
M.Sc. Engg. Thesis

Typosquatting Error Detection Analyzing DNS Log

by

Md. Anwar Parvez

Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA-1000

October, 2019

ii

Candidate’s Declaration

This is hereby declared that the work titled “Typosquatting Error Detection Ana-

lyzing DNS Log” is the outcome of research carried out by me under the supervi-

sion of Dr. Anindya Iqbal, in the Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka. It is also declared that

this thesis or any part of it has not been submitted elsewhere for the award of any

degree or diploma.

Md. Anwar Parvez

Candidate

User
Placed Image

Acknowledgment

First of all, I would like to thank my supervisor, Dr. Anindya Iqbal, for assisting me

throughout the thesis. Without his continuous inspiring enthusiasm, encouragement,

supervision, guidance, and advice, not have been complete this thesis. I am especially

grateful to him for giving valuable time whenever I needed, and always providing

continuous support, motivation and endless patience towards the completion of the

thesis. Last but not least, I am grateful to my guardians, families, and friends for

their patience, cooperation, and inspiration during this period.

I would like to thank Mr. Arif Ahmed Tanim from BTCL (Bangladesh Telecom-

munications Company Limited) for providing me log from .bd domain server. I also

want to thank Deputy General Manager of domain division Mr. Shohidul Islam for

his consent to use their log data in research.

I would also like to thank to my research group member Ishtiyaque Ahmad es-

pecially for helping me in thesis implementation. I also want to thank the other

members of my thesis committee: Dr. Md. Mostofa Akbar, Dr. M. Sohel Rahman,

Dr. Atif Hasan Rahman and specially the external member Dr. Shakkhar Shatabda

for their valuable suggestions.

iii

Abstract

Typosquatting is a form of internet cybersquatting generated from the mistakes (ty-

pos) made by internet users while typing a website address. It often leads the user

to another unintended website. Sometimes it is exploited by cybersquatters to at-

tract website traffic by redirecting common typos of popular websites to some other

sites with malicious contents. A possible solution is defensive registration of similar

domains and redirecting requests to the original site. This would be affordable for

the owner of the original domain if a short list of such probable typo domain names

can be predicted. In this thesis, we present a supervised learning based typographical

error detection model analyzing domain server log that would suggest such a list. The

detection scheme achieves as high as 98% accuracy. Existing works on typosquatting

mostly try to generate typo sites by using different heuristic rules. However, to the

best of our knowledge, none of them can predict probable typo variations of a given

URL at pre-registration phase. We also present TypoWriter, an RNN based error

prediction tool to fill this gap. TypoWriter achieves a good performance in terms

of successful predictions that match with the ground-truth. It is compared with five

widely used typo generation tools and substantial improvement is observed.

iv

Contents

Board of Examiners i

Candidate’s Declaration ii

Acknowledgment iii

Abstract iv

1 Introduction 1

1.1 Significance . 1

1.2 Limitations of Previous Works and Our Objective 2

1.3 Research Questions . 4

1.4 Overview of Our Solution . 5

1.5 Outline of the thesis . 6

2 Literature Review 7

2.1 Research on Typosquatting . 7

2.2 Existing Typo Generation Tools . 9

2.3 Recurrent Neural Network . 9

2.4 Summary . 10

3 Our Proposed Framework 11

3.1 Detection from Log Analysis . 11

3.1.1 Data Generation . 12

3.1.2 Data Cleaning . 12

3.1.3 Extraction of Typo Pair using Deterministic Rules 12

3.1.3.1 Edit distance based estimation 12

3.1.3.2 Time difference . 13

v

CONTENTS vi

3.1.3.3 Same IP . 14

3.1.4 Gold-set Generation . 14

3.1.5 Feature Selection . 14

3.1.6 Classifier Design . 15

3.2 Pre-registration Prediction . 16

3.2.1 The Concept . 16

3.2.1.1 Variable Length of Sequences 18

3.2.1.2 Global vs Local Dependency 18

3.2.2 Construction of n-grams . 19

3.2.3 Training RNN Model . 20

3.2.3.1 Preprocessing of Training Dataset 20

3.2.3.2 Model Architecture 21

3.2.4 Prediction . 21

3.2.5 Ranking . 22

3.3 Summary . 23

4 Result and Performance Evaluation 24

4.1 Data Collection and Dataset . 24

4.2 Experimental Setup . 25

4.3 Detection Performance . 25

4.4 Prediction Performance . 27

4.4.1 Impact of Substring Length 27

4.4.2 Impact of nr . 29

4.4.3 Comparison with Generation Tools 30

4.5 Discussion . 33

4.6 Summary . 37

5 Empirical Study 38

5.1 Significant number of misspelled URLs exist in the DNS Log

with single character modification of original URLs 38

5.2 Short original URLs suffer more from URL poaching 39

5.3 Typographical error can be categorized in different types . . 40

6 Conclusion 44

List of Figures

3.1 Overview of our detection scheme . 11

3.2 Detailed approach to extract typo pairs from initially generated log . 13

3.3 Methodology followed for the construction of TypoWriter 17

4.1 Matching ratios for 10 different domain names 29

4.2 The increase of expected number of top typo sites with the increase of

number of defensive domain registered 30

4.3 Performance comparison of TypoWriter with other typo generation

tools. 34

4.4 Number of typo visits by target site’s popularity 34

4.5 Number of typo visits by target site’s category 35

5.1 Percentage of modification types that caused typos 40

5.2 Frequency of typo hit for different URL lengths 40

vii

List of Tables

3.1 Features used for typosquatting detection 14

3.2 N-gram pairs constructed from some sample data 20

3.3 Model architectures with the minimum validation loss for different val-

ues of n . 22

4.1 Parameters used for detection classifiers 26

4.2 10-fold cross validation performance measures using different machine

learning models for detection task . 27

4.3 Comparison of different machine learning models on test dataset . . . 27

4.4 Number of correctly detected typo domain name out of top 5 most

occurred typo sites for 10 different domain names 28

4.5 Matching ratios for 10 different domain names 29

4.6 Typo candidates generated by prediction models for n = 2, 3. 31

4.7 Typo candidates generated by prediction models for n = 4, 5. 32

4.8 The impact of DNS log volume on detection accuracy 36

4.9 Comparison among proposed methods with passive detection method-

ology and n-gram based method . 36

4.10 Features used for typosquatting detection along with information gain

ratio obtained for each feature . 37

5.1 Character repetition, omission and replacement example 39

5.2 Character repetition, omission and replacement example 39

5.3 Different type of typosquatting error and their proportion 41

5.4 Keyboard proximity typosquatting for horizontal and vertical orientation 41

5.5 Dash and Dot related typosquatting error 43

viii

List of Algorithms

3.1 Algorithms for constructing n-gram 19

ix

Chapter 1

Introduction

Typosquatting refers to the mistakes (typos) made by internet users while typing a

website address that is likely to lead the user to another unintended website, possibly

owned by a malicious entity. The malicious people may register the domain name

similar to a target website. Two different domain names may be similar in various

ways. Some domain names are visually similar, some are phonetically, and some

names may result from spelling error of others. Many Bengali popular names can be

written with different similar phonetic spellings. Perpetrators may use these similar

domain names to confuse valuable customers of popular domains. Registration of

misspelling of popular domains is done by typosquatters for making money out of

traffic from unintentional typing mistakes or fat finger errors made by internet surfers.

Hence, this is considered a significant cybersecurity threat, detection and prevention

of typosquatting is a challenging problem.

1.1 Significance

Typosquatting often leads to the way of dangerous cyber attacks. Hackers create

fake websites that imitate the look and feel of the user’s intended destination so that

the user may not realize while visiting a different site. Thus typosquatting leads to

phishing attacks. Sometimes these fake websites attempt to sell products and services

that are in direct competition with products and services sold at the actually intended

website. Often they are intended to steal users’ personal information, such as credit

card number, PIN, password, etc. Also, malicious software can be downloaded to

users’ devices simply from visiting these sites. Users do not even need to click on a

link or accept a download request for dangerous software to be installed on his/her

1

CHAPTER 1. INTRODUCTION 2

computer. This is called drive-by download [1], which is responsible for many serious

security breaches.

Typosquatting causes a lot of monetary loss each and every day. It is estimated

that typosquatting costs the brands associated with most frequently visited 250 dot-

COM sites $285 million per year due to unnecessary advertising costs, loss of sales,

and poor user experiences [2]. The top 255 most visited sites lose $265,180,586 to ty-

posquatters each year. Brands lose an additional $19,986,288 as a result of misusing

the typo domains that they own. The losses due to cybercrime are not always mon-

etary in nature. Over 120,000 e-mails and 20 GB of corporate data were stolen from

Fortune 500 Companies via typosquatting [3]. It is found that typosquatting costs

a typical user 1.3 seconds per typosquatting event compared to receiving a browser

error page, and legitimate sites lose approximately 5% of their mistyped traffic owing

to the alternative of an unregistered typo [4].

1.2 Limitations of Previous Works and Our Objec-

tive

Domain name policy provides the basis for the existence of cybersquatters and ty-

posquatters because it allows registration on a first-come, first served basis. From a

website owner’s perspective, one way of mitigating the loss occurred by typosquat-

ting attacks is registering domain names similar to the original one (in other words,

possible typo variations of the original one) before a typosquatter can do so. This

scheme is known as defensive domain name registration. Owners and companies can

develop dummy sites in those domains and redirect typo-requests (that land in those

sites) to the original one.

In order to gain knowledge about typosquatting attacks and unintentional errors

made by a user, a post-hoc analysis is commonly used. Some existing tools [4] [5]

try to detect highly probable candidates of typosquatting errors for a given URL

using this approach. Moore et. al. [6] in the year 2010 described a method for

identifying typosquatting by generating possible misspelling with Levenshtein and

fat-finger distance and crawled typo domains to analyze their revenue sources. Khan

et al. [4] proposed an approach for detecting typosquatting by passively looking for

domain resolutions and HTTP traffic within a live network. This work used time-

based metrics and Levenshtein edit distance for clustering typo pair. Piredda et.

CHAPTER 1. INTRODUCTION 3

al. [5] addressed typosquatting detection by passive ISP traffic analysis using machine

learning. Only n-gram based representation of typo domains are used as the feature

set to identify typosquatting URL and hence it achieved unsatisfactory performance.

Detection of typosquatting enables a site owner to get insights regarding the type of

errors users are making while typing a URL. Yet, in most of the cases, the visited typo

sites are already registered by typosquatters and hence cannot be used for defensive

registration any longer. In contrast, if the owner can get a list of most probable typo

variations of a domain name before registration, she might make defensive registra-

tions for those typo domain names and thus effectively prevent typosquatting attacks.

Therefore, we argue that prevention is a better measure than detection in order to

avoid typosquatting loss. However, there is a cost associated with the registration of

every site and hence without a short list of possible typosquatting candidates, most

of the owners cannot afford such defensive registration. In this research, we have

designed a tool named TypoWriter which can provide a feasibly short list of possible

typosquatting domain names to make defensive registration widely possible. This is

accomplished by using a prediction model, i.e., based on the to-be-registered domain

name only. To the best of our knowledge, this is the first attempt to predict highly

probable typo errors of a given URL. This is a significant challenge to predict typos

at the pre-registration phase without any post-hoc information or DNS log analysis.

One of the goals of our work is to create a framework for detecting typosquatting er-

ror by analyzing DNS log of .bd domain provided by Bangladesh Telecommunications

Company Limited (BTCL). The other objective of our work is to design a predictive

model that would suggest a candidate set for preventive domain registration. We

developed a recurrent neural network (RNN) based model to predict possible typos

of a given site. We make the following contributions in this thesis

• Designing a deterministic approach to select typosquatting error-set by analyz-

ing DNS log of BTCL which yields development of a training dataset of pairs.

• Designing a supervised learning based model and set of appropriate features of

which some were not used previously for automatic detection of typosquatting

errors.

• Identifying insightful patterns and characteristics of typosquatting errors result-

ing from the study of detected errors. To encourage reproduction, we published

the dataset and tool [7].

CHAPTER 1. INTRODUCTION 4

• Developing a Recurrent Neural Network (RNN) based prediction system which

can predict possible typo candidates for a new website before registration. To

the best of our knowledge, this is the first work that tries to predict as a pre-hoc

manner.

1.3 Research Questions

In this thesis, we address the following research questions. In other studies of ty-

posquatting, rule-based methods are applied to generate typos. However, we can get

actually occurred typos in DNS log. The following research question investigates the

phenomenon whether such errors can be detected automatically analyzing the DNS

log.

RQ1 Can we detect typosquatting errors from DNS log?

Extracting typosquatting error from the large size of DNS log requires significant

effort. For this reason, a rule-based deterministic tool is needed which can be devel-

oped using the predictors found from literature. Then the quality of the outcome of

this process will be verified. Therefore, the next research question is:

RQ2 Can we make a deterministic tool to detect typosquatting?

The major focus of the earlier studies was to analyze the typo URLs those are

generated manually by all possible character modification for preventive domain reg-

istration. Machine learning based detection technique with extracting typosquatting

error from DNS log is a relatively new approach. Next question is related to the

performance of the new approach.

RQ3 Can machine learning-based tools detect typosquatting and which classifier per-

forms the best?

To improve the performance of machine learning based tools and their detection

qualities, various types of distance or similarity features are gathered from extracted

typo pairs. Among those feature, some may contribute significantly to detection

accuracy. Therefore, the next question is:

RQ4 Which features indicate typosquatting?

CHAPTER 1. INTRODUCTION 5

Every day a large amount of DNS query logs are generated. Manual inspection is

required for analyzing these logs to improve quality. To achieve acceptable detection

quality, a certain amount of log need to be processed. How much log need to be

processed to attain acceptable detection quality is the question under investigation.

RQ5 How long to wait for achieving acceptable detection quality from log analysis?

If it is possible to register additional domains for defensive redirection, it would reduce

the possibility of typosquatting attacks from the beginning. Hence, we would like to

investigate if it is possible to predict probable typo candidates from a given domain

name.

RQ6 Can we find out which defensive domains to register to prevent typosquatting at

the inception of a new website (without log analysis)?

1.4 Overview of Our Solution

First, we collected DNS log of 5 months (223.5 GB). Next, we removed the invalid

entries and found 117GB of valid data. Applying some deterministic rules related

to edit distance, time difference, IP address, etc. and performing a careful manual

inspection, we refined the dataset. A gold set was prepared from the refined data.

Next, we selected 9 features covering lexical and phonetic similarity, keyboard prox-

imity, time distance, etc. observing the properties of gold set entities. Finally, we

experimented with 7 widely used classifiers. Among them, random forest classifier

performed the best with accuracy over 98% and F-score over 90% on 10-fold cross-

validation and test dataset. We have also analyzed the volume of log data required to

detect typosquatting with certain accuracy and found that our proposed model could

achieve more than 92% accuracy with log size of 700,000 only that may be collected

in a couple of days. We have developed the tool TypoWriter that would suggest

a candidate set for preventive domain registration using Recurrent Neural Network

(RNN). It was found that splitting a domain name into 3-grams and then performing

the prediction over these 3-grams, we were able to achieve a true positive rate (TPR)

of 40% by considering top 5 predicted candidates only.

CHAPTER 1. INTRODUCTION 6

1.5 Outline of the thesis

Chapter 2 mentions some significant typosquatting attacks over the last few years and

discusses some of the related works with typosquatting error detection.

Chapter 3 illustrates the detail of different methods and algorithms we have used in

the thesis.

Chapter 4 focuses on the experimental setups and results. It also illustrates the

experimental data as well as the environment of our research and examines the exper-

imental results. Finally, the analysis of different experimental results are presented in

this chapter.

We show the empirical study of our work with identified insightful patterns and char-

acteristics of typosquatting errors in Chapter 5.

Finally, Chapter 6 concludes our thesis. This Chapter also includes the outlines of

some future works related to this dissertation.

Chapter 2

Literature Review

Several works have been done on the detection of typosquatting and its preventive

measurements. Below we discuss some of them.

2.1 Research on Typosquatting

Hussain et al. [8] showed typosquatting scenario of popular domains of Bangladesh.

Domains are checked if they are live or not after the generation of possible typo

domains. Then the potential typo domains are content-analyzed to see if they aim

at abusing users with spam, scam or any other media. Khan et al. [4] presented a

strategy for quantifying typosquatting harm via intent inference technique. Intent

inference allows us to define a new metric for quantifying harm to users. Szurdi et

al. [9] performed a comprehensive study of typosquatting domain registrations within

the.com TLD. Piyush [10] overview of cybersquatting and its prominent effects in

India. Wang et al. [11] proposed Strider Typo-Patrol to discover large-scale, system-

atic typosquatters. They showed that a large number of typosquatting domains are

active and a large percentage of them are parked with a handful of major domain

parking services, which serve syndicated advertisements on these domains. They also

described the Strider URL Tracer to allow website owners to systematically monitor

typo-squatting domains of their sites.

Agten et al. [12] collected data about the typosquatting domains of the 500 most

popular sites for seven months. Analyzing those data they revealed that 95% of

the popular domains are actively targeted by typosquatters. Some trademark own-

ers protected themselves by proactively registering their own typosquatting domains.

According to their study, typosquatting domains change hands from typosquatters

7

CHAPTER 2. LITERATURE REVIEW 8

to legitimate owners and vice versa. Typosquatters vary their monetization strat-

egy by hosting different types of pages. Spaulding et al. attempted to determine

the effectiveness of several typosquatting techniques in [13], [14] and [15]. Nick et

al. [16] presented soundsquatting, where an attacker takes advantage of homophones,

i.e., words that sound alike, and registers homophone including variants of popular

domain names. They designed a tool for the automatic generation of soundsquat-

ting domains. Using that tool, they discovered that attackers are already monetizing

them in various unethical and illegal ways. Spaulding et al. [17] reviewed the land-

scape of domain name typosquatting, highlighting models and advanced techniques

for typosquatted domain names generation, models for their monetization, and the

existing literature on countermeasures. Liu et al. [18] proposed TypoPegging, which

is a novel quantitative method to measure the visual similarity of two given domains.

The proposed method is based on generalized Levenshtein distance. To accelerate the

searching process, triangle inequality of visual distance metric and locality sensitive

hashing algorithm were used.

Banarjee et al. [19] proposed SUT, a practical countermeasure based on network

metrics to detect phony websites. They found that the power of SUT lies in use of

the network-layer profile of phony sites, and less in perceived popularity of the site.

Moore et al. [6] described a method for the identification of typosquatting. They

found that 80% typosquatting was supported by pay-per-click ads and 20% include

static redirection to other sites. Using regression analysis, they found that websites in

categories with higher pay-per-click ad prices face more typosquatting registrations.

Kidmose et al. [20] developed technique for pre-registration domain detection which

can be applied to other forms of abuse as well. Existing works on both the pre and

post-registration detection were focused on a few Top-Level domains (TLDs). Piredda

et al. [5] addressed the problem of Typosquatting detection by leveraging a passive

Domain Name System (DNS) traffic analysis. Additionally, they exploited machine

learning to learn a similarity measure between domain names capable of detecting

typo-squatted ones from the analyzed DNS traffic.

Typosquatting detection via smartphone has discoursed in [21]. Authors shedded

light on how Advanced Persistent Threat (APT) attack through spear phishing can

occur in Smartphone and how to detect it. Feature selection for the phishing website

is discussed in [22]. They aimed to list and identify the important features for machine

learning-based detection of phishing websites.

CHAPTER 2. LITERATURE REVIEW 9

The major focus of the earlier studies [20] [5] was to analyze the typo URLs

that are generated manually by all possible character modification for preventive

domain registration. In our case, 13,674 typo error pairs were extracted from ccTLD

Naming Server’s five-month log to build an automatic detection tool and then different

properties were analyzed.

2.2 Existing Typo Generation Tools

To the best of our knowledge, there is no existing work on probabilistic prediction

of URL typo and ranking among the predictions. However, a number of tools are

available that generate typo variations of URL by applying a set of deterministic

rules. A typo generation tool named dnstwist [23] finds similar looking domains

in order to detect typosquatters, phishing attacks, fraud, and corporate espionage.

Catphish [24] is another tool that generates similar looking domains for phishing

attacks and categorizes domain status to evade proxy categorization. Andrew Horton

developed a command line based tool urlcrazy [25] which generates domain typos and

variations to detect typosquatting, URL hijacking, phishing, and corporate espionage.

Web-based tool SeoChat populate typo list based on common spelling errors and

keyboard proximity. Another web-based tool Typofinder [26] generates typos based

on TLD swapping, bit flipping, and swapping characters with homoglyphs. All of

these typo generation tools generate a large number of typosquatting domain names

without providing any relative ordering among them.

2.3 Recurrent Neural Network

Recurrent Neural Networks (RNN) have made significant contributions in many appli-

cations related to natural language processing, speech recognition, music composition,

etc. Unlike feedforward networks, they may have connections between nodes of the

same layer which can act as a memory by storing representations of recent input

values. RNNs can leverage their memory property to make better predictions for

sequences of arbitrary length. One variation of RNN is Long short-term memory

(LSTM) invented by Hochreiter and Schmidhuber [27] in 1997. LSTM has been able

to achieve the best performance in multiple applications domains compared to other

RNN variants. It can learn to bridge time intervals in excess of 1000 steps even in case

of noisy, incompressible input sequences, without loss of short time lag capabilities.

CHAPTER 2. LITERATURE REVIEW 10

As a result, it overcomes many of the limitations faced by Recurrent Neural Networks.

Due to its proven good performance for text sequence prediction, we have used LSTM

for the typosquatting detection task.

2.4 Summary

In this chapter, we have reviewed some of the research works done in the past decades

related to our work. The purpose of the overall discussion in this chapter is to set up

a baseline for the framework we are going to propose in the following chapter.

Chapter 3

Our Proposed Framework

The work presented in this thesis can be divided into two phases. In the first phase,

we proposed a method to detect typosquatting errors from the DNS log. Then in

the second phase, we developed a system to predict defensive domain names. The

detailed methodology is discussed as followed.

3.1 Detection from Log Analysis

The detection task was performed following some sequential steps which are discussed

below. An overview of the steps followed in this phase is depicted in Figure 3.1.

Figure 3.1: Overview of our detection scheme

11

CHAPTER 3. OUR PROPOSED FRAMEWORK 12

3.1.1 Data Generation

We used a real-world DNS log in our experiments. A DNS log record is generated

whenever a DNS request is issued by a client. That is, when a user browses a domain

name by its URL, a DNS log record is created. Attributes created by DNS log include

requesting time, source IP, destination URL, query type, etc. The size of a DNS log

is huge. For example, billions of records are captured at a top-level domain server

every month. It is even larger at a root domain server. The DNS log dataset we

used here is captured by three root DNS servers of Bangladesh Telecommunications

Company Limited between 09/01/2017 and 02/31/2018. The log files consist of over

223.5 gigabytes of raw DNS log data. We also collected all 40 thousand registered

under the .bd domain and related information.

3.1.2 Data Cleaning

Cleaning and preprocessing are required to work with collected domain server log. All

the websites in .bd domain are required to have three parts: the domain name, the

top level domain (.com, .org, .net, .ac, .co, .dhaka, .edu, .gov, .info etc.) and finally

.bd. We removed all the data that did not comply with this requirement considering

this data as noise. We also removed the DNS server related tags which were not

essential for our task. We found that 90 percent of domain names are covered by

name length from 10 to 30. For qualitative study we only consider those DNS query

requests having a length less or equal to 30. After cleaning, our dataset size was 117

gigabytes (reduced by almost 50%).

3.1.3 Extraction of Typo Pair using Deterministic Rules

The processed log is then used for generating potential typo pairs. Each pair was

formed with an expected domain and typo domain name. The expected domain is

the domain name a user intended to visit and typo domain is the domain name the

user mistakenly typed. For example, < google.com, gogle.com > could be a possible

typo pair in this context.

3.1.3.1 Edit distance based estimation

A naive way of extracting typo pairs is to list all the domain name pairs whose name

differ by not more than a certain number of characters. The most frequent occurrences

CHAPTER 3. OUR PROPOSED FRAMEWORK 13

Figure 3.2: Detailed approach to extract typo pairs from initially generated log

of mistyping are those that involve a one-character distance, also called the Damerau-

Levenshtein (DL) distance [28] one, from the correct spelling. In this research, we

focus on typosquatting domains of Damerau-Levenshtein distance one (DL-1) that

are generated using the most common operations: addition, deletion, substitution of

one character, transposition of neighboring characters, etc. We considered a typo pair

combining two factors: distance pair and time difference. If n number of edits are

required to rectify mistakenly typed domain name, then typo is at n distance from

the desired domain name. In other words, their Damerau-Levenshtein distance is n.

For example, let bankasia.com.bd be the desired domain name. Someone mistakenly

typed ankasia.com.bd. Here, the insertion of the character ’b’ gives the desired domain

name. Hence, the expected domain and typo domain are at 1 edit distance.

3.1.3.2 Time difference

Someone may hit any unregistered domain and within a short interval s/he is likely to

hit actual registered domain. It may be deduced that actually s/he wanted to visit the

CHAPTER 3. OUR PROPOSED FRAMEWORK 14

2nd website but mistakenly typed 1st one. Here, the 2nd domain is the expected one

and 1st one is a typo. In our experiment, we considered up to the 1-minute interval

between expected domain hit and typo domain hit.

3.1.3.3 Same IP

To ensure typo mistake, we checked whether both the typo and expected requests

came from the same IP or not. We first extracted all such typo pairs originating from

the same IP address recorded within the 1-minute interval and then considered pairs

having edit distance less or equal to 2 in order to keep the model simple.

3.1.4 Gold-set Generation

Our list of typo pairs may contain some false typo pairs which have fulfilled required

criteria coincidentally but actually, they are not typosquatting error. Hence, we need

to refine the typo pair list. We manually selected some pairs as a true typo and

rejected others from the initially prepared typo list. Refined typo pair list is referred

to as gold set in our experiment. Gold Set consists of five thousand typo error pairs

with 60% true typo pair and 40% randomly selected false typo pairs.

3.1.5 Feature Selection

The performance of a supervised machine learning method depends on the combi-

nation of the selected features. We explored the following features to identify typo.

Table 3.1: Features used for typosquatting detection

Features
Visual Similarity
Edit distance
keyboard Similarity
Bigram Similarity
Phonetic Similarity (Double Metaphone)
Typo length
Registered domain Length
Phonetic Similarity (Soundex)
Time Interval

Finally, 9 features as presented in Table 3.1 were selected as contributing significantly

in our context.

CHAPTER 3. OUR PROPOSED FRAMEWORK 15

1. Lexical similarity: These features include both character-based and word-based

features. These features represent edit distance of typo pairs and number of

characters misspelled by the user. The feature set includes total characters,

special character usage, and several word-level features such as total words,

characters per word, the frequency of large words, how many bigrams are com-

mon in typo pair, etc.

2. Phonetic similarity: Phonetic similarity feature includes words that are pro-

nounced with a similar sound but are spelled differently. By using a homophone

dataset [16] we can use phonetic similarity feature of typo pairs.

3. Keyboard proximity distance: We considered keyboard proximity distance of

modified or substitute character. For example, ‘typo’ and ‘tylo’ are really close

(p and l are physically close on the keyboard), while ‘’typo and ‘tyqo’ are far

apart.

4. Visual similarity: A domain is doubtful if it looks very similar to some popular

websites and not registered by their owners. Visual similarity distance can be

used as a typo detection feature. For example, ‘sbohoj’ and ‘shohoj’ are visually

close (b and h are close).

5. Time distance: The conditional probability of visiting the target domain will be

much higher for typosquatting domains than for unrelated domains which just

happen to have a small edit distance between them. The time distance between

the visit of lexically similar typo and registered domain can be used as features.

3.1.6 Classifier Design

We considered the detection problem as a binary classification problem. (where the

two classes are b̀enignánd t̀yposquattingd́omains) using 9 selected features mentioned

in Table 3.1.We represented each typo pair as (~x, y) where ~x ∈ Rn is a vector of n

features and y ∈ {true, false} is the detection result of typo error. In our study, n is

set to 9 for typo features. On the training dataset we applied 10 fold cross validation

technique to experiment with different machine learning classification algorithms such

as - Naive Bayes, decision tree based ID3 [29], artificial neural network [30] with back-

propagation, random forest [31], AdaBoost [32], k nearest neighbor (k-NN) [33], and

support vector machines (SVM) [34]. The detection result is presented in section 4.3.

CHAPTER 3. OUR PROPOSED FRAMEWORK 16

3.2 Pre-registration Prediction

The harmful practice of Typosquatting involves deliberately registering Internet do-

main names containing typographical errors that primarily target popular domain

names. The result of our experiment indicates that visual similarity, phonetic simi-

larity, and keyboard proximity are associated with typosquatting error. Our predictive

typo registration model helps a new website owner to prevent typosquatting attack by

defensive registration of most probable typo domains. List of predictive probable typo

domains with rank helps a new website owner to make a better decision about how

many domains he or she will register to protect his or her brand. TypoWriter uses

a prediction model which is trained using a supervised learning method. Supervised

learning requires labeled data for training. Therefore, we trained our model with a

dataset containing a number of registered domain names and typo variations of those

domain names occurring in real life. However, this type of dataset is not publicly

available. Hence, we prepared such a dataset analyzing DNS log. The dataset prepa-

ration was conducted following three major steps. First, we collected a large amount

of DNS log and preprocessed it. Second, we detected typo mistakes for URL made

by users. Finally, we constructed a dataset containing domain name pairs where one

domain name is the typo variation of another.

We constructed a subset of our formerly available URL pair set by removing the

entries that contained typo errors which were not part of the domain name. As a

result, the constructed typo pairs in which the mistake is only in the domain name

were selected. Hence, typo pair such as (google.com.bd, google.co.bd) where the typo

error is not within the domain name part google, were discarded. After that, we

extracted only the domain name part from both the registered domain name and

typo domain name. In this way, we obtained a total of 3, 745 pairs from the DNS

log. Later, we divided the dataset into two parts for training and testing purposes,

respectively. The test dataset consisted of the top ten domain names having the

most number of unique typo errors in the dataset. The rest were included in the

training dataset. Here we present a detailed description of the design principle and

methodology used for TypoWriter.

3.2.1 The Concept

Unlike existing typo generation tools, TypoWriter does not generate an exhaustive

list of typo domains based on deterministic rules. Rather, it was designed to reflect

CHAPTER 3. OUR PROPOSED FRAMEWORK 17

Figure 3.3: Methodology followed for the construction of TypoWriter

user behavior while making such predictions. Moreover, the predictions made by

TypoWriter are ranked in an order of probability of their occurrences. The task

of predicting possible typos for a domain name has been considered as a sequence to

sequence prediction problem in this work. Given a sequence of characters s as original

domain name, TypoWriter predicts an ordered list of such sequences t1, t2, t3, ..., tk

each of which is a probable typo variation of s. The ordering of the sequences is done

based on their probability of occurrence. Feedforward neural networks are widely

used in prediction problems where the outcome against an input is labeled with a

single value. In contrast, RNNs are better suited for the prediction of sequences with

temporal dependency among the elements. From our constructed dataset, it was

observed that typo made by a user while typing a domain name depends not only on

the value of the character but also on the sequence of characters it is a part of. For

example, it was observed that telitalk was a common typo error for the domain name

teletalk. It occurred due to the replacement of the fourth character ‘e’ by ‘i’. On the

other hand, tiletalk, which can be constructed by replacing the second character ‘e’

with ‘i’, was not present in the data at all. Owing to the dependency of an error on

the relative location of a character in a sequence, an RNN model was chosen over a

feedforward neural network. Some key issues faced in this regard and the approaches

adopted to address them are discussed below.

CHAPTER 3. OUR PROPOSED FRAMEWORK 18

3.2.1.1 Variable Length of Sequences

The length of the domain names existing in our dataset ranged from 5 to 57. Similarly,

the length of output sequences, i.e., the typo domain names also varied from 4 to 58.

Therefore, determining the input and output size of the model was a challenge. One

way of addressing this issue is to consider the maximum length of input sequences

as input size and the maximum length of output sequences as the output size of

the model. Sequences with shorter length can be padded with a predefined dummy

value to make the length equal to the maximum length. However, experimentation

with this approach produced a poor result due to a relatively large variation in the

lengths and unavailability of enough data to account for that variation. For instance,

output sequences with length 4 were padded to make the length 58 which made the

trained model biased to produce the padded value more frequently. Hence, making

the sequences equal in length by padding was avoided. On the contrary, a scheme of

splitting both the input and output sequences into n-grams was adopted.

3.2.1.2 Global vs Local Dependency

The occurrence of typo depends both on the character in question and the sequence

of characters it is a part of. Even so, the dependency was found not to be extended

over the entire sequence. Rather, a local dependency was observed. For example, a

common type of the domain name xiclassadmission was xiclassadmisson, mistak-

enly removing ‘i’ before the character ‘o’. This mistake is presumably due to phonetic

similarity between the two sequences if not just a random typo error. Therefore, the

omission of this ‘i’ is influenced by the character ‘o’ following it. However, it is ev-

ident that this omission is not influenced by the first character of the sequence ‘x’.

Accordingly, the dependency of typo errors on nearby characters is local in contrary

to a global dependency on the entire domain name. However, the exact span of this

local influence could not be determined by manual observation and was found to be

varied in sequences.

In order to address the discussed issues, we constructed n-grams from the domain

names for training our model. Different steps followed in the prediction and ranking

scheme are discussed below.

CHAPTER 3. OUR PROPOSED FRAMEWORK 19

3.2.2 Construction of n-grams

The prepared training dataset contains the registered domain name and the corre-

sponding typo domain name pairs. In all such pairs, the registered domain name

can be transformed into the corresponding typo domain name by performing a sin-

gle edit operation: insert, delete, or replace. Instead of using the entire registered

domain name as input and typo domain name as output to the RNN model, we

constructed all possible n-gram pairs from the sequences that contain the character

involved in such an edit operation and then used those as input and output. For any

pair (reg domain, typo domain) in the dataset, we identified the edit operation re-

quired to convert reg domain into typo domain as well as the index i in reg domain

where such an operation is required. We also defined two special markers PAD and

BLANK to be used in specific cases. The technique of n-gram construction varies

for each edit operation. Algorithm 3.1 shows the steps for n-gram construction from

a registered domain name and typo domain name pair.

Algorithm 3.1 Algorithms for constructing n-gram

Input: Registered Domain name reg domain, Typo domain name typo domain, n
Output: A set of string pairs L

1: op← find edit operation required to convert reg domain into typo domain
2: idx← find character index of reg domain where edit operation is required
3: l← length of reg domain
4: L← φ
5: if op is INSERT then
6: for i = max(idx− n+ 1, 0) to min(idx, l − n) do
7: in← Substring of length n starting from index i in reg domain
8: out← Substring of length (n+ 1) starting from index i in typo domain
9: L← L ∪ {(in, out)}
10: end for
11: else
12: if op is DELETE then
13: insert special marker BLANK at index idx of typo domain
14: end if
15: for i = max(idx− n+ 1, 0) to min(idx, l − n) do
16: in← Substring of length n starting from index i in reg domain
17: out← Substring of length n starting from index i in typo domain
18: L← L ∪ {(in, out)}
19: end for
20: end if
21: return L

CHAPTER 3. OUR PROPOSED FRAMEWORK 20

Table 3.2: N-gram pairs constructed from some sample data

Edit
Operation

Registered
Domain Name

Typo
Domain Name

Constructed
Pairs

Insert everjobs everyjobs

(ver, very)
(erj, eryj)
(rjo, ryjo))
(job, yjob)

Delete bdfinance bdfinace
(nan, na#$)
(anc, a#c$)
(nce, #ce$)

Replace register regester
(egi, ege$)
(gis, ges$)
(ist, est$)

3.2.3 Training RNN Model

The heart of our entire prediction scheme is an RNN based sequence to the sequence

prediction model. The model was trained with the n-grams obtained from registered

domain names as input and the corresponding substrings obtained from typo domain

name as output. We experimented with different architectures and hyperparameter

values for the model and chose the one with the best performance.

3.2.3.1 Preprocessing of Training Dataset

At first, we constructed pairs in the form of (inputsequence, outputsequence). The

length of each input sequence was n since it was actually an n-gram obtained from a

registered domain name. However, the length of the output sequence could be different

based on the edit operation required to construct the corresponding typo domain

name. If the typo domain name was the result of a replace or delete operation, the

length of the output sequence was the same as that of the input sequence i.e. n. On

the other hand, output sequences generated by insert operations had a length equal

to n+ 1. In order to make all the output sequences of equal length, we used padding.

All the output sequences with length n were padded with the special marker PAD to

make the length n + 1. Consequently, the uniformity in length between both input

and output sequences could be achieved which helped to determine the architecture

of the RNN model. The input and output sequences obtained for n = 3 from some

sample domain name pairs are demonstrated in Table 3.2. The sequences were then

encoded by applying one hot encoding. In order to do the encoding, we first created

CHAPTER 3. OUR PROPOSED FRAMEWORK 21

a vocabulary set consisting of the unique characters and special markers present in

the sequences. In total, the vocabulary set contained 40 elements: 26 letters from

the English alphabet, 10 digits, the two characters dot (.) and dash (-), and the

two special markers BLANK and PAD. Each element of the vocabulary set was

assigned a unique index value within 0 and 39. After performing one hot encoding,

each character in the sequences was represented by a binary array of length 40 i.e.

equal to the size of the vocabulary set. This array contained zero in all positions

except only at the index of the character in the vocabulary set. The sequence of

arrays obtained after such encoding together constructed the training dataset for our

prediction model. We constructed four such datasets for values of n in {2, 3, 4, 5} to

train four different prediction models.

3.2.3.2 Model Architecture

We experimented with four different RNN models corresponding to different values of

n. The model yielding best result on the test data was selected for prediction purpose.

The architecture of each model was different as the size of input and output to each

model varies with the value of n. The number of nodes in the input layer for each

model was n while that in the output layer was n + 1. We performed a grid search

to determine the number of hidden LSTM layers within {1, 2, 3, 4}. The model with

four hidden layers suffered from overfitting and hence we did not increase the number

of layers any further. Similarly, the number of nodes in each hidden layer was also

determined experimentally by performing a grid search within [30,50]. Each model was

trained with 80% of the corresponding training dataset while the remaining 20% was

used for cross-validation of the model. Each model was trained for 200 epochs using

categorical cross-entropy loss function and adam optimizer. The model construction

and training were performed using deep learning framework Keras [35]. The model

parameter values with the lowest validation loss in each case as shown in Table 3.3

were subsequently used for testing.

3.2.4 Prediction

In order to predict a possible typo variation of a given domain name, we first con-

structed all possible n-grams from the domain name. Then each n-gram was con-

verted into a one hot vector sequence which could be given as input to the trained

RNN model. Given the input, the trained RNN model would generate (n+ 1) output

CHAPTER 3. OUR PROPOSED FRAMEWORK 22

Table 3.3: Model architectures with the minimum validation loss for different values
of n

Value
of n

Number of
Hidden Layers

Nodes in
Hidden Layers

2 2 35, 36
3 2 38, 40
4 2 43, 43
5 2 45, 49

arrays of length 40. The k-th array contained the probabilities of all the characters

in the vocabulary set to be the k-th character of the output sequence. Therefore,

taking one character from each array, an output sequence of (n + 1) characters can

be obtained. The probability of such an output sequence could be calculated by

multiplying the corresponding probability of each of the characters selected. In this

way, for a given n-gram, 40(n+1) output sequences with an associated probability can

be generated. If the predicted output sequence contained the special markers PAD

or BLANK, those markers were removed from the sequence. Replacing the input

n-gram in the given domain name with the predicted output sequence would provide

us a typo variation of the domain name. The probability of occurrence of such a typo

variation was considered to be the same as the corresponding output sequence for the

replaced n-gram.

3.2.5 Ranking

To decide the order of candidate typo domain names, we used a probabilistic ranking

scheme. Since each of the typo domain names generated by our prediction model

is associated with a probability of occurrence, ordering can be done based on this

probability. The typo domain name with the highest probability is assigned the

highest rank and expected to be the first choice while making defensive registration

to prevent typosquatting. Similarly, all the typo domain names can be ranked in the

decreasing order of their probabilities to obtain an exhaustive rank list. One downside

of this exhaustive ordering is that a large number of possible typo variations can be

generated from our prediction model. From a given domain name of length l, a

number of (l − n + 1) n-grams can be constructed which altogether would yield a

total of (l − n + 1) ∗ 40(n+1) typo variations. This number is often impractical even

for small values of l and n. Hence, we define a parameter nr, which denotes the

CHAPTER 3. OUR PROPOSED FRAMEWORK 23

number of most probable typo variations of a domain name that is required and

reduce our search space accordingly. We used beam search with a width equal to

nr. In this searching process, we picked top min(nr, 40) characters from each of the

(n+1) output arrays for a particular n-gram input. As a result, the number of output

sequences obtained became n
(n+1)
r . From these output sequences, we kept the top nr

and discarded the rest. In this way, for a given domain name, the total number of

typo domains generated was (l−n+ 1) ∗nr which is linear in terms of both n and nr.

These typo domain names were then sorted in descending order of their probabilities

of occurrence and the top nr of them were selected in the rank list.

3.3 Summary

In this chapter, we discuss the detailed methodology of our work. So, we presented

the detection and prediction model we developed.

Chapter 4

Result and Performance Evaluation

We implement our proposed algorithms, executed them on our DNS log and perform

the manual inspection to prepare gold dataset. By using this gold dataset, we have

developed the proposed prediction model with ranking Schema. This chapter contains

the detail of the dataset, experimental settings, results, and analysis of our thesis work.

In Section 4.1, we explain our datasets. Afterwards, in Section 4.2, we explain our

experimental environment and settings for our implementation. Rest of this chapter

contains the experimental results and analysis of the results. In result section, first we

will present the results obtained in both detection and prediction tasks. After that,

we will discuss our findings based on the research questions introduced in Section 1.3.

4.1 Data Collection and Dataset

This research work is done using the data of registered .bd web domain of Bangladesh.

Our datasets are DNS data obtained from BTCL, a major telecom operator of Bangladesh.

A DNS resolution request is made whenever a user tries to browse a website by its

URL. For every such request, a DNS log is generated. We collected a chunk of DNS

log captured by Bangladesh Telecommunications Company Limited (BTCL) [36] from

September 2017 to February 2018. The log consisted of records for all requests made

to visit .bd domains over a period of six months. To retain privacy, source IP addresses

originally recorded in the DNS log were replaced by a corresponding hash value. As

a result, it was possible to identify if two requests were made from the same source

IP without revealing the actual IP address. Besides source IP, the DNS log also con-

tained the time-stamp of each request, destination URL, query type, and some other

tags related to the DNS server. The total size of the raw log was 223.5 gigabytes.

24

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 25

4.2 Experimental Setup

In our thesis work, the proposed supervised machine learning model for processing the

DNS data for identifying the typo mistake activities and error patterns. According

to the framework of our model, the collected log was first cleaned to retain only the

information that is relevant to our work. All the websites in .bd domain are required

to have three parts: the domain name, the top level domain (.com, .org, .net, .ac,

.edu, etc.) and finally .bd. It was observed that the data contained a significant

number of requests that do not comply with this requirement. We removed all such

records from the log. We also removed the DNS server related tags that were not

essential for our work. Finally, we got a list of rows where each row consisted of the

time stamp of visit, hashed source IP address, and the URL of the requested website.

After cleaning, the size of the dataset became 117 gigabytes (reduced by almost 50%).

The raw DNS data are contained in simple but very large text files. For process-

ing this data using our algorithm, we developed a program based on our proposed

detection classifiers and clustering algorithms in the layers of our hierarchical frame-

work using JAVA. We also utilize the WEKA data mining tool to implement all these

classifier and clustering techniques in JAVA.

For RNN predictive model construction and training, we use deep learning frame-

work Keras [35]. Keras is an open source neural network library written in Python

running on top of TensorFlow [37], Microsoft Cognitive Toolkit and Theano. A Python

program was developed to process detected typo pairs for constructing n-gram. Those

n-grams were used in training predictive RNN based model.

The experiments on Big Data like DNS log is resource demanding and time-

consuming. So, all the experimental implementations of this thesis are done on a

number of personal computer parallelly equipped with Intel Core i7 CPUs running at

2.5 GHz or more and equipped with 4 to 8 GB RAM.

4.3 Detection Performance

First of all, we separated our log data month-wise and prepared 5 groups of dataset.

We used data of 4 months for training and validation of the machine learning model.

We experimented with the 7 classifiers varying their hyper-parameters to maximize

the performance results of the 10-fold cross-validation. Finally, we calculated the av-

erage result of 10 fold data which is shown in Table 4.2. Next, to check if there is any

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 26

possibility of over-fitting, we applied the model on a test set, i.e. DNS requests in

February 2018. The parameter values given in Table 4.1 provide the highest perfor-

mance for each classifier. The training and testing were performed using the WEKA

tool [38]. All classifiers used in our experiment belong to different classes to ensure

wide coverage of different possible classifiers.

Table 4.1: Parameters used for detection classifiers

Classifier Parameter Name Value
Naive Bayes No Parameters NULL
Decision Tree(ID3) No Parameters NULL

Random Forest
Size Per Bag 100
Number of Iterations 200
Number of Trees 200

AdaBoost
Classifier Used J48
Number of Iterations 100

Support Vector Machine
Type of SVM C-SVM, C = 1

Kernel Function exp(- γ ||u− v||2)
Class Weights 1, 1

Neural Network

Learning Rate .05
Maximum Epochs 2000
Number of Hidden Layers 4
Number of Nodes in Hidden Layer 10, 10, 6, 10

k Nearest Neighbor Number of Neighbors% 6

We trained seven different classifiers for the detection task with 10-fold cross-

validation. Performance comparison of those different machine learning models on the

cross-validation data is shown in Table 4.2. We see that the random forest classifier

outperforms other classifiers in terms of accuracy, precision and F-score. Next, we

have experimented on a test dataset which is of February, 2018 with a size of 20GB.

It is to be noted that in training data we used log upto January, 2018.

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 27

Table 4.2: 10-fold cross validation performance measures using different machine
learning models for detection task

Classifier Accuracy Precision Recall F-score
Naive Bayes 89.14% 75.24% 74.47% 74.85%
Decision Tree 98.20% 95.65% 95.96% 95.80%
Random Forest 98.31% 96.26% 95.88% 96.07%
AdaBoost 95.05% 85.48% 90.92% 88.12%
SVM 92.35% 73.18% 89.30% 80.44%
Neural Network 96.50% 88.44% 94.94% 91.57%
k Nearest Neighbor 97.39% 94.10% 93.78% 93.94%

Table 4.3: Comparison of different machine learning models on test dataset

Classifier Accuracy Precision Recall F-score
Naive Bayes 87.32% 75.85% 95.64% 84.60%
Decision Tree 98.70% 98.48% 98.68% 98.58%
Random Forest 98.82% 98.55% 98.89% 98.72%
AdaBoost 97.27% 95.71% 98.29% 96.98%
SVM 86.40% 73.56% 95.85% 83.24%
Neural Network 98.63% 97.44% 99.58% 98.50%
k Nearest Neighbor 97.43% 95.99% 98.37% 97.16%

4.4 Prediction Performance

TypoWriter generates an ordered list of top nr probable typo variations for a given

domain name. The ideal way of evaluating the performance of a tool like this would

be to make predictions for a newly registered domain name and then comparing the

occurrence of typo for that domain over a period of time. We simulated this idea

by separating ten domain names from our dataset for performance evaluation. These

domains were not used for training purpose and therefore can be considered as newly

registered domain names to TypoWriter. We then compared the predictions made

by TypoWriter with the ground-truths obtained from DNS log.

4.4.1 Impact of Substring Length

The prediction task in TypoWriter is performed by an RNN model which was trained

using n-grams extracted from domain names. To determine the optimal value for

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 28

n, we trained a prediction model for each value of n in {2, 3, 4, 5}. We tested the

four trained models with the test dataset and compared the prediction performance

achieved by each model. For this comparison purpose, we considered a fixed value of

nr=5 which implies each model would predict the top 5 probable typo errors for each

domain name in the test dataset. We then counted the number of matches with the

ground-truth available for those domain names. Table 4.4 shows the number of such

matches for different values of n. The actual predictions made by each model along

with the ground-truths for each of the ten test domain names are shown in table 4.6

and 4.7. The highest average number of matches was obtained for n=3. Therefore, we

considered this value as the most appropriate one and performed further performance

evaluations using the model trained with n = 3.

Table 4.4: Number of correctly detected typo domain name out of top 5 most
occurred typo sites for 10 different domain names

Domain Name n = 2 n = 3 n = 4 n = 5
teletalk 3 4 3 3
amway 0 1 0 0
omronhealthcare 0 1 1 1
educationboardresults 2 2 2 0
dhakaeducationboard 1 1 2 2
mybank 1 2 2 1
google 3 3 2 1
tigercricket 0 0 0 0
daraz 2 3 3 3
xiclassadmission 2 3 2 3
Average 1.4 2.0 1.7 1.4

Let us consider an example of url daraz.com. In our test dataset, it has 31 unique

typos of total frequency 175. People mistyped this url for 175 times in 31 ways. We

applied our predictive method for typo generation, matched with our ground truth

data. We varied number of typo generation (nr) and n of n-gram RNN technique.

When we generated 5 unique typos (nr = 5) with substring length n=2, 106 typos of

4 unique types matched with our ground truth data. When we generated 10 unique

typos (nr = 10) with substring length n=2, 116 typos of 7 unique types matched with

our ground truth data. If we generate more numbers of typos, chance of matching

with ground truth increases. Then we calculated the ratio between matching with

ground truth and total frequency of typo in test dataset.

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 29

Table 4.5: Matching ratios for 10 different domain names

n=2 n=3 n=4 n=5
nr = 5 28% 32% 31% 28%
nr = 10 36% 39% 36% 32%
nr = 15 40% 43% 39% 33%
nr = 20 42% 46% 42% 34%

 0

 10

 20

 30

 40

 50

 60

nr=5 nr=10 nr=15 nr=20

M
a
tc

h
in

g
 R

a
ti
o
(%

)

n=2
n=3
n=4
n=5

 0

 10

 20

 30

 40

 50

 60

nr=5 nr=10 nr=15 nr=20

M
a
tc

h
in

g
 R

a
ti
o
(%

)

n=2
n=3
n=4
n=5

Figure 4.1: Matching ratios for 10 different domain names

We selected 10 URL addresses which had more than 20 unique typos in our dataset.

Then we conducted our experiment varying nr from 5 to 20 (nr = 5, 10, 15, 20 etc)

and n from 2 to 5 (n = 2, 3, 4, 5 etc). We calculated matching ratios for all

combinations and showed on Table 4.5 and Figure 4.1. From our experiment, we have

seen maximum matching ratio was for n= 3.

4.4.2 Impact of nr

We found that for the model trained with 3-gram data set if we take top 5 predicted

typo domain names, there is on average 2 domain names in common with the ground-

truth. This performance was obtained for a fixed value of nr=5. However, the number

of matches is likely to increase if nr is increased, i.e., the number of domains registered

is increased. We experimented with different values of nr ranging from 1 to 15 and

observed the performance produced by TypoWriter. Figure 4.2 shows the results

obtained for different values of nr. The average number of matches with the ground-

truth was found to be monotonically increasing with an increase of nr. However,

the rate of this increase was not uniform. Registering 5 top defensive domain names

generated by our prediction model seems to be a cost-effective choice as the rate in

increase of the actual occurrence of these candidates in the ground-truth slows down

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 30

Figure 4.2: The increase of expected number of top typo sites with the increase of
number of defensive domain registered

significantly after this point.

4.4.3 Comparison with Generation Tools

We compared the prediction performance of TypoWriter with the five tools discussed

in Section 2.2, namely, dnstwist, catphish, urlcrazy, typofinder, and SeoChat for this

performance comparison. However, none of these tools provide any ranking among the

predictions made by them. We selected the top five domain names having the most

number of unique typo occurrences from our dataset. The typo domains available for

each of these domains were considered as the ground-truth for that domain. It is to

be noted that the prediction model used by TypoWriter was not trained with these

domain names and hence they are unobserved data to TypoWriter. We executed

each tool by giving a domain name as input and collected the output. The number

of output domains generated by each of the tools was different due to the difference

in their generation methodologies. We also generated a list of typo domain names

predicted by TypoWriter which were associated with a probability higher than 0.01.

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 31

Table 4.6: Typo candidates generated by prediction models for n = 2, 3.

Domain Name Ground Truth n = 2 n = 3

teletalk

taletalk teleralk taketalk
teketalk taketalk teletak
telitalk teletak telitalk
tetetalk taletalk taletalk
teletak teketalk teketalk

amway

ameay ammway amaay
alway am9ay am9ay
amuay amwyy amyay
pmway amgay amgay
amay mway amay

omronhealthcare

omronhealthare omronhealthcar omronheallthcare
oimronhealthcare omronhealtcare omronhealttcare
omrenhealthcare omronhealthacare omronhealthare
omronhealthcafe omronhealthcre omronealthcare
lmronhealthcare omronealthcare omronhealthhare

educationboardresults

educationboardresult educationbordresults educationbordresults
educationbordresults edcucationboardresults educationboardresult
educationeboardresults educatonboardresults edcationboardresults
educationboardresuits educationboardresult edicationboardresults
eduationboardresults educationboardrsults educationboardresslts

dhakaeducationboard

dhakaeducationbord dhakaedcucationboard dhakaedicationboard
dhakeducationboard dgakaeducationboard dhakaedcationboard
dhakaeductionboard dakaeducationboard dhkaeducationboard
dhakaeducationboars dhakaeducationbord dhakaeducationbord
dhakaeducatioboard dhkaeducationboard dhaaeducationboard

mybank

xybank mybonk mvbank
mwbank mwbank mwbank
oybank qybank xybank
uybank mybang mybenk
vybank mybamk mybamk

google

goocgle googe goocgle
googgle gooogle googlee
googlr googgle googge
googleo googke gooogle
gooogle goocgle googgle

tigercricket

tigercrickef tigcrcricket tigcrcricket
tigeercricket tifercricket tigercricker
tigercriclet tigarcricket tigercrickrt
tigercicket tigercrcket tigercricet
tigbercricket tigercrickt tigercrickt

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 32

Table 4.7: Typo candidates generated by prediction models for n = 4, 5.

Domain Name Ground Truth n = 4 n = 5

teletalk

taletalk teletall taketalk
teketalk taketalk teltalk
telitalk telitalk telitalk
tetetalk taletalk taletalk
teletak teketalk teketalk

amway

ameay amwey ammay
alway amaay amyay
amuay amwiy amwy
pmway amwqy amaay
amay amwly amwyy

omronhealthcare

omronhealthare omronhealthcarr omronhealthcar
oimronhealthcare omronhalthcare omronhealkhhare
omrenhealthcare omronhealthare omronhealthare
omronhealthcafe omronhealthccre omronhealthhare
lmronhealthcare omronhealthhare omronhaalthcare

educationboardresults

educationboardresult educationbordresults educationboardresul
educationbordresults educationboardresult educationbodresults
educationeboardresults educationboardresuuts educationbrdresults
educationboardresuits educationboardoesults educationboresults
eduationboardresults educationboardersults educatiboardresults

dhakaeducationboard

dhakaeducationbord dhakaedicationboard dhakaeducationbrd
dhakeducationboard dhakaeducationbord dhakaeducationbord
dhakaeductionboard dhakeducationboard dhakeducationboard
dhakaeducationboars dhajaeducationboard dhakaeduationboard
dhakaeducatioboard dhakacducationboard dhakaeducatiinboard

mybank

xybank myb3nk wybank
mwbank cybank cybank
oybank mwbank fybank
uybank xybank mwbank
vybank fybank mjbank

google

goocgle goocgle googge
googgle googll googll
googlr googgle googlee
googleo googlle goocge
gooogle goocle googgle

tigercricket

tigercrickef tigerrcicket tigercricker
tigeercricket tigetcricket tigercrccket
tigercriclet tigercrickee tigerrcccket
tigercicket tiggrcricket tigercrckket
tigbercricket tigercrickt tigercrickat

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 33

Then we calculated the number of matches between ground-truth and the output

produced by TypoWriter as well as the generation tools under consideration. In

order to demonstrate a quantitative comparison, we define two performance metrics

rg and rt where,

rg =
Number of matches with ground-truth

Number of output domains generated by tool

rt =
Number of matches with ground-truth

Total number of output domains in ground-truth

The performance comparison of TypoWriter with other generation tools in terms

of rg and rt is demonstrated in Figure 4.3. Both dnstwist and typofinder generate a

large number of typo domain names. Consequently, they achieved the highest number

of matches with the ground-truth and hence a high rt score. Nevertheless, a high

number of typo generations also resulted in a low rg score for them. Theoretically, it

is possible to obtain a perfect,i.e,100% rt score by generating an exhaustive list of all

possible typo variations of a given domain name. However, since one of our goals is to

provide a reasonably short list of typo variations to facilitate defensive registration, we

aimed at achieving better performance in terms of rg while maintaining a reasonable

rt score. The rg score obtained by TypoWriter (50.30%) is the highest among all

the tools and 136% better than the second-best score obtained by SeoChat (21.31%).

Also, TypoWriter achieved an rt score of 43.37%.

4.5 Discussion

Based on the outcome of the experiments, we now discuss answers to the research

questions.

RQ1 Can we detect typosquatting errors from DNS log?

It has been seen from our experiment that the best performing classifier (Random

Forest) trained on sets of DNS queries can detect typosquatting error with 98.31%

validation accuracy and 98.82% test accuracy shown in Tables 4.2 and 4.3. This

witness that using machine learning based model is successful to find malicious ty-

posquatting domains.

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 34

Figure 4.3: Performance comparison of TypoWriter with other typo generation
tools.

 0

 1000

 2000

 3000

 4000

 5000

<=10
1

<=10
2

<=10
3

<=10
4

<=10
5

<=10
6

<=10
7

<=10
8

N
u
m

b
e
r

o
f
T

y
p
o
 V

is
it
s

Site Popularity (Number of Visits to Target)

Figure 4.4: Number of typo visits by target site’s popularity

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 35

 0

 0.2

 0.4

 0.6

 0.8

 1

ac co com edu gov mil net org

N
o
rm

a
liz

e
d
 T

y
p
o
 V

is
it

Domain Type

Figure 4.5: Number of typo visits by target site’s category

It is seen from our experiment that most popular sites are less prone to typo-

squatting risk. Medium popular sites are heavily typo-squatted. Popularity is mea-

sured according to the hit count of that site. It is shown in Figure 4.4 We have

categorized sub-domain of our data set and observed that .com sub-domain is highly

typo-squatted which is shown in Figure 4.5

RQ2 Can we make a deterministic tool to detect typosquatting?

It is possible to develop a deterministic tool from literature [4]. We found some

insightful patterns analyzing data and made some rules. Using these rules we made a

deterministic tool. The tool was applied to unlabeled DNS log data to identify other

pairs. Then manual inspection confirmed that 70% of these are mistakenly considered

typo pairs.

RQ3 Can machine learning-based tools detect typosquatting and which classifier per-

forms the best?

It has been seen from our experimental results that machine learning tools can detect

typosquatting with high accuracy and f-score. We applied several machine learning

algorithms on our dataset. It was seen that Random Forest outperformed other algo-

rithms. Comparative analysis among different machine learning algorithm is shown in

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 36

Table 4.2. The results suggest the traditional methods (i.e., Naive Bayes and SVM)

did not perform well.

Table 4.8: The impact of DNS log volume on detection accuracy

Volume of Log Accuracy Precession Recall F-score
100K 84.14% 55.34% 75.66% 63.93%
200K 86.69% 65.05% 78.82% 71.28%
300K 86.77% 66.99% 77.82% 72.00%
400K 91.04% 74.43% 88.46% 80.84%
500K 91.13% 70.87% 92.41% 80.22%
600K 91.87% 72.49% 94.12% 81.90%
700K 92.36% 72.17% 96.96% 82.75%

Table 4.9: Comparison among proposed methods with passive detection methodol-
ogy and n-gram based method

Detection Method Accuracy Precision Recall F-score
Proposed 98.44% 98.55% 98.17% 98.36%
Passive Detection 59.35% 100.0% 22.66% 36.94%
N-gram Based 70.07% 53.09% 76.66% 62.73%

We thus believe that our approach may be particularly useful to improve the

aforementioned existing systems aimed to detect malicious domains while passively

monitoring the DNS traffic [5] [4]. Our proposed model is compared with passive

detection model by Khan and n-gram based model by Piredda. We can see from our

experiment that the proposed model performs better than the other 2 models. It is

shown in Table 4.9.

RQ4 Which features indicate typosquatting?

To understand the effect of different features, we rank the features based on informa-

tion gain ratio. Table. 4.10 shows information gain ratio of extracted features from

typo pair. Our analysis shows that visual similarity, edit distance, and bigram simi-

larity were among the most discriminating features. The performance of a supervised

machine learning method depends on the combination of the selected features.

RQ5 How long to wait for achieving acceptable detection quality from log analysis?

CHAPTER 4. RESULT AND PERFORMANCE EVALUATION 37

Table 4.10: Features used for typosquatting detection along with information gain
ratio obtained for each feature

Features Information Gain Ratio
Visual Similarity 0.6412
Edit distance 0.3649
keyboard Similarity 0.2241
Bigram Similarity 0.0802
Phonetic Similarity (Double Metaphone) 0.0521
Typo length 0.0517
Registered domain Length 0.0466
Phonetic Similarity (Soundex) 0.0363
Time Interval 0.0194

To find out the relation between DNS log size with TYPO detection parameter, we

trained a supervised classifier with TYPO errors received from various size of logs

and compared result for test dataset. DNS server generates 400,000 lines of valid log

each day. Table 4.8 shows the impact of DNS log data size on typo detection quality.

By using the two-day log, we can achieve 92.36% accuracy with 82.75% f-score. From

this, we can say that to achieve acceptable detection quality less than 7-day log is

sufficient.

RQ6 Can we find out which defensive domains to register to prevent typosquatting at

the inception of a new website (without log analysis)?

Before registering a website, i.e., without any relevant occurrence in the DNS log,

we can still predict some candidate URLs for defensive registration. For that reason,

we have used an RNN based model. From Table 5, we see that even at this early

stage, we could achieve TPR of 40% (2 matches out of 5).

4.6 Summary

In this chapter at first, we have discussed the datasets used in our experiments and how

we obtained it. Later we have explained our experimental setup and their parameters.

Finally, we presented the findings and results of our work in the form of facts and

figures.

Chapter 5

Empirical Study

We investigated patterns from our extracted misspelled typo domains from DNS logs.

Analyzing log for the period of September 2017 to February 2018, we found that 67%

DNS queries were for registered domain and 33% DNS queries for unregistered or

typo domain. We identified more than 3 thousands unique typo pair from 6 month

DNS log using developed typo detection model. We applied all those extracted typo

pairs to find following insight.

5.1 Significant number of misspelled URLs exist

in the DNS Log with single character modifi-

cation of original URLs

Character repetition and omission are among the leading causes of typographical

error. A user may miss pressing a key while typing any web address or pressure on

the key may be insufficient to write that character. Sometimes pressure on the key

may be longer than required and hence that character is typed twice. Example of this

type of errors is shown in Table 5.2.

We observe the ratio of modifying each of the misspelled URLs by single character

insertion (SCI), single character omission (SCO) and single character substitution

(SCS) from Fig. 5.1 where SCS leads by a big margin.

38

CHAPTER 5. EMPIRICAL STUDY 39

Table 5.1: Character repetition, omission and replacement example

Category Example Observations

Keyboard proximity
newviaion.com.bd, ten-
nia.com.bd

‘s’ replaced with horizontally adjacent
key ‘a’

sonslibank.com.bd,
meghnsknit.com.bd

‘a’ replaced with horizontally adjacent
key ‘s’

nitolmiloy.com.bd, nao-
gaom.gov.bd

‘n’ replaced with horizontally adjacent
key ‘m’

Phonetic error
aviationnew.com.bd ,
jaarchitect.com.bd

Omission of terminal ‘s’

taletalk.com.bd , ban-
bais.gov.bd

‘e’ replaced with ‘a’

worlditfaundation.org.bd
, gonokantha.com.bd

‘o’ replaced with ‘a’

Visual Similarity
admission.nu.ebu.bd ,
baraz.com.bd

‘d’ replaced with ‘b’

buct.ac.bd, hangcr-
splus.com.bd

‘e’ replaced with ‘c’

taikingpoint.com.bd ,
electromartitd.com.bd

‘l’ replaced with ‘i’

Table 5.2: Character repetition, omission and replacement example

Observations Example
Character inserted which is similar to
adjacent (Repeating character)

daraz.comm.bd, cprogram-
minng.com.bd, eastern-
nuni.edu.bd, darazz.com.bd

Character omission from repeating
character

cprograming.com.bd,
dafodilvarsity.edu.bd,
pasport.gov.bd

Character replaced with adjacent char-
acter

shongjog.rrg.bd,
koonect.edu.bd,
quantmm.org.bd, dhakaeu-
ucationboard.gov.bd

5.2 Short original URLs suffer more from URL

poaching

We tried to find the relationship between URL length and typo hit. We found that

URLs with short lengths had higher typo hit count. We have counted length wise re-

quest frequency to observe effect of length. Figure 5.2 shows length effect of processed

CHAPTER 5. EMPIRICAL STUDY 40

SCI
27.84%

SCO
20.44%

SCS
51.72%

Figure 5.1: Percentage of modification types that caused typos

data.

Figure 5.2: Frequency of typo hit for different URL lengths

5.3 Typographical error can be categorized in dif-

ferent types

From our observation and analysis, it is seen that typographical errors can be of many

types. According to the frequency of occurrence, we can deduce that phonetic error,

keyboard proximity, and visual similarity among alphabet are the major categories of

typographical error. Typographical error proportion is shown in Table 5.3. Here we

discuss those.

Keyboard proximity: Users often mistype spelling for keyboard proximity.

When user types in hurry, s/he may press left or right key of the desired key. Some-

times a user may type the wrong key which is situated below or above the desired key.

CHAPTER 5. EMPIRICAL STUDY 41

Table 5.3: Different type of typosquatting error and their proportion

Type Ratio
Undefined 33.63%
Character Insertion 19.47%
Phonetic Perception 13.78%
Character Omission 11.67%
Keyboard Proximity 8.05%
Character Repetition 4.51%
Visual Similarity 4.20%
Existence of Dot , Dash and other symbol 3.31%
Existence of Digit 1.39%

If the wrong key is placed at a horizontal adjacent position of actual target key, we

call it a horizontal key error. Similarly, vertical displacement is termed as a vertical

key error. Horizontal key error frequency and vertical key error frequency are shown

in Table 5.4.

Table 5.4: Keyboard proximity typosquatting for horizontal and vertical orientation

Key Orientation Percentage
Replace by Horizontally adjacent key 78.2%
Replace by vertically adjacent key 21.2%

Though any key can be replaced by its neighbor key in the keyboard, we have

found that some key alteration error happened repeatedly in our log. Some common

keyboard character replacement error is shown in Table 5.1.

Phonetic similarity: Users may type wrong spelling for phonetic perception.

Most of the time it occurs in case of the proper noun. As an example, ‘munsiganj’

is the name of a district in Bangladesh. Someone may type it as ‘munshigonj’ or

‘munshiganj’. From our experiment, we have seen that typo mistake occurs in 1988

pairs for phonetic perception. We classified phonetic error and some examples as

shown in Table 5.1.

From our study the following observations are made:

• Character ‘h’ is often omitted from web address. For example, 〈tec, tech〉,
〈teacher, teacer〉

• Sub domain is mismatched. User often types .co instead of .com. For example,

〈apple.com.bd, apple.co.bd〉

CHAPTER 5. EMPIRICAL STUDY 42

• Subdomain name is misspelled sometimes. For government sites of Bangladesh,

.gov subdomain is specialized. It is often typed as .govt. For example, 〈passport.gov.bd,passport.govt.bd〉

• Character ‘h’ is often inserted after Character ‘s’, ‘k’ or ‘t’. For example,

〈narsingdi.gov.bd, narshingdi.gov.bd〉, 〈muktopaath.gov.bd, mukthopaath.gov.bd〉

• Character ‘j’ and ‘z’ are often misspelled and used in place of each other. For

example, 〈daraz.com.bd, daraj.com.bd〉

• Character ‘i’ and ‘e’ are often misspelled and used interchangeably for each

other. For example, 〈patuakhali.gov.bd, patuakhale.gov.bd〉

Visual similarity: Some alphabetic characters have mutually similar look which

often misguide people. We found significant number of cases where it happened. Some

examples are shown in Table 5.1.

Following observations can be developed from our study.

• ‘c’,‘o’,‘e’ are characterized by an almost round envelope and look similar. For

example, 〈kuet.ac.bd, kuct.ac.bd〉

• ‘t’,‘f’,‘l’,‘i’ are characterized by vertical linearity and look similar. For example,

〈film.com.bd, fiim.com.bd〉

• ‘q’,‘p’,‘g’, ‘b’, ‘d’ are characterized by roundness and vertical linearity and look

similar. For example, 〈daraz.com.bd, baraz.com.bd〉

• ‘m’,‘n’ and ‘v’,‘w’ are characterized by horizontal doubling of elements and look

similar.

Web address or URL may be typed with mistyped digit or symbol. When users

type url, they often confuse between hyphen and underscore. In our experiment, we

observed that typo occurred in many cases due to the change in dot, dash, etc. Some

examples are shown in Table 5.5,

CHAPTER 5. EMPIRICAL STUDY 43

Table 5.5: Dash and Dot related typosquatting error

Observations Example
Omitted (.) radiantcom.bd, xiclassad-

missiongov.bd, mgnc-
cbank.com.bd, join-
bangladeshnavy.mil.bd,
robisomadhan.com.bd

Dot replaced with dash brac-org.bd, mmc-e-
service.gov.bd, parjatan-
gov.bd

Dash replaced with dot ctg.wasa.org.bd,
bise.ctg.gov.bd

Chapter 6

Conclusion

Typosquatting exists over two decades and continues to be a serious threat to this day.

Detection of Typosquatting can be done analyzing DNS logs. However, to the best

of our knowledge, no such work exists that consider the logs of the .bd domain, i.e.,

for the sites registered in Bangladesh. In this work, we have shown that a significant

amount of typosquatting errors exist in the .bd domain. The typosquatting abuse

can be a dangerous threat in Bangladesh where internet popularity is growing rapidly

among mass people without formal computer literacy and awareness about security

threats. In this work, we have used the typo errors extracted from DNS log of the

.bd domain to identify and analyze typo errors. Although several prior works exist

that examine various typosquatting techniques and how they get changed over time,

none of them have considered how probable typosquatting pairs can be predicted for

defensive registration. We also developed a tool to predict probable typo pairs for any

given URL. To develop a predictive model, typosquatting pairs were detected from

DNS log using supervised learning based model. The tool would help domain owners

to take necessary measures for preventive registration in a cost-effective way. We have

also empirically studied the user typo error patterns and reported the most frequent

causes identified.

Our predictive typo registration model helps a new website owner to prevent ty-

posquatting attack by defensive registration of most probable typo domains. List

of predictive probable typo domains with rank helps a new website owner to make

a better decision about how many domains he or she will register to protect his or

her brand. Domain Registration authority like BTCL also can notify their potential

clients with detected typo errors that are extracted from DNS log using the developer

tools.

44

CHAPTER 6. CONCLUSION 45

Our current work is restricted to websites of the .bd domain only. However,

typosquatting is a global issue and brand owners all over the world have the practice

of defensive domain name registration. We intend to do a comparative study of the

defensive domain registration of sites in Bangladesh with those of other countries in

the world. That will enable us to draw a bigger picture about the status of defensive

domain registration in Bangladesh. So far, our study of typosquatting is limited to

syntactic properties of domain names, to be more specific, the sequence of characters

in a domain name. However, a domain name may have various semantic properties

as well. A domain name may or may not contain a proper noun. Also, some domain

names contain dictionary words, while some others have misspelled dictionary words

in them (e.g. clarifai.com). Many names in .bd domain contain Bengali words spelled

in roman letters. Our goal is to study the impact of such semantic features on the

probability of a domain name being prone to typo error and extend our suggestion

model accordingly.

Bibliography

[1] Van Lam Le, Ian Welch, Xiaoying Gao, and Peter Komisarczuk. Anatomy of

drive-by download attack. In Proceedings of the Eleventh Australasian Informa-

tion Security Conference-Volume 138, pages 49–58. Australian Computer Society,

Inc., 2013.

[2] FairWinds Partners. The Cost of Typosquatting. https:

//www.fairwindspartners.com/resources-2/press/reports/

the-cost-of-typosquatting/, 2010. [Online; accessed 23-June-2018].

[3] Kim Zitter. Researchers’ Typosquatting Stole 20GB of email From FORTUNE

500. https://www.wired.com/2011/09/doppelganger-domains, 2011. [Online;

accessed 09-July-2018].

[4] Mohammad Taha Khan, Xiang Huo, Zhou Li, and Chris Kanich. Every second

counts: Quantifying the negative externalities of cybercrime via typosquatting.

In IEEE Symposium on Security and Privacy (SP), pages 135–150. IEEE, 2015.

[5] Paolo Piredda, Davide Ariu, Battista Biggio, Igino Corona, Luca Piras, Gior-

gio Giacinto, and Fabio Roli. Deepsquatting: Learning-based typosquatting de-

tection at deeper domain levels. In Conference of the Italian Association for

Artificial Intelligence, pages 347–358. Springer, 2017.

[6] Tyler Moore and Benjamin Edelman. Measuring the perpetrators and funders of

typosquatting. In International Conference on Financial Cryptography and Data

Security, pages 175–191. Springer, 2010.

[7] https://github.com/typosquattingbd/typosquatting.git, 2018. [Online;

accessed 24 September-2018].

46

https://www.fairwindspartners.com/resources-2/press/reports/the-cost-of-typosquatting/
https://www.fairwindspartners.com/resources-2/press/reports/the-cost-of-typosquatting/
https://www.fairwindspartners.com/resources-2/press/reports/the-cost-of-typosquatting/
https://www.wired.com/2011/09/doppelganger-domains
https://github.com/typosquattingbd/typosquatting.git

BIBLIOGRAPHY 47

[8] Muhammed Dastagir Husain and Anindya Iqbal. An empirical study on ty-

posquatting abuse in bangladesh. In International Conference on Networking,

Systems and Security (NSysS), pages 47–54. IEEE, 2017.

[9] Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan Spring, Mark Felegyhazi,

and Chris Kanich. The long” taile” of typosquatting domain names. In USENIX

Security Symposium, pages 191–206, 2014.

[10] Charan Piyush. A survey of the prominent effects of cybersquatting in india.

International Journal of Information Security and Cybercrime, 4:47–51, 2015.

[11] Yi-Min Wang, Doug Beck, Jeffrey Wang, Chad Verbowski, and Brad Daniels.

Strider typo-patrol: Discovery and analysis of systematic typo-squatting. In

Proceedings of International conference on Steps to Reducing Unwanted Traffic

on the Internet, volume 6, pages 31–36, 2006.

[12] Pieter Agten, Wouter Joosen, Frank Piessens, and Nick Nikiforakis. Seven

months’ worth of mistakes: A longitudinal study of typosquatting abuse. In

Proceedings of Network and Distributed System Security Symposium, pages 191–

206. Internet Society, 2015.

[13] Jeffrey Spaulding, Shambhu Upadhyaya, and Aziz Mohaisen. You’ve been

tricked! a user study of the effectiveness of typosquatting techniques. In Interna-

tional Conference on Distributed Computing Systems (ICDCS), pages 2593–2596.

IEEE, 2017.

[14] Nyang D. Mohaisen A. Spaulding, J. Understanding the effectiveness of ty-

posquatting techniques. In Proceedings of the fifth ACM/IEEE Workshop on

Hot Topics in Web Systems and Technologies, 2017.

[15] Jeffrey Spaulding, Ah Reum Kang, Shambhu Upadhyaya, and Aziz Mohaisen.

A user study of the effectiveness of typosquatting techniques. In International

Conference on Communications and Network Security (CNS), pages 360–361.

IEEE, 2016.

[16] Nick Nikiforakis, Marco Balduzzi, Lieven Desmet, Frank Piessens, and Wouter

Joosen. Soundsquatting: Uncovering the use of homophones in domain squatting.

In International Conference on Information Security, pages 291–308. Springer,

2014.

BIBLIOGRAPHY 48

[17] Jeffrey Spaulding, Shambhu Upadhyaya, and Aziz Mohaisen. The landscape

of domain name typosquatting: Techniques and countermeasures. In Interna-

tional Conference on Availability, Reliability and Security (ARES), pages 284–

289. IEEE, 2016.

[18] Tingwen Liu, Yang Zhang, Jinqiao Shi, Jing Ya, Quangang Li, and Li Guo.

Towards quantifying visual similarity of domain names for combating typosquat-

ting abuse. In Military Communications Conference (MILCOM), pages 770–775.

IEEE, 2016.

[19] Anirban Banerjee, Md Sazzadur Rahman, and Michalis Faloutsos. Sut: Quanti-

fying and mitigating url typosquatting. International Journal of Computer and

Telecommunications Networking, 55:3001–3014, 2011.

[20] Lansing E. Brandbyge S. Pedersen J. M. Kidmose, E. Detection of malicious

and abusive domain names. In Data Intelligence and Security (ICDIS), 2018 1st

International Conference on, pages 49–56, 2018.

[21] Singh M. M. Shariff A. R. M. Samsudin A. Zulkefli, Z. Typosquat cyber crime

attack detection via smartphone. Procedia Computer Science, 24:664–671, 2017.

[22] Onder Demir Buber, Ebubekir and Ozgur Koray Sahingoz. Typosquat cyber

crime attack detection via smartphone. Feature selections for the machine learn-

ing based detection of phishing websites, pages 1–5, 2017.

[23] https://github.com/elceef/dnstwist, 2018. [Online; accessed 04 November-

2018].

[24] https://github.com/ring0lab//catphish, 2017. [Online; accessed 11

November-2017].

[25] https://www.morningstarsecurity.com/research/urlcrazy, 2012. [Online;

accessed July 2012].

[26] https://github.com/nccgroup/typofinder, 2016. [Online; accessed 22

November-2016].

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

https://github.com/elceef/dnstwist
https://github.com/ring0lab//catphish
https://www.morningstarsecurity.com/research/urlcrazy
https://github.com/nccgroup/typofinder

BIBLIOGRAPHY 49

[28] Frederic P Miller, Agnes F Vandome, and John McBrewster. Levenshtein dis-

tance: Information theory, computer science, string (computer science), string

metric, damerau? levenshtein distance, spell checker, hamming distance. 2009.

[29] M Umanol, Hirotaka Okamoto, Itsuo Hatono, HIROYUKI Tamura, Fumio

Kawachi, Sukehisa Umedzu, and Junichi Kinoshita. Fuzzy decision trees by

fuzzy id3 algorithm and its application to diagnosis systems. In Fuzzy Systems,

1994. IEEE World Congress on Computational Intelligence., Proceedings of the

Third IEEE Conference on, pages 2113–2118. IEEE, 1994.

[30] B Yegnanarayana. Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

[31] Tin Kam Ho. Random decision forests. In Document analysis and recognition,

1995., proceedings of the third international conference on, volume 1, pages 278–

282. IEEE, 1995.

[32] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of computer and system

sciences, 55(1):119–139, 1997.

[33] David W Aha, Dennis Kibler, and Marc K Albert. Instance-based learning algo-

rithms. Machine learning, 6(1):37–66, 1991.

[34] Nello Cristianini and John Shawe-Taylor. An introduction to support vector

machines, 2000.

[35] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[36] Bangladesh Telecommunications Company Ltd. (BTCL). Website: http://www.

btcl.com.bd. Last accessed 11:51 am, January 27, 2019.

[37] TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Soft-

ware available from tensorflow.org.

[38] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H. Witten. The WEKA data mining software: an update.

SIGKDD Explorations, 11(1):10–18, 2009.

https://github.com/fchollet/keras
http://www.btcl.com.bd
http://www.btcl.com.bd

	Board of Examiners
	Candidate's Declaration
	Acknowledgment
	Abstract
	Introduction
	Significance
	Limitations of Previous Works and Our Objective
	Research Questions
	Overview of Our Solution
	Outline of the thesis

	Literature Review
	Research on Typosquatting
	Existing Typo Generation Tools
	Recurrent Neural Network
	Summary

	Our Proposed Framework
	Detection from Log Analysis
	 Data Generation
	 Data Cleaning
	Extraction of Typo Pair using Deterministic Rules
	 Edit distance based estimation
	 Time difference
	 Same IP

	 Gold-set Generation
	Feature Selection
	 Classifier Design

	Pre-registration Prediction
	The Concept
	Variable Length of Sequences
	Global vs Local Dependency

	Construction of n-grams
	Training RNN Model
	Preprocessing of Training Dataset
	Model Architecture

	Prediction
	Ranking

	Summary

	Result and Performance Evaluation
	Data Collection and Dataset
	Experimental Setup
	Detection Performance
	Prediction Performance
	Impact of Substring Length
	Impact of nr
	Comparison with Generation Tools

	Discussion
	Summary

	Empirical Study
	Significant number of misspelled URLs exist in the DNS Log with single character modification of original URLs
	Short original URLs suffer more from URL poaching
	Typographical error can be categorized in different types

	Conclusion

