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Abstract

Named Data Networking is a new concept in modern internet technology

instead of conventional TCP/IP architecture where nodes are addressed based

on the interest of the the consumers. Internet security is a very challenging

research area due to the huge amount of traffic generation. NDN’s built-in

structure emphasizes better privacy and security protection which enables more

scalable networking but it is also vulnerable to many security threats including

denial-of-service (DoS) or distributed DoS (DDoS). DDoS attack can be initiated

by various methods, this thesis focuses on mitigation of one special type of DDoS

attack, the interest flooding attack with respect to NDN architecture.

Distributed Denial of Service (DDoS) attacks are very prevalent now a days.

Our proposed procedure represents the first step towards learning and possible

mitigation of DDoS in NDN. We capture the network traffic to classify and learn

about legitimate and malicious interests. Moreover, we propose attack detection

based on selected features computed by SVM machine learning-based approach.

We have simulated our method extensively with ns3-NDN simulator and we

have provided experimental results to support the performance of our method.

xi



Chapter 1

Introduction

Emerging technology and advancements are attracting researchers to provide better

internet architecture and protocols in terms of security, privacy, scalability, flexibility,

performance, resilience to handle the exponential increase in network traffic. Modern

internet architecture is going through a major shift of transformation which directs to the

emergence of Information Centric Networking (ICN) [3–7]. One of the implementation of

modern Internet architecture is supported by Named Data Networking (NDN) technology

[8]. Named data plays the main role in NDN instead of traditional IP based hosts [9].

However, data oriented interenet protocols suffer from different attacks and security issues.

In this thesis, we study security challenges in NDN, we identify the attacks and severity

for NDN, and propose a methodology which is basically machine learning based DDoS

Attack detection and mitigation, aimed at the flowing of legitimate traffic and reducing the

malicious traffic that passes through NDN router. We have implemented our mechanism

and compared to existing state-of-the-art DDoS detection strategies. We summarize the the

contributions of this thesis as follows.

• We design an attack detection model for detection of Interest Flooding Attack (IFA).

• We analyze features that affect IFA and selected the most prominent features using

k-means clustering.

• We use machine learning for detection of attack.

• We provide an attack mitigation model.

• We compare the performance of our model with the state of the art approaches. For

this we use the special simulator ndnSIM [?].

1



1.1. NDN ARCHITECTURE 2

1.1 NDN Architecture

In this section we discuss the powerful hourglass architecture designed for NDN. NDN

represents hourglass-shaped architecture at the thin waist it names content instead of

communication endpoints Figure 1.1. This thin waist allows lower and upper layer

technologies to innovate without unnecessary constraints.

Figure 1.1: Internet and NDN Narrow-Waist Hourglass Architectures [1].

In NDN, communications between hosts works by creating two distinct types of packets.

This is an important part of NDN that replaces the IP address identifier that is currently used

in TCP/IP. NDN packet types are indicated in Figure 1.2. Any node sending desired interests

for data acts as a content consumer, whereas a node that can provide data packets behaves

as a producer.

Interest packet: The Interest packet is created at the beginning, which holds the requested

content of a consumer. An Interest packet has three sections: content name, selector and

a nonce. Content name is the most important part of Interest packet. Content name holds

the desired searched name that identifies the wanted content.The Selector field uses to refine

content searching a series of fields is useful such as order performance, scope etc. The Nonce

field is used to locate and identify same or equal interest packets.

Figure 1.2: NDN Interest Packet and Data Packet [1].

Data packet: It is the most essential component, which acts as the answer carrying the

requested content for the consumer. Data packet has four distinct sections: content name,
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signature, sign Info and data. Data packet represents the answer of requested interest packet

together with its matched name and a signature by the producers key which binds the two.

The required data follows the reversed path which was taken by the Interest to go from

the requesting consumer. Signed Info holds useful information to verify the accuracy and

correctness of the signature.

1.1.1 Naming in NDN

Network architecture of Named Data Network (NDN) is based on the contents name.

NDN embraces a hierarchical structure where the content name consists of one or

more variable length components, each of which is separated by the "/" symbol and

it indicates the boundary between name components. Names are used to identify

content and consists of multiple parts: origin of the content, the file name, the version

number of the content, the segmentation number. A consumer and a provider can always

construct the same content name with the help of hierarchical name spaces and naming

conventions to fetch desirable content. Data packets are immutable and cannot be changed,

once it is published under a given name. A new name must be generated for a new

version of the same data packet whenever an application needs to published. Content

segmentation in a sequence of Data packets is supported for large data object [10]. For

example : /tutorial.com/python/example/1/3, where tutorial.com is a global routable name,

python/example is the object name, the version number is 1 and the segmentation number

is 3. Two additional components version number and segmentation number are added to

the end of an NDN name.

Furthermore, not all the content names need to be globally unique, it depends on the

visibility of the content. Global uniqueness is required only those names of a content that

are retrieved from globally. For local communication names are based on local context and

needed only local routing to find corresponding data.

Packet Routing Once the interest packet is created, it follows a specific path through certain

section in a previously configured router and those are the three sections.

• Content Store (CS)

• Pending Interest Table (PIT)

• Forwarding Information Base (FIB)

Content Store

Previously fulfilled Interest packets’ content are stored here. Content Store is able to contain

cache and are used for content retrieval [11]. Before forwarding each and every packet, NDN
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Figure 1.3: Routing path of data packets .

router checks at each hops’ CS for locally cached data [12]. If it exactly matches the content

name or take the content name as its prefix, the matched data packet forwards back to satisfy

the interest.

Pending Interest Table (PIT)

Pending Interest Table contains currently forwarded Interests and waits for matching

corresponding incoming interfaces data. PIT entries need to be timed out quickly to

maximize the usage of the PIT [13]. PIT table records the Interest’s name, incoming

interface(s) and outgoing interface(s). For each requested name, a PIT entry is created

[14]. If the same forwarded Interest comes, PIT assigns random identifier named nonce and

discards the identical Interests.

Forwarding Information Base (FIB)

FIB is populated by a name-based routing protocol which is very similar to the one currently

used with TCP/IP, except FIB has name prefixes rather than IP prefixes and it allows for a

ranked list of outgoing faces rather than a single best next-hop [15]. Routing table contains

name prefixes and corresponding outgoing interfaces. In FIB, using longest prefix match,

the Interest name of corresponding Interest is looked up by the forwarder.

Datagram State

NDN router contains "datagram state" of every pending interest packet in its PIT by

maintaining an entry. This state lead the way to loop free, two-way symmetric packet flow.

Each and every Interest packet pulls one and only data packet thus maintaining one-on-one

flow balance.
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1.2 Security Challenges in NDN

Security is one of the major concern of NDN design. Content publisher signs every data

packet using a particular key to bind securely name to the content. Thus every data packet

is publicly authenticated via digital signatures and moves securely from hosts to hosts.

This type of verification is useful against different kinds of network attacks but it does not

completely cover all security, privacy and trust issues. NDN Data packets do not contain any

identity of the sender but this is not sufficient to ensure better privacy because both packets

can leak the name of the contents and can result into remarkable privacy concerns.

Although it has built-in security architecture which enables more collaborative, scalable

networking for content diffusion but it has several security challenges regarding data

confidentiality and access control to protect sensitive user information. To provide a reliable

and secure internet architecture, NDN must have capability to fight against current and

emerging threats or attacks. These attacks are Interest Cache Privacy Attack, Interest Flooding

Attack (IFA), Cache Pollution Attack, Content Poisoning Attack, etc. Like current Internet

architecture, denial-of-service (DoS) or distributed DoS (DDoS) can happen in NDN. DDoS

attack, in particular, Interest flooding attack as well as content/cache poisoning represent

the most serious threats and have severe impact on overall network performance. We try to

solve this problem using Machine Learning based attack detection.

1.3 Contributions

Our contributions are listed as follows.

• We propose a framework which is capable to mitigate DDoS attack for NDN.

• In detection phase, we learn continuously network traffic data and updating SVM by

training. We give better system to detect DDoS attack.

• In mitigation phase, we give a set of rules based on context which are followed by NDN

Controller for further action.

The rest of the thesis is organized as follows. In Chapter 2, we discuss the background study

of the problem and related research work, research gap and literature review of the existing

works in terms of security in NDN. It includes Denial of Service (DDoS) Attack, Interest

Flooding Attack etc. We also discuss how to mitigate these attacks. Chapter 3 focuses on the

feature extraction, detection of DDoS using SVM classifier related to the problem domain.

We also discuss our proposed solution in this chapter. We provide results and analysis

in Chapter 4. Finally, Chapter 5 concludes the thesis with a summary discussion and the

direction to future development.



Chapter 2

Related Work

In this chapter, we study some of the major research work related to DDoS attack in Named

Data Networking.

DoS and DDoS attacks create a major security hole in Named Data Networking. These attacks

are primary concern in network security till now. The adversary invokes a large number of

interest requests that are distributed closely in space, controlling with a large set of zombies.

When lots of interest packets are sent at aiming to overflow PITs in routers, preventing them

from handling legitimate interests, to swamp the specific content producer(s) because PIT

has a certain capacity of receiving interests. This type of attack is known as DDoS attack see.

2.1

Figure 2.1: Interest Flooding Attack on NDN [2].

2.1 DDoS Attack in NDN

DDoS attack can be generated in the following situations.

6
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• Using compromised systems.

• Numerous Interest packets with spoofed names by controlling with a large set of

zombies.

• Making bad use of forwarding rules

2.1.1 DDoS Attack Categories

DDoS attacks can be grouped into following categories:

• Single-target DDoS Attack.

• Interest Flooding Attack.

• Content/Cache Poisoning Attack.

• Interest Spoofing Attack.

2.1.2 Single-target DDoS Attack

In this type of attack, Longest Prefix Match rule while looking up Interest names in the FIB is

used to forward packet into destination [16]. Due to name suffix is forged, content provider

does not have any content corresponding to this name to provide. As a result, unsatisfied

Interest packet will stay in the PITs and hold memory and computing resources on routers

until PIT entries expire. Attacker repeats this process with a large amount of different

spoofed suffixes.

2.1.3 Interest Flooding Attack

It is a unique and common DDoS attack for NDN. An attacker can utilize two distinctive

NDN features named CS and PIT [17]. To generate large number of Interest packets

with full forged names, the adversary uses a large set of zombies, which are possibly

geographically distributed and requests existing or non- existing content to overload PIT

table in routers [14]. Unmatched Interest packets with FIB should be broadcast [16] or

discarded.

2.1.4 Content or Cache Poisoning Attack

Content Poisoning Attack (CPA) is a critical threat where malicious data are filling up

by compromised routers or collaboration between consumer and bad providers. CS has
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legitimate content names but those data were corrupted or altered and spread to as many

users as possible [18]. The main goal of adversary cache misses for honest consumers and to

disrupt cache locality by increasing link utilization [19].

2.1.5 Interest Spoofing Attack

An attacker forwards Interest packet with spoofed name consisting a legitimate prefix

concatenated with a forged suffix so that the producer cannot provide the data and it remains

in the server and exhausts PIT until expired [14].

Spoofed Name = Existing Prefix + Forged Suffix

Figure 2.2: An Interest packet with spoofed name: a valid prefix concatenated with a forged
suffix

2.2 Interest Flooding Attack Content Types

Gasti et al. observed there are three types of Interest flooding attack based on whether the

requested content exists and how the content produced, then identified [11]:

• Existing and static

• Dynamically generated

• Nonexistent (i.e. unsatisfiable interests)

Existing or Static Content:

The impact of this type of attack is restricted because of NDN in-network content caching

mechanism provides a built-in countermeasure by automatically block subsequent similar

interest. Following requests are satisfied by cached copies and thus subsequent request can

not propagate to the producer(s).
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Dynamically Generated Content:

This type of attack uses the PIT states. The adversary, using fake requests, floods the specific

content producer(s) and fills the PIT space. The adversarys origin is very difficult to find [20].

The impact on NDN routers relies their distance from the targeted content producer(s). The

closer to the producer, the greater effect on its PIT.

Non-existent Content:

NDN infrastructure is resilient to this type of contents, though network and application-layer

functionalities suffer [20]. Attackers generate distinct, unique and unjustifiable Interests for

a non-existent content so that names cannot match any FIB entry and propagate to other

NDN nodes until they reach the hosts at the edge of the network. These Interest packets

remain in the PIT up to the expire time. If attacker duplicate such a great amount of Interests,

computational cost will increase.

2.3 Background Work

As discussed by Gasti et al. in [11] discussed DoS and DDoS for the first time. They have

Proposed two type of countermeasures:

1. Router Statistics: Statistical approach is suggested for the detection of the attack. It is used

to maintain balance between Interests and Contents by limit flow rate.If the routers receive

too many request from the same domain, they can drop some of them.

2.Push-back Mechanisms: The router applies a push-back mechanisms to trace back for

malicious source detection and separate the attack right at source.

Limitations of this work:

• The authors only discussed about attack and its possible countermeasures.

• The strategy of dropping interests, may affect popular content as well.

Atanasyev et al. [21] proposed three mitigation algorithms by interest spoofing of interest

flooding.

1.Token bucket with per-interface fairness: represents a fair mixture of Interests, received

from neighboring nodes forwarded by a router on each interface.

2.Satisfaction-based Interest acceptance: calculates Interest satisfaction ratio, the ratio

between the forwarded Interest requests to number of satisfied requests, for accepting

legitimate(forwarding) or rejecting an incoming malicious Interest.

3.Satisfaction-based push back: where the value of incoming Interest limit is set by each

router, directly depends on the proportion to the calculated Interest satisfaction ratio.
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Besides, routers have to announce this limit to their downstream neighbors, thus in

accordance with the announced limit of the upstream node, downstream routers can

reconfigure their own Interest acceptance limits. Satisfaction based pushback algorithm

effectively detect and mitigate the attack and make sure that all the interests are form a

legitimate user.

Limitations of this work are as follows.

• All of three algorithms utilize their respective information to stop Interest flooding

attacks. Some improvements was shown in token bucket with per-interface fairness.

Among three algorithms, satisfaction-based Interest acceptance was less effective.

• Based on probability applied a filter on the malicious interface, legitimate interest also

gone thorough this filter, thus suffer.

Compagno et al. [22,23] suggested a defense mechanism named Poseidon. It is a framework

strictly used for detection and mitigation of distributed and local Interest flooding attack for

non-existing contents.

A set of algorithms named Attack Detection and Message Processing runs on the routers

continuously monitoring the overall traffic.

1.Attack Detection uses two parameters, the first one is the ratio of incoming interest packets

and outgoing content packets and the second parameter is PIT space used per interface

within time interval. If both of the parameters exceeds a predefined threshold value, then

the attack is detected on that specific interface.

2.Message Processing algorithm sends an alert message back to the interface(s) of the

attack. A filter is set on the annoyed interface(s) decreases the threshold value of the above

parameters. In the most testing cases during the attacks, authors simulated model has been

able to use around 80 - 90 percentage of the available bandwidth.

Limitations of this work are as follows.

• Static Threshold value is used here for evaluating ISR and PIT usage for attack

detection.

• Each router applied a filter thus valid legal requests also suffer from this attack.

Choi et al. [24] addressed an overview of threats for strictly non-existent contents on NDN for

Interest flooding attack. Authors simulated and explained how the Interest flooding DDoS

attacks effect, deteriorate on the overall quality of services and the difficulty of getting a

solution for flooding attacks in the PIT.
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Limitations of this work are as follows.

• Only analyzing DDoS attacks and their countermeasures.

Karami et al. [17] introduced an intelligent hybrid algorithm for mitigating Interest flooding

attack in NDN. A two-phase framework has been proposed as follows.

Figure 2.3: The overview of the proposed Proactive detection and Adaptive reaction.

1. Proactive detection: In order to improve the accuracy of DoS attack prediction, using

a combination of multi objective evolutionary optimization algorithm and Radial Basis

Function (RBF) neural network can provide solution.

2. Adaptive reaction: In the reaction phases, an adaptive mechanism by enforcing explicit

limitations against adversaries is used to mitigate the attacks.

Limitations of this paper are as follows.

• Applies a hybrid approach and only investigates inter-domain DoS attacks.

• To detect an attack, features are used, but they have not done any feature analysis of

detection parameters.

Dai et al. [16] proposed Interest traceback solution generating a spoof data packet to satisfy

the long-unsatisfied interest in the PIT to trace the Interest originators. The collaboration of

the router and the content producer is the basis of this solution.



2.3. BACKGROUND WORK 12

(a) Compromised systems send out at-
tacking Interest packets.

(b) Three Interest traceback paths to
trace the attacker.

Figure 2.4: Mitigate DDoS Attacks in NDN by Interest Traceback.

Limitations of this work are as follows.

• To detect the attack, a threshold value is used as a metric. If the threshold goes beyond

predefined value, the traceback algorithm is applied.

• This procedure does not work for attack when Interest uses a random prefix

• According to [17], the solution is not proactive. Moreover makes overhead in the

network by increasing made spoofed contents for the interest depleting the bandwidth

of the network and creating traffic.

• Another limitations of this process is that it accepts long-unsatisfied Interests in the

PIT as adversary interest and other unsatisfied Interest are legitimate usages. So as a

result any long incoming interest packet which may be a legitimate interest might drop

and thus valid interest forwarded decreases from that interface.



Chapter 3

Problem Domain

In this chapter, we give the details of the problem formulation and the outline of proposed

solution.

In a conventional network scenario, there is a consistency in overall traffic. But if there is

any deviation, different features appear in the network traffic which can help to detect the

anomaly. In the proposed system model, we learn learn traffic behavior and from there

we detect the anomaly. There are several parameters which can be monitored by a router

to determine any probable attack. We aim to detect Distributed Denial of Service (DDoS)

attacks within NDN by using a Support Vector Machine (SVM) for classifying network traffic

as normal or anomalous. For learning the traffic behavior we use the k-means clustering

and single-class SVM classifier algorithm. If there is a significant deviation from the learned

behavior of the traffic then that can be considered as DDoS attack.

DDoS attack can be generated by different ways. But here, we focus on only one major type

of DDoS attack, Interest Flooding Attack (IFA).

3.1 Preliminaries

We now provide some preliminaries and definitions.

• InDataPackets: It is the number of arrived data packets in a router.

• InInterestPackets: It is the number of arrived Interests packets in a router.

• Interest Satistaction Ratio (ISR): It is the ratio of the number of data packets received

by the consumer node to the total number of interest packets sent.

• In-ISR: It is the number of satisfied interest packets where interface was part of the

incoming set.

13
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• Out-ISR: It is the number of satisfied interest packets where interface was part of the

outgoing set.

• InData: It is the number of arrival data packets to an interface.

• OutData: It is the number of sent data packets from a router.

• PIT : Pending Interest Table which contains information about pending interests.

• PIT Usage: It is the number of PIT entries on router.

• NACK : NACK provides negative acknowledgement.

We now talk about some assumptions.

• The attacks only exploit PIT.

• Interests can both be satisfactory and unsatisfactory.

• If PIT is full, all subsequent interests are dropped.

• PIT keeps unsatisfied interests.

• The adversary requests dynamically generate contents since NDN routers can store

static contents. Thus malicious interests do not reach the producers for the static ones.

3.1.1 Goal of the Attackers

NDN routers are very different from traditional routers, and it has CS and PIT which are

unique in maintaining data structures used to store state. There should be process and

technique to protect them, otherwise adversary misused them to implement DoS or DDoS

attacks. The goals of the adversary are-

• The consumption of routers’ resources: to jam PIT table in routers, preventing them

from handling legitimate Interests.

• To overburden with the requests on the target content producers: Interest requests for

existing contents, non existing contents or those require more computation from the

providers.

• To create network service disruptions and congestion: Asymmetry in size between

Interests packets and Data packets creates the saturation of network links.

• Bandwidth depletion: The maximum rate of malicious interests does not depend on

the bandwidth allocated by the victim to content packets or ability to receive content.



3.2. PROBLEM FORMULATION 15

3.2 Problem Formulation

PIT holds the information about pending interests. If the PIT is completely full, then all

incoming interests are dropped and cannot accept new interests, until the pending ones are

either satisfied or expired. Flooding to a router occurs by the adversaries to saturate the PIT

with many distinct interests. Under this attack, incoming interests is higher than the rate of

packet expiration or content satisfaction. In interest flooding attack, two scenarios may arise.

These are stated as follows.

• The adversary produces interests with spoofed names.

• The adversary sends interests for existing content.

3.2.1 Interest with Spoofed Name

In the first type of attack [21], the attacker sends spoofed named interest packets created by

existing prefix and forged suffix with a random string. These packets create entries in PITs of

routers along with the path. Since there is no data producer that has produced data packet

corresponding to interest packets, these packets are dropped by the publisher. Entries of PIT

remains until expired.

For more accuracy and faster detection, we should analyse more feature parameters that give

correct and precise results. Here, we use six feature parameters as a countermeasure for this

scenario.

3.2.2 Interest with Random String

In the second type of attack [11], malicious nodes produce random strings as interest

packets to perform the attack thus exhausting producers’ maximum capacity. These interest

packets have no FIB entry, thus interests are broadcast from all the interfaces and seriously

affect network rather than a particular server. To mitigate this type of attack, a negative

acknowledgment(NACK) can be sent to the router from which the interest packet is received

and it can be decided not to forward interest packet to other routers [22]. Tough NACK is

used but this has severe effects on network. NDN network performance may deteriorate due

to the possibility of FIB corresponding to the interest packets can be found after multiple

hops.

Thus it is necessary to continuously learn network traffic and create a model for attack

detection.
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3.3 Our Approach

The proposed method consists of offline and online phases. A new method is used for

classification of network traffic. Support Vector Machine (SVM) is the most popular method

among machine learning approaches regarding to classication and regression.

SVM can be efficient in identifying malicious data from network traffic, but this algorithm is

memory and process intensive. Training such algorithm for each and every Interests is very

expensive in terms of resources of routers. Therefore, our approach was to first cluster the

Interests based on the features using unsupervised learning algorithm, such as k-means, and

then applying SVM on the clusters to decide their boundaries [25]. Comparing to SVM, k-

means algorithm is faster and consumes fewer resources. Generally router has less memory

and less processing power, so this will be better choice for routers.

3.4 Machine Learning

According to [26], it is a computer program which is said to learn from an experience E

with respect to some task T and some performance measure P, if its performance on T, as

measured by P improves with experience. Machine learning algorithms solve problems from

many domains without detailed domain-specific knowledge and builds a hypothesis using a

training set as an input.

Let f : Sd → Sd be the function that we need to guess from input vectors x1, x2, ..., xn , also

called as input variables or feature vectors. Let Ξ be a set of such input vectors. Let n be the

number of input vectors in training set Ξ. Let G be any set of functions. Let g : Sd →Sd ∈ G

be the hypothesis about function f ∈G . We select g based on training set X ⊆Ξ, of m input

vectors. In supervised learning, we know the values of f for m samples, in training set X .

We assume, if we can find hypothesis g that closely agrees with f for the members of X ,

then this hypothesis will be a good guess for f when X is large. In unsupervised learning, we

simply have a training set of vectors without function values for them. The problem in this

case, typically, is to partition the training set into subsets, X1, .., XN , in some appropriate way

[27].

Most common categorization of machine learning algorithms are Supervised and Unsuper-

vised learning. K -means algorithm is an unsupervised learning algorithm and SVM is a

supervised algorithm.

3.4.1 Feature Scaling

Feature scaling is a method used for pre-processing of data to normalize the range of

independent variables or features of data in a fixed range. Feature scaling is generally
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performed by subtracting the mean and scaling the feature to a unit variance value. Feature

scaling helps to bring all values to same magnitudes and speeding up the calculations in an

algorithm.

Standardisation equation is: x ′ = x−x̄
σ

where x represents a feature vector, x̄ is the mean and σ is its standard deviation.

For example, consider two vectors (5, 3, 1000) and (4, 3, 500). The Euclidean distance

between these two vectors using formula
√∑n

i=1(mi −ni )2, using the formula we can

calculate the distance is
√

(5−4)2 + (3−3)2 + (1000−500)2. A training set example as a

vector, then feature will be each coordinate in the vector. Mean and standard deviation

was calculated, to standardize the vector for the set of input vectors. By subtracting the

mean from each feature vector a new vector was created and feature vector is dividing by

its standard deviation.

3.4.2 Clustering

Cluster analysis is a technique of grouping a set of training vectors as input in such a

way so that objects in the same group are more similar to each other than to those in

other groups. For creating clusters, k-means [28] clustering is one of the most efficient

algorithms. This algorithm groups elements in training set based on how close they are

from the centroid. Taking any k randomly chosen points as centroid µ1,µ2, .....,µk , from

training set X = x1, x2, ..., xm , xi ∈ Sd , i = 1, 2, ..m. After every cluster assignment the

centroids are recomputed. Lloyds algorithm is the most popular heuristic algorithm for k-

means clustering. Algorithm 3.6.1 represents the k-means clustering, where input data will

be matrix of points with dimensions m and the desired number of clusters k.

An arithmetic mean of all the points in a cluster is called centroid vector. To determine the

number of clusters and centroids, Elbow method in Figure 3.1 is used. It can find the optimal

value of k in our training set. The elbow method checks the portion of the variance explained

by a function and plots the value of the cost function produced by different values of k.
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Figure 3.1: Elbow method to find optimal cluster.

Using Elbow method, the following diagram is produced. In this diagram, x-axis represents

the number of clusters of k in a training set and y-axis represents the variance explained.

Here, we use an improvement of k-means which is named as k-means++ algorithm. An

arbitrarily initialization step is replaced by randomized, simple seeding technique. k-

means++ always tries to search and find the centroids as far away from each other. If E(x) is

the shortest distance from a data point x ∈ X to the closest centroid we have already chosen.

Then we follow k-means++ algorithm [29].

3.4.3 Support Vector Machine

Support Vector Machine (SVM) [30] is a learning model with associated learning algorithms

defined by a separating hyperplane, involves plotting of data as points in an n-dimensional

space, where n denotes the number of features. Support Vector Machines are a set of

associated supervised learning methods that inspect, analyse data and identify patterns.

It is used for machine learning classification and regression analysis. Identifying the right

hyperplane which differentiates the two classes is the key to design an efficient system. For

defining the hyperplane, there are cases called as the Support Vectors. SVM tries to maximize

the margins by finding an appropriate hyperplane so that it clearly separates the cases into

two non-overlapping classes. Figure 3.2 shows the Support Vector Machine.

SVM model and support vector regression can be used to avoid the difficulties of using linear

functions in the high-dimensional feature space and the goal is to predict which category a

particular subject or individual belongs to, based on training set examples.
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Figure 3.2: Support Vector Machine.

SVM tries to classify training examples into two classes and classification is based on the

labels of a training set. Consider training set distance from different point x1, y1, ..., xn , yn ,

where xi ∈ Sd is the training set example and yi ∈−1,+1 is the label for xi .

Figure 3.3: Linear Separation using Support Vector Machine(SVM).

To generate the optimization algorithm in such a way that only the support vectors

determine the weights and thus the boundary. Input vectors that just touch the boundary of

the margin are tips of the vectors. The decision surface separating the classes is a hyperplane

of the form of equation:
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w T x +b

where, w is a weight vector, x is input vector, b is bias.

Margin of Separation d is called the separation between the hyperplane and the nearest

data point for a given weight vector w and bias b. Optimal Hyperplane also named as

maximal margin is called the particular hyperplane for which the margin of separation d

is maximized.

The points on the planes H1 and H2 are the tips of the Support Vectors. H1 and H2 are the

planes form of equation:

wT x +b ≥ 0 f or di =+1

w T x +b < 0 f or di =−1

where,

d+ = the shortest distance to the closest positive point

d- = the shortest distance to the closest negative point

The margin of a separating hyperplane is (d+)+ (d−)

The plane H0 is the median in between H1 and H2, the equation:

wT x +b = 0, Figure 3.2 and Figure 3.3 shows the H0, H1 and H2 with equation and details of

svm.

we are using SVM classifier to differentiate or separate the attack traffic data from the normal

traffic, as big a margin as possible using a line or a curve.

3.4.4 Data Structures

We know that we use three table structures: Content Store(CS), Forwarding Information

Base(FIB), Pending Interest Table (PIT) and a new file that run ML based Detection script,

which is maintained by every router for learning and detecting the attack.

Offline Phase for ML Based Model:

In offline phase, creating Data Collection and learning from the traffic flows are discussed.

Learning behavior from each traffic at the router can form the basis of analysis in this

thesis. By analyzing traffic flow of a router, we can detect if there is any suspicious behavior

in the network traffic, and thus router mainly plays as an important role as a point of

analyzer. An Internet traffic data will be captured from network on a router. Once we have

a flow information, we can apply learning techniques iteratively on each flow to gain deeper

knowledge about normal behavior of the traffic flow.

Network Data Collection Module

Normal traffic data as well as attack traffic data are collected on different time frames

using the the ns3-based ndnSIM simulator [31] as shown in Figure 3.7. Generated Traffic

is collected in the file after different time interval of simulation time.
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There are different network parameters that routers can monitor to determine whether they

are attacked by IFA or not, such as PIT Usage, Dropped Interests, ISR (Interest Satisfaction

Ratio), PIT Size, Incoming Interests etc. We select the most prominent parameters in the

feature selection module.

Content In Interest Count Out Interest Count Served Interests Dropped Interests ISR PIT Usage
A 10000 10000 10000 0 100 200
B 10000 10000 5630 4370 56.3 331
C 10000 10000 5887 4113 58.87 3321
D 1000 1000 789 211 78.87 194
E 1000 1000 763 237 76.30 203
F 1000 1000 1000 0 100 20
G 500 500 444 56 88.87 65
H 500 500 500 0 100 10
I 500 500 432 68 86.3 74

Table 3.1: Reduced sample data used for the classification.

Feature Extraction for Clustering

For learning the network traffic behavior we use k-means clustering and we have used

standardized vectors as input for k-means on reduced sample data Table 3.1.

Elbow method has been used to find the optimal number of clusters in our sample training

set. This method checks the portion of the variance of the number of clusters explained by a

function. The extracted features will be used for training a learning algorithm. A router will

constantly keep learning from the traffic and updating the learned parameters and save it on

file.

In Interest Count PIT Usages Dropped Interests ISR Cluster
10000 200 0 100 0
10000 331 4370 56.3 2
10000 3321 4113 58.87 3
1000 194 211 78.87 1
1000 203 237 76.3 2
1000 20 0 100 0
500 65 56 88.87 1
500 10 0 100 0
500 74 68 86.3 3

Table 3.2: Labeled Training Set (with cluster number).

We have used Scikit-learn libraries, for elbow and k-means clustering. Scikit-learn is the

most famous, open-source, rich machine learning software library for Python programming

language.
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Figure 3.4: Cluster Formation using k-means

3.5 SVM Training and ML Construction

SVM learns using cluster parameters and it can be used to form hyper planes in a high

dimensional space to classify incoming traffic as normal or malicious. On the file system,

the interest packets captured during a normal traffic and attack traffic were saved. SVM

model is trained by using this characteristic from the file system. Legitimate interests

flow information is used for training purpose and attack traffic is used for attack detection

purpose. Both files (attack and normal) are used to generate test features for SVM [32].

Figure 3.5: Traffic data classification using SVM trained model.

Our algorithms were trained using multiple training data sets and after that a trained model

was created. That model was stored on file system and refresh it every time after new

information was learned along with previous learned information.

We have used here Scikit-learn libraries, for our DDoS ML based attack detection

classification and model construction program.
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(a) SVM Classification (b) SVM Model

3.5.1 Online Phase for Traffic Classification

This section provides the details of how detection and mitigation steps are integrated into

an overall system, while maintaining routes for normal traffic and blocking attack traffic in a

network.

In online phase, ML based Attack Detector is added to every router that classifies the network

traffic operation. Figure 3.7 shows learning phase and detection phase. For detection

purpose we need to test traffic data into SVM model.

Figure 3.7: Traffic data learning and detection phase.

Data collection (Learning Phase) related to the behaviour of malicious or legitimate user

within period of time and then applies machine learning algorithm to the collected data to
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determine whether that request is legitimate or not. The advantage of using this technique

is that we can easily update SVM model on file system without modifying the existing rules.

Our ML based Attack Detector script runs on every router on the network for attack detection.

After detecting an attack a set of rules can be generated. Set of rules plays the major role for

further action, that can block all the packets or communicate with destination for sharing the

nature of the attacker or store temporarily for further checking and etc. Due to continuous

learning, growing and in-depth inspection of traffic flow, if the packets are found to be false

positives, they should be routed back to their respective destinations.

3.6 Steps in Details

• We deeply analyse the packet contents, captured Internet traffic at the router during a

fixed time interval.

• We maintain a file system for legitimate and malicious traffic data and create training

sets.

• We update file system with the new flow traffic data.

• In the case of a DDoS attack, traffic flagged as malicious by SVM is dropped if the

packet does not match with the cluster label it was labeled during training.

• Before using reduced data to a learning algorithm, first we had to feature scaling (also

known as Standardizing). For feature scaling, we need subtracting the mean and

scaling the feature to a unit variance value. It is important because different features

at different scales can cause one feature to dominate others in the algorithms output

result. Mean and standard deviation can be calculated, to standardize the vector. Then

subtracting the mean from each feature vector and dividing that feature vector by its

standard deviation creates a new vector.

• We use k-means to extract the features by using that vector at an interval of every

sampling period (340 seconds) at network during a fixed time window. Then we pass

the features already to trained SVM classifier where the classifier classifies the features

set as normal behaviour or malicious behaviour from the network.

3.6.1 Algorithms in Details

We provide the flowchart.
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Algorithm 1 Basic k-means algorithm

1: Select any random k points as the initial centroids, where k ∈ M
2: repeat
3: To all the centroids of the training set calculate distance for each element.
4: From k clusters, assign centroid which is closest to it.
5: Recalculate the new centroid of each cluster by taking the mean. If m j 1,m j 2....m j n are

the elements of the cluster j, then for cluster j new centroid will be µ j = 1
n [m j 1 +m j 2 +

....m j n], where n is the number of points assigned to cluster j. Recompute this for all
the clusters.

6: until The centroids do not change

Algorithm 2 k-means++ algorithm

1: Select a centroid µ1, choose uniformly at random from X points as first centroid.

2: Choose a new centroid µ ∈ X , such that the probability E(µi )2
∑

x∈X E(x)2 is highest.
3: Repeat Step 2 unless all k centroids are taken.
4: Continue with the Lloyds k-means algorithm, skipping random initialization stage.

Algorithm 3 ML based Attack Detector for NDN network attacks

Require: ML based Attack Detector
Ensure: Legitimate or malicious traffic detection

1: Chose the Machine Learning Algorithm for Clustering
2: Learned Traffic behaviour from network
3: Chose the Machine Learning Algorithm for Classification
4: Train the ML algorithm using the Learned Information
5: if The trained model predicts an attack on a host router then
6: Update the NDN set rules to block that types of traffic
7: else
8: Allow the interest data to access the resources
9: end if
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Figure 3.8: Machine Learning based architecture for defining security rules on NDN

3.7 Cluster Evaluation

To ensure the accuracy of our system, cluster parameters are needed to be tested. Evaluation

of cluster can be measured using the confusion matrix. Where,

• TP - Network traffic attack type and classified as an attack.

• FP - Network traffic attack type and classified as an not an attack.

• FN- Network traffic not attack type and classified as an attack.

• TN- Network traffic not attack type and classified as not an attack.
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Figure 3.9: Confusion Matrix.

We report our results using confusion matrix shown in Figure 3.9.

Clustering information reveals the normal or attack traffic flow. Malicious Interest or

Legitimate Interest should be found on same cluster as was found during the training set. If

an Interest found on multiple training sets, then maximum count of a specific type of training

set will be considered on that case. If an interest is found on three attack training sets and

two non attack training sets then it will be an attack type of data.

Rand Index(RI) [33] was used for measuring this similarity. How well does the test clustering

matches with the trained model can be determine Using RI:

RI = T P+T N
T P+F P+F N+T N

In Interest Count Cluster RI
10000 0 1
10000 2 0.75
10000 3 0.75
1000 1 0.25
1000 2 0.50
1000 0 1
500 1 0.25
500 0 1
500 3 0.75

Table 3.3: Learned information after clustering.

3.8 SVM Model Evaluation

Using different Data set we can evaluate our Trained Svm Model. SVM classifier generates

one sub model for every sample data set using SVM classification and produce results as

given in different tables in coming sections.
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3.8.1 Data Set

Without any duplicate instances in any collected traffic data, the data set should be separated

by a random selection of instances into three groups to make a good data set for evaluation:

• Training set

• Cross-validation set

• Testing set

Dataset Original Training Cross Test
Split % 100% 70% 15% 15%

Ex. Split of data A,B,C,D,E,F,G,H,I A,B,E,G,H C,F,H D,B

Table 3.4: Breaking up of collected data set into three.

Confusion matrix is shown in Table 3.5 which is the main basis for checking credibility,

accuracy and efficiency of the proposed ML Based Detection model.

Dataset Attack Data(d) Normal( Data(n) Outcome Cluster
Training 5000 22 M
Training 38 1000 L

Cross validation 500 11 M
Cross validation 3 500 L

Testing 1000 11 M
Testing 2 500 L

Table 3.5: Confusion Matrix for SVM Model.

Table 3.6 represents results of SVM classifier model for training, cross-validation and testing

data set in terms of Data type, Mean, Standard deviation, TP rate, and FP rate for all selected

attributes.

Dataset Data Type Mean Standard dev. TP rate FP rate
Training M 0.12 26.32 77.31 0.94
Training L 8.75 753.77 78.21 1.48

Cross M 0.47 10.94 59.42 1.35
Cross L 0.17 5.31 67.91 1.86

Testing M 1535.28 257.70 82.37 2.46
Testing L 0.45 3.18 84.03 2.12

Table 3.6: Result of attack detection by ML Based Detection.



Chapter 4

Results and Analysis

In this chapter, we provide the experimental results of our proposed model. We assess DDoS

attack’s vulnerability and provide the results received from simulation study. We use ndnSIM

simulator [31] to evaluate the performance of our proposed algorithm.

4.1 Testbed

This section represents experimental setup in which we have implemented our algorithm

and run simulation. We compared the performance with popular relevant models

Satisfaction-based Interest Acceptance(SBA) by Atanasyev et al. [21], Satisfaction-Based

Pushback (SBP) algorithm by Salah et al. [34], Coordination Monitoring Router (CNMR)

Model.

We used a standard network topology which is similar to the topology in [34]. It consists of

79 nodes and 147 bidirectional edges which is shown in Figure 4.1a (AS3967). Then we used

another topology Tree topology consisting of 22 bidirectional edges and 28 nodes which is

shown in Figure 4.1b for simulations. For normal data flow scenario, we have examined using

the requests from every legitimate clients or consumers for existing contents with a rate of

100 Interest Packets per Second (IPPS). Each router has a uniform PIT capacity of 4000 entries.

We assume that, every request packet is valid, and there is no attack ongoing. Thus, the

average PIT utilization is very low and does not create any PIT overflow. For attack detection,

each attacker sends requests at higher rates for non-existent contents. We have varied the

number of interests and simulated with three different attack rate: 500 IPPS, 1000 IPPS, 10000

IPPS. The simulation time is set to 380s. Each simulation run time lasts for 6 minutes: the

attack starts at the beginning of minute 1 (second 60) and stops at end of minute 6 (second

340). We have used uniform Interest packet’s size of 1100 bytes.

The lines are labeled SBA, SBP, CNMR [21], [34]. We also compared our detection mechanism

with PIT size for different PIT entries and the probability of dropped packets of legitimate

29



4.1. TESTBED 30

users [2].

(a) AS3967 Topology [34].

(b) Tree topology [35].

Figure 4.1: Different topologies.

Here, Table A.17 provides simulation parameters.
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Table 4.1: Simulation Parameters

Parameter Value
PIT Size 1200 KB

Interest expire time 4s
CS Size 4000

Packet Size 1100 Bytes

Three relevant metrics are used to measure the performance and effectiveness of our

algorithm against Interest Flooding Attack. These are Interest Satisfaction Ratio (ISR),

Pending Interest Table (PIT) Usage, Dropped Interest Ratio.

• ISR: It indicates the quality of the satisfaction ratio of legitimate Interest packets during

the attack period. It gives an indication of the quality of service perceived by consumer

while the network attack is ongoing.

• PIT Usage: It indicates the protection of PIT usage measured as a ratio of the overall

PIT space which is the direct target of IFAs. PIT Usage shows the process of legitimate

traffic using available capacity on routers during an attack over a time window.

• Drop Interest Ratio: In terms of legitimate traffic and malicious traffic drop ratio, we

can easily evaluate the effectiveness of detection under IFA. This shows the percentage

of Legitimate Interest packets and Malicious Interest Packets over total received at

each router, respectively.

We simulate by varying the number of Interests per second, and we look into the impact

on ISR, PIT Usage, Packet Drop probability, PIT size under different attack rates. We have

checked eight routers (R1-R8) during the attack time and evaluated the impact on Dropped

Interest Ratio of Malicious Interests and Legitimate Interests. We collect the output from

simulator and present into graphical format (stated in the following section).

4.2 Impact on ISR

We have checked the impact on Interest Satisfaction Ratio by changing the number of

interests per second and checking the ISR during attack time. We estimate the Legitimate

Interest packets satisfaction ratio by running our defence mechanism and other state of the

art methods. We compare these results to a system without defence, a system including

satisfaction-based acceptance (SBA), a system including satisfaction-based push back (SBP)

and a system including Coordination Monitoring Routers (CNMR).
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4.2.1 ISR under Attack-500 IPPS

To measure ISR, we maintain the fixed number of interests 200 per second, packet size to

1100 bytes and we keep the attack rate 500 IPPS. Attacks have been generated at 61s and

ended at 340s. Figure 4.2 and Figure 4.3 show the graphical representation of ISR under the

attack rate of 500 IPPS.

Figure 4.2: ISR under attack rate of 500 IPPS (attack period: sec. 61 sec. 340) (AS 3967
topology).

We compared the performance of our proposed method under 500 IPPS with all other

algorithms. We find that our method improve the attack scenario compares with no defence.

Here, we saw that SBA is a very simple algorithm and of very light weight, it doesn’t perform

well but SBP is more effective and it increases ISR value from 58% to 78%. CNMR is also

very effective and it increases ISR value from 58% to 81%. When enabling our defence

mechanism, it gives optimal solution comparing with other algorithms and it increases the

ISR value from 58% to 85% using AS 3967 topology, which is shown in Figure 4.2 and 58% to

92% using tree topology, which is shown in Figure 4.3. Both topologies satisfies our original

intention.
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Figure 4.3: ISR under attack rate of 500 IPPS (attack period: sec. 61 sec. 340) (Tree topology).

4.2.2 ISR under Attack-1000 IPPS

To estimate the ISR value, we maintained the uniform packet size of 1100 byte and we kept

the attack rate to 1000 IPPS. We simulated the program in total 380s. We recorded the

attack, generated at 61s and end at 340s. Figure 4.4 and Figure 4.5 shows the graphical

representation of ISR under attack rate of 1000 IPPS.
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Figure 4.4: ISR under attack rate of 1000 ipps (attack period: sec. 61 sec. 340) (AS 3967
topology).

With the increase of attack rate, the number of Interest satisfaction ratio is decreased. SBA

could not handle the situation and worked like that there is no defence mechanism. SBP

slightly improved the situation but CNMR performed better. ML based detection method

increases satisfaction ratio better than previous any other state of the art methods and it

increases the ISR value from 42% to 80% using AS 3967 topology, which is shown in Figure

4.4 and 42% to 84% using tree topology, which is shown in Figure 4.5.
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Figure 4.5: ISR under attack rate of 1000 ipps (attack period: sec. 61 sec. 340) (Tree topology).

4.2.3 ISR under Attack-10000 IPPS

To measure ISR, we now maintain the fixed number of Interest packets 10000 per second,

uniform packet size 1100 byte and we keep the attack rate same during the whole attack

duration. Attacks have been generated at 61s and end at 340s. Figure 4.6 shows the graphical

representation of ISR under attack rate 10000 IPPS. We compare the performance of our

proposed method with SBA, SBP, CNMR.
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Figure 4.6: ISR under attack rate of 10000 IPPS (attack period: sec. 61 sec. 340) (AS 3967
topology)

With the increase of the number of Interests per second, the number of Interest Satisfaction

Ratio is decreased which is normal because for load is being generated in the scenario. The

utility of SBA almost disappears under high attack rates and behaved almost similar to no

defence. SBP also did not perform well in this scenario but CNMR has improved the scenario

slightly. We can see that the ISR during the attack period improves significantly with our

mechanism, it does not cause packet drops and enables full satisfaction in both topologies,

which are shown in Figure 4.6 and Figure 4.7.
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Figure 4.7: ISR under attack rate of 10000 IPPS (attack period: sec. 61 sec. 340) (Tree
topology)

4.3 Impact on PIT Usage

We’ve checked the impact on PIT Usage by changing the number of interests per second and

evaluating the PIT occupied ratio during attack time. PIT usage is a great indicator of router

load.

4.3.1 PIT Usage During Attack without Defence

To measure PIT Usage we maintained the same uniform packet size of 1100 byte and we vary

the attack rate to 500 IPPS, to 1000 IPPS and to 10000 IPPS. Attack generated at 61s and end

at 340s. Figure 4.8 and Figure 4.9 shows the graphical representation of PIT Usage under

attack.

We have compared the performance of our proposed method with a method without any

defence mechanism.
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Figure 4.8: PIT usage under three attack rates (attack period: sec. 61 sec. 340)

The efficiency of ML based attack detection against IFAs is also checked by PIT Usage. We

compare our results with a method without defence by varying the number of attack rate.

ML based detection showed the lower PIT usage during the attack period. If defence is not

used, PIT usage is increased, proportionally with the attack rate.

PIT usage is reduced from 18% to 12% under attack rate of 500 IPPS, from 28% to 20% under

attack rate of 1000, and from 40% to 34% under attack rate of 10000 IPPS, which is shown in

Figure 4.8 using AS 3967 topology. It should be noted that this reduction is measured over all

PITs.
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Figure 4.9: PIT usage under three attack rates (attack period: sec. 61 sec. 340) (Tree topology)

PIT usage is reduced from 18% to 8% under attack rate of 500 IPPS, from 28% to 15% under

attack rate of 1000, and from 38% to 30% under attack rate of 10000 IPPS, which is shown in

Figure 4.9 using tree topology.

4.3.2 PIT Usage During Attack with Defence Mechanism

We kept the number of Interest per second 500 and packet size 1100 byte. Attack generated

at 61s and end at 340s. Figure 4.10 and Figure 4.11 shows the graphical representation of

PIT Usage under attack. We compared the performance of our proposed method with three

other mitigation strategies named SBA, SBP, CNMR and evaluated PIT Usage during this

period.
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Figure 4.10: PIT usage under attack (attack period: sec. 61 sec. 340) compare (AS3967
topology) with other state of the art.

The reduction value per router differs by the amount of Malicious Interest packets each

router receives. PIT usage is reduced from under attack rate of 500 IPPS compare with no

defence about 30% to about 21% using ML Based Attack Detection(AS3967 topology), which

is shown in Figure 4.10, 30% to about 17% using ML Based Attack Detection(Tree topology),

which is shown in Figure 4.11, 30% to about 39% using SBA, 30% to about 25% using SBP, 30%

to about 23% using CNMR. The effectiveness of our mechanism is confirmed by the results

of the PIT Usage.
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Figure 4.11: PIT usage under attack (attack period: sec. 61 sec. 340) compare (Tree topology)
with other state of the art.

4.4 Dropped Interest Ratio During Attack

In terms of legitimate traffic and malicious traffic drop, Figure 4.12 reports effectiveness

of ML Based Attack Detection under IFA. Dropped Interest Ratio is the percentage of total

Legitimate Interests and Malicious Interests dropped over total received at each router.

4.4.1 Impact on Dropped Interests

We kept the number of Interest packets per second as 1000 and packet size to 1100 bytes. We

observed eight routers R1 to R8 during the attack period.



4.4. DROPPED INTEREST RATIO DURING ATTACK 42

Figure 4.12: MI drop and LI drop without defence(AS3967 topology).

Figure 4.13: MI drop and LI drop without defence(Tree topology).

Without defence scenario, PIT is filled up with Malicious Interests very quickly. In this graph,

we have shown that 91% of Malicious Interests are dropped during attack but with the use
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of ML based detection only 5% of Legitimate Interests are dropped. This is what is needed to

mitigate DDoS attack.

4.4.2 Comparison with SBA for Dropped Interests

We kept the number of Interest packet per second as 1000 and packet size to 1100 bytes. We

observed eight routers R1 to R8 during the attack period. We observed Dropped Ratio using

our defence mechanism and using SBA.

Figure 4.14: MI drop and LI drop compared with SBA (AS3967 topology).
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Figure 4.15: MI drop and LI drop compared with SBA (Tree topology).

The number of dropped interest ratio is increased with the increase of the number of

Interests per second which is natural because the load becomes higher. We compared

the performance of our proposed method with SBA. It shows that some routers using SBA

performs better but overall ML based detection works better.

4.4.3 Comparison with SBP for Dropped Interests

We kept the number of Interest packet per second as 1000 and packet size as 1100 bytes. We

observed eight routers R1 to R8 during the attack period. We report dropped ratio using our

defence mechanism and using SBP.
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Figure 4.16: ML and SBP(AS 3967 topology).

Figure 4.17: ML and SBP(Tree topology).

The number of legitimate packet drop is increased under the attack scenario. We compared

the performance of our proposed method with SBP. Simulation result shows that our method
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shows better result in dropping the less legitimate packets under attack scenario of NDN,

which fulfils our original intention of designing this strategy.

4.4.4 Comparison with CNMR for Dropped Interest

We kept the number of Interest packet per second as 1000 and packet size 1100 bytes. We

observed the output of eight routers from R1 to R8 during the attack period. We computed

interest dropped ratio using our method and compare with CNMR.

Figure 4.18: MI drop and LI drop compare with CNMR(AS 3967 topology).
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Figure 4.19: MI drop and LI drop compare with CNMR(Tree topology)

A consequence of the poor detection has been achieved by CNMR. We found more space

across monitoring routers’ PITs. Higher PIT values corresponds to more computational and

memory resources used in routers. CNMR mitigates only specific detection as infected prefix

names. Compared with the performance of our proposed method, it gives optimal solution

where PIT value does not increase as sharply as for CNMR.

4.5 PIT Size under Attack

Under attack, large amount of routers’ storage can be occupied by attacker nodes. Figure

4.20 shows that how easily PIT storage can be filled up during attack.

We kept the PIT entry expiration time as 500ms and the number of Interest packets per

second is 1000 and packet size is 1100bytes. Total simulation run time duration 60s. The

attack starts at t = 4s and lasts until t = 42s. The results are shown for three different PIT entry

expiration times without defence and with our defence mechanism.
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Figure 4.20: PIT size for different PIT entry expiration times.

Tough the corresponding PIT entry of each request will expire with such small expiration

time of 500ms before the content arrives, a large number of legitimate requests will not

be satisfied. Before attack, PIT size is usually very small but during attack period PIT size

increases rapidly. During this scenario, our ML based detection minimizes PIT size to

relatively small and satisfies our main intention.

4.6 Probability of Packet Drop

Due to PIT overflow legitimate users packet dropping probability is the negative impact of

IFA. Figure 4.21 shows the packet dropping probability under attack.

Figure 4.21: Packet dropping probability of legitimate users

We kept the PIT entry expiration time as 500ms, and 1s respectively and the number of
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Interest packets per second is 1000 and packet size of 1100 bytes. Total simulation run

time duration is 50s. We evaluated and compared our ML based attack detection with

packet dropping probability of legitimate users for the basic NDN and two threshold-based

mitigation schemes and without defence. When no defence is used, then 80% of the Interest

packets of legitimate users are dropped between 22s to 42s. CNMR improved the situation

42% during under attack. Using our methodology, packet drop is reduce to 28% between 23s

to 44s. Thus, we can see our model improves the scenario under attack.



Chapter 5

Conclusion

In this chapter, we conclude our thesis by presenting the contributions. Machine Learning

has gained a lot of popularity and momentum in the recent years. Different types of learning

and classification algorithms have shown tremendous promise of efficiency and speed in

this domain. We have collected different types of features that get affected due to Interest

Flooding Attack and selected main features by applying k-means clustering to get major

required parameters.

In terms of accuracy, precision, sensitivity or recall, and specificity, our results show that

machine learning approaches are better than the statistical approaches for handling Interest

Flooding Attacks in NDN. We implement our algorithm on AS3967 topology, tree topology

using ndnSIM. We compare the output with other popular methods. We have found better

performance of our method.

Our proposed framework is capable to mitigate DDoS attack for NDN.

• In detection phase, learning continuously network traffic data and updating SVM by

training gives us a better system to detect DDoS attack.

• In mitigation phase, a set of rules are followed by NDN Controller for further action.

• Our method has used standard topology.

5.1 Future Work

• We would like to implement our method with benchmark topology for large scale

network.

• We will explore other feature selection methods for including wider range of attacks

where differences in these parameters are subtle.
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Appendix A

Raw Data

A.1 ISR vs Time under attack rate of 500 ipps

Table A.1: Running Time vs ISR, under attack rate of 500 ipps

Running Time(s) ISR Under SBA
(%)

ISR Under SBP
(%)

ISR Under
CNMR (%)

ISR Under ML
Based Detection
(%)

20 100 100 100 100
40 100 100 100 100
60 66.46 76.28 81.24 87.3
80 66.46 75.12 81.2 88.2
100 66.33 66.33 82.4 87.7
120 69.02 75.38 81.7 87.08
140 66.86 75.47 81.41 87.8
160 66.43 75.67 81.87 88.45
180 64.12 75.13 81.26 88.87
200 64.21 75.9 81.3 86.8
220 64.9 76.34 81.22 86.3
240 66.83 76.29 82.06 87.4
260 69.31 75.92 81.93 87.23
280 67.11 75.2 81.89 87.76
300 66.07 75.78 81.76 87.12
320 66.89 75.45 81.85 88.44
340 68.02 76.1 82.2 88
360 100 100 100 100
380 100 100 100 100
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Table A.2: Running Time vs ISR, under attack rate of 500 ipps using tree topology

Running Time(s) ISR Under SBA
(%)

ISR Under SBP
(%)

ISR Under
CNMR (%)

ISR Under ML
Based Detection
(%)

20 100 100 100 100
40 100 100 100 100
60 92.3 92.3 79.28 79.28
80 93.2 85.2 78.12 69.93
100 92.7 86.4 78.71 69.33
120 92.08 85.7 78.38 69.02
140 92.8 92.8 78.47 69.86
160 93.45 93.45 78.67 69.43
180 93.87 78.13 78.13 78.13
200 91.9 85.3 78.9 78.9
220 91.3 85.22 85.22 67.9
240 92.4 92.4 79.29 79.29
260 92.23 85.93 78.92 69.31
280 69.31 69.31 78.2 69.11
300 92.12 85.76 78.78 78.78
320 93.44 85.85 78.45 69.89
340 93 85.2 79.1 68.02
360 100 100 100 100
380 100 100 100 100
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A.2 ISR vs Time under attack rate of 1000 ipps

Table A.3: Running Time vs ISR, under attack rate of 1000 ipps

Running Time(s) ISR Under SBA
(%)

ISR Under SBP
(%)

ISR Under
CNMR (%)

ISR Under ML
Based Detection
(%)

20 100 100 100 100
40 100 100 100 100
60 46.46 46.46 71.3 71.3
80 47.93 68 71.2 78.2
100 46.33 67.71 71.7 77.7
120 49.02 69.38 71.08 77.08
140 77.08 77.08 77.08 77.08
160 46.43 67.67 70.45 78.45
180 44.12 67.13 70.87 78.87
200 44.21 67.9 70.8 76.8
220 44.9 67.34 70.3 76.3
240 44.83 66.29 70.4 77.4
260 49.31 66.92 70.23 77.23
280 47.11 67.2 70.76 77.76
300 46.07 67.78 70.12 77.12
320 46.89 67.45 70.44 78.44
340 48.02 68.1 70.01 78
360 100 100 100 100
380 100 100 100 100
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Table A.4: Running Time vs ISR, under attack rate of 1000 ipps using tree topology

Running Time(s) ISR Under SBA
(%)

ISR Under SBP
(%)

ISR Under
CNMR (%)

ISR Under ML
Based Detection
(%)

20 100 100 100 100
40 100 100 100 100
60 47.46 68.28 74.3 82.3
80 47.93 70 74.2 83.2
100 47.33 69.71 74.7 82.7
120 49.02 70.98 74.08 82.08
140 47.86 70.47 73.8 82.8
160 47.43 69.67 73.45 83.45
180 45.12 69.13 73.87 83.87
200 45.21 69.9 73.8 81.8
220 45.9 69.34 73.3 81.3
240 45.83 68.29 73.4 81.4
260 48.31 68.92 73.23 81.23
280 48.11 68.2 73.76 81.76
300 46.07 69.78 73.12 82.12
320 47.89 68.45 73.44 83.44
340 48.02 67.1 73.01 83
360 100 100 100 100
380 100 100 100 100



A.3. ISR VS TIME UNDER ATTACK RATE OF 10000 IPPS 58

A.3 ISR vs Time under attack rate of 10000 ipps

Table A.5: Running Time vs ISR, under attack rate of 10000 ipps

Running Time(s) ISR Under SBA
(%)

ISR Under SBP
(%)

ISR Under
CNMR (%)

ISR Under ML
Based Detection
(%)

20 100 100 100 100
40 100 100 100 100
60 28.02 18.1 57.8 68
80 26.46 16.28 16.28 67.3
100 27.93 18 57.86 68.2
120 26.33 17.71 56.7 67.7
140 29.02 19.38 56.88 67.08
160 26.82 18.47 56.98 67.8
180 26.43 17.67 58.45 68.45
200 24.12 67.9 70.8 76.8
220 24.21 17.9 57.18 66.8
240 24.9 17.34 57.43 66.3
260 26.83 16.29 57.74 67.4
280 29.31 16.92 56.93 67.23
300 27.11 17.2 57.17 67.76
320 26.07 17.78 57.92 67.12
340 26.89 17.45 58.06 68.44
360 100 100 100 100
380 100 100 100 100
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Table A.6: Running Time vs ISR, under attack rate of 10000 ipps using tree topology

Running Time(s) ISR Under SBA
(%)

ISR Under SBP
(%)

ISR Under
CNMR (%)

ISR Under ML
Based Detection
(%)

20 100 100 100 100
40 100 100 100 100
60 30.02 19.1 59.8 72
80 28.46 17.28 59.13 71.3
100 28.93 19 59.86 72.2
120 28.33 18.71 58.7 71.7
140 29.02 20.38 58.88 71.08
160 30.2 19.47 58.98 71.8
180 28.43 19.67 59.45 72.45
200 26.12 18.13 59.87 72.87
220 26.21 17.9 60.18 70.8
240 25.9 18.34 59.43 70.3
260 27.83 17.29 59.74 71.4
280 29.31 17.92 58.93 71.23
300 29.11 18.2 59.17 71.76
320 28.07 18.78 59.92 71.12
340 27.9 18.45 59.06 71.44
360 100 100 100 100
380 100 100 100 100

A.4 Dropped Interest ratio

Table A.7: ML Based Detection vs No Defence

Router ML Based Detec-
tion LI drop (%)

ML Based Detec-
tion MI drop (%)

No Defence LI
drop(%)

No Defence MI
drop (%)

R1 0 100 8 10
R2 12.7 94.87 33.54 73.54
R3 5 99 0 17
R4 11.8 92.11 32.07 72.07
R5 12.3 82.3 33.67 53.67
R6 2 98 4 14
R7 12.92 92.12 30.98 60.98
R8 12.2 95.02 33.14 33.14
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Table A.8: ML Based Detection vs No Defence using tree topology

Router ML Based Detec-
tion LI drop (%)

ML Based Detec-
tion MI drop (%)

No Defence LI
drop(%)

No Defence MI
drop (%)

R1 2 100 19 24
R2 7.7 97.87 40.14 19.54
R3 0 99 47 49
R4 6.8 96.11 39.07 49.14
R5 8.3 98.3 38.67 33.67
R6 1 95 41.76 35
R7 5.92 96.12 37.36 36.98
R8 4 98.02 38.64 60

Table A.9: ML Based Detection vs SBA

Router ML Based Detec-
tion LI drop (%)

ML Based Detec-
tion MI drop (%)

SBA LI drop(%) SBA MI drop (%)

R1 0 100 8 10
R2 12.7 94.87 33.54 73.54
R3 5 99 0 17
R4 11.8 92.11 32.07 72.07
R5 12.3 82.3 33.67 53.67
R6 2 98 4 14
R7 12.92 92.12 30.98 60.98
R8 12.2 95.02 33.14 33.14

Table A.10: ML Based Detection vs SBA using tree topology

Router ML Based Detec-
tion LI drop (%)

ML Based Detec-
tion MI drop (%)

SBA LI drop(%) SBA MI drop (%)

R1 2 100 0 17
R2 7.7 97.87 30.54 78.34
R3 0 99 6 16
R4 6.8 96.11 29.07 77.07
R5 8.3 98.3 31.23 14
R6 1 95 29.14 58.67
R7 5.92 96.12 33.14 62.98
R8 4 98.02 4 37.14
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Table A.11: ML Based Detection vs SBP

Router ML Based Detec-
tion LI drop (%)

ML Based Detec-
tion MI drop (%)

SBP LI drop(%) SBP MI drop (%)

R1 0 100 2 99
R2 12.7 94.87 23.72 83.72
R3 5 99 8 97.4
R4 11.8 92.11 22 81.07
R5 12.3 82.3 22.29 92.83
R6 2 98 10 95.32
R7 12.92 92.12 20.62 90.62
R8 12.2 95.02 21.53 84.53

Table A.12: ML Based Detection vs SBP using tree topology

Router ML Based Detec-
tion LI drop (%)

ML Based Detec-
tion MI drop (%)

SBP LI drop(%) SBP MI drop (%)

R1 2 100 6 85.07
R2 7.7 97.87 18.72 87.72
R3 0 99 2 89.62
R4 6.8 96.11 16.93 99
R5 8.3 98.3 17 93.83
R6 1 95 19.53 95.32
R7 5.92 96.12 17.62 86.53
R8 4 98.02 10 97.4

Table A.13: ML Based Detection vs CNMR

Router ML Based Detec-
tion LI drop (%)

ML Based Detec-
tion MI drop (%)

CNMR LI
drop(%)

CNMR MI drop
(%)

R1 0 100 8 37
R2 12.7 94.87 43.54 80.54
R3 5 99 0 57
R4 11.8 92.11 42.07 77.07
R5 12.3 82.3 43.67 63.67
R6 2 98 14 44
R7 12.92 92.12 36.98 70.98
R8 12.2 95.02 33.14 43.14
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Table A.14: ML Based Detection vs CNMR using tree topology

Router ML Based Detec-
tion LI drop (%)

ML Based Detec-
tion MI drop (%)

CNMR LI
drop(%)

CNMR MI drop
(%)

R1 2 100 4 68.67
R2 7.7 97.87 29.14 82.54
R3 0 99 41.67 60
R4 6.8 96.11 38.07 80.07
R5 8.3 98.3 0 49
R6 1 95 32.98 74.98
R7 5.92 96.12 9 40
R8 4 98.02 40.54 47.14

A.5 PIT Usage vs Time

Table A.15: PIT Usage vs Time under PIT expire time 1s

Running Time (s) PIT Size under
ML Based
Detection(%)

PIT Size under
No Defence(%)

5 100 100
10 325 350
15 550 600
20 800 850
25 1050 1100
30 1300 1350
35 1520 1600
40 1700 1800
45 1490 1600
50 1160 1340
55 750 1130
60 280 860
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Table A.16: PIT Usage vs Time under PIT expire time 500ms

Running Time (s) PIT Size under
ML Based
Detection(%)

PIT Size under
No Defence(%)

5 80 100
10 275 325
15 475 550
20 675 775
25 875 1000
30 1075 1225
35 1275 1450
40 1475 1675
45 1310 1480
50 850 1120
55 310 660
60 10 110

A.6 Packet Drop probability

Table A.17: Packet Drop Probability under Attack

Running Time (s) Packet Drop
Probability
of ML Based
Detection(%)

Packet Drop
Probability of No
Defence(%)

Packet Drop
Probability of
CNMR(%)

5 0 0 0
10 0 0 0
15 0 0 0
20 0 0 0
25 14 80 25
30 25 80 38
35 24 80 43
40 17 80 43
45 0 32 0
50 0 0 0
55 0 0 0
60 0 0 0



Appendix B

Codes

B.1 k-mean Cluster

We use this code to find out cluster parameters.

1

2 import random

3 import numpy as np

4 import pandas as pd

5 import matplotlib.pyplot as plt

6 import seaborn as sns

7 sns.set()
8 from sklearn.cluster import KMeans

9

10

11 original_data=pd.read_csv("cluster_interest_data.csv")

12 column_original_data=original_data.copy()

13 keep_col = [’InInterest_Count’,’PIT_Usage’]

14 data = original_data[keep_col]

15 data

16

17 keep_type_col = [’Type’]

18 column_data = column_original_data[keep_type_col]

19

20 plt.scatter(data[’InInterest_Count’],data[’PIT_Usage’])

21 plt.xlabel(’InInterest_Count’)

22 plt.ylabel(’PIT_Usage’)

23 plt.show()

64
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24

25 x=data.copy()

26

27 kmeans=KMeans(3)

28 kmeans.fit(x)

29

30 clusters=x.copy()

31 clusters[’cluster_pred’]=kmeans.fit_predict(x)

32 plt.scatter(clusters[’InInterest_Count’],clusters[’PIT_Usage’],c=clusters[’cluster_pred’],cmap=’rainbow’)

33 plt.xlabel(’InInterest_Count’)

34 plt.ylabel(’PIT_Usage’)

35 plt.show()

36

37 from sklearn import preprocessing

38 x_scaled=preprocessing.scale(x)

39 x_scaled

40

41 wcss=[]

42

43 for i in range(1,26):
44 kmeans=KMeans(i)

45 kmeans.fit(x_scaled)

46 wcss.append(kmeans.inertia_)

47 wcss

48

49

50 plt.plot(range(1,26),wcss)
51 plt.xlabel(’Number of clusters’)

52 plt.ylabel(’Percent of variance’)

53 plt.show()

54

55

56 kmeans_new=KMeans(4)

57 kmeans.fit(x_scaled)

58 cluster_new=x.copy()

59 cluster_new[’cluster_pred’]=kmeans_new.fit_predict(x_scaled)

60 cluster_new

61
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62

63 plt.scatter(cluster_new[’InInterest_Count’],cluster_new[’PIT_Usage’],c=cluster_new[’cluster_pred’],cmap=’rainbow’)

64 plt.xlabel(’InInterest_Count’)

65 plt.ylabel(’PIT_Usage’)

66 plt.show()

67

68

69 m_type = column_data

70 cluster_new.insert(0, "Type", m_type, False)

71 cluster_new.to_csv(’kmeans_output.csv’, encoding=’utf-8’, index=False)

B.2 SVM Model

We use this code to create SVM Model for attack detection.

1 from IPython import get_ipython

2 import random

3 # **Classifying Legitimate and Malicious with SVM**
4 # __Step 1:__ Import Packages

5 # Packages for analysis

6 import pandas as pd

7 import numpy as np

8 from sklearn import svm

9

10 # Packages for visuals

11 import matplotlib.pyplot as plt

12 import seaborn as sns; sns.set(font_scale=1.2)
13

14 # Allows charts to appear in the notebook

15 get_ipython().run_line_magic(’matplotlib’, ’inline’)

16

17 # Pickle package

18 import pickle

19

20 # __Step 2:__ Import Data

21 # Read in Legitimate and Malicious data

22 dataset = pd.read_csv(’../kmean/kmeans_output.csv’)

23 dataset
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24

25 # __Step 3:__ Prepare the Data

26

27 # Plot two dataItem

28 sns.lmplot(’InInterest_Count’, ’PIT_Usage’, data=dataset, hue=’Type’,

29 palette=’Set1’, fit_reg=False, scatter_kws={"s": 70});

30

31

32 # Specify inputs for the model

33 # dataItem = dataset[[’Similar_Prefix_Name_Count’, ’Interface’, ’PIT_Usage’, ’HopCount’, ’RTT’, ’Cluster’]].as_matrix()

34 dataItem = dataset[[’InInterest_Count’,’PIT_Usage’]].as_matrix()

35 type_label = np.where(dataset[’Type’]==’Legitimate’, 0, 1)

36

37 # Feature names

38 data_features = dataset.columns.values[1:].tolist()

39 data_features

40

41 # __Step 4:__ Fit the Model

42 # Fit the SVM model

43 model = svm.SVC(kernel=’linear’)

44 model.fit(dataItem, type_label)

45

46 # __Step 5:__ Visualize Results

47

48 # Get the separating hyperplane

49 w = model.coef_[0]

50 a = -w[0] / w[1]

51 xx = np.linspace(20, 90)

52 yy = a * xx - (model.intercept_[0]) / w[1]

53

54 # Plot the parallels to the separating hyperplane that pass through the support vectors

55 b = model.support_vectors_[0]

56 yy_down = a * xx + (b[1] - a * b[0])

57 b = model.support_vectors_[-1]

58 yy_up = a * xx + (b[1] - a * b[0])

59

60

61 # Plot the hyperplane
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62 sns.lmplot(’InInterest_Count’, ’PIT_Usage’, data=dataset, hue=’Type’, palette=’Set1’, fit_reg=False, scatter_kws={"s": 90})

63 plt.plot(xx, yy, linewidth=2, color=’black’);

64

65

66 # Look at the margins and support vectors

67 sns.lmplot(’InInterest_Count’, ’PIT_Usage’, data=dataset, hue=’Type’, palette=’Set1’, fit_reg=False, scatter_kws={"s": 70})

68 plt.plot(xx, yy, linewidth=2, color=’black’)

69 plt.plot(xx, yy_down, ’k--’)

70 plt.plot(xx, yy_up, ’k--’)

71 plt.scatter(model.support_vectors_[:, 0], model.support_vectors_[:, 1],

72 s=80, facecolors=’none’);

73

74 # __Step 6:__ Predict New Case

75

76 # Create a function to guess when a recipe is a Legitimate or a Malicious

77 def legitimate_or_malicious(InInterest_Count, PIT_Usage):

78 if(model.predict([[InInterest_Count, PIT_Usage]]))==0:

79 print(’You\’re looking at a Legitimate traffic’)

80 else:
81 print(’You\’re looking at a Malicious traffic’)

82

83

84 # Predict if 50 parts Similar_Prefix_Name_Count and 20 parts PIT_Usage

85 legitimate_or_malicious(100, 98)

86

87

88 # Plot the point to visually see where the point lies

89 sns.lmplot(’InInterest_Count’, ’PIT_Usage’, data=dataset, hue=’Type’, palette=’Set1’, fit_reg=False, scatter_kws={"s": 70})

90 plt.plot(xx, yy, linewidth=2, color=’black’)

91 plt.plot(50, 20, ’yo’, markersize=’9’);

92

93

94 # Predict if 40 parts Similar_Prefix_Name_Count and 20 parts PIT_Usage

95 legitimate_or_malicious(100,98)

96

97

98 attack_data_dict = {’legitimate_malicious_model’: model, ’legitimate_malicious_features’: [’InInterest_Count’,’PIT_Usage’], ’all_features’: data_features}

99
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100

101 attack_data_dict

102

103

104 # Pickle

105 pickle.dump(attack_data_dict, open("attack_data_dict.p", "wb"))

106

107

108 # S = String

109 pickle.dumps(attack_data_dict)

B.3 DdosAttack-and-Mitigation

We use this scenerio to run NDN ns-3 Simulator to mitigate DDoS Attack.

1

2

3 #include "ns3/core-module.h"

4 #include "ns3/network-module.h"

5 #include "ns3/ndnSIM-module.h"

6

7 #include <boost/lexical_cast.hpp>

8

9 using namespace ns3;

10 using namespace ns3::ndn;

11 using namespace std;

12

13 #include "calculate-max-capacity.h"

14

15 uint32_t Run = 1;

16

17 void PrintTime (Time next, const string name)

18 {

19 cerr << " === " << name << " " << Simulator::Now ().ToDouble (Time::S) << "s" << endl;

20 Simulator::Schedule (next, PrintTime, next, name);

21 }

22

23 int main (int argc, char**argv)
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24 {

25 string folder = "tmp";

26 string topology = "small-tree";

27 string prefix = "";

28 string producerLocation = "gw";

29 Time defaultRtt = Seconds (0.25);

30 Time evilGap = Time::FromDouble (0.02, Time::MS);

31 uint32_t badCount = 1;

32 uint32_t goodCount = 1;

33

34

35 CommandLine cmd;

36 cmd.AddValue ("topology", "Topology", topology);

37 cmd.AddValue ("run", "Run", Run);

38 cmd.AddValue ("defaultRtt", "Default RTT for BDP limits", defaultRtt);

39 cmd.AddValue ("algorithm", "DDoS mitigation algorithm", prefix);

40 cmd.AddValue ("producer", "Producer location: gw or bb", producerLocation);

41 cmd.AddValue ("badCount", "Number of bad guys", badCount);

42 cmd.AddValue ("goodCount", "Number of good guys", goodCount);

43 cmd.AddValue ("folder", "Folder where results will be placed", folder);

44 cmd.Parse (argc, argv);

45

46 Config::SetGlobal ("RngRun", IntegerValue (Run));

47 StackHelper helper;

48

49 AppHelper evilAppHelper ("DdosApp");

50 evilAppHelper.SetAttribute ("Malicious", BooleanValue (true));

51 evilAppHelper.SetAttribute ("LifeTime", StringValue ("1s"));

52 evilAppHelper.SetAttribute ("DataBasedLimits", BooleanValue (true));

53

54 AppHelper goodAppHelper ("DdosApp");

55 goodAppHelper.SetAttribute ("LifeTime", StringValue ("1s"));

56 goodAppHelper.SetAttribute ("DataBasedLimits", BooleanValue (true));

57

58 AppHelper ph ("ns3::ndn::Producer");

59 ph.SetPrefix ("/good");

60 ph.SetAttribute ("PayloadSize", StringValue("1100"));

61
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62 string name = prefix;

63 name += "-topo-" + topology;

64 name += "-evil-" + boost::lexical_cast<string> (badCount);

65 name += "-good-" + boost::lexical_cast<string> (goodCount);

66 name += "-producer-" + producerLocation;

67 name += "-run-" + boost::lexical_cast<string> (Run);

68

69

70 string graph_dot_file = "results/" + folder + "/" + name + ".dot";

71 string graph_pdf_file = "results/" + folder + "/" + name + ".pdf";

72 string results_file = "results/" + folder + "/" + name + ".txt";

73 string meta_file = "results/" + folder + "/" + name + ".meta";

74

75 if (prefix == "simple-limits")

76 {

77 helper.EnableLimits (true, defaultRtt);

78 helper.SetForwardingStrategy ("ns3::ndn::fw::BestRoute::PerOutFaceLimits",

79 "Limit", "ns3::ndn::Limits::Window");

80 }

81 else if (prefix == "fairness")

82 {

83 helper.EnableLimits (true, defaultRtt);

84 helper.SetForwardingStrategy ("ns3::ndn::fw::BestRoute::TokenBucketWithPerInterfaceFairness",

85 "Limit", "ns3::ndn::Limits::Window");

86 }

87 else if (prefix == "satisfaction-accept")

88 {

89 helper.EnableLimits (true, defaultRtt);

90 helper.SetForwardingStrategy ("ns3::ndn::fw::BestRoute::Stats::SatisfactionBasedInterestAcceptance::PerOutFaceLimits",

91 "GraceThreshold", "0.05");

92 }

93 else if (prefix == "satisfaction-pushback")

94 {

95 helper.EnableLimits (true, defaultRtt);

96 helper.SetForwardingStrategy ("ns3::ndn::fw::BestRoute::Stats::SatisfactionBasedPushback::TokenBucketWithPerInterfaceFairness",

97 "GraceThreshold", "0.01");

98 }

99 else
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100 {

101 cerr << "Invalid scenario prefix" << endl;

102 return -1;

103 }

104

105 AnnotatedTopologyReader topologyReader ("", 1.0);

106 topologyReader.SetFileName ("topologies/" + topology + ".txt");

107 topologyReader.Read ();

108

109 helper.Install (topologyReader.GetNodes ());

110

111 topologyReader.ApplyOspfMetric ();

112

113 GlobalRoutingHelper grouter;

114 grouter.Install (topologyReader.GetNodes ());

115

116 NodeContainer leaves;

117 NodeContainer gw;

118 NodeContainer bb;

119 for_each (NodeList::Begin (), NodeList::End (), [&] (Ptr<Node> node) {

120 if (Names::FindName (node).compare (0, 5, "leaf-")==0)

121 {

122 leaves.Add (node);

123 }

124 else if (Names::FindName (node).compare (0, 3, "gw-")==0)

125 {

126 gw.Add (node);

127 }

128 else if (Names::FindName (node).compare (0, 3, "bb-")==0)

129 {

130 bb.Add (node);

131 }

132 });

133

134 system (("mkdir -p \"results/" + folder + "\"").c_str ());

135 ofstream os (meta_file.c_str(), ios_base::out | ios_base::trunc);

136

137 os << "Total_numbef_of_nodes " << NodeList::GetNNodes () << endl;
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138 os << "Total_number_of_leaf_nodes " << leaves.GetN () << endl;

139 os << "Total_number_of_gw_nodes " << gw.GetN () << endl;

140 os << "Total_number_of_bb_nodes " << bb.GetN () << endl;

141

142 NodeContainer producerNodes;

143

144 NodeContainer evilNodes;

145 NodeContainer goodNodes;

146

147 set< Ptr<Node> > producers;

148 set< Ptr<Node> > evils;

149 set< Ptr<Node> > angels;

150

151 if (goodCount == 0)

152 {

153 goodCount = leaves.GetN () - badCount;

154 }

155

156 if (goodCount < 1)

157 {

158 NS_FATAL_ERROR ("Number of good guys should be at least 1");

159 exit (1);

160 }

161

162 if (leaves.GetN () < goodCount+badCount)

163 {

164 NS_FATAL_ERROR ("Number of good and bad guys ("<< (goodCount+badCount) <<") cannot be less than number of leaves in the topology ("<< leaves.GetN () <<")");

165 exit (1);

166 }

167

168 if (producerLocation == "gw")

169 {

170 if (gw.GetN () < 1)

171 {

172 NS_FATAL_ERROR ("Topology does not have gateway nodes that can serve as producers");

173 exit (1);

174 }

175 }
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176 else if (producerLocation == "bb")

177 {

178 if (bb.GetN () < 1)

179 {

180 NS_FATAL_ERROR ("Topology does not have backbone nodes that can serve as producers");

181 exit (1);

182 }

183 }

184 else
185 {

186 NS_FATAL_ERROR ("--producer can be either ’gw’ or ’bb’");

187 exit (1);

188 }

189

190 os << "Number of Malicious nodes: " << badCount << endl;

191 while (evils.size () < badCount)

192 {

193 UniformVariable randVar (0, leaves.GetN ());

194 Ptr<Node> node = leaves.Get (randVar.GetValue ());

195

196 if (evils.find (node) != evils.end ())

197 continue;
198 evils.insert (node);

199

200 string name = Names::FindName (node);

201 Names::Rename (name, "malicious-"+name);

202 }

203

204 while (angels.size () < goodCount)

205 {

206 UniformVariable randVar (0, leaves.GetN ());

207 Ptr<Node> node = leaves.Get (randVar.GetValue ());

208 if (angels.find (node) != angels.end () ||

209 evils.find (node) != evils.end ())

210 continue;
211

212 angels.insert (node);

213 string name = Names::FindName (node);
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214 Names::Rename (name, "good-"+name);

215 }

216

217 while (producers.size () < 1)

218 {

219 Ptr<Node> node = 0;

220 if (producerLocation == "gw")

221 {

222 UniformVariable randVar (0, gw.GetN ());

223 node = gw.Get (randVar.GetValue ());

224 }

225 else if (producerLocation == "bb")

226 {

227 UniformVariable randVar (0, bb.GetN ());

228 node = bb.Get (randVar.GetValue ());

229 }

230

231 producers.insert (node);

232 string name = Names::FindName (node);

233 Names::Rename (name, "producer-"+name);

234 }

235

236 auto assignNodes = [&os](NodeContainer &aset, const string &str) {

237 return [&os, &aset, &str] (Ptr<Node> node)

238 {

239 string name = Names::FindName (node);

240 os << name << " ";

241 aset.Add (node);

242 };

243 };

244 os << endl;

245

246 // a little bit of C++11 flavor, compile with -std=c++11 flag

247 os << "Malicious: ";

248 std::for_each (evils.begin (), evils.end (), assignNodes (evilNodes, "Malicious"));

249 os << "\nGood: ";

250 std::for_each (angels.begin (), angels.end (), assignNodes (goodNodes, "Good"));

251 os << "\nProducers: ";
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252 std::for_each (producers.begin (), producers.end (), assignNodes (producerNodes, "Producers"));

253 os << "\n";

254

255 grouter.AddOrigins ("/", producerNodes);

256 grouter.CalculateRoutes ();

257

258 // verify topology RTT

259 for (NodeList::Iterator node = NodeList::Begin (); node != NodeList::End (); node ++)

260 {

261 Ptr<Fib> fib = (*node)->GetObject<Fib> ();

262 if (fib == 0 || fib->Begin () == 0) continue;
263

264 if (2* fib->Begin ()->m_faces.begin ()->GetRealDelay ().ToDouble (Time::S) > defaultRtt.ToDouble (Time::S))

265 {

266 cout << "DefaultRTT is smaller that real RTT in the topology: " << 2*fib->Begin ()->m_faces.begin ()->GetRealDelay ().ToDouble (Time::S) << "s" << endl;

267 os << "DefaultRTT is smaller that real RTT in the topology: " << 2*fib->Begin ()->m_faces.begin ()->GetRealDelay ().ToDouble (Time::S) << "s" << endl;

268 }

269 }

270

271 double maxNonCongestionShare = 0.8 * calculateNonCongestionFlows (goodNodes, producerNodes);

272 os << "maxNonCongestionShare " << maxNonCongestionShare << endl;

273

274 saveActualGraph (graph_dot_file, NodeContainer (goodNodes, evilNodes));

275 system (("twopi -Tpdf \"" + graph_dot_file + "\" > \"" + graph_pdf_file + "\"").c_str ());

276 cout << "Write effective topology graph to: " << graph_pdf_file << endl;

277 cout << "Max non-congestion share: " << maxNonCongestionShare << endl;

278

279 // exit (1);

280

281 for (NodeContainer::Iterator node = goodNodes.Begin (); node != goodNodes.End (); node++)

282 {

283 ApplicationContainer goodApp;

284 goodAppHelper.SetPrefix ("/good/"+Names::FindName (*node));

285 goodAppHelper.SetAttribute ("AvgGap", TimeValue (Seconds (1.100 / maxNonCongestionShare)));

286

287 goodApp.Add (goodAppHelper.Install (*node));

288

289 UniformVariable rand (0, 1);
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290 goodApp.Start (Seconds (0.0) + Time::FromDouble (rand.GetValue (), Time::S));

291 }

292

293 for (NodeContainer::Iterator node = evilNodes.Begin (); node != evilNodes.End (); node++)

294 {

295 ApplicationContainer evilApp;

296 evilAppHelper.SetPrefix ("/malicious/"+Names::FindName (*node));

297 evilApp.Add (evilAppHelper.Install (*node));

298

299 UniformVariable rand (0, 1);

300 evilApp.Start (Seconds (300.0) + Time::FromDouble (rand.GetValue (), Time::MS));

301 evilApp.Stop (Seconds (600.0) + Time::FromDouble (rand.GetValue (), Time::MS));

302 }

303

304 ph.Install (producerNodes);

305

306 L3RateTracer::InstallAll (results_file, Seconds (1.0));

307

308 Simulator::Schedule (Seconds (10.0), PrintTime, Seconds (10.0), name);

309

310 Simulator::Stop (Seconds (900.0));

311 Simulator::Run ();

312 Simulator::Destroy ();

313

314 L3RateTracer::Destroy ();

315

316 cerr << "Archiving to: " << results_file << ".bz2" << endl;

317 system (("rm -f \"" + results_file + ".bz2" + "\"").c_str() );

318 system (("bzip2 \"" + results_file + "\"").c_str() );

319

320 return 0;

321 }
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