

subsequently applied axial strain, i.e., E/Ey becomes equal to 2.0, the corresponding

decrease in the initial torques for TalTy =1.0, 0.75, 0.50 and 0.25 are 74%, 68%, 64%

and 68% respectively. From figure 5.21, it is observed that with the increase of the

initially applied torque, material yielded at a much lower value of F/Fy which is

obviously due to the effect of combined loading.

Figure 5.22 shows the variation of the initially applied load with subsequently

applied shear strain for CASE-II. Here four different levels of initial axial loads were

considered, that is FoIFy=1.0, 0.75, 0.5 and 0.25. It is observed from the figure that as
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long as the combined stresses do not reach a specific value the initially applied axial

load does not start to decrease with the subsequently applied shear strain. However,

when the combined stress becomes equal to a specific value, which is governed by

the yield criterion, the initially applied axial load starts decreasing with shear strain.

As seen for the case when Fo/Fy=I.O, the initially applied axial load starts decreasing

immediately with the increase in the shear strain but, for the case Fo/Fy=0.75, the

initially applied axial load does not decrease until the subsequently applied shear

strain nearly increases to 0.66. Similar conclusion can be drawn for the case

Fo/Fy=0.5 and 0.25. It is worth mentioning here that when the subsequently applied

shear strain, i.e., ylyy becomes equal to 2.0, the corresponding decrease in the initially

applied axial load for FoIFy=I.O, 0.75, 0.50 and 0.25 are approximately 48%, 39%,

30% and 20% respectively. From figure 5.23, it is observed that with the increase in

the initially applied axial load, the material yielded at a much lower value of TIT y

which is obviously due to the effect of combined loading.

5.3 COMPARISON OF THEORETICAL RESUL TS WITH

EXPERIMENTAL RESULT

Comparison of the theoretical results obtained form the present investigation

with available experimental results [18-19] are presented in figures 5.24 and 5.25 for

steel and figures 5.26 and 5.27 for copper, for the first type of loading, where four

different levels of initial torque, i.e., ToITy=I.O, 0.75, 0.5 and 0.25 were considered.

In figure 5.24, when the initial torque was equal to 100% of the yield torque (which

is obtained by 0.02% offset method), theoretical results show good agreement with

the experimental results in the plastic region nearly up to the E/Ey=1.35. However,

when the initial TofT y= 0.75 and 0.5, the experimental results match up to the

E/Ey=I.O. When the initial torque was 25% of the yield torque then the experimental

results do not show any variation in the initial torque unlike theoretical models.

Figure 5.25 shows similar results when the yield point is defined at the proportional

limit. Here the deviations between the experimental and theoretical results are more.

However, for the copper rod (figures 5.26 and 5.27) when yield point is defined at

the proportional limit, relatively better agreement is observed between the
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experimental and theoretical results than that when the yield point is defined at

0.02% offset. Figure 5.27 shows that, when the initial To/Ty=1.0 and 0.75, the

experimental results match well with the theoretical results nearly up to E/Ey=I.2 and

1.4 respectively. The deviations between the experimental and theoretical results are

obviously due to the strain hardening and compressibility effect of the material tested

experimentally. It is worth mentioning here that in the theoretical model, the material

tested experimentally was considered as elastic-perfectly plastic.

Comparison of the theoretical and experimental results are presented in figure

5.28 for steel and figure 5.29 for copper, for the second type of loading, where four

different levels of initial axial load, i.e., FoIFy=I.O, 0.75, 0.5 and 0.25 were

considered. In Figure 5.28, when the initial axial load was equal to lOO% of the yield

load, theoretical results match with the experimental results in the plastic region

nearly up to the ylyy=0.9. However, when the initial FoIFy= 0.75 imd 0.5, the

experimental results match up to the ylyy =0.8. When the initial axial load was 25%

of the yield load then the experimental results do not show any variation in the initial

axial load unlike theoretical models. However, for the copper rod (figure 5.29), when

the initial FoIFy=1.0, 0.75 and 0.5, the experimental results match well with the

theoretical results nearly up to ylyy'=1.0, 0.95 and 1.5 respectively. When the initial

axial load was 25% of the yield load then the experimental results do not show any

variation in the initial axial load unlike theoretical models. However, it is observed

that in case of copper, there is comparatively better agreement between the

theoretical and experimental results than in the case of steel for both CASE-I and

CASE-II. This is because of the fact that the stress-strain curve of the copper rod

(given in appendix B) behaves more closely like an elastic-perfectly plastic material

than that of the steel rod.

For the two types ofbi-axialloading, CASE-l and CASE-II, it was possible to

determine the magnitudes of the combined stresses when the material yielded due to

combined loading. The experimental results of the first case in terms of the axial and

shear stresses for the steel and copper are plotted in figures 5.30 and 5.32

respectively. Similarly the experimental results of the second case for the steel and
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copper, shown in the figures 5.31 and 5.33 respectively. The solid lines, shown in the

figure, depict the Mises yield loci based on the post-yield flow stress of the material

investigated. These figures reveal that most of the experimental points of the

combined loading fall within the domains contained by these yield loci (i.e., based on

post-yield flow stress). However, few points remain outside these domains which

may be due to the fact that von Mises yield criteria alone is not the governing factor

of the material response within the plastic region, as it is well known that the

behavior of the material strongly dependent on the strain path in the plastic region.

Furthermore, it is seen from both figures that most of the experimental point's

overshoot the yield loci based on the initial yield stress (i.e., proof stress) and this

might have happened because of the strain hardening of the materials.
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CHAPTER - SIX

CONCLUSION AND RECOMMENDATION

6.1 GENERAL

Elastic-plastic behavior of a circular rod under combined torque-tension

loading within the plastic region has been studied in the present investigation. This

chapter summarizes the accuracy and reliability of the present prediction, embodied

in the numerical results by comparing with the available experimental data and

suggests the scope of further works on the present study.

6.2 CONCLUSION

The conclusions that have been arrived at from the present study are

presented below:

1) It has been observed from the present investigation that even for the

same loading condition, that is, E/Ey=l.O and ylyy=l.O, the stress

distribution across the cross-section of the rod is different and this

depends entirely on the loading history.

2) Axial stress decreases rapidly for the case when tension is followed by

torsion as compared to torsion followed by tension.

3) Shear stress increases slowly for the case when torsion is followed by

tension as compared to tension followed by torsion.

4) The higher the value of the initially applied torque, the greater the

variations in the subsequently applied axial stress along the cross-

section ofthe rod.

5) The higher the value of the initially applied axial load and torque, the

lower the value of the modulus of elasticity and shear modulus of

rigidity respectively.

Chapter-6: Conclusion & recommendation



38

6) In the first type of loading (CASE-I), where the rod was initially

subjected to a torque and then, keeping the angle of twist constant, to

a gradually increasing axial load, an increase in the axial load resulted

in a decrease in the initially applied torque according to the yield

criterion. The initially applied torque started to decrease with the axial

load only when the combined stress of the material reached

approximately the uni-axial yield stress of the materia!. The higher the

magnitude of the initially applied torque, the greater is the rate of

decrease of the torque with the increasing axial load.

7) In the second type of loading (CASE-II), where the axial load was

applied first, an increase in the torque resulted in a decrease in the

initially applied axial load according the yield criterion. The initially

applied axial load started to decrease with the torque only when the

combined stress of the material reached approximately the uni-axial

yield stress of the material. The higher the magnitude of the initially

applied load, the greater is the rate of decrease of the axial load with

the increasing torque.

8) For the CASE-I, the theoretical results agree well with the

experimental torque variation, a behavior that is closely like an

elastic-perfectly plastic materia!. In the present case, the theory has a

better agreement with the test results of the copper rod than those of

steel.

9) For the CASE-II, the theoretical results show relatively poor

agreement with the experimental load variation curves of the material

behaving closely like an elastic- perfectly plastic materia!.

10) From the comparison of the theoretical results, based on post-yield

flow stress, with the experimental results, it can be concluded that von

Mises yield criteria alone is not the governing factor of the material

response within the plastic region. As it is well known that the

behavior of the material is strongly dependent on the strain path in the

plastic region.
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6.3 RECOMMENDA nON FOR FUTURE WORK

6.3.1 Introduction

In the present investigation elastic-plastic behavior of a circular rod under

combined torque-tension loading within the plastic region has been studied

theoretically using a computational program. Here the material is considered as

incompressible, which behaves like an elastic-perfectly plastic material i.e., non

strain hardening. Present model was developed on the basis of von Mises yield

criterion and Prandtl-Reuss stress-strain equation. And finally integration was

performed by using Simpson's 1/3 rule.

6.3.2 Recommendation

Present work can be extended further

a) To develop a model for strain hardening material considering the

compressibility effect.

b) To study the effect of simultaneous elongation and twisting.

c) To study other types of combined loading.

d) To study the effect of combined loading having more than two loads.

e) To study the effect of combined loading in the elastic-plastic region

for other geometry.

The above works are specially recommended because they can be solved by using

the present numerical model. One needs first to inodify this model for different

strain- hardening models.
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a) Torque applied first and then corresponding angle of twist (80) was kept constant

80 = constant 80 = constant

F

b) Subsequently applied axial load was gradually increased

F

Figure 5.1: Schematic diagram of the model when the circular bar is subjected to
initial torque first (CASE-I).
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80

a) Axial load applied first and then corresponding axial extension (80) was kept constant

T

T 80 = constant

b) Subsequently applied torque was gradually increased

Figure 5.2: Schematic diagram of the model when the circular bar is subjected
to axial load first (CASE-II).
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Figure 5.32: Comparison of the theoretical results obtained considering post yield flow stresses with the available
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Figure 5.33: Comparison of the theoretical results obtained considering post yield flow stresses with the available
experimental [18-19] results of steel for CASE-II
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APPENDIX-A

COMPUTER PROGRAM

***********************************************************************
* A FORTRAN PROGRAM TO EVALUATE VARIA TlON OF LOAD BETWEEN *
* LIMITS A & B USING SIMSON 1/3 RULE. *
***********************************************************************

***********************************************************************
* THE INTEGRAL IS DEFINED AS A FUNCTION & A DIFFERENT *
* SUBROUTINE IS USED FOR INTEGRA nON METHODS SAY *
* F(X)~X*(EXP(-X»,UPPER LIMI1'~I .O,LOWER LlMlT~O.O *
***********************************************************************

***********************************************************************
* MAIN PROGRAM FOR THE INTEGRA TlON ************************************************************************

PRINT*,'ENTER THE PROBLEM TYPE'
PRINT*,'PRESS "I" FOR CASE-I (THE BAR IS INITIALY SUBJECTED BY A
IAXIAL LOAD THEN SUBJECTED BY A TORSIONAL LOAD)'

PRJNT*,'PRESS "2" FOR CASE-II (THE BAR IS INITJALY TWISTED THEN
1SUBJECTED TO AN AXIAL LOAD)'

204 PRINT*,'CASE-'
READ*,CASE

*********************************************************************
* CALCULATION BLOCK FOR CASE-I **********************************************************************

IF(CASE.EQ. I)THEN

PRJNT*,'ENTER NUMBER OF STEPS'
212 PRINT*,'PUT ANY EVEN NUMBER SO THAT ALL MULTIPLES ARE "2'"

PRJNT* ,'SUCH AS 2,4,8,16,'
PRJNT*,'NO. OF STEPS, N~'
READ*,N

211 PRINT*,'ACCURACY~'
READ*,EPS
A~O.OOOI
B~0.99999999
PRINT*,'ENTER THE VALUE FOR "P'"

203 PRINT*,'''P'' ~ INITIAL SHEAR STRAIN/YIELD SHEAR STRAIN'
PRINT*,'P~'
READ*,P
P~ABS(P)

OPEN(UN IT~6,FILE~'TORQUE lOur)
OPEN(UNIT~26,FILE~'FORCEI .our)

Appendix-A: Computer Program



***********************************************************************
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*
*

CALCULATION BLOCK FOR VARJATION OF TORQUE WITH AXIAL
STRAIN IN A ROD INITTALLY TWISTED

*
************************************************************************

IF(P.EQ. I .O)THEN
WRITE(6, *)' "EIEY"
DO EEY I~0.05,4,0.05

IF(EEYI.LT.I)THEN
A~I.O-EEYI
ANS2~0.0

"T/TY" ,

DO J~2,N,2
H~(B-A)/J
N 1~J/2
SUM~O.O
DOI~l,NI

X~A+(2*1-1)*H
SUM~SUM+4*Tl (X,EEY I,P)

IF(I.NE.N I)THEN
Xl~X+H
SUM~SUM+2*Tl (Xl ,EEYI ,P)

ENDIF
ENDDO
SUM~SUM+ Tl (A,EEY I,P)+ Tl (B,EEY 1,P)
ANS~SUM*(H/3)
ANSI~ANS
IF«ABS(ANSI-ANS2)).LE.EPS)GO TO 100

ANS2~ANS
ENDDO

100 WRITE(*, *)'VALUE OF T/TY~',ANS2,'FOR E/EY~',EEY I
ANS2~ANS2+ TAOWI (EEY 1,P,A)

ELSE

ANS2~0.0
DO J~2,N,2
H~(B-A)/J
NI~J/2
SUM~O.O
DOI~I,NI

X~A+(2*1-1)*H
SUM~SUM+4*T1 (X,EEYI ,P)

IF(l.NE.N I)THEN
XI~X+H
SUM~SUM+2*TI (Xl ,EEY] ,P)

ENDlF
ENDDO
SUM~SUM+ TI (A,EEY I ,P)+TI (B,EEY I ,P)
ANS~SUM*(H/3)
ANSI~ANS

IF«ABS(ANSI-ANS2)).LE.EPS)GO TO 201
ANS2~ANS
ENDDO

201 PRINT*,'VALUE OF THE INTEGRATION FOR T/TY=',ANS2,'FOR EIEY~',EEYI

Appendix - A: Computer Program



WRITE(*, *)EEYI,ANS2
ENDIF

WRITE(6, *)EEYI ,ANS2
ENDDO

ELSE IF(P.LT.I.O)THEN

79

EEY3~SQRT(1.0-P*P)
WRJTE(6,*)'''EEY3''

DO EEY2~0.05,4,0.05
"E/EY" nT/TY"!

IF(EEY2.LE.EEY3)THEN
A~l.O
ANS~T AOWI (EEY2,P,A)
WRJTE(6, *)EEY3 ,EEY2,ANS

ELSE
A~B-(EEY2-0.05-EEY3)
ANS2~0.0
DO J~2,N,2
H~(B-A)/J
Nl ~J/2
SUM~O.O
DOI~I,NI
X~A+(2*I-I)*H
SUM~SUM+4 *Tl (X,EEY2,P)
IF(I.NE.N I)THEN
XI~X+H
SUM~SUM+2*TI (X I,EEY2,P)

ENDIF
ENDDO
SUM~SUM+ T I(A,EEY2,P)+ T I(B,EEY2,P)
ANS~SUM*(H/3)
ANSI~ANS
IF((ABS(ANS I-ANS2)).LE.EPS)GO TO I0 I

ANS2~ANS
ENDDO

101 WRJTE(*,*)'VALUE OF TITY~',ANS2,'FOR E/EY~',EEY2
ANS2~ANS2+ TAOWI (EEY2,P,A)
WRITE( 6, *)EEY3,EEY2,ANS2

ENDIF

ENDDO

ELSE
PRJNT*,'ENTER THE VALUE FOR "P" BETWEEN "0" & "1'"
GOTO 203

ENDIF

***********************************************************************
* CALCULA nON BLOCK FOR VARIATION OF AXIAL LOAD WITH AXIAL *
* 'STRAIN IN A ROD INITIALLY TWISTED.(CASE-I) *
***********************************************************************
IF(P.EQ.I.O)THEN
WRITE(26,*), "E/EY"
DO EEY1 ~0.05,4,0.05
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IF(EEY I.LT.I.O)THEN
A~B-EEYI
ANS2~0.0

DO J~2.N,2
H~(B-A)/J
N1~J/2
SUM~O.O
DO l~l,NI

X~A+(2*1-1)*H
SUM~SUM+4 *F I(X,EEY 1,P)

IF(I.NE.N 1)THEN
Xl~X+H
SUM~SUM+2*Fl(Xl ,EEYI ,P)

ENDIF
ENDDO
SUM~SUM+F I(A,EEY I,P)+F I(B,EEY 1,P)
ANS~SUM*(H/3)
ANSI~ANS
IF((ABS(ANS I-ANS2)).LE.EPS)GO TO 300

ANS2~ANS
ENDDO

300 WRITE(*, *)'V ALUE OF F/FY~',ANS2,'FOR E/EY~',EEY I
ANS2~ANS2+SIGMA 1(EEY I,P,A)

ELSE

ANS2~0.0
DO J~2,N,2
H~(B-A)/J
Nl~J/2
SUM~O.O
DO I~I,NI

X=A+(2*1-1)*H
SUM~SUM+4*FI(X,EEY I,P)

IF(I.NE.N 1)THEN
XI~X+H
SUM~SUM+2*FI(XI ,EEYI ,P)

ENDIF
ENDDO
SUM~SUM+F 1(A,EEY I,P)+FI (B,EEY1,P)
ANS~SUM*(H/3)
ANSI~ANS
IF((ABS(ANS I-ANS2».LE.EPS)GO TO 301
ANS2~ANS
ENDDO

301 PRINT*,'V ALUE OF THE INTEGRA nON FOR F/FY~',ANS2,'FOR E/EY~',EEY I
WRITE(*, *)EEY 1,ANS2

ENDIF

WRITE(26, *)EEY I,ANS2
ENDDO

ELSE IF(P.L T.I.O)THEN

EEY3~SQRT(10-P*P)
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WRITE(26,*)'''EEY3'' "E/EY"
DO EEY2~0.05,4,0.05

"F/FY'"
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IF(EEY2.LE.EEY3)THEN
A~1.0
ANS~TAOWI (EEY2,P,A)
WRITE(26, *)EEY2,ANS

ELSE
A~B-(EEY2-0.05-EEY3)
ANS2~0.0
DO J~2,N,2
H~(B-A)lJ
N1~J/2
SUM~O.O
DOI~l,Nl
X~A+(2*1-1)*H
SUM~SUM+4*Fl (X,EEY2,P)
IF(J.NE.N I)THEN
Xl~X+H
SUM~SUM+2*F I(X 1,EEY2,P)

ENDIF
ENDDO
SUM ~SUM+F I(A,EEY2,P)+ F I(B ,EEY2,P)
ANS~SUM*(H/3)
ANS1~ANS
IF((ABS(ANS l-ANS2)).LE.EPS)GO TO 331

ANS2~ANS
ENDDO

331 WRlTE(*, *)'VALUE OF F/FY~',ANS2,'FOR E/EY~',EEY2
ANS2~ANS2+SIGMA 1(EEY2,P,A)
WRlTE(26, *)EEY3,EEY2,ANS2

ENDIF

ENDDO

ELSE
PRINT* ,'ENTER THE VALUE FOR "P" BETWEEN "0" & "1 '"
GOT0203

ENDIF

*********************************************************************
* CALCULATION BLOCK FOR CASE-II **********************************************************************

ELSE IF(CASE.EQ.2)THEN
PRlNT*,'ENTER NUMBER OF STEPS'

232 PRINT*,'PUT ANY EVEN NUMBER SO THAT ALL MULTIPLES ARE "2'"
PRlNT* ,'SUCH AS 2,4,8,16,'
PRlNT* ,'NO. OF STEPS, N~'
READ*,N

231 PRINT*,'ACCURACY~'
READ*,EPS
A~O.OOI
B~0.999999
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PRlNT*,'ENTER THE VALUE FOR "Q'"
223 PRINT*,'''Q'' ~ INITIAL AXIAL STRAIN/YIELD STRAIN'

PRINT*,'Q~'
READ*,Q
Q~ABS(Q)

oPEN (UN IT~ I6,FI LE~'TO RQUE2. OUT)
oPEN (UN IT~3 6,FI LE~'FO RCE2. OUT)

***************************************************************************
* CALCULATION BLOCK FOR VARIATION OF TORQUE WITH SHEAR STRAIN *
* IN A BAR INITIALLY EXTENDED (CASE-II) *
***************************************************************************

IF(Q.EQ. I .O)THEN

DO GGYI~O.I,4,O.1

IF(GGYI.L T.B)THEN
A~B-EEYI
ANS2~0.0

DO J~2,N,2
H~(B-A)/J
NI~J/2
SUM~O.O
DO I~I,Nl

X~A+(2*1-l)*H
SUM~SUM+4 *T2(X,GGY I,Q)

IF(J.NE.NI)THEN
Xl~X+H
SUM~SUM+2*T2(XI ,GGYI ,Q)

ENDIF
ENDDO
SUM~SUM+ T2(A,GG Y1,Q)+ T2(B,GG Y1,Q)
ANS~SUM*(H/3)
ANSl~ANS
IF((ABS(ANSI-ANS2)).LE.EPS)GO TO 120

ANS2~ANS
ENDDO

120 WRlTE(*, *)'VALUE OF TITY~',ANS2,'FOR GIGY~',GGYI
ANS3~ANS2+ TAOW2(GGY 1,Q,A)
WRlTE(*, *)GGY I,ANS3

ELSE

ANS2~0.0
DO J~2,N,2
H~(B-A)lJ
Nl~JI2
SUM~O.O
DO l~I,NI

X~A+(2*I-I)*H
SUM~SUM+4*T2(X,GGYI ,Q)

IF(i.NE.NI)THEN
Xl~X+H
SUM~SUM+2*T2(XI ,GGY 1,Q)
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ENDIF
ENDDO
SUM~SUM+ T2(A,GGY 1,Q)+ T2(B,GGY 1,Q)

. ANS~SUM*(H/3)
ANSl~ANS
IF((ABS(ANS I-ANS2)).LE.EPS)GO TO 221
ANS2~ANS
ENDDO

221 PRINT*,'VALUE OF THE INTEGRA nON FOR TITY~',ANS2,'FOR GIGY~',GGYI
WRITE(*, *)GGY I,ANS2
ENDIF

WRITE(16, *)GGY 1,ANS2
ENDDO

ELSE IF(Q.LT.I.O)THEN

GGY3~SQRT( I.O-Q*Q)
WRITE(16,*)'GGY3, GIGY, TITY'
DO GGY2~0.1 ,4,0.1

IF(GGY2.LE.GGY3)THEN
A~LO
ANS~TAOW2(GGY2,Q,A)
WRITE(16, *)GGY2,ANS

ELSE
A~B-(GGY2-GGY3)
ANS2~0.0
DO J~2,N,2
H~(B-A)IJ
Nl~J12
SUM~O.O
DO I~I,NI
X~A+(2*I-l)*H
SUM~SU M+4 *T2(X,GG Y2,Q)
IF(LNEN 1)THEN
XI~X+H
SUM~SUM+2*T2(XI ,GGY2,Q)

ENDIF
ENDDO
SUM~SUM+ T2(A,GGY2,Q)+ T2(B,GGY2,Q)
ANS~SUM*(H/3)
ANSl~ANS
IF((ABS(ANSI-ANS2)).LEEPS)GO TO 121

ANS2~ANS
ENDDO

J 21 WRlTE(*, *)'VALUE OF TITY~',ANS2:FOR GIGY~',GGY2
ANS2~ANS2+ TAOW 1(GGY2,Q,A)
WRlTE( 16,*)GGY3,GG Y2,ANS2

ENDIF
ENDDO

ELSE
PRINT*,'ENTER THE VALUE FOR "Q" BETWEEN "0" & "I'"
GOTO 223

ENDIF
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***********************************************************************
, CALCULATION BLOCK FOR VARIATION OF AXIAL LOAD WITH SHEAR'
, STRAIN IN A BAR INITIALLY EXTENDED (CASE-II) ,
***********************************************************************

IF(Q.EQ. I .O)THEN

DO GGYI~0.1,4,0.1

IF(GGYI.LT.B)THEN
A~B-EEYI
ANS2~0.0

DO J~2,N,2
H~(B-A)IJ
NI~JI2
SUM~O.O
DO 1~I,Nl

X~A+(2'1-1)'H
SUM~SUM+4'F2(X,GGY I ,Q)

IF(INEN I)THEN
XI~X+H
SUM~SUM+2'F2(XI ,GGY I,Q)

ENDIF
ENDDO
SUM~SUM+F2(A,GGYI ,Q)+F2(B,GGY I,Q)
ANS~SUM'(H/3)
ANSI~ANS
IF((ABS(ANS l-ANS2)).LE.EPS)GO TO 520

ANS2~ANS
ENDDO

520 WRfTE(',*)'VALUE OF F/FY=',ANS2,'FOR G/GY~',GGYI
ANS2~ANS2+SfGMA2(GGY I,Q,A)
WRITE(', ')GGY I,ANS2

ELSE

ANS2~0.0
DO J~2,N,2
H~(B-A)IJ
NI~JI2
SUM~O.O
DOI~I,NI

X~A+(2'1-1)'H
SUM~SUM+4'F2(X,GGY I,Q)

IF(I.NE.N I)THEN
Xl~X+H
SUM~SUM+2'T2(X 1,GGY I,Q)

ENDlF
ENDDO
SUM~SUM+F2(A,GGYI ,Q)+F2(B,GGY I,Q)
ANS~SUM'(H/3)
ANSl~ANS
fF((ABS(ANS I-ANS2)).LE.EPS)GO TO 52 I
ANS2~ANS
ENDDO

521 PRINT','VALUE OF THE INTEGRATION FOR F/FY=',ANS2,'FOR E/EY~',GGYI

Appendix-A: Computer Program

84

r
•



WRITE(*, *)GGY I,ANS2
ENDIF

WRITE(36,*)GGY1,ANS2
ENDDO

ELSE IF(Q.L T.I.a)THEN

GGY3~SQRT(l.a-Q*Q)
WRJTE(36,*)'GGY3, G/GY, F/FY'
DO GGY2~a.l ,4,a.1

IF(GGY2.LE.GGY3)THEN
A~l.a
ANS~SIGMA2(GGY2,Q,A)
WRITE(36, *)GGY2,ANS

ELSE
A~B-(GGY2-GGY3)
ANS2~a.a
DO J~2,N,2
H~(B-A)/J
Nl~J/2
SUM~a.a
DOI~I,NI
X~A+(2*1-1)*H
SUM~SUM+4 *F2(X,GGY2,Q)
IF(J.NE.NI)THEN
Xl~X+H
SUM~SUM+2*F2(X I ,GGY2,Q)

ENDIF
ENDDO
SUM~SUM+F2(A,GGY2,Q)+F2(B,GGY2,Q)
ANS~SUM*(H/3)
ANSI~ANS
IF((ABS(ANSI-ANS2)).LE.EPS)GO TO 523

ANS2~ANS
ENDDO

523 WRJTE(*, *)'VALUE OF F/FY~',ANS2,'FOR G/GY~',GGY2
ANS3~ANS2+SIGMA2(GG Y2,Q,A)
WRITE(36, *)GGY3 ,GGY2,ANS3

ENDIF
ENDDO

ELSE
PRINT* ,'ENTER THE VALUE FOR "Q" BETWEEN "a" & "I '"
GOTO 223

ENDIF

ELSE

PRINT*,'ENTER THE VALUES OF "I" OR "2" FOR CASE-lOR CASE-II'
GOTO 2a4

ENDIF
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STOP
END

**************************************************************************
* SUBROUTINE FOR DEFINING THE FUNCTION FOR TORQUE FOR CASE-I *
**************************************************************************

FUNCTION TI(X,EEY,P)
TI ~4.0*(X**2)*SQRT(I.0-(TANH(EEY -SQRT( I-P*P*X*X)+
I 0.5*ALOG((1 +SQRT(I-P*P*X*X»/(I-SQRT( I-P*P*X*X»»)**2)

C F~]/(EXP(X**2»
RETURN
END

****************************************************************************
* SUBROUTINE FOR DEFINING THE FUNCTION FOR AXIAL LOAD FOR CASE-I *
****************************************************************************

FUNCTION FI(X,EEY,P)
F I~2*X*T ANH(EEY -SQR T( I-P*P*X*X)+0.5 *ALOG
1((1+SQRT(I-P*P*X*X»/( I-SQR T( I-P*P*X*X»»
RETURN
END

***********************************************************************
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* SUBROUTINE FOR DEFINING THE FUNCTION FOR SHEAR STRESS
* FOR ELASTIC CORE FOR CASE-I

*
************************************************************************

FUNCTION TAOWI(EEY,P,A)
AT~SQRT(I-P*P*A *A)
ATHI ~05*ALOG((I+AT)/(I-AT»
SIGMA~TANH(EEY-AT+ATHI)
TAOW I~SQRT(I-SIGMA **2)*(A **3)
RETURN
END

***********************************************************************
* SUBROUTINE FOR DEFINING THE FUNCTION FOR AXIAL STRESS
* FOR ELASTIC CORE FOR CASE-I

*
*

***********************************************************************
FUNCTION SIGMAI(EEY,P,A)
AT~SQRT(I-P*P*A *A)
ATH 1~0.5* ALOG((] +AT)/(1-AT»
SIGMA] ~TANH(EEY-AT+A TH I)*(A *A)
RETURN
END

*************************************************************************
* SUBROUTINE FOR DEFINING THE FUNCTION FOR AXIAL LOAD CASE-II *
**************************************************************************

FUNCTION F2(X,GGY,Q)
F2~2.0*X* SQRT(lO-(T ANH(GGY*X -SQR T(l-Q*Q)+
10.5*ALOG(( I+SQRT(I-Q*Q»/(I -SQRT(I-Q*Q»»)**2)
RETURN
END

***********************************************************************
* SUBROUTINE FOR DEFINING THE FUNCTION FOR TORQUE CASE-II *
***********************************************************************

FUNCTION T2(X,GGY,Q)
T2~2.0*(X **2)*T ANH(GGY*X -SQRT( I-Q*Q)+
10.5*ALOG((I +SQRT( I-Q*Q»/( I-SQRT(I-Q*Q»»
RETURN
END

***********************************************************************
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* SUBROUTINE FOR DEFINING THE FUNCTION FOR SHEAR STRESS
* FOR ELASTIC CORE FOR CASE-II

*
*
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***********************************************************************
FUNCTION TAOW2(GGY,Q,A)
AT~SQR T(I -Q*Q)
ATH I~0.5* ALOG((l +AT)/(I -AT))
TAOW2~TANH(GGY* A-AT+ATH I)*(A **3)
RETURN
END

***********************************************************************
* SUBROUTINE FOR DEFINING THE FUNCTION FOR AXIAL STRESS
* FOR ELASTIC CORE FOR CASE-II

*
************************************************************************

FUNCTION SIGMA2(GGY,Q,A)
AT~SQRT(I-Q*Q)
ATHI ~0.5* ALOG((l+AT)/(I-AT))
TAOW~TANH(GGY* A-AT +ATH I)
SIGMA2~(SQRT(1 -TAOW**2))*(A *A)
RETURN
END

************************************************************************

******************************************************************************
* CALCULA nON BLOCK FOR CASE-I ( TORSION FOLLOWED BY AXIAL LOAD) *
******************************************************************************

OPEN(UNIT~6,FILE~'SIGMA.PL T)
OPEN(UNIT~7,FILE~'T AOW.PL T)

C E~E/EY
C P~GO/GY
C Z~R1A
C SIGMA~S/SY
C E~IO

P~IO
Z~1.0

C DO 10 Z~1.0,0,-0.05
DO I00 E~0,3.01 ,0.05
AT~SQRT(I-P*P*Z*Z)
ATH I~0.5* ALOG((I +AT)/(I -AT))
SlGMA~TANH(E-AT+ATHI)
TAOW~SQRT(I -SIGMA **2)
WRlTE(6,20)E,SIGMA
WRlTE(7,20)E,TAOW
PRlNT* ,E,SIGMA,TAOW

20 FORMAT(IX,FIOA,4X,FIOA)
100 CONTINUE

C 10 CONTINUE
STOP
END

******************************************************************************
* CALCULATION BLOCK FOR CASE-II (TENSION FOLLOWED BY TORQUE) *
******************************************************************************

OPEN(UNIT~6,FILE~'SIGMA.PL T)
OPEN(UNIT~7 ,FILE~'T AOW.PL T)

C Q~EO/EY
C G~G/GY
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*

C Z~R/A
C SIGMA~S!SY

Q~LO
* Z~I.O

G~I.O
DO I0 Z~O.OOOI, I .0,0.005

DO 100 G~0.0,3.01,0.05
AT~SQRT(I -Q*Q)
ATH 1~0.5* ALOG((I +AT)!(l-AT))
TAOW~TANH(G*Z-AT +ATH I)
SIGMA~SQRT( 1-TAOW**2)
WRlTE(6,20)G,SfGMA
WRITE(7,20)G,TAOW
PRlNT*,G,SlGMA,TAOW

20 FORMAT(IX,FIOA,4X,FIOA)
* 100 CONTINUE
C 10 CONTINUE

STOP
END
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APPENDIX-B

MECHANICAL PROPERTIES OF STEEL AND COPPER

It contains the uni-axial stress-strain curves of the steel and copper rods,

which were used by Ali et al [18-19] for conducting experimental investigation

under similar type of bi-axial torque-tension loading, as has been consider

theoretically in the present investigation. Figure B 1 shows the uni-axial stress-strain

curve of the steel & figure B2 that of copper. The steel used was En8 (BS970) whose

typical composition were: 0.36% C, 0.10% Si, 0.60% Mn, 0.05% P and 0.05% Sand

copper used was pure copper with 1% impurities. The table given below shows the

mechanical properties of the above mentioned two materials.

Materials Modulus Modulus Tensile Yield Tensile Shear

of Of Yield Torque Yield Yield

Elasticity Rigidity Load (Nm) Stress Stress

(GPa) (GPa) (kN) (MPa) (MPa)

STEEL 212 73 30.4 36.2 605 360

COPPER 115 49 12.5 15.1 249 .150
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Figure B.1: Axial stress versus axial strain curve for STEEL
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Figure B.2: Axial stress versus axial strain curve for COPPER

Appendix -B: Mechanical Properties afSteel and Copper


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101

