by
Syeda Tasmin Jahan
B.Sc(Hons), H.SC.

A thesis preserted to the Department of Physics in partial fulfilinent for the degree of dophil.

व. 62.45%
r․․ $4-8$

BANGLADESH UNIVERSITY OF ENGYNEERING AND TECHNOLOGY DHAKA, BANGLADESH

NARCH,I985

The author expresses her deep sense of gratitude to her Supervisor Dr. Tafazzal Hossain, Associate Professor, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, without whose constant guidance and encouragement, untiring help and invaluable suggestions this work would not have been completed.
if
The author is grateful to Dr. Giasuddin Ahmad, Professor and Head, Department of Physics, BUET for providing her with the necessary facilities in connection with her work and also for constant encouragement. The author would also like to offer her thanks to Professor hd. Ali Asgar, Dr. Nazma Zaman, Mrs. Dill Afroza Ahmed and ifr. Abu Hashan Bhuiyan for their keen interest in her work. The author aiso acknowiedges with chanks many valuable help received from H/s. Kazi Ahored Reza, Jiban Podder and Md. Abdur Rashid.

The author would liko to thank the DAERS, BangIadesh University of Engineering and Technology, Dhaka for allowing her to use the facilities of various workshops of the University. In this connection, sincere thanks are also due to Mr. Ahmed Ali Mollah, Mr. Julfiguer Ali Bhuiyan and Mr. Rabiul fslam for their kind co-operation in setting the experiments.

Thanks are also due to Dr. Shahidul Alam, Mr. M.A. Beg and Mr. Shafiul Haque for cheir help in developing and printing of the photo-microgéphs obtained in connection with her warks.

The author also wish to extend her heartfelt gratitude to the Library staff of BUET, AEC, BCSIR for their sincere cooperation.

The atuthor also expresses her gratitude to Dr. Abdur Rob Mollah, Director, Health Physics Division, Atouic Energy Centre, Dhaka for allowing the author to seal the samples in tho glass-blowing workshop. The glass blower Mr. Abdur Rouf deserves thanks specially for sealing the saaples on her behalf.

The author is also thankful to Mr. Md. Asadullah Khan, Controller of Examinations, BUET for providing many ugeful assistance in connection with her work. The author would also like to thank Mr. Md. Aminul Haque for typing the manuscript of this thesis and Mr. Shafiuddin Khan for drawing some diagrains of the thesis.

The author would like to thank Bangladesh University of . Engineering and Technology for all the financial support.

$\|$ ABSTRACT-

Abstract

Pyrolysis of benzene has been carried out to examine whether it is possible for it to be fused togother so as to produce $\frac{\| p l a n e r ~ s h e e t s ~ o f ~ a r o u a t i c ~ r i n g s ~ t o ~ f o r m ~}{l n}$ graphite. In the initial stages of nucIeation and growth a liquid-state mesophase of optical anisotropy appears as spherules as in all graphitizable organic.aterials. With the progress of carbonisation, the growing mesophase spherules coalesce and.chadge in shape in forming relatively complex bulk mesophase. Reflected polarized-Iight micrography using cross polarizers has been employed to investigate the microstructure of carbonaceous mesophase. A thermal analysis of the sample has been urdertaken to lotate the temperature intervals of mesophese foriantion. A particie size analysis has been carried out using polariced-light uicroscopy in order to find out the size of the spherules at different heat-treatment cemperatures.

CONTENTS

Page
IMTRODUCTION 1
References 9
GHAPTER If CARBONISATION AND GRAPHITIZATION
2.1. Introduction II
2.2. Different forms of Carbon 12
2.3. Structure of Cartons asdecermined by X-rays.15
2.4. The carbonisation process 17
2.4.1 Pressure effects on wesophase microstructure 23
2.4.2 Differeut types of mesophase sphertules 24
References 30
CHAPTER III TIJE POLARISING HICROSGOPE ANO OPTICS OF CRYSTAES
3.1. Introduction 33
3.2. The Polarizing licroscope 34
3.2.1 hodes of observation in a polariziug iricroscope 37
3.2.1.1 Orthoscopic arrangement 37
3.2.1.2 Conoscopic arrangenent 42
3.2.2. Types of illumination used in polarizing microscope 44
3.3. Uptics of Crystals 46

Page

6.2.4 Thermal analysis 95
6.2.5 Micrographic preparation of 97samples for mesophaseobservation
6.2.6 Polarized light microscopy 99
6.3. Results and discussions 100
6.3.1 Different types of carbons 100obtained by sealed tubepyrolysis of benzene
6.3.2 Thermal snaiysis 101
6.3.3 Heat-treatment temperature, 102
duration and also pressure together promote the growth of mesophase formation
6.3.4 Polarized~light photo- 104
micrograph
6.4 CONCLUSIONS 105
Reference 137
Page
3.4. Basic principle of a tint plate 50
3.5. Optical studies of the carbonaceous inesophase spheres 52
Refercncos 66
CHAPTER IV THER:AL AMALYSSS
4.I. Introduction 67
4.2. DTA apparatus 68
4.3. Thermal behavior of carbonising and graphitizing materials 70
Reterences 78
CHAPTER V PYROLYSIS GHEAISTRY OF BENZENE
5.1. Introduction 80
5.2. Aromatic hydrocarbons 82
5.2.1 Benzere 85
5.3. Pyfolysis of benzene 86
References 91
CIIAPTER VI EXPERIMENTAL RESULIS, DISCUSSIONS AND CONCLUSIONS
6.1. Introduction 92
6.2. Experimental 93
6.2.1 Sample 93
6.2.2 The safety device for opening sealed tubes containing heat- treated organic samples 93
6.2.3 Increasing pressure developed inside pyrolysed sealed tube accelerates carbonisation process 95

CHAPTER - 1

1.ITRODUCTIOH

Many workers ${ }^{1-17}$ have recognised that the early stages of carbonisation process are important in deciding whether the final product or carbonisation is graphatic or not. Those materials which ultimately produce graplitizing carbons pass through a fusion stage during carbonisation which usually occurs 2a the temperaturo range $350^{\circ} \mathrm{C}-600^{\circ} \mathrm{C}$. Thisis a necessary but not sufficient condition for graphitizable orgatic materials. Recent stuules by sevoral groups ${ }^{5-17}$ and wost notably the worh by brooks and Taylor ${ }^{5,6}$ on the structural conditions for graphitizability have demonstrated the significance of mosophase transformation which takes place as a precursor state in all graphitizalle orgamic materials during carbonisation. This transformation is a liquid-state structural transition in which the large planer nolecules formed by the reactions of therwal cracking and arouatic polymerisation becone aligned in a parallel array to form an optically anisotropic lifuid crystal. Althoug the lafetime of the mesophase is Ifinited by its hardeniag to a semi-coke, the alignment of the lamellar molecules achieved in the mesophase transformation is essontial for thormal graphitizability of the pyrolysis product.

In the initial stages of nucleation and growth, the carbonacoous atesophase dupears as small spherules which are suspended in the optically isotropic matrix with a simple structure ${ }^{5,6}$ as illustrated in three-dimensions in fig.l.1.
ds observed with cross jobarizers, the extinction (ontours dre rather simple and derine the Ioci of ponnls where the IGyers are parallel or perpeadicular to the plate of polaritation of the incident light. The Iayer planes of the simple spherules are stacked perpendicularly to the polar dianeter and curvo to ueet the interface of the isotropic phase mormaliy.

Formation of the anisotropic mosophase is a function of heat-treatment tomperature and heat-treatment duration. As carbonisation proceeds with increasiag temperature aud heattreatment duration, the growing wesophase spherules, which are denser than the isotropic parent phase, sink to the bottom of the container. When spherules wect coalescence occurs to produce Iasger droplets, leading eventually to a bulk mespohase as shown in fig. I.2. When observed microscopically with cross polarizers, the bulk mesophase displays a complex ensembie of extinction contours. The polarized-light extinction contours show nodes and crosses. When the specimen is rotated, the extinction contouts sweep over the polishad surface, but the nodes and many of the crosses remain fixed in position while the contours rotate about chom either with or gigainst the rotalion of the incident light ${ }^{16,17 .}$

A parallel piate of quartz or gypsum sometimes called the 'fifst ordor red plate', tho thickness of which is adjusted to give a path difference betwoen the two transuitted components equal to one wavelength \&f yellow light, is inserted at 45° between crossed polars. Between crossed polars it gives the violetmred interference colour at the end of the first order

The processes of the rormation, coalescencc and deformation of the plastic mesophase establishes the basic elements of the graphite microstructure i.e. the paralled alignment of, the aromatic layer planes und the rearrangement of the complex folds in the fibrous regions. The linear stacking discontinuities, that is, the nodal and cross-structures, are essential characteristes of the codiesced mesophase, and the nodal structures at least are found to persist in their bssic form upto graphitization temperatures.

The carbonaceous mesophase transformation which plays an intermediate but critical role in determining the morphology of graphitic products is thus essentially a precursor state to all graphitizable aromatic organic compounds. The present work has been undertaken in an attempt to get some information on the structures formed during the relatively short life~time of the plastic mesophase formed during the pyrolysis of benzene, the starting organic compounds of the aromatic group.

Mayden et al. ${ }^{18}$ suggested that heteronatoms wight control the carbonising and graphitizing character of largo polyaromatic organic molecules. Among the raw materials used for the production of artificial carbons and graphites, there are hydrocarbons including aromatic organic ring compounds which contain a number of hetero-atoms such as H_{2}, O_{2}, N_{2}, S, etc. During Pyrolysis, these hetero-atoms can form in part stable volatile by-products, thus reducing the carbon yield. On the other hand, the hetero-atoars can affect cross-1inkage in the cotapound to be pyroifised. In' this way they will reduce the
yapour pressure and cause coking in the liquid and eapecially in the solid phase. This effect. will increase the carbon yield

Later investigation 19,20 indicated that hetero~atoms present in the feedstock material play a significant role in determining the final properties of a graphico, especially the coefficient of thermal expansion.

The simple objective is to produce a graphite which is isotropic in expansion rather than the anisotropic expansion of perfect graphite or the disorder of glassy carbons. dgain isotropic conditions also coincide with maximum a bulk expansion coefficient according to a highly idealised model of 4 isotropic cross-Iinked carbon polycrystal, 19,20 as iliustrated in fig. 1.4. The general concopt of the model which has been outlined is

$$
c_{v} \simeq 3 \alpha_{a}+k \alpha_{c} n^{\frac{3}{2}}
$$

wricte

$$
\begin{aligned}
a_{v} & =\text { bulk voluse coefficient of expansion, } \\
\alpha_{a} & =\text { coefficient of expansion along a-axis, } \\
a_{c} & =\text { coefficient of expansion along c-axis, } \\
\text { and } n & =\text { beteronatou concentration. }
\end{aligned}
$$

The bebavior of the curve drawn ag versus $a^{\frac{1}{2}}$ has been diagramatically shown in fig. 1.5 .

Fig 1.1. MESOPHASE SPHERE WITH SECTION INCLUDING POLAR DIAMETER

JUST AFTER CONTACT

SHORT TIME AFTER CONTACT

TYPE OF COMPLEX INTERNAL STRUCTURE FORMED WHEN COMPOSITE OF TWO OR MORE SPHERES CONTRACTS TO ONE LARGE SPHERE
Fig. 1.2 REARRANGEMENTS WHICH APPEAR TO OCCUR WHEN TWO SPHERES COALESCE

0-TYPE
 co-rotativg
 CROSS

Fig. 1.3. Scneratic dianran of the four types of mesophase stacking defects. Extinction contours are shom for the case of crossed polarizers.

Mig. 1.4. Simplifjed model of thmee-dimensional crosslinked graphit.e polycrystal.

Fig. 1.5 Relationsfip between ay and n for direct sulphur addition to catarex pild.

REFERENCES

1.1	dsylor, G.J., Fuelt 1961, 40, 465.
1.2	Kipling, J.J., Sherwood, J.N., Shooter, P. V. and Thoupson, N. R., Carbon, 1964, 1, 315.
1.3	Kipling, J.J., Sherwood, J.N., Shooter, P.V. and Thompson, N.R., Garbon, 1964. 2, 321.
1.4	Kipling, J.J. and Shooter, P.V., Second Conf, Ind. Garbon and Graphite, Soc. Chem. Ind., 1965, 15.
1.5	Brooks, J.D. and Tay10x, G.H., Carbon, 1965. 3, 185.
1.6	Brooks, J. D. and Taylor, G. $\mathrm{H}^{\text {a }}$, Nature, 1965, 206, 697.
3.7	Kipling, J.J. and Shooter, P.V., Carbon, 1966, 4, 1
I. 8	White, J.L., Guthrie, G.L. and Gardner, O., Casbon, 1967, 5, 517.
1.9	White, J.L., Dubois, J. and Soulllart, C., J. Chim. Phys., Special volume, April, 1969, 33; Euratom Report $4094 \mathrm{e}+1969$.
1.10	honda, H., Kimura, H., Sanada, Y., Sugawara, S. and Furuta, T., Carbon, 1970, $\underset{\sim}{8}, 18 \lambda$.
1.11	Dubois, J., Agace, C, aft white, J.L, Euratow Report $4627 \mathrm{e}, 1971$.
I. 12	Honda, H., Kimura, H. ànd Sanada, Y., Carbon, 1971, 9, 695.
1.13	Walker, P.L., Carbon, 1972, 10, 369.

1.14 Sandda, Y., Furuta, T., Kıinura, il. and lionda, H., Fwe1, 1973, 52 143.
1.I5 Grahaw, S.G., Ph.D. Thesis, 1974, Salford University.
1.16 White, J.L., In Petroleum-Dorived Carbons (Edited by Grady, T.M.O. and Deviney, N.I.), Aw. Chem. Soc. Syop. Ser., $1976,21,282$.
I.I7 Hossain, T., J. Bangiadesh Academy of Sciences, Vol. 7, No. 1 \& 2, J983, 57
1.IS Biayden, H.A., Gibsord, J. and Riley, H.L., Inst. of Fuel, jrartime bulletin, 1945, 125.

1. 19 Hutcheon, J. ${ }^{\text {H. }}$ and Jenkins. M.J., Second Conf. Ind. Carbon and graphite, Soc. Chea. Ind., 1966, 433.
I. 20 Dollimore, J. and Jenkims, M.J., private communication, 1966.

 आOQx日

$$
\overline{\text { UのIJJnforquI }}
$$

pure graphite is termed 'graphitization'. da fact, graphitizataon doos not occur in 'graphatizable carbons' until they are annealad above $2500^{\circ} \mathrm{C}$. The temperature range fron $2500^{\circ} \mathrm{C}$ to $3000^{\circ} \mathrm{C}$ is called the 'graphitization temperature range'. The tenperature at which graphitization starts, has been found to differ from material to material.

2.2 Difierent forms of carbon

There are only two allotropic crystalline forms of carbongrapinte and didaond. Both exist in nature or can be produced artificially frobi many carton containing materials. The difference in properties tetween these two allotropic forms is determined by the forces lying within and between crystallites. Dianond is a face-centred cubic material with each cafbon atou bonded covalentiy to four others in the form of a tetrahedron, the interatotic distance being 1.54 . It is the hardest known naturally occurring substance due to tho rigidncss of the tetrahedral covalent bond lattice of the single sacromolecule that forms the porfect crystal. Diamand is metastable to graphite. The conversion of graphite into diamond requires the assistance of catalysts as melil as high temperatures and pressures. Though diamond normally has the structure described above, Ergun and Leroy bave shown that a hexagonal structure for diamond is possible. Again diamond changes spontaneously at ordinary pressure to graphite above $1500^{\circ} \mathrm{C}^{2}$ and Graphite at atmospheric pressure is more stable form of carbon.

 ：
－7uものエ8ロロッ

accounted for tho extra $x-r a y$ lines found in some powder photographs of graphites. The proportion of the rhombohedral form may be increased in graphites by grinding which iadicates that the change arises from the movemeuts of the layors carbon networks with respect to oue another.

Most naturally occurring graphategis polycrystallane. Perfect single crystals greater than loma are quite rare, although thoy carl be produced with difficulty. Most synthetic graphites, made by high tomperature calcination of pitch/coke bleno's, are polycuystalline. Single crystals of grapilte of large dimension that occurs in some natural deposits can be oltained by pyrolytic deposition of carbon fron carbonaceous vapours. Under suitable conditions, the deposit of carbon can take the form of highly oriented layers. Subsequent treatment of this material can produce quite large single crystals of pure graphite, knowd as 'pyrolytic graphite'.

Apart frou diamond and graphite, there exists a.tioud foru of carbon which is known as 'umorphous carbon'. AIthough this name literally means a structureless form of carbon but almost all airorphous carbous possess a small anount of order. Tho first application of Xray diffraction methods to amorphous carbons, howdver, fed to the concept that they were also graphitic with their apparontly amorphous character which arises from the very minute size of the crystallites. These amorphous carbuns can be prepared by the combustion of hydrocarbons in an incomplete supply of air, i.è. carbon blacks, snd inciude soot, charcoal, and lamp blacks.

2.3 Structure of corbons as deterinined by Xarays.

Garbons can be classified into two distinct and welldefined types - graphitizing or non-graphitizing, soft or hard, Graphitizing carbons may be defined as thowe which begin to develop three-dimensional order (giving oblique graphite-ifke $X-r a y$ refiections) on heating to temperatures near $1700^{\circ} \mathrm{C}$. Such carbons are produced by two main processes: either by deposition from the vapour phase or by solidification from the liquid or plastic state to forin cokes.

Substances which produco graphitizing carbons fron the liquid or plastic state include vitrinites of wedium volatile coking coal, high tempergture coal-tar pitch, petroleum bitumen, polymers such as P. V. C and polynuclear aromatic compounds such as maphthacene or dibenzanthrone. The carbons normaliy obtained by heating these substances are coke-like in appearance and show complex patterns of optical anisotropy when observed under the microscope.
'Mon-graphitic' carbons'' are carbons in which the graphito-like layers Iie in parallel groups but are not oriented Iike the crystalline structure of graphite. The three-dimensional structure of crystalline graphite is not present.ion beating certain non-graphitic carbons to sufficiently high temperatures between $1700^{\circ} \mathrm{C}$ and $3000^{\circ} \mathrm{C}$ the graphite-like layers show a tendency to change frow a 'random layer structure' towards the ordered stpucture of crystalline graphite. (dhis can be shown by X~ray powder photography). These intermediate type of
structures in which the three-dimensional graphite structure is'partly developed, are called 'graphitic carbons'. A description of their formation has been given by frankIin'. Also those carbons which, on heating to temperatures between $1700^{\circ} \mathrm{C}$ and $3000^{\circ} \mathrm{C}$ showed a continuous change from a nongraphitic to a graphitic structure were called 'graphitizing carbons' and those which on heating to $3000^{\circ} \mathrm{C}$ still did not show three-dimensional ordering were called ron-graphitizing carbons'. These two types can be distiuguished in terms of the relation between crystal heigit and crystal diameter on heattreatuent (Hig. 2.3). L is the average layer distance and M is the mean value of the number of layers per crystalifite.

Graphitizing carbons are generally relatively soft, are of high apparent density. They possess Iittle microporosity and are relatively rich in hydrogen or low in oxygen, sulphur and nitrogen. They were termed 'solt carbons' by Mrozowskilo. Frankiin considered that, during the early stages of the carbonisation process, the crystallites ir the graphitizing carbons were fairly mobile and that in the region of $1000^{\circ} \mathrm{C}$, a high proportion of the crystallites. lay nearly parallel to each other. Weak cross-linking was stpposed to exist between the crystallites. A model (reproduced in Fig. 2.4) was put forward by Frankifil for the structure of a graphitizing carbon. X-ray data also suggested the movable nature of the whole layers or groups of layers with the rise of the heat-treatuent tewperature, but the most significant factor was that neighbouring crystallites bad
to be nearly parallel. Grystallite growth was considered to ocurr by the layer pianes linkang together.

Man-graphitizing carbons art gemerally hard, are of low apparent density. They have a high inicroporosity ard are relatively low th hydrogen or rich in oxygen, sulphur and nitrogen. They were correspondingly called thard carbons' by Mrozowski ${ }^{10}$. Again TrankIin ${ }^{1 I}$ fut forward a toded (reproduced iufig. 2.5) to account for their structure. In this model she considered that the paralleI layer groups which, ware oriented at all angles, were joined cogether at their extremities, thus accounting for themicroporosity. With the increase of pyrolysis temperatures there was some growth in the basal plane direction by incerporation of disordered carbou atoms at the edges of the crystalifites. Other Garbon atoms acted as linkages between crystaliftes.

2.4 The caxborisation procest

It has been wentioned by many workers that the early stages of carbonisation ($350-600^{\circ} \mathrm{C}$) are important in determiniug the ability to graphitize at high temperature. Jhe following is a summary of the wark done by sofie authors.

Kipling et ail2 described some of the properties of carbons made from a range-af polymers and one polycyclic compound (dibenzanthrone). The carbons could be sharphy divided
inta two graups; those which became graphitic at temperatures of $2700^{\circ} \mathrm{C}$ or above and thase which rewained non-graphitic. Kipling has investigated the relationship between fusion during carbonisstion process and the ability of the resultant carbon to graphitize subsequently at a higher touperature. It was later suggested 13,14 that organic materials could only give rise to graphitic carbon if they passed through a fusion stage which had to occur under specific conditions. These specific conditions were such that the polycyclic aromatic structures formed in the residue during carbonisation readily orientate to form graphite. It was also conrirted by using polarized-light microscopy to study low and high temperature carbons ${ }^{I 5}$. Taylor ${ }^{16}$ undertook a detaided study of the microscopic charges exhibited by a vitringte with the progress of carbonisation using optibal methods. Observations were made on a thermally metanorphosed coal. The vitrinite, which in its unaltered state was anisotropic, becane isotropit and this transition was followed under controlled conditions in the laboratory. The change from, anisotropy to isotropy has been fopnd to accur at a temperature sifghtly below that at which the plasticity became measurable. About IO to I ${ }^{\circ} \mathrm{C}$ before the onset of resolidification the change from isotropic piastic Vitrinite to anjsotropic semicoke was indicated by the appeat iance of small spherules initially of micron size, in the isotropic vitrinite, forming as a separate phase. These spheres were found to grow 2 size with the rise of heattreatment tewperature at the expense of the plastic vitrinite

Which eventually codlesced to fors a rosaic structure about the resolidification temperature.

The spheres, wisich later became unjts of tho mosaic texture, had an interesting pattern of behavior in singly and doubly polarized light. A particular structure daving a straif effect was brought forward to account for this behavior. At first it was bolieved that this structure was inhereatiy iuprobable as because the strain effects were infact of litcIe importance to account for the observed optical properties, and hence a socond undel which included a stress affect was proposed. However the original structurc was later verified to be correct by Brooks and Taylorit.18 usiug eloctron diffraction and optical microscopic techniques. The three dimensional structure of a simple sphere-has been shown in the introductory chapter on page 6 in Fig. l. T. The layers consist of condensed polycyclic aromatic compounds whicit are aligned perpendicular to the polar diameter but curve to meat the interrace with the isotropic matrix at a high angle. The poles constitute amomalous regions, but this is not sufíciently reflected in the spherical dropiet. Spheres were also found to appear on deating bitumen, pitches, PVC, naphthacene and dibonzanthrone, aII of which produce graphitizing carbons. This two phase diquid state strucGural transformation is known as 'carbonaceous mesophase formation' or 'liguid crystal formation'.

Wrooks and Taylor shoned that the spheres differed littie in composition ($C_{100} 0_{49}{ }^{\circ}$ I. 4) front the isotropic liquid phase ($C_{100} H_{53}$) and that the spheres had an average molecular weight of about 1700 compared with a molecular weight of about 400 for the isotropic liquid. I'hey concluded that those matarials which finslly produce graphitizing carbons pass through a fluid state during the early stage of carbonisation which gonerally occurs in the temperature range $350-600^{\circ} \mathrm{C}$. In the final stages of this fluid phase a second phase taving. anisofropic structures is found to form and this structure persists into the semi-coke beyond. They also concluded that any solid-surface-appeared to be a preferred site for mesophase growth and that the nucleating effect of solids increased with their available surfaco area. It is now thought, however, that nucleation is not the principal mechanisw in'wesophase formation, but the growth of the anisotropic liquid crystals occurs at the expense of the isotropic liquid phase ${ }^{19}$.

White et al ${ }^{20}$ ewployod polarized-Iight micrography. to investigate the microstructure of the coalesced mesophase formed in the carbonysation of coal-tar pitch. They noticed that the structurad features "of the coalesced mesophase were siomilar to those found in electon wicrographs of graphitized materials. Also prominent features in the polarized-1ight extinction contours were the nodes and crosses which did not move when the plane of pelarization of the incident light.was roxated. These nodal points were found to correspond to two types of linear defects in the stacking of the arowatic layer planes.

Later lihite and co-workers ${ }^{21}$ extended their cIassification of defect structares in the stacking of the mosophase layer planes to Four. Tìey are : (a) Co-rotatang node, (b) Counterrotating node, (c) Co-motating Gsoss, and (d) Counterrotating cross.

These four types of Iiuedr defects were termed co - and counter - rotating nodes and crosses depending on whether the extinction contours moved with or against the direction of rotation of the piane of polarization of the incident light. A description of the four fypos of linear defects and their forsation have been given in the introductory chapter on page 3. These four types of limeaf defects have aldo been ropresented schematically in fig. I. 3 on yage 7 of the same chapter, 「he notation used there $1 s$ in opposition to that used by honda et ay ${ }^{24}$.

White et ale concluded that the processes of the formation, coalescence and deformation of the plastic mesophase established the busic elewents of the graphate wicrostructure, i.e, the paraliol alignment of the aromatic layer pIanes tad the rearraingement of the complex folds in the fibrous regions. The linear stacking discontinuities. mamely the modal and crass stractures, were ossential characteristics of the coalesced mesophasc, and the nodal structures at lasst were found to persist in their basic form upto graphitization temperature, However, they did not appedr to be involved in shrinkage cracking,
fold sharpening and the formation of mosaic blocks and kinks which occurred during pyrolysis. Later white et al ${ }^{22}$ extended their studies to iuclude graphitizable materials such as coal-tar pitch and petruleuta coke feedstocks and arrived at similar conclusions.

Honda and co-workers ${ }^{23}$ supplemented the works of Brooks and Taylor by examining in mucit more detail, the effect of tewperature and rosidont times upon the growth and physical properties of the mesophase in pitches and found that teaperature and beatーtreatment duration wete essentially complementary factors.

In a polarized-light study Honda et aI ${ }^{24}$ used crossed polarizers with a gypsum plate to investigate the microstructure of the carbonageous mesophase formed in pitches during the early stages of carbonisation. By use of this-so-called sensitive-tiut * technique, changes in pleochroism and in extinction contours for coalesced and for deformed mesophases were observed. This method permitted distinction between crosses and nodes and so enabled four types of Ijnear liefects in the stacking of the aromatic layer planes to be identified. These were similarto those soen by white et a ${ }^{21}$ but were now termed as $Y-t y p e$ comotating nodes, U-type counter-rotating nodes, X-type cormotating crosses and ortype connter-rotating crosses. Jhis notation is opposite to that of rhite 2 probably because of opposite dinection of rotation of the plane of polarization of the incident lisht. Monda also explained schematically how the
crosses and nodial structures wore formed by the coalescence of two simple spherules and the deformation of such coalesced Desophase.

Whittaker and Grindstaff 25 found that the rates of formation, growth and coalescence of the wesophase spheres varied from feedstock to feedstock and that the type of molecular structure in the original feodstocks and the type of structures formed on pyrolysis had a significant influence on the resulting coke structure.

Carbonaceons mesophase formation, a Iiquid-state structural transition of optical anisotropy, has been found to occur in a few Aromatic organic compounds ${ }^{26,27}$ as a prerequisite to ふraphitization. Raflected polarized light uicrography'using cross-polarizers with a gypsum plate tras been found suitable for investigating the microstractures of carbouaceons mesophase.

2.5.1 Pressure cffects on mesophase wicrostructufe

Extensive studies on the carbonisation of soue organic compounds and caal-tar pitches under extremely high pressures (~3 3 bar) were performed by Walker et al 28,29 sad by Marsh et a ${ }^{30,31}$. The structures of the carbonised solid products, obtained by pyrolysis in a sealed tube, were characterised as anisotropic carbonaceous mesophase, whose morphologies change from vesicular co spherical with the rise of pressure. Pressure was also observed to prevent coslescene of the wesophase spheres and thus onhance graphitizability.

习习习 แT paftsodap әq ó punof st sərqntosut fnouftn aseydosəa

Host recontly mesophase spherules with structures othor than that proposed by Brooks and Taylor have been reported. honda aud his co-workers 38 reported a second-type mesophase spherules having different optical properties from those of the Broks-Taylor spherules. They proposed a structaral model in which the outer layers lies parallel to the spherule surface but having a similar layer alignaent like that of the Brooks-Taylor-type around the central region (fig. 2,6B). Similar mesophase spherules mere also observed by Kovac and Lewis ${ }^{39}$ and Imamura et al ${ }^{40}$. Nuttinger ${ }^{41}$ and also Imamura and Nakamizo 42 reported the third-type mosophase spherules with all the layers lyiag in concontric circles about the centre of the spherules (Fig. 2. GC). The structure of a fourth-type spherule (Fig. 2.6D) was put forward by Imamura, Nakamizo and Honda 43 . The structure of this type wasmalbost similar to that of the Brooks-Taylor type and it is now believed that the fourth-typo spherule is a wetastable phase of the Brooks-laylor type. jovel anisotropic mesophase features having a flower petaloid loxture were reported by Mochida et al 44 .

Fis. 2.1. [ine jdeal graphite crystal structure with the hexagonal anit cell with erystal axes and lattice co-ordinates.

Fig. 2.2. The rhombohedrat structure, showing the true unit cell and the atome co-ordinates in the a)proximate hexagonal cell, shown an double j ines.

Fig.2.3. Relationship between the layer diameter and the number of

Fis. 2.A. Schematic represerntation of the stracture of a graphitizing carbon.

Fig. 2.5. Schematic representation of the structure of a non-graphitizing carbon.

	Brooks-Taylor type	2nd Type	3rd Type	4th Type
$\begin{aligned} & \vec{\mu} \\ & \frac{0}{\Sigma} \end{aligned}$				
(A)		(B)	(C)	($)$

Fig. 2.6. Schematic structural sketches of sections and three-dimensional models for (A) Brooks-Taylor type, (B) 2nd type, (C) 3rd type, and (D) 4th type spherules:

REFLRENCES

2.1. Erhut, S., Leroy, E.A., Naturc, 1962, 195. 765.
2.2. Seal, M., Nature, 1960 , 185, 522.
2.3. Berral, J.D., Proc. Roy. Soc. A, 1924, 106. 749.
2.4. Girifalco, L.A. and Lad, R.A., J.Chem.Ptrys.,1956, 25, 693.
2.5. Brenoan, R.O., J. Chem. Phys.. 1552, 20. 40.
2.6. Lipson, H. and Stokes, A.R., Proc.Roy.Soc.A, 1942, 181, 101.
2.7. Debye, P. and Scherrer, P.. Physikal Z, 1917, 8, 29I.
2.8. Bacon, C.E., Atta Cryst., 1950, 3, 320 .
2.9. Franklin, R.E., Acta Crysc., 1951, 4, 253,
2.10. Mrozowski, S., Proc. First and Second Conf. on Carbon, Buffalo, 1953, 31.
2.11. Franklin, R.E., Proc.Roy.Soc.A, 1951, 209, 196.
2.12. Kipling, J.J., Sherwood, J.N., Shooter, P,V. and Thompson, M.R., Carbon,-1964, 1, 321,
2.13. Kipling, J.J., Sherwood, J.N., Shooter, P.V. and Thoupson, M.R., Carbon, 1964, I, 315.
2.14. Kipling, JiJ. and Shooter, P.V., Second Conf. Ind, Carbon and Graphite, Soc. Chem. Ind., 1965, 15.
2.15. Kipling, J.J. and Shooter, P.V., Carbon, 1966. $\underline{4}, 1$. 2.16. Taylor, G.fi., Fuel, 1961, 40, 465.
2.17. Brooks, J.D. and Tay10r, G.H., Nature, 1965, 206, 697.
2.18. Brooks, J.D. and Taylor, G.H., Carbon, 1965, 3, 185;

Physics $\&$ Chemistry of Carbon, $4,243$.
2.19. Halker, P.L., Carbon, 1972, 10, 369.
2.20. White, J.L., Guthrie, G.L, and Gardner, J.O., Carbon, 1967, 5, 517.

2．21．White，J．L．，Dubois，J．and Sourllart，C．J．Cbim． fhys．．Special Volume，April，1969，33；Euratom Report 4094e， 1969.

2．22．Dubois，J．，Agace，C．and white，J．L．，Euratoat Report 4627e，1972：J．Metallography，1970，3， 337.
2．23．Honda，H．，Kinuia，M．，Sanada，Y．，Sugawara，S．， and Furuta，T．，Garbon，1970，8，181．
2．24．Honda，H．，Kimura，H．and Sanada，Y．，Carbon，1971，9，695．
2．25．hhittaker，M．${ }^{\text {H．and Grindstaff，L．I．，Carbon，} 1972, ~}$ 10， 165.

2．26．Grabain，S．G．，Hh．D．Thesis，1974，Salford University
2．27．Hossain，T．，J．sanzladesh Acadeay of Sciences， Vol．7，ivo．j \＆2，1963， 57.

2．28．Hirano．S．，Dachilife，F，and Walkor，P．L．， J．⿰⿱⺈⿵⺆⿻二丨⿱刀⿰㇒⿻二丨䒑口，Tewperature－High pressures，19．73，5， 207.
2．29．Whatg，P．W．，Dachille，F．and Kalker，Pill．， J．High Temperature－High pressures，1974，6，127，137．
2．30．Marsh，H．，Dachille，F．，Nelvin，J．and－Halker，P．L．， Carbon，1971，9， 159.
2．31．Marsh，H．，Foster，J．M．，Herwon，G．and lley，M．， Fuel，1973，52，234，243， 253.

2．32．Fitzer，E．and Terwiesch，D．，Carbon，1973，11， 570.
2．33．Hüttinger，K．J．and Rosenblatt，U．，Proc．Foufth Conf．Ind．Carbon aud Graphite，1974，Soc，Cheil．Ind．， 1976，Lundion， 50.
$\begin{array}{ll}\text { 2．34．Hïttinger，K．J．and Roseablatt，U．，Carbon，1977，} \\ & \text { 15，} 69 .\end{array}$
2.35. Hite, J.L., Air Furce Report, Ho. SAMSO-TM-74-93, 1974.
2.36. Narsh, H., Fuel, 1973, 52, 205.
2.37. Singer, L.S. and Lewis, R.T., Abstracts of the IIth Biennial Cont. Carbon CG-27, 1973, 207, Gatainburg.
2.38. honda, H., Yamada, Y., Oi,S. and Fukuda, K.,

Extended Abstracts of the 11th Conf. Carbon, 1973, 219, Gatlinburé.
2.39. Kovac, C.A. and Lewis, I.C., Extended Abstracts of the $13 t h$ Conf, Carbon, 1977, I99, Irvime; Carbon, $1978,16,433$.
2.40. Imamura, T., Yamada, Y., Oi, S. and Honda, H., Carbon, 1978. 16. 481.
2.4I. Hütinger, K.J., Carbon, 1972, 72, 5.
2.42. Imamura, T. and Makamizo, H., Carbor, 1979, 17, 507.
2.43. Imamury, T., Nakamizo, N. and Honde, H., Carbon, 1978. 16. 487.
2.44. Mocinida, I., Miyasaka, M., fujitsu, H. and Taheshita, K., Carbon, 1977. 15, 191.

CMAPTBR - IJI

TIU POLARISING MICROSCOPE AND OHTICS OF CRYSTALS

3.1. Introduction

The use of polarized-light techatque enables us to determane quantitatively the optical properties of transpareut, translucent and opaque materials by studying tiair. anfluence upon reflected as well as tramsmitted polarized light. Polarized-light techaique was initially restricted to mineralogy, but in recent years it is teing widely applied in metallurgy, chomistry, biology and various branches of industrial technology. Various aspects of this techrique bave been described 1 a detail by a number of authors. hallimond has discussed the design and use of tho palarizing microscope. Conn and Bradshaw have described its application to metals and ores. Hott and Haines ${ }^{3}$ have discussed its application to the exanination of a number of anisotropic metals. Marshall ${ }^{4}$ and DaIe ${ }^{5}$ have discussed optics of crystals. Rurtshorne and Stuarc have given a good description for the inicroscopic oxamination of uniaxial and biaxial crystals under polarized Iight. A reviow of the use of polarizing microscopy in organic chemistry and biology is also gaven by Vickers ${ }^{7}$.

Polarized-Iight microscopy has beeit rourd well-suited to studies of carbonisation and graphitization because (a) the strang optical anasotropy, characteristic of the Eraphite crystal, begins with the parallel alignuent of mesophase molecules and
(b) the high viscosity of the mesophase permits microstructures formed in the plastic wesophase to be cooled to roaw. temperature with litele apparent disruption. Thus the poldrized-light response on a section polished at room temperature can be used to identify the orientation of the intersections of mesophase layers with the plane of the section. Most microstructures are brought out with best contrast when the polarizers are crossed. Under this condition the extinction contours define the loci of layers lying either paral.zel or perpendicular to the plane of polarization of the incident light and the specific orientation can be distinguisbed for ary particular region by the use of sonsitiventint plate.

3.2. The polarizing microscope

The polarizing aicroscope is essentially an ordinary compound microscope provided with calcitc polarizing prisms, or, wore usually now, discs"of 'Polatoid' (or some other make of polarizing filter) above and below the sage, aud some convenient means of aItering the orientation of the object (uswally in one plane only) with reference to the plane of vibration of the light incident upon it. Provision is also made for the insertion of auxiliary denses and cowpensators into the path of the light tirough the instrument.

Because of widely varying applicationa the pojarizing wicroscope hus undergone many moditications, but in prjuciole all types are the sasue and do not differ essontialiy from one amother. However, the mrrangemedt of the madu couponents of a typical modera polarizing microscope are descrited below. The incident Iight passes through the Polaroid disc, the polarizer, and is thus constrained to vibrate in one plane only. The polarizer caf be rotated in its oun plane dnd the angle of rotation can be read agdinst a fixed mark from divisious eagraved on the metal ring in which it is mounted. A second polaroid disc, the analyser, is mounted in the body tube of the ingtrument. The analyser can be rotated or withdrath from the field of view to enable a sample to be viewed in unpolarized dight. When Doth the polarizer and analysor are in the 0° - position (as warked on the scale) they are said to be in 'crossed position', and they will not perwit light to reach the eyepiece so Iong Hs the medium between their is entirely isotropic. This is because light emerging froos the polarizer is completely extiuguished by the analyser according to the primciple waderlying the well-known hadus's experimont in optics.

The specimen under investigation, mounted in a quicksetting acryific resin or on a glass slide, is placed on a mechanical stage. This specimen, which cant be held in position by means of a clamp attached to the stage, is capable of movewent in two directions in the plane of the stage. To permit easy上eturn to a certain spocimen point the coordinate positions

Abstract

can be read agaiust willywetre scales. Jive staje cat be rotated in its own plane and is provided with centering screws and 'click stops' at intervals of 45°. The angle of rotation of the stage can be moasured on d degree scale. The stage is also provided with a clamp to arrest the motion if so desired.

Above the objective lens is a slot in the body tube of the instrumeat, through whach the coopewsator or tint plate is inserted. hhe tint plate, which is a gypsum plate (sowetimes called first-order red plate) is placed at an angle af 45° to the vibration planes of the polarizer and the analyser when they are 3 the crossad position.

AIso contained in the microscope body is the Bertrand Iens which can berswug inato or out of the field of view. This lens and the eye piece act together to constitute a Iowrpower microscope which cau be focussed on the upper focal plane of the dojective. Jhe chief purpose of chis combination is, however, co give an enlarged image of the interference figtros which are formed in this plane under certain conditions. Ahove the Bettrand lens is an iris diaphragl, or a pinhode stop, the purpose of which is to isolate the fnterference figure of the crystal occupying the centre of the ficld of view when several are present.

The condensing Iens system is situated between the rotating stages and the polarizer. Its primary function, as it the compound microscope, is to bring the zacident light to a focus in the plane of the specimen.

Abstract

The eye piece leas system, titeed to tho microscupe body is of the binocular type, having a certaiu magnification. Ihis together wath the differerdt objectives produces the overall magnification.

The illumination of the macroscope is provided by a Iow voltage 15 watt quartz-iodade bulb. the power supply of which is controlled from a regulating transformer. This lamp gonerally operates on $6 \mathrm{~V}, \mathrm{I} 5$ watt a, c supply and contains a rixed condenser. The bulb is fitted in a well ventilated housing With a circular opening for the emission of Iight.

The body tube of the microscope allows a camera adaptor to be fitted after the analyser. The adaptor is supplied with a definite magnifying eye piece. the camert used for photography is a 35 mW Kaw ES-2.
3.2.1. Modes of observation in a polarizing wicroscope

Two modes of observations are available in a polarizing microscope: orthoscopic or conoscopic.

3.2.1.I Orthoscopiciarrangement

The orthoscopic arrangement may be regarded as an ordinary microscope arrangement (Fig.3.1) in which the crystal is illuminated by a series of essemtially parallel, nofmally incicient rays all of widich travel along the same crystallograpinic direction within the crystal. In this eype or observation there are three combinations of polarizer and analyser that casble three different sets of observations and measurements co be made.

Firstiy, both the polarizer and daalyser being removed, observations cati be made on colour, crystalline form, cieavage and fracture, together with the determination of the refractive imdex of isotropic crystals.

Secondily, with tho polarizer inserted, the principaI refractive indices of anisotropic crystals can be determimed. Observations on pleochroism (which is the variation an colour or tint resulting frou differentsal ebsorption of white Iight) and twinkling (which is the variation in relief when a crystal baving a large double reffaction is rotated in an inmersion medium whose refractive index is near to one of those of the crystal) may also be made with just the polarizer inserted.

Lastly, with the polarizer and analysor inserted in the crossed position, distinctions can be qade between isotropac and amsotropic substances and measurements of extinction angles cara be made.

Most of the observations on the polarizing microscope are perfonmed with both the polarizer and analyser inserted in . crossod position. The origin of sowe of the effects seen through the mincioscope are discussed in a later section of this chapter but here it ary be useful to review them.

become paraldel to those of one of the polars, f̈or in such positions, the light from the polarizer ss not resolved in tio crystal, but passes on to the analyser unchauged as ity there is ao crystal on the stage, and hence darkuess results. The colours shown mn the positions of illuminataon are known as 'polarization colours'.

The polarization colours observed through the microscope dopend on the relative retardation or optical path difference, 1.e. the retardation of the ordinary ray relative to the extrardinary ray. For any crystal section the amount of retardation of one wave behind the other depends on the difference in wave velocity beams in a direction norinal to the plane of the section. The retardation also dopends ou the thjckness of the crystal plate. Since the wave velocities are relatod invorsely to thoir respective refractive indices, the relative retardation of the section is given by the formula: $R=\left(n_{2} H_{2}\right) \mathbb{L}$, where 'nl - ${ }^{\prime}{ }_{2}$ ' is the difference between the two refractive Lindices for the ordinary and oxtraoxdinary rays, ine. its birefrigence and 't' the thickness of the plate. Tire phase difference between the two components of velocity on omergence from the crystal is given by rx360/ג; keang the relative retardation, h the wavelength of incident light. if the sample is viewad in white light and ut the same time its thickness is varied from zero to a finite quantity, a series of oifferent colours will be seen. This is because the increasing thickness introduces a phase difference between the two components of velocity and
cons戶guently constructivo and destructive interference occurs at different thickness for different wavelengths. The colours from zero thickiress upwards are arranged in oriers, the Hewton colour scalt, each one teruinating and including red. As the thicknoss is increased still further, the colouts become further and further complex, owing to the overlapping of the extinction bands for different parts of the spectrum, the fifth and sixth orders consisting mainly of palo pinks and greens, In still higher orders these colours merge into white.

For bixeflecting substances the two reflectances belonging to the principal directions in a surtace way also vary independently : according to the wavelongth of Iight used. In white light the two directaons then present different characteristic tints. This is sometimes called 'reflection'pleochroism', since it has some analogy with pieochroismin transmitted light. The latter, bowover, depends substantially on the absorption, while the refiectance (ratio of the intensity of the reflected light to that of the incident beam) is determined by both absorption and refractive index. As the stage is rotated under polarized illumiration the reflected light changes in tint througd the admixture in varying proportions of tue two component tints, each of which is seen unaixed when the vabration direction of the incident light coincides with the corresponding principal direction. The changes obtained in this way are very characteristic. In a uniaxial ciystal there are two principal colours, for light vibrating paralled or perpendicular to the crystal axis and in inclined sections the tints rewain the same. In a biaxial crystal there ere three principal colours and the effects for inclined sections are more
complicatod. An inportant aspoct of these variations is that the difference between the reflectances for the two principad directions, i.c. the bireflection for the section, though small. often varies greatly with the wavelongth. This is termed 'dispersion of the bireflection'. It causes very distinctive calour effects when the section $1 s$ examined with the two polars at or near the crossed position.

3.2.2.2. Conoscopic arsangement

The passage of light through a polarizing aicroscope when it is used as a conoscope to observe a specimen ou the stage of the microscope is indicated in fig. 3.2. The conoscopic arrangement requires, in addition to the polarizor and analyser, the insertion of an Abici-Bertrand lens and a substage condensing lens. The former converts the wicroscope into a Iow-power telescope focussed at inflaity. The latter causes the object on the stage to be illuminated by a cone of light rather than by a bundie of near-parallel rays as it is with orthoscopic case. Itrportant additional information way be obtained by passing a strongly convergent beam of light through the crystal when it is possible, by various means, to examine the optical character in wany directions at one and the sume tiue. Thas is done by viewing between crossed polars, not the image| of the ciystal, but another optical iwage formed in the principal focus of the objective by the strongly convergent bears of light. This image is called the 'interference figure'. Each point in the field corresponds to a given direction through the crystal. In cffect, the Bertrand lens and the eyepicce constitute a system used to examine the pattern in the back focal plane of the objective.

The interference figures producod in a conoscupo cand be classified into two broad divisions: those formed by the uniaxial crystals and those forded by the biaxial crystals. The former pattern consists:of concentric circles known as 'isochromes' onto which is superposed a pattera if the shape ot a daltese cross, the arms of which are known as risogyres'. This pattern is produced assuming that the section of the crystal is nofmal to the optic axis, or in the basal section. On rotation of tho stage, the pattern remain uncinanged provided that the optic axis $2 s$ centred and perpendicular to the stage. If a section of the crystal paralled to the optic axis is used then the isogyres only retain a broad cross shape when the optic axis is parallel to one or other of the polars. Rotation of the stage causes the isogyres to move in and out giving rise to 'glash figures'. These phenomena gre dealt with in detail later in section 3.3 of this chaptes.

In a biaxial crystal there are two optic axes, the lines bisectang their enclosed acute angle is called the 'acute bisectrix'. Whe interference figure obtained when viewiag a section normal to the'acute bisectrix consists of two 'eyes' or metatopes, which wark the points of emergence of the optic axes, surrounded by bands of equal retardation, coloured in white light On to this pattern are suporimposed the isogyres whith forw a cross whed the trace of the optic axial plane (i.e. the line joining both melatopes) lies parallel to either polar, that arm of the cross passing through the welatopes being narrower than

Abstract

the othor. Rotation of the crystal away trom this position causes the cross to break up into two dyporbolic b, usites which are centred on the welatopes. The isogyres revolve an a dimection opposite to the movement of the stage. The origin of the biaxial iuterferonce figures given by a section normal to the acute bisectrix as described aluve as discussed later in section 3. 3 of this chapter.

3.2.2. Types of illumination used ia poldrizing nicroscope

There are three types of IIIuniagtion usually used with the polarizing microscope. These are; Briぬht field (with and without polars), Dark, field and phase contrast. Bright field ilIunjabion is that one winere the eapty sros surrounding ary particular speciuen being observed under the uicroscope appears bright. This can be achiered in two dafferent ways.

Fistly, when both the poarizer and analyser are removed Srom the microscope. This is the situatiou for the normal compound microscope.

Secondly, when both polars are inserted in the crossed position together with a compensator or tint plafe. Jho tint plate is made of a flake of ciear gypsum (or selenite ground), cleaved to a thitkness such that the piate produccs a path difference (i.e. retardation) of one wavelength for yellow Iight near 575 na wavelengths. The plate is 0.062 nat thick and extinguishes the yellow light so. as to produce an interference colour near first-order red in white light. The gypsum plate assists
in the determination of exact extioction positions siace any slight rotation fron the extinction position results in a cadige from the lawer to higher-arder colours, blue or yellow, whict as immediately obvious to the abserver. Tue basic princaple of a tiat plafe is further described in section 3.4 of this ciarpter.

Dark field illumination is that one where the empty space surrounding any particular specimen, appears dark, and is obtained wher both polarizer and analyser are in crossed position with the tint piate removed. Due to the direction of iIImminatind rays amanating frow a dark field coadenser, only those portions of the light diffracted by the specimon pass into the oujective, the undiffracted rays being extinguished by the crossed poiars.

A method interinediate between dark field and bright field examination is provided by de-centerang the beam of incident ligat, as shown in Fig. 3.3, which results in a relatively small portion of tho direct light being accepted by the objective.

Phase contrast illumination is achieved with the aid of a special objective lens containing a flat plato into which Is machined a circular groove. The differeace between the thickness of the plate and the depth of the groove is of the required size to produce a phase difference of Ig0 between a light ray pasising through the plate and one passing through the groove. Each objective is used in conjunction with ont of the annular discs contained in the condenser so that only an annulus of Iight from the condenser reaches the phase plate in the upper
fogal plame of the objective illuminating only the groove. Hitea a specimen is obsorved the difiracted rays pass through che contre of the phase plate, and interfore with tiac unditfracted rays passing through the armulus. This effect thereforc changes smalil phase djfferences (caused by absorption in different thickness of the sample, whach canaot be detected by the eye) ioto large amplitude differeaces (which are easily detected). This makes it possible to see detarl in a crystal whicn would normally be transparent in reflected as well as in transmjtted Iight. The jilumination of the field from dark to brignt can be adjusted by aeans of an iris diaphragm contained in the objective Iers chose to the phase plate.

3.3. Optics of crystals

In dealing with crystals we must goneralise the inaterial equations $\underline{J}=\sigma \underline{E}, \underline{D}=\underline{E} \underline{E}, \underline{B}=\mu \underline{I}$ to take account of gnisotropy.

For anisotropic modia such as crystals we bave to introduce the dieloctric tensor $E_{k Q}$ and when-dealing with absorbing crystads we further have to introduce the conductivity tensor okd.

Combining Gaxwell's equations and the general material equations Fresnel arrived at the formula for the propagation of light in crystals leading eventually to the concept of the ordinary fay, O~ray and the extraordindry ray, E-ray travelliny at different speeds in the crystal. These provide tie explanation of many of the phonomena observed in crystals for exawple bireflection and double refraction in a uniaxial crystal such us csIcite.

The electromaguetic equations; way be solved to give the interference conditions for a uniaxiad crystal when viewed between crossed nicols or polarizers and in converging light. However a simple geometrif model basod on the O-and A - rays leads directly to the same result.

If we vien the basal section of a uniaxial crystal in converging polarized bean of light, all the rays not travelling along the optic axis are doubly refracted (fig.3.4). At the upper surface there emerge at all points rays o'and E' derived from a given pair oí incident parallel rays $E E$, whict from there onwards travel along the same path, vibrating in planes at right angles to one another. One of these rays will have been retarded behind the other by an amount which depends upon the direction of their paths through the crystal. When the retardation of one ray behind the other is exactly one wavelength or any whole multiple of one wavelength, darkness results due to interference. All emergent rays so allied to one another lie on the surfaces of an infinite mumber of geonetrically similar cones coaxial with the optic axis(Fig.3.5) and the locus of their focsl points in the interierence figure is a circle. This gives rise to the sories of concentric rings, called 'isochrones' in the interference pattern (Fig.3.6).

The O-ray vibrates in the plane containing the ray and a Iine normal to buth the ray and to the optic axis, whilst an Erray vibrates in the plane containing the ray and the optic axis. The traces of these planes of vibration are shown
 tangentially, and the E-rays radially. It is obvious that along the directions Pi and AA' which represeat the vibration planes in the polarizer and analyser respectively, extinctaon will result, and at 45° to these directions, between the dark rings, the interference figure will be most brightly illumindted. This pattern. in the form of a maltose cross is shown in fig. 3.6. The arins of the maltese cross are called 'isogyres'. In the central portion of the field the rays are norial to the section and travel paraliel to tho optic axis and so the field there remains dark. The pattern infis. 3.6 is a typical interference rigure.

In the basal section rotation does not distort the cross but usually optic normal sections are presentid by uniaxial crystal under microscope. This results in a figure which is very similar to that of a biaxial optic norwal interferume figure, and consists of four series of liyperbolic isochromatac bands which are disposed symatetrically in quadrants, and which rotate \#ith the stage. The bands are frequeatly very diffuse in whice light. As the stage is, rotated diffuse hyperbolic isogyres enter the field, form a broad cross in the centre when tho optic axis is parallel t'o one or other of the trossed polarizers, i.e. When the crystal is in tho extinction position for parallol light, and then swing out agaid in tho ditection of the optıc axis. These isogyres move very rapidly aud only occupy the centre of the field curing the rotation of the stage through

*, ainbig ysity, e paties

Grystajs and blasbes hhich appear coloured by reflection or transmission owe thus to the fact that they absorb one or wore bands of wavelengths in the vistble spectrun to an apprecisble degree. Absorption consists in a progressive decline in tha amplitude, and hence the iutansity, of the light as it anters more and more deeply in the medium, the enurgy thus lost being in most cases converted to heat. The absorption of the Iight leads tu Fresnol's equations becoming cowplex. The solution to theso eqtations is well knowa in the case of feflection from a metallic surface, towever they are not so Well known for absorbing crystals. Born and Wolf ${ }^{8}$ derive the expressions for the case of a partially absorbing partially transwitting matarial.

In dnisotropic crystals the absorption depends on the vibgation direction of the light. Ihus the two polarized components into which a ray of monochromatic light is resolved on entry suffer in general different degrees of absorption, and When white light is used the transmission colours for the two components may therefore ditfer considerably. Sifilar is the case with refiection colours. This phenomenon is known as 'pleochroism' and observations on this constitutu the most important practical application of absorption in the study of crystals using polariaing microscope.

3.4 Basic principle of a tint plate.

Tint platos or compensators are often used to assist in the identification of interference colours shown between crossed polars. These are crystal plates or wedges of known optic orientation and relative retardation, suitably mounted so fhat
they can be inserted suto ifte matroscope siot just delow the analyser, fintercepting the light beam. lf the direction of the slof through the tuile is at 45° to the vibration direction of the polars in their crossed position then the coippensator must be mounted so that one of its vibration directions is parallel to the plate when it is inserted.

The basic principle of a tint plate is shown in fig.3.10. The stage of the microscope is turaed so as to bring one of the vibration directions of the specimen parallel to the slot i.e. at 45° to an extinction position. The compensator piate is inserted and it is noted whother the effect of this is to (a) raise or (b) lowor in llewton colour scale, the original colour shown by the speciuen. If (a) (the additive effect) the corresponding vibration direction of the specimen and compensator must be paralleI. If (b) (the subtractive effect) the vibration direction of the specimen' and compensator-are in opposition.

The wost common compensators are quarter wave mica plate (also called the quarter undulation plate), first-order red or unit-retardation plate (sowetimes callod the gypsum plate) and the simple quartz wedge.

The quarter-wave mica plate is made of a sheet of muscovite urica cleaved to such a thickness that one transmitted component is retarded a quarter of a wave of yellow light behind the other, i.e. by about 145 nfr. By itself between crossed polars the plate gives a pale grey, interference colour.

The first-order ftad piditc may be made of a cleavage sheet of gypura (also called bedenite) and is thus sometimus called the gypsum plate. The thickmess is such that the relatave retardation betwent the two transinitted components is one wavolength of yellow light (≈ 575 mu). Between crossed polars it gives violet-red interfereace colour at the and of the first order and is usually callod the first-order rad or Red I plate. It is olso known as the sensitive red or sensitive tint plate because, if it suffers a very small subtractive effect there is very marked change to orange or yellow, while if it suffors a very saali additive effect the red colour is raised to andigo or biue. Mhe plate is sometimes made of cleavage sheet of mica or a plate of quartz ground to the right thickness. In general, the first-order red plate is more suitable for spocimens showing a very Iow colour since, owing to the sensitive colour of the plate, additive and subtractave effects are sharply distinguished.
3.5. Optical studies of the tarbonaceous mesophase spheres

The theoretical butkground for work witi refiected polarized-light has provided largeIy by the aid of the mathematical treatment due to Drude (1887). This was followed by practical applications to michoscopy initiated by hright 10 (1919). Hright gave a sumary of the theory, starting from the Maxwell's oquations, and dealing with the special cases of normal incidence od a surface mormal to an optical symmetry plane. When the reflected light can be represonted by two plane polarized cowporents at right angles, subject to a phase difference, the: cases were dealt with more directiy by koodrow,

Mott and Maines ${ }^{\prime \prime}$.

Apart from a goneral remark by Taylor ${ }^{13}$ concorning the . remarkeble reflectance pleochronsm of carbons, coal and graphites it has generally been assumed that the refiected Iight microscopy is analogous to the transmitted one. The fundamental equations for reflectance pleochroism have not heon reviewed in the carbon literature since 1928 despite the predoninance of the use of reflected-light microscopy technique. The transmission-Iight microscopy observations of the mesophaso spherules have in broad outline beon related to the reflectance experiments.

The usual current solution has been to assume the complementary mature of reflection and transmission and the simple proof of the pIeothroic ertects has been put rorward for axample by Gray and Cathcart ${ }^{2}$ makingobservation on pyrolytic caribon deposits.

Making observations on pyrodytic carbon (Py()-coated fued particles they nated maltese cross patterns when the uicroscope was in the-orthoscopic mode and not the conoscopit mode. Fig.3.II shows a schematic representation of a PyC-coated particle. The thin lines are the 'c' axes of the PyC fibzes; in this case the c-axis coincides with the optic axis. When a beam of plane polarized-Iight, incident normally on a hexagonal crystal, is reflected from a surface not perpendicular to the 'c' axis, the reflected bean is resolved into two
components, ${\underset{S}{S}}$ and \underline{R}_{P}. The electitic vectors of these two components vibrato perpendiçutar and parallei, fespectively to the principal plane of the crystal (the pincipal plane is paraliol to the 'c' axis). These can bo expressed in terms of the incident vectors as follows:

$$
\begin{aligned}
& \frac{R_{p}}{R_{i}} \underline{E}_{p}, \frac{\left(n_{p}-1\right)}{\left(n_{p}+1\right)} \\
& \frac{R_{G}}{G}=E_{s} \quad \frac{\left(n_{s}-1\right)}{\left(n_{s}+1\right)}
\end{aligned}
$$

where n_{p} and ${ }_{n}$ are the refractive indices parallel and perpendicular to the principad plane.

There are four directions in the PyG caating in which the incident electric vector is either perpendicular or parallel to the principal planes of the pylfibres. In these directions either \ddot{E}_{p} or E_{S} must be zero. The electric vector of the reflected ligit, therefore, can have only one cowponent, and the reflected beam must le plane polurized whth the satpe a\&imuth of polafization as the incident uean. Light reflected from these areas wail be extinguishod by the analyser, hence dark bands will be seen on the specimen in these regions.

Everywhere else on the spocimen the incident electric vector will have components parallel and perpendicular to tue principal planes and, due to absorption in the pyC these two components will undergo bitin a relative amplitude reduction
and a phase retardation on reflection resulting in ellipticaljy polarized Ifght which is not extinguished by the analyser. these areas will be ligat.
jesophase spineres also siow a characteristic maltese cross pattern in orthoscopic Iight. Thylori3 has put forwara a characteristic structure to account for this (seefig. 3.12). The behavior of the spheres in singly and doubly polarized Iight is shown schematically in figs. 3.I3 and 3.14.

At the earijest stage at, which they can be resolved, the spherical bodios are strongly pleochroic. Their absorption of plane-polarized light varies with orientation frow being very strong (colour almost black) to very weak (colourless or pale yellow). Analogous bedavicir is observed in reflected light. \dot{t} However, the pleothraism of the sptrerical bodies is not quite as simple as that in a pleochroic crystal. As the spherical bodies grow larger it can be sect that the pleqchroism is not uniform but that dark bars move across the spbefe, unita, and then wove out again (Fig. 3.13). Between crosseg micols, the spierical bodies, when small, behave essentially as single crystals, lightening and darkening four times per stage revolution. As the bodies grow larger the simple extinction gives way to the sequence shown in fig. 3.14.

Honda, Kimura and Sanadat employed the so-called 'sensitive tint wethou' in an atteapt to got further information about the structures. From the changes in pieochroism and extinction contours for the mesophase sphorules, they concluded that a siuple wesophase spherule is optically a uniaxial positive liquid erystal belonging to the hexagonal system with a straight extinction.

Fig. S. S. Kolarizing microscope in orthoscopic

Fig. 3.2. Dolarizing microscope in conoscopic mode.

Fig. 5. 3. Jllumination provided by a de-contred incident beam (a) For tramsmitted light (b) For reflected light.

 nomial to the ontre axit.

rig. 3.5. Comes of culin retariazion aromb ibe opt jc axis of a maxnal corstal.

lig. 3.6. Jypical jutmfermee fiane for wianjal crystal.

Fig. 3.7. Jhirections of vibration of 0 and F-rays (AA', pp'-vibration planes in polarizer and analyser).

Fig. 3.8. Surfaces of equal retardation around the optic axes of a biaxial crystal.

Extinction position

Fig. 3.9. Biaxial interference figure given by a section nomal to the acute bisectrix.

Fig. 10 ítl uidulive offret; Lolours rujsod.

Fig. $10(\mathrm{~b})$ Subtractive effect; colotnc lowered.

Fig. .i.1. Sohematac representation of the median plane of a lyc-conted
partucle. The ' c ' axes of the fibers are indjcates h) thon straight lincs. Resolation of the incident electric vector 'L' 15 siomin jon the botall left. The dark areas represent areas of tive PyC where the incident. E vectox is either paralled or perpendicular to Ule frincipal plames (j.c. either E_{s} or Γ_{p} js zeros.

Fig. 3.12. Fine structure which sould account for observed optical effects.

 spherical bod is rotated with respect to plane of polarized laghi.

vibration directions of polarizer and analyser
Fig. 3.14. thenomena observed when symetrically oriented spherical body is rotated tetween crossed polars.

REFERENCES

3.3. Ballimond, A.F., The Polarizing Microscope, Vickers Tistruments, York, 1970.
3.2. Conn, G.K.T. and Bradshaw, F.J., Polarized Light in Hetallography, Dutterwortas, London, 1952.
3.3. Mott, B.W. and Hainos, H.K., J.Inst.Met., 1952, 80, 629.
3.4. Ifarshall, C.E., Introduction to Crystal Optics, Cooke, Troughton and Simms, York, 1953.
3.5. Dale, A.B., The Form and Propertics of Cryscals, Cambridge University Press, London, 1932.
3.6. Martshorne, N.H. aud Stuart, A., Crystals aud the Polarizing Microscope, Edward Arnold Ltd,,London, 1970.
3.7. Vickers, A.f.J., 'Polarizing Hicroscopy in Organic Chemistry and Biology' in Modera Methods of Microscopy, Butterworths, London, 1956, 103.
3.8. Bora, M. and Wolf, E., Principles of Oittics, Chapter XIII, Pergumon Press, 1964.
3.9. Drude, P., Ann.Pbys.. 1887, 32, 584.
3.10. Hright, F.E., Proc. Aner. Phil. Soc., 19I9, 58, 401.
3.11. Hoodrow, J., Mott, B.W. and Haines, H.R., Proc.Phys. Soc., 1952, 65, 603.
3.12. Gray, R.J. and Cathcart, J.V., J.Nucloar Materials, I960, 19, 81 .
3.13. Taylor, G.17., Fuel, 1961, 40, 465.
3.14. Honda, H., Kimura, H. and Sanada, Y., Carbou, 1971, 9, 695.

SISITHNV 7VNUSTAT

Additional informations such as thermogravimetric analysis (T'GA), X-ray diffraction, infrared absorption sjectroscopy, visual phase examinations, polarized-Iight wicrography, etc. are hecessary to supplement the DTA curve for correct interpretation of the thermogram peaks. The forwation of the carbonaceous mesophase of a graphitizabie organic compound generally occurs in thé temperature range $350^{\circ} \mathrm{C}$ - $600^{\circ} \mathrm{C}$. The ectual tewperature interval in which the wesophase develops iu the carbonisation of g particular organic compound may be a few degrees or it may be tens of degrees. Ihis obviousiy causes practical difticultios in determining the exact temperature interval of mesophase formation for the samples under investrgation. A combination of differential thermal analysis and polari-zed-light micrography 5,18 has proved a valuable epproach to the determination of the temperature interval of mesophase formation.

4.2 DIA apparatuS

Differentsal thermal analysis is the process of correctiy roting the difference in temperature between a thermacouple embedded in the sample under test and a thermocouple surrounded by a standard inert substance, such as aluminitm oxide, while both are baing heated at the same rate. These temperature differemces are due to the phase transforinations or chewical reactions occuring in!the sample which involves rejection or absorption of heat.

The basic desiga of the DTA appanatus Fig. 4.ja with block diagram (Fig. 4.2b) has been fully described by Lewis
and lustrow ${ }^{6,7}$. The UTA thernocouple assembly cousists of two matched chromel-alumel thermocouples which are supported in a porcolain tube held in position inside a furnace combustion tube. The sample and reference contuiners are nickol or iaconel cups with a thermocouple weil extending into the contre of the cup from the bottom. Thys arrangement protects the therbocouple junctions from being contaninated with the sample or referonce material. The sample and reference cups ure also isolated from each other and thas arrangewemt facilitates weighing before and aftar heating so that waight changes can be readziy determinad. Approximately, 0.I g anhyorous alumina is used in the reference cup and tho sample meights varies over a range 0.058 to 0.125 g , depending on their packed density. Mormelly, a ineating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. is edployed.

All experiments are carried out at atmospheric pressure in a continuous flow of a purified inert gas, usually argon, nitrogen or helium. Gases are normally purged jnto the furnace chabber at the lower eud thraugh a purificutian train in which oxygen and water are removed ty heated copper wool and exhausted From the top into a condensate trap for collecting the condensable volatile products. The condensable volatile reaction products along with the unchanged starting matefial, if any, are thus swept by the flow of inert gas into a KBr-filled condensate trap placed in the exhaust and of the furnace. The nou-condensable gases then pass thiough a sulfuric acid bubbler which seals the system and prevents back diffusion of air.

Normally, the DTA thermograus on carbonisation are obtained by heating continuousiy to $750^{\circ} \mathrm{C}$ at which the residue is essentaaly carbon.
4.3 Therijal behavior of carbonising and graphitizing materials

It has already been mentioned that in diftereatial thermal tnalysis, the rejection or absorption of heat by any material during pyrolysis is recorded and indicated by exothermic or endothermic peaks in the DTA trace. The reaction temperature and the fate of reaction together give the characteristic thermal curve of that particular waterial. By the application of differential thermal analysis to a number of organic solids, Varmag. successfully found their melting and boiling points corroct to $\pm 3^{\circ}$. One or the attractive features of the method was the convenience of obtaining the femperatures of sublimation, decomposition, elimination of water of caystallisation, otc, which are difficult by other methods.

Lewis and Edstrom ${ }^{6,7}$ in an attempt to investigate the thermal reactivity of polynuclear aromatic hydrocarbons used differential thermal analysis, to categorise the high temperature behavior of tnose hydrocarbons as either therimally 'reactive' or thermaliy 'unreactive'. The thermally 'reactive' species possess sufficient reactivity in an btorospheric pressure system to undergo a condensation sequence in the liquid phase and yield measurable amount of polymarised carbonaceous residue at $750^{\circ} \mathrm{C}$. fhe thermaliy 'unreactive' entities have sufficient stability so that such condensation reactions do not occur prior to complete
volatisation. Hence, for those compounds no carbonacoous residues are observed at $750^{\circ} \mathrm{C}$. For such materials bra offers a converient method of measuriug meltang and boifing points. Depending ot the physucal characteristics of the apparatus, edther the initial inflection point of the endotherm, the endothermic minima, or the endothermac manima minus the temporature differmae between the ref゙eremce and sample couples, ary give the appropriate result. However, the initial inflection point of tho melting endothexm has-been found to be the most reliable method for ascertaining the melting points for the respoctive compounds. The melting points thus determined for some of the aromatic dydrocarbons are shown in table 4.1 and the respective diterature values ${ }^{10, I I}$ are also Iisted for comparison. In most casos the agreewent is quite good. The boiliag endotherms on the other hand are generally broader and have no specifically defined inflection tomperature. The shape of the boiling endothera reflects the increasing vapour pressurc of the sawple with increasing temperature. The gradual approach to the boiling endotheraic miuima indicates slow but increasing vaporisation. The calculated values of the boiling points listed in table 4.I are the corrected endotheruic minima. Nere the corrected endothormic winima means the endothermic minime mintus the temperature difference between the reforente and sauple couples. The boiling points calculated as above gives good agreement with Iiterature values ${ }^{10,1 I}$.

The thermogrags of thermally 'reactive' aromatics which undergo thermal 4 condensation leading to some carbonaceousresidues at $750^{\circ} \mathrm{C}$, differ quite markedly from those of the 'unreactive' category. The major melting endotherws are, however, still evident. The dailing endotherims are observed to be either completely absent or largely diminished in those tharmograms. In a large numberof cases an exothermic peak indicative of polymerisation of condensation is usually observed. In nearly every instance new chemical species in addition to the starting material are obtained in the condensed distillate. i
Differential thermal analysis for the carbonisation of a good number of polymers in nitrogen flaw were reported by Dollimore add Healí From the DrA results with certain exceptions
in the case of cilorinated polyvinyl chloride and cilorinated rubber, it is generially observed that an exothermic portion of the DTA curve somewhere in the intitial stage of decomposition, indicates that the. resulting product will. be a non-graphitizing cafbon. Two competing reactions are often found to occur: cross linking producing an exotheraic reaction, and chain stripping and associated reactions, which produce endotheraic peaks. The second type often allows the formation of oriented aromatic rings, which prodtaces graphitizable carbans. It should be noted thet the exothermic reactions may be preceded by some reaction of secondary importance, such as loss of absorbed water or other volatile impurityes. Bearing these facts in mind, it would seem that the appearance $\|$ of an exothermit reaction, somewhere in the

Abstract

inatial polymer decomposition region ensures that the resulting carbon has non-graphitizing properties. At nearly $600^{\circ} \mathrm{C}$ and dbove it is well known that semi-coke becomes coke ${ }^{13}$.

In à thermal analysis study by Lapina and Ostrovskif ${ }^{14}$ the essential characteristics of the carbonisation process of graphitizable and non-graphitizable matorials were obtained as a result of the investigation of the carbonisatiou process of various classes of organic polymer substances and the structure of the resulting cardran as well. For graphitizable matorials ondothernal processes of destruction are typical while for nongraphitizable oncs"exothermal processes of cross-linking are observed.

Graham (1974) used differential thermal analysis to determine the temperature interval of carbonaceous mesophase formation. The samples under study were the wixtures of acenapityylene and sulphur. Samples which did not pass through carbonaceous mesophase transformation due to prolonged heating at $300^{\circ} \mathrm{C}$, have been heat-treated in an atmosphereaf dry nitrogen in the Stanton differential thermal analyser and their respective thermograms obtained (Fig.4.2). Charactoristic of the curves is the curve is the plesence of an initial large eadotherm due to urelting of the tairry substance which is then followed by small fivctuations before a smooth trace returns. These fluctuations (indicated by dotted lines in fig. 4.2) are characteristic of almost all the samples with the exception of the sample having S/H ratio of $3 / 8$ from which they were absent. The temperature regions in which these fluctuations appoared, remained constant
for tho samples baving $S / /$ ratios up to ${ }^{2} / 8$. Graham concluded that the temperature at which all the fluctuations terminate was nothing but the comperature of complete coalescence in the case of carbonacoous mesophase. This had also been vorified by polarized-Iight macroscopy, by viewing through it a sample heattreated to similar temperature. He further, added that the fiuctuations in the DTA trace has due to the formation of gases within the sample during pyrolysis.

Differential thermal amalysis has also becn employed by Hossain and Dollimore ${ }^{55}$ to locate the temperature intervals of mesophase formation in the case of a few graphitizable aromatic organic compounds such as napthaleme, anthracene, pananthfene and chrysene. Selected somples, withdrawn during the initial thermal treatment and which has not yet passed through the carbonaceous mesophase transformation due to prolonged heating at $400^{\circ} C$, have been' heat-treated in the stanton fifferential thermal analyses (Model - Stan data 5-50). These samples (0.I g) wore heated in the inconel head to $700^{\circ} \mathrm{C}$ with dry alumina being amployed as the inert material in the reference cell. The ota was determincd on Dupont unit, wifh pen recurding. The DTA traces so obtained (fig.4.3) for the different aronatic compounds were wsed to deteraine the tewperatures to which the original parent sayples had to be heated in order to obtain the mesophase spherules which usually appoar in the initial stages of carbonaceous mesophase.

Table 4.1

COMPOUND	STRUCTURE	MELTING POINT (${ }^{\circ} \mathrm{C}$)		BOLING POINT (${ }^{\circ} \mathrm{C}$)	
		Literature ${ }^{16}$	DTA	Literature ${ }^{15}$	DTA
$\begin{aligned} & \text { BENZENE } \\ & \mathrm{C}_{6} \mathrm{H}_{6} \end{aligned}$	0	5.4	-	80.4	-
NAPHTHALENE $\mathrm{C}_{10} \mathrm{H}_{8}$	0	80.287	77	217.955	245
ANTHRACENE $\mathrm{C}_{14} \mathrm{H}_{10}$	08	216.04	215	339.9	350
PHENANTHRENE $\mathrm{C}_{14} \mathrm{H}_{10}$	0	99.15	93	338.4	348
$\begin{aligned} & \text { PYRENE } \\ & \mathrm{C}_{16} \mathrm{H}_{10} \end{aligned}$	0	150.6	146	393	386
$\begin{gathered} \text { CHRYSENE } \\ \mathrm{C}_{18} \mathrm{H}_{12} \end{gathered}$	09	$\begin{aligned} & 255.8- \\ & 256.3 \end{aligned}$	260	448	460
$\begin{aligned} & \text { PERYLENE } \\ & \mathrm{C}_{20} \mathrm{H}_{12} \end{aligned}$	8	2.70	295	460	505
$\begin{aligned} & \text { CORONENE } \\ & \mathrm{C}_{24} \mathrm{H}_{12} \end{aligned}$	08	$438-$	438	525	600

Fig. 4.1 \{a) 1t!s thermocouple assembly

Fig. 41 (b) Block diagram of 1 ra apparatocs

Fig. 4.2 Differential thermal analysis traces of partially refluxed acenaphthalene sulphur mixtures.

Fig. 4.3. DTA Trace of partially carbonised aromatic organic compounds! 5

RECERE:CH:S

4.I. Chatelier, fi.Le., Bull.Soc,franc. mineral, 1887, 10, 204.
4.2. Nakamura, H.H. and Atlas, L.M. Proc. fourth carbon conf., Pergamon Press, London, 1960, 625.
4.3. Sinothers, W.J. and Chang, Y., Dif Eerential Thernal Analysis, Theory and Practice, Chemical Publishing Company, New York, 1966.
4.4. Hackenzie, R.C. (Kd.), The Differential Theral Investigations of Clays, mineralogical Soc., London, 1957.
4.5. Graham, S.G., Ph.D. Thesis, Salford University, England,1974.
4.6. Lewis, I.C. and Edstrout T., Hroc. Fifth Carbon Conf., Pergamon Press, London, 1962, 413.
4.7. Lewis, I.C. and Edstrom.T., J.Org.Chem, 196s, 28, 2050.
4.8. Leggon, H., Aral. Chem., 1961, 33, 1295.
4.9. Varma, M.C.P, J. App. Cinem.. 1958, 8, II7.
4.10 The Coal Tar Data Book, The Coal Tar Hesearch Association, Leeds. England, 1965.
4.ll Bulletin 606, U.S. Bureaw of Hines, 1963, Anderson, h, C. and Wu, H. K. K., Properties of Compounds in Coal - Carbonjation products.
4.12 Dollimore, D. and Meal, G.R., Carbon, 1967, 5, 65.
4. 13 Papkov, V.S. and Slonimskii, G.L:, Vysohomol. Soyed., 3966, 8, 80; A10, 1968, 1204 (Translated in Polymer Science USSR, 1966, 8, 84; 1968, 10, 1402.
4.14 Lapina, N.A, and Ostrovskii, F.S.. Theratal Analysis, 2, Froc. Fourth ICTA Budapest, 1974, 407.
4.15 Hossain, T, and Dollimore, J., Chemical Engincering Research Bulletin, 2, 1981, 25.
4.16 Hossain, ?, Ph.D. Thesis, Salford University, 1981, 91.

C/IAPTER - ${ }^{\prime}$

PYROLYSIS CHEMJSTRY OF BENZENE

5.1 Introduction

Organic compounds are the main and almost exclusive raw materisis for the production of artificial carbous and graphite. By pyrolysis, these carbon compounds are converted to solid carbon as the main product and to different vojatile compousds as byproducts. Such thermal decompositions bejow approximately $1000^{\circ} \mathrm{C}$ are carried out by a great variety of tochrical processes. In such processes, the pyrolysis is controlled by a few reaction paramaters such as temperature, heatiag rate, residence time at the pyrolysis temperature, and possibly the tutal fas pressure. The low-temporature stage of pyrolysis, especially below $700^{\circ} \mathrm{C}$, has the greatest influence on both the carbou yield and the carbon properties. In all such technical cases, the primary importance is to achieve a high carbon yield which is agaiu determined by the mechanisu of the pyrolysis. The pyroiysis must be directed towaris the formation of carbonmfee volatile byproducts and torards avoiding the foruation of volatile stable carbon coupounds. Thus, the carbon yield can be influenced by the choice of the compound to be pyrolysed, by its thermal and chemical pretreatment, $4 s$ well as by the reaction couditions prevailing during the pyrolysis.

The practical problem is, therefore, carbon yield and in the caso of low yield, pyroiysis of the compound inside an
ordinary carbonising furnace wath a stream of mitroyen or other inert gas should be invariably avoided. Some aronatic organic compounds sublime off and give off heteroutoms before it carbonises and some are found to be evaporated leaving no carbonaceous residue at all. In those cases it bocomes necessary to heat the organic samples in sealed tubes in order to obtain appreciable yields. This is becauso increased gas prossures of cuaporated hydrocarbons Iead to high carbon yields. Again, as the vapour pressure of the conpound being carbonised inside the sealed tube is not known, it is always preferred to take a heavy-walled glass tuobe or quartz tube so that the tube can stand the increased pressure of the pyrolysis gases. Even then the tube may burst and so some safety enclosure round the tube should be taken as a precautionary measuro against any biow or blast. Nevertheless, opening of the carbonised sealed tube is another practical problem. Due to hoavy pressure inside, it cannot be opened ordinarily by cutting with a diamond edge or with a tungsten blade without adopting any safety measure against the blow or blast if any, It is, therefore, advised to open the tube inside a strong safety box. Alternately, the tube can be opened without the gid of a safety box provided it is immersed in a Dewar containing liquid. nitrogen for at least an hour before opening. The second process involves a thermal shock and should be avoided.

In the sealed tube tectraique of pyrolysis mentioned before, boating of the sample is first carried out under normal pressure andithen under increasing pressure catrsed by the pyrolysis gases.

Besides the sealed tube techaique, the following pyrolysis techmiques are adopted alteruatively :
(a) pyrolysis in autoclaves, whore the pressure can be regulated during the whole reaction time.
(b) Liquid pyrolysis in an open crucible with continuous removal of the gaseous by-products; this is mostly used for reactions carried out under northal pressure.
(c) Gas crackiug in a steady-state tubular flow reactor with relatively fast hating of the evaporated starting material and in most cases with quenching of the volutile products.
(d) The hot wire method as a special arrangement of the flow system.

5.2. Arounatic hydrocarbons.

Any organic compound which undergoes substitution reactions of carbon-hydrogen ($C-n$) bonds is said to be aromatic. With the advent of wave-mecaanics it was shown by fi. Hucke1 ${ }^{2}$ (1937) that a planar cyclic compound which has (4nt2) m ejectrons (Where k is an integer) should possess a resonance energy, and therefore undergo aromatic reactions. Thus to be aromatic, a molecule must have $2(n=0), 6(n=1), 1(n=2), 14(n=3), 18(n=4) \ldots$ n electrons. Huckel's (4r+2) rule applies to wonocyclic systems like bonzone and other compounds which have very little resemblance chemically to benzene. It has also been suggested
that the (4n+2) ruIe should be applied to the peripheral (congugated) π-electrons of polycyclic condonsed systems sucit as naphthalene, anthracone, phenanthreme, etc. (seefig. 5.1) ${ }^{3}$. Muckel's IuIt stimulated a Iarge amount of research on aromaticity and, so far, no exceptions dave beed foumd. A ftrther test for aromaticity is that such compourds sustain diamegnetic ring currents in the presence of magnetic fields. Iu general an aromatic organic compound should fulfil the rollowing requiremonts:
(a) The Huckel's $(4 \pi+2)$ rule is obeyed.
(b) All the compounds undergo electrophilic substitution reactions (nitration, sulphonation, etc.).
(c) The compounds show delocalisation of the m-electrons by supporting a diamagnetic ring current (This can be showh by M. H.R.).

The word aromatic is derived from the Greek word 'aroma' Meanimg 'fragrant suedI'. Most of the aromatic organic compounds bave one thing in common : a pieasart odour.

Nost aromatic hydrocarbons are colourless solicis or colourless liquids and are lighter than water faverage density = 0.8). They are non-polar materials, immiscible with water, but readily soluble in non-polar solvents such as ether, petroleum ether, carbon tetrachloride.

The high stability of the aromatic organic conpounds $2 s$ due to resonance energy ${ }^{4}$ witich increases with the increasing molecular size of the ring system. (see table 5.I).

The two industrial sources of aromatic hydrocarbons are the two main reservoirs of fossil organic compounds, coal and oil. The other main source of organic coupounds, living matter, does not contain a high proportion of aromatic materials.

When coal is heated in the absence of air to $1000-1300^{\circ} \mathrm{C}$ it is partiy broken down into simpler volatile compounds which distillout of the oven. The residue, coke, is used for iron sijelting. The volatile materials consist of coke oven gas (50% hydrogen, 30% methane and small quantities of other gases), light oil, coal-tar and amonia. The light oil and coal-tar are refined by fractional distildation and specific chemical reactions. Well over a huodred different aromatic coopounds have been obtained frow coal-tar.

The second major route to aroatatic indrocazbons is by the dohydrogenation of petroleun food-stocks. lhis route was developed during the second world wax, when coal-tar process could not give sufficient tolucne for the manufacture of TNT explosive (2,4,6trinitrotolvene). The aliphatic hydrocarbons are passed over a copper catalyst at $650^{\circ} \mathrm{C}$ when dehydragenation and cyclisation reactions occur.

5.2.1 Benzene

Benzone, having molecular formula $G_{6} H_{6}$, is a colourless, mobilc and highly refractive liquid (b.p. 80.40) with a sharp smell. It has a specific gravity 0.87 (at 20°). Solidified benzene melts at 5.4°. It is highly inflammble and burns with a smoky luminous rlame. Benzene is practically immiscible with water but miscible with many organic liquids such as ether, alcohol, etc. It is a good solvent for fats, resins, gums, rubber, etc as also for iodine, phosphorus, sulpher, etc. Two parts of benzene vapour in about 100 part of air may prove fatal if inialed; absorption of benzene, liquid or vapout, through the skin tas toxic effects. Though unsaturated, it is remarkably stable.

A consqueace of the aromaticicy of benvene is that all the carbon-carbou (C, C) bond Iengths are the samc, and all the positions equally reactive, as is not usual, with polycyclic aromatic compounds. Physico-Chemical evidence, e.g., heat of combustion, etc.. points towards benzene being a resonance hybrid of mainly two resonatiug structures I and $f($ (Fig.5.2) .These structures aro called Kekule's forms ${ }^{5,6}$. According to kekule (1872), the carbon atows in the benzenc ring are continually in a state of vibfation, and due to this vibration, each C-C pait has a single bond half of the time and a double bond the other half. In general, there are 'ntl' principal resonating structures for an aromatic organic compound containing 'f benzene rings.

Resonance between the two structures largely contrabutes to the greater stability of the benzene molecule as vell as it explains the intermediate bond length of I. 39月 (intermediate between $C-C$ single and $G=C$ double bond lengths). The resionance energy of benzene is nearly 36 Kcal mole and so it is a very stable compound.

5.3. Pyrolysis of Benzenc.

The pyrolysis of benzene, first described by Barthelot, Ieads to biphenyl, which is produced today on a large industrial scale using this method. In this procoss, terphenyls and polyphenyls appear as by-products. The mechanism with formation of phenyl radicals as intermediates is shown in rig. 5.3. In a sealed tube, biphonyl formation has been observed as beginning below $300^{\circ} \mathrm{C}$. The dependence of the biphenyl yield on temperature and experimental arrangewent ${ }^{8}$, is presented in Table 5.3^{9}. In the pyrolysis of benzene, the formation of naphthalene has nover been observed.

Table 5.1

Resonamce energits of polycyclic aromatic compounds ${ }^{4}$

Compound	Resonance energy (K cal mole ${ }^{-1}$)	
Benzene, $\mathrm{C}_{6}{ }^{H} 6$	36	
Waphthalene, $\mathrm{Cl}_{10} \mathrm{H}_{8}$	61	
Anthracene, $\mathrm{C}_{14} \mathrm{H}_{10}$	83.5	
Plonanthrene, $\mathrm{C}_{14} \mathrm{H}_{10}$,	91.9	
Chrysene, $\mathrm{C}_{18} \mathrm{H}_{12}$	116.5	-

Tabie 5. 2

Gas-piase carbonisation of benzene naphthalene, anthracene and chrysene ${ }^{7}$

TabIo 5.3

Formation of Biphenyl from Benzene ${ }^{9}$)

π	$\begin{aligned} & \text { F', } \\ & \text { Liters/hr } \end{aligned}$	Yield of biphenyl,wt\%
$685{ }^{\circ} \mathrm{C}$	0.846	14.6
.	0.423	22.4
	0.282	26.2
	0.212	27.8
	0.141	29.2
	0.121	29.4
	0.106	29.4
	0.0282	29.4
	0.0141	29.4
$760^{\circ} \mathrm{C}$	2.75	13.7

6π electrons $=(4 \times 1+2)$; aromatic
Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$

10 electrons $=(4 \times 2+2) ;$ aromatic
Naphthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$

14 electrons $=(4 \times 3+2)$; aromatic

Anthracene, $\mathrm{C}_{14} \mathrm{H}_{10}$
 14 electrons $=(4 \times 3+2)$; aromatic

Phenanthrene, $\mathrm{C}_{14} \mathrm{H}_{10}$.

FIG. 5.2 TWO RESONATING STRUCTURES OF BENZENE

Fig. 5.3 Pyrolysis of benzene.

RFFERLACLS

5.1. Fitzer, E., Mueller, K. and Schaefer, K., Chen. Phys. Caston, 7, 255.
5.2. Hícket, Z. Elektrocher., 1937, 43, 752, 827;
5.3. Finat, I.L., Organic Chomistry, 1976, 1, 577, Longmann, London and New York.
5.4. Wheland, G.F., Resonance in Organic Chemistry, I955, John Wiley, New York.
5.5. Kekule, Ber. dtsch. Chem. Ges., I872, 162, 77;
5.6. Badger, G.M., The structures and Reactions of the Aromatic Compounds, Cambridge University Press,I957, 4.
5.7. Brooks, H.T., The Chenistry of Petroleva Hydrocarbons, 1955. 2, 114, Reinhold fublishing Corporation, New York.
5.8. Hougen, O.H. and Hatson, K.M., chemical process principles, vil.III, Wiley, New York, 1900, p847.
5.9. Fitzer, E., Mueller, K and Schaefex, W., Chemistry \& Physics of carbon, 4, 278.

$$
\overline{\text { UTIJOnpo.s7UI }} \quad I * 9
$$

[^0]
6.2. Expermmental

6.2 .1 Sample

Benzene, the simplest aromatic hydrocarbon, manufactured by E. Merck (India) Limited was used iuthis study. It had a purify greater than 99.5\%.

Sample \begin{tabular}{c}
Structure

Benzene

Melting point of

Solidified Bentenc

${ }^{\circ} \mathrm{C}$
\end{tabular}

6.2 .2 The safety device for opening sealed tubes containing heat treated organic samples.

A heavy pressure is devcloped when an aromatic organic compound is heat-treated inside a sealed tubo because of the presonce of H_{2} and other hydracarbon gases which are generally evolved during pyralysis, The safety device, that has been worked out in the opening of the carbonised sealed Lube having no risk of explosion, consists of a wechanical contrivance of cutting the tate inside a strong closed box by means of a diamond edge or tungsten ulade. Tho oxtermal wall of the safety box is made of 16 SHG alumimium sheet and its design plan is iliustrated in fig. 6.1 . The portion of a 16 SWG aluminium hinged Is carrying a makralon viewing panel constitute the roof of the box. A spring loaded piunger carrying the diamond edge or tungsten blade is fitted at the lid. The plungex thus slides up and down when pressed and releasod and its circuler motion is restricted by screw in slot.

The sealed tubc containing the heat-treated sample $1 s$ always placed in a horizontal position, inside the safety bax with the lid closed, such that when the plunger is pressed down, the diamond edge or tungsteu blade at its tip touches the tube at the ceatral position.

This is secured in the following way : The tube is allowed to rest on two $1^{n} \phi$ rufnol rolless fitted with two
 aluminiun frame work clamped firmy on the floor of tho box. The ends of the tube passes into rubber caps provided at the ends of two other spring loaded plungers, placed in the sane height at the two opposite side walls of the box. These plungers carrying the sealed tube in horizontal position is capable of clockwise or anticlockwise rotation,

By pressing the lid plunger down and holding it in such a position that the dianond tip or tungsten blade is in touch with the tube, a complete rotation is given to the tube by rotating the side plungers placed at the two opposite walls. The sealed tube will thus be found to be cut at the ceotre. A strong pusb is ther applied on the cutting area by means of a rigid rod having a sinarp edge and the tube will be found to opon very easily without any blow or blast because of the incuwbent pressure of the pyrolysis gasos inside. To facilitate near vision of the tube from outside, the makralon portion of the hinged lid having the size $1 I^{\prime \prime} \times 4 \frac{3}{4} \times 3$ ma is slanted to make an angle of 30° with the vertical wall. A 3^{n} oxhaust With a gatze is fitted at one corner of the safety box for clearance of the ourusbing gas.

Abstract

6.2.3 Increasing pressure developed inside pyrolysed Sealed tube accelerates carbonisation procoss.

Extensive studies on the iafluence of very high pressures on the carbonisation of pure organic compounds, pitches and coāl were undertaken by a mumber of workers ${ }^{1,2}$ and it was established that increasing pressure not only increases the coke yield but also lowers the temperature at which pyrolysis is completed.

Little information seems to be available in the open literature as to the amount of pressure that is developed on pyrolysis of a certain amount of vaparising pure organic sample inside a sealed tube. In such techniquo of pyrolysis, heating of the sample is first carried out under mormal pressura and then under increasing pressure caused by the pyrolysis gas. It is this increasing pressure which accelerates the carbonisation process with a big yield. In view of the gbove fact, the sealed tube wethod of pyrolysis was adopted in the case of benzene.
6.2.4 Thermal analysis

Carbonaceous mesophase formation has earliar been stated to occur generally in the tomperature range $350^{\circ} \mathrm{C}$ - $600^{\circ} \mathrm{C}$. The actual temporature interval in wich the mesophase develops in the carbonisation of a partacular coupound may be only a few dogrees or it may be tens of degrecs. Ihis naturally causes difficulties in locating the exact temperature infervals of mesophase formation in benzene during carbonisation.

Thermal analysis is an important tool to ascertain the temperature interval of mesophase formation. A small amount (about 0.7 g) of the sample was taken in a heavy-walled pyrex tube, 2,5 ma in thickness and $I G$ man internal diameter. The tube along with the sample inside was sealed at both the ends and again placed inside a steel bamb fitted with screw caps at both the ends. The sample was then heat-treated inside a solenoidal furnace at a fixed power input to the bomb ppto $450^{\circ} \mathrm{C}$, at which temperature the sample was kept for a long duration.. During hesting the pressure inside the soalod tube increased primarily because of the prosonce of H_{2} and other hydrocarbon gases which were evolved. After allowirg the tube to cool to roow temporature, the sealed tube was opened inside a safecy box, the design details of which has been given in article 6.2.2.

The heat-treated sample was then removed from inside the tubc, dried and then ground in a postle and mortor.

Selected sawple, witharawn during the initial thermal trestment and which had not yet passed theough the carbonaceous mesophase transformation due to prolomged heating at $450^{\circ} \mathrm{C}$, have been heat-treatod in a pyrex tube into which is dipped a chromel-Alumel thermocouple as in fig. $\mathrm{G}_{\mathrm{g}} 2$ to weasure the reaction-temperatures inciuding the temperatures of phase transformations in the different stages of pyrolysis. The couple is conncctcd to a sensitive potentiometer capable of reading in millivolt. The temperature of ono of the junctions is maintained
at $0^{\circ} G$ by placiag it in welting icex. The temperature of the other junction is gradually increased by heating the pyrex tube containing the sauple directiy by a burner and the eate.s of the couple at suitable intervals are recorded. The therimo- e.m.f.s. are calculated from the knowledge of tho balancing Iongths. The temperatures at the different phase transformations and reactions are obtained from the e, fitwotemperature, chart (Table 6.I) of the thermocouple used. The thermal curves so obtained (Figs. 6.3 \& 6.4) for the sample under study were used to detorwine the tewperature to which the parent sample had to be heated in order to obtain mesopasa spherudes.

6.2.5 Micrographic preparation of samples for mesophase

 observation.Mesophase'samples for polarized-Iight micrography and particle size analysis were obtained by heating the selected original samples (0.7 g) individually in sealed tube inside the solenoidal furnace as before to the desired temperature at which investigation was necessary. A heating rate of $10^{\circ} \mathrm{C} /$ win. was adopted by the temporature controller. The sample was heated to carbonise at a fixed temperature for a fixed duration. The sample was then allowed to cool and on reachiag the room temperature the sealed tube was opened inside the safety box as bafore. The sample was them separated from the tube, dricd and then embedded in a cold-setting mounting resin, placed on a Lucite or Plexi-glass.

The mounted sample was then ground on progressively finer grades of water proof silicon carbide paper progressing From 120 to 800 grit to expose the carbonised residue in the way, described as follows :

The silicon paper in the form of a disc was fixed on the top of a rotator and the sample was allowed to be rubbed by the silicon paper when the disc was kept on rotation e Light but steady pressures were applied on the sample while it was being rubbed by, the carbide paper. The direction of polish was maintained coustant except for reversals sade at regular intervals by lifting and rotating the sample by 180° at hand, accordingly the sample was not moved about the wheel but was only moved laterally between the centre and the periphery. The sample was washed with tap water before using the another comparatively finer grade of carbide paper. The best results were found to be achieved by using fresit paper for each sample and by grinding somewhat further than what was necessary at each grit level to remove the scratches from the preceding paper. After the final grinding on soongrit paper, the surface of the sample appeared bright independent of the level of heattreatment.

Subsequent

polishing was done with Matadi diamond lapping compounds (6 microntsize followed by I micron size) on a wet polishing silk cloth supplied by Duchler Limited, U.S.A. in the way described as follows:

The coarsc grade bialap diamond compound was spread over the polishing silk cloth fixed on ofte of the rotatiug discs of the Shimadzu polisher and the samplo was kept on rubbing for about five minutes and then thoroughly washed with tap water. The finer grade diamond compound was then spread over another polishing silk cloth fixed on the other rotating disc of the polisher and the sample was again kept on rubbing For another five minutes.

Final polishing of the sample was carried out by high purity Linde Alpha Mlumina powder. The powder was first wetted with distilled water and the sample was then rubbed gently by it with band in the same direction for about ten minutes. The final polishing resulted in a highly polished surface maving a bright Iustre, characteristic of carbonaceous mesophase which proved suitable for observation by polarized-light microscopy.

6.2.6 Polarized-Ijght microscopy

Samples prepared in the above manner were observed and photographed witu a Reichert "METAVEKT" polarizang microscope (plate 6. Divsing reflected polarized-light. Photographs of the mesaphase spheres and of subsequent heat-treated samples were obtained using , FUHFA NEOPAN SS Black \& White 135. ant 36exp. film. The coloured mesophase spheres could be produced by the insertion of a gypsum plate inclined to the analyser at an angle of 45° and plsced between the analyser itself and the sample under observation. The analyscr and polarizer reanins

```
cross with respect to each other. This is the so-called
sensitive tint technique 3,4. The Iight source of the
microscope was 6V, 15W. lom-voltage halogen buIb. An exposure
time of t5 minutes per photograph was used. A suitable arca of
each specimen was photographed so that a good mumber of mesopbso
spheres could be counted and a representative particie size
analysis obtained.
```

6.3. kesults \& discussions
6.3.1 Different types of carbons obtained by sealed tube
pyzoIysis of benzene.

The sealed-tube pyrolysis of benzene at different heat-treatment temperatures and durations gives rise to a large variety of carbons and four physically differeat appearing carbons heve been found to be so far identified. Most of the carbons have one thing in comnon that the doposit of carbon is a cIosely adhering films of silver grey colour. The first of these, shown in plate 6.2. is the hard grey plated carbon which are similar in appearance to that obtained from anthracene ${ }^{5}$ by sealed-tule pyrolysis. The setond type, shown in plate 6.3 is also similar to that obtained from gas phase pyrolymis of anthracene. The third type and fourth type are shown as an, admixture in plate 6.4. A remarkable foature of the carbon is that they look like carbon needles or thin carbon feathers. In times they thicken and become a thick film of massive type. Besides, we see spongy mass of brownish black carbons or a Eypical soot of carbon black.

6.3.2 Therinal aidalysis

Thermal analysis curves of partially carboniscd benzene on heat-treatuent at 8 hours and 12 hours duration are presented in figs. 6.3 and 6.4 respectively. Thermal anty yis data on whach these thermal curves are based on is given in tables 6.1 *.3. Characteristic of these curves is the presonce of an initial large endotheru usually seen in graphitizable organic compounds, which is then followed by smali fiuctuations in the trace before a suooth trace returns. The comperature region in which these fiuctuations appear casts an idea about the temperature intervals of wesophase formation.

The thermal curves obtained for the two different benzene samples can be interpreted in terins of carbonaceons mesophase formation. The maximum point of extreme right in the curves represents the temperature 'at which the fiuctuations terminate and the curve changes dircction sharply, observation, by polarized-1ight microscopy, of a benzeno sample heat-troated to this temporature revealed that the aresophase had completely coalesced. Similar otservations of the sample heat-treated to sifghtly lawer tewperatures showed the mesophase in various stages of developwent. lt would appear, therefore, that the extreme K.H.S. turaing point in the thermal curves of benzone represents the temperature at which coalescence of the mesophase is complete. The temperature is $570^{\circ} \mathrm{C}$ for benzent. Similar observations were observed for berzone heat-treated to a different duration dt is interesting to note that the
temperature representing couplete coalescence of the ansophase does not alter from $570{ }^{\circ} \mathrm{C}$ for the two benzeno samples. The temperature at which the mesophase spherules seart to develap has not been ascertained and polarized-Iight microscopy reveals that such spherules appears at $540^{\circ} \mathrm{C}$. It is presumed that vory minute spherules appear in tiojs case and it is difficult to analyse them quantitatively by polarizedtight microscopy. However, the analysis is not quite difficult when they grow in size with the rise of temperature ard heat-treatuent duration.

The actual fluctuations in the curves may arise through the formation of gases within the sample. This may rosult in the sample being lifted away frow the thermocouple womentarily thus causing a suall peok to occur in the curve. This process may then repeat itself, till the sample is decomposed to produce a mosaic having complete coalescence of the mesophase.

6.3.3 Geat-treatwent temporature, duration and a1so

pressure together promoto the growth of mesophase
formation.
Tho aromatic hydrocarbons undorgo stepwise condemsation ${ }^{6,7}$ of the aromatic structures with the elimination of hydrogen until a non-volalite carbon remains. The early stages of stach condensations are woll-known, particularly fof benzerte, which has been found to produce the following condensation products.

The conversion of benzene to carbon is catalyzed by the presence of contact surfaces, especially coke or carbon. No doubt the hytrocarbons are absorbod on such surfaces, and undergo dehydrogenation, forming biradicals or even other complex condensation products. The biradicals are eventually converted to carbon giving rise ta essentially two nain gaseous products bydrogen'and methane and with the gradual increase of tempereture and resident time methane is again split up to form carbon. As more'and more carbons are prodaced, the vaporising presaure is consequentiy reduced. When the vapour pressure of the product becomes negligible at high temperatures at is thus classified as carbon. The increase of carbon-yzeld with the increase of temperature and heat-treatment duration during mesophase formation is well-illustrated in Tabie 6.4 as We11 as in fig.6.5.

The variation of pressure inside the sealed tube with temperature at different heat-treatment duration during mesophase formation is well documented in table 6.5 as well as in fig.6.6.

The increasing pressure inside the sealed tube thus enhances the carbonisation process. It is well known that pressure increases the viscosity of liquids. Thus the effect of pressure will not oniy reduce considerably any fendency of bubble formetion, but also reduce disorder produced by convection currents within the system (because of enhanced viscosity).

 ，नБв乡dOSन山，आन

SNOJSATNNOD $\quad 7^{*} 9$
－dnose oyf ut owoigyqdpu xa7je ftqtssod

In the initial stages of rucleation and growth, the mesophase appears as spherrules and as cerbonisation progresses, the growing thesophase spherules coalesce and change in shape in forming relative complex bulk aesophase and plastac flow pattern. Thus, three mechanisus - tho mesophase transformation itself, the coalescence of the inithal spherules to bulk mesophase and the plastic flow before bardening - act to establish the principal features of the Iamelliform morphology of a graphitizable coke. The forfation of a carbonaceous mesophase as a prerequisite to graphitization is, therefore, very much siguificant.
(b) The nutleation, growth and coalescence processes of the mesophase spherules establish the basic elements of the graphite microstructura. The nodal and cross strictures are essential features of the cadesced mesophase, and the nodel structures at least are found to persist in theit basic form up to grapisitacation temperatufes.
(c) For gtaphitizable organic materials endothermal processes of destruction are generally seen to occur in the imitial stage of the thermal curves. In the case of an organic compound under heat-treatment two competing reactions are often found to oぁcur: cross-ifinking producing an exothermic reaction, and chain stripping and associated reactions which produce eadotheruic peaks. The second type often allows the formation of oriented aromatic rings, which give rise to graphitizable
carbon. So an exotheruric portion of the thermal curve somewhere in the First stage of decomposition indicates that ... the resulting product will be a non-grapiritizing carbon.

The polarized-light photomicrographs (plates 6.5 - 6.8) obtained for the simplest aromatic organic coapound (Benzenu) at different heat-treatment temperatures and durations indicate that it satisfies the rirst criteria of graphitization, e.g. it passes through the carbonaceous mesophase transformation and hence it is graphitizable.

Again, the thermat curves obtained for the compound under study (figs. 6.3 to 6.4) clearly indicate that endathermal processes of destructions in the initial portions of the curves
 Of considerable interest is the relationship between the theraal analysis traces of partially carbonised samples and the formation of carbonaceous mesophase. This is entirely a new phenomenon which appears to arise because of bubble rormation occuring in the sample at the temperature of the formation of the mesophase spherules.

The particle size analysis carried out on the spherules formed in the sample while passing through the carbonaceous mesophase transition, gives some definite informations regaraing the size of the spherules in the nucleation and in the subsequent growth to bulk mesophase. Since graphites are formed froun materials which pass through a carbonaceous mesophase transformation, senerally in the temperature interval of 350 to
$600^{\circ} \mathrm{C}$, the possibility anises of a relationship between the size of the wesophase spherules formed from a sample and the properties of tize corresponding graphite produced. The search for such a correlation is left for future study. Generally a reduction in spherulite size corresponds to a suall or secondary dectease in the $X-r a y$ parameters ${ }^{l l}$.

As to the pressure influence on the pitch coking process, carbonisation in a sealed tube generally produce a higher carbon yield compared with coking in an open crucible. On the other hand, a gas pressure durifg pyrolysis causes a poor microstructure in the residue. Migh gas pressures of evaporabed hydracarborks Iead to high carbon yield and to hard carbons. Coking in a seaded tube provides the condition for a combined liquid and gas-phase pyrolysis. The result is a warkedly inferior prearmangement of the carbon atoms in the semi-coke. However, in the case of reflux carbonisation, a disturbance of the graphitizability has been found to be observed.

The work of White et al. 12,13, Dubois et al. ${ }^{14}$ aud Honda et aI. ${ }^{3}$ has provided details of how the anisotropic spherules of the mesophase coalesce and grow into macro-order
 the regions of perfect wicro-order (\mathcal{A}) of a near perfect graphite lattice. What has received less attention is the relation between the form bireflectance of tho mesophase
spherules and the order of the graphite Iattice. Taylor ${ }^{5}$ and Schmidt ${ }^{16}$ stated that optical anisotropy is always the exprosision of structural anisotropy and most work on the carbonaceous mesophase implies or proves that the mosophase is a Iaminar structure ${ }^{17.18}$.

Tabie ino. 6.I

Hickel-Chromium, Nickel Aluminium Thermocouples * (Chromol Alumel Couples \& $T_{1}-T_{2}$ alloy couples) e.f.f in millivolts (absolute). Cold junction at $d^{\circ} C$.

Temp. ${ }^{\circ} \mathrm{C}$	0	10	20	30	40	50	60	70	80	90
0	0.00	0.40	0.80	1.20	1.61	2.02	2.43	2.85	3.26	3.68
100	4.10	4.51	4.92	5.33	5.73	6.13	6.53	6.93	7.33	7.73
200	8.13	8.54	8.94	9.34	9.75	10.16	10.57	10.98	11.39	11.80
300	12.21	12.63	13.04	13.46	13.88	14.29	14.71	15.13	15.55	15.98
400	16.40	16.82	17.24	17.67	18.09	18.51	18.94	19.30	19.79	20.22
500	20.65	21.07	21.50	21.92	22.34	22.78	23.20	23.63	24.06	24.49
600	24.91	25.34	25.76	26.19	26.61	27.03	27.45	27.87	28.29	28.72
700.	29.14	29.56	29.97	30.39	30.81	31.23	31.65	32.06	32.48	32.89
800	33.30	33.71	34.12	34.53	34.93	35.34	35.75	36.15	36.55	36.96
900	37.36	37.76	38.16	38.56	38.95	39.35	39.75	40.14	40.53	40.92
1000	41.31	41.70	42.09	42.48	42.87	43.25	43.63	44.02	44.40	44.78
1100	45.16	45.54	45.92	46.29	46.67	47.04	47.41	47.78	48.15	48.52
1200	48.89	49.25	49.62	49.98	50.34	50.69	51.05	51.41	51.76	52.11
1300	52.46	52.81	53.16	53.51	53.85	54.20	54.54	54.88		

* From - Techaical Data on Fuel by Spiers.

Table Ho. 6.2

Thermal Analysis Data of Partially Carbonised Benzene on Heat-treatmont at $450^{\circ} \mathrm{C}$ For a Duration of 8 hrs.

Table 6.2 (Continued)

$T_{\text {imine }}$	Wire No.	Balancing Iength in	cIf	$\begin{gathered} \text { Total Iength } \\ \text { in ch. } \end{gathered}$	$\begin{gathered} \operatorname{E.m\cdot f} \text { in } \\ m v . \end{gathered}$	$\begin{aligned} & \text { Corresponding } \\ & \text { temp in o } \end{aligned}$
35	8	34.5		834.5	20.76	483
36	8	50.0		850.0	21.15	513
37	8	60.0		860.0	21.40	520
38	8	55.0		855.0	21.27	518
39	8	. 54.0		854.0	21.25	517
40	8	55.0		855.0	21.27	518
41	8	60.0		860.0	21.40	520
42	8	61.0		861.0	21.42	521
43	8	53.5		853.5	21.24	516
44	8	50.0		850.0	21.15	513
45	8	60.0		860.0	21.40	520
46	8	70! 0		870.0	21.65	526
47	8	80110		880.0	21.90	532
48	8	9510		895.0	22.27	540
49	9	2010		920.0	22.89	554
50	9	20.10		920.0	22.89	554
51	9	2110		921.0	22.92	556
52	9	30110		930.0	23.14	561
53	9	35110.		935.0	23.26	564
54	9	44.0.		944.0	23.49	569
55	9	50.60		947.0	23.56	570
56	9	47:5.		947.5	23.57	570
57	9	45:0		945.0	23.51	570
58	g	42!0		942.0	23.44	568
59	9	$39!0$		939.0	23.36	566
60	9	35:0		935.0	23.26	564

Table 6.3
Thermal Analysis Data of Partially Carbonised Benzene on Heat-treatment at $450^{\circ} \mathrm{C}$ for a Duration of 12 hrs.

Tabie 6.3 (Continued)

$\begin{aligned} & \text { Tione in } \\ & \text { win. } \end{aligned}$	Wire No.	Balancing length in	cn*	Total length in cm.	$\begin{aligned} & E . \operatorname{H} \cdot f \\ & \text { In } \mathbb{I} \end{aligned}$	Corresponding temp. in ${ }^{\circ} \mathrm{C}$
34	8	25.0		825.0	20.53	500
35	8	21.0		821.0	20.43	498
36	8	25.1		825.1	20.53	500
37	8	37.0		837.0	20.82	506
38	8	46.0		846.0	21.05	510
39	8	50.0		850.0	21.75	513
40	8	46.5		846.5	21.06	511
41	8	55.0		855.0	21.27	518
42	8	64.0		864.0	21.50	522
43	8	76.0		876.0	21.80	528
44	8	90.0		890.0	22.14	538
45	9	100.0		900.0	22.39	543
46	9	10.1		910.1	22.64	548
47	9	07.0		907.0	22.57	546
48	8	95.0		895.0	22.27	540
49	9	100.0		900.0	22.39	543
50	9	10.0		910.0	22.64	548
51	9	27.5		927.5	23.08	559
52	9	35.0		935.0	23.26	564
53	9	43.0		943.0.	23.46	568
54	9	46.0		946.0	23.54	569
55	9	50.0		950.0	23.64	571
56	9	47.5		947. 5	23.57	570
57	9	44.5		944.5	23.50	570
58	9	40.0		940.0	23.39	567
59	9	38.0		938.0	23.34	566
60	9	33.5		933.5	23.23	562
61	9	30.0		930.0	23.14	561
62	9	25.0		925.0	23.01	558

2rable No. 6.4

Conversion of Benzent to carbon in 2 during mesophase fornatiou.

No.of Observation	$\begin{aligned} & \operatorname{Teqp}_{\text {in }}{ }_{\mathrm{O}}^{\mathrm{G}} \end{aligned}$	Duration in hours	Wt. of the sample taken	Wt.of the carbonised sample + He gas along with tubo in gm	Wh, of the tube after breaking . in gat.	lit.of the carbon in gm.	\% of carbor obtained
1		6	0.704 gm	23.44	23.249	0.191	27.
2	540	8	0.704 gm	23.450	23.23	0.220	27.15 31.25
3		10	0.704 gm	23.455	23.217	0.238	33.80
		6	0.704 gm	23.445	23.167	0.278	39.48
5.	550	8	0.704 gm	23.46	23.157	0.303	43.03
6		10	0.704 gm	23.465	23.137	0.328	46.59
7		6	0.704 gm	23.475	23.141	0.334	${ }^{+} 47.4$
8	560	8	0.704 gar	23.485	23.101	0.384	54.54
g		10	0.704 gm	23.50	23.092.	0.409	58.09
10	570	6	0.704 git	23.52	23.069	0.451	64.06
11		8	0.704 gm	24.519	24.110	0.475	67.47
12		10	0.704 gm	24.510	24.010	0.500	71.02

TabIe No, 6,5

Variation of Pressure with Temperature at Different heat-treatment duration during mesophase formation in benzene in Sealed tube.

No.of Observation	Teup. $i n^{\circ} c$	$\begin{gathered} \text { Duration } \\ \text { in } \\ \text { hours } \end{gathered}$	```wt.of the sample taken in gm.```	Wt.of carbon obtained int gin.	$\begin{aligned} & \text { WE . of } H C \text {. } \\ & \text { in } \mathrm{gm}^{m} . \end{aligned}$	Pressure developed in the sealed tube
1	540	6	0.704	0.191	0.513	240.415 atw.
2	540	8	0.704	0.220	0.484	233.075 atin.
3	540	10	0.704	0.238	0.466	Q228.057 atm.
4	550	6	0.704	0.278	0.426	227.77 atm .
5	550	8	0.704	0.303	0.401	220.844 atm.
6	550	10	0.704	0.328.	0.376	(1213.581 atm.
7	560	6	0.704	0.334	0.37	209.31 atm.
8	560	8	0.704	0.384	0.32	194.818 atm.
9	560	10	0.704	0.409	0.295	WI59.09 atm.
10	570	6	0.704	0.451	0.253	173.99 atw.
12	570	8	0.704	0.475	0.229	156.59 atin
12	570	10	0.704	0.500	0.204	01148.52 atm

Table 6.6

Particle size data and calculation of mean spherulite size for benzene heac-treated to $540{ }^{\circ} \mathrm{C}$ for a duratıon of 10 hrs.

Size Range in μ in.	Mean diameter of size range in 引四 (dN)	Nuinber of Spherules observed (a)	Number $\%$ N	Relative area/500	Mrea\%	$\mathrm{Nd}^{\text {b }}$	$\mathrm{Nd}_{\mathrm{mi}}{ }^{2}$

$0-4.9$	2.5	8	8.79	0.0786	0.149	21.975	54.938
$5-9.9$	7.5	15	16.48	1.3259	2.506	123.60	927.00
$10-14.9$	12.5	24	26.37	5.8929	11.138	329.625	4120.312
$15-19.9$	17.5	19	20.87	9.1438	17.282	365.225	6391.438
$20-24.9$	22.5	15	16.48	11.933	22.554	370.80	8343.00
$25-29.9$	27.5	3	3.30	3.5652	6.738	90.75	2495.625
$35-39.9$	37.5	3	3.30	6.6295	12.530	123.75	4640.625
$40-44.9$	42.5	2	2.20	5.6768	10.729	93.50	3973.75
$50-54.9$	52.5	2	2.20	8.6625	16.373	115.50.	6063.75

Table 6.7

Particie size date and calculation of mean Spherulite size for benzene heat-treated to $550^{\circ} \mathrm{C}$ for a duration of 10 brs.

$\begin{aligned} & \text { Size Range } \\ & \text { in Hw } \end{aligned}$	Hean diameter of size rango in $10 n\left(d_{m}\right)$	No. of Spherules observed (a)	$\begin{gathered} \text { Number } \% \\ N \end{gathered}$	Rolative 4rea/500	Area\%	$\overline{\mathrm{Nd}}$	$N d_{W}{ }^{2}$
10-14.9	12.5	7	8.046	1. 718	0.938	100.575	1257.188
' 15×19.9	17.5.	4	4.598	1.925	1.052	80.465	1408.138
20-24.9	22.5	12	13.793	9.546	5.215	310.342	6982.706
25-29.9	27.5	8	9.195	9.507	5.193	252.863	6953.719
30-34.9	32.5	10	II. 494	16.598	9.067	373.555	22140.538
$35-39.9$	37.5	12	13.793	26.518	14.486	517.238	19396.406
40.44.9	42.5	.17	79.540	48.253	26.359	830.450	35294.125
45-49.9	47.5	4	4.598.	14.182	. 7.747	218.405	10374.238
50-54.9	52.5	3	3.448	12.993	7.098	181.020	9503.550
55-59.9	57.5	3	3.448	15.587	8.515	198.260	11399.950
60-64.9	62.5	4	4.598.	2.554	1. 395	287.375	17570.313
65-69.9	67.5	I	1.149	7.160	3.911	77.558	5235.131
70-74.9	72.5	2	2.299	16.520	9.024	166.678	12084.119
1		87	100	183.061	100	3594.784	149600.12

Table 6.8
119

Particle size data and calculation of pean Spherulite size for benzene heat-treated to $560^{\circ} \mathrm{C}$ for a duration of 10 hrs .

Size Range ir μm.	Meart diameter of size range in $\mu \mu_{1}\left(d_{m}\right)$	Number or spherules obseryed (a)	$\begin{gathered} \text { Number } \% \\ N \end{gathered}$	Relative area/500	Area\%	F $\mathrm{Nd}_{\mathrm{fl}}$	$N d_{m}{ }^{2}$
15-19.9	17.5	1	2.613	0.481	0.121	28.228	493.981
25-29.9	27.5	1	1.613	1.188	0.299	44.358	1219.831
30-34.9	32.5	1	1.613	1.660	0.418	52.423	1703.731
35-39.9	37.5	4	6.452	8.839	2.223	241.95	9073.125
40-44.9	42.5	I1	17.742	31.222	7.853	754.035	32046.488
45-49.9	47.5	5	8.065	7.091	1.783	383.088	18196.656
50-54.9	52.5	4	6.452	17.325	4.357	338.73	17783.325
55-59.9	57.5	5	8.065	25.978	6.534	463.738	26664.906
60-64.9	62.5	9	14.516	55.246	13.895	907.25	56703.125
65-69.9	67.5	2	3.226	14.320	3.602	217.755	14698.463
70-74.9	72.5	5	8.065	41.299	10.387	584.713	42391.656
75-79.9	77.5	2	3.226	18.877	4.748	250.015	19376.163
80-84.9	82.5	2	3.226	21.391	5.380	266.145	21956.963
85-89.9	87.5	3	4.839.	36.094	9.078	423.413	37048.594
90-94.9	92.5	2	3.226	26.891	6.763	298.405	27602.463
95-99.9	97.5	1	1.613	14.938	3.763	157.268	15333.581
100-104.9	10,2.5	2	3.226	33.020	8.305	330.665°	33893.163
105-109.9	107.5	1	1.613	18.160	4.567	173.398	18640.231
120-124.9	122.5	1	1.613	23.581	5.931	197.593.	24205.081
		62	100	307.601	1006	113.17.	419031.526

Particle Size amalysis of benzene－Number Percentage

Harticle Size analysis of benzene－Area Percentage

	6＂\％TI－0It			756.5
	$6 * 60 T-50 \%$			$495^{*} 7$
	$6^{\circ} 707-00 t$			SOE＊
	$6^{\circ} 66-56$			¢． $914{ }^{\circ} \mathrm{E}$
	4＊76－06			892＊9
	$6_{1} 68-58$			$8 \angle 0^{*} 6$
	6．78－08			08\％＊5
	$6^{*} 6 L-92$			871＊ 7
	$6 * 71-0<$		$720^{\circ} 6$	$\angle 8 E^{\circ} 01$
ב	6＊69－59		II $6^{\circ} \mathrm{C}$	$209^{*} 8$
	6＊79－09		$56 E^{\circ} \mathrm{T}$	$568^{\circ} \mathrm{EI}$
$\stackrel{1}{4}$	$x^{*} 6 \leq-5 S$		SI5＊8	7Eら＂9
cr	$5-75-05$	$\varepsilon<\varepsilon^{*} 97$	$860^{\circ} \mathrm{L}$	$\angle S E^{*}{ }^{*}$
$\begin{aligned} & \mathrm{N} \\ & \mathrm{H} \\ & \mathrm{c}-\mathrm{l} \end{aligned}$	$6 * * *-57$		$\angle \ni L^{\circ} \mathrm{L}$	$\varepsilon 2 L^{*} T$
	大＂7ワー0゙	671201	$65 \mathrm{CP} \mathrm{C}^{\circ}$	ESR＊
	$6.65-5 E$	$0 ¢ S^{*} ర T$	98がヶ 5	$E Z Z^{*} Z$
	$6.78-0 \varepsilon$		$\angle 90^{\circ}{ }^{\circ}$	$817^{\circ} 0$
	$6 * 6 z-5 z$	8E1＇9	E6t＊	$662^{\circ} 0$
	$6^{\circ} 77-07$	$755^{\circ} \mathrm{ZZ}$	$5 T Z * 5$	
	$6^{*} 6 T=51$	$8 Z^{*} /[1$	$350{ }^{*}$	「Z ${ }^{\circ} 0$
	$33^{*}+T-O T$	8ET＇TT	$8 E 6^{\circ} 0$	
	6＊6－5	$905^{*} \mathrm{C}$	－	
	16＊7－0	$67 T^{\circ} 0$		
		\％	$\begin{aligned} & 0 \\ & n \\ & n \end{aligned}$	80

Table 6.1I

Hesn arithmatic and area spherulite
diameter.

Samples	Heat-treatment tenperature ($\left.{ }^{\circ} \mathrm{C}\right)$	$D_{d}(\mu \mathrm{~m})$	$D_{a}(\mu \mathrm{~m})$
Benzene $C_{6} H_{6}$	540	-16.35	19.24
		550	35.947

Fig. 6.1 Design plan af the Satety Box.

Fig. 6. 2 Thermal analysis cuircuit diagram

Fig. 6.5 Conversion of Benzene to carbon during mesophase formation.

Fig. 6.6 Variation of Pressure with Temperature at different heat-treatment duration during mesophose formotion in Benzene.

Plato 6.4 Adaixture of third and fourth-type of phyaically appaaring carbon preparad frob

Plate 6.5 Mesophase spherules in benzeno heat-troated to $540^{\circ} \mathrm{C}$ for a duration of 10 hours.

Plate 6.7. Hosophote dovelopnent in benzono hont-tronted to $560^{\circ} \mathrm{C}$ for a duration of 10 hours.

Plato 6. 8 . Mosaic Foraation in bonsane hoat-troatod $570^{\circ} \mathrm{C}$ for a duration of 10 hours.
4

heat-treated to $540^{\circ} \mathrm{C}$
benzene

Partide size distribution of
for a duration of 10 hrs
Fig. 6.7

\because

\therefore

Reference

6.12 White, J.L., Guthrie, G,L, and Gardner, J. G., Carbon, 1967. 5, 517.
6.13 White, J.L., Dubois, J.-and Souillart, C., J.Chia.phys. Special volume, April, 1969, 33: Euratou report 4094e, 1969.
6.14 Dubois, J., Agece, C. and White, J.L., Euratom report, 4627e, 1971.
6.15 Taylor, G.H., Fuel, 1961, 40. 465.
6.16 Schmidt. W.J. Handbuck der Mikroskopie in der Technik, I:I, 147, Verlag Uashaw (Ed, H. Freund): Frankfuct, 1957.
6.17 Brooks, J.D. and Tay10r, G.H., Garbon. 1965, 3., 185.
6.18 Kovac, C.A. and Lewis, I.C., Carbon, 1978, 16, 433.

[^0]: $\overline{I A}-8 A J d V H D$

