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ABSTRACT 

This thesis develops several novel approaches to pursue the support vector regression (SVR) with 

interval data. Four approaches are proposed: (i) moment-based approach, (ii) equiprobability-

based approach, (iii) boundary-point-based approach, and (iv) extended generalized-SVR. 

Applicability of each of the four proposed approaches varies depending upon the presence of the 

interval data in input and output observations. Interval data may be present only in input 

observations, or output observations, or in both. Thus, three cases may arise regarding the presence 

of interval data in input and output observations. All these three cases are considered in this thesis. 

The first two proposed approaches are applicable to all three cases.  The boundary-point-based 

approach is applicable for the presence of interval data in output observations. The extended 

generalized-SVR approach is developed discerning the limitations of the existing generalized-SVR 

for the presence of interval data in both input and output observations. Therefore, extended 

generalized-SVR approach is applicable only when the interval data are present in both input and 

output observations. The separation strategy – where interval-valued inputs and outputs are dealt 

separately – is introduced to make the most time-consuming moment-based approach 

computationally tractable for the third case. This strategy is also utilized in proposing the extended 

generalized-SVR approach. The prediction accuracies and computational time of all the proposed 

approaches are compared within themselves as well as with the available existing method. Three 

real datasets and one synthetic dataset are used to experiment with the proposed approaches for 

their prediction accuracies and computational efficiency. Boundary-point-based approach and 

extended generalized-SVR approach are discerned as more efficient compared to the moment-

based approach and equiprobability-based approach. It is shown that the moment-based approach 

always outperforms the equiprobability-based approach in terms of prediction accuracy for all 

three cases. However, prediction accuracy of the boundary-point based approach may be greater 

or less than that of the moment-based and equiprobability-based approach based on different cases. 

Prediction accuracies of existing generalized-SVR approach and extended generalized-SVR 

approach is always observed to be less than the other three approaches. 

  



5 
 

ACKNOWLEDGEMENT 

By the grace of the most benevolent and Almighty God, the thesis titled “A New Approach to 

Support Vector Regression (SVR) with Interval Data” has been done and the report has been 

completed. The author of this report thinks that it is his moral duty to convey his earnest gratitude 

to a number of extra-ordinary people without whom this study would have not been possible. 

Firstly, the author of this thesis report would like to express his sincere respect and heart-felt 

gratitude to his thesis supervisor Dr. AKM Kais Bin Zaman, Professor and Head, Department of 

Industrial and Production Engineering (IPE), Bangladesh University of Engineering and 

Technology (BUET), for his whole-hearted supervision. His clear guidance, timely instructions, 

invaluable advice, prudent suggestions, and sheer encouragements throughout the progress of the 

thesis and report writing have made this thesis possible. 

Next, the author would like to convey his sincere gratitude to Dr. Abdullahil Azeem, Professor, 

Department of IPE, BUET, Dr. Shuva Ghosh, Assistant Professor, Department of IPE, BUET, and 

Dr. Md. Farhad Hossain, Professor, Department of Electrical and Electronic Engineering, BUET, 

for their constructive remarks and kind evaluations of this study. 

The author would also like to acknowledge the kind assistance and whole-hearted support of Dr. 

AKM Kais Bin Zaman, Professor, Department of Industrial and Production Engineering (IPE), 

BUET for giving permission to use the resources of CAD Lab of IPE Department without which 

most of the computationally expensive simulation runs required during this study would be quite 

difficult and immensely time-consuming for the author. 

The authors would like to express thanks and appreciations to all of his well-wishers who inspired 

him to continue this work. He is grateful to his family members for their support and 

encouragement. Last but not least, the author wants to convey his appreciations to all of those who 

have supported him in any respect during the study. 

 

  



6 
 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................... 4 

ACKNOWLEDGEMENT .............................................................................................................. 5 

LIST OF TABLES .......................................................................................................................... 8 

LIST OF FIGURES ........................................................................................................................ 9 

CHAPTER 1 ................................................................................................................................... 1 

INTRODUCTION .......................................................................................................................... 1 

1.1 Background of the Study ...................................................................................................... 1 

1.2 Contributions of the Present Study ....................................................................................... 3 

1.3 Organization of the Thesis Report ........................................................................................ 5 

CHAPTER 2 ................................................................................................................................... 6 

LITERATURE REVIEW ............................................................................................................... 6 

2.1 Classification Analysis Considering Uncertainty ................................................................. 6 

2.2 Regression Analysis with Noisy Data................................................................................... 8 

2.3 Regression Analysis with Interval Data ................................................................................ 9 

CHAPTER 3 ................................................................................................................................... 1 

BACKGROUND CONCEPTS REVIEW ...................................................................................... 1 

3.1 Support Vector Regression ................................................................................................... 1 

3.2 Kernels .................................................................................................................................. 9 

3.3 Nonlinear SVR in Primal Form .......................................................................................... 11 



7 
 

3.4 Probabilistic approach for dealing with interval data ......................................................... 13 

CHAPTER 4 ................................................................................................................................. 17 

PROPOSED METHODOLOGIES ............................................................................................... 17 

4.1 Moment-based Approach .................................................................................................... 17 

4.2 Equiprobability-based Approach ........................................................................................ 25 

4.3 Boundary-point-based Approach ........................................................................................ 27 

4.4 Extended generalized-SVR approach ................................................................................. 31 

CHAPTER 5 ................................................................................................................................. 35 

NUMERICAL EXPERIMENTATION ........................................................................................ 35 

5.1 Case 1: Interval Data Present in Input Observations Only ................................................. 35 

5.2 Case 2: Interval Data Present in Output Observations only ............................................... 39 

5.3 Case 3: Interval Data Present in Both Input and Output Observations............................... 45 

5.4 Discussion of Findings ........................................................................................................ 49 

CHAPTER 6 ................................................................................................................................. 51 

CONCLUSIONS AND FUTURE SCOPES ................................................................................. 51 

6.1 Conclusions ......................................................................................................................... 51 

6.2 Future Scopes ...................................................................................................................... 52 

REFERENCES ............................................................................................................................. 54 

 

  



8 
 

LIST OF TABLES 

Table 3.1 Common loss functions and corresponding density models ........................................... 3 

Table 3.2 Methods for calculating moment bounds for single interval data ................................ 15 

Table 5.1 Prediction errors of moment-based approach and equiprobability-based approach during 

minimization and maximization in the outer loop ........................................................................ 37 

Table 5.2 Prediction errors for the concrete slump dataset using different approaches ............... 37 

Table 5.3 Computational time of different approaches for the concrete slump dataset ............... 38 

Table 5.4 Prediction errors for the unreliable sensor problem using different approaches .......... 42 

Table 5.5 Computational time of different approaches for the unreliable sensor problem .......... 42 

Table 5.6 Prediction errors for the wine quality dataset using different approaches .................... 43 

Table 5.7 Computational time of different approaches for the wine quality dataset .................... 44 

Table 5.8 Prediction errors from all the proposed approaches for the social survey dataset ........ 46 

Table 5.9 Computational time of different approaches for the wine quality dataset .................... 49 

 

 

  



9 
 

LIST OF FIGURES 

Figure 3.1 Soft margin loss setting for linear SVM in regression .................................................. 5 

Figure 3.2 Identification of Johnson distribution family .............................................................. 16 

Figure 4.1 Pseudocode for the moment-based approach .............................................................. 20 

Figure 4.2 Pseudocode for the moment-based approach with separation strategy ....................... 24 

 Figure 4.3 Pseudocode for the equiprobability-based approach .................................................. 26 

Figure 4.4 Pseudocode of Boundary-point-based approach ......................................................... 30 

Figure 4.5 Pseudocode of extended generalized-SVR approach .................................................. 34 

Figure 5.1 Prediction bounds from the boundary-point-based approach for the wine quality data 

set .................................................................................................................................................. 45 

 

 

  

 

 

 

 

 



 
 

CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

Classification and Regression analysis are two main fields of machine learning (ML). 

Classification represents differentiating two or multiple classes based on the characteristic nature 

of the corresponding classes. If the number of classes to be differentiated is two, the classification 

problem is called binary classification, and while it is more than two, it is called multiclass 

classification. In binary classification, classes are represented generally by +1 and -1. In multiclass 

classification, various favorable categories are assigned to the classes for the convenience of 

identification. In short, the binary or multiclass classification problem of prediction stands for 

distinguishing the competitive categorical classes of response variables. However, when prediction 

problem contains non-categorical variables as response, regression analysis comes into action 

instead of classification. In other words, regression analysis stands for establishing a functional 

relationship between output and input variables where the output is generally a non-categorical 

variable while the inputs may be categorical or numerical. In classification and regression 

problems, outputs or responses are called dependent variables as outputs or responses are 

dependent on the inputs for being predicted through the learned relationship. On the other hand, 

since, in the prediction problem, input variables help to predict or explain the functional 

relationship between input and output, input variables are also defined as predictors or explanatory 

variables. A broad literature is present regarding regression or classification; however, when it 

appears uncertainty and impreciseness in data during prediction, the corresponding number of 

literature reduces to a great extent.  

Impreciseness in data may result in interval data which arise due to other different reasons. 

Data rounding, data heaping, measurement instruments uncertain readings, data censoring are 

some of the common sources of interval data. Data censoring arises when failure does not happen 

at the time of observation but any time between the point of two intermittent observations while 

digit preference phenomenon best describes data heaping (Heitjan and Rubin, 1991). The modern 

era has a pronounced concern for security, privacy, competition etc. that results in restriction on 
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data collection, information gap, and intentional data obscuring which in turn evoke data collector 

to group the possible values of data. Such grouping yield in data binning - another form of interval 

data - which is also common in survey questionnaire, census information collection, professionals’ 

opinion collection etc. (Ferson et al., 2007). When a subject gives multiple measures of the same 

quantity of interest, summarizing the measures yields interval data as common for measurement 

instruments uncertain readings. In the same manner, interval data arises while large unmanageable 

datasets are summarized through retaining enough knowledge from the original data (Carrizosa et 

al., 2007). Use of interval data is also a common phenomenon in material purity assessment and 

chemical quantification, where detection point may happen anywhere within the detection margin. 

In no way that detection point should be said to hold a certain likelihood value within that detection 

range as it is for the other mentioned sources of interval data. Thus, the main challenge with the 

interval data is to find the competitive point data from the respective intervals considering different 

types of uncertainty inherent in those interval data as dealt in this thesis.   

There exist various methods for classification and regression analysis in ML field; 

however, uses of support vector machine (SVM) for classification and regression are getting the 

most floors in the recent time where such uses are known as support vector classification (SVC) 

and support vector regression (SVR), respectively (Vapnik, 2013; Vapnik et al., 1997; Drucker et 

al., 1997; Vapnik and Vapnik, 1998; Gunn, S.R., 1998; Schölkopf et al., 2002; Hsu et al., 2003; 

Smola and Schölkopf, 2004; Basak et al., 2007). However, in SVM, since only a part of its training 

data known as support vectors (SVs) is used for faster output prediction of a new test point, 

decision hyperplane easily becomes affected for contamination by aleatory uncertainty (i.e., 

feature noise) in SVs, which ultimately leads to poor accuracy in prediction. Moreover, the 

assumption of known probability distribution of the random noise, working with the midpoints of 

the interval data, etc. in the presence of epistemic uncertainty (i.e., imprecise probabilistic 

information due to sparse and interval data) further deteriorate SVM prediction accuracy.  

To deal with the noisy data in SVC problem, besides the general statistical framework 

proposed by Bi and Zhang. (2005), use of pinball loss function (Huang et al., 2013; Xu et al., 2016) 

is also common. To keep the prediction model immune to the potential noises in input data, the 

robust approach proposed by Trafalis and Gilbert (2006) is applicable for both classification and 

regression. Generalizing the formulations proposed by the Trafalis and Gilbert (2006), a robust 
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classification model to deal with both noisy and interval-valued data is proposed by Carrizosa et 

al. (2007). In classification problem with the presence of noisy and interval data, alongside of 

SVM, uses of neural network (Rossi and Conan-Guez, 2002) and Kernel-based approaches (Do 

and Poulet, 2005) are also mention-worthy. However, in SVR problems, literature considering the 

noisy and imprecise data becomes more confined, especially, if we search for robust approach with 

interval data. Interval regression analysis is performed by Tanaka and Lee (1998), Hwang et al. 

(2006), Hao (2009) considering noisy data. Non-parametric regression analysis considering noisy 

data (Petit-Renaud and Denœux, 2004), robust regression approach considering imprecise data 

(Cattaneo and Wiencierz, 2012; Cattaneo and Wiencierz, 2014) are some of the few available 

literature that pursue regression analysis with noisy and imprecise data, where SVM is not used 

for regression. To mention the very few literature using SVM for regression in presence of interval 

data, Utkin and Coolen (2011) can be cited. However, the generalized-SVR formulations given by 

Utkin and Coolen (2011) for the interval data do not consider the various types of uncertainties 

inherent in interval data, and also are not applicable for interval data present in both input and 

output observations. Thus, the presence of very few literature of SVR with interval-valued 

observations and the limitations of the generalized-SVR method give us the motivations to pursue 

this research. Therefore, in this thesis, we propose several approaches that perform the support 

vector regression (SVR) considering the uncertainty present in the interval data.     

1.2 Contributions of the Present Study 

The main contributions of this research are to develop different approaches in pursuing 

SVR with interval data. In proposing the approaches, all three different cases that arise from the 

presence of interval data are considered. These three cases are (i) interval data present only in input 

observations, (ii) interval data present only in output observations, and (iii) interval data present 

in both input and output observations. Note that the presence of interval data in input, or in output, 

or in both does not necessarily mean that all the corresponding observations are interval-valued. 

In other words, point data may also be present with the interval-valued observations. Such issue 

of coexistence of point data with the interval data is also considered in the proposed approaches. 

Four approaches are proposed - three of them are novel and the rest one is an extended version of 

the existing generalized-SVR approach. Four proposed approaches are equiprobability-based 

approach, moment-based approach, and boundary-points-based approach and extended 
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generalized-SVR approach. Although the first two approaches can be applied for all the three 

mentioned cases, the third approach is applicable only when interval-valued observations are 

present in output. The fourth approach actually extends the generalized-SVR framework to make 

it applicable for the presence of interval data in both input and output observations. When there 

are interval data in observed outputs (i.e., the second and the third case), all the proposed 

approaches are designed to predict an interval where the unobserved output can lie. For the first 

case, point prediction is performed with the first two proposed approaches. Prediction accuracies 

and computational time of all the proposed approaches are intercompared as well as compared 

with the existing generalized SVR method for the first two cases. For the third case, prediction 

accuracy and computational time are compared among all the proposed approaches.  

Prediction is required in any engineering discipline. Prediction facilitates decision-making, 

which is one of the major areas of study in Industrial and Production Engineering (IPE). Accuracy 

and efficiency are the main concerns in any prediction problem as this thesis highlights. Thus, this 

research undoubtedly serves an important part in IPE discipline. Besides, if we look for the specific 

sources of interval data in IPE discipline, we would easily get hundreds of sources. As mentioned 

earlier, data heaping, data binning, data rounding, data censoring, and measurement instrument 

uncertainty are some of the many sources of interval data. Like any other engineering discipline, 

these sources are also common in IPE discipline. For example, a division of IPE is production or 

manufacturing engineering. To bring a new product in market, it needs to undergo many stages. 

Ensuring the physical features and performance of the manufactured products according to their 

design is one of the most challenging stages. To tackle such challenge, one of the practices is to 

perform accelerated life testing (ALT) for monitoring the health of the components or products at 

their different life stages. Some monitoring plans call for periodic or intermittent measurements. 

A common example of this is the regular inspection of the components. If a component is observed 

to be in good working condition at one inspection, but not at the next inspection, it cannot be 

precisely said when the component has failed. It seems entirely reasonable to conclude that there 

is a window of time between the last two inspections during which the component failed and the 

natural mathematical representation of that failure time is an interval. Moreover, uncertainty in the 

measurement devices used for inspection itself can yield interval data. The situation just described 

from the perspective of the life stages of manufactured products is just one of the many examples 

regarding the emergence of the interval data in IPE discipline. Hence, the contribution of this thesis 
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is to develop several prediction approaches in the presence of interval data, which facilitates 

solving real world engineering problems including problems in Industrial and Production 

Engineering. 

1.3 Organization of the Thesis Report 

The rest of the thesis paper is organized as follows. Chapter 2 represents a detail literature 

review in the field of prediction with noisy and interval data. Chapter 3 reviews the fundamental 

background concepts used in the proposed methods. Chapter 4 presents the detailed framework of 

all the proposed approaches. In Chapter 5, we examine the accuracy and computational efficiency 

of the proposed methods using four well-known datasets (concrete slump test dataset, unreliable 

sensor problem dataset, wine quality dataset, and German general social survey dataset) for all 

three different cases. Chapter 6 provides conclusions and suggestions for future work. 

  



6 
 

CHAPTER 2 

LITERATURE REVIEW 

Regression analysis is performed to learn the relationship between input and output 

variables. Input variables can be dependent on the output variable linearly or non-linearly. To 

establish the relationship between input and output variables for the linear dependency, linear 

regression (Seber and Lee, 2012; Montgomery et al., 2012) is performed. For the non-linear 

dependency, non-linear regression (Bates and Watts, 1988) is pursued. In the case of categorical 

outputs, classification analysis is performed in place of regression analysis to establish such a 

relationship. Years after years, numerous methods have been developed to predict outputs based 

on the input data either by classification or regression analysis. Accurate prediction becomes 

pronounced, especially in the field of machine learning (ML) (Michie et al., 1994). Support Vector 

Machine (SVM) is a supervised machine learning algorithm which can be used for both 

classification and regression problems. Such uses of SVM in both classification and regression 

analysis are respectively known as support vector classification (SVC) and support vector 

regression (SVR) (Vapnik, 2013; Vapnik et al., 1997; Drucker et al., 1997; Vapnik and Vapnik, 

1998; Gunn, S.R., 1998; Schölkopf et al., 2002). Besides the field of machine learning, SVR is 

gaining its application in the field of statistics (Christmann et al., 2009; Hable, 2012), and data 

mining (Do and Poulet, 2005). This thesis uses SVR for prediction with interval data. 

2.1 Classification Analysis Considering Uncertainty  

In both SVC and SVR, SVM is first trained with the available dataset to obtain a trained 

model, which is then used to test a new dataset. However, if the data used for training are 

contaminated with various types of uncertainty, new challenges arise in prediction. Some 

researchers experiment with the effects of uncertainty on prediction using different loss functions. 

Hinge loss and pinball loss functions are two commonly used loss functions in SVM-based 

prediction. Hinge loss is related to the shortest distance between the classes while the pinball loss 

function is related to the quantile distance. The hinge loss function is traditionally used in SVM 

classifier. However, Huang et al. (2013) used pinball loss function in the classification problem 

and defined it as pin-SVM. They acutely investigated the properties of the pinball loss function in 
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pin-SVM and showed that SVM classifier with the pinball loss function is preferable for its noise-

insensitivity and robustness property compared to the hinge loss function. The pinball loss function 

is also introduced in Twin support vector machine (TSVM) classification problem (Khemchandani 

and Chandra, 2007) by Xu et al. (2016) instead of the hinge loss function. Use of the pinball loss 

function in TSVM is defined as Pin-TSVM by Xu et al. (2016). Before Xu et al. (2016), Peng 

(2011) proposed twin parametric-margin support vector machines (TPMSVM) which are capable 

of handling only heteroscedastic noises. However, Xu et al. (2016) showed that with the increase 

of noisy samples, the prediction accuracy of Pin-TSVM increases more compared to Pin-SVM and 

TPMSVM, which support the more robust property of Pin-TSVM.  

Bi and Zhang (2005) proposed a general statistical framework to tackle the noise in input 

data. Their proposed framework is based on a probability modelling approach. Their proposed 

formulations are interpreted through simple geometric representation and solved efficiently with 

their developed algorithm.  The algorithm is known as total support vector classification (TSVC) 

algorithm. Bi and Zhang (2005) finally compared the performance of the proposed method with 

standard SVM in the presence of noisy input data. Trafalis and Gilbert (2006) proposed a robust 

approach for both classification and regression problem to make the support vector machines 

unaffected by the potential noise in input data. They approached their robust formulations by 

merely adding a bounded perturbation in the form of a norm within the standard SVM framework. 

However, their analysis does not contain any probabilistic distribution assumption on the noise. 

Moreover, standard techniques of solving mathematical programming problem cannot be used to 

solve their proposed robust programming problem. Linear or second-order cone programming 

(SOCP) must be used to pursue their proposed robust problem depending on the linearly or 

nonlinearly separable cases, respectively. Carrizosa et al. (2007) also proposed a robust 

classification model that can deal with both the cases- noisy and interval-valued data - through 

separating hyperplanes. Their proposed model is a generalization of the robust formulations 

proposed by Trafalis and Gilbert (2006). Although Carrizosa et al. (2007) applied their proposed 

model in multi-class classification and binary classification problems, non-linear separability 

through kernels is yet to be examined in their proposed approach.  In the linear, binary and robust 

classification approach proposed by El Ghaoui et al. (2003) for multi-dimensional intervals, 

hyperrectangles are used to bound the unknown data. This classifier is a conservative approach 

that minimizes the worst-case value of a given loss function.  
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Besides the approaches with support vector machines for classifying the noisy and interval 

data, approaches based on the neural network cannot be sidelined (Rossi and Conan-Guez, 2002). 

Interval data are also considered in discriminant analysis by Ishibuchi et al. (1990), and Silva and 

Brito (2006). Silva and Brito (2006) experimented with linear discriminant analysis in three 

different approaches. First one is a probabilistic approach that assumes uniform distribution in 

each of the observed intervals while the second one is with the interval descriptive vertices. The 

third one uses the midpoints of the intervals as well as the lengths of the corresponding intervals. 

Thus, the proposed approaches by Silva and Brito (2006) utilize the variable information inherent 

within the intervals in different ways.  

2.2 Regression Analysis with Noisy Data 

If we consider prediction through regression analysis in the presence of noisy and interval 

data, the literature is not as vast as that of classification. As mentioned earlier, Trafalis and Gilbert 

(2006) proposed robust regression approaches that use support vector machines and deal with 

noisy data. However, a robust approach with SVR for dealing with interval data is hardly present 

in literature. Tanaka and Lee (1998), Hwang et al. (2006), Hao (2009) proposed quadratic 

programming approach, support-vector-interval-regression machines (SVIRM), and 𝜐 − support 

vector interval regression networks (𝜐 −SVIRN), respectively, to deal with noisy data in 

regression analysis. All these three approaches perform interval regression analysis where the test 

data is expected to lie within a predicted interval. In SVIRM, Hwang et al. (2006) used possibility 

theory in association with the principles of standard support vector regression. However, later, in 

his proposed 𝜐 −SVIRN, Hao (2009) introduced a parameter 𝜐 in SVIRN to make SVIRN 

insensitive to various loss functions. Both the accuracy and training time are better for 𝜐 −SVIRN 

compared to robust SVIRM as shown by Hao (2009). Petit-Renaud and Denœux (2004) proposed 

a non-parametric regression analysis based on the Dempster-Shafer evidence theory (Gordon and 

Shortliffe,1984) that consider data uncertainty and impreciseness. Their proposed non-parametric 

regression analysis is known as evidence regression (EVREG). In EVREG, interval regression 

analysis is performed utilizing the Pignistic probability (Pignistic probability is a probability that 

a rational person will assign to an option when required to make a decision) distribution function. 

https://en.wikipedia.org/wiki/Probability
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2.3 Regression Analysis with Interval Data 

Cattaneo and Wiencierz (2011) first introduced a likelihood-based robust approach that 

utilizes the likelihood-based model introduced by Cattaneo (2007) and considers interval data for 

regression analysis. However, the robust approach of Cattaneo and Wiencierz (2011) is based on 

the traditional regression framework that minimizes the squared or absolute error in fitting the 

regression function. In their proposed likelihood-based robust approach, Cattaneo and Wiencierz 

(2011) deal with both the statistical uncertainty and indetermination through two parameters. 

These two parameters are respectively cutoff points of likelihood and probability of error in 

imprecise observations. Different values of these two parameters influence the spread of the sets 

of undominated regression functions (i.e., the imprecise result of the regression). In all, Cattaneo 

and Wiencierz (2011) mainly showed how different values of the two parameters result in different 

sets of undominated regression functions. Thus, a defined framework for prediction is missing in 

the likelihood-based robust regression method of Cattaneo and Wiencierz (2011). Later, Cattaneo 

and Wiencierz (2014) investigated the application of likelihood-based robust approach in linear 

regression in the presence of interval data.  

 Utkin and Coolen (2011) first proposed a method for regression with interval data that 

uses SVM. The generalized-SVR framework presented by Utkin and Coolen (2011) exploits the 

approach proposed by Petit-Renaud and Denœux (2004) for fuzzy belief assignment-based risk 

functionals. In connection with imprecise probability theory (Walley, 1991), the generalized-SVR 

framework also exploits the approach of Walter et al. (2007) for the sets of probability distributions 

of the random noises present in the interval data. However, Utkin and Coolen (2011) finally 

deduced a simple formulation that uses the standard-SVR framework; however, just with a clever 

manipulation in the risk functional. The manipulation involves minimizing or maximizing the risk 

functional through choosing the appropriate bound value (either lower or upper bound value) from 

each interval. However, manipulation only with the boundary points eventually fails to consider 

the various uncertainties inherently present in the interval data. Moreover, the framework is not 

suitable for presence of interval data in both the input and output. In other words, interval data 

must be present only in output or in input observations to apply the generalized-SVR framework 

proposed by Utkin and Coolen (2011). Later, Wiencierz and Cattaneo (2015) investigated the 

generalized-SVR approach for its validity in terms of Representer Theorem, which is followed by 
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the experimentation with the wine quality dataset.  However, both papers (Utkin and Coolen, 2011; 

Wiencierz and Cattaneo, 2015) lack clear explication of schemes to choose either the minimax or 

minimin approach for better prediction accuracy. Thus, the presence of very few literature in SVR 

with interval data, and their little concern for prediction accuracy provide the impetus to pursue 

this research. Hence, this thesis is delved into developing different approaches for regression 

analysis with interval data, which use the SVR framework. Also, the prediction accuracies and 

computational expenses of all the proposed approaches are compared. In the next chapter, basic 

concepts used in our proposed approaches are discussed in detail.



 
 

CHAPTER 3 

BACKGROUND CONCEPTS REVIEW 

3.1 Support Vector Regression 

Support vector regression (SVR) and simple regression model have similitude in the sense 

that both minimize the regression error in defining the regression function; however, they differ in 

the techniques of minimizing the regression error. SVR tries to fit all the training data within a 

certain threshold and compensate for the data not fitted in the considered threshold. At the same 

time, SVR also minimizes model complexity through a regularizer, which is denoted by 𝒘. Eq. 

(3.1) represents the linear SVR model  

𝑓(𝒙) =  〈𝒘, 𝒙〉 + 𝑏, where 𝒘, 𝒙 ∈ ℋ, 𝑏 ∈  ℝ,  (3.1) 

where 𝑏 is a constant offset and the training dataset 𝑿 are considered to be independently and 

identically distributed (iid). These training data can be defined as follows: 

𝑿 ≔ {(𝒙1, 𝑦1), (𝒙2, 𝑦2), ……… , (𝒙𝑛, 𝑦𝑛)} ∈ ℋ ×  ℝ (3.2) 

In Eqs. (3.1) and (3.2), ℋ is a dot product space (also known as Hilbert Space) where the (mapped) 

input patterns live (Schölkopf et al., 2002). In order to penalize for the non-fitted data during 

training, the risk functional 𝑅[𝑓] introduced in the framework of statistical learning theory is 

defined as follows: 

𝑅[𝑓] = ∫𝑐(𝒙, 𝑦, 𝑓(𝒙))𝑑𝑃(𝒙, 𝑦) (3.3) 

In Eq. (3.3), 𝑃(𝒙, 𝑦) is the probability measure which is assumed to be responsible for generating 

the observations in Eq. (3.2), 𝑓(𝒙) is the regression estimate, and 𝑐 is the cost or loss function. 

However, as 𝑃 is not known priori, considering that probability of occurrence of all the data is the 

same, empirical risk functional can be defined as shown in Eq. (3.4). 

𝑅emp[𝑓] =
1

𝑛
∑𝑐(𝒙𝒊, 𝑦𝑖 , 𝑓(𝒙𝑖))

𝑛

𝑖=1

 (3.4) 
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As mentioned earlier, to find the best regression line, SVR requires to satisfy the two 

criteria – fitting the training data as much as possible and minimizing 𝒘. However, these two 

criteria are conflicting. The objective function with these two conflicting criteria is shown in Eq. 

(3.5), which is known as regularized risk functional. To get the best regression line, regularized 

risk functional is minimized during SVM training, which is comprised of the regularization term 

and the risk functional as shown in Eq. (3.5) 

𝑅reg[𝑓,𝒘] =
1

2
‖𝒘‖2 +C 𝑅emp[𝑓] (3.5) 

Substituting Eq. (3.4) into Eq. (3.5), the regularized risk functional now becomes 

𝑅𝑟𝑒𝑔[𝑓,𝒘] =
1

2
‖𝒘‖2 +C 

1

𝑛
∑𝑐(𝒙𝒊, 𝑦𝑖 , 𝑓(𝒙𝑖))

𝑛

𝑖=1

 (3.6) 

In Eq. (3.6), C is a constant which trades off between marginalizing error and model complexity. 

In more in-depth insight, the smaller the regularization term, the flatter the hyperplane that 

eventually induces more errors. Thus, the flatness of the regularization term enlarges the value of 

risk functional. The opposite scenario emerges with a larger regularization term. Therefore, there 

should be a controller for these two opposite scenarios, which induces moderate complexity in the 

hyperplane and at the same time account for the errors due to the flatness of the hyperplane. C 

performs the function of that controller. Assuming  C 
𝑛
= 𝐶 in Eq. (3.6), we get  

𝑅𝑟𝑒𝑔[𝑓,𝒘] =
1

2
‖𝒘‖2 + 𝐶∑𝑐(𝒙𝒊, 𝑦𝑖, 𝑓(𝒙𝑖)) where 𝐶 =  

C 
𝑛

𝑛

𝑖=1

   (3.7) 

Now, cost function 𝑐(𝒙𝒊, 𝑦𝑖, 𝑓(𝒙𝑖)) used so far can be defined in general as in Eq. (3.8) where 𝜀 is 

known as soft margin loss.  

𝑐(𝒙, 𝑦, 𝑓(𝒙)) = {
        0                                  𝑓𝑜𝑟 |𝑦 − 𝑓(𝒙)| ≤ 𝜀     

𝑐̃(|𝑦 − 𝑓(𝒙)| − 𝜀)              otherwise                    
 (3.8) 

Thus, 𝑐 becomes the loss function 𝑐̃ for  |𝑦 − 𝑓(𝒙)| > 𝜀 as can be observed in Eq. (3.8). Assuming 

𝑦 − 𝑓(𝒙) =  𝜉 ∈  ℝ, Eq. (3.8) becomes 
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𝑐(𝜉) = {
       0                 𝑓𝑜𝑟 |𝜉| ≤ 𝜀

𝑐̃(|𝜉| − 𝜀)         otherwise
 (3.9) 

In the maximum likelihood sense, cost function 𝑐(𝒙𝒊, 𝑦𝑖 , 𝑓(𝒙𝑖)) can be written as  

𝑐(𝒙, 𝑦, 𝑓(𝒙)) = −log 𝑝(𝑦 − 𝑓(𝑥)) (3.10) 

After applying Eq. (3.10) for all the iid training data, the probability density model of the loss 

function values generally becomes 

𝑝(𝑿𝑓|𝑿) = 𝑒
−∑ 𝑐(𝒙,𝑦,𝑓(𝒙))𝑛

𝑖=1  (3.11) 

where 𝑝 represents the density model and 𝑿𝑓 ≔ {(𝒙1, 𝑓(𝒙1)), (𝒙2, 𝑓(𝒙2)), ……… , (𝒙𝑛, 𝑓(𝒙𝑛))} 

The commonly used loss functions and the corresponding density models derived through Eq. 

(3.11) are shown in Table 3.1 

Table 3.1 Common loss functions and corresponding density models 

 Loss function Density Model 

𝜀 − intensitive 𝑐(𝜉) = |𝜉|𝜀 𝑝(𝜉) =
1

2(1 + 𝜀)
𝑒𝑥𝑝(−|𝜉|𝜀) 

Laplacian 𝑐(𝜉) = |𝜉| 
𝑝(𝜉) =

1

2
𝑒𝑥𝑝(−|𝜉|) 

Gaussian 𝑐(𝜉) =  
1

2
𝜉2 𝑝(𝜉) =

1

√2𝜋
𝑒𝑥𝑝 (−

1

2
𝜉2) 

Huber’s robust 
loss 𝑐(𝜉) =  {

1

2𝜎
(𝜉)2    𝑖𝑓 |𝜉| ≤ 𝜎

|𝜉| − 
𝜎

2
    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑝(𝜉) ∝ {
𝑒𝑥𝑝 (−

1

2𝜎
𝜉2)  𝑖𝑓 |𝜉| ≤ 𝜎 

exp (
𝜎

2
− |𝜉|)  otherwise

 

Polynomial 𝑐(𝜉) =  
1

𝑝
|𝜉|𝑝 𝑝(𝜉) =  

𝑝

2⎾(1 𝑝⁄ )
𝑒𝑥𝑝(−|𝜉|𝑝) 
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Piecewise 
polynomial 

𝑐(𝜉) =  

{
 

 
1

𝑝𝜎𝑝−1
(𝜉)𝑝    𝑖𝑓 |𝜉| ≤ 𝜎

|𝜉| − 𝜎
𝑝 − 1

𝑝
 otherwise

 

𝑝(𝜉)

∝  

{
 

 𝑒𝑥𝑝 (−
𝜉𝑝

𝑝𝜎𝑝−1
)   𝑖𝑓 |𝜉| ≤ 𝜎

𝑒𝑥𝑝 (𝜎
𝑝 − 1

𝑝
− |𝜉|)  otherwise

 

Considering the loss functions shown in Table 3.1, Eq. (3.9) can also be presented as in Eq. (3.12), 

and we stick to this representation throughout the remainder of this thesis.  

𝑐(𝜉) = 𝑚𝑎𝑥{0, 𝑐̃(|𝜉| − 𝜀)} (3.12) 

Using the loss function defined in Eq. (3.12), regularized risk functional in Eq. (3.7) can be 

rewritten as 

𝑅𝑟𝑒𝑔[𝑓,𝒘] =
1

2
‖𝒘‖2 + 𝐶∑𝑐(𝜉) 

𝑛

𝑖=1

   (3.13) 

However, in this thesis, we only consider the 𝜀 − insensitive loss function, for which Eq. (3.12) is 

replaced by Eq. (3.14). Note that we can pursue our study with any other loss function. However, 

our focus in this work is not to experiment with different loss functions rather proposing an 

approach to pursue SVR with interval data. The 𝜀 − insensitive loss function is considered as this 

is one of the mostly used loss functions while approaching SVR; hence, we stick to this loss 

function for the sake of illustration only. If we look for graphical representation of the 𝜀 −

insensitive loss function, we get a 𝜀 − tube as shown in Figure 3.1, where the training data lying 

outside the 𝜀 −tube generate errors.  

𝑐(𝜉) = |𝜉|𝜀 =  𝑚𝑎𝑥{0, (|𝜉| − 𝜀)} (3.14) 
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Figure 3.1 Soft margin loss setting for linear SVM in regression 

The unconstrained optimization problem for minimizing the regularized risk functional 

(Eq. (3.13)) is usually transformed to the constrained optimization problem (Eq. (3.15)) for 

exploiting the advantage of quadratic programming problem. Such an advantage can be attained 

through the dual formulation considering that the problem in Eq. (3.15) is in the primal form. In 

Eq. (3.15), the cost functions are presented for the two cases - (i) predicted value is more than the 

actual value, (ii) predicted value is less than the actual value. In Eq, (3.15), 𝜉𝑖
(∗) stands for both 𝜉𝑖 

and 𝜉𝑖∗, which are limited to non-negative values only. If for each observation, different cost 

functions are chosen separately for 𝜉𝑖 and 𝜉𝑖∗, representation of  𝑐̃ become 𝑐̃𝑖and 𝑐̃𝑖∗ respectively. 

However, this case is skipped in this thesis since 𝜀 − insensitive loss function is considered as the 

cost function.  

𝑚𝑖𝑛

𝒘, 𝝃(∗), 𝑏
    𝑅𝑒𝑚𝑝[𝑓,𝒘] =

1

2
‖𝒘‖2 + 𝐶∑(𝑐̃(𝜉𝑖) + 𝑐̃(𝜉𝑖

∗))

𝑛

𝑖=1

 

    s.t.         (〈𝒘, 𝒙𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

                  𝑦𝑖 − (〈𝒘, 𝒙𝑖〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

                  𝝃(∗) ≥ 0 

(3.15) 
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For the 𝜀 − insensitive loss function, the constrained optimization formulation in Eq. (3.15) 

becomes: 

𝑚𝑖𝑛

𝒘, 𝝃(∗), 𝑏
     𝑅𝑒𝑚𝑝[𝑓,𝒘] =

1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

   s.t.          (〈𝒘, 𝒙𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

                  𝑦𝑖 − (〈𝒘, 𝒙𝑖〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

                  𝝃(∗) ≥ 0 

(3.16) 

In order to formulate the dual of the primal form in Eq. (3.16), the Langrangian of Eq. (3.16) is 

taken as shown in Eq. (3.17). Lagrangian multipliers 𝛼𝑖, 𝛼𝑖∗, 𝜂𝑖 , 𝜂𝑖∗  ≥ 0 are introduced for the 

constraints of Eq. (3.16) as can be seen in Eq. (3.17). 

𝐿 =
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

− ∑𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖
∗

𝑛

𝑖=1

−∑𝛼𝑖(𝜀 +  𝜉𝑖 + 𝑦𝑖 − 〈𝒘, 𝒙𝑖〉 − 𝑏)

𝑛

𝑖=1

−∑𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ − 𝑦𝑖 + 〈𝒘, 𝒙𝑖〉 + 𝑏)

𝑛

𝑖=1

 

(3.17) 

The Langrangian function in Eq. (3.17) has saddle point solutions with respect to both primal and 

dual variables. Hence, for duality, the gradient condition under KKT saddle point solutions of Eq. 

(3.17) becomes 

Gradient condition: 

 

𝜕𝑏𝐿 =  ∑(𝛼𝑖 − 𝛼𝑖
∗) = 0

𝑚

𝑖=1

 (3.18) 

𝜕𝒘𝐿 = 𝒘 −∑(𝛼𝑖
∗ − 𝛼𝑖)𝒙𝑖 = 0

𝑛

𝑖=1

 (3.19) 

𝜕𝝃(∗)𝐿 = 𝐶 − 𝛼𝑖
(∗) − 𝜂𝑖

(∗) = 0 (3.20) 

Substituting Eq. (3.18) to Eq. (3.20) into Eq. (3.17) we get the dual form of Eq. (3.16) as shown 

in Eq. (3.21). 
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𝑚𝑎𝑥

𝛼𝑖
(∗)
  −

1

2
∑ (𝛼𝑖

∗ − 𝛼𝑖)(𝛼𝑖 − 𝛼𝑖
∗)〈𝒙𝑖, 𝒙𝑗〉 − 𝜀 ∑ (𝛼𝑖

∗ + 𝛼𝑖) + ∑ 𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑚
𝑖=1       𝑚

𝑖=1
𝑚
𝑖,𝑗=1   

s.t.       ∑ (𝛼𝑖
∗ − 𝛼𝑖) = 0 

𝑚
𝑖=1  

            𝛼𝑖
(∗)
 ∈  [0, 𝐶] 

(3.21) 

The solution of Eq. (3.21) does not give us the value of bias or offset 𝑏. Determination of 𝑏 requires 

calling the KKT orthogonality condition (Eq. (3.22)) at the optimal solution.   

Orthogonality 
 Condition: 

 

𝛼𝑖(𝜀 + 𝜉𝑖 + 𝑦𝑖 − 〈𝒘, 𝒙𝑖〉 − 𝑏) = 0 

𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ − 𝑦𝑖 + 〈𝒘, 𝒙𝑖〉 + 𝑏) = 0 

and 

(3.22) 

(𝐶 − 𝛼𝑖)𝜉𝑖 = 0 

(𝐶 − 𝛼𝑖
∗)𝜉𝑖

∗ = 0 

(3.23) 

The solution of Eq. (3.21) in conjunction with Eqs. (3.22) and (3.23) give us a clear idea of support 

vectors (SVs) as well as the offset value 𝑏.  Performance of SVR relies on these support vectors 

(SVs) because the prediction accuracy of SVR does not depend on all the training data rather a 

part of the training data, which are known as SVs. Which training data act as support vectors (SVs) 

can be explained from the dual solution viewpoint. Three cases arise regarding the values of 𝛼𝑖
(∗)
−

 the decision variables of dual formulation in Eq. (3.21): 

(i) 𝛼𝑖
(∗)
= 𝐶: In this case, left part of Eq. (3.23) becomes zero; therefore, 𝝃(∗)  ≠ 0. 

Hence, according to the definition of the 𝜀 − insensitive loss function, training data 

corresponding to this solution remain outside of the 𝜀 −tube (Figure 3.1) 

(ii) 𝛼𝑖
(∗)
= (0, 𝐶): In this case, as the first portion of Eq. (3.23) does not become zero, 

𝝃(∗) must be zeros. With 𝝃(∗) = 0, the right portion of Eq. (3.22) becomes 𝜀 =

±(𝑦𝑖 − 〈𝒘, 𝒙𝑖〉 − 𝑏), which indicate that training data now lie just on the boundary 

line of the 𝜀 −tube (Figure 3.1). Actually, from this case we can determine the value 

of the bias 𝑏 as shown in Eq. (3.24).  
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𝑏 = 𝑦𝑖 − 〈𝒘, 𝒙𝑖〉 − 𝜀 for  𝛼𝑖  ∈  (0, 𝐶) 

𝑏 = 𝑦𝑖 − 〈𝒘, 𝒙𝑖〉 + 𝜀 for  𝛼𝑖
∗  ∈  (0, 𝐶) 

(3.24) 

(iii) 𝛼𝑖
(∗)
= 0: This case results in 𝛼𝑖𝛼𝑖∗ = 0, which means that 𝛼𝑖 and 𝛼𝑖∗ cannot be 

nonzero at a time. If 𝛼𝑖, 𝛼𝑖∗vanish, second parts of Eq. (3.22) are not equal to zero, 

which implies |𝑦 − 𝑓(𝑥)| < 0. In other words, in this case, the training data lie 

within the 𝜀 −tube (Figure 3.1) and result in zero losses. Hence, the training data 

lying within the 𝜀 − tube are kept out of consideration during the optimization. This 

conclusion also implicitly says that only for the case (i) and case (ii), training data 

contribute to the fitting of the hyperplane during solving the optimization problem 

in Eq. (3.21). Therefore, training data lying outside or on the boundary line of 𝜀 −

 tube are defined as SVs. 

The lower the number of the training data participate in determining the hyperplane, the sparser 

the optimal solution, which eventually leads to faster training. Accordingly, the representation of 

the regularization term 𝒘 becomes sparse as it does not require all the training data to be 

considered. Such sparse representation of 𝒘 as shown in Eq. (3.25) is known as the so-called 

support vector expansion, i.e., 𝒘 can be completely described as a linear combination of the 

training patterns 𝒙𝑖. In Eq. (3.25), 𝒘 is expressed as a linear combination of support vectors with 

coefficients (𝛼𝑖∗ − 𝛼𝑖), which is actually the statement of the Representer theorem (Kimeldorf and 

Wahba, 1971).  

𝒘 =∑(𝛼𝑖
∗ − 𝛼𝑖)𝒙𝑖 

𝑚

𝑖=1

 
(3.25) 

Putting the expression of 𝒘 into Eq. (3.1), we get the expression of linear SVR model in support 

vector expansion form as shown in Eq. (3.26). Optimal values of 𝑓(𝒙) in Eq. (3.26) defines the 

so-called linear support vector machine (SVM).  

𝑓(𝒙) = 〈𝒘, 𝒙〉 + 𝑏 =∑(𝛼𝑖
∗ − 𝛼𝑖)〈𝒙𝑖, 𝒙〉 + 𝑏 

𝑚

𝑖=1

 
(3.26) 
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The equations developed so far are for the linearly separable input space. However, in the presence 

of nonlinearly separable input space, one only needs to introduce a suitable feature space. This 

feature space maps the input space in such a way that in the feature space the mapped inputs are 

now easily separable by a hyperplane.  Rewriting the dual formulation in Eq. (3.21), support vector 

expansion in Eq. (3.25), and linear SVR model in Eq. (3.26) in terms of mapped input space 𝛷(𝒙),  

Eqs. (3.27), (3.28), and (3.29), respectively, can be obtained. Dot product of such mapped input 

space yields kernels, which are described in detail in the next section. 

𝑚𝑎𝑥

𝛼𝑖
(∗)
  −

1

2
∑ (𝛼𝑖

∗ − 𝛼𝑖)(𝛼𝑖 − 𝛼𝑖
∗)〈𝛷(𝒙𝑖),𝛷(𝒙𝑗)〉 − 𝜀 ∑ (𝛼𝑖

∗ + 𝛼𝑖) +
𝑚
𝑖=1

𝑚
𝑖,𝑗=1

               ∑ 𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑚
𝑖=1    

 s.t.        ∑ (𝛼𝑖
∗ − 𝛼𝑖) = 0 

𝑚
𝑖=1  

              𝛼𝑖
(∗)
 ∈  [0, 𝐶] 

 

 

(3.27) 

 
Support Vector Expansion 
using mapped input space 

 

𝒘 =∑(𝛼𝑖
∗ − 𝛼𝑖)𝛷(𝒙𝑖) 

𝑚

𝑖=1

 
(3.28) 

SVR Model using mapped 
input space 𝑓(𝒙) =∑(𝛼𝑖

∗ − 𝛼𝑖)〈𝛷(𝒙𝑖), 𝛷(𝒙)〉 + 𝑏 

𝑚

𝑖=1

 
(3.29) 

3.2 Kernels 

Kernel is mainly a functional measure of similarity or dissimilarity on the inputs, which 

can be obtained by taking dot product in the feature space. However, such measuring by a kernel 

is not restricted to SVM only. Certain classes of kernels induce feature spaces, which implies that 

certain feature space can be built based on the given kernel by exploiting the properties of that 

kernel function. The classes of kernels 𝑘 considered in this thesis correspond to dot products in 

feature spaces ℋ via a map 𝛷 where 

𝛷: 𝒳→ℋ 

     𝒙↦x ≔ 𝛷(𝒙) 

(3.30) 
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Hence, 

𝑘(𝒙, 𝒙′) = 〈𝛷(𝒙),𝛷(𝒙′)〉 (3.31) 

In Eq. (3.30), 𝒳 represents input domain, feature spaces ℋ is known as Hilbert Space. ℋ can be 

called Reproducing Kernel Hilbert Space (RKHS) when (i) for a given class of kernel, the related 

feature space can be generated, and (ii) the dot product of the feature space can reproduce the 

kernel itself. Reproducing the kernel becomes possible if the function 𝑘: 𝒳×𝒳→R  exists with the 

two properties - the reproducing property and the closed space property. These two properties are 

recited next from Schölkopf et al. (2002). 

Reproducing 
property 

〈𝑓, 𝑘(𝑥,∙)〉 = 𝑓(𝑥) ∀ 𝑓 ∈  ℋ 

In particular, 

(3.32) 

〈𝑘(𝒙,∙), 𝑘(𝒙′,∙)〉 = 𝑘(𝒙, 𝒙′) (3.33) 

Closed Space 
property 

ℋ is spanned by 𝑘, i.e., ℋ = span{𝑘(𝒙,∙)|𝒙 ∈ 𝒳}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  where 𝑋̅ denotes the 
completion of the set 𝑋 

In Eq. (3.32), 𝑓 is a continuous evaluation functional on 𝒳 under Hilbert space. To obtain a vector 

space through mapping by 𝑓, 𝑓 can be expressed in the form of linear combination as shown in 

Eq. (3.34) 

𝑓 = 𝑓(∙) =∑𝛾𝑖𝑘(∙, 𝒙𝑖) 

𝑛

𝑖=1

 
 (3.34) 

In Eq. (3.34), the choice of coefficient 𝛾 is arbitrary. It follows directly from Eq. (3.33) that 𝑘(𝒙, 𝒙′) is 

symmetric in its arguments and the satisfy the condition of positive definiteness. Here, note that a 

kernel matrix 𝐾 (also known as Gram matrix) with its elements 𝐾𝑖𝑗 ≔ 𝑘(𝑥𝑖 , 𝑥𝑗) is not positive 

definite unless it has nonnegative eigenvalues in the presence of the symmetric property. Some of 

the most used kernel functions are polynomial kernels, Gaussian or radial basis kernels, and 

sigmoid kernel functions. They are defined as follows: 

Polynomial Kernel:         𝑘(𝒙, 𝒙′) = 〈𝒙, 𝒙′〉𝑑 where 𝑑 ∈ ℕ (3.35) 

Gaussian or RBF kernel:       
𝑘(𝒙, 𝒙′) = 𝑒𝑥𝑝 (−

‖𝒙−𝒙′‖
2

2𝜎2
) where 𝜎 ∈ ℝ 

(3.36) 
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Sigmoid kernel: 𝑘(𝒙, 𝒙′) = 𝑡𝑎𝑛ℎ(κ〈𝒙, 𝒙′〉 + 𝛩) where κ, 𝛩 ∈ ℝ (3.37) 

To show how kernel can be constructed from the vector space - which is generated with 

the images of the input pattern under mapping 𝛷, let’s take the case of polynomial kernel 

considering 𝑑 = 2 in Eq. (3.35) 

𝛷: ([𝑥]1, [𝑥]2)↦([𝑥]1
2, [𝑥]2

2, [𝑥]1[𝑥]2, [𝑥]2[𝑥]1) (3.38) 

〈𝛷(𝒙),𝛷(𝒙′)〉 = [𝑥]12[𝑥′]12 + [𝑥]22[𝑥′]22 + 2[𝑥]1[𝑥]2[𝑥′]1[𝑥′]2 

                        = 〈𝒙, 𝒙′〉2 = 𝑘(𝒙, 𝒙′) 

(3.39) 

Eq. (3.38) says that polynomial kernel is simply the square of the dot product in the input space. 

Similarly, for other types of kernel classes, one can build the desired kernel from the corresponding 

mapping with the help of Representer theorem and the kernel properties (Schölkopf et al., 2002). 

Dual formulation (Eq. (3.27)), support vector expansion (Eq. (3.28)) and the SVR model (Eq. 

(3.29)) are presented again respectively in Eqs. (3.40), (3.41) and (3.42) utilizing the kernel 

properties described in this section. 

𝑚𝑎𝑥

𝛼𝑖
(∗)
    −

1

2
∑ (𝛼𝑖

∗ − 𝛼𝑖)(𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝒙𝑖, 𝒙𝑗) − 𝜀 ∑ (𝛼𝑖

∗ + 𝛼𝑖) +
𝑚
𝑖=1

𝑚
𝑖,𝑗=1

             ∑ 𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑚
𝑖=1    

 s.t.       ∑ (𝛼𝑖
∗ − 𝛼𝑖) = 0 

𝑚
𝑖=1  

             𝛼𝑖
(∗)
 ∈  [0, 𝐶] 

 

(3.40) 

Support Vector Expansion 
using Kernel 

𝒘 =∑(𝛼𝑖
∗ − 𝛼𝑖)𝑘(∙, 𝒙𝑖) 

𝑚

𝑖=1

 (3.41) 

SVR Model using Kernel 𝑓(𝒙) =∑(𝛼𝑖
∗ − 𝛼𝑖)𝑘(𝒙𝑖, 𝒙) + 𝑏 

𝑚

𝑖=1

 (3.42) 

3.3 Nonlinear SVR in Primal Form 

The best regression function through SVR is mostly searched in the dual form; however, 

the primal form can also be pursued for the same. Two major reasons can be mentioned for solving 

the problem in the dual: (i) the duality theory provides a convenient way to deal with the 
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constraints; (ii) the dual optimization problem can be written in terms of dot products, thereby, 

making it possible to use kernel function. Chapelle (2007) showed that these two causes can be 

accounted as the advantages of solving the dual problem but not as the limitation of solving the 

primal problem. With the help of Representer theorem, they also showed that solving the primal 

problem could be as efficient as the dual one for both linear and nonlinear cases. For an efficient 

solution of the primal form, an efficient algorithm is proposed by Chapelle (2007). This efficient 

algorithm requires the constrained form of primal problem transformed in the unconstrained form. 

The unconstrained form of the primal problem is already demonstrated in Eq. (3.7) of Section 3.1. 

Using 𝑓 in place of 𝒘, Eq. (3.7) can be redefined in terms of the objective function of the 

unconstrained primal optimization problem as shown in Eq. (3.43). 

𝑚𝑖𝑛 
𝑓, 𝑏

  
1

2
‖𝑓‖2 + 𝐶∑𝑐(𝒙𝒊, 𝑦𝑖 , 𝑓(𝒙𝑖)) 

𝑛

𝑖=1

 (3.43) 

In Eq. (3.43), 𝑓(𝒙𝑖) = 〈𝑓, 𝑘(𝒙𝑖, . )〉𝓗 + 𝑏. Now, taking the derivative of the Lagrangian of Eq. 

(3.43) with respect to 𝑓 and equating it to zero we get,   

𝑓∗ + 𝐶∑
𝜕𝑐

𝜕𝑓
(𝒙𝒊, 𝑦𝑖, 𝑓

∗(𝒙𝑖))𝑘(𝒙𝑖, . ) = 0

𝑛

𝑖=1

 (3.44) 

𝑓∗ = ∑𝛽𝑖𝑘(𝒙𝑖, . )

𝑛

𝑖=1

  (3.45) 

where 𝛽𝑖 = −𝐶 ∑
𝜕𝑐

𝜕𝜆

𝑛
𝑖=1 (𝒙𝒊, 𝑦𝑖, 𝑓(𝒙𝑖)). Notice that, there is no difference in Eq. (3.45) with Eq. 

(3.41): 𝛽𝑖 is just used in place of  𝛾𝑖. However, 𝛽𝑖 in Eq. (3.45) should not be interpreted as the 

Lagrange multipliers in Eq. (3.41). With the help of Eq. (3.45), the SVR model can be written as  

𝑓(𝒙) =∑𝛽𝑖𝑘(𝒙𝑖, 𝒙) + 𝑏

𝑛

𝑖=1

 (3.46) 

Using the definition of 𝑓 from Eq. (3.45), unconstrained primal optimization problem in Eq. (3.43) 

becomes  

𝑚𝑖𝑛
𝛽𝑖, 𝛽𝑖, 𝑏

 
1

2
∑ 𝛽𝑖𝛽𝑗

𝑛

𝑖,𝑗=1

𝑘(𝒙𝑖, 𝒙𝑗) + 𝐶∑𝑐(𝒙𝒊, 𝑦𝑖 ,∑𝛽𝑖𝑘(𝒙𝑖, 𝒙𝑗) + 𝑏

𝑛

𝑗=1

) 

𝑛

𝑖=1

 (3.47) 

For the 𝜀 −insensitive loss function, Eq. (3.47) takes the form 
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𝑚𝑖𝑛
𝛽𝑖, 𝛽𝑖, 𝑏

 
1

2
∑ 𝛽𝑖𝛽𝑗

𝑛

𝑖,𝑗=1

𝑘(𝒙𝑖, 𝒙𝑗) + 𝐶∑𝑚𝑎𝑥 {0, |𝑦𝑖 − (∑𝛽𝑖𝑘(𝒙𝑖, 𝒙𝑗) + 𝑏

𝑛

𝑗=1

)| − 𝜀} 

𝑛

𝑖=1

 (3.48) 

That is, 

𝑚𝑖𝑛
𝛽, 𝑏

  
1

2
𝛽𝑇𝐾𝛽 + 𝐶∑𝑚𝑎𝑥{0, |𝑦𝑖 − (𝐾𝑖

𝑇𝛽 + 𝑏)| − 𝜀} 

𝑛

𝑖=1

 (3.49) 

where 𝐾 is a kernel matrix with its elements 𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) and 𝐾𝑖 represents all the elements of 

column 𝑖. Eq. (3.49) can be easily solved by the updated rules of Newton optimization (Chapelle, 

2007) or any similar or more efficient algorithm. For tuning the hyperparameters simultaneously 

with the optimization, conjoint optimization can be applied (Chapelle, 2007).  

3.4 Probabilistic approach for dealing with interval data 

To properly apprehend the uncertainty inherent in interval data, one should have a clear 

conception of uncertainty sources, and the resulting classification of uncertainty. Two sources of 

uncertainty are aleatory (irreducible) and epistemic (reducible) uncertainty. Aleatory uncertainty 

is the outturn of the natural reasons, and thereby irreducible. Examples of aleatory uncertainty 

include geometric tolerances, operating conditions, inherent randomness in material property, 

inherent variations in any physical process, etc. Noises in data actually represent the aleatory 

uncertainty. On the other hand, epistemic uncertainty arises mainly due to lack of knowledge, 

limited data or subjective data. History of research considering epistemic uncertainty is not so 

long. Even in the last decade, to many, the presence of epistemic uncertainty represented by 

intervals was not so common. For example, Ferson et al. (2004) in “Summary from the epistemic 

uncertainty workshop: consensus amid diversity” mentioned that before the workshop, many 

authors did not believe of any real situation where the information on a parameter lies in an 

interval. Later, Ferson et al. (2007) in detail scripted several situations where interval data may 

arise. The sources of epistemic uncertainty can be attributed to either stochastic but poorly known 

quantity or deterministic but poorly known quantity. Such uncertainty due to stochastic or 

deterministic but poorly known physical quantity is called statistical and subjective forms of 

epistemic uncertainty, respectively. The latter is also known as indetermination. In the former case, 

there is uncertainty about the distribution type as well as distribution parameters of the random 
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variable. Moment-based approach proposed in this paper focuses on the epistemic uncertainty 

about a stochastic but poorly known quantity. 

Epistemic uncertainty arising from the interval data can be available both as a single 

interval and multiple intervals. However, as each interval is considered as an observation, dealing 

with multiple intervals is unnecessary for SVR with interval data. Note that unlike point data, 

moments of interval data are only available as bounds. Zaman et al. (2011) proposed moment-

bounding algorithms to calculate the bounds on the first four moments of both single and multiple 

interval data. The bounds of the first four moments for single interval data are tabularized in Table 

3.2 as developed by Zaman et al. (2011). Choosing a specific value arbitrarily from each of the 

intervals of the four moments results in a set of values of four moments and thus, such sets of 

moments can be infinite in number. Henceforth, we may fit infinitely many possible probability 

distributions to interval data. Again, as the distribution of the random variables described by 

interval data is also uncertain, the forcible use of a specific distribution for all sets of moments 

induces errors in the enumeration. Therefore, a flexible family of distributions should be used to 

fit interval data using moment matching approach. Pearson, Beta, Lamda, Johnson, etc. are some 

of the feasible four-parameter flexible family of distributions. We have used Johnson family of 

distributions in this thesis as it is a convenient choice for its easier transformation to a standard 

Gaussian space compared to others. Such an easier transformation to standard normal space is 

carried by Eq. (3.50) 

𝑧 =  𝛾 + 𝛿𝑓 (
𝑥 − 𝜉

𝜆
) (3.50) 

where 𝑧 stands for the standard normal variable; 𝑥 is the variable in the original space; 𝜉, 𝜆, 𝛿, 𝛾 are 

the four parameters of Johnson family of distributions. If  𝑥−𝜉
𝜆
 = 𝑦, then 𝑓(𝑦) may have any of the 

forms shown in Eq. (3.51).  

𝑓(𝑦) =  

{
 
 

 
 ln(𝑦 + √𝑦2 + 1)    

ln (
𝑦

1−𝑦
)                   

ln(𝑦)                         
   𝑦                                      

   

for unbounded (𝑆𝑈) 

(3.51) 
for bounded (𝑆𝐵) 

for lognormal (𝑆𝐿) 
for normal (𝑆𝑁) 
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However, distribution to be chosen from the Johnson family of distributions depends on a set of 

point values of moments. An appropriate Johnson distribution is then identified with the help of 

Figure 3.2. Such identification requires the value of 𝛽1 ≡
𝑚3
2

𝑚2
3⁄ , and 𝛽2 ≡

𝑚4
𝑚2
2⁄  where 

𝑚2, 𝑚3, 𝑚4 represent the second, third, and fourth moments, respectively. 

Table 3.2 Methods for calculating moment bounds for single interval data 

Moment Condition 
Formula 

Lower bound Upper bound 

1 PMF =1 at lower 
endpoint 

         = 0 elsewhere 

PMF =1 at upper endpoint 

         = 0 elsewhere 𝑀1 = 𝐸(𝑥) 

2 PMF =1 at any point 

         = 0 elsewhere 

PMF = 0.5 at each 
endpoint 𝑀2 = 𝐸(𝑥

2) −  (𝐸(𝑥))
2
 

3 PMF = 0.2113 at lower          
endpoint 

         = 0.7887 at upper 
endpoint 

PMF = 0.7887 at lower 
endpoint 

         = 0.2113 at upper 
endpoint 

𝑀3 = 𝐸(𝑥3) − 3𝐸(𝑥2)𝐸(𝑥)

+ 2(𝐸(𝑥))
3
 

4 PMF =1 at any point 

         = 0 elsewhere 

PMF = 0.7887 at one of the 
endpoints 

         = 0.2113 at other 
endpoints 

𝑀4 = 
= 𝐸(𝑥4) − 4𝐸(𝑥3)𝐸(𝑥)

+ 6𝐸(𝑥2)(𝐸(𝑥))
2
− 3(𝐸(𝑥))

4
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Figure 3.2 Identification of Johnson distribution family 

In the next chapter, the four approaches proposed in this thesis to pursue SVR with the 

interval data are illustrated in detail. All the basic concepts introduced in this chapter are 

interchangeably exploited for exploring the proposed approaches in the next chapter.  
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CHAPTER 4 

PROPOSED METHODOLOGIES 

Before delving into the details of our proposed approaches, diagnosing how interval data 

may appear in the training data during regression is quite necessary. Based on the sources 

mentioned in Section 3.4, it is comprehensible that such uncertainty may arise in both input and 

output observations. Therefore, we consider three cases based on the presence of the interval data. 

Three cases are as follows: (i) interval data are present in input observations only; (ii) interval data 

are present in output observations only; (iii) interval data are present in both input and output 

observations. Note that it sounds quite impractical that interval data are always present in all the 

observations for the considered three cases. Therefore, in our proposed methodologies, we also 

take care of the scenarios that arise due to presence of both interval and point-valued observations 

in the same explanatory or response variable. In particular, we propose four different approaches. 

These approaches are the (i) moment-based approach, (ii) equiprobability-based approach, (iii) 

boundary-points-based approach, and (iv) extended generalized-SVR method. First two 

approaches are apposite for all the considered cases. The third one is apt when there is presence of 

interval data in the output, i.e., for both the second and third cases. The last one is just an intelligible 

extension of the generalized-SVR method developed by Utkin and Coolen (2011) for the presence 

of interval data in both input and output observations. We describe the proposed approaches in 

detail with all the adjoining variations that may arise in all three different cases. Note that the main 

challenge in pursuing SVR with interval data is to find the competent point data from the observed 

intervals while keeping all the salient properties of standard SVR unperturbed. From this aspect, 

all the approaches proposed in this thesis concur. In other words, in all our proposed approaches, 

all the optimal point data undergo training with standard SVR approach once after those point data 

are found out from the corresponding intervals through different schemes. 

4.1 Moment-based Approach 

Manipulation pursued in this approach is only with the moments of the interval data, which 

is performed outside of Standard-SVR. Thus, the existence and uniqueness for strict convexity 

property of standard-SVR representation is preserved here. In this approach, a two-loop nested 
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optimization problem is pursued. The outer loop of the nested optimization problem finds the 

competitive point data with the help of the moments, which are next sent to standard-SVR in the 

inner loop. Note that minimization of regularized risk functional (Eq. (3.7)) always goes on in the 

inner loop. Therefore, the target of the outer loop is to find out those point data from the 

corresponding intervals that minimize or maximize the minimized regularized risk functional in 

the inner loop. The moment-based approach finds those competitive point data based on moments. 

 The moment-based approach starts with enumerating bounds of moments for each 

interval-valued observation. Moment bounds require calculating the bounds for all the first four 

moments - mean, variance, skewness and kurtosis. Hence, the number of moment bounds is four 

times the number of interval-valued observations. The bounds of the first four moments for the 

interval-valued observations are determined by the moment bounding methods developed in 

Zaman et al. (2011). To be precise, we only need the help of Table. 3.2 for enumerating the bounds 

of moments of the interval-valued observations. Once we have the bounds of four moments 

available for each interval-valued observation, the algorithm in the outer loop chooses specific 

values of the moments from the corresponding bounds. Algorithm suited to solve the optimization 

problem that contains non-linear objective function and the bounds of the decision variables as 

only constraints can be used in the outer loop. In this thesis, sequential quadratic programming 

(SQP) is used in the outer loop. After the algorithm in the outer loop chooses a set of the moment 

values for each interval-valued observation, a suitable distribution from the Johnson family of 

distributions is determined through the moment matching approach. Next, a sample is drawn from 

the fitted Johnson distribution using the parameters of the corresponding distribution. Determining 

the parameters of a particular distribution from the Johnson family of distributions requires solving 

an optimization problem. This optimization problem uses that particular set of moments which 

have been used for selecting the distribution from the Johnson family. As samples, first, the 

standard normal variables are generated which are then used to generate samples in the desired 

distribution space through Eqs. (3.50) and (3.51). If the coordinate with the values of  𝛽1, and 𝛽2 

falls in the impossible area of Figure 3.2 (Section 3.4), a high value of regularized risk functional 

is assigned. In short, in the moment-based approach, mathematically a two-loop nested 

optimization as shown in Eq. (4.1) is formulated.  In Eq. (4.1), we can see that the outer 

optimization problem is in search of the competitive point data. These point data are chosen from 

the corresponding intervals of interval-valued explanatory, and/or response variables with the help 
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of the moments 𝒎𝒁. The inner optimization problem in Eq. (4.1) then conducts standard-SVR 

training with the point data of explanatory and/or response variables provided by the outer loop.  

min/max
𝒎𝒁
𝑥,𝒎𝒁

𝑦
      ( min

𝒘, 𝝃(∗), 𝑏
(
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

)) 

 s.t.               (〈𝒘, 𝒙𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

                      𝑦𝑖 − (〈𝒘, 𝒙𝑖〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

                      𝒁𝒍
𝑥𝑖 ≤ 𝒎𝒁

𝑥𝑖 ≤ 𝒁𝒖
𝑥𝑖 

                      𝒁𝒍
𝑦𝑖 ≤ 𝒎𝒁

𝑦𝑖 ≤ 𝒁𝒖
𝑦𝑖 

                      𝜉𝑖
(∗)
≥ 0 

(4.1) 

 In Eq. (4.1), 𝒎𝒁 = [𝒎𝟏,𝒎𝟐,𝒎𝟑,𝒎𝟒]
𝑇 represents the vector of four moments for each interval 

data with 𝒁𝒍 and 𝒁𝒖 being the corresponding lower and upper bounds of the moments.  Superscript 

in 𝒎𝒁, 𝒁𝒍, and 𝒁𝒖 are used to denote whether the moments and their corresponding bounds are for 

interval-valued explanatory variables or response variables. The pseudocode of the proposed 

moment-based approach is shown in Figure 4.1. 
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Figure 4.1 Pseudocode for the moment-based approach 

The moment-based approach is applicable for all the three cases that we deal with in this 

thesis. Note, however that, in practical scenarios interval data may be available as the ranges of 

Given the input observations 𝒙 and output observations 𝑦 for training 

Determine the bounds of moments 𝒁𝒍 and 𝒁𝒖 for each interval-valued observation using Table 

3.2 

repeat 

Choose the competitive moment values 𝒎𝒁 within their corresponding bounds (𝒁𝒍 and 

𝒁𝒖) for each interval-valued observation 

for i = 1 to n (number of interval data) do 

Determine a suitable distribution from Johnson family of distributions using 

Figure 3.2 

Determine the point value within the interval using Eq. (3.50) 

end for  

Train all the point data with the standard-SVR and obtain the regularized risk functional 

value 

until convergence 

return the optimal sets of moment values for the interval-valued observations 

Determine the point values for all the interval-valued observations using the corresponding sets 

of optimal moment values. 

Train a model with the standard-SVR using the point values of all the training data 

return the trained model 

 

 



21 
 

some numerical values (e.g., persons’ income range), i.e., categorized data. In other words, 

observed interval data can be categorical type. If all the interval data present in the output 

observations are such categorical types, then it is of no value of pursuing regression instead of 

classification. However, the coexistence of point data with the interval-valued observations in 

response variable or any explanatory variable makes the situation different where regression has 

to be pursued. Now in Eq. (4.1), whether only minimization or maximization or both should be 

pursued requires in-detail examination. Here, note that we perform point prediction of the 

unobserved values when there is no interval-valued observation in output. On the other hand, we 

predict unobserved output in an interval form rather than its point value when interval data are 

present in the output observations. Therefore, prediction of the bounds of the interval, within which 

the unobserved output is expected to lie, requires both the minimization and maximization of Eq. 

(4.1). Minimization yields one of the bounds while maximization yields another bound of the 

predicted interval. However, when there is no interval-valued output observation, we only need to 

pursue either minimization or maximization in Eq. (4.1) to predict a point value of the unobserved 

output. If point prediction is performed for both maximization and minimization of Eq. (4.1) 

separately, it can be seen that minimization yields better prediction accuracy. This is because, in 

minimization, those explanatory variables are searched from their corresponding intervals for 

which the minimized regularized risk functional in the inner loop of Eq. (4.1) is further minimized. 

Conversely, maximization increases the value of the minimized regularized risk functional, which 

eventually is reflected in the prediction accuracy.  

The computational expense of the moment-based approach is a grave issue. The 

computational expense of the moment-based approach becomes vast, especially when interval data 

are present in both input and output observations. In such case, the optimization problem to obtain 

the parameters of the selected Johnson distribution family must be approached for both the 

interval-valued input and output variables, which makes each iteration of the nested optimization 

problem of Eq. (4.1) obsequiously time-consuming. To reduce the time consumption, we design a 

strategical pathway which also acts as the main scheme in proposing extended generalized-SVR 

approach (see Section 4.4). The idea is simple: conduct the nested optimization in Eq. (4.1) 

separately for interval-valued input and output observations to lessen the time consumption in each 

iteration. This idea is defined as the separation strategy. Thus, it is required to pursue Eq. (4.1) 

twice to complete an iteration with a separation strategy. In other words, an iteration under 
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separation strategy is completed in two steps. In each step, Eq. (4.1) is pursued either with interval-

valued input observations or output observations. In the first step of the first iteration, one needs 

to start searching the point values from interval-valued input observations through Eq. (4.1). For 

the interval-valued outputs, arbitrary point values from the corresponding intervals are used. In the 

next step, point values for the interval-valued output observations are searched through Eq. (4.1). 

Now, as the point values of the interval-valued input observations, optimal inputs obtained from 

the first step are used. Similarly, optimal outputs obtained from the second step of the first iteration 

are used as the point values for the first step of the second iteration and so on. Thus, iterations go 

on until the termination criteria are satisfied. As a termination criterion, we consider the optimized 

value of minimized risk functional. If the optimized value of the minimized risk functional 

approaches toward an unanticipated direction in any step of an iteration compared to its 

corresponding step of the previous iteration, we need to stop. By an unanticipated direction, we 

mean that the minimum/maximum of the minimized risk functional increases/decreases in the 

present step of an iteration compared to the corresponding step of the previous iteration. 

Interestingly, if approaching toward an unanticipated direction starts in any step of an iteration, 

the untowardness continues for all the next steps of all the iterations. Moreover, it can be 

empirically shown that only at the second step of the second iteration, approaching to the 

unanticipated direction begins. Therefore, continuing after the first step of the second iteration 

becomes unnecessary in the separation strategy. Thus, in the separation strategy, Eq. (4.1) is 

pursued multiple times. However, the separation strategy solves the problem of computational 

intractability of the moment-based approach that arises when each iteration is executed with the 

input and output interval data all at a time. The pseudocode for the separation strategy in the 

moment-based approach is shown in Figure 4.2. 
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Continued … 

Given the input observations 𝒙 and output observations 𝑦 for training 

Assign point values for the interval-valued outputs arbitrarily from their corresponding bounds 

𝑦𝑙 and 𝑦𝑢 

Repeat (Optimization to choose point values for interval-valued inputs) 

Determine the bounds of moments 𝒁𝒍𝑥 and 𝒁𝒖𝑥 for each interval-valued input 

observation using Table 3.2  

repeat 

Choose the competitive moment values 𝒎𝒁
𝑥 within their corresponding bounds 

( 𝒁𝒍𝑥 and 𝒁𝒖𝑥) for each interval-valued input observation 

for i = 1 to m (number of interval data in input observations) do 

Determine a suitable distribution from Johnson family of distributions 

using Figure 3.2 

Determine the point value within the interval using Eq. (3.50) 

end for  

Train all the point data with the standard-SVR and obtain the regularized risk 

functional value 

until convergence 

return the optimal sets of moment values for the interval-valued input observations 

Determine the point values for all the interval-valued input observations using the 

corresponding sets of optimal moment values and assign these point values for all the 

interval-valued input observations 
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Figure 4.2 Pseudocode for the moment-based approach with separation strategy 

Determine the bounds of moments 𝒁𝒍
𝑦 and 𝒁𝒖

𝑦 for each interval-valued output observation 

using Table 3.2  

Repeat (Optimization to choose point values for interval-valued outputs) 

Choose the competitive moment values 𝒎𝒁
𝑦
 within their corresponding bounds 

(𝒁𝒍
𝑦 and 𝒁𝒖

𝑦) for each interval-valued output observation 

for i =1 to n (number of interval data in output observations) do 

Determine a suitable distribution from Johnson family of distributions 

using    Figure 3.2 

Determine the point value within the interval using Eq. (3.50) 

end for  

Train all the point data with the standard-SVR and obtain the regularized risk 

functional value 

until convergence 

return the optimal sets of moment values for the interval-valued output observations 

Determine the point values for all the interval-valued output observations using the 

corresponding sets of optimal moment values and assign these point values for all the 

interval-valued output observations for next iteration. 

until convergence 

Train a model with the standard-SVR using the point values of all the training data 

return the trained model 
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Besides the huge computational expenses of the moment-based approach, another 

shortcoming is its inability to handle missing data. As no definite bound is present for the missing 

data, the bounds of the moments cannot be obtained under the moment-based approach for missing 

data case. Thus, the moment-based approach cannot be applied for the missing data. However, the 

moment-based approach can be pursued after dropping the missing data from the observations. 

Despite these limitations of the moment-based approach, we investigate it in detail for examining 

its prediction accuracy in comparison with the other approaches proposed in this thesis.  

4.2 Equiprobability-based Approach 

The equiprobability-based approach formulates a two-loop nested optimization problem 

like the moment-based approach. Like the moment-based approach, it also executes standard-SVR 

training in the inner loop. However, in the equiprobability-based approach, the outer loop chooses 

the point values from the respective interval-valued observations in a different manner. In the 

equiprobability-based approach, all the point data within an interval are assumed to have an equal 

probability of appearing. Hence, the outer loop chooses the point data from the respective intervals 

on an equiprobability basis. Once point data are chosen, they are passed into the inner loop to 

undergo training with standard SVR. Eq. (4.2) shows the mathematical formulation of the 

equiprobability-based approach where all the notations remain the same as introduced previously  

min/max
𝒙, 𝑦

      ( min
𝒘, 𝝃(∗), 𝑏

(
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

)) 

    s.t.            (〈𝒘, 𝒙𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

                     𝑦𝑖 − (〈𝒘, 𝒙𝑖〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

                      𝒙𝑖𝑙 ≤ 𝒙𝑖 ≤ 𝒙𝑖
𝑢 

                      𝑦𝑖𝑙 ≤ 𝑦𝑖 ≤ 𝑦𝑖
𝑢 

                      𝜉𝑖
(∗)
≥ 0 

(4.2) 

in Chapter 3. The pseudocode of the proposed equiprobability-based approach is shown in Figure 

4.3. 
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Figure 4.3 Pseudocode for the equiprobability-based approach 

Note that equiprobability-based approach does not require to determine the point values for the 

interval-valued variables based on their moments like the moment-based approach. Hence, the 

equiprobability-based approach is computationally more efficient compared to the moment-based 

approach. In particular, time consumption in each iteration of equiprobability-based approach is 

much less compared to the moment-based approach. Hence, for interval-valued observations 

present in both inputs and outputs, computational burden appeared in the equiprobability-based 

approach is not that much pronounced. Therefore, the equiprobability-based approach can be 

easily pursued without separation strategy, unlike the moment-based approach. However, we 

pursue the equiprobability-based approach in both manners - with and without the separation 

Given the input observations 𝒙 and output observations 𝑦 for training 

Assign the lower and upper bounds of the interval-valued input observations into 𝒙𝑙 and 𝒙𝑢, 

respectively. 

Assign the lower and upper bounds of the interval-valued output observations into 𝑦𝑙 and 𝑦𝑢, 

respectively. 

Repeat 

Choose competitive point data within their bounds on an equiprobability basis for all 

interval-valued observations  

Train all the point data with the standard-SVR and obtain the regularized risk functional 

value 

until convergence 

return the optimal point values for the interval-valued observations  

Train a model with the standard-SVR using the point values of all the training data 

Return the trained model 
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strategy. The former is performed for comparing the performance of equiprobability approach with 

that of moment-based approach while pursued with the separation strategy. Missing data in the 

observations can be handled by the equiprobability-based approach. It is done through drawing 

data arbitrarily from an infinite real-valued space for the missing values. However, in the 

equiprobability-based approach, the rules of exploiting minimization and/or maximization remain 

the same as prescribed for the moment-based approach in Section 4.1. 

4.3 Boundary-point-based Approach 

The boundary-point-based approach is applicable only when interval data are present in 

the output observations. Hence, application of the boundary-point-based approach is not as 

universal as the moment-based and equiprobability-based approaches. This approach works with 

the boundary points of the interval-valued output observations when interval data may be present 

only in responses or in both explanatory and response variables. For the presence of the interval 

data in response only, the boundary-point-based approach simply pursues training with standard-

SVR for twice, one with the lower bounds and the other with the upper bounds of the interval-

valued output observations. If explanatory variables are also present in the interval form, moment-

based or equiprobability-based approach are pursued to choose the point values of those 

explanatory variables. Inner loops of Eqs. (4.3) and (4.4) represent standard SVR formulations 

under the boundary-point-based approach that use lower and upper bounds of interval-valued 

responses, respectively. Interval data present in the input observations along with the output 

observations are handled with the outer loops of Eqs. (4.3) and (4.4).  The moment-based approach 

is used in the outer loop of Eqs. (4.3) and (4.4) for choosing point values of explanatory variables. 

However, if the equiprobability-based approach is used, Eqs. (4.3) and (4.4) look like Eqs. (4.5) 

and (4.6), respectively. In Eqs. (4.3) to (4.6), 𝑦𝑖 and 𝑦
𝑖
 stand for the lower and upper bound of each 

interval-valued output observation, respectively. All other notations used in Eqs. (4.3) to (4.6) bear 

the same representation as they did before in this thesis. Note that in the boundary point-based 

approach, it is not required to perform both maximization and minimization to predict the interval 

where the unobserved output is expected to lie. Only minimization is pursued for Eqs. (4.3) - (4.6). 

 The main difference in the boundary-point-based approach with the moment-based and 

equiprobability-based approaches is worth mentioning. In the boundary-point-based approach, 
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instead of searching for the competitive point data for the interval-valued output observations, 

again and again, we simply use the boundary points of the intervals in two separate optimizations. 

Thus, the boundary-point-based approach is more efficient compared to the moment-based and the 

equiprobability-based approach. Also, the separation strategy as undertaken in the moment-based 

approach and equiprobability-based approach is of no use here, which can be discerned from the 

formulations in Eqs. (4.3) - (4.6). However, like the moment-based approach, for any missing 

response data, the boundary-point-value-based methodology should be pursued after stripping 

those missing observations from the training data.  

𝑚𝑖𝑛
𝒎𝒁
𝑥
      ( 𝑚𝑖𝑛

𝒘, 𝝃(∗), 𝑏
(
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

)) 

 s.t.        (〈𝒘, 𝒙𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

               𝑦𝑖 − (〈𝒘, 𝒙𝑖〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

               𝒁𝒍
𝑥𝑖 ≤ 𝒎𝒁

𝑥𝑖 ≤ 𝒁𝒖
𝑥𝑖 

               𝜉𝑖
(∗)
≥ 0 

(4.3) 

min
𝒎𝒁
𝑥
       ( min

𝒘, 𝝃(∗), 𝑏
(
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

)) 

 s.t.        (〈𝒘, 𝒙𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

              𝑦
𝑖
− (〈𝒘, 𝒙𝑖〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

              𝒁𝒍
𝑥𝑖 ≤ 𝒎𝒁

𝑥𝑖 ≤ 𝒁𝒖
𝑥𝑖 

              𝜉𝑖
(∗)
≥ 0 

(4.4) 

min
𝒙

      ( min
𝒘, 𝝃(∗), 𝑏

(
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

)) 

 s.t.       (〈𝒘, 𝒙𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

              𝑦𝑖 − (〈𝒘, 𝒙𝑖〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

(4.5) 
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              𝒙𝑖𝒍 ≤ 𝒙𝑖 ≤ 𝒙𝑖
𝒖 

              𝜉𝑖
(∗)
≥ 0 

min
𝒙

      ( min
𝒘, 𝝃(∗), 𝑏

(
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

)) 

 s.t.       (〈𝒘, 𝒙𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

              𝑦
𝑖
− (〈𝒘, 𝒙𝑖〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

              𝒙𝑖𝒍 ≤ 𝒙𝑖 ≤ 𝒙𝑖
𝒖 

              𝜉𝑖
(∗)
≥ 0 

(4.6) 

Pseudocode for the boundary-point-based method is shown in Figure 4.4. 

 
Continued … 

Given the input observations 𝒙 and output observations 𝑦 for training 

if  𝒙 and 𝑦 both contain interval data then 

Determine point values of interval-valued input observations either by moment-based 

or equiprobability based approach 

if moment-based approach is chosen 

Use Eq. (4.3) for training with Standard SVR using lower bound values of interval-

valued outputs  

Use Eq. (4.4) for training with Standard SVR using upper bound values of interval-

valued outputs  

else if equiprobability-based approach is chosen 

Use Eq. (4.5) for training with Standard SVR using lower bound values of interval-

valued outputs  
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Figure 4.4 Pseudocode of Boundary-point-based approach 

In the boundary-point-based method, presence of point data along with the interval data in the 

response variable is a matter of concern. In such case, for presence of the interval data in both 

input and output observations, training should be pursued after being concerned about two 

scenarios: (i) all the interval-valued input observations have their response variables interval-

valued and vice versa; (ii) some of the interval-valued explanatory variables have their responses 

as point-valued and vice versa. For the first scenario, only the interval-valued observations are 

used for pursuing Eqs. (4.3) and (4.4), or Eqs. (4.5) and (4.6). Once the optimal point values of 

explanatory variables become handy, all the observed data go through training with standard SVR. 

However, such an approach cannot be followed straightforwardly for the second scenario. In the 

second scenario, using the point data of response variables with the corresponding interval-valued 

explanatory variables directly into Eqs. (4.3) and (4.4), or Eqs. (4.5) and (4.6) may be an unwise 

decision. This is because such use may affect the decision hyperplane of SVM in such a way that 

ultimately affects the prediction accuracy negatively. The same difficulty may arise when there 

are interval-valued observations only in the output where also point data coexist. A simple strategy 

to handle such situation is to convert those point-valued responses into intervals. Such intervals 

can be constituted using average length of the existing intervals and considering the coexisting 

Use Eq. (4.6) for training with Standard SVR using upper bound values of interval-

valued outputs  

end 

else if only 𝑦 contain interval data 

Train with standard-SVR using lower bound values of interval-valued outputs  

Train with standard-SVR using upper bound values of interval-valued outputs  

end if 

return both the trained models 
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point-valued observations as the center of the corresponding intervals. However, this strategy 

requires further experimentation. 

4.4 Extended generalized-SVR approach 

The generalized-SVR model developed by Utkin and Coolen (2011) can be applied for 

regression with interval-valued observations in the training data. For interval data are present only 

in the response variables, Utkin and Coolen (2011) proposed the minimin and minimax 

formulations as shown in Eqs. (4.7) and (4.8), respectively. As we see from Eq. 4.7 that bound 

values of interval-valued outputs (either lower bound or upper bound value for a constraint) are 

used in the constraints in such a way that eventually yields greater value of loss function. To be 

more specific, use of lower bound 𝑦𝑖 instead of upper bound 𝑦
𝑖
 in the first constraint of Eq. (4.7) 

yield greater value of 𝜉𝑖. Similarly, greater value of 𝜉𝑖∗ is engendered by the use of upper bound 

value 𝑦
𝑖
 in the second constraint of Eq. (4.7). The same scheme is utilized for the minimin 

approach in Eq. (4.8) but with the concern of smaller values of loss functions. Both the 

formulations in Eqs. (4.7) and (4.8) are called generalized-SVR because they are the generalization 

of the standard-SVR approach. In other words, standard-SVR can be deduced from them easily by 

rewriting Eqs. (4.7) and (4.8) with 𝑦𝑖 = 𝑦𝑖 = 𝑦𝑖, which happens when there are no interval data 

in the observations.  

Minimax 

approach 

𝑚𝑖𝑛
𝒘, 𝝃(∗), 𝑏

   
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

     s.t.       (〈𝒘, 𝑘(𝒙𝑖,∙)〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

                  𝑦
𝑖
− (〈𝒘, 𝑘(𝒙𝑖,∙)〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

                  𝝃(∗) ≥ 0 

(4.7) 

Minimin 

approach 

𝑚𝑖𝑛
𝒘, 𝝃(∗), 𝑏

   
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

    s.t.        (〈𝒘, 𝑘(𝒙𝑖,∙)〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

(4.8) 
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                  𝑦𝑖 − (〈𝒘, 𝑘(𝒙𝑖,∙)〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

                  𝝃(∗) ≥ 0 

The approaches used by Utkin and Coolen (2011) for the presence of interval data in output 

observations can also be developed for interval data present in explanatory variables; however, 

they are not as straightforward as they are for the case of response variables. This is because of the 

probable various natures of the regression function 𝑓(𝒙). Hence, similarly developed constraints 

from Eqs. (4.7) or (4.8) for the case of interval-valued explanatory variables may not work in a 

similar manner. Still, the minimax approach can be devised in somewhat similar manner with a 

clever strategy. However, for the minimin approach, this strategy does not work at all. For interval 

data present in explanatory variables only, the minimax approach looks like Eq. (4.9). We can see 

that Eq. (4.9) has four constraints instead of the two constraints in Eq. (4.7). Thus, like the 𝑦
𝑖
and 

𝑦𝑖 on the two constraints of Eq. (4.7), 𝒙𝑖 and 𝒙𝑖 are not directly introduced in Eq. (4.9) with only 

two constraints. This is because such an introduction does not always confirm the maximum of 

risk functional for minimax approach. For the minimin approach with the interval-valued 

explanatory variables, a different strategy is pursued where an unconstrained optimization problem 

is dealt with. In this strategy, the risk functional part of the unconstrained optimization problem of 

Eq. (3.43) requires only to be properly manipulated. In such manipulations, the boundary value 

(either lower bound or upper bound) of each interval-valued observation that results in the 

minimum of the risk functional is used. The resultant unconstrained problem can then be easily 

solved in the primal form with the help of techniques discussed in Section 3.3.  

Minimax 

approach 

𝑚𝑖𝑛
𝒘, 𝝃(∗), 𝑏

  
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

    s.t.       (〈𝒘, 𝑘(𝒙𝑖,∙)〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

                (〈𝒘, 𝑘(𝒙𝑖,∙)〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

                 𝑦𝑖 − (〈𝒘, 𝑘(𝒙𝑖,∙)〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

                 𝑦𝑖 − (〈𝒘, 𝑘(𝒙𝑖,∙)〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖∗ 

                 𝝃(∗) ≥ 0 

(4.9) 
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The main advantage of the generalized-SVR method is its superb efficiency compared to 

the other two approaches proposed in Sections 4.1 and 4.2. However, one of the main limitations 

of this approach is its inapplicability for interval data present in both input and output observations. 

Although the accuracy of this approach is not that much notable, swiftness of the generalized-SVR 

framework is tempting. Hence, we propose the extended generalized-SVR framework suitable for 

the presence of interval data in both input and output observations. The main strategy behind the 

proposed extended generalized-SVR framework is that if somehow the interval-valued input and 

output observations can be dealt with separately, the generalized-SVR approach can be exploited. 

The same perception is already utilized for overcoming the sluggishness of the iteration in the 

moment-based approach when interval data are present in both input- and output observations. 

Thus, in the proposed extended generalized-SVR approach, we also utilize the separation strategy 

to deal with the interval-valued explanatory and response variables separately. Termination 

condition of the separation strategy used in moment-based approach is also applicable for the 

extended generalized-SVR. The pseudocode of the extended generalized-SVR method is shown 

in Figure 4.5. Here, it is mentionable that in this thesis all the minimin and minimax approaches 

under the generalized-SVR are solved in their corresponding constrained or unconstrained primal 

forms.  

 
Continued … 

Given the input observations 𝒙 and output observations 𝑦 for training 

Choose bound values arbitrarily as the point data for interval-valued input observations 

repeat 

Solve minimax and minimin approach in Eqs. (4.7) and (4.8), respectively, for interval-

valued output observations  

Determine the point data of interval-valued output observations 

Solve minimax approach in Eq. (4.9) for interval-valued input observations 

Determine the point data of interval-valued input observations 
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Figure 4.5 Pseudocode of extended generalized-SVR approach 

In the next chapter, we examine all our methodologies proposed in this chapter through 

four well-known datasets. For the case of interval data present only in output observations, we 

present one real and one synthetic dataset while for the other cases, one real dataset is used for 

each. 

 

until convergence 

return the point values for the interval-valued observations  

Train with standard-SVR using the point values of all the training data 

return the trained model  
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CHAPTER 5 

NUMERICAL EXPERIMENTATION 

In this chapter, all the proposed methodologies described in the previous chapter are in 

detail investigated for their prediction accuracy and computational efficiency with well-known 

datasets. We approach the detailed investigation case-wise where three cases are stratified based 

on the presence of interval data as mentioned earlier in Chapter 4. These three cases are (i) interval 

data present in input observations only, (ii) interval data present in output observations only, (iii) 

interval data present in both input and output observations.  

5.1 Case 1: Interval Data Present in Input Observations Only 

For this case, we consider the concrete slump test dataset (Yeh, 2007). This dataset is freely 

available at the UC Irvine Machine Learning Repository. This dataset contains seven input 

variables and three output variables. However, we consider only three input variables and one 

output variable for our investigation. Input variables represent the amount of cement, slag and 

water in kilograms in per cubic meter of concrete while output stands for 28-day compressive 

strength of concrete in MPa. Although all the observations in this dataset are point-valued, we have 

converted the input point data into intervals. Such conversion does not sound quite illogical as the 

measurement device may have its uncertainty in measurement and in showing the corresponding 

reading. We obtain the lower bounds of the interval data by subtracting 5% values of the original 

point data from the corresponding point data.  Similarly, for the upper bound of the interval data, 

5% values of the original point data are added with the corresponding point data. The concrete 

slump test data contain 103 observations of which 82 observations are considered as training data 

and the rest others are considered for testing purpose. Then the moment-based and the 

equiprobability-based approach have been examined for their prediction accuracies with the 

dataset. Boundary-point-based approach is not applicable for this dataset as there are no interval 

data in outputs. The prediction accuracies of the proposed two approaches are also compared with 

the existing generalized-SVR approach. Formulations of the proposed moment-based and 

equiprobability-based approach for the present case are presented in Eqs. (5.1) and (5.2), 

respectively. Eqs. (5.1) and (5.2) are the specialized forms of Eqs. (4.1) and (4.2), respectively, 
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because Eqs. (5.1) and (5.2) are the representations for the interval data present in input 

observations only. Eq However, the dual representation of the standard-SVR is used in Eqs. (5.1) 

and (5.2) where representations of all the notations remain unchanged. The Gaussian kernel is used 

as the kernel function as it is found to best describe the concrete slump test data.  

min/max
𝒎𝒁
𝑥

    (𝑚𝑎𝑥

𝛼𝑖
(∗)
 (−

1

2
∑(𝛼𝑖

∗ − 𝛼𝑖)(𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝒙𝑖, 𝒙𝑗)

𝑚

𝑖,𝑗=1

− 𝜀∑(𝛼𝑖
∗ + 𝛼𝑖) +

𝑚

𝑖=1

∑𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑚

𝑖=1

 )) 

   s.t.           ∑ (𝛼𝑖
∗ − 𝛼𝑖) = 0 

𝑚
𝑖=1  

                  𝒁𝒍
𝑥𝑖 ≤ 𝒎𝒁

𝑥𝑖 ≤ 𝒁𝒖
𝑥𝑖 

                  𝛼𝑖
(∗)
 ∈  [0, 𝐶] 

(5.1) 

min/max
𝒙

    (𝑚𝑎𝑥

𝛼𝑖
(∗)
 (−

1

2
∑(𝛼𝑖

∗ − 𝛼𝑖)(𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝒙𝑖, 𝒙𝑗)

𝑚

𝑖,𝑗=1

− 𝜀∑(𝛼𝑖
∗ + 𝛼𝑖) +

𝑚

𝑖=1

∑𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑚

𝑖=1

 )) 

   s.t.          ∑ (𝛼𝑖
∗ − 𝛼𝑖) = 0 

𝑚
𝑖=1  

                 𝒙𝑖𝒍 ≤ 𝒙𝑖 ≤ 𝒙𝑖
𝒖 

                 𝛼𝑖
(∗)
 ∈  [0, 𝐶] 

(5.2) 

For checking the prediction accuracy, we run both the maximization and minimization in 

the outer loop of Eqs. (5.1) and (5.2). Results obtained from the maximization and minimization 

problems are tabulated in Table 5.1 where it is observed that minimization yields less prediction 

error as expected. However, to get insights into such findings mathematically, we need to recall 

the basics of regularized risk functional in standard SVR formulation (Eq. 3.16).  In the 

minimization of the regularized risk functional, the penalties for the training data not fitted within 

𝜀 −tube are also considered alongside the searching for hyperplane parameter. During the 
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minimization in the outer loop of Eq. (5.1) or Eq. (5.2), the outer optimization algorithm searches 

the competitive point data from the intervals. Those competitive point data are chosen that set the  

Table 5.1 Prediction errors of moment-based approach and equiprobability-based approach 

during minimization and maximization in the outer loop 

Method 
Prediction Errors (Mean Absolute Deviation, MPa) 

Minimization in the outer loop Maximization in the outer loop 

Moment-based 
approach 4.75677 5.85975 

Equiprobability-based 
approach 5.38466 6.99928 

parameters of the decision hyperplane in such a way that most of the output training data are fitted 

within the 𝜀 −tube. Such strategy is aligned with the principal of standard SVR itself. For 

maximization opposite scenario happens. In other words, the outer algorithm searches in such a 

way that most of the output data points lie outside of 𝜀 −tube during training. Thus, minimization 

in the outer loop always yields less errors compared to its counterpart for the presence of interval 

data in explanatory variables only.  

Table 5.2 shows the mean absolute deviation (MAD) of prediction errors as well as bounds  

Table 5.2 Prediction errors for the concrete slump dataset using different approaches 
 

Method 
Prediction Error  

(Mean Absolute Deviation) 

Bounds of Prediction 
Error  

Moment-based approach 4.75677 [0.39160 12.14011] 

Equiprobability-based 
approach 5.38466 [0.25399 14.60649] 

Generalized-SVR approach 7.11436 [0.50894 15.48894] 
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of prediction errors for various methods. Bounds of prediction errors are the indicator of the 

minimum and maximum prediction errors happened during testing. Note that, such bounds do not 

provide enough conclusive remarks regarding the performance of different methods in terms of 

their prediction accuracy. Even sometimes they can be misleading. Hence, throughout this thesis, 

we follow the usual practice and thereby consider only the MAD of prediction errors while 

comparing different methods in terms of their prediction accuracy. Observing the average 

prediction accuracy of various methods from Table 5.2, we can see that the prediction accuracy of 

the moment-based approach is moderately greater than the equiprobability-based approach. 

However, such greater prediction accuracy is obtained at the cost of many times greater 

computational expenses. Of course, both the proposed approaches are better than the existing 

generalized-SVR approach to a great extent in terms of prediction accuracy. However, 

generalized-SVR approach consumes a very little computational time for training and testing 

purpose. The computational time required in the training phase, testing phase and their summation 

are shown in Table 5.3 for the moment-based, equiprobability-based and generalized-SVR 

approach. From Table 5.3, it is evident that the existing generalized-SVR surpasses both the  

Table 5.3 Computational time of different approaches for the concrete slump dataset 

Method Training time 
(sec) Testing Time (sec) 

Total computational time 
(training + testing time) 

(sec) 

Moment-based 
approach 

145813.53513 0.00107 145813.53620 

Equiprobability-based 
approach 

1010.59422 0.00315 1010.59737 

Generalized-SVR 
approach 

50.50522 0.09396 50.59918 

moment-based and equiprobability-based approach to a great extent in terms of its computational 

efficiency. One observation for this particular example is mention-worthy: although every iteration 

of the moment-based approach takes a lot more time compared to the equiprobability-based 

approach, the latter one ends up with more than ten times more iterations compared to the former 
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one. Still, for this particular dataset, the overall time consumption of the moment-based approach 

is many times more compared to the equiprobability-based approach. Thus, the use of the moment-

based approach is more justifiable in offline learning where data needs not to be trained again and 

again like the online learning of data. The dataset considered in this example contains only 103 

observations, thus, is of small size. However, an increase in the size of datasets enhance the 

convergence time of Eq. (5.1)/Eq. (5.2) a lot. Even, it may sometimes happen that data size is more 

than the dimension an algorithm can handle. To circumvent such computational intractability 

problem, suitable algorithms should be used, or some of the existing algorithms can be modified 

accordingly. However, it is out of the scope of this thesis and thus, opens the floor of future 

research.  

5.2 Case 2: Interval Data Present in Output Observations only 

For this case, unreliable sensor example has been considered, which is adapted from Petit-

Renaud and Denœux (2004). In this example, input 𝑥 is generated using the following Eq. (5.3).  

𝑥𝑖 = 0.5(𝑖 − 1),   𝑖 = 1,2,……… ,𝑁 (5.3) 

Measurement values 𝑦 given by the sensor can be determined by Eq. (5.4). 

𝑦𝑖~𝑝𝑖𝒩(𝑧𝑖 , 𝜎𝑖) + (1 − 𝑝𝑖)𝒰[0,𝑥𝑁] (5.4) 

In Eq. (5.4), the true output 𝑧𝑖 = 𝑥𝑖𝑠𝑖𝑛𝑥𝑖; 𝑝𝑖 ∈  𝒰[0,1] is the probability that the sensor will be in 

good operating condition during 𝑖𝑡ℎ observation; 𝒰[𝑟1,𝑟2] is the uniform distribution in the range 

𝑟1to 𝑟2; 𝒩 is the normal distribution with mean 𝑧𝑖 and standard deviation 𝜎𝑖 ∈ 𝒰[0.2,2.2]. Outputs 

from Eq. (5.4) are point valued due to the point valued input variables. However, randomness in 

inputs induces randomness in measurement value 𝑦. Exploiting the random values shown by 𝑦, 

intervals of 𝑦 with reasonable interval length have been built up for each observation 𝑖. In other 

words, for precise input values, we have now output values 𝑦 available in the interval form. In 

order to experiment with our proposed methodologies with the unreliable sensor data, we use 201 

observations that have only one input variable. Among the observations, 161 data are used in 

training and the rest 40 data are used for testing the trained model.  



40 
 

 For the present case, we have used the boundary-point-based approach besides moment-

based and equiprobability-based approaches. Formulations of the moment-based, equiprobability-

based and boundary-point-based approaches for the present case are shown in Eqs. (5.5), (5.6), 

and (5.7) - (5.8), respectively. In all these formulations, it is considered that standard-SVR is solved 

in its dual form with Gaussian kernel. In Eq. (5.7), standard-SVR is pursued with the lower bounds 

of the interval-valued response variables while the upper bounds are used in Eq. (5.8). As, in the 

present case, interval data are present in output observations, we predict an interval instead of a 

point value of an unobserved output as mentioned earlier. Hence, we need to pursue here both the 

minimization and maximization in the outer loop of both the Eqs. (5.5) and (5.6). The rationale 

behind the preference between minimization and maximization for prediction accuracy still 

remains the same as discussed in Section 5.1 - maximization always yields more errors compared 

to minimization. Nevertheless, both are dealt here as we need to build the prediction intervals 

within which unobserved outputs are expected to lie. However, the predicted values obtained from 

minimizing the outer loop may be greater or less than those obtained from maximizing the outer 

loop. Hence, we build the lower bounds of the prediction intervals using the minimum between 

the values predicted by the minimization and maximization. Similarly, we use the maximum values 

for upper bounds.  

min/max
𝒎𝒁
𝑦

    (𝑚𝑎𝑥

𝛼𝑖
(∗)
 (−

1

2
∑(𝛼𝑖

∗ − 𝛼𝑖)(𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝒙𝑖, 𝒙𝑗)

𝑚

𝑖,𝑗=1

− 𝜀∑(𝛼𝑖
∗ + 𝛼𝑖) +

𝑚

𝑖=1

∑𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑚

𝑖=1

 )) 

   s.t.          ∑ (𝛼𝑖
∗ − 𝛼𝑖) = 0 

𝑚
𝑖=1  

                  𝒁𝒍
𝑦𝑖 ≤ 𝒎𝒁

𝑦𝑖 ≤ 𝒁𝒖
𝑦𝑖 

                  𝛼𝑖
(∗)
 ∈  [0, 𝐶] 

(5.5) 
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min/max
𝑦
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(5.6) 
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(5.7) 
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(∗)
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(5.8) 

 MAD of prediction errors and computational time incurred by the three proposed 

approaches as well as the existing generalized-SVR approach are shown in Table 5.4 and Table 

5.5, respectively. Table 5.4 also refers the prediction error bounds incurred by those methods. Like 

the previous case, prediction error (MAD) of the moment-based approach is the lowest among all 

as can be observed in Table 5.4. However, its prediction accuracy is not so much pronounced now 

if we alongside consider its huge computational expense. Existing generalized-SVR method 

predicts intervals through both the minimin and minimax approach. Although the existing 

approach is computationally efficient compared to the moment-based and equiprobability- based 
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Table 5.4 Prediction errors for the unreliable sensor problem using different approaches 

Method 
Prediction Error 

(Mean Absolute Deviation) 

Prediction Error Bounds 

Moment-based approach 2.39618 [0 8.76444] 

Equiprobability-based approach 2.49415 [0 10.13397] 

Boundary-point-based approach 2.63911 [0 10.79160] 

Generalized-SVR approach 4.91341 [1 15.38839] 

Table 5.5 Computational time of different approaches for the unreliable sensor problem  

Method Training time 
(sec) Testing Time (sec) 

Total computational time 
(training + testing time) 

(sec) 

Moment-based 
approach 

377416.65493 0.01929 377416.67422 

Equiprobability-based 
approach 

7314.93623 0.02409 7314.96032 

Boundary-point-
based approach 

46.25860 0.01088 46.26948 

Generalized-SVR 
approach 

210.51572 0.00227 210.51799 

approach, errors incurred in this approach are significant compared to all the proposed approaches. 

The average prediction accuracy of the boundary-points-based approach, though lower compared 

to the moment-based and equiprobability-based approach, still, is so close to them as can be shown 

from Table 5.4. Moreover, such prediction accuracy of the boundary-point-based approach is 

attained with much greater computational efficiency compared to the moment-based and 

equiprobability-based approaches. However, to gain more assurance on the prediction accuracy of 
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boundary-point-based approach as well as to comprehend its functional principles graphically, 

another numerical example under the present case is presented next. 

The dataset considered for further experimentation with the boundary-point-based 

approach is wine quality dataset. This dataset was used by Wiencierz and Cattaneo (2015) for 

investigating the performance of the generalized-SVR approach. The considered dataset was 

collected to study the quality of Vinho Verde wines from Portugal and was initially introduced by 

Cortez et al. (2009) in a venture of modelling wine preferences. The dataset is now freely available 

at the UC Irvine Machine Learning Repository. There are 11 input variables, e.g., fixed acidity, 

volatile acidity, citric acidity, pH etc. in the datasets which are based on physicochemical tests. 

The output variable is the quality of the wine that is based on sensory data. Like Wiencierz and 

Cattaneo (2015), we create intervals [0, 0.5], [0.5, 1.5], [1.5, 2.5], [2.5, 3.5], [3.5, 4.5], [4.5, 5.5], 

[5.5, 6.5], [6.5, 7.5], [7.5, 8.5], [8.5, 9.5], [9.5, 10], respectively, for the discrete values - 

0,1,2,…..,9,10 of sensory data on wine quality. Thus, this example contains categorical variables 

in interval-valued output observations. 679 and 232 observations are considered from this wine 

quality dataset for training and testing purpose, respectively. MAD of prediction errors as well as 

minimum and maximum errors incurred by the proposed and existing approaches are shown in 

Table 5.6 where linear kernel is used for prediction.  

Table 5.6 Prediction errors for the wine quality dataset using different approaches 

Method 
Prediction Error 

(Mean Absolute Deviation) 

Bounds of Prediction 
Errors 

Moment-based approach 0.4056 [0 2] 

Equiprobability-based approach 0.4071 [0 2] 

Boundary-point-based approach 0.4158 [0 2] 

Generalized-SVR approach 0.4946 [0 2] 

 The computational expenses of all the proposed approaches and the existing generalized-

SVR approach are shown in Table 5.7 in terms of computational time. Like the previous two 
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datasets, time consumed by moment-based approach is many times more than the second most 

time-consuming equiprobability-based approach. Unlike the unreliable sensor problem, existing 

generalized-SVR approach here consumes the least computational time as can be seen from Table 

5.7.  

Table 5.7 Computational time of different approaches for the wine quality dataset 

Method Training time 
(sec) Testing Time (sec) 

Total computational time 
(training + testing time) 

(sec) 

Moment-based 
approach 

259227.25711 0.00467 259227.26178 

Equiprobability-based 
approach 

8201.69410 0.00426 8201.69836 

Boundary-point-
based approach 

130.28392 0.00346 130.28738 

Generalized-SVR 
approach 

115.950165 0.003155 115.95331 

As observed in Table 5.6, the average prediction accuracy of the boundary-point-based 

approach is slightly deviant compared to the more accurate moment-based and equiprobability-

based approach. The prediction error of the generalized-SVR framework is again the most like the 

unreliable sensor problem. If we need to contemplate on the rationales of prediction by the 

boundary-based-approach, the hyperplane of SVM in standard SVR training should be recalled. 

Such hyperplane is decided through the maximal fitting of the training point data. Thus, two SVM 

hyperplanes are generated in the boundary-point-based approach, each one through training with 

one bound of the interval data. For the wine quality problem with one input and output variable, 

we simply get a line as the decision hyperplane of SVM. Now, as we know that for the interval-

valued output observations, probable point values of outputs lie within the intervals. Accordingly, 

it can be anticipated that the future observations may lie within the boundary created by two SVM 

hyperplanes in the boundary-point-based approach. In Figure 5.1, we see that the point-valued test 

data lie within the predicted boundary lines attained from the boundary-point-based approach.   
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Figure 5.1 Prediction bounds from the boundary-point-based approach for the wine quality 

dataset 

Note that the rationale just explored above becomes somewhat vague when the length of 

the interval is so wide. However, considering the sources of interval uncertainty in data science, it 

is not so much common to get such high levels of uncertainties that yield so wider length of 

intervals except for the category type intervals in some applications. Moreover, one may find some 

analogies between the boundary-point-based approach and the approach with the midpoints of the 

intervals and their lengths for training (Neto and de Carvalho, 2008). This issue is put ahead for 

extensive experimentation in future. Also, the issues regarding the applicability and the prediction 

accuracy of the boundary-point-based approach for the coexistence of point data with the interval-

valued output observations require further experimentation as discussed in Section 4.3.  

5.3 Case 3: Interval Data Present in Both Input and Output Observations 

For this case, we collect data from “Allgemeine Bevolkerungsumfrage der 

Sozialwissenschaften (ALLBUS)-German General Social Survey” of 2016, which is provided by 

GESIS-Leibniz Institute for the Social Sciences. This survey asked the participants many questions 

on many subjects starting from their age. For our experimentation, we choose only the surveyed 

person’s age, the number of months that surveyed person lived abroad, no of family members s/he 

has as the input variables and choose her/his per capita income in pounds (₤) as the output variables 
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from the huge list of survey questionnaires. Here, data for months of living abroad are collected in 

categorical forms, e.g., up to 3 months, 4 to 6 months, and so on. Many of the surveyed persons 

preferred not to expose their income precisely rather gave answers in the income category provided 

in the survey questionnaires. Thus, we get interval data in output as well as in input. However, 

point data coexist with the interval-valued observations in the output. 214 and 42 observations are 

respectively considered for testing and training purpose from the social survey dataset. For this 

dataset, all the four proposed methodologies can be applied due to the presence of interval data in 

both input and output observations. In particular, besides the moment-based, equiprobability-

based, boundary-point-based approach, we can also apply extended generalized-SVR for this 

dataset.  Table 5.8 summarizes the MAD of errors as well as minimum and maximum errors 

incurred in predicting the intervals of per capita income for different proposed approaches when 

the linear kernel is considered to be best fitted for the social survey dataset. Note that, like the 

previous two cases, we only consider the MAD of prediction errors in Table 5.8 for comparison 

purpose. 

Table 5.8 Prediction errors from all the proposed approaches for the social survey dataset 

Method Error (MAD) in per-
capita income prediction 

Prediction error 
bounds 

Moment-based approach 27.82759 [0 51] 

Equiprobability-based approach with the 
separation strategy 28.03448 [0 51] 

Equiprobability-based approach without the 
separation strategy 31.20690 [0 51] 

Boundary-points-based approach  9.51724 [0 25] 

Extended generalized-SVR approach 40.06897 [0 70] 

In the present case, if we consider the computational power available to us, pursuing the 

moment-based approach with both the interval-valued input and output observations at a time is 

very challenging. Hence, the moment-based approach is pursued using the separation strategy 
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which results in the formulations like Eqs. (5.1) and (5.5) for the interval-valued input and output 

observations, respectively. However, pursuing both interval-valued inputs and outputs at a time 

with the equiprobability-based approach is not a grave problem. Hence, we pursue it without the 

separation strategy. We also pursue the equiprobability-based approach with the separation 

strategy to compare its prediction accuracy with that of the moment-based approach. The 

formulations under equiprobability-based approach without the separation strategy look like Eq. 

(4.2) while the use of separation strategy arise when separation strategy is used for the prediction 

problem with social survey dataset yields Eqs. (5.2) & (5.6). More specifically, under the 

separation strategy, if outputs are considered as point-valued, Case-1 arises while Case-2 arises 

for the inputs considered as point-valued. Whether the separation strategy is exploited or not, 

minimization and maximization rules for all the formulations under the present case remain the 

same as they are for the first two cases in Section 5.1 and 5.2. Thus, whether it is moment-based 

approach or equiprobability-based approach, only minimization is used for interval-valued input 

observations. For the interval-valued output observations, both minimization and maximization 

are used. Note that as the interval data in the outputs are categorical type for the social survey 

dataset, one may only pursue minimization for interval-valued output observations. This is 

because, in the categorical type output, a particular category can be used as prediction when point-

value predicted through minimization falls in that particular category. However, while pursuing 

only minimization, it should be concerned that some prediction accuracies may need to be 

compromised for not dealing the maximization problem. For example, when only minimization is 

used with the moment-based approach, prediction error becomes 33.06897. On the other hand, 

prediction error is only 27.82759 when both minimization and maximization is pursued under the 

moment-based approach. However, such increased prediction accuracy is sometimes attained 

through the so much enhanced length of the prediction intervals. Such wider length of prediction 

intervals may not be helpful to the decision-makers in many cases. Table 5.8 shows that with 

separation strategy, moment-based approach surpasses equiprobability-based approach in 

prediction accuracy marginally. However, equiprobability approach using all the interval-valued 

inputs and outputs at a time leads somewhat more prediction errors compared to when interval-

valued inputs and outputs are dealt separately. The more prediction errors of the former one can 

be imputed to the participation of interval-valued inputs in the maximization process. As 

reasoning, it can be recalled that maximization with the interval-valued inputs increases the 
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prediction errors as explored in Section 5.1. Here, one may argue that that with the separation 

strategy prediction errors occurs due to the random choosing of point values from the 

corresponding intervals initially while it is not for the other one. However, such prediction error is 

surpassed by the advantages that the explanatory variables do not participate in the maximization 

process in the separation strategy and the eventual outcome is reflected in Table 5.8. 

Exploiting the separation techniques for the generalized-SVR we can use generalized-SVR 

for the presence of interval data in both inputs and outputs. However, mentionable prediction error 

occurs here compared to other proposed approaches, which can be attributed mainly to the 

framework of generalized-SVR itself. As the generalized-SVR is pursued more than once here, 

prediction error increase. However, the computational efficiency of extended generalized-SVR 

approach in its prediction should never be overlooked. At this point, empirical findings regarding 

the performance (in terms of prediction accuracy) of the minimax and minimin approach under the 

generalized-SVR framework should be noted. Empirical findings say that for both the interval-

valued input observations, minimax approach under generalized-SVR method works better while 

for the interval-valued output both the minimin and minimax approaches should be examined. Of 

course, for the non-categorical type of interval-valued output observations, both minimin and 

minimax approach need to be pursued to obtain the prediction interval like the unreliable sensor 

problem in Section 5.2.  

It is surprising to observe the prediction accuracy of boundary-point-based approach. The 

large spread of the predicted intervals of the boundary-point-based approach can be attributed to 

its high prediction accuracy. Note that as we are predicting the intervals of unobserved output 

using the categorical type interval-valued observations, all our predictions also should be in that 

categorical form. This rule is followed in all the proposed approaches for this social survey dataset 

problem.  

If we now focus on the computational efficiency of all the proposed approaches used for 

the social survey dataset, as intuitive, the least computational efficient approach is the moment-

based approach. The computational time of all the proposed approaches can be observed in Table 

5.9 where it shows that the equiprobability based approach is the second most time-consuming 

approach. Note that, in the enumeration of the computational time of the moment-based and  
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Table 5.9 Computational time of different approaches for the wine quality dataset 

Method Training time 
(sec) Testing Time (sec) 

Total computational time 
(training + testing time) 

(sec) 

Moment-based 
approach 

580800.548494 0.003285 580800.551779 

Equiprobability-based 
approach 

6852.767964 0.006793 6852.774757 

Boundary-point-
based approach 

1526.017184 0.008398 1526.025582 

Generalized-SVR 
approach 

39.323944 0.017740 39.341684 

equiprobability-based approaches, both the approaches are pursued with the separation strategy. 

The next most time-consuming approach for this dataset is the boundary-point-based 

approach. However, difference between computational time consumed by the boundary point-

based approach and extended generalized-SVR approach is now grave. This is because, here, 

alongside the training with the boundary points of the interval-valued outputs, moment-based or 

equiprobability-based approaches are also required for choosing the point values for the interval-

valued inputs. However, in choosing such point data, it is wiser to use the computationally efficient 

equiprobability-based approach. Accordingly, equiprobability-based approach is used here within 

the boundary-point-based approach for the considered social survey dataset. 

5.4 Discussion of Findings 

The performances of the proposed approaches, in terms of prediction accuracy and 

computational efficiency, are evident from the findings shown in the last three sections. In general, 

we can say that moment-based approach performs better in terms of its prediction accuracy for 

most of the cases if we sideline the high prediction accuracy of the boundary-point-based approach 

obtained through a large prediction interval for the third case. However, question arises regarding 
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the application of the moment-based approach, since it is computationally expensive. However, 

extensive computational expense of this approach does not totally negate its application. Of course, 

as mentioned earlier, in online learning platform, where up-to-the-minute prediction is required 

and the prediction is performed in every hour iteratively, moment-based approach loses its 

usefulness. However, there are many instances where offline learning is the last resource for 

training and prediction. Aerospace design or any other constructional design are some of such 

instances. During designing a component, the decision-makers need to take decision with the data 

at hand. At the same time, they obviously anticipate the prediction approach that can help them 

make decision with the best accuracy possible. In such situation, the moment-based approach is 

obviously a great choice for prediction if there is presence of interval data. On the other hand, if 

accomplishing a prediction with the most recent data in a shorter time is the main concern, we 

need to choose an approach other than the moment-based approach. Equiprobability-based, 

boundary-point-based, extended generalized-SVR approach are the available options in this 

aspect. Use of equiprobability-based approach is discouraged in any emergency situation if the 

other two approaches can be used instead. This is because equiprobability-based approach 

consumes more time compared to the other two approaches for all the three cases presented in the 

last three sections (Sections 5.1 - 5.3). As an example of urgent situation, we can consider some 

unanticipated happenings during a flight of an aerospace vehicle when it is required to 

continuously screen the health of some crucial components of that vehicle. In such screening, 

prediction through online learning is an obvious requirement where boundary-point-based or 

extended generalized approach can play important roles. Thus, all our proposed approaches, 

though vary in their performances, have their varied applications according to the requirements 

demanded by different practical situations.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE SCOPES 

6.1 Conclusions 

The modern age is the era of data availability as well as the easiness of data collection in 

the online platform. However, contamination of the data by noise and impreciseness no way should 

be ignored in such an era. Mentionable sources of interval data are, but not limited to, data 

rounding, data binning, data heaping, data censoring, measurement instrument reading 

uncertainties, etc. Ignoring the uncertainty present in the interval data may become a grave issue 

for prediction accuracy, especially, in the field of statistical ML. 

 In this thesis, we have considered SVR for prediction and proposed four different 

approaches that deal with the interval uncertainty in prediction with SVR. The proposed 

approaches are moment-based approach, equiprobability-based approach, boundary-point-based 

approach, and extended generalized-SVR approach. However, they differ in their working 

principles, prediction accuracy, computational efficiency as well as applicability; all of these are 

in detail explored in this thesis. Boundary-point-based approach and extended generalized-SVR 

approach have their limitation regarding applicability. The former can be applied only for interval-

valued responses while the later is specially developed to circumvent the limitations of the 

generalized-SVR approach in the presence of both interval-valued input and output observations. 

Both the moment-based and equiprobability-based approaches consider the statistical uncertainty 

in the interval data. They are also equally applicable for interval data present anywhere in input, 

or output, or both. However, the moment-based approach is observed to surpass the 

equiprobability-based approach in prediction accuracy somewhat but at the cost of huge numerical 

expenses. Concerns regarding the computational expenses of the proposed approaches are also 

addressed in terms of their computational time spent in training and testing. Four datasets – 

concrete slump dataset, unreliable sensor problem, wine quality dataset, social survey data from 

ALLUBUS-GESIS – are used for investigating the prediction accuracy and computational 

efficiency of the first three proposed approaches in terms of the minimization and maximization 

of the corresponding formulations. Moreover, the generalized-SVR framework is comprehended 
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in terms of the minimin and minimax approaches while pursuing its extension as the extended 

generalized-SVR. This extended generalized-SVR is examined with the social survey data for its 

prediction accuracy and computational efficiency also. In short, the boundary-point-based 

approach is always computationally more efficient compared to the moment-based and 

equiprobability-based approaches. For interval data present in both input and output observations, 

extended generalized-SVR outweigh other three proposed approaches in terms of its computational 

efficiency. On the other hand, the moment-based approach is always observed to outperform 

equiprobability-based and extended generalized-SVR approach in terms of prediction accuracy. 

In all, the contributions of this thesis are broad. Addressing the vast gap in the literature of 

SVR with interval data, proposing four approaches with the focus on the prediction accuracy and 

computational expenses are the main contributions in short. All the concerns regarding the 

accuracy of the proposed approaches are explored in detail alongside measuring the computational 

time. All the three cases at which interval data may appear in practice are considered in detail with 

the well-known datasets while examining the proposed approaches. In addition, better prediction 

accuracy of all the proposed approaches compared to the existing approach highlights the 

importance of the study.  

6.2 Future Scopes 

Although the moment-based approach is somewhat better in its prediction accuracy in most 

of the cases, further studies are demanded for lessening its huge time consumption. The huge time 

consumption by the moment-based approach also limits its usage for offline training only. When 

it is the concern of tractability to deal with a huge dataset by the outer optimization algorithm of 

the proposed nested formulations, experimenting with different types of efficient algorithms can 

be recommended for the future. At this concern, various chunking type algorithms or algorithms 

that consider only two variables at a time (e.g., sequential minimal optimization (SMO)) can be 

designed accordingly. How the presence of missing values affects the prediction accuracies of the 

proposed approaches also require further experimentation. Note that, in the interval data, both the 

statistical and subjective uncertainty can be present. However, none of our proposed approaches 

deals with subjective uncertainty, i.e., indetermination. Thus, the possibility of incorporating the 
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indetermination in the proposed approaches and the consequent effects on the prediction accuracy 

can be investigated in future. 
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