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Abstract

The human body is the most complicated apparatus, comprising a plethora of

mutually connected organs, performing diversely different sophisticated functions.

These interconnected organs and processes communicate with each other in forms of

signals, which are commonly termed as Biomedical Signals. In addition to playing

a vital role in the proper operation of various physiological tasks, these signals can

also be used as indications of whether the body is functioning appropriately or is

suffering from diseases. For a long time, Doctors have been using ECG (Electro-

cardiogram) signals to monitor the heart condition of the patients. Moreover, PPG

(Photoplethysmogram) signals have been being used to infer blood pressure. Both

have resulted in an abundance of academic research works, however, they seem to

be disjoint in nature.

About half of the works in the literature revolve around Signal Processing based

methods, where after monumental analysis of the signal a rather simpler mathemat-

ical model is developed. On the contrary, there are works following the approaches

of Machine Learning, but they hardly consider the discernible patterns in the sig-

nals during feature engineering. Fusing the ideas from both the schools of Signal

Processing and Machine Learning, we, therefore, propose an improved algorithmic

pipeline, VFPred, that can detect Ventricular Fibrillation from ECG signals, which

catalyzes life-threatening cardiac arrests. VFPred extends upon traditional signal

processing based feature extraction and subsequently utilizes a suitable machine

learning based classifier to not only demonstrate an outstanding accuracy, but also

a balance between sensitivity and specificity.

On the contrary, employing the potential of Deep Learning, we develop PPG2ABP,

that is capable of inferring the continuous arterial blood pressure waveform with

minimal error from analyzing PPG signals. Use of deep learning emancipates

PPG2ABP from the need for handcrafted features, which often restricts the input

signals to follow an ideal shape. Furthermore, this enables us to surpass contempo-

rary methods both in terms of reliability and versatility.

xvi



Chapter 1

Introduction

The human body continuously produces a tremendous amount of information that re-

flect the status of the functionalities and actions of the body. Such information can be

captured by specialized sensors that measure different types of information in the form

of signals, such as EEG (Electroencephalogram) that measures the brain activity, ECG

(Electrocardiogram) and PPG (Photoplethysmogram) both of which measure the heart

activities and so forth. These signals are of utmost importance as by studying these we

can determine whether the body is functioning properly or not.

1.1 Biomedical Signals

Biomedical signals can be defined as inspection of physiological activities and mutual

interaction of various organisms [21]. The goal of Biomedical Signal Processing is to

extract significant and interesting information from biomedical signals, so that biologists

can perform new biological discoveries and physicians can monitor patients for illnesses.

There exist a plethora of Biomedical signals, and the number is continually increasing

due to the advancements in Biomedical Sensor Technology. The existing signals can be

classified in a number of ways [29]. For example, based on the system of origin, they

can be categorized into the signals from cardiovascular system, nervous system, auditory

1



1.2. SCOPE OF THIS THESIS 2

system, respiratory system, musculoskeletal system etc. Some of the well known signals

are Electrocardiogram or ECG that measures the electrical activity of heart, Electroen-

cephalography or EEG that records the electrical activity of brain, Photoplethysmogram

or PPG that detects the blood volume changes in vessels, Electromyography or EMG that

captures the electrical activity produced by skeletal muscles, Electrooculography or EOG

that computes the corneo-retinal standing potential existing between the front and the

back of eye, Phonocardiogram or PCG listens to sounds made by heart in a cardiac cycle,

and the list goes on.

1.2 Scope of this Thesis

In this work, from the vast repertoire of diversified Biomedical Signals, we focus our efforts

in processing and analyzing the two most prominent signals, namely, ECG and PPG. The

rationale of being limited to these two are manifold with two primary reasons. Firstly,

PPG and ECG signals are more widely accessible as compared to other biomedical signals

like EEG or EOG. The recent emergence of Smartwatches and their rapidly increasing

popularity and usage are contributing the most in this regard. As the smartwatches

often contain PPG and ECG sensors, these are becoming more accessible to the common

people. Secondly, ECG and PPG allows us to analyze the activities of heart to detect

cariac abnormalities, which takes a heavy tole of millions of death worldwide every year.

For example, sudden cardiac arrest was responsible for approximately 6 million deaths

in Europe and in the United States [73]. Also more than 1.4 billion people worldwide

were somehow affected by hypertension [121] in the year of 2014, and hypertension is

responsible for a number of cardiovascular diseases. This huge number is alarming as more

than 4 million people die of cardiovascular diseases every year only in Europe and when

considering the whole world the number of deaths exceeds 17 million [110]. Therefore, we

are motivated to study ECG and PPG signals and their potential applications in order to

reduce the chances of such unfortunate deaths, as early detection often leads to a timely

recovery.
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ECG (Electrocardiogram) is by far the most commonly used biomedical signal to

capture the activities of the human heart [117]. ECG signals detect the small electrical

changes that are a consequence of cardiac muscle depolarization followed by repolarization

during each cardiac cycle (heartbeat). Changes in the normal ECG pattern occur in nu-

merous cardiac abnormalities, including cardiac rhythm disturbances (Atrial fibrillation,

Ventricular tachycardia), inadequate coronary artery blood flow (Myocardial Ischemia and

Myocardial Infarction), and electrolyte disturbances (Hypokalemia and Hyperkalemia).

Photoplethysmogram (PPG) is an optically obtained signal that can be used to detect

blood volume changes in the microvascular bed of tissue [118]. The PPG signal is usually

sensed by using a pulse oximeter, that can illuminate the skin and measure changes in light

absorption [99]. Each cardiac cycle compels the heart to pump blood to the periphery, and

despite being quite damped by the time it reaches the skin, this pressure pulse is capable

of distending the arteries and arterioles in the subcutaneous tissue. By attaching the

pulse oximeter without compressing the skin, a pressure pulse is visible from the venous

plexus, resulting in a small secondary peak.

ECG and PPG both being very important biomedical signals have been used for a

number of applications. Most notably, ECG has been being widely used for detection of

various heart diseases [2,7,85]. On the other hand, PPG being connected to blood volume

has been being used to predict blood pressures [37,65,108]. A plethora of algorithms based

on signal processing algorithms have been introduced but they fall short when tested on

a large amount of data [6], machine learning based approaches on the other hand, despite

performing better, treat feature extraction as a black box and are often devoid of any

proper rationale.

1.3 Objective of This Thesis

In this work, we will explore possible ways of fusing the ideas of two branches Biomedical

Signal Processing and Machine Learning. From an elaborate literature review we have
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made the observations that although the traditional signal processing based approaches

work from the intuition of the doctors and manage to capture some vital properties of

the signal, they fail to generalize when applied on a large real world dataset [6]. Machine

learning based approaches, on the other hand, performs a mix and match of the features

presented in the signal processing literature and applies a machine learning algorithm.

Machine learning based approaches are adaptive as they learn from the data directly,

therefore the generalize comparatively better. However, these features are often incom-

patible, hence not only they tend to miss the actual significant properties of the signal but

also some combination may lead to worse performance [72]. Based on all these analyses,

we believe a proper fusion of Signal Processing and Machine Learning can lead to more

robust and accurate algorithms bringing the best of the both worlds.

The primary objectives of our work are as follows:

• To perform a thorough literature review and experiment with the efficacy of various

features and attributes of the biological signals

• To implement some modifications over the existing robust signal processing pipelines

to improve the feature extraction process

• To apply a suitable machine learning algorithm that can exploit the behaviors of

the signals under consideration

• To make all the codes open source, so that they can be utilized in wearables and

server side applications

1.4 Thesis Contribution

This thesis makes the following contributions:

• It presents VFPred, a combined Signal Processing and Machine Learning based

algorithm to detect Ventricular Fibrillation from ECG signals.
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• It presents PPG2ABP, a combined Signal Processing and Deep Learning based

algorithm to predict Blood Pressure from PPG signal alone.

• It provides a modular, open source implementation of the proposed algorithms.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 briefly discusses the relevant ideas

from both Signal Processing and Deep Learning literature utilized in this research work.

In Chapter 3 a detailed description of the algorithmic pipeline VFPred is provided, which

fuses the ideas of signal processing and machine learning to detect Ventricular Fibrillation

from ECG signals. Chapter 4 presents the algorithmic pipeline PPG2ABP, which predicts

the continuous waveform of arterial blood pressure using PPG signals. Finally, Chapter

5 concludes this thesis.



Chapter 2

Preliminaries

In this chapter we briefly discuss the concepts of Signal Processing and Deep Learning

which are essential to methods explored and developed in this thesis.

2.1 Signal Processing Techniques

Proper usage of the tools of Signal Processing is of utmost importance when we work

with Biomedical Signals. Not only these techniques aid in filtering and pre-processing the

signals, but also such algorithms are almost vital to extract features from the raw signals.

Two very important concepts of Signal Processing which are used in analyzing Biomedical

Signals, namely, Empirical Mode Decomposition and Discrete Fourier Transform, are

described as follows.

2.1.1 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD), proposed by Huang et al. [47], is a data-driven,

adaptive signal processing method which is suitable for analyzing non-stationary and

nonlinear signals, like the ECG signal. This algorithm decomposes a signal into a sum

of Intrinsic Mode Functions (IMF). An IMF represents a simple oscillatory function with

the following characteristics:

6
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1. The number of extrema and the number of zero crossings must either be equal or

differ (with each other) at most by one.

2. At any point, the mean value of the envelopes of the local maxima and minima is

zero.

By applying the EMD algorithm we decompose a signal x(t) into a set of IMF functions

in decreasing order of oscillatory behavior, and possibly a Residue,

x(t) = IMF1(t) + IMF2(t) + ...+ IMFn(t) +R(t) (2.1)

Given a signal x(t) the steps are as follows:

1. Identify all the local maxima and local minima points of x(t).

2. Connecting all the local maxima and minima points by a cubic spline, we obtain

the upper and lower envelope eu(t) and el(t) respectively.

3. Next we compute the pointwise mean of the upper and lower envelopes m10(t) as

follows

m10(t) =
eu(t) + el(t)

2
(2.2)

4. We perform pointwise subtraction of the mean envelop values from the original

signal, and thereby we obtain the first component h10(t) as follows,

h10(t) = x(t)−m10(t) (2.3)

5. In an ideal case this h10(t) should be an IMF function, i.e. it would possess the two

characteristics mentioned above. However in practice this is often not the case as

h10(t) may still lack the two characteristics. In such cases, we again use h10(t) as

the main signal and repeat the steps 1-5 to obtain h11(t),
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h11(t) = h10(t)−m11(t) (2.4)

6. This process is repeated k times until the IMF conditions are met. In the sequel we

get:

hlk(t) = hl(k−1)(t)−mlk(t) (2.5)

7. Since, this is a numerical method some other stopping criteria may also be used. A

commonly used criterion could be based on the value of Standard Deviation (SD)

between the two consecutive iterations, as [47] proposes:

SD =
T∑
t=0

|h1(k−1)(t)− h1k(t)|2

h21(k−1)(t)
(2.6)

The idea is that when SD is smaller than a predefined threshold, we consider h1k(t)

as the first IMF component, IMF1(t)

8. Next we separate the IMF component from the original signal x(t) and obtain x1(t)

as follows:

x1(t) = x(t)− IMF1(t) (2.7)

9. However this x1(t) may contain significant oscillatory behavior. So we take x1(t)

as the original signal and repeat steps 1-9, to obtain successive IMF components

IMF2, IMF3, . . . and so on.

10. This process is continued until we are left with a zero valued function or a monotonic

function, i.e. the Residue, R.
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2.1.2 Discrete Fourier Transform (DFT)

The Fourier Series proposed by Joseph Fourier in 19th century, was originally developed

to represent a periodic signal as an infinite sum of simple harmonic oscillations of different

frequencies [88]. This allows us to analyze the impact of individual frequency bands over

a signal. Later it was extended to aperiodic signals through Fourier Transform. For finite

and discrete signals we sample the Fourier Transform coefficients as a finite sequence,

that corresponds to a complete period of the original signal [88]. Thus, Discrete Fourier

Transform (DFT) for a discreate signal x of length N is defined as:

X[k] =
N−1∑
n=0

x[n] exp(−2πi

N
kn), for 0 ≤ k ≤ N − 1 (2.8)

2.2 Deep Learning Architectures

In recent years, with the advancement of parallel processing capabilities in GPUs (Graph-

ics Processing Unit), Deep Learning has brought about a revolution in almost every do-

mains, including healthcare and medical informatics. Convolutional Neural Networks,

being unparalleled in analyzing images, also performs remarkably well when working with

signals. In the following subsections we briefly discuss two novel deep learning networks,

namely U-Net and MultiResUNet.

2.2.1 U-Net

Similar to FCN [75] and SegNet [11], U-Net [94] uses a network of convolutional layers

entirely to perform the task of semantic segmentation. The network architecture is sym-

metric, having an Encoder that extracts spatial features from the image, and a Decoder

that constructs the segmentation map from the encoded features. The Encoder follows

the typical formation of a convolutional network. It involves a sequence of two 3 × 3

convolution operations, followed by a max-pooling operation with a pooling size of 2× 2
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and stride of 2. This sequence is repeated four times, and after each down-sampling, the

number of filters in the convolutional layers is doubled. Finally, a progression of two 3×3

convolution operations connects the Encoder to the Decoder.

On the other hand, the Decoder first up-samples the feature map using a 2× 2 trans-

posed convolution operation [124], reducing the feature channels by half. Then a sequence

of two 3× 3 convolution operations is performed again. Similar to the Encoder, this suc-

cession of up-sampling and two convolution operations is repeated four times, halving the

number of filters at each stage. Finally, a 1 × 1 convolution operation is performed to

generate the final segmentation map. All convolutional layers in this architecture, except

for the final one, use the ReLU (Rectified Linear Unit) activation function [68]; the final

convolutional layer uses a Sigmoid activation function.

Perhaps, the most ingenious aspect of the U-Net architecture is the introduction of

skip connections. In all the four levels, the output of the convolutional layer, prior to the

pooling operation of the Encoder is transferred to the Decoder. These feature maps are

then concatenated with the output of the up-sampling operation, and the concatenated

feature map is propagated to the successive layers. These skip connections allow the

network to retrieve the spatial information lost by pooling operations [34]. The network

architecture is illustrated in Figure 2.1.

Figure 2.1: The classic U-Net architecture. The model comprises an encoder and a decoder
pathway, with skip connections between the corresponding layers (Figure borrowed from
[49]).

Subsequently, the U-Net architecture was extended through a few modifications to 3D
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U-Net for volumetric segmentation [26]. In particular, the two-dimensional convolution,

max pooling, transposed convolution operations were replaced by their three-dimensional

counterparts. However, in order to limit the number of parameters, the depth of the

network was reduced by one. Moreover, along with using batch normalization [52], the

number of filters was doubled before the pooling layers to avoid bottlenecks [107]. The

original U-Net [94] did not use batch normalization. However, when experimented with

it later, the results revealed, perhaps astonishingly, that batch normalization may even

hurt the performance sometimes [26].

2.2.2 MultiResUNet

U-Net has been a remarkable and the most popular deep network architecture in the

medical imaging community, defining the state of the art in medical image segmentation

[34]. However, as will be clear shortly, U-Net is not enough to handle the problem we

handle here. On the other hand a very recent proposal of MultiResUNet seems more

promising. Through deep contemplation of the U-Net architecture and drawing some

parallels to the recent advancement in the field of deep computer vision, some insightful

and useful observations can be made. These observations lead to the development of

MultiResUNet, a novel architecture, whose the two core components are as follows:

MultiRes Block

In the U-Net architecture, after each pooling layer and transposed convolutional layer,

a sequence of two 3 × 3 convolutional layers are used. As explained in [107], this series

of two 3 × 3 convolutional operation actually resembles a 5 × 5 convolutional operation.

Therefore, following the approach of the Inception network, the simplest way to augment

U-Net with a multi-resolutional analysis capability is to incorporate 3 × 3, and 7 × 7

convolution operations in parallel to the 5× 5 convolution operation, as shown in Figure

2.2a.

Therefore, replacing the convolutional layers with Inception-like blocks should facil-
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itate the U-Net architecture to reconcile the features learnt from the image at different

scales. Another possible option is to use strided convolutions [116], but in our experiments,

it is overshadowed by the former. Despite the gain in performance, the introduction of ad-

ditional convolutional layers in parallel extravagantly increases the memory requirement.

Therefore, we improvise with the following ideas borrowed from [107]. We factorize the

bigger, more demanding 5× 5 and 7× 7 convolutional layers, using a sequence of smaller

and lightweight 3× 3 convolutional blocks, as shown in Figure 2.2b. The outputs of the

2nd and the 3rd 3×3 convolutional blocks effectively approximate the 5×5 and 7×7 con-

volution operations respectively. We hence take the outputs from the three convolutional

blocks and concatenate them together to extract the spatial features from different scales.

From our experiments, it is seen that the results of this compact block closely resemble

that of the memory-intensive Inception-like block described earlier. This outcome is in

line with the findings of [107], as the adjacent layers of a vision network are expected to

be correlated.

Although this modification greatly reduces the memory requirement, it is still quite

demanding. This is mostly due to the fact that in a deep network if two convolutional

layers are present in a succession, then the number of filters in the first one has a quadratic

effect over the memory [106]. Therefore, instead of keeping all the three consecutive con-

volutional layers with an equal number of filters, we gradually increase the filters in those

(from 1 to 3), to prevent the memory requirement of the earlier layers from exceedingly

propagating to the deeper part of the network. We also add a residual connection because

of their efficacy in biomedical image segmentation [34] as well as to introduce 1×1 convo-

lutional layers, which may allow us to comprehend some additional spatial information.

We call this arrangement a ‘MultiRes block ’, as shown in Figure 2.2c.

Res Path

An ingenious contribution of the U-Net architecture was the introduction of shortcut

connections between the corresponding layers before the max-pooling and after the de-
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(a)
(b) (c)

Figure 2.2: Developing the proposed MultiRes block. We start with a simple Inception-
like block by using 3×3, 5×5 and 7×7 convolutional filters in parallel and concatenating
the generated feature maps (Fig. 2.2a). This allows us to reconcile spatial features
from different context size. Subsequently, instead of using the 3 × 3, 5 × 5 and 7 × 7
filters in parallel, we factorize the bigger and more expensive 5× 5 and 7× 7 filters as a
succession of 3× 3 filters (Fig. 2.2b) . Fig 2.2c illustrates the MultiRes block, where we
have increased the number of filters in the successive three layers gradually and added a
residual connection, along with 1 × 1 filters for conserving dimensions (Figure borrowed
from [49]).

convolution operations. This enables the network to propagate the spatial information

that gets lost during the pooling operation from encoder to decoder.

Despite preserving the dissipated spatial features, a flaw of the skip connections may

be speculated as follows. For instance, the first shortcut connection bridges the encoder

before the first pooling with the decoder after the last deconvolution operation. Here,

the features coming from the encoder are supposed to be lower level features as they are

computed in the earlier layers of the network. On the contrary, the decoder features are

supposed to be of much more higher level, since they are computed at the very deep layers

of the network, thereby, going through more processing. Hence, we observe a possible

semantic gap between the two sets of features being merged. We conjecture that the

fusion of these two arguably incompatible sets of features could cause some discrepancy

throughout the learning thereby adversely affecting the prediction procedure. It may be

noted that the amount of discrepancy is likely to decrease gradually as we move towards

the succeeding shortcut connections. This can be attributed to the fact that in later

stages, not only the features from the encoder are going through more processing, but

also we are fusing them with decoder features of much juvenile layers.

Therefore, to alleviate the disparity between the encoder-decoder features, we propose
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to incorporate some convolutional layers along the shortcut connections. We hypothe-

size that these additional non-linear transformations on the features propagating from

the encoder stage should account for or somewhat balance the possible semantic gap

(alluded to above) introduced by the higher degree of processing by the deeper decoder

stages. Furthermore, instead of using the usual convolutional layers, we introduce resid-

ual connections to them as they make the learning easier [105] and is proven to have

great potential in medical image analysis [34]. This idea is inspired from the image to

image conversion using convolutional neural networks [78], where pooling layers are not

favourable for the loss of information. Thus, instead of simply concatenating the fea-

ture maps from the encoder stages to the decoder stages, we first pass them through a

chain of convolutional layers with residual connections and then concatenate them with

the decoder features. We call this proposed shortcut path ‘Res path’, illustrated in Fig.

2.3. More specifically, 3 × 3 filters are used in the convolutional layers and 1 × 1 filters

accompany the residual connections.

Figure 2.3: Proposed Res path. Instead of combining the encoder feature maps with the
decoder feature in a straight-forward manner, we pass the encoder features through a
sequence of convolutional layers. These additional non-linear operations are expected to
reduce the semantic gap between encoder and decoder features. Furthermore, residual
connections are also introduced as they make the learning easier and are very useful in
deep convolutional networks (Figure borrowed from [49]).

Model Architecture

In the MultiResUNet model, we replace the sequence of two convolutional layers with

the proposed MultiRes block as introduced in Section 2.2.2. For each of the MultiRes
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blocks, we assign a parameter W that controls the number of filters of the convolutional

layers inside that block. To maintain a comparable relationship between the numbers of

parameters in the original U-Net and the proposed model, we compute the value of W as

follows:

W = α× U (2.9)

Here, U is the number of filters in the corresponding layer of U-Net and α is a scalar

coefficient. This provides us with a convenient way to both control the number of pa-

rameters and keep them comparable to that of U-Net. We compare our proposed model

with an U-Net, having #filters = [32, 64, 128, 256, 512] along the levels, which are also

the values of U in our model. We set α = 1.67 as it keeps the number of parameters in

our model slightly below that of U-Net.

In Section 2.2.2, we have pointed out that it is beneficial to gradually increase the

number of filters in the successive convolutional layers inside a MultiRes block, instead of

keeping them the same. Hence, we assign ∗W
6

, ∗W
3

and ∗W
2

filters to the three successive

convolutional layers respectively, as this combination has achieved the best results in our

experiments. Also, it can be noted that similar to the U-Net architecture, after each

pooling or deconvolution operation, the value of W gets doubled or halved respectively.

In addition to introducing the MultiRes blocks, we also replace the ordinary shortcut

connections with the proposed Res paths. Therefore, we apply some convolution opera-

tions on the feature maps propagating from the encoder stage to the decoder stage. In

Section 2.2.2, we hypothesized that the intensity of the semantic gap between the encoder

and decoder feature maps are likely to decrease as we move towards the inner shortcut

paths. Therefore, we also gradually reduce the number of convolutional blocks used along

the Res paths. In particular, we use 4, 3, 2, 1 convolutional blocks respectively along the

four Res paths. Also, in order to account for the number of feature maps in encoder-

decoder, we use 32, 64, 128, 256 filters in the blocks of the four Res paths respectively.
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All the convolutional layers in this network, except for the output layer, are activated

by the ReLU (Rectified Linear Unit) activation function [68], and are batch-normalized

[52]. Similar to the U-Net model, the output layer is activated by a Sigmoid activation

function. We present a diagram of the proposed MultiResUNet model in Fig. 2.4.

Figure 2.4: Proposed MultiResUNet architecture. We replace the sequences of two convo-
lutional layers in the U-Net architecture with the proposed MultiRes blocks. Furthermore,
instead of using plain shortcut (skip) connections, we use the proposed Res paths (Figure
borrowed from [49]).



Chapter 3

Detection of Ventricular Fibrillation

from ECG Signals

Ventricular Fibrillation (VF), one of the most dangerous arrhythmias, is responsible for

sudden cardiac arrests. Thus, various algorithms have been developed to predict VF from

electrocardiogram (ECG). In the literature, we find a number of algorithms based on

signal processing, where, after some robust mathematical operations the decision is given

based on a predefined threshold over a single value. On the other hand, some machine

learning based algorithms are also reported in the literature; however, these algorithms

merely combine some parameters and make a prediction using those as features. Both the

approaches have their perks and pitfalls; thus our motivation has been to coalesce them

in order to get the best out of the both worlds.

3.1 Introduction

Ventricular Fibrillation (VF) is a type of cardiac arrhythmia which occurs when the heart

quivers instead of pumping due to some disturbance in electrical activity in the ventricles

[92]. This arrhythmia may result in a cardiac arrest leaving the patient unconscious

without any pulse. Ventricular Fibrillation is found initially in about 10% of people in

17
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cardiac arrest [13] and sudden cardiac arrest is responsible for approximately 6 million

deaths in Europe and in the United States [73]. Therefore, fast and accurate detection of

Ventricular Fibrillation can save a lot of lives. Electrocardiograph (ECG) signal captures

the electrical activities of the human heart. Trained, experienced doctors can analyze

these ECG signals and understand the heart condition. However, for the detection and

prevention of sudden cardiac arrests caused by arrhythmias like Ventricular Fibrillation,

a continuous monitoring of the ECG signal of a patient is essential; this would require

a specialized doctor to examine the ECG signal relentlessly. Unfortunately, it is neither

practical nor possible for a doctor to continuously monitor ECG signals of a number of

patients. This is the primary motivation for developing algorithms to analyze patterns

from ECG signals of patients to detect arrhythmias.

Ventricular Fibrillation, being one of the most severe life-threatening arrhythmias, has

been studied diligently for over four decades. A number of methods have been proposed

for the detection of Ventricular Fibrillation over this time period. Very early works include

simple signal processing [15,23,64,109,125]. Subsequently, more advanced signal process-

ing based methods were introduced [5,7–9]. Unfortunately, these methods fail to maintain

accuracy when tested on a large dataset [6] (further explained in Section 3.6.2). In recent

past, with the emergence of machine learning techniques, better performing algorithms

were introduced that extracted features from previously established ECG parameters and

employed a machine learning classifier [3, 4, 10, 27, 72, 104, 113]. Though the performance

improved, still it is far from perfection and several algorithms have certain limitations.

The signal processing based algorithms for VF prediction actually originate from in-

tuition, observation, and experience of the doctors; then the monumental mathematical

tools of signal processing are used to exploit those patterns, and finally based on a thresh-

old or two the decision is made. On the contrary, machine learning based algorithms treat

signal characteristics as a black box, they take a number of ECG parameters (collected

from those signal processing based algorithms) and train a classification model using those

as features. These are more robust as learning from the pattern of a huge variety of data

can potentially outperform simple and constrained rule based approaches. Hence our mo-
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tivation was to blend the two: we started with the intuition of the doctors, formulated

those observations using signal processing methods and finally followed a machine learn-

ing protocol to acknowledge the diversity in real medical data. Our algorithm is based

on the fact that QRS complexes are absent in VF class ECG signals [54]. We exploited

this property and extracted this pattern using EMD (Empirical Mode Decomposition)

with DFT (Discrete Fourier Transform) based feature engineering. We select the best

set of features using Random Forests, and after making several attempts with Logistics

Regression, Random Forest, Neural Networks, we finally train a SVM model and evaluate

our model on benchmark datasets.

Notably, there exist a plethora of prior works exploiting EMD, DFT, and SVM, albeit

mostly as separate methods. Our current work, VFPred [50], stands out in this context as

we have been able to make a proper fusion of the methods from different domains. This is

evident from the remarkable performance of VFPred as reported in a later section. More

specifically, the prior SVM based works treated feature engineering as a black box and

exercised a mix-and-match strategy on some arbitrary parameters. On the contrary, we

have used intuition and rationale to investigate the effectiveness and efficacy of various

features at length, followed by justification through extensive and thorough experimenta-

tion to attain the true potential of our chosen classifier algorithm. Also to the best of our

knowledge, no prior work made an ensemble of EMD and DFT to interpret the patterns

of the ECG signals.

3.2 Datasets

For developing and evaluating VFPred algorithm, we used the following two benchmark

datasets of Ventricular Fibrillation detection as has been commonly used in most other

works.

1. The MIT-BIH Malignant Ventricular Arrhythmia Database (VFDB) [43]: This

database includes 22, 30 minutes long ECG recordings of subjects who experienced
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episodes of sustained Ventricular Tachycardia, Ventricular Flutter, and Ventricular

Fibrillation.

The ECG signals of this database were sampled with a sampling frequency of 250

Hz.

2. Creighton University Ventricular Tachyarrhythmia Database (CUDB) [87] : This

database includes 35, 8 minutes long ECG recordings of human subjects who ex-

perienced episodes of sustained Ventricular Tachycardia, Ventricular Flutter, and

Ventricular Fibrillation.

The ECG signals of this database were filtered by an active second order Bessel

low-pass filter with a cutoff frequency of 70 Hz. Then they were sampled at 250 Hz

and quantized with 12-bit resolution over 10 V range.

These datasets are hosted on PhysioNet [41], and are publicly available.

Following the practice in the literature, we experimented on ECG episodes of length,

Te = 2 sec, 5 sec and 8 sec. In order to extract the ECG episodes, first a window of length

Te sec is taken, and the window is shifted by 1 sec to collect the consequent episodes, till

the end of the signal. Finally, the episodes were annotated as ‘VF’ or ‘Not VF’ using the

expert annotations provided in the dataset. We considered the entire dataset except for

the few segments annotated as noise. We only used channel 1 data from VFDB to avoid

redundancy. Notably, the dataset is highly imbalanced: we roughly have only 9% of the

data as VF (Please refer to Table 3.1).

Table 3.1: Overview of the Combined VF Dataset. The individual continuous signals
have been windowed to construct episodes of 2s, 5s ad 8s long respectively. Overall, the
number of VF and Not VF episodes have been listed as well as their ratio, poining to the
data imbalance.

Episode Length Number of VF episodes Number of Not VF episodes Ratio (VF : Not VF)
2s 5692 51368 9.97 : 90.03
5s 5320 51087 9.43 : 90.57
8s 5013 50823 8.97 : 91.03
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3.3 VFPred: Algorithmic Pipeline

The proposed VFPred algorithm takes an ECG signal of Te seconds long, and through

the following pipeline predicts whether Ventricular Fibrillation (VF) is present or not.

3.3.1 Signal Preprocessing and Filtering

ECG signals are usually corrupted by various kinds of noises and interferences. To over-

come this, the input ECG signal is preprocessed following the filtering process originally

proposed in [6] and slightly modified in [8]. The modified filtering procedure is as follows:

1. The mean value is subtracted from all the samples, thus making the mean zero.

2. Next, a moving average filter of order 5 is applied. For an ECG signal, this should

remove most of the interspersions and muscle noise.

3. Then, the signal is filtered using a high pass filter of cut-off frequency, fc = 1 Hz.

This imposes drift suppression on the signal.

4. Finally a low pass butterworth filter of order 12 and cut-off frequency, fc = 20 Hz

is applied to attenuate the unnecessary high frequency information.

Figure 3.1 illustrates the outcome of preprocessing and filtering on the signal. As can

be observed this step removes a great deal of noises from the ECG signal.

3.3.2 Analyzing the Oscillatory Characteristics

Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (EMD), proposed by Huang et al. [47], is a data-driven,

adaptive signal processing method which is suitable for analyzing non-stationary and

nonlinear signals, like the ECG signal. This algorithm decomposes a signal into a sum
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Figure 3.1: Signal Preprocessing and Filtering Step. This process removes most noises
and artifacts from the ECG signal and smoothens the signal. Moreover this step also
makes the signal zero mean.

of Intrinsic Mode Functions (IMF). An IMF represents a simple oscillatory function with

the following characteristics:

1. The number of extrema and the number of zero crossings must either be equal or

differ (with each other) at most by one.

2. At any point, the mean value of the envelopes of the local maxima and minima is

zero.

By applying the EMD algorithm we decompose a signal x(t) into a set of IMF functions

in decreasing order of oscillatory behavior, and possibly a Residue, as shown in Figure

3.2.

x(t) = IMF1(t) + IMF2(t) + ...+ IMFn(t) +R(t) (3.1)

Observing IMF components to Distinguish VF from Not VF

IMF components describe the oscillatory characteristics of a signal. From the studies of

ECG signal, it has been found that except for ‘VF’ signals all other classes of ECG signals
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Figure 3.2: Empirical Mode Decomposition of an ECG Signal. Here we can observe that
the top IMF components are more oscillatory in nature and gradually their oscillation
diminishes. IMF1 and IMF2 captures most of the oscillations from the original signal
and it progressively fades in IMF3, IMF4 and IMF5.

contain a QRS complex [54]. Thus, we have a property that apparently separates the ‘VF’

from the ‘Not VF’. An attempt can be made to find a proper formulation to distinguish

‘VF’ signals exploiting this characteristic.

The presence of a QRS complex distorts the upper and lower envelopes as they in-

troduce additional local maxima and local minima points. On the contrary due to the

absence of any QRS complex, ‘VF’ class ECG signals have envelopes that are symmetric

in nature. The small interval QRS complexes in the ‘Not VF’ class ECG signals result in

higher frequency oscillations. Thus their 1st IMF component captures those oscillations

missing the actual ECG signal itself. On the other hand, for the lack of QRS complex,

the ‘VF’ class ECG signals are not supposed to have major high frequency oscillations

compared to ‘Not VF’ class ECG signals. Thus the 1st IMF component of ‘VF’ class is

likely to follow the original ECG signal.

Thus, it should be possible to distinguish the two classes by observing how much

the 1st IMF component correlates with the ECG signal itself. Moreover, the remaining
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signal can also be analyzed to increase the robustness, which will be referred as the

Residue component [8]. Since the IMF and Residue components are disjoint in nature

it is expected that the Residue of ‘Not VF’ signal will match the original ECG signal

more than that of ‘VF’ class ECG signal. The cosine similarity metric can be taken as a

measure of similarity between the two signals [8]. Thus IMFsimilarity and Rsimilarity can

be defined as follows:

IMFsimilarity =
Signal • IMF1

| Signal | | IMF1 |
(3.2a)

Rsimilarity =
Signal •R

| Signal | | R |
(3.2b)

These facts are illustrated in Figure 3.3,

(a) (b)

Figure 3.3: Relation of the 1st IMF and R components with the original signal, the cosine
similarities are presented inside the parentheses. In (a) for a ‘VF’ class signal, we observe
that the 1st IMF and the original signal are very similar (cosine similarity = 0.995) while
R deviates quite a bit (cosine similarity = 0.017). (b) on the other hand, shows an example
from ‘Not VF’ class. Here, we can observe distinct QRS peaks, and they prevent the 1st
IMF from capturing any useful information (cosine similarity of 0.002 with the original
signal). Rather they are quite oscillatory accounting for the non-uniform upper and lower
envelops. This compels the residue to closely follow the original signal (cosine similarity
= 0.918).
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Extracting Oscillatory Characteristics from ECG Signals

Even after preprocessing and filtering, some high frequency noises may still prevail in the

signal. In such cases, the 1st IMF component would actually represent those noises. To

determine whether the 1st IMF component contains useful information or noise we follow

the scheme proposed in [8]. In order to extract the oscillatory features from the ECG

signals we perform the following steps:

• Empirical Mode Decomposition is performed on the filtered signal and the first two

IMF components along with the Residue are computed as follows:

x(n) = IMF1(n) + IMF2(n) +R(n) (3.3)

where:

x(n) = Filtered Signal

IMF1(n) = 1st IMF component

IMF2(n) = 2nd IMF component

R(n) = The Residue

• The noise level (Vn) is calculated as a percentage of the maximum ECG signal

amplitude as follows:

Vn = α(max(x(n))) (3.4)

Where, α is a constant that should be chosen wisely. We took α = 0.05.

• The samples nL of IMF1(n) that falls within −Vn to Vn are identified, i.e.,

nL = {t : t ∈ n, |IMF1(t)| ≤ Vn} (3.5)

• The noise level crossing ratio (NLCR) is calculated using the following formula,

NLCR =

∑
n∈nL

IMF 2
1 (n)∑

n∈nL
x2(n)

(3.6)
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• Finally, the appropriate IMF is selected as follows :

IMF =

 IMF1(n) + IMF2(n) , if NLCR ≤ β

IMF1(n) , otherwise
(3.7)

Here, β is a properly chosen constant. We considered β = 0.02.

Thus, the appropriate IMF component and the Residue is taken for further analysis.

Observing Oscillatory Characteristics on Dataset

Based on our analysis above, the expected value of IMFsimiliarity for ‘VF’ is greater

than 0.5 whereas it is less than 0.5 for ‘Not VF’. On the contrary, the expected value of

Rsimilarity is just the opposite, i.e., less than 0.5 for ‘VF’ and greater than 0.5 for ‘Not

VF’. However, it was found that these theoretical observations are not always found to

be true in practice, especially, when checked against a large amount of diverse data. In

particular, a lot of overlaps are observed between the two classes.

In Figure 3.4, we have presented a 2D histogram that shows the distribution of

IMFsimilarity and Rsimilarity of the two classes. For both the classes, according to our

theoretical analyses, the data points should have been within the bounding boxes. How-

ever, this is not the case as we can observe a great amount of overlapping.

Hypothesis

From further experimentation with data we came up with the following hypothesis:

Even after filtering and preprocessing, there may still remain some unde-

sired frequency components in our data, preventing us from separating the

two classes.

In other words, there may be certain frequency components of the IMF and certain

(not necessarily the same) frequency components of the Residue which may allow us
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(a) (b)

Figure 3.4: 2D Histograms representing the distribution of IMFsimilarity and Rsimilarity of
‘VF’ and ‘Not VF’. From our theoretical analyses, the IMF component should be similar
to the original signal for a ‘VF’ class signal and it is likely to be different for a ‘Not VF’
class signal. On the contrary, the Residue component should diverge from the original
signal for a ‘VF’ class signal, but should closely follow the original signal for ‘Not VF’.
Hence, bounding boxes have been drawn where the points are expected to reside. Here
the two classes should have been confined within the black bounding boxes, but a lot of
overlapping is clearly visible.

to distinguish the two classes accurately. Hence, we need to prioritize these frequency

components while making a decision.

So instead of taking the straightforward cosine similarity of the Signal with IMF and

R as features, as is done in [8], we focus on the frequency information.

3.3.3 Extracting Frequency Information from Oscillations

Discrete Fourier Transform (DFT)

The Fourier Series proposed by Joseph Fourier in 19th century, was originally developed

to represent a periodic signal as an infinite sum of simple harmonic oscillations of different

frequencies [88]. This allows us to analyze the impact of individual frequency bands over

a signal. Later it was extended to aperiodic signals through Fourier Transform. For finite

and discrete signals we sample the Fourier Transform coefficients as a finite sequence,

that corresponds to a complete period of the original signal [88]. Thus, Discrete Fourier

Transform (DFT) for a discreate signal x of length N is defined as:
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X[k] =
N−1∑
n=0

x[n] exp(−2πi

N
kn), for 0 ≤ k ≤ N − 1 (3.8)

Observing The Frequency Components

Our theoretical analyses indicate that for a ‘VF’ class ECG signal, the IMF component

should be similar to the original signal, and the Residue component is likely to deviate

from it. The opposite is expected for a ‘Not VF’ class ECG signals. But in studies on

real world dataset, a lot of fluctuations are observed. Thus, according to our hypothesis

we resolve the Signal, IMF and Residue to frequency components using DFT, and then

analyze their relations.

In our data analysis it was found that the frequency components lying between 1 - 5

Hz were more prominent while separating the two classes. Also, if we plot the frequency

components of the two classes and observe them we get a somewhat intuitive idea of

classifying the signals (Figure 3.5).

In Figure 3.5a, we observe the example of a ‘Not VF’ class. Here it is evident from

the DFT coefficients, that the original signal is a wide-band signal, due to the presence of

QRS complex. For the case of IMF, the DFT coefficients merely captures the distributed

wideband components caused by QRS complex. On the other hand, the DFT coefficients

of the R signal seems to represent a quite narrow-band signal and it captures the pattern

of the signal. This satisfies our expectation.

On the other hand, in Figure 3.5b, i.e., for the example of ‘VF’ class, we can observe

that the IMF frequency components, as we expected, almost completely match with

that of the original signal. Additionally, a very tiny frequency components of R can be

observed, which is in line with our analysis.

In both the examples we can observe that there are some additional rather unexpected,

unusual frequency components. This fact becomes more apparent as we study more data.

These frequency components disturb our expected waveshape, thus affecting the validation

of our assumptions. So we need to determine which frequency components should be
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(a) Not VF

(b) VF

Figure 3.5: Frequency domain observation of the two classes. In (a) for ‘Not VF’ the
DFT coefficients represent the wide band nature of the signal due to the presence of QRS
complex. Here, we can observe that the IMF component accounts for the fluctuations,
instead of following the signal, also the DFT coefficients appear to be representing the
wide band characteristics of the signal as well. On the contrary, the R component seems
to follow the pattern of the signal. On the other hand, in (b) we can observe that for
‘VF’ class the DFT coefficients of the IMF component almost completely match with
that of the signal whereas DFT coefficients of R are pretty tiny, thus they cover almost no
information at all. In both the figures it can be seen that the DFT components between
1-5 Hz offer the most useful insights (here, the plots are cropped to 1-15 Hz range for
visualization purposes.
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considered. A machine learning algorithm can be used to interpret the significance of

the individual frequency components and set weights accordingly to distinguish the two

classes.

3.3.4 The Machine Learning Classifier

Feature Extraction

Instead of taking the DFT coefficients as features, we are actually interested in how

much the individual DFT coefficients of the signal matches with the corresponding DFT

coefficients of IMF or R. Thus, similar to cosine similarity we multiply the two terms and

normalize the product with an appropriate value.

More precisely, for both IMF and R, we multiply each of the DFT coefficients with

the corresponding DFT coefficient of the original signal. Then, we normalize them by the

product of the magnitude of the DFT vector of the signal with the magnitude of the DFT

vector of IMF and R respectively. This gives us the similarity IMF, R and the signal in

the frequency domain, which we use as features for our machine learning algorithm.

IMFsimilarity[i] =
SignalDFT [i] • IMFDFT [i]

|| SignalDFT || || IMFDFT ||
, 1 ≤ i ≤ N (3.9)

Rsimilarity[i] =
SignalDFT [i] •RDFT [i]

|| SignalDFT || || RDFT ||
, 1 ≤ i ≤ N (3.10)

Feature Selection using Random Forest

By far, we have considered all the frequency components as features. However, not all

features may be equally useful for our prediction and some may even hamper our predic-

tion. This motivates us to perform a feature ranking, i.e., analyzing the importance of an

individual feature.

Random Forest [18,45] is an ensemble learning algorithm that employs a collection of
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decision tree classifiers. However, along with solving the classification problem, a random

forest can also be used to determine the importance of the features and thereby rank them

accordingly. [30,83].

Thus using the Random Forest algorithm, we identify the most promising subset of

the features and use them for the final classification.

SVM Classifier

Support Vector Machines (SVM), proposed by Vapnik [16, 28] compute a hyperplane

between the data points that separates them into two classes. Using a quadratic opti-

mization, the hyperplane, wTx+b = 0, is constructed to maximize the distance or margin

between the hyperplane and the nearest points. SVM is inherently a linear classifier but

with nonlinear mappings of the input space using an appropriate kernel, SVM can be

employed for nonlinear classification purposes as well. After selecting the useful features,

we use an SVM classifier to classify the ECG episodes to be either ‘VF’ or ‘Not VF’. We

use a Gaussian Radial Basis Function (RBF) as our kernel because it reliably finds the

optimal classification solutions in most practical situations [58]. The value of a Radial

Basis Function (RBF) is a function of distance from the origin (φ(x) = φ(||x||)), or some

other predefined point (φ(x, c) = φ(||x−c||)). In particular, we used the Gaussian variant

of RBF, which for two vectors x and x′ is defined as follows:

K(x, x′) = exp(−γ || x− x′ ||2) (3.11)

where, γ is the inverse of the standard deviation of the gaussian distribution.

The entire workflow of VFPred prediction system is presented in the following flow

diagram:
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Figure 3.6: Flow Diagram of VFPred Algorithm. The algorithm takes an ECG signal of
length Te sec, then performs some pre-processing and filtering in order to remove noise
and artifacts from the signal. Next, the IMF and R component of the signal is analyzed
using Empirical Mode Decomposition. After that, the

3.4 Implementation

We have implemented the VFPred algorithmic in Python programming language [111].

We used NumPy [114] for efficient numerical computation, SciPy [53] and PyEMD [67] for

signal processing. We used SVM and Random Forest implementation from scikit-learn [91]

library and used imbalanced-learn [70] for SMOTE . Moreover, we used matplotlib and

seaborn [48] for visualization purposes. We also used the WFDB package [101] to fetch

data from Physionet. All the codes are available in the following github repository:

https://github.com/nibtehaz/VFPred

The experiments were performed on a Dell-Inspiron 5548 Notebook (with a 5th gen-

eration Intel core-i5 CPU @2.2 GHz having 8 GB DDR3 RAM).

3.5 Experiments

In the following subsections, the experimental protocols used to tune the SVM classifier,

in addition to studying and measuring the significance the features are described briefly.

https://github.com/nibtehaz/VFPred
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3.5.1 Evaluation Metrics

Our problem reduces into a two class classification problem:

1. Positive Class : VF

2. Negative Class : Not VF

We use the following commonly used evaluation metrics:

Sensitivity =
TP

TP + FN
(3.12)

Specificity =
TN

TN + FP
(3.13)

Accuracy =
TP + TN

TP + FP + TN + FN
(3.14)

However, since our dataset is hugely imbalanced, taking the Accuracy as the metric

is not sufficient. This is because Accuracy understandably will follow the accuracy of

the larger class (i.e., in our case specificity). So if an algorithm correctly identifies ‘Not

VF’ but fails to detect ‘VF’, the Accuracy would still be high. This trend is disturbingly

observed in many of the works in the literature, as most of the works prioritize the ‘Not

VF’ class [2, 4, 5, 7, 8, 10,104].

Thus we need an evaluation metric that accounts for the imbalance in the dataset.

Geometric Mean Accuracy (G-Mean Accuracy) is one such metric [14]. G-Mean Accuracy

is defined as follows:

G−Mean Accuracy =
√
Sensitivity × Specificity (3.15)

This metric will become high only when both the sensitivity and specificity are high.

So giving priority to the majority class as seen in some previous works will result in poor

performance.
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3.5.2 SVM Parameter Tuning

Performance of any machine learning algorithm depends highly on the proper selection of

parameters. For our algorithm, we have used an SVM classifier with ‘RBF’ kernel. This

SVM classifier has two parameters:

1. Regularization Constant, C: C is the parameter that defines whether the SVM

classifier margin is a soft margin or a hard margin [28].

2. Kernel Hyperparameter, γ : γ is the parameter of Gaussian Radial Basis Function

[28].

For tuning the parameters, initially, we took a small portion of the data as the training

data and the rest as the validation data. Since the dataset is highly imbalanced, it was

quite tricky to train our classifier. We randomly shuffled the entire dataset, and then

took 3000 samples from ‘VF’ class and 5000 samples from ‘Not VF’ class as the training

set. More samples were taken from the ‘Not VF’ class because it contains more variations

as compared to the ‘VF’ class. The rest of the dataset was kept as the validation set

(VF=2320, Not VF=46087).

To tune the parameters we performed an exhaustive grid search. We tried out 3

different episode lengths, Te = 2 s, 5 s, and 8 s, as seen in literature. We trained the

classifier using the training data and observed the performance on the validation data.

The performance on the validation set is illustrated in Figure 3.7. Here we have shown the

values of G-Mean Accuracy for different combinations of γ and C, as it nicely balances

both Sensitivity and Specificity.

From the experiments we observe that as we increase the episode length, the perfor-

mance improves. G-Mean Accuracy improves from 88.244% for Te = 2s to 91.966% for

Te = 5s and to 95.101% for Te = 8s. Thus, an increase of Te by 3s roughly improves G-

Mean accuracy by 4%. From a practical consideration, we should set the episode length,

Te such that the detection is both fast and accurate. However, there is a trade-off here: as
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(a) Te = 2s

(b) Te = 5s

(c) Te = 8s

Figure 3.7: SVM parameter Tuning. In order to select the best set of parameters, we
performed experiments for different combinations of the parameters C and γ, and observed
the G-Mean Accuracy. These experiments were performed taking only a small portion
of the data as training data and the rest as validation data, and they were repeated for
Te = 2s, 5s, and 8s. Here it can be observed from three cases that as the episode length
increased from 2s (3.7a) , to 5s (3.7b) , and even to 8s (3.7c) the performance improves.
Thus the bigger windows are taken the better accuracy is obtained. For Te = 5s and
Te = 8s, the best results are obtained for γ = 45 and C = 100.
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we increase the episode length Te the detection accuracy improves but the computation

becomes slower. So as a middle point we consider an episode length, Te = 5s, for our

further experiments.

Also, it can be observed that for Te = 2s, C = 1 yields the best results, but for Te = 5s

and Te = 8s the most promising results are obtained for C ∈ [10, 100]. On the other hand,

the best performing values of γ are between 45 and 60. By performing some additional

random experiments, it was seen that for Te = 5s, the set of parameter values C = 100

and γ = 45 consistently outperformed all other combinations. Thus, we selected them as

the parameters of our SVM model.

3.5.3 Evaluation of Feature Eminence

Existing works used the values of IMFsimiliarity and Rsimiliarity directly as features [8].

However, when considering a large number of diverse data, relying on only two parameters

may fail to capture sufficient resolution. Moreover, it is quite possible that there may

exist some overlap between the two classes when considering only two features. Fig. 3.8a

demonstrates a scatter plot of the feature points of the two classes, and it can be clearly

observed that there exists a lot of overlap between the two classes. In fact, the samples of

the VF class are completely surrounded by the samples of the Not VF class. Therefore,

it would be almost impossible to distinguish the two classes when the features are almost

identical. However, the original authors conveniently subsampled the dataset, which led

to better accuracy values. But when considering the enitre dataset, such a method is very

likely to fail.

To overcome these shortcomings, we have proposed features based on DFT on top of

IMF and R similarities. Since our proposed feature set spans over a high-dimensional

space it is difficult to visualize them. Therefore, we have made an attempt to perform a

PCA (Principal Component Analysis) [119] to reduce the dimensions to two for the ease

of better visualization. But, this did not work well, as it is quite challenging for PCA to

achieve such drastic reduction in dimension. T-SNE algorithm [77] is quite promising in
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this aspect, but the problem is that it is computationally very expensive. Thus we were

able to perform the dimensionality reduction on only a small subset (10%) of the data,

as illustrated in Fig. 3.8b. As can be noticed from Fig. 3.8b, the overlaps of the two

classes in the DFT version are much lesser, and when we are considering the complete

feature vector it can be conjectured that such distinction will be even higher. Therefore,

the proposed DFT based features are capable of better segragation of the two classes.

(a) (b)

Figure 3.8: Evaluating the quality of extracted features. Fig. 3.8a presents a scatter
Plot of the traditional features, namely, IMFsimiliarity and Rsimiliarity. The samples from
VF and Not VF class are colored in red and blue respectively. From the figure, it is
obvious that there does exist an alarming amount of overlapping between the two classes.
On the contrary Fig. 3.8b demonstrates a two dimensional t-SNE plot of the proposed
features based on DFT (of 10% random samples). It can be observed that the amount of
overlapping has mitigated remarkably.

3.5.4 Feature Ranking by Random Forest

We used a random forest comprising 750 decision trees to rank our features. After comput-

ing the feature importance using the random forest algorithm, we normalized the values

and plotted them in Figure 3.9a. Here the first half consists of the IMF features (colored

in blue) and the last half corresponds to the R features (colored in red).

Now, from the plot, we can observe that most of the features do not contribute at all

in making an accurate prediction. These features originate from the DFT coefficients and

since DFT coefficients for a real signal is symmetric, so are their significances. Moreover,
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(a) Relative Importance of the Features (b) Effectiveness Different % of Features

Figure 3.9: Feature Ranking using a Random Forest. In Figure 3.9a we have plotted the
relative importance of the features. The features coming from IMF and R are colored in
blue and red respectively. From the figure it is evident that a great deal of features is
actually quite trifling, thus omission of them should make the classification more efficient.
Thus, in Figure 3.9b we have shown the outcome of taking only a percentage of the top
features, in terms of Specificity, Sensitivity, and G-Mean Accuracy. The performance
gradually improves as we increase the number of features, but after taking 16% of the
best features, it reaches a plateau. However, it was seen that taking the top 24% features
yields a slight improvement of 0.002%.

the importance of the leftmost and the rightmost features of both IMF and R are negli-

gible, they actually correspond to the high frequency components. The most impactful

features are the features in the middle, and the importance gradually decreases as we

move away from the center.

After ranking the features, we conduct our experiments on a reduced number of fea-

tures based on their relative importance. We again take 3000 random samples from ‘VF’

and 5000 random samples from ‘Not VF’ as the training set and treat the rest as the

validation set, as we did to tune the parameters. The ECG episodes are taken to be 5

seconds long, and the SVM parameters were selected as mentioned in the previous section.

We had selected the percentage of features to be considered, sorted by their importance

and observed the Sensitivity, Specificity, and G-Mean accuracy on the validation set

(Figure 3.9b). From the experiments, it was seen that only about top 16% features were

sufficient to sensibly distinguish between the two classes, and a slight improvement of

0.002% was observed if we had taken the top 24% features. Thus, we have selected the
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subset of only the top 24% features, as our final feature set.

This observation greatly reduces the dimensionality of the problem and makes both

the training easier and the prediction faster. Also, this feature ranking exercise using

Random Forest supports our hypothesis, that not all frequency components are needed

for classification.

3.5.5 Statistical Significance Assessment of the Classifiers

Typically in machine learning based approaches, we select the best classifier based on

metric scores like precision, recall or f1 score, as obtained from a cross validation process.

However, based on the property of the data along with the splitting process, this may

sometimes result in a false perception. Therefore, often the high performance of a classifier

during validation, does not directly translate to a high performance in real world test

scenario. This can be attributed to the fact that, the splitting of training and validation

data acts favorably for the classifier, which also prevents the model from generalization.

Thus, to overcome such shortcomings, statistical tests hold more potential in assessing the

superiority of a model over others. Thomas Dietterich, in his highly influential study [31],

recommended the McNemar’s test [81] as the most suitable test with an acceptable Type

I error, specially when the classifiers are complex and difficult to train. As a result, we

train a number of different classifiers in addition to SVM, namely, Logistic Regression,

Adaboost, Neural Network, KNN, Decision Tree and Random Forest. We observe both

their GM Accuracy value and the corresponding χ2 statistics from the McNemar’s test.

From our experiments it was observed that although models like Neural Network and KNN

did come close to the SVM in terms of GM Accuracy, their χ2 statistics corresponded

to a p value of almost zero. This completely nullifies the null hypothesis, which states

that the two classifiers should have the same error rate and the only deviations observed

in experimental outcomes are by chance. Therefore, McNemar’s test establishes that our

SVM classifier indeed is significant statistically.

The summary of the statistical significance analysis of the classifiers is presented in
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Table 3.2.

Table 3.2: Statistical Significance Assessment of the Classifiers. Here we present the
GM Accuracy value obtained by the classifiers using the smaller set of training data. In
addition we report the χ2 statistics value and the corresponding p value. It is evident
from the results that the improvement in using SVM classifier is statistically significant.

Method GM Accuracy χ2 Statistics p value
SVM 0.92 - -
Logistic Regression 0.63 239.975 ≈ 0.00
Adaboost 0.73 1155.278 ≈ 0.00
Neural Network 0.87 86.629 ≈ 0.00
KNN 0.8 74.630 ≈ 0.00
Decision Tree 0.66 1934.581 ≈ 0.00
Random Forest 0.62 269.069 ≈ 0.00

3.5.6 Overcoming the Imbalance in the Dataset

As mentioned earlier, a major complication is that the dataset is highly imbalanced. This

imbalance in the dataset prevents us from training our classifier properly. To overcome this

limitation, we oversampled our data [44]. We avoided random oversampling as it merely

replicates some data from the minority class and as a result, often tends to overfit [82].

Instead, we generated some synthetic data using Synthetic Minority Over-Sampling Tech-

nique (SMOTE) developed by Chawla et al. [22] which avoids over-fitting by distributing

the probability over the neighborhood of the minority class points in lieu of imposing too

much bias on the given minority class points. Now with balanced SMOTE’d dataset, we

train our machine learning classifier

3.6 Results

In this section we present the results obtained from 10-Fold Cross-Validation. Further-

more, we compare our proposed method VFPred with contemporary algorithms. Fur-

thermore, it should be noted that in this section we consider the entire dataset after

upsampling using SMOTE.
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3.6.1 K-Fold Cross-Validation

Cross-Validation is an evaluation test that determines how well a model can generalize on

an independent dataset. This removes any human biases that may have been introduced

and also accounts for the variance in the dataset. Experiments on real-world datasets

show that the best cross validation scheme is a 10-fold cross-validation [61]. Thus we have

performed a 10-fold cross validation to evaluate out algorithm. In the experimentation

stages to reduce the time of computation we used a smaller set of data as the training

data, but in this stage we use the entire dataset. Moreover, we make the data balanced by

upsampling using SMOTE, and perform random shuffling. In addition, We also performed

a stratified 10-fold cross validation which maintains a uniform distribution of the classes

[61]. The results are summarized in Table 3.3.

Table 3.3: Experimental Results. Here we have shown both the results of the 10-Fold
Cross Validation and Stratified 10-Fold Cross Validation tests. It should be noted that
in this case we have used the entire dataset after upsampling using SMOTE which has
eliminated the imbalance from the dataset.

10-Fold Cross Validation

Data Sensitivity Specificity Accuracy G-Mean
(%) (%) (%) Accuracy (%)

Training Data 100 100 100 100

Test Data 99.988 ± 0.016 98.401 ± 0.19 99.194 ± 0.092 99.191 ± 0.095

Stratified 10-Fold Cross Validation

Data Sensitivity Specificity Accuracy G-Mean
(%) (%) (%) Accuracy (%)

Training Data 100 100 100 100

Test Data 99.992 ± 0.01 98.395 ± 0.187 99.194 ± 0.092 99.190 ± 0.096

Firstly, from the results, it can be observed that our proposed algorithm accurately

classifies the training data. Thus, it may appear that the algorithm is overfitting the

training dataset. However, it is not the case since our algorithm performs remarkably on

the test data as well. The obtained value of Specificity is slightly higher in the ordinary 10-

fold cross validation than in the stratified 10-fold cross validation. The opposite scenario

is seen for Sensitivity. However, in both the cases both Sensitivity and Specificity is

equally high, and it is reflected by the high value of G-Mean Accuracy. All these points

to the effectiveness of our feature engineering and learning algorithm optimization.
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It appears that our model predicts a number of false positives. But from further

analysis it turned out that most of these false positives actually contained a small segment

of VF within them, becoming VF after 1-2 seconds. Thus, these false positives are actually

not harmful rather beneficial if we are to develop a real time predictive system.

3.6.2 Comparison with Other Methods

Ventricular Fibrillation, being one of the most severe life threatening arrhythmias, is an

exceedingly studied area. Research works have been undergoing in this area starting from

the early ‘70s to even to date. In this section, we compare our work with some other

well established works. During the study of other works, the following observations were

apparent:

1. Some researchers made a pre-selection of ECG signals by hand [8,9,15,23,64,71,90,

109,125]. This resulted in better performance of their algorithms, but the accuracy

drastically falls when tested on the entire dataset [6].

2. All the datasets we have are imbalanced. It was observed in some research works that

priority was given to the majority class (‘Not VF’) resulting in a higher Specificity

and lower Sensitivity, albeit with a high accuracy [2, 4, 5, 7, 8, 10, 104].

3. Surprisingly, a few authors tested their algorithms on the training set, resulting in

a higher but clearly misleading accuracy [104].

Amann et al. [6] presented a comparison of ten algorithms for the detection of VF. It

was shown that none of the algorithms, namely, TCI [109], ACF [23], VF Filter Method

[64], Spectral Algorithm [15], Complexity Measure Algorithm [125], Li Algorithm [71],

Tompkins Algorithm [90] etc., performed well over the entire dataset. The actual accuracy

measures were very low compared to what was specified in the original papers since a pre-

selection of the signals was done. Other algorithms in the literature that use only Signal

Processing techniques also show a selectively high but overall poor performance. Arafat

et al. [9] presented a method based on EMD and Bayes Decision Theory, which shows a
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sensitivity (Se) of 99.00% , specificity(Sp) of 99.88% and accuracy(Ac) of 99.78%, with

only ‘VF’ and ‘NSR’ (Normal Sinus Rhythm) signals in the dataset. But the performance

falls drastically when other beats and rhythms are considered. Anas et al. [8] presented

another algorithm based on the EMD which obtains a sensitivity of 82.89%, specificity of

99.02% and accuracy of 98.62%, on the test set. The authors not only made a pre-selection

of the signals but also gave priority to the Not VF class while selecting the threshold which

results in a high accuracy but low sensitivity. Two other algorithms, Hilbert transform

(HILB) [5] and Phase Space Reconstruction (PSR) [7] algorithms use the phase space of

the ECG signal for VF detection. But they don’t consider the shape of this signal. Thus,

they fail to differentiate VT (Ventricular Tachycardia) from VF when other arrhythmias

are present (HILB: Se = 79.73, Sp =98.83, Ac = 98.40; PSR: Se = 78.07, Sp= 99.01, Ac

= 98.53).

Machine learning approaches show great promises as they improve the detection accu-

racy. Almost all the machine learning algorithms in the literature extract features from

other existing VF detection algorithms based on signal processing, and then use them as

features to detect VF. Atienza et al. [4] studied a number of ECG signal parameters and

used them as features to train an SVM model (Se=74.1, Sp=94.7). In a later work [3],

they considered ECG segments of 8s long to compute temporal and spectral parameters

as features and then they developed a classifier using SVM. This obtained an accuracy of

91.1% while detecting VF. Qiao et al. [72] presented quite a similar pipeline; some param-

eters were computed as features and a genetic algorithm was used to rank the features.

Then, weights were set to classes to consider the imbalance in the dataset and finally,

an SVM model was trained (Se=96.2%, Sp=96.2%, Ac=96.3%). However, a drawback of

the algorithm is that it considered Ventricular Fibrillation, Ventricular Tachycardia, and

Ventricular Flutter all as the VF class. As these three classes are quite similar in appear-

ance, an algorithm should be robust enough to distinguish among these three. Verma

et al. [113] used similar approaches to extract features and subsequently used a Random

Forest classifier to detect VF signals. This algorithm obtained Ac = 94.79, Se = 95.04,

Sp = 94.78 for 5s long episodes and better results for 8s long episodes (Ac = 97.20, Se =
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95.05, Sp = 97.02). Mi et al. [104] experimented with different dimensionality reduction

and machine learning algorithms. Strangely, their models were tested on the training set,

still, it obtained poor sensitivity (Se = 92.396, Sp = 99.121, Ac = 99.350). Asl et al. [10]

did some preprocessing on the ECG signals before extracting the features and perform-

ing a dimensionality reduction using Gaussian Discriminant Analysis (GDA); finally, an

SVM model was trained. This algorithm is by far the best performing one (Se = 95.77,

Sp = 99.40, Ac = 99.16), but the drawback is that it works on the window length of

32 R-R interval, which is roughly 30 seconds. This makes the algorithm extremely slow

and delays the prediction. Clayton et al. [27] used a (shallow) neural network to classify

‘VF’, which unfortunately obtained poor performance (Se = 86, Sp = 58). Acharya et

al. [2] very recently used a Convolutional Neural Network (CNN) to detect VF along with

some other arrhythmias. Their algorithm obtained a high specificity (98.19) but very low

sensitivity (56.44).

In Table 3.4 we present a comparison among a number of methods. Here we are

only showing the algorithms based on machine learning techniques as they outperform

traditional signal processing based algorithms. Note that the results reported in Table

3.4 should be interpreted carefully as different works have reported their results using

different validation techniques. As has already been mentioned, in our work, we employed

10-fold cross validation, and avoided independent testing as the idea of the latter has

been doubted by some researchers (e.g., [25]). More specifially, as argued by Chou in

[25], the way of independent test instance selection to test the predictor could be quite

arbitrary resulting in arbitrary conclusions. A predictor achieving a higher success rate

than the other predictor for a given independent testing dataset might fail to keep so when

tested by another independent testing dataset. Accordingly, independent testing is not a

fairly objective test method although it has often been used to demonstrate the practical

application of a predictor in different domains. Unfortunately most of the works we are

comparing with, employed independent testing but without any specific information about

the test dataset; also they have not published the code of their implementation making

it impossible to reproduce the test results and ensure a level playing field.
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Table 3.4: Comparison among different methods. Results are taken from the respective
papers. ‘-’ indicates that the score was not available/reported in the respective paper.
Here, we have only included the machine learning based works, as the outperforms the
traditional approaches based solely on signal processing (as shown in Section 3.6.2.)

Algorithm
Sensitivity

(%)
Specificity

(%)
Accuracy

(%)
G-Mean

Accuracy (%)

Atienza et al. [4] 74.1 94.7 - 83.77

Atienza et al. [3] - - 91.1 -

Qiao et al. [72] 96.2 96.2 96.3 96.2

Verma et al. [113]
95.04 (5s) 94.78 (5s) 94.79 (5s) 94.91 (5s)
95.05 (8s) 97.02 (8s) 97.20 (8s) 96.03 (8s)

Mi et al. [104] 92.396 99.121 99.350 95.70

Asl et al. [10] 95.77 99.40 99.16 97.57

Clayton et al. [27] 86 58 - 70.63

Acharya et al. [2] 56.44 98.19 97.88 74.44

VFPred 99.988± 0.016 98.401± 0.19 99.194± 0.092 99.191± 0.95

3.7 Discussion

Ventricular Fibrillation is a dangerous life threatening arrhythmia that can cause sudden

cardiac arrest resulting in a sudden death. The inability of a doctor to continuously

monitor the heart conditions of all the patients motivates us to design and develop efficient

and accurate automated systems to perform the task. Immediately after Ventricular

Fibrillation is detected a shock treatment can be given to the patient. A lot of research

works have been done to detect Ventricular Fibrillation using either signal processing

or machine learning techniques separately. In some works, the authors even proposed

automated systems to give shock treatment to the patients. They argued that the system

should have higher specificity, i.e., the accuracy of detecting patients not affected by

Ventricular Fibrillation should be higher. This imposes priority on detecting ‘Not VF’

class correctly and in most cases the accuracy of detecting ‘VF’ was low. We find this

contradictory, as the objective is to detect VF, not the other. Moreover, such a system

would be vulnerable if it fails to detect VF consistently which may result in deaths of

patients. We do not deny the importance of high specificity but at the same time, we

believe that the sensitivity should be high as well. Note that, our goal is to aid the doctors

and in no way to replace them. Hence, instead of developing automated shocking systems
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that fail in detecting ‘VF’ properly with the excuse of preventing the shock treatment of

unaffected patients, we propose an automated monitoring system which will continuously

monitor the patients and when the possibility of ‘VF’ arises, it will activate an alarm and

an experienced doctor would examine the case and decide whether shock treatment is

indeed required. Thus the sensitivity of the detection/prediction system should be high

to avoid unfortunate deaths. We also gave importance to specificity, as our algorithm can

classify both the classes with near equal performance.

In this work, we combined the strengths of both signal processing and machine learn-

ing. We analyzed the pattern of the ‘VF’ class ECG signals and proposed a novel feature

engineering scheme. Next, we trained machine learning classifiers on the extracted fea-

tures. As the dataset is highly imbalanced we adopted appropriate techniques to overcome

the imbalance. Also, we computed feature importance and experimentally found that sim-

ilar performance can be obtained by using a much smaller subset of the computed features,

which can be very helpful for constructing a real time system as it would make our algo-

rithm much faster. We have compared our algorithm with the state of the art and found

out that our algorithm outperforms them. The only algorithm that comes close to our

algorithm is presented by Asl et al [10]. However, the downside of their algorithm is that

it works on windows of 32 R-R intervals ( roughly 30 seconds), obtaining a sensitivity

of 95.77%, specificity of 99.40%, accuracy of 99.16% and G-Mean Accuracy of 97.57%.

On the other hand, our algorithm obtains a sensitivity of 99.99%, specificity of 98.40%,

accuracy of 99.20% and G-Mean Accuracy of 99.19%, on a small 5 seconds long window.

It was seen experimentally that our performance improves as we increase the window

length.

In conclusion, this work has shown that the combination of signal processing based

feature engineering and machine learning based decision making can greatly improve

the performance of algorithms in biomedical signal processing domain. While existing

algorithms emphasize either on signal processing or on machine learning, leaving the

other one neglected, our objective was to make a fusion of these two approaches to take

the best of both techniques. Thus we have developed a robust algorithm, VFPred, for
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the detection of Ventricular Fibrillation that is both fast and accurate. One of the most

noteworthy features of VFPred is that it can classify both the classes equally accurately,

even when using a short ECG signal. This is a significant improvement as existing works,

while can identify the majority class (‘Not VF’) very well, fall much short in identifying

the minority class (‘VF’). Also, the success of VFPred with short ECG signals opens up

the possibilities for developing more responsive, real time cardiac monitoring systems.



Chapter 4

Predicting Blood Pressure from

PPG Signals

Cardiovascular diseases, being one of the most life-threatening diseases, take a toll of

millions of deaths worldwide annually. Hypertension, which is one of the major reasons

behind cardiovascular diseases, also provides us with a preventive measure. Thus, by

analyzing the blood pressure continuously, we can predict hypertension and this early

monitoring can save a lot of lives. In this chapter we present a method to infer blood

pressure from PPG signals using Deep Learning. Development of such method holds a

great promise as PPG being the cheapest biomedical sensor is present even in the least

expensive smartwatches and fitness bands.

4.1 Introduction

Even in today’s world of technological advances, cardiovascular diseases (CVD) are one of

the most menacing causes of morbidity and mortality, crippling the ageing population [66].

More than 4 million people die of cardiovascular diseases every year only in Europe and

when considering the whole world the number of deaths exceeds 17 million [110]. Hyper-

tension is one of the leading reasons for cardiovascular diseases. Alarmingly in the year

48
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2014, more than 1.4 billion people worldwide were somehow affected by hypertension [121],

and the number is only expected to increase. Only in the USA, there are around 67 mil-

lion patients of hypertension, which covers almost one-third of the population, and more

alarmingly only less than half of them try to control their blood pressure [20]. Hyper-

tension has thus been termed as ‘Silent Killer’ for dormant nature that eventually leads

to untimely death [122]. Therefore, continuous blood pressure monitoring is essential.

However, owing to the lack of experts physicians opposed to the ever-increasing number

of patients, the development of automated monitoring methods is the only feasible mean

to confront the crisis.

Several methods have been introduced, capable of measuring blood pressure (BP) ac-

curately. However, this accuracy comes at the cost of invasiveness of such methods, which

are often cumbersome to conduct. For catheter-based approach [51], not only the inter-

vention of an expert is required, but also such procedures cause pain to already delicate

patients. Clinics nowadays relies on cuff-based methods to measure blood pressure, but

those as well are inconvenient and intrusive and not suitable for continuous blood pres-

sure monitoring [84]. Therefore, for a significant amount of time, it has been the interest

of researcher community to develop methods and apparatus to determine blood pressure

from biomedical signals in a continuous, cuff-less, non-invasive manner [76,97,100].

Photoplethysmography (PPG) has gained a lot of popularity in recent times due to its

widespread inclusion in smartwatches and fitness bands for its simplicity and cheapness.

The idea behind PPG is uncomplicated, it works based on the illumination of skin and

detection of the light absorption of skin. Hence, a PPG sensor generally comprises an

led light source and a photodetector [19], the led emits light to the skin tissue and the

photodetector keeps track of how much light is reflected i.e., the degree of absorption. It is

empirically established that the amount of reflected light is proportional to the volume of

blood flowing in the illuminated region [115]. Since the volume of blood is coupled to the

speed of blood flow which harmonizes to the pressure exerted on the arteries, PPG signal

has been being prominently used for the measurement of blood pressure [98]. Besides,

PPG signals are also used for calculating absorption of Oxygen as well as the level of
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Hemoglobin in blood [57] and for diagnosis of events like Hyperemia [96]. Despite having

versatile applications, PPG signals also fall short in certain aspects, mostly because they

get easily corrupted by movements [59].

In recent years there have been a plethora of academic studies to assess the state of

blood pressure, using biomedical signals, mainly PPG often in conjunction with several

other ones. The primary rationale behind measuring blood pressure from ppg is the

association of the speed of blood flow and blood pressure. Overall, when blood vessels

are contracted, blood flows rapidly, enforcing more pressure [103]. The opposite scenario

is observed when the vessels are relaxed, as blood flows steadily and the pressure is

diminished. Therefore, studies have been conducted investigating the rate of blood flow,

which is popularly termed as Pulse Wave Velocity (PWV) [17]. Based on PWV, blood

pulses require a time delay to reach the periphery of the body from the heart, which is

denoted as Pulse Transit Time (PTT) [38]. Two other related terms Pulse Arrival Time

(PAT) and Pre-Ejection Period (PEP) are also relevant in such analyses [98]. A lot of

research work has been conducted to develop mathematical models of these various delays

to infer blood pressure values [12, 39,79,93,120].

While, prior works revolved around fitting the various delays corresponding to the

rate of blood flow, of late several machine learning based approaches has been intro-

duced [55, 56, 84, 86, 103]. The methods usually take the PPG signal (along with ECG

signal in most cases), and predict the values of Diastolic Blood Pressure (DBP), Sys-

tolic Blood Pressure (SBP) and Mean Arterial Pressure (MAP). These methods general-

ize comparatively better, nevertheless, they are afflicted with a few limitations recurring

throughout the literature. Firstly, most of these methods require ECG signals, which may

be sometimes difficult to include in wearable cuff-less systems. Again, some of them rely

on handcrafted features to predict the BP, but to compute such features the algorithms

often demand the signal to be following ideal configuration.

This work presents PPG2ABP, a novel approach based on deep learning to predict

the waveshape of the continuous Arterial Blood Pressure (ABP) signal from the Pho-
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toplethysmogram signal. The existing works limit themselves to inferring Systolic and

Diastolic blood pressures. Though some efforts have been made to investigate the cor-

relation between PPG and ABP signals [80], to the best of our knowledge no research

work has been performed to predict the actual ABP signal from the PPG signal. In this

regard, our study is a pioneering one, the first algorithmic pipeline that is capable of

predicting the actual waveform of the ABP signal. Furthermore, being a deep learning

based pipeline, PPG2ABP is free from the need for handcrafted features, therefore the

requirement of signals maintaining a standard shape is redundant. Moreover, the different

values of interest in the literature, i.e., SBP, DBP and MAP can be calculated from the

predicted ABP waveform, and even in this criteria, our method outperforms the existing

works, despite not being explicitly trained to do so.

The rest of this paper is organized as follows: Section ?? briefly explains the dataset

we used as well as the proposed methodology, PPG2ABP. Section 4.4 presents the ex-

perimental setup and considerations. Section 4.5 elaborates the significant outcomes of

PPG2ABP on the test data and draws a comparison with contemporary works. Finally,

Section 4.6 concludes the paper.

4.2 Datasets

In order to develop and evaluate our proposed algorithm, the Physionet’s MIMIC II

dataset (Multi-parameter Intelligent Monitoring in Intensive Care) [42,95] was used. For-

tunately, this database not only provides the PPG signals, but also it contains the simul-

taneous Arterial Blood Pressure (ABP) signal continuously, which is a crucial part of our

algorithm. The sampling rate for both the signals are 125 Hz and they are recorded with

8-bit precision.

In this work, we actually utilized the data compiled from MIMIC II by Kachuee

et al. [55, 56]. The primary reasoning behind this was that not only the data was

presented in a convenient form to analyze, but also the raw signals are already pre-
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Table 4.1: Statistics of the Dataset. Here we present the minimum, maximum and aver-
age values of DBP, MAP and SBP respectively. In addition we also list their standard
deviation. It can be observed that SBP values have the highest variance, which makes
their prediction the most difficult one, comparatively.

Min Max Mean Std
DBP 50 165.17 66.14 11.45
MAP 59.96 176.88 90.78 14.15
SBP 71.56 199.99 134.19 22.93

processed followed by their algorithm. Their compiled dataset is present in the UCI Ma-

chine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Cuff-Less+

Blood+Pressure+Estimation), from where it was downloaded on July 2019.

To ease their analyses Kachuee et al. ignored the signal episodes with too tiny or

too large values of blood pressure values. They only considered signals with 60mmHg ≤

DBP ≤ 130mmHg, 80mmHg ≤ SBP ≤ 180mmHg. We, however, did not follow this

scheme, firstly because we wished to test our algorithm on a broader range of signals

and secondly it may be the case that in a real-world application scenario such small and

high values of blood pressure are encountered. Therefore, we considered even signals with

DBP ≈ 50mmHg and SBP ≈ 200mmHg. The statistics of the dataset is presented

in Table 4.1. It can be observed that SBP has a comparatively greater value of stan-

dard deviation, this extensive range causes difficulties when predicting the SBP values as

hypothesized by Kachuee et al [56].

For our analysis, we considered signal episodes of 8.192 seconds long, i.e., we pre-

dicted 8.192 s long arterial blood pressure signal from ppg signals of 8.192 s long. Picking

this episode length of 8.192 seconds allowed us to train sufficiently deep neural networks

without being jeopardized by extensive computational complexity. However, in the down-

loaded database we have signals of a total duration of 741.53 hours. To mitigate the

computational requirements, we hence undersampled the data. The following scheme was

followed. First of all, the 8.192 seconds long signals were arranged in bins based on their

SBP and DBP values. Next, from all the bins randomly 25% of the data was selected.

However, if for some bins selecting one-fourth exceeds 2500 episodes, only 2500 episodes

https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
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are included randomly. In this way, a total of 127260 random episodes are obtained,

counting up to a duration of 353.5 Hours. From this 100000 samples at random are cho-

sen to be the training data (roughly 78.58%) and the remaining 27260 samples are kept

as the independent testing data. It should be noted that proper care and attention were

given to make sure signal data from all the patients are included and also the training and

test data remain disjoint. Furthermore, we did not omit ppg signals of sub-ideal qual-

ity, rather the random selection process led to the inclusion of a high number of merely

acceptable (G2) and unfit (G3) signals [35].

4.3 PPG2ABP: Algorithmic Pipeline

We first present a brief description of the steps of PPG2ABP, followed by a detailed

discussion of the steps. The proposed algorithm PPG2ABP takes a PPG signal of Te

seconds long, performs some minimal preprocessing operation to attenuate the irregular-

ities and noises. Next, the filtered signal is processed using an Approximation Network,

which approximates the ABP waveshape based on the input PPG signal. The prelimi-

nary rough estimate of ABP is further refined through a Refinement Network. Finally in

addition to predicted ABP waveform, the values of SBP, DBP and MAP are computed

straightforwardly. The overall pipeline of PPG2ABP is depicted in Fig. 4.1

Figure 4.1: Algorithmic Pipeline of PPG2ABP. PPG2ABP takes a PPG signal of Te
seconds long as input and performs some preprocessing and filtering [55]. Next, the filtered
signal is passed to the Approximation Network to approximate the ABP waveform. After
that, the Refinement Network refines the overall waveform approximation. Finally, in
addition to the ABP waveform, values like SBP, MAP and DBP can be computed.

Preprocessing

As mentioned earlier, we have used the signals already preprocessed by the method pre-

sented by Kachuee et al. [55]. Therefore, our preprocessing step is identical to theirs.
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The preprocessing stage involves primarily wavelet denoising, for its desirable outcomes,

such as superior phase response, computational efficiency, adaptiveness in terms of SNR

etc. [56]. The wavelet transform is performed to 10 decomposition levels, with Daubechies

8 (db8) as the mother wavelet [102]. Then, the very low (0-0.25 Hz) and very high fre-

quency (250-500 Hz) components are negated by setting the decomposition coefficients

to zero. Next, wavelet denoising is performed with soft Rigrsure thresholding [32, 33].

Finally, the signal is retrieved by reconstructing the decomposition.

It should be noted at this stage that, to facilitate the training of the deep learning

models, the PPG signals were mean normalized.

Approximation Network

The filtered signals are then processed through an Approximation Network, which ap-

proximates the ABP signal based on the input PPG signal. The Approximation Network

is actually a one-dimensional deep supervised U-Net model.

U-Net [94] comprises a network built using only convolutional layers to perform the

task of semantic segmentation. The network structure is built using a symmetric pair of

Encoder Network and Decoder Network. The Encoder Network extracts spatial features

from the input which are utilized by the Decoder Network to produce the segmenta-

tion map. The most innovative idea behind U-Net is the use of skip connections, which

preserves the spatial feature maps, likely to have lost during pooling operation.

Though the original U-Net is designed to perform semantic segmentation on images,

for our purpose we employ it to perform regression based on one-dimensional signals.

Therefore, the two-dimensional convolution, pooling and upsampling operations are re-

placed by their one-dimensional counterparts. Moreover, all the convolutional layers other

than the final one use ReLU (Rectified Linear Unit) activation function [68] and are batch

normalized [52]. To produce a regression output, the final convolutional layer uses a linear

activation function.

Moreover, we use deep supervision in our U-Net network [69]. Deep supervision is a
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technique proven to reduce overall error by directing the learning process of the hidden

layers. In our deeply supervised 1D U-Net, we compute an intermediate output which is

a subsampled version of the actual output signal, prior to every upsampling operation. A

loss function is computed with gradually declining weight factor as we move deeper into

the model. This additional auxiliary losses drive the training of the hidden layers and

makes the final output much superior.

Refinement Network

The outputs of the Approximation Network sometimes deviate much from the actual

output. Therefore, we use an additional network to refined the output of the Approxi-

mation Network. We call this network Refinement Network, which is a one-dimensional

MultiResUNet model.

The MultiResUNet model [49] is an improved version of the U-Net model. The primary

distinction between the two is the inclusion of MultiRes blocks and Res paths. Multires

blocks involve a compact form of multresolutional analysis, using factorized convolutions.

On the other hand, Res paths impose additional convolutional operations along the short-

cut connections to reduce the disparity between the feature maps of the corresponding

levels of Encoder and Decoder networks.

Similar to the Approximation Network, this network also consists of one-dimensional

versions of convolution, pooling and upsampling operations. The activation functions

are identical as well, i.e. ReLU for all the layers but the final one, which uses a linear

activation instead. The layers are also batch normalized but not deeply supervised.

SBP DBP calculation

After constructing the refined waveform of the blood pressure signal using the Refinement

Network, the values of interest, namely SBP, DBP and MAP can be computed by taking

the max, min and mean value of the signal respectively.
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Mathematically,

SBP = max(ABP ) (4.1)

DBP = min(ABP ) (4.2)

MAP = mean(ABP ) (4.3)

Here, ABP is predicted blood pressure waveform from PPG2ABP.

4.4 Experiments

We have used Python (more specifically Python3) programming language [112] in order

to perform the experiments. The neural network models have been developed using the

Keras [24] library with Tensorflow backend [1]. Moreover, we have made the codes publicly

available, which can be found in the following github repository:

https://github.com/nibtehaz/PPG2ABP

The experiments have been conducted in a desktop computer with intel core i7-7700

processor (3.6 GHz, 8 MB cache) CPU, 16 GB RAM, and NVIDIA TITAN XP (12 GB,

1582 MHz) GPU.

In the subsequent paragraphs we briefly present various experimental outcomes and

insights. It should also be noted that the results presented in this section use only the

training data after obtaining a validation set from random splitting. We have elaborately

described how the algorithm is evaluated using the independent test data in the next

section.

https://github.com/nibtehaz/PPG2ABP
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4.4.1 Selection of Models

In preliminary stages of our experiments, in addition to U-Net and MultiResUNet some

other deep learning models like SegNet [11] and FCNN [75] were used. However, U-Net

and MultiResUNet yielded comparatively better results. Moreover, some experiments

were performed by using U-Net as the refinement network and MultiResUNet as the ap-

proximation network. Upon analyzing the results, it was observed that when U-Net was

used as the refinement network, it failed to reach the performance level of MultiResUNet.

On the contrary, when MultiResUNet was used as the approximation network it did per-

form better than the classical U-Net. Yet, when another MultiResUNet model was used

as the refinement network the overall performance remained quite identical. We hypoth-

esize that though MultiResUNet is superior to U-Net and manages to obtain a much

better waveform, the refinement network reaches a plateau eventually. Nonetheless, since

U-Net is computationally lighter than MultiResUNet, we use U-Net as the approximation

network and MultiResUNet as the refinement network.

4.4.2 Selection of Loss Functions

Another potential concern is choosing the loss function. Typically Mean Squared Error

(MSE) and Mean Absolute Error (MAE) are most prevalently used loss functions. For

predicted values Ŷ = [ŷ1, ŷ2, ŷ3, . . . , ŷn] and ground truth valyes Y = [y1, y2, y3, . . . , yn],

these two losses are defined as follows.

MSE =

∑n
i=1(yi − ŷi)2

n
(4.4)

MAE =

∑n
i=1 |yi − ŷi|

n
(4.5)

In our experiments, we found out that using MAE as the loss function of the approx-

imate network significantly improves the accuracy, whereas training the approximation
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network with MSE loss function falls much shorter. Upon inspecting samples and outputs

we developed the following rationale. Since at the approximation network stage all we

care about is getting a rough overall estimate of the waveform, it suffices to put equal

weights to all the errors. But if we use MSE as the loss function, the error terms get

squared and the bigger errors are more penalized. At this stage we have rather little

information regarding the output waveform, therefore putting more emphasis on elimi-

nating the bigger error terms actually vandalizes the overall outcome. As a result, it is

more appropriate to use MAE as the loss function in the approximation network stage

as it balances all the error terms ensuring a rough projection. On the contrary, in the

refinement network, we already have an overall approximation of the waveform. Hence,

it becomes beneficial to use MSE in that stage as the larger error terms are likely to be

diminished better this way.

4.4.3 Effect of Number of Convolutional Filters

We have also explored the efficacy of using wider variants of both the networks, comprising

an increased number of convolutional filters. For the U-Net model, we changed the number

of convolutional filters from multiples of 32 to the same of 48, 64, 96 and 128. Similarly, For

MultiResUNet we tuned the value of alpha = [1.67, 2, 2.5, 3], which controls the number of

filters used in the convolutional layers throughout the model. It was observed that models

with a higher number of filters performed better, which is obvious owing to the fact that

the inclusion of additional filters would allow the model to learn and capture additional

shapes and features. However, as the number of filters increases, the models become

computationally more expensive, and after a certain level, the improvement obtained

from adding new filters is not worth the rising computational demand. Therefore, owing

to this trade-off, we used an U-Net model with number of filters as multiples of 64, i.e.,

[64,128,256,512,1024] and for the MultiResUNet, we limited the value of α to 2.5.
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4.4.4 Effect of Deep Supervision

Additionally, we have experimented with the concept of deep supervision and employing

auxiliary losses to facilitate the training. For both the U-Net and MultiResUNet models

we have imposed additional loss functions on the outputs of the convolutional layers just

before the transposed convolution operations. Moreover, the weights of the losses were

selected as [1, 0.9, 0.8, 0.7, 0.6], i.e., the full weight was put on the actual output but was

gradually diminished for that of the premature outputs. For U-Net models, a dramatic

improvement was observed, but for MultiResUNet models, the improvement was not much

significant. Therefore, to establish a trade-off between computational effort and accuracy,

deep supervision was employed in the U-Net model but was rejected in the MultiResUNet

model.

4.4.5 Training Methodology

As specified in Section 4.4.2, MAE and MSE are used as the loss functions of Approxi-

mate and Refinement networks respectively. In order to minimize these losses the Adam

optimizer [60] is used, which adaptively computes different learning rates for individual

parameters based on the estimates of first and second moments of the gradients. Adam

has a number of parameters including β1 and β2, which control the decay of first and

second moment respectively. However, in our experiments, we have used Adam with the

parameters mentioned in the original paper. The models have been trained for 100 epochs

using Adam optimizer. The reason for selecting 100 as the number of epochs is due to the

fact that after 100 epochs no further improvement was noticed in either of the networks.

4.4.6 K-Fold Cross Validation

Cross-Validation tests tend to approximate the performance of an algorithm on an in-

dependent dataset, ensuring a balance between bias and variance. In a k-Fold cross-

validation test, the datasetD is randomly split into k mutually exclusive subsetsD1, D2, · · · , Dk
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of equal or near-equal size [62]. The algorithm is then run k times subsequently, each time

taking one of the k splits as the validation set and the rest as the training set.

We have performed a 10-fold cross validation using the training data, i.e., 90 % of

the training data was used to train the model and the remaining 10 % data was used as

validation data. This approach was repeated 10 times using different data splits, and thus

10 models were developed. The best performing model was selected and was ultimately

evaluated using the independent test data.

4.5 Results

In the following subsections we present the evaluation of PPG2ABP using different met-

rics. We compute the error in prediction of the ABP waveform. Furthermore, we analyze

the results when noisy signals are involved and score PPG2ABP under BHS and AAMI

Standards. Moreover, we observe that the SBP, DBP values, predicted from PPG2ABP,

can be used to classify states of hypertension. Finally, we establish the statistical signifi-

cance of PPG2ABP, in addition to comparing it with contemporary works.

4.5.1 Predicting ABP Waveform

The primary and unique objective of this work was to transform ppg signals to the corre-

sponding blood pressure waveform. Despite some correlation between the two established

from previous studies, they are quite different from each other when considering the wave-

forms. Nevertheless, the proposed PPG2ABP model manages to predict the waveform

of blood pressure taking only the ppg signal as input. The output of the approximate

network gives an overall rough estimate, which is further refined by the refinement model.

Fig. 4.2 illustrates such an example. It can be seen that the predicted waveform closely

follows the ground truth waveform of blood pressure.

Therefore, from experimental results it is evident that PPG2ABP can translate ppg

signals to corresponding blood pressure signals, preserving the shape, magnitude and
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Figure 4.2: Demonstration of the output of the PPG2ABP pipeline, when a sample PPG
signal from the test data is given as input. From the figure it can be observed that the
output from the Approximate Network, despite roughly following the overall pattern of
the ground truth, falls short in certain aspects. The shortcomings are vividly apparent
around the peaks. Furthermore the prediction fails to rapidly slope down from the peak
regions. However, the prediction from the Refined Network seems to be more satisfactory.
It can be observed that in addition to following the overall pattern of the ground truth
waveform, the final predicted waveform also successfully mimics the peak regions and
subsequent downward inclination. Therefore, the inclusion of the Refinement Network on
top of the Approximate Network significantly improves the results, as evident from the
drop of mean reconstruction error from 9.52 mmHg to 2.37 mmHg, for this particular
example.

phase in unison. Quantitatively, the mean absolute error of this blood pressure waveform

construction is 4.604 ± 5.043 mmHg over the entire test dataset. In addition the mean

absolute error of DBP, MAP and SBP prediction is 3.449 ± 6.147 mmHg, 2.310 ± 4.437

mmHg, 5.727±9.162 mmHg respectively. Furthermore, previous studies have pointed out

that there exists a phase lag between the ppg and bp signals of MIMIC database [123]

and some further processing is required to align them. However, in our predicted output,

we can observe that our deep learning based model has been able to overcome this issue

of phase lag. This is another remarkable point to consider as due to signal acquisition

protocols there may exist a phase lag between the two signals in real-world applications

as well.
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4.5.2 Inappropriate Signals

As mentioned earlier, PPG signals get easily corrupted by different types of artefacts.

Unfortunately, cleansing PPG signals of these anomalies is no trivial task [74]. Therefore,

often a tendency is observed to ignore the noisy PPG signals, as they also hinders the

computation of handcrafted features. Assessment of quality of PPG signals is also chal-

lenging albeit having multiple metrics, due to their inconsistent behaviour [35]. From the

experimental study, it has been established that Skewness based quality index SSQI is the

most effective one [63]. Therefore, we plot the errors in predicting DBP, MAP and SBP

against SSQI (Fig. 4.3). From the plot, it appears that for signals with low SSQI , the

error is smaller. However, this is due to the fact that very few signals were in that unfit

region and somehow the model managed to learn their patterns with comparative ease.

The interesting region is in the middle where the error is the highest. This is though the

Acceptable region, the variations made the prediction most difficult. On the contrary, for

the Excellent region, i.e. with the highest values of SSQI , minimal errors were encoun-

tered. Nevertheless, the plots may deceive us as the were some really corrupted signals

with a questionably high value of SSQI , the opposite being also true. Furthermore, the

outlier signals in each of the range imposed most difficulties.

(a) (b) (c)

Figure 4.3: Evaluation of PPG2ABP in perspective of the presence of inappropriate
signals. For the comparative eminence of skewness in assessing PPG signal quality we
have used SSQI as the grade of PPG signals. It can be observed that as SSQI increases the
overall error of predicting DBP, SBP along with MAE diminishes. Also it should be noted
that there were only a few of PPG signals with extremely low SSQI which was learnt well
by the model. Besides, even some good quality PPG signals yielded a low SSQI score.
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4.5.3 BHS Standard

The British Hypertension Society (BHS) has introduced a structured protocol to assess

blood pressure measuring devices and methods [89]. Hence, this standard has been fre-

quently used in the literature as a metric [55,56,84,86]. The accuracy criteria of the BHS

standard appraise methods based on the absolute error. More specifically, the grades are

provided by counting what percentage of the predictions on the test samples fall under

5 mmHg, 10 mmHg and 15 mmHg absolute error respectively. The three grades are pre-

sented in Table 4.2, for an algorithm to obtain a certain grade, it must satisfy all the

three thresholds simultaneously. In addition, there is grade D for algorithms failing to

meet the requirements of grade C [89].

The absolute error of computing DBP, MAP and SBP on the test data by PPG2ABP

is presented in Fig. 4.4. It can be observed that for both DBP and MAP most of

the predictions are covered by the 15 mmHg error threshold, a significant part of which

actually fall under 5 mmHg error surprisingly. For these two we obtain a grade A score

under BHS standard. On the contrary, for SBP though it is apparent from Fig. 4.4

that quite a number of test predictions exceed the 15 mmHg error threshold, still it is

good enough to achieve the grade B score. It should be noted that to the best of our

knowledge no other algorithms obtained grade B in SBP prediction on MIMIC II dataset

(more details on Section 4.5.7). The detailed results are presented in Table 4.2, it can be

observed that PPG2ABP outperforms the requirements of 5 and 10 mmHg thresholds by

an impressively high margin.

Table 4.2: Evaluation of BHS Standard. Here we present the criteria used in grading the
rank of predictions using BHS Standard. We also demonstrate how our results compares
with the BHS Standard.

Cumulative Error Percentage
≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

DBP 82.836 % 92.157 % 95.734 %
Our Results MAP 87.381 % 95.169 % 97.733 %

SBP 70.814 % 85.301 % 90.921 %
grade A 60 % 85 % 95 %

BHS grade B 50 % 75 % 90 %
grade C 40 % 65 % 85 %
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(a) (b) (c)

Figure 4.4: Mean Absolute Error Histogram. Here we present how the mean absolute
error of predicting DBP, SBP and MAP of the samples are distributed. In addition, we
also observe errors of how many samples lie below the 5 mmHg, 10 mmHg and 15 mmHg
thresholds, used in the evaluation of BHS Standard.

Table 4.3: Evaluation of AAMI Standard. Here we present the criterion used in grading
the rank of predictions using AAMI Standard. We also demonstrate how our results
compares with the AAMI Standard.

ME
(mmHg)

STD
(mmHg)

Number of
Subjects

DBP 1.619 6.859 942
Our Results MAP 0.631 4.962 942

SBP -1.582 10.688 942
AAMI Standard ≤ 5 ≤ 8 ≥ 85

4.5.4 AAMI Standard

Similar to the BHS Standard, AAMI Standard is another metric to evaluate blood pressure

measuring devices and methods. The criterion set by AAMI standard [36] requires the

blood pressure measuring methods to have a mean error and standard deviation of less

than 5 mmHg and 8 mmHg respectively. Table 4.3 shows our results under the AAMI

criterion. It can be observed that for both DBP and MAP the requirements of AAMI

standard are satisfied, they are met with a big margin to be more precise. However, for

SBP, although the condition of mean error is fulfilled, the value of standard deviation is

a bit higher than the ideal. It may be noted here that other contemporary methods fail

to satisfy the AAMI criterion for SBP on the MIMIC dataset as well. The histograms of

error for prediction of DBP, MAP and SBP is presented in Fig. 4.5. From the figures, it

is again evident that though for DBP and MAP the spread of error is very narrow, it is

comparatively outspread for SBP.
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(a) (b) (c)

Figure 4.5: Mean Error Histogram. Here we present how the mean absolute error of
predicting DBP, SBP and MAP of the samples are distributed. All these errors seem to
have a mean of zero and a small value of standard deviation other than for SBP.

Table 4.4: Hypertension Classification performance using the predicted values of SBP and
DBP. It can be observed that DBP values are more potent in determining Normotension,
whereas, SBP values show greater promise in identifying Hypertension.

DBP SBP
Class Range Precision Recall F1-Score Range Precision Recall F1-Score
Normotension DBP ≤ 80 91.35 % 98.16 % 94.63 % SBP ≤ 120 92.37 % 72.46 % 81.22 %
Prehypertension 80 < DBP ≤ 90 76.25 % 63.97 % 69.57 % 120 < SBP ≤ 140 86.66 % 79.90 % 83.14 %
Hypertension 90 < DBP 91.66 % 67.46 % 77.77 % 140 < SBP 94.68 % 98.53 % 96.56 %

4.5.5 BP Classification Accuracy

From an application perspective, it is actually more beneficial to be able to classify the

state of hypertension of a patient, instead of the exact values of SBP, DBP or MAP.

This classification can be done from the values of SBP and DBP in a straight-forward

manner [46]. Table 4.4 denotes the ranges for the three most common classes, namely

Normotension, Prehypertension and Hypertension. In addition, the performance of clas-

sifying the blood pressure states based on SBP or DBP values alone are also listed. It

can be observed from the table that SBP values provide the most reliable means to de-

termine Hypertension, i.e. an F1-score of 96.56%, along with nearly balanced Precision

and Recall. SBP also manages to diagnose Prehypertension state with an F1-Score or

83.14%. On the contrary, it can be noted that DBP can be used to classify Normotension

state with comparatively better accuracy, having an overall F1-Score of 94.63%. DBP,

however, scores poorly in determining the other two classes.

Therefore, it’d suitable to classify Hypertension and Prehypertension states using SBP

values and the Normotension condition with DBP values. The confusion matrices pre-

sented in Fig. 4.6 also strengthens these analyses.
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(a) (b)

Figure 4.6: Confusion Matrix of Hypertension Classification using DBP and SBP val-
ues. It can be observed that DBP values are more potent in determining Normotension,
whereas, SBP values show greater promise in identifying Hypertension.

4.5.6 Statistical Analysis

Fig. 4.7 represents the Bland-Altman plots [40] for predicting DBP, MAP and SBP

respectively. The 95% limits of agreement span the segment from µ− 1.96σ to µ+ 1.96σ

(shown using dashed lines), where µ and σ are the mean and standard deviation of the

distribution respectively. For DBP, MAP and SBP this limit translates to [−11.825 :

15.0637], [−9.095 : 10.357] and [−22.531 : 19.367] mmHg respectively. Though these

numbers may appear to be overwhelming, actually if we observe the plots from Fig. 4.7

it can be seen that most of the error terms fall below 5 mmHg range. It is nevertheless

true that all the three plots contain a great chunk of outliers, most specifically the SBP

one (Fig. 4.7c).

In addition, Fig. 4.8 depicts the regression plots of predicting DBP, MAP and SBP

respectively. From the plots alone, it is evident how much the predictions are correlated

with the ground truth values. Moreover, the values of Pearson Correlation Coefficient for

DBP, MAP and SBP predictions are 0.8941, 0.9656 and 0.9360 respectively, indicating the

strong positive correlation further. Furthermore, such high values of Pearson’s coefficient

on a sample size of 27260 corresponds to a p value of p < .000001. Such a low value

of p nullifies the null hypothesis completely, indicating the statistical significance of our

results.
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(a) (b) (c)

Figure 4.7: Bland-Altman Plot. Here through the Bland-Altman plots it is evident
that the error of predicting DBP, MAP and SBP of 95% of the samples lie between
[-11.825:15.0637], [-9.095:10.357] and [-22.53119.367] respectively.

(a) (b) (c)

Figure 4.8: Regression Plot for Prediction of DBP, MAP and SBP. In all the three cases
we obtain a p value in the range of p < .000001, which nullifies the null hypothesis and
strenghtens the statistical significance of our method.

Similarly, to assess the overall statistical significance of PPG2ABP, we perform a paired

Student’s t-test. We compare the PPG2ABP pipeline with an 1D U-Net as baseline, for

the lack of implementations of other works. The reasoning behind using paired Student’s t-

test over Wilcoxon signed-rank test is that, the difference between the errors of the models

are normally distributed as shown in Fig. 4.9. From the test we obtain a t-statistics

of 70.117 and the corresponding p value is almost zero. This again nullifies the null

hypothesis, stating that the two models should perform similarly, and any improvement

from using PPG2ABP is merely by chance. Hence, paired t-test establishes the statistical

significance of PPG2ABP. Although the superiority of PPG2ABP is evident from both the

higher performance metric values and statistical significance, it should also be noted that

the 1D MultiResUNet model used in PPG2ABP is a bit more expensive computationally,
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Figure 4.9: Difference between Error of the Two Methods. Here we compare the error of
PPG2ABP with a 1D U-Net as baseline. It can be observed that the difference between
the errors are normally distributed, which proposes that a paired student’s t-test will be
the suitable statistical test.

compared to the baseline 1D U-Net. Therefore, this improvement of performance does

come at a cost of computation time, which can be considered as a trade-off.

4.5.7 Comparison with Other Methods

Despite there being a lot of research endeavours on this topic, unfortunately, we cannot

compare most of the works directly. This is mostly due to the fact that most of the

works use a proprietary dataset of their own, which is not shared publicly due to privacy

reasons [103]. The handful number of methods reported on a standard public dataset like

MIMIC II, also use different numbers of patients which again makes it difficult to ensure a

level playing field. Slapnivcar demonstrated that while methods such as that of Kachuee et

al. [56] struggles for working with a vast repertoire of patients, works like Xing et al. [123]

face less impediments for using a smaller subset of patients. Therefore, presenting a

comparison among different methods gets unnecessarily complicated. Nevertheless, we

have compiled a list of works evaluated on MIMIC II dataset with a comparable and

sufficiently large number of patients.

The comparison is presented in Table 4.5. The results are collected from the respective
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papers. However, for the work of Mousavi et al. [86] they neglected 1% error of SBP

which achieved a Grade of C under BHS standard, but we consider the error which drops

it down to Grade D. It can be observed that only PPG2ABP manages to obtain Grade

B for SBP prediction under the BHS standard, and also consistently outperforms all the

other methods. This is indeed remarkable as PPG2ABP was not explicitly trained at all

to predict accuracy SBP, DBP or MAP.

Table 4.5: Comparison among different approaches. Here we list the methods that used
the MIMIC II dataset to evaluate their performance. Furthermore, for a fairer comparison
we have only included the methods that considers a significant portion of the dataset. We
compare the methods using measures like Mean Absolute Error (MAE) of predicting DBP,
MAP, SBP, in addition to BHS and AAMI Standard.

Study Dataset Input Results

Kachuee et al.
[55]

MIMIC II
(942
subjects)

PPG
and
ECG

BHS Standard:
DBP = Grade B, MAP = Grade C, SBP = Grade D

MAE:
DBP = 6.34 mmHg, MAP = 7.52 mmHg, SBP = 12.38 mmHg

Kachuee et al.
[56]

MIMIC II
(942
subjects)

PPG
and
ECG

BHS Standard:
DBP = Grade B, MAP = Grade C, SBP = Grade D

AAMI Standard met for : DBP, MAP

MAE:
DBP = 5.35 mmHg, MAP = 5.92 mmHg, SBP = 11.17 mmHg

Mousavi et al.
[86]

MIMIC II
(441
subjects)

PPG

BHS Standard:
DBP = Grade A, MAP = Grade B, SBP = Grade D

AAMI Standard met for : DBP, MAP

Slapnivcar et al.
[103]

MIMIC II
(510
subjects)

PPG
MAE:
DBP = 9.43 mmHg, SBP = 6.88 mmHg

PPG2ABP
MIMIC II
(942
subjects)

PPG

BHS Standard:
DBP = Grade A, MAP = Grade A, SBP = Grade B

AAMI Standard met for : DBP, MAP

MAE:
DBP = 3.449 mmHg, MAP = 2.310 mmHg, SBP = 5.727 mmHg

4.6 Discussion

In conclusion, in this work, we have made an effort to infer the complete waveform of blood

pressure signals using ppg signals alone. There are indeed a number of works where only
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the various information of interest like DBP, SBP and MAP are computed. However,

these studies have been constrained as none of them managed to represent the overall

picture of the blood pressure. Moreover, often they required additional signals like ECG.

Furthermore, several of the algorithms actually computes some handcrafted features from

the signals, which limits the algorithms to only work on perfectly shaped signals, free

from noises and artefacts.

Therefore, our work solves the two major issues, namely, restriction of using ideal

signals only and involvement additional signals. This has been achieved by employing

deep learning. Since deep learning models upon analysis of the data, computes high-level

abstract features adaptively from the data, this alleviates the need of computation of

manual handcrafted features which may impose additional criteria. In addition, since

the very beginning, we have been motivated to develop methods based on ppg signal

alone. These considerations paved the way to PPG2ABP, a deep learning based method

to predict the continuous arterial blood pressure waveform.

The resulting waveforms generated from PPG2ABP corresponds to the actual wave-

form of the blood pressure signal, retaining the shape, amplitude and even phase. How-

ever, the success of PPG2ABP extends beyond that. As it was mentioned earlier, there

a plethora of methods to compute measures like SBP, DBP and MAP. It was found

out surprisingly that we can calculate these values using pressure waveform predicted

by PPG2ABP with outstanding accuracy. It is certainly remarkable that the accuracy

of predicting these values outperforms the existing methods, tailored towards predicting

them in the first place. These methods are mostly supervised, trained explicitly to infer

these values, on the other hand, our proposed PPG2ABP even without any implicit such

training, predicts those values better. For DBP and MAP prediction we have achieved

Grade A under BHS standard test and also satisfied the criterion of AAMI standard.

Though for SBP the results are not so phenomenal, it is still considerably superior. For

SBP we have achieved Grade B on BHS standard test, and to the best of our knowledge,

no other algorithms managed to score this using MIMIC dataset. Moreover, PPG2ABP is

resilient to noises and imperfections. Also, PPG2ABP can also be utilized as hypertension
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classifier algorithm, with astounding accuracy. Furthermore, the results of PPG2ABP are

statistically significant.

The application of PPG2ABP can be manifold. In addition to predicting the typical

systolic and diastolic blood pressure values, the complete profile of the blood pressure

can be achieved this way. This will allow the doctors to monitor the blood pressure of

their patients continuously. Moreover, the trend and pattern of blood pressure can be

mapped to the user behaviour and activities, which may lead to insightful findings. Since

nowadays all the smartwatches and fitness bands comprise a ppg sensor, applications based

on PPG2ABP can be easily deployed to the mass market. This is due to the wonderful fact

that PPG2ABP is free from the need for additional, expensive sensors like ECG. Therefore,

to make the results of this research accessible to the general public, the codes have been

made open sources and can be found in https://github.com/nibtehaz/PPG2ABP. The

codes are released under the MIT License, which makes it possible to develop server-side

or smartphone/smartwatch applications on top of this.

The future direction of this research may also be thought from a number of different

perspectives. Firstly, we have used two networks one to approximate and the other to

refined the predictions. We are interested to design and develop more optimized deep

learning models that we will be able to replace the two with only one model instead. This

is will make the ABP prediction from ppg an end-to-end process. Furthermore, it will

be interesting and beneficial to develop applications for wearables using PPG2ABP and

conduct clinical studies thereby. Moreover, many of the existing methods have shown the

effectiveness of utilizing a personalized calibration, which we too wish to explore in our

future works.

https://github.com/nibtehaz/PPG2ABP
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Conclusion

In this thesis, various biomedical signals and there diverse applications have been explored.

Notably, for the widespread availability in smartwatches, the ECG and PPG signals in

particular, have drawn most of our attention. Inclusion of these two, basically extends

all our smartwatches to health monitoring devices. Therefore, they possess tremendous

potential in continuous, automated diagnosis.

ECG signals have been being used for quite a long time for the detection of vari-

ous heart arrhythmias by the doctors. Therefore, taking motivations from the medical

practice, a plethora of algorithms have been developed to diagnose arrhythmias like Ven-

tricular Fibrillation, Ventricular Tachycardia, Atrial Fibrillation, Atrial flutter etc. While

analyzing such methods, we mostly notice two different types of approaches, that differ

in the underlying methods/tools used. The former solely focuses on Signal Processing

techniques, while the latter utilizes Machine Learning. Actually, the algorithms from the

first class are more medically inspired as they diligently audit the signals to extract the

patterns studied by the doctors. These methods are developed based on the intuition

of the doctors. By analyzing what the doctors actually look for in such signals, rele-

vant attributes are identified. Finally, corresponding mathematical models are developed

by utilizing the vast repertoire of Signal Processing techniques. Machine learning based

methods, on the other hand, simply select some signal parameters as features and train
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a learning algorithm to detect the arrhythmias. Despite being more medically consistent,

one major shortcoming of the signal processing based methods is that they fail to per-

form properly when tested on a large amount of data. It is not completely unexpected

as the methods are manually handcrafted and it is almost impossible for a person to

analyze and consider signals of all shapes and forms. In this regard, machine learning

based approaches are more promising as they in fact learn the patterns adaptively from

data without any human intervention. Nevertheless, by considering feature engineering

as a black box, this type of algorithms sometimes fails to capture the actual important

patterns and attributes. Therefore, in this work we have proposed a fusion of the two,

effectively combining the best of the both worlds. We develop a novel feature engineer-

ing scheme based on the intuitions of the doctors, extending the previous advancements

in the former domain. Furthermore, we apply a suitable machine learning pipeline to

identify the ECG signals with Ventriuclar Fibrillation. Therefore, we develop VFPred,

performing a proper amalgam of the two distant domains, signal processing and machine

learning. The most remarkable outcome of VFPred is that the values of sensitivity and

specificity are almost balanced, whereas the existing algorithms, despite scoring higher

sensitivity, fall short in specificity. We believe that this is due to the reason of us uti-

lizing a feature engineering scheme based on how the doctors actually differentiate the

ECG signals. Therefore, instead of performing futile mix-and-match of the numerous

possible ECG signal parameters we have focused on the specific attributes that sets the

VF class signals apart from the rest. Moreover, most significant features were selected

using Random Forest, which resulted in a further superior feature set. Accompanying

such an effective feature engineering with a properly tuned, robust SVM classifier, and

at the same time, resolving the problem of class imbalance using SMOTE, enabled us to

detect ventricular fibrilliation from ECG signals of even as short as 5 seconds long with

high accuracy.

On the contrary, PPG signals, being connected with blood volume, is a possible mea-

sure of the pressure exerted on the walls of the blood vessels by the blood circulating

therein. Therefore, a number of studies have been performed to infer blood pressure from
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PPG signals. In this domain, most of the works revolve around the idea that the speed

of blood flow reflects the state of the blood pressure. Therefore, these works mostly focus

on deriving mathematical parameters to profile the motion of blood flow. In order to do

estimate the progress of blood flow in a more detailed way, ECG signals are also used.

Hence several parameters like PTT, PEP, PAT have been introduced in the literature and

subsequently mathematical models were developed to predict blood pressure using those

as features. A conspicuous shortcoming of such methods is the necessity of the inclusion

of the ECG signal, which adds the requirement of a dedicated ECG sensor. To overcome

this limitation, methods based on PPG signals alone were introduced later. These meth-

ods rely on computing some handcrafted features from the shape of the PPG signal. Most

notably, the amplitudes and delay between certain points of interest like Systolic Peak,

Diastolic Peak and Diastolic Notch are computed, which is followed by mathematical

models to predict blood pressure value. However, this approach also has a shortcoming of

its own as follows. Since they highly rely on the shape of the PPG signal waveforms, they

can not operate on PPG signals that deviate from the ideal configuration. This greatly

reduces the utility of such algorithms as PPG signals are quite prone to being distorted.

Therefore, we have attempted to develop a method to predict blood pressure with a goal

to overcome these two major drawbacks in mind, i.e., inclusion of ECG and requirement

of ideally shaped PPG signals. As a result, we have developed PPG2ABP, a deep learning

based method that can predict the continuous waveform of the Arterial Blood Pressure

(ABP) from the PPG signal alone. Although our primary goal was to construct the ABP

waveform, it appeared that the proposed PPG2ABP was also capable of predicting some

other quantities of interest like SBP, DBP and MAP. Moreover, not only the waveform

construction error was minimal, prediction of such quantities was also almost impeccable.

These values even yielded Grade A score under the BHS Standard for the prediction of

DBP and MAP, and Grade B score for prediction of SBP. However, for SBP, it should be

noted that, Grade B is by far the state of the art except for a questionable work confined

to a small dataset. In addition, AAMI standard was also met for the prediction of DBP

and MAP. Furthermore, the predicted blood pressure values demonstrated great potential
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to classify Hypertension levels. All these outstanding outcomes were obtained from a di-

verse collection of PPG signals which even contained some signals of substandard quality.

PPG2ABP was therefore found outperforming contemporary methods by a considerable

margin.

The future direction of this research has several branches. In this thesis we have

been confined within ECG and PPG signals, but other biomedical signals also hold great

promises as well. Most notably, our present interest lies in analyzing EEG signals for their

diverse applications, ranging from human emotion recognition to sleep stage detection.

In addition, we focused on Ventricular Fibrillation as it is the most life threating one.

However, there are other heart arrhythmias that can be diagnosed from ECG signals,

Ventricular Tachycardia, Atrial Fibrillation, Atrial Flutter are to name a few. Studying

these variants of arrhythmias in conjuction with their corresponding ECG signals is also

something we wish pursue in future. Furthermore, our ultimate goals is to simplify these

methods as much as possible without sacrificing accuracy, so that we can develop wearable

devices to continually monitor the health conditions of the patients.

In conclusion, the methods developed in this thesis hold great promises in continuous

assessment of health conditions of patients. Widespread availability of PPG and ECG

sensors in wearables and smartwatches, coupled with the gradual advancement of cloud

computing in parallel with in-device machine learning holds great potential in the future

of constant medical monitoring.
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