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Abstract

In this study, we seek to apply a system of nonlinear ordinary differential equa-

tions to analyze how the dynamics of primary infection affect the proliferation

of Diphtheria. We prove existence, uniqueness, positivity, and boundedness of

the solution. Also investigate the qualitative behavior of the models, and find

a threshold parameter that guarantee the asymptotic stability of the equilibrium

points, which is known as basic reproduction number. The parameters are intro-

duced in different terms of equations of the model are determined by fitting to

match daily cases data sets using nonlinear least-squares method. The aim of this

work is to determine the optimal control of treatment and vaccination adminis-

tration schemes useful in controlling the epidemic situation especially in poorly

resourced settings. The optimal treatments represent the efficacy of vaccination

and treatment inhibiting diphtheria infection and preventing new infections with

an objective functional which minimizes the infected populations and minimizes

the systematic cost based on the percentage effect of the treatment strategies.

The existence and the uniqueness of the optimal pair are discussed. A charac-

terization of the optimal controls via adjoint variables is established. We obtain

an optimality system that we solve numerically by a iterative Forward-Backward

Sweep method. We also discuss cost-effective treatment strategy to obtain the

least cost-effective objective function.
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Chapter 1

Introduction

1.1 Introduction

Humanity has been plagued with infectious diseases for years. The mechanisms

of transmission are known for most diseases; generally, diseases such as influenza,

measles, rubella, and chickenpox that are transmitted by virus confer immunity

against reinfection, while diseases such as diphtheria, tuberculosis, meningitis, and

gonorrhea that are transmitted by bacteria confer no immunity against reinfection.

Other diseases, such as malaria, are transmitted not directly from human to human

but by vectors (usually insects), which are agents that are infected by humans and

then transmit the disease to other humans. West Nile virus has mosquitoes as

its vectors and birds as its hosts. For sexually transmitted diseases with the

heterosexual transmission, each sex acts as a vector and the disease is transmitted

back and forth between the sexes.

Infectious diseases have been a significant cause of death and illness throughout

the world. Tens of millions of lives have been lost to them. Some of these diseases

include the Spanish influenza virus of the early 20th century, which swept through

Africa, America, Asia, and Europe with a death toll of over 30 million people, the

1348 Black Death Bubonic Plague in Europe which killed over 40 million people

within five years. In recent times, measles, malaria, tuberculosis, and AIDS, among

others, are causing millions of deaths on a yearly basis. UNAIDS reports that an

average of 1.8 million people became newly infected with HIV, 36.9 million people

are living with HIV in 2016, while over 75 million people have become infected

1
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with HIV since the start of the epidemic in 1981. 1 million people died of AIDS-

related diseases in 2016, while over 30 million deaths have resulted from AIDS-

related illness since the start of the epidemic. Technological advancements have

brought about a remarkable fight against these diseases. Antiretroviral drugs have

been made available for people living with HIV. In 2010, 7.7 million were able to

access antiretroviral therapy, 17.1 million in 2015, and 20.9 million as of June 2017,

which reveals excellent appreciable progress in combating this virus and invariably

reducing AIDS-related death [51].

However, while some infectious diseases have been kept under control due to tech-

nological advances, others are still ravaging lives, the reason being the diversity

of the pathogens coupled with their ability to mutate and adapt to changing

environments and the complexity of their transmission mechanisms. Infectious

diseases impacts are usually devastating, they hamper the survival rate of chil-

dren, especially in underdeveloped countries; they also impede opportunities for

economic growth and development. Hence, there is a need for a global perspective

that accounts for biocomplexity, all the interrelated factors that contribute to the

evolution and survival of infectious agents. In order to achieve this, individuals

from various fields such as biologists, ecologists, chemists, epidemiologists, math-

ematicians, statisticians, and atmospheric scientists must work collaboratively in

order to shed more light on how these diseases can be eradicated or their impact

minimized.

Transmission of infectious diseases occurs through several means that can be cat-

egorized into two major routes, direct and indirect transmission. Direct transmis-

sion involves the transmission from infected people to uninfected people through

close contacts. Their medium includes body fluids such as blood, semen, breast

milk, etc., or through the shaking of hands with or touching an infected individual.

Indirect transmission involves transmission by non-human infectious agents such

as mosquitoes, tsetse flies, contaminated food or water, which serve as intermediate

hosts for the disease and later transmit the disease to humans.

The incidence rate of diseases describes the transmission of the disease. An in-

fectious disease that spreads rapidly to a large number of people in a given pop-

ulation for a short period of time is known as an epidemic. An infectious disease

that persists in the community or population is known as an endemic disease while

a pandemic is an epidemic of infectious disease that has spread through human

populations across a large region (several continents, or even worldwide).
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Scientists have used mathematical models, which involve the use of mathematical

equations and formulas to represent real-life problems, solved and made remarkable

predictions based on the solutions obtained from the problems. Epidemiologists

(scientists that study infectious diseases) have played a vital role in investigating

the transmission dynamics of some of these diseases and have been able to come

up with recommendations for different intervention strategies which have helped

to control the spread of some of these diseases.

1.2 Diphtheria Disease

In 1613, Spain experienced the first epidemic of diphtheria. In 1735, a diph-

theria epidemic swept through England. Before 1826, diphtheria was known by

different names across the world. In England, it was known as Boulogne sore

throat, as it spread from France. In 1826, Pierre Bretonneau gave the disease

the name diphthérite (from Greek diphthera ”leather”) describing the appearance

of pseudomembrane in the throat. In 1856, Victor Fourgeaud described an epi-

demic of diphtheria in California. In 1883, Edwin Klebs identified the bacterium

causing diphtheria and named it Klebs-Loeffler bacterium. The club shape of

this bacterium helped Edwin to differentiate it from other bacteria. Over a pe-

riod of time, it was called Microsporon diphtheriticum, Bacillus diphtheriae, and

Mycobacterium diphtheriae. The current nomenclature is Corynebacterium diph-

theriae. Friedrich Loeffler was the first person to cultivate C. diphtheriae in 1884.

He used Koch’s postulates to prove the association between C. diphtheriae and

diphtheria. He also showed that the bacillus produces an exotoxin. In 1895, H.

K. Mulford Company of Philadelphia started production and testing of diphtheria

antitoxin in the United States.

1.3 Diphtheria Epidemic

Diphtheria is fatal in between 5% and 10% of cases. In children under five years

and adults over 40 years, the fatality rate may be as much as 20%. In 2013,

it resulted in 3,300 deaths, down from 8,000 deaths in 1990. In 2018, countries

reported more than 16,000 cases of diphtheria to the World Health Organization,

and there are likely many more cases.
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During 1990-1995, more than 140,000 cases and 4000 death have been reported

worldwide to the Regional Office of World Health Organization (WHO) for Europe

[5, 16, 43]. The number of cases has changed over the course of the last 2 decades,

specifically throughout developing countries. Better standards of living, mass im-

munization, improved diagnosis, prompt treatment, and more effective health care

have led to a decrease in cases worldwide. However, although outbreaks are rare,

they still occur worldwide, especially in developed nations such as Germany among

unvaccinated children. In Nazi Germany contagious diseases such as diphtheria

were among the leading causes of morbidity; they increased ”after the mid-1920s,

doubled again between 1932 and 1937, and reached extremely high levels during

the war only to decline rapidly thereafter”. Diphtheria remains a problem in a

number of low-income countries with poor immunization coverage. Several out-

breaks have been reported in sub-Saharan Africa (e.g. Nigeria and Madagascar)

since 2000. Bangladesh experienced recently an outbreak in a large refugee camp

for the Rohinga in 2017. Currently, India, Indonesia, and Nepal have the highest

number of diphtheria cases in Asia [19]. Even in countries with rather good im-

munization coverage, such as Thailand and Iran, outbreaks of 157 and 513 cases

respectively, have occurred in recent years. In 2014, for example, 22 cases of con-

firmed diphtheria were reported in the European Union, and about half of these

cases were in Latvia [7]. A large-scale diphtheria epidemic had been reported in

the Rohingya refugee camp in Bangladesh which is temporarily located in Cox’s

Bazar. As of December 26, 2017, the cumulative number of 2,526 cases and 27

deaths were reported [57]. In this thesis, we worked with the data of the Rohingya

refugee camp in Bangladesh. It will help the health department of the government

to control such a diphtheria outbreak if it further occurs.

Figure. 1.1. Worldwide Diphtheria Outbreak 2000 to 2017.
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1.4 Infection of Diphtheria

1.4.1 Disease Transmission

Human-to-human transmission of diphtheria typically occurs through the air when

an infected individual coughs or sneezes. Breathing in particles released from the

infected individual leads to infection. Contact with any lesions on the skin can also

lead to transmission of diphtheria, but this is uncommon. Indirect infections can

occur, as well. If an infected individual touches a surface or object, the bacteria

can be left behind and remain viable. Also, some evidence indicates diphtheria has

the potential to be zoonotic, but this has yet to be confirmed. Corynebacterium

ulcerans has been found in some animals, which would suggest zoonotic potential.

1.4.2 Signs and symptoms

The symptoms of diphtheria usually begin two to seven days after infection. Symp-

toms of diphtheria include fever of 38 °C (100.4 °F) or above, chills, fatigue, bluish

skin coloration (cyanosis), sore throat, hoarseness, cough; headache, difficulty

swallowing, painful swallowing, difficulty breathing, rapid breathing, foul-smelling

and bloodstained nasal discharge, and lymphadenopathy. Within two to three

days, diphtheria may destroy healthy tissues in the respiratory system. The dead

tissue forms a thick, gray coating that can build up in the throat or nose. This

thick gray coating is called a ”pseudomembrane”. It can cover tissues in the nose,

tonsils, voice box, and throat, making it very hard to breathe and swallow. Symp-

toms can also include cardiac arrhythmias, myocarditis, and cranial and peripheral

nerve palsies.

1.4.3 Mechanism

Diphtheria toxin is produced by C. diphtheriae only when infected with a bac-

teriophage that integrates the toxin-encoding genetic elements into the bacteria.

Diphtheria toxin is a single, 60-kDa-molecular weight protein composed of two

peptide chains, fragment A and fragment B, held together by a disulfide bond.

Fragment B is a recognition subunit that gains the toxin entry into the host cell

by binding to the EGF-like domain of heparin-binding EGF-like growth factor on
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the cell surface. This signals the cell to internalize the toxin within an endosome

via receptor-mediated endocytosis. Inside the endosome, the toxin is split by a

trypsin-like protease into its individual A and B fragments. The acidity of the

endosome causes fragment B to create pores in the endosome membrane, thereby

catalysing the release of fragment A into the cell’s cytoplasm.

Fragment A inhibits the synthesis of new proteins in the affected cell by catalyzing

ADP-ribosylation of elongation factor EF-2—a protein that is essential to the

translation step of protein synthesis. This ADP-ribosylation involves the transfer

of an ADP-ribose from NAD+ to a diphthamide (a modified histidine) residue

within the EF-2 protein. Since EF-2 is needed for the moving of tRNA from the

A-site to the P-site of the ribosome during protein translation, ADP-ribosylation

of EF-2 prevents protein synthesis.

ADP-ribosylation of EF-2 is reversed by giving high doses of nicotinamide (a form

of vitamin B3), since this is one of the reaction’s end products, and high amounts

drive the reaction in the opposite direction.

1.4.4 Treatment

The disease may remain manageable, but in more severe cases, lymph nodes in

the neck may swell, and breathing and swallowing are more difficult. People in

this stage should seek immediate medical attention, as obstruction in the throat

may require intubation or a tracheotomy. Abnormal cardiac rhythms can occur

early in the course of the illness or weeks later, and can lead to heart failure.

Diphtheria can also cause paralysis in the eye, neck, throat, or respiratory muscles.

Patients with severe cases are put in a hospital intensive care unit and given a

diphtheria antitoxin (consisting of antibodies isolated from the serum of horses that

have been challenged with diphtheria toxin). Since antitoxin does not neutralize

toxin that is already bound to tissues, delaying its administration increases risk

of death. Therefore, the decision to administer diphtheria antitoxin is based on

clinical diagnosis, and should not await laboratory confirmation.

Antibiotics have not been demonstrated to affect healing of local infection in diph-

theria patients treated with antitoxin. Antibiotics are used in patients or carriers

to eradicate C. diphtheriae and prevent its transmission to others. The Centers

for Disease Control and Prevention recommends either:
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� Metronidazole

� Erythromycin is given (orally or by injection) for 14 days (40 mg/kg per day

with a maximum of 2 g/d), or

� Procaine penicillin G is given intramuscularly for 14 days (300,000 U/d for

patients weighing < 10 kg and 600, 000U/d for those weighing > 10 kg);

patients with allergies to penicillin G or erythromycin can use rifampin or

clindamycin.

In cases that progress beyond a throat infection, diphtheria toxin spreads through

the blood and can lead to potentially life-threatening complications that affect

other organs, such as the heart and kidneys. Damage to the heart caused by

the toxin affects the heart’s ability to pump blood or the kidneys’ ability to clear

wastes. It can also cause nerve damage, eventually leading to paralysis. About

40% to 50% of those left untreated can die.

1.4.5 Prevention

Quinvaxem is a widely administered pentavalent vaccine, which is a combination

of five vaccines in one that protect babies from diphtheria, among other common

childhood diseases. Diphtheria vaccine is usually combined at least with tetanus

vaccine (Td) and often with pertussis (DTP, DTaP, TdaP, Tdap) vaccines, as well.

1.5 Literature Review

The recent outbreak of Diphtheria Disease has led researchers to develop mathe-

matical models to help understand the dynamic of the virus and the appropriate

intervention techniques which have to be put in place in order to be able to com-

bat the disease effectively. Dittmann et al. [43] applied the control strategies of

epidemic diphtheria in the USSR, Zakikhany and Efstratiou [20] analyzed on the

current problems and new challenges of Diphtheria in Europe, Atkinson et al. [52]

in their work discussed about the Epidemiology, risk factors, vaccine details, vac-

cination schedule and use of vaccine, Torrea et al. [29] discussed the mathematical

modeling of a diphtheria epidemic in the refugee camps and Ilahi and Widiana

[10] analyzed the effectiveness of vaccine in the outbreak of diphtheria do with
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mathematical model and simulation. It was done by controlling the vaccination

aimed at decreasing the infected population and minimizing the treatment cost.

Matsuyama et al. [40] analyzed the uncertainity and sensitivity of basic reproduc-

tion number of diphtheria outbreak in Rohingya refugee camp in Bangladesh. In

this thesis, we develope a deterministic model to describe the effects of vaccination

and treat-ment on the diphtheria outbreak. Further apply optimal control in the

model and analyzed cost-effectiveness to control the Diphtheria outbreak.

In this thesis, a modified susceptible-exposed-infectious-recovered (SEIR) deter-

ministic nonlinear system of equations are used to model the dynamics of Diphthe-

ria disease. In addition to infectious individuals, which are known to be the major

carriers of infectious diseases, this model incorporate the effect of the transmission

of the disease by deceased infectious individuals, since they also contribute to the

transmission of the disease to the susceptible population. Chapter 2 is devoted to

mathematical preliminaries that are relevant to this thesis. Chapter 3 is devoted

to model formulation, steady state analysis, boundedness and positivity of the

solution of the of the model. The disease free and endemic equilibrium point are

discussed and also presented their positivity and stability. The next generation

matrix is used to compute the basic reproduction number R0 for the model. The

infected cases data provided in [40] are fitted to the Diphtheria epidemic model

and estimate the parameter value and numerical discussion of stability analysis

are discussed. Chapter 4 deals with optimal control applied to the Diphtheria

epidemic model. Mathematical analysis and numerical analysis of the model are

carried out in this Chapter. Optimal control strategies and coast-effective analysis

are also discussed here. And finally Chapter 5 focuses on the conclussion and the

future work.



Chapter 2

Mathematical Preliminaries

2.1 Introduction

This chapter presents some basic mathematical theories and methodologies that

will be used in this thesis. The material in this chapter is based on references [9]

and [46].

Mathematical modeling can be defined as the use of mathematical signs, symbols,

and equations to represent a real-life situation in order to make it (real-life prob-

lem) easier to understand, solve, and to infer a reasonable conclusion from the

solution of the problem. Mathematical models of infectious diseases have been

used as a tool to study and understand the dynamics of diseases, make predictions

about future outbreaks of the disease, and suggest intervention measures that have

to be implemented in order to control the disease. Mathematical models can be

classified in various ways:

� Static versus dynamic models. Static models are time-independent while

dynamic models are time-dependent.

� Continuous versus discrete time models. Continuous time models are models

in which the independent variable is continuous,e.g,
dx

dt
= ax, while discrete

time models are models used for life phenomena in which the independent

variables are observed at discrete intervals, e.g, xt+1 = axt.

� Stochastic versus deterministic models. Stochastic models are models in

which probabilistic concepts are used and distributions of possible behaviors

9
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are presented, while deterministic models are models in which the behavior

of a population is determined completely by its history and by the rules

which describe the model.

� Homogeneous versus detailed models. A detailed model involves the spa-

tial or physiological distribution of each state variable specification while

homogeneous models regard state variables as having the same spatial or

physiological distribution.

The tools used are ordinary differential equations (ODEs), partial differential equa-

tions (PDE), delay differential equations (DDE), stochastic differential equations

(SDE), integral equations, Markov chains, game theory, etc.

2.2 Ordinary Differential Equations

Material of this section is obtained from [47].

Ordinary differential equations (ODEs) are equations that involve the derivatives

of one or more dependent variables with respect to an independent variable. In

compartmental disease models, the independent variable is time t, the rate of

transfer between compartments are expressed mathematically by the derivatives

of the compartments with respect to time, with an underlying assumption that the

number of individuals in a compartment is a differentiable function with respect

to time. The formulation of models as ordinary differential equations follows the

assumption that the behavior of a population can be determined completely by

its history and the rules that govern the models. A first order ordinary differential

equation is defined as
d

dt
x(t) = f(t, x(t)) (2.1)

where t ∈ R is an independent variable, x(t) is a dependent variable (unknown

function) and f : Rn → Rn is a vector field. Equation (2.1) is known as a non-

autonomous ordinary differential equation. When no ambiguity arises, d
dt
x(t) is

often written as x′ so that equation (2.1) is written as

x′ = f(t, x). (2.2)

where the dependece of x(t) on t is also omitted unless this gives rise to ambiguities.

If f does not depend explicitly on time, then equation (2.2) is called autonomous
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and takes the form

x′ = f(x) (2.3)

and the general solution is

x(t) =

∫ t

t0

f(τ)dτ (2.4)

For fi : Rn → R and xi ∈ Rn, a system of ordinary defferential equations is

defined when n > 1; otherwise, for n = 1 the equation is scalar. In applications, a

particular solution, which requires initial conditions, is usually sought for, rather

then a general solution.

Definition 2.1. (Initial Value Problem) A first order ODE together with an

initial condition

x′ = f(t, x) (2.5a)

x(t0) = x0 (2.5b)

is called an initial value problem. The initial condition x(t0) = x0 represents

the position of the objects at some initial time t0. Solutions of a system of ordinary

differential equations are sought for within a given initial ( say I) that contains t0,

so that the solution curves passes through the point (t0, x(t0)).

A solution of an initial value problem is a differentiable function x(t) such that

1. x′(t) = f(t, x(t)) for all t in an interval containing t0 where x(t) is defined

and

2. x(t0) = x0

Thus, the solution can be expressed in integral form as

x(t) = x0 +

∫ t

t0

f(τ, x(τ))dτ (2.6)

The system of ODEs to be analysed in this thesis is autonomous and takes the

form x′ = f(x) with x ∈ R7
+ and f : R7

+ → R7
+
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2.3 Existence and uniqueness of solutions

In this section, we state some basic theorems describing general properties of solu-

tions of differential equations. Material of this section can be found in [25] and [23].

Definition 2.2. (Well-posedness) System (2.2) is well-posed if solutions exists, are

unique, and for systems describing populations, remain bounded and non-negative

for all non-negative initial conditions.

Theorem 2.3. (Cauchy-Lipschitz) Consider the differential equation 2.2 with

x ∈ Rn and suppose that f ∈ C1. Then there exists a unique solution of (2.2) such

that x(t0) = x0 where t0 ∈ Rn and x0 ∈ Rn, defined on the largest interval t0 ∈ I

on which f ∈ C1

Theorem 2.4. Let f and its partial derivatives

(
∂fi
∂xj

)
in equation (2.2) be con-

tinuous in Rn and let x0 ∈ R and t0 ∈ R. Then there is an interval |t − t0| < h

in which there exists a unique solution x(t) = φ(t) of the system that also satisfies

the initial conditions.

Definition 2.5. (Flow) Consider system (2.2). The flow φ(t, x0) of 2.2 represents

the solution of (2.2) over time given an initial condition, provided that the solutions

to the differential equation exixts and are unique.

2.4 Equilibria of epidemic model

Definition 2.6. An equilibrium solution of (2.3) is a solution x̄ ∈ Rn such that

f(x̄) = 0, i.s. a solution which does not change with time. The term ”equilibrium

point” can be used interchangeably with the following: ”fixed point”, ”sthationary

point”, singularity point”, ”critical point”, or ” steady state”.

There are two steady states which are usually sought after in any epidemiological

model; the disease-free equilibrium (DFE) and the endemic equilibrium (EE).

The disease-free equilibrium is the state where the population is completely free

from infection: the implication is that all infected compartments are zero and the

total population comprises only susceptible or immune individuals. The endemic

equilibrium is the state where the infection remains in the population, so there is
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a positive number of infectious individuals at equilibrium.

Definition 2.7. (Stable and unstable equilibrium point) [46] Let φ(t) be

the flow of (2.3), assumed to be defined for all t ∈ R. An equilibrium solution x̄

of (2.4) is said to be locally stable if for all ε > 0, there exists δ = δ(ε) > 0 such

that for all x ∈ Nδ(x̄) and t ≥ 0, there holds

φt(x) ∈ Nε(x̄).

Definition 2.8. (Asymptotically stable equilibrium point) Let ψ(t) be the

flow of (2.3) is (locally) asymptotically stable if there exists δ > 0 such that for

all x ∈ Nδ(x̄), there holds

lim
t→∞

φ(t) = x̄

.

2.4.1 Linearization

The information used here are obtained from [46] and [47].

The behaviour of System (2.3) near a hyperbolic equilibrium point x̄ is linked to

the behaviour of the linearized system

x′ = Df(x̄)(x− x̄) (2.7)

about the same equilibrium, where

J(x̄) = Df(x̄) =



∂f1
∂x1

(x̄)
∂f1
∂x2

(x̄) · · · ∂f1
∂xn

(x̄)

∂f2
∂x1

(x̄)
∂f2
∂x2

(x̄) · · · ∂f2
∂xn

(x̄)

...
...

. . .
...

∂fn
∂x1

(x̄)
∂fn
∂x2

(x̄) · · · ∂fn
∂xn

(x̄)


(2.8)

matrix Df(x̄) is the Jacobian matrix of (2.3) evaluated at the equilibrium point

x̄.

Definition 2.9. (Hyperbolic fixed point) Let x = x̄ be a fixed point of x′ =

f(x), x ∈ Rn. Then x̄ is called a hyerbolic fixed point if none of the eigenvalues of
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Df(x̄) have zero real part. A hyperbolic fixed point is called a saddle if some, but

not all of the eigenvalues have positive real part, then the hyperbolic fixed point

is called an unstable node or source.

Definition 2.10. A non-hyperbolic fixed point is a fixed point having the real

part of some of the eigenvalues associated to the linearized system equal to zero,

that is, these eigenvalues are purely imaginary. (Such fixed point is said to be a

center if the system is linear).

Definition 2.11. (Homeomoephism) Let D be a space. A map h : D → D is a

homeomorphism if h is a continuius bijection whose inverse is continuous.

Definition 2.12. (Topologically conjugate) Let φ(t, x) and ψ(t, x) be two flows on

a space D. φ and ψ are topologically conjugate if there exists an homeomorphism

h : D → D such that

h o φ(t, x) = ψ(t, x) o h(x)

for all x ∈ D and all t ∈ R.

Theorem 2.13. (Hartman and Grobman) [46] Assume that x̄ ∈ Rn is a

hyperbolic equilibrium (all eigenvalues of the Jacobian matrix evaluated at x̄ have

non-zero real part). Then, in a small neighbourhood of x̄, the non-linear system

behaves in a similar manner as the linearized system.

2.5 The basic reproduction number and stability

analysis

The basic reproduction number R0 is defined as the expected number of sec-

ondary infections caused by the introduction of an infectious individual into a

totally susceptible population. This number forms the basis of any epidemiologi-

cal study because it helps to predict the future occurrence of any infection under

consideration. Stability analysis of steady states of the model shall be carried out

through the application of the next-generation matrix in order to determine R0.

In determining R0, there must be a distinction between new infections and all

other changes in the population [37]. Let x = (x1, x2, ..., xr)
T be r homogeneous

compartments in a heterogeneous population, with each xi ≥ 0 the number of

individuals in each compartment. Let the first m compartments correspond to the
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infected individuals (disease) compartments while the rest n compartments make

up the uninfected compartments, where r = m+ n. We define Xs to be the set of

all disease-free states, that is,

Xs = {x ≥ 0 | xi = 0, i = 1, ...,m}.

Let

x′ = fi(x) = Fi(x)− Vi(x), i = 1, ..., n (2.9)

represent the dynamics of the infected compartments, where Fi(x) and Vi =

V−i (x) − V+
i (x) are continuously differentiable functions, with Fi(x) the appear-

ance rate of new infections in compartment i,V+
i (x) the transfer rate of individuals

into compartment i by all other means and V−i (x) the transfer rate of individual

out of compartment i. Each of these functions is assumed to be differentiable at

least twice in each variable. The disease transmission defined in (2.9) is made up

of non-negative initial conditions, that is, Fi(x) ≥ 0,V−i (x) ≥ 0, and V+
i (x) ≥ 0

for all i = 1, ..., n,

The Jacobian matrices of Fi(x) and Vi(x) are evaluated at the disease free equi-

librium point x̄, giving

F =

[
∂Fi
∂xk

(x̄)

]
and V =

[
∂Vi
∂xk

(x̄)

]
, 1 ≤ i, k ≤ m (2.10)

where F and V are m × n matrices, F is a non-negative and V is a non-singular

matrix. The basic reproduction number R0 is evaluated as

R0 = ρ(FV −1) (2.11)

where ρ denotes the spectral radius of the matrix (FV −1). The following result is

proved in [38], which we closely follow.

Theorem 2.14. The disease free is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

For the computation of the basic reproduction number using the next generation

matrix, the following assumptions need to be satisfied.

The functions Fi(x) and Vi involve the direct transfer of individuals, hence they

are non-negative. Thus
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(i) If x ≥ 0, then Fi(x), V+
i (x), V−i (x) ≥ 0 for i = 1, ..., n.

If a compartment is empty, then there can be no transfer of individuals out

of the compartment by whatever means. Thus

(ii) If xi = 0 then V−i (x) = 0 for i = 1, ..., n.

Consider the disease transmission model given in (2.9) with Fi(x), i = 1, ..., n,

satisfying the two conditions above. If Xi = 0, then Fi(x) ≥ 0 and hence,

the non-negative cone is positively invariant. For each non negative initial

condition, there is a unique, non-negative solution.

The next condition arises from the fact that the incidence of infection for the

uninfected compartment is zero:

(iii) Fi = 0 if j > m.

To ensure that the disease free subspace is invariant, we assume that if the

population is free of disease, then the population will remain free of disease.

That is, there is no immigration of infectious. This condition is stated as

follows:

(iv) If x ∈ Xs then Fi(x) = 0 and V+
i (x) = 0 for i = 1, ...,m.

The remaining condition is based on the derivatives of f near a DFE. For

our purpose, we define a DFE of (1) to be a (locally asymptotically) stable

equilibrium solution of the disease free model, i.e., (1) restricted to Xs. Note

that we need not assume that the model has a unique DFE. Consider a pop-

ulation near the DFE x̄. If the population remains near the DFE (i.e., if the

introduction of a few infectious individuals does not result in an epidemic),

then the population will return to the DFE according to the linearized system

(v) x′ = Df(x0)(x− x0),

where Df(x0) is the derivative

[
∂fi
∂xk

]
evaluated at the DFE, x̄ (i.e., the

Jacobian matrix). Here and in what follows, some derivatives are one sided,

since x̄ is on the domain boundary. We restrict our attention to systems in

which the DFE is stable in the absence of new infection. That is, if F(x) is

set to zero, then all eigenvalues of Df(x0) have negative real parts.
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2.6 Stability Analysis

The Hartman-Grobman theorem tells us that, in a neighborhood of a hyperbolic

equilibrium point, we can get a qualitative idea of the behavior of solutions of the

non-linear system by studying its corresponding linear system. Thus, we can de-

termine whether solution trajectories approach or move away from the equilibrium

point over time, that is, we can determine the stability of equilibria in the system

(2.3) without finding explicit solutions.

Theorem 2.15. Let x̄ be an equilibrium point of the autonomous system (2.3),

where f ∈ C1 in a neighbourhood of x̄.

(i) If all the eigenvalues of J = Df(x̄) have negative real part, then x̄ is locally

asymptotically stable equilibrium point.

(ii) If J = Df(x̄) has at least one eigenvalue with positive real part, then x̄ is an

unstable equilibrium point.

2.6.1 Lyapunov functions and Lasalle’s invariance Princi-

ple

Lyapunov functions and LaSalle’s Invariance Principle are some of the methods

often used to establish the global stability property of an equilibrium point.

Definition 2.16. A point x0 ∈ Rn is called an ω-limit point of x ∈ Rn and

denoted by ω(x), if there exists a sequence {ti} such that

φ(ti, x)→ x0 as ti →∞.

Definition 2.17. A pointi x0 ∈ Rn is called an α-limit point of x ∈ Rn and

denoted by α(x), if there exists a sequence {ti} such that

φ(ti, x)→ x0 as ti → −∞.

Definition 2.18. The set of all ω-limit points of a flow is called the ω-limit set.

Similarly, the set of all α-limit points of a flow is called the α-limit set.
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Definition 2.19. Let S ⊂ Rn be a set. Then S is said to be invariant under the

flow generated by (2.3) if for any x0 ∈ S, we have x(0, x0) ∈ S for all t ∈ R.

If the region is restricted to positive times (i.s., t ≥ 0),then S is said to be a

positively-invarriant set (this implies that solutions in the positive invariant

set remains there for all time). The set is nagatively-invariant if solutions

remain there when we go backward in time.

Definition 2.20. A function V : Rb → R is said to be a positive-definite

function if:

� V (x) > 0 for all x 6= 0.

� V (x) = 0 if and only if x = 0.

Theorem 2.21. (Lyapunov) [23] Consider the autonomous system defined by

(2.3). Let x̄ be a fixed point of (2.3) and let V : U → R be a C1 function defined

on some neighbourhood U of x̄ such that

(i) V (x̄) = 0 and V (x) > 0 if x 6= x̄.

(ii) d
dt
V (x) ≤ 0 in U-{x̄}.

Then x̄ is stable. Moreover, if

(iii) d
dt
V (x) < 0 in U-{x̄}.

Then x̄ is asymptotically stable.

Any function V that satisfies the conditions from Theorem 2.21 is said to be a

Lyapunov function.

Theorem 2.22. ( LaSalle’s Invariance Principle) Consider system (2.3).

Let

S =

{
x ∈ Ū :

d

dt
V (x) = 0

}
(2.14)

and let M be the largest invariant set of (2.3) in S. If V is a lyapunov function on

U and γ+(x0) is a bounded orbit of (2.3) which lies in S, then the ω-limit set of

γ+(x0) belongs to M (that is, x(t, x0)→M as t→∞)

� γ+(x0) : part of solution trajectory where t ≥ t0 (positive orbit).

� γ+(x0) : part of solution trajectory where t ≤ t0 (negaitive orbit).
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Corollary 2.23. If V (x) → ∞ as |x| → ∞ and
dV

dt
< 0 on Rn, then every

solution of (2.3) is bounded and approaches the largest invariant set M of (2.3)

in the set where
dV

dt
= 0. In particular, if M = {0}, then the solution x = 0 is

globally asymptotically stable (GAS).

Subsequently V ′ =
dV

dt
.

2.6.2 Global stability analysis

The global stability analysis will be studied using references [30, 31, 59]. A general

compartmental disease transmission model can be written as

i′ =F(i, u)− V(i, u)

u′ =g(i, u)
(2.12)

with g = (g1, ..., gn)T . Here i = (i1, ..., im)T ∈ Rm and u = (u1, ..., un)T ∈ Rn

represent the populations in disease compartments and non-disease compartments,

respectively. F and V are as defined in (2.10). If the basic reproduction number

R0 ≤ 1 the disease will die out, while the disease persists at a positive level if

R0 > 1. Global stability results for many disease models are non-trivial. Endemic

equilibrium global stability results in particular, normally become challenging due

to the complexity and high dimension of disease models. Diphtheria and other

epidemic disease models among others require the incorporation of their pathogen

into their models. This accounts for the complexity of such models compared to

other disease models that are transmitted directly by human. As was explained

in the aboce section, Lyapunov functions are commonly used to establish global

stability results for infectious diseases models. The following Lyapunov function

V =
n∑
i=1

ci

(
xi − x∗i − x∗i ln

xi
x∗i

)
(2.13)

originated from the first integral of a Lotka-Volterra system, is used as a general

Lyapunov function in some mathematical biology literature. Suitable values for ci

have to be determined such that V ′ along solutions of the model is nonpositive.
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2.6.3 Global stability of DFE: A matrix-theoretic method

Material from [59] will be used in the analysis of the global stability analysis of

the DFE. Define

f(i, u) := (F − V )i−F(i, u) + V(i, u) (2.15a)

i′ := (F − V )i− f(i, u) (2.15b)

where f(0, u) = 0 is the DFE of (2.12). Equation (2.15a) represents the dynamics

of diseased compartments of a general compartmental disease model. Let wT ≥
0 be the left eigenvector of the nonnegative matrix V −1F corresponding to the

eigenvalue ρ(V −1F ) = ρ(FV −1) = R0. The following result provides a method for

constructing a Lyapunov function for 2.12, using the Perron eigenvector.

Theorem 2.24. Let F, V be defined as in (2.10) and f(i, u) be defined as in

(2.15a). If f(i, u) ≥ 0 in Γ ⊂ Rn+m
+ , F ≥ 0, V −1 ≥ 0, and R0 ≤ 1, then the

function Q = wTV −1i is a Lyapunov function for the model (2.12) on Γ.

Proof. Differentiating Q along solutions of (2.12) gives

Q′ = wTV −1i′ =wTV −1((F − V )if(i, u))

=wTV −1(F − V )i− wTV −1f(i, u)

=wTV −1(R0 − 1)− wTV −1f(S, I)

Since wT ≥ 0, V −1 ≥ 0 and f(i, u) ≥ 0 in Γ, this implies wTV −1(R0 − 1) −
wTV −1f(S, I) ≤ 0. If R0 ≤ 1, then Q′ ≤ 0 in Γ, and thus Q is a Lyapunov

function for system 2.12.

The Lyapunov function constructed in Theorem 2.24 can be used to prove global

stability of DFE as well as uniform persistence and thus establish the existence

of an EE. The result below provides a scenario in which assumptions can be

conveniently checked for disease models.

Theorem 2.25. Let F, V and f(i, u) be defined as in (2.10) and (2.15a), respec-

tively, and let Γ ⊂ Rn+m
+ be compact such that (0, u0) ∈ |Gamma and Γ is positively

invariant with respect to (2.12). Suppose that f(i, u) ≥ 0 with f(i, u0) = 0 in Γ,
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F ≥ 0, V −1 ≥ 0 and V −1F is irreducible. Assume that the disease-free system

u0 = g(0, u) has a unique equilibrium u = u0 > 0 that is GAS in Rm
+ . Then the

following results hold for (2.12):

(i) if R0 < 1, then the DFE ε0 is GAS in Γ.

(ii) if R0 > 1, then ε0 is unstable and system (2.12) is uniformly persistent and

there exists at least one EE.

If f(i, u0) = 0 in Γ, F ≥ 0, V −1 ≥ 0 and FV −1 is reducible then this theorem

cannot be used to establish the global stability of the disease free equilibrium

point.

This result was used to study global stability for some disease models in the

following references [13, 60].

2.7 Parameter Estimation

The mathematical analysis of models is very useful for understanding asymptotic

behaviors and longtime qualitative outcomes, While the outcomes of a model crit-

ically depends on the values of the model parameters. Since models are confronted

with disease data, an accurate estimation of parameter values is essential for re-

liable quantitative predictions within a finite time interval. For estimation of

multiple parameters, a systematic approach for the fitting is desirable. Different

tecniques was used for estimating the parameters in [24, 39, 61]. In this section, we

discuss one of the most commonly used method for parameter estimation, which

is nonlinear least square (NLS) method.

2.7.1 Nonlinear Least Square Method

In this least-squares approach, we assume that the time coordinates of the data are

exact, but their corresponding y-coordinates (infections) may be noisy or distorted.

We fit the solution curve through the data so that the sum of the squares of

the vertical distances from the data points to the point on the curve is as small
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as possible. This distance is commonly known as least squares error. Next we

illustrate how to use NLS method to estimate unknown parameters

Step 1. Data Collection

In particular, suppose we are fitting the virions C(t), with the given data

{(t1, Ĉ1), (t2, Ĉ2), ..., (tn, Ĉn)}.

Step 2. NLS fitting

So the basic problem is to identify the set parameters θ such that the following

sum-of-squares error (SSE) is as small as possible:

SSE
min θ

=
n∑
i=1

{
C(ti, θ)− Ĉ(ti)

}2
,

where C(ti, θ) represents the virus concentration at time ti with parameter θ and

Ĉ(ti) represents the data value at time ti. Such a problem is clearly a nonlinear

least-squares problem, since the dependence of a solution on the parameter θ is

through a highly nonlinear system of differential equations.

Step 3. Solve the NLS problem numerically

We use a Matlab functions fminsearch which takes the least-squares error function

SSE(θ) and an initial guess of the parameter value θ0, and uses a direct search

routine to find a minimum value of least-squares error.

2.8 Optimal Control Method

In an optimal control problem for ordinary differential equations, we use u(t) for

the control and x(t) for the state variables. The state variable satisfies a differential

equation which depends on the control variable:

x′(t) = g(t, x(t), u(t))

where x′ denote the derivative with respect to time t. Both u(t) and x(t) affect

the goal, as the control function changes, the solution to the differential equation

will also change. The basic optimal control problem consists of finding a piecewise

continuous control u(t) and the associated state variable x(t) to maximize or min-

imize the given objective functional depending on the situation. Let us consider
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the former for this case, i.e.,

Maximize J(u) =

∫ T

0

f(t, x(t), u(t))

subject to

x′(t) = g(t, x(t), u(t)) (2.16)

where x(0) = x0 and x(T ) is free.

We assume that the controls are piecewise continuous functions with values in a

set. The principal technique for such an optimal control problem is to solve a

set of necessary conditions that an optimal control and corresponding state must

satisfy. Next we presented a brief derivation of the necessary conditions. That is,

if u(t), x(t) is an optimal pair, then these conditions will hold. These necessary

conditions for optimal control theory for ODEs was developed by Pontryagin and

his collaborators around 1950. They developed the key idea of introducing the

adjoint function to attach the differential equation to the objective functional. This

idea is similar to Lagrange multipliers that attach the constraints when finding

the maximum of a function in multi-dimensional calculus subject to some equation

constraints. The following theorem (known as Pontryagin’s Maximum Principle),

provide necessary conditions for the optimal control using the Hamiltonian [44].

Theorem 2.26. (Pontryagin’s Maximum Principle) If u∗ and x∗ are optimal for

equation (2.16), subject to the ODEs defining the given dynamical system, then

there exists a piecewise differentiable adjoint variable λ(t) such that

H(t, x∗, u(t), λ(t)) ≤ H(t, x∗, u∗(t), λ(t))

for each control u at each time t, where the Hamiltonian H is

H = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t))

and

λ′(t) = −∂H(t, x∗, u∗(t), λ(t)

∂x
,

λ(T ) = 0.

where f is the integrand of the objective functional and g, the right hand side of the

given dynamical system. The optimal control u∗ must maximize the Hamiltonian.
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The Diphtheria Epidemic Model

3.1 Introduction

Material from references [34], and [24, 34, 47] are used in this section.

In order to understand the dynamics of infectious diseases, models are often formu-

lated. To achieve this, we divide the population under study into compartments

and make assumptions about the nature and rates of transfer from one compart-

ment to another. Diseases that confer permanent immunity have a different com-

partmental structure from diseases without immunity. The term SIR describes a

disease which confers immunity against reinfection, indicating that movement of

individuals is from the susceptible compartment S to the infectious compartment

I and to the removed compartment R. The term susceptible-infectious-susceptible

(SIS) describes a disease with no immunity, movement is from the susceptible com-

partment S to the infectious compartment I and back to the susceptible compart-

ment. Other possibilities include susceptible-exposed-infectious-recovered (SEIR)

and susceptible-exposed-infectious-susceptible (SEIS) models, each having exposed

period between being infected and becoming infectious and susceptible-infectious-

recovered-susceptible (SIRS) model describes disease with temporary immunity

after recovery from the infection. Differential equations are used to describe the

rates of transfer between compartments, with time being the independent variable

[34]. In our thesis we develop a model for the spread of diphtheria in population

using latent compartment L instead of exposed in SEIR model. Therefore our

proposed model become SLIR instead of SEIR.

24
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3.2 Mathematical Model

Assuming the total population at time t, denoted by N(t), which is subdivided

into four classes: Susceptible (S(t)), Latent (asymptotic) stage (L(t)), individual

infected with diphtheria in the active stage (I(t)), recovered individuals infected

with diphtheria (R(t)), that is , we assume that the recovered individuals are also

infectious. All recruitment is into the susceptible class, and occurs at a constant

rate λ. The natural death rate is µ. The infectious class has an additional death

rate due to deases with rate α. The time before latent individuals become infec-

tious is assumed to satisfy an exponential distribution, with mean waiting time 1
δ
.

Thus, individuals leave class L for class I at rate δL. Infectious individuals are

treated with constant rate γ, entering the recovered class. Susceptible individuals

acquire diphtheria infection from individuals with active diphtheria at rate βSI,

where β is the disease transmission coefficient. A fraction l, of susceptible individ-

uals who acquire diphtheria infection moves to the latent diphtheria class (L), at

rate lβSI and the remaining fraction, (1− l) moves to the active diphtheria class

(I). It is assumed that individuals in the latent class do not transmit infection.

Figure. 3.1. Diagram interaction of each compartment.
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Combining all the aforementioned assumptions, the model for the transmission

dynamics of diphtheria is given by the following system of differential equations:

dS(t)

dt
= λ− βS(t)I(t)− µS(t)

dL(t)

dt
= lβS(t)I(t)− (µ+ δ)L(t)

dI(t)

dt
= (1− l)βS(t)I(t) + δL(t)− (µ+ γ + α)I(t)

dR(t)

dt
= γI(t)− µR(t)

(3.1)

subsidiary conditions :

S(0) = S0 > 0, L(0) = L0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0 (3.2)

3.3 Basic Properties of the Model

In order to retain the biological validity of the model, we must prove that solutions

to the system of differential equations exist and they are positive and bounded for

all values of time.

Theorem 3.1. (Existence of Solution). Let S0, L0, I0, R0 ∈ R be given. There ex-

ists t0 > 0 and continuously differentiable functions {S, , L, I, R : [0, t0)→ R} such

that the 4-tuples (S, L, I, R) satisfies (3.1) and (S, L, I, R)(0) = (S0, L0, I0, R0).

Proof of Theorem 3.1. The Picard-Lindelöf Theorem narrated that for the initial

value problem y′(t) = g(y(t)), y(t0) = y0, t ∈ [t0− ε, t0 + ε], if g is locally Lipschitz

in y and continuous in t, then for some value ε > 0, there exists a unique solution

y(t) to the initial value problem within the range [t0 − ε, t0 + ε]. Since the system

of ODEs is independent, it suffices to show that the function g : R4 → R4 defined

by

g(y) =


λ− βSI − µS
lβSI − (µ+ δ)L

(1− l)βSI + δL− (µ+ γ + α)I

γI − µR


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is locally Lipschitz in its y argument. The Jacobian matrix

∇g(y) =


−βI − µ 0 −βS 0

lβI −(µ+ δ) lβS 0

(1− l)βI δ (1− l)βS − (µ+ γ + α) 0

0 0 γ −µ


is linear in y ∈ R4. Thus, ∇g(y) is continuous on a closed interval and differen-

tiable on an open interval I ∈ R4. By the Mean Value Theorem, we know

|g(y1)− g(y2)|
|y1 − y2|

≤ |∇g(y∗)|

for some y∗ ∈ I. By letting |∇g(y∗)| = K, we obtain |g(y1)− g(y2)| ≤ K|y1 − y2|
for all y1,y2 ∈ I and therefore g(y) is locally bounded for every y ∈ R4. Hence,

g has a continuous, bounded derivative on any compact subset of R4 and so g is

locally Lipschitz in y. By the Picard-Lindelöf Theorem, there exists a unique so-

lution, y(t), to the ordinary differential equation y′(t) = g(y(t)) with initial value

y(0) = y0 on [0, t0] for some time t0 > 0.

Theorem 3.2. The proposed model (3.1) is invariant in the non-negative orthant

R4
+.

Proof of Theorem 3.2. Let Y = (S, L, I, R)T , then model (3.1) will takes the form

dY (t)

dt
= LY + C, (3.3)

where

L =


−(βI(t) + µ) 0 0 0

lβI(t) −(µ+ δ) 0 0

(1− l)βI(t) δ −(µ+ γ + α) 0

0 0 γ −µ



C =


λ

0

0

0

 Here, C ≥ 0 and all of the off-diagonal elements of matrix L

are non-negative. Hence L is a Metzler matrix and the system (3.1) is positive

invariant in R4
+.
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Theorem 3.3. Any solution (S, L, I, R) of the model (3.1) with conditions (3.2)

is positive for all t > 0.

Proof of Theorem 3.3. Since, R.H.S. of the model (3.1) is differentiable, therefore,

connecting it with Cauchey problem covenants the existence of a unique maxi-

mal solution. The solution of the first equation of system (3.1) can be figured

alternatively as
dS(t)

dt
+
(
βI(t) + µ

)
S(t) = λ (3.4)

The solution of equation (3.4) is

S(t) = S0 e
{−(µt+

∫ t
0 βI(x) dx} + e{−(µt+

∫ t
0 βI(x) dx)} ×

∫ t

0

λ e{µy+
∫ t
0 βI(u) du} dy (3.5)

for all t > 0. It is cleared that the RHS of equation (3.5) is non-negative, i.s. ,

S(t) > 0 for all t > 0. In the same way, solution of the second, third and fourth

equation of model (3.1) are of the form

L(t) = L0 e
{−(µ+δ)t} + e{−(µ+δ)t} ×

∫ t

0

lβS(y)I(y) e{(µ+δ)y} dy (3.6)

I(t) = I0 e
{−((µ+γ+α)t−

∫ t
0 (1−l)βS(x) dx)} + e{−((µ+γ+α)t−

∫ t
0 (1−l)βS(x) dx)}

×
∫ t

0

δL(y) e{(µ+γ+α)y−
∫ t
0 (1−l)βS(u) du} dy

(3.7)

R(t) = R0 e
{−µt} + e{−µt} ×

∫ t

0

γI(y) e{µy} dy (3.8)

which show that all L(t), I(t) and R(t) are non-negative for all t > 0

Theorem 3.4. (Boundedness). Assume the initial conditions of (3.1) satisfy S0 >

0, L0 > 0, I0 > 0, and R0 > 0. If the unique solution provided by Theorem 3.1 exists

on the interval [0, t0] for some t0 > 0, then the functions S(t), L(t), I(t) and R(t)

will be bounded and remain positive for all t ∈ [0, t0].

Proof of Theorem 3.4. We assume that S(t), L(t), I(t) and R(t) initially have posi-

tive values. From the previous theorem, there exists a t > 0 such that the solution

exists on [0, t]. Let us denote by T ∗ the largest time for which all populations

remain positive, or more precisely

T ∗ = sup{t > 0 : S(s), L(s), I(s), R(s) > 0, ∀s ∈ [0, t]}.
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Since each initial condition is nonnegative and the solution is continuous, there

must be an interval on which the solution remains positive, and we see that T ∗ > 0.

Then on the interval [0, T ∗] we estimate each term. We can place lower bounds

on L, I, and R instantly

dL(t)

dt
= lβS(t)I(t)− (µ+ δ)L(t) ≥ −(µ+ δ)L(t),

since the decay terms are linear, that concludes

dL(t)

L(t)
≥ −(µ+ δ)dt

ln(L(t)) + lnC ≥ −(µ+ δ)t

L(t) ≥ Ce−(µ+δ)t

Applying initial condition we get

L(0) ≥ C

⇒ L(t) ≥ L(0)e−(µ+δ)t > 0,

for t ∈ [0, T ∗]. Again,

dI(t)

dt
= (1− l)βS(t)I(t) + δL(t)− (µ+ γ + α)I(t) ≥ −(µ+ γ + α)I(t),

since the decay terms are linear, that concludes

I(t) ≥ I(0)e−(µ+γ+α)t > 0,

for t ∈ [0, T ∗]. Further,

dR(t)

dt
= γI(t)− µR(t) ≥ −µR(t),

i.e. R(t) ≥ R(0)e−µt > 0

for t ∈ [0, T ∗]. Similarly, we can place an upper bound on
dS

dt
so that

dS(t)

dt
= λ− βS(t)I(t)− µS(t) ≤ λ,

i.e. S(t) ≤ S(0) + λt ≤ C(1 + t),

where the constant C depends on the upper bound of λ and S(0). Next, we sum
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the equations for L, I, and R, and by positivity of these functions and place bounds

on this sum. Using the upper bound on S(t), we find

d

dt
(L+ I +R) = βS(t)I(t)− µL(t)− (µ+ α)I(t)− µR(t),

≤ βC(1 + t)I(t) + µL(t) + (µ+ α)I(t) + µR(t),

≤ C2(1 + t)(L+ I +R), where C2 ≥ max{βC, µ, (µ+ α)},

i.e. (L+ I +R)(t) ≤ C3e
t2

for t ∈ [0, T ∗], where C3 > 0 depends upon C2, L(0), I(0), and R(0) only. Since

L(t), I(t) and R(t) are positive, we can place an upper bound on both L, I and R

by

C3e
t2 ≥ (L+ I +R)(t) ≥ L(t)

,

C3e
t2 ≥ (L+ I +R)(t) ≥ I(t),

and

C3e
t2 ≥ (L+ I +R)(t) ≥ R(t).

With these bounds in place, we can now examine S(t) and bound it from below

using

dS

dt
= λ− βSI − µS ≥ −βSI − µS ≥ −µS − βC3e

t2S,

≥ −C4(1 + et
2

)S, where C4 ≥ max{βC3, µ},

⇒ dS

dt
+ C4(1 + et

2

)S ≥ 0,

i.e. S(t) ≥ S(0)e−C4

∫ t
0 (1+e

τ2dτ) > 0

for t ∈ [0, T ∗]. Thus, the values of S, L, I and R stay strictly positive for all

of [0, T ∗], including at time T ∗. By continuity, there must exist a t > T ∗ such

that T (t), I(t), and V (t) are still positive. This contradicts the definition of T ∗,

and shows that S(t), L(t), I(t) and R(t) are strictly positive on the entire interval

[0, t]. Moreover, on this same interval, all of the functions remain bounded, so the

interval of existence can be extended further. In fact, the bounds on S, L, I, and

R derived above hold on any compact time interval. Thus, we may extend the

time interval on which the solution exists to [0, t] for any t > 0 and from the above

argument, the solutions remain both bounded and positive on [0, t].
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3.4 Equilibria of the Syatem

In order to fully understand the dynamics of the basic model, it is necssary to

study the equilibrium points.

Definition 3.5. Consider the differential equation y′(t) = f(y(t), t), a point y(t)

is an equilibrium point if y′(t) = f(y(t), t) = 0 for all t ∈ R

In our case, an equilibrium point is the constant solution of (3.1) so that if the

system begins at such a value, it will remain there for all time. In other words,

the cell numbers are unchanging; so, the rate of change for each compartment is

zero. By setting the right-hand side of (3.1) to zero, we get

λ− βSI − µS = 0 (3.9)

lβSI − (µ+ δ)L = 0 (3.10)

(1− l)βSI + δL− (µ+ γ + α)I = 0 (3.11)

γI − µR = 0 (3.12)

and solving the resulting equations for S, L, I and R, we find that there exists

exactly two equilibria which are biologically meaningful. We can categorize these

points to be when the Diphtheria bacteria is either extinct from the body, i.e.,

L = I = R = 0, or when the disease persists within the populations (L 6= 0, I 6=
0, R 6= 0) as t grows large.

We begin by solving for the nonlinear interaction term in the equations (3.10),

(3.11) and (3.12) that gives

lβSI = (µ+ δ)L

(1− l)βSI + δL = (µ+ γ + α)I

γI = µR

which implies

I
(
(1− l)(µ+ δ)βS + δlβS − (µ+ δ)(µ+ γ + α)

)
= 0



Chapter 3. The Diphtheria Epidemic Model 32

Thus, either I = 0 or S = (µ+δ)(µ+γ+α)
((1−l)µ+δ)β . Using I = 0 in the equation (3.10), (3.11)

and (3.12) gives L = 0, R = 0 and S = λ
µ
. Hence, the ordered multiple

(S, L, I, R) = (
λ

µ
, 0, 0, 0)

This particular equilibrium point is also known as disease extinction, since there

are no infected cell. We will refer to this point as E0 = (S0, L0, I0, R0). In the

latter case, S = (µ+δ)(µ+γ+α)
((1−l)µ+δ)β and substituting this value of S into equation (3.9)

and (3.12) yeilds I = λ(δ+(1−l)µ)
(µ+δ)(µ+γ+α)

− µ
β

and R = γλ(δ+(1−l)µ)
µ(µ+δ)(µ+γ+α)

− γ
β

and further

substitution shows L = lλ
(µ+δ)

− lµ(µ+γ+α)
β(δ+(1−l)µ) . Thus, a second equilibrium exists at

the point

(S, L, I, R) =

(
(µ+ δ)(µ+ γ + α)

((1− l)µ+ δ)β
,

lλ

(µ+ δ)
− lµ(µ+ γ + α)

β(δ + (1− l)µ)
,

λ(δ + (1− l)µ)

(µ+ δ)(µ+ γ + α)
− µ

β
,

γλ(δ + (1− l)µ)

µ(µ+ δ)(µ+ γ + α)
− γ

β

)
Since there are distinct presence of bacteria particles and infected cells, we refer

to this point as viral persistence and abbreviate the point as E∗ = (S∗, L∗, I∗, R∗).

In terms of biology, we can say E0 is the case in which an infection exists for a

short period of time, then is removed from the population by nature means. The

disease does not persist. The second case, where the system of equations tends to

E∗, denoted that situation where the population is unable to clear the infection

naturally. If this ends up being the case, than after a certain period of time, the

Diphtheria infection model loses its applicability as the infection takes a deeper

hold on population. More complex models, which consider effects of macrophages,

cytotoxic immune response (CLT), or spatial dependence are then required to

describe the spread of Diphtheria within the bode and its development towards

Diphtheria outbreak.

If the system (3.1) takes on the value of a equilibrium point at any time, it will

remain at the point for all remaining time, otherwise the system need not nec-

essarily obtain these values. However, the system may approach the equilibrium

point, move away from the equilibrium point, or cycle between specific values. In

order to accurately determine the behavior and thus how the system will interact

with the equilibrium we must undergo a stability analysis for the system.
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3.5 Basic Reproduction Number

The basic reproduction number (R0) is used to measure the transmission potential

of a disease. It is the average number of secondary infections produced by a typical

case of an infection in a population where everyone is susceptible. Applying the

next generation method which is discussed in Chapter 2 to the model (3.1), and

since we are only concerned with persons that spread the infection, we only neeed

to model the latend compaertment L, and infected compaertment I. Let us define

the model dynamics using the equations

dL(t)

dt
= lβSI − (µ+ δ)L

dI(t)

dt
= (1− l)βSI + δL− (µ+ γ + α)I

For this system, at the disease free equilibrium point

Fi(x) =

(
lβSI

(1− l)βSI

)

F =

(
0 lβS0

0 (1− l)βS0

)
and

Vi(x) =

(
(µ+ δ)L

(µ+ γ + α)I − δL

)

V =

(
µ+ δ 0

−δ µ+ γ + α

)

V −1 =

(
1

µ+δ
0

δ
(µ+γ+α)(µ+δ)

1
µ+γ+α

)

FV −1 =

(
lδβS0

µ(µ+γ+α)(µ+δ)
lβS0

µ(µ+γ+α)
(1−l)δβS0

µ(µ+γ+α)(µ+δ)
(1−l)βS0

µ(µ+γ+α)(µ+δ)

)
The dominant eigenvalue of FV −1 is given by expression

R0 =
β(δ + µ− lµ)S0

(α + γ + µ)(δ + µ)
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Putting S0 = λ
µ
, we obtain,

R0 =
λβ
(
δ + (1− l)µ

)
µ(α + γ + µ)(δ + µ)

and it is the basic reproduction number for the system (3.1).

The basic reproduction number R0 is the average number of the secondary in-

fections produced when one single bactria is introduced into a host where every

S − person is susceptible [18]. Note that our model R0 above is a product of the

average number of target person per unit time (in the presence of natural death)

and the rate of the disease transmission by an infective person. It is indeed a

threshold quantity that helps to determine whether an outbreak of the disease

dies out or spreads in a body. Later we will see, when R0 < 1, the disease die out

without any medical interventions but when R0 > 1, the disease becomes endemic

and this necessittates the introduction of some control measures in order to curtail

the situation.

Remark 3.6. Using basic reproduction number R0 the infected equilibrium point

become

(S∗, L∗, I∗, R∗) =

{
(µ+ δ)(µ+ γ + α)

((1− l)µ+ δ)β
,
lλ(R0 − 1)

(µ+ δ)R0

,
µ

β
(R0 − 1),

γ

β
(R0 − 1)

}
.

3.6 Global Stability of the Equilibria

Before proceeding with the global stability analysis for the model (3.1), we present

some inequalities developed in [48], which will be used in the proofs. To begin with,

we consider the function H(x) = x− 1− ln(x). Note that H(x) ≥ 0,∀x and that

H(x) = 0 if and only if x = 1.

Let x1, x2, · · · , xn be positive numbers. Then,

1− xi + ln(xi) = −H(xi) ≤ 0, i = 1, 2, · · · , n.

Summing over i = 1 to n, from above equation we obtain

n−
n∑
i=1

xi + ln

( n∏
i=1

xi

)
≤ 0.
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Choosing xi =
pi
qi

, where pi > 0, qi > 0 for i = 1 to n, it followes that

n−
n∑
i=1

pi
qi

+ ln

( n∏
i=1

pi
qi

)
≤ 0.

If p1, p2, · · · , pn = q1, q2, · · · , qn, then
n∏
i=1

pi
qi

= 1 which leads to

n−
n∑
i=1

pi
qi
≤ 0 (3.13)

Theorem 3.7. If R0 ≤ 1, then the non-infective equilibrium (E0) is globally

asymptotically stable and the disease dies out.

Proof of Theorem 3.7. To investigate the global stability of E0, consider the fol-

lowing Lyapunov function

U(t) = S0

[
S(t)

S0
− 1− ln

(
S(t)

S0

)]
+

δ

(1− l)µ+ δ
L(t) +

µ+ δ

(1− l)µ+ δ
I(t).

dU

dt
=

(
1− S0

S

)
S ′ +

δ

(1− l)µ+ δ
L′ +

µ+ δ

(1− l)µ+ δ
I ′.

Notice that U is nonnegative, and U is identically zero if and only if it is evaluated

at the non-infective equilibrium point (S0, L0, I0, R0) =

(
λ

µ
, 0, 0, 0

)
. We compute

the derivative along trajectories and find

dU

dt
=

(
1− S0

S

)[
λ− βSI − µS

]
+

δ

(1− l)µ+ δ

[
lβSI − (µ+ δ)L

]
+

µ+ δ

(1− l)µ+ δ

[
(1− l)βSI + δL− (µ+ γ + α)I

]
=(λ− µS)

(
1− S0

S

)
+ βS0I − (µ+ δ)(µ+ γ + α)

µ(1− l) + δ
I

After using the definition of S0, we are left with

dU

dt
= (λ− µS)

(
1− λ

µS

)
+

(µ+ δ)(µ+ γ + α)

µ(1− l) + δ

(
λβ(µ(1− l) + δ

µ(µ+ δ)(µ+ γ + α)
− 1

)
=− (λ− µS)2

µS
+

(µ+ δ)(µ+ γ + α)

µ(1− l) + δ

(
R0 − 1

)
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Thus, under the assumption that R0 ≤ 1, we see that
dU

dt
≤ 0 for all positive

values of S, L, I, and R, and the global asymptotic stability follows by LaSalle’s

Invariance Principle [17]. Therefore the system (3.1) is globally asymptotically

stable for R0 ≤ 1.

Theorem 3.8. If R0 > 1, then the endemic equilibrium (E∗) is globally asymp-

totically stable and the disease persists.

Proof of Theorem 3.8. For the disease persistent equilibrium, none of the end val-

ues are zero, so we denote this steady state by (S∗, L∗, I∗, R∗) and define a Lya-

punov function as

U(t) =

(
S − S∗ − S∗ln

(
S

S∗

))
+B1

(
L− L∗ − L∗ln

(
L

L∗

))
+B2

(
I − I∗ − I∗ln

(
I

I∗

))
+B3

(
R−R∗ −R∗ln

(
R

R∗

))
where B1, B2 and B3 are positive constants to be determined. This type of Laya-

punov function has been mentioned in [3, 12, 28, 58].

The positive equilibrium E∗ = (S∗, L∗, I∗, R∗) satisfies the following equations.

λ = βS∗I∗ + µS∗

(µ+ δ)L∗ = lβS∗I∗

(µ+ γ + α) = (1− l)βS∗I∗ + δL∗

µR∗ = γI∗

(3.14)

We can now write the time derivative of U as

U ′ =

(
1− S∗

S

)
S ′ +B1

(
1− L∗

L

)
L′ +B2

(
1− I∗

I

)
I ′ +B3

(
1− R∗

R

)
R′

=

(
1− S∗

S

)[
λ− βSI − µS

]
+B1

(
1− L∗

L

)[
lβSI − (µ+ δ)L

]
+B2

(
1− I∗

I

)
[
(1− l)βSI + δL− (µ+ γ + α)I

]
+B3

(
1− R∗

R

)[
γI − µR

]
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=− µ(S − S∗)2

S
+ βS∗I∗

(
1− S∗

S

)
+ SI

[
− β +B1lβ +B2(1− l)β

]
+ I
[
−B2(µ+ γ + α) +B3γ + βS∗

]
+ L

[
−B1(µ+ δ) +B2δ

]
+ T

[
−B3µ

]
−B1lβSI

L∗

L
+B1lβS

∗I∗ −B2(1− l)βSI∗

−B2δL
I∗

I
+B2(1− l)βS∗I∗ +B2δL

∗ −B3γI
R∗

+B3γI
∗

(3.15)

Now the positive constants B1, B2 and B3 are chosen such that the coefficients of

SI, ST, I, T and L are equal to zero, that is,

− β +B1lβ +B2(1− l)β = 0

−B2(µ+ γ + α) +B3γ + βS∗ = 0

−B1(µ+ δ) +B2δ = 0

−B3µ = 0

(3.16)

Solving the above equations yeilds

B1 =
δ

µ+ δ
B2, B2 =

µ+ δ

(1− l)µ+ δ
and B3 = 0

Now, replacing the above expressions of B1, B2 and B3 in equation (3.15), we have

=− µ(S − S∗)2

S
+ 2B1lβS

∗I∗ + 2B2(1− l)βS∗I∗ −B1lβS
∗I∗

S∗

S
−B2(1− l)βS∗I∗

S∗

S

−B1lβSI
L∗

L
−B2(1− l)βSI∗ +B2δL

∗
(

1− L

L∗
I∗

I

)
+B3γI

∗
(

1− I

I∗
T ∗

T

)
For convenience, we introduce new variables x = S

S∗ , y = L
L∗ , z = I

I∗
and u = T

T ∗ to

eliminate S, L, I, T .

U ′ =− µ(S − S∗)2

S
+B2(1− l)βS∗I∗

(
2− 1

x
− x
)

+B1lβS
∗I∗
(

2− 1

x
− xz

y

)
+B2δL

∗
(

1− y

z

)
+B3γI

∗
(

1− z

u

)
(3.17)

Multiplying second equation of (3.14) by B1 and the third equation of (3.16) by

L∗ yields

B1(µ+ δ)L∗ =B1lβS
∗I∗

B1(µ+ δ)L∗ =B2δL
∗
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Hence, it follows that

−B1lβS
∗I∗ +B2δL

∗ = 0

Multiplying the above equation by F1(x), where X = (x, y, z, u) and F1(X) a

function to be determined later yields

−B1lβS
∗I∗F1(x) +B2δL

∗F1(x) = 0 (3.18)

Multiplying the fourth equation of (3.14) by B3 and the fourth equation of (3.16)

by T ∗ yields

B3µT
∗ =B3γI

∗

B3µT
∗ =0

Hence, it follows that

B3γI
∗ = 0

Multiplying the above equation by F2(x), where X = (x, y, z, u) and F2(X) a

function to be determined later yields

B3γI
∗F2(X) = 0 (3.19)

From (3.15) using (3.18) and (3.19) yields

U ′ =− µ(S − S∗)2

S
+B2(1− l)βS∗I∗

(
2− 1

x
− x
)

+B1lβS
∗I∗
(

2− 1

x
− xz

y
− F1(X)

)
+B2δL

∗
(

1− y

z
+ F1(X)

)
+B3γI

∗
(

1− z

u
+ F2(X)

)
(3.20)

The function F1(X) and F2(X) are now chosen such that the coefficients of L∗

and I∗ are equals to zero. In this case, we obtain

F1(X) =
y

z
− 1

F2(X) =
z

u
− 1



Chapter 3. The Diphtheria Epidemic Model 39

Then equation (3.20) becomes

U ′ =− µ(S − S∗)2

S
+B2(1− l)βS∗I∗

(
2− 1

x
− x
)

+B1lβS
∗I∗
(

2− 1

x
− xz

y
− y

z
+ 1

)

=− µ(S − S∗)2

S
+B2(1− l)βS∗I∗

(
2− x− 1

x

)
+B1lβS

∗I∗
(

3− 1

x
− y

z
− xz

y

)
(3.21)

which is less than or equal to zero by the arithmetic meam-geometric mean in-

equality, with equality if and if S = S∗, y = z = u. Thus, we have H ′ ≤ 0 with

equality only if S = S∗ and L
L∗ = I

I∗
= R

R∗ . By LaSalle,s Invariance Principle

[17], the omega limit set of each solution lies in an invariant set contained in

Ω = {(S, L, I, R) : S = S∗, L
L∗ = I

I∗
= R

R∗}.Since S must be containt at S∗, S ′ is

zero. This implies that I = I∗ thus, L = L∗ and R = R∗. Thus , the only invari-

ant set in Ω is the singleton {E1}. This shows that each solution which intersects

R4
+0 {L = I = T = 0} limits to the endemic equilibrium E1 , which implies that

the endemic equilibrium E∗ of the system (3.1) is globally asymptotically stable

on R5
+0 {L = I = T = 0}.

3.7 Parameter Estimation

Here we use Non-linear Least Square Method (NLSM) which is discribed in Chap-

ter 2. There are seven parameters in our model which have to estimate. Among

these parameters, natural death rate µ, recruitment rate of susceptible class λ and

disease induced death rate α are obtained from the given data given in [40]. So, the

rest of them disease transmission rate β, the fraction l of the susceptible class S(t)

which moves to the latent class L(t), the rate δ which leaves from the latent class

L(t) for the infected class I(t) and the recovered rate γ have to be estimeted, there-

fore θ = (l, β, δ, γ). Thus, we assumed the initial parameter values for estimation

which is ω0 = (λ, µ, α, l, β, δ, γ) = (10, 0.002, 0.0054, 0.5, 0.000065, 0.0001, 0.005)

and the initial condition (S0, L0, I0, R0) = (5000, 250, 1, 1000) is assumed. With

these initial value of the parameters and initial conditions, the unknown param-

eters value are obtained from the above discribed NLS method which is given in

folowing table
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Table. 3.1. Description of parameter and values of the Diphtheria model.

Parameter Description Value Reference

λ recruitment rate of sus-
ceptible class

10 person d−1 Obtained from data

µ natural death rate 0.002
person d−1

Obtained from data

α disease induced death
rate

0.0054
person d−1

Obtained from data

β disease transmission rate 0.000081
person d−1

Estimated

l the fraction of S(t) which
moves to L(t)

0.23 Estimated

γ recovered rate 0.036
person d−1

Estimated

δ the rate which leaves L(t)
for I(t)

0.0001
person d−1

Estimated

3.8 Numerical Results

To farther investigate the attitude of the model (3.1), we directed various numerical

simulations using the estimates obtained in Table 3.1. The results obtained for the

stability of the disease extinction and the infectious persistence steady states are

also numerically illustrated in this section. For this intention, we consider two sets

of parameter corresponding to the cases of stability of the infectious persistence

steady state where R0 > 1 and disease extinction steady state where R0 < 1.

Both the models are numerically solved using Runge-Kutta 4th order method.

Firstly, figures 3.2 and 3.3 represent the disease dynamic of the infected population

I(t). We can see that upon initiation of infection, the population of the infected

class (I-class) increases significantly and it reaches the peak. After achieving the

peak, this class decays until it reaches a steady state.

Using the parameter values from table 3.1, the value of R0 turns out to be

R0 = 7.29 > 1 and thereby indicating that the infected steady state is asymp-

totically stable. For this purpose, we choose three different initial conditions

of (S0, L0, I0, R0) as IC1 = (5000, 250, 1, 1000), IC2 = (4500, 200, 2, 950), and

IC3 = (6000, 400, 20, 1500).
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Figure. 3.2. The Diphtheria Model simulation in log scale
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Figure. 3.3. The Diphtheria Model

In figure 3.4, we can see that the infected population is sharply increasing and

reaches at a pick point. After that it is decreasing smoothly and converges to ap-

proximately 155.25 for all initial condition. Which indicates that there is a disease

in the populations and we need to apply treatment in the infected populations.

In figure 3.5, it is observed that the latently infected population is also sharply

increasing and reaches at a pick point. After that is gradually decreasing and
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Figure. 3.4. Dynamics of the infected class of Diphtheria Model for R0 = 7.29 >
1 within 180 days with three different intial condition
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Figure. 3.5. Dynamics of the latent class of Diphtheria Model for R0 = 7.29 > 1
within 180 days with three different intial condition

tends to converge for all initial conditions but do not converge within 180 days.

It means that there is no endemic equilibrium point in 180 days which indicates

that we need to apply vaccination to the susceptible population to reduce latently

infected and acute infected populations.
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Figure. 3.6. Dynamics of the infected class of Diphtheria Model for R0 = 7.29 >
1 within 365 days with three different intial condition
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Figure. 3.7. Dynamics of the latent class of Diphtheria Model for R0 = 7.29 > 1
within 365 days with three different intial condition

In figure 3.6, we can see that the infected population converges to approximately

155.25 for all initial condition within 365 days as in figure 3.4. After that it further

gradually increasing within next 30 days which indicates that there shall be a

second wave in the populations. From figure 3.7, the latently infected population
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is still decreasing more gradually and tends to converge but did not converge within

365 days. It means that the endemic equilibrium point will found after long time.

For disease-free equilibrium we assume the values of disease transmission rate

β and the acute infection rate δ which leaves from latently infected population

different values from Table 3.1. Here we assume β = 0.0000041 and δ = 0.02.

Therefore, we evaluate the basic reproduction rate R0 = 0.463 < 1. For this

purpose we choose the same initial conditions as before.
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Figure. 3.8. Dynamics of the infected class of Diphtheria Model for R0 =
0.463 < 1 within 540 days with three different intial condition

In figure 3.8, we can see that the infected population is increasing sharply and

reaches at a pick point as like figure 3.4 and 3.6 but after that it is more gradually

decreasing than figure 3.4 and 3.6 and converges to 0 within 18 months. That

means there is no infection in the populations after 540 days without applying

treatment. In figure 3.9, we can see that the latently infected population is grad-

ually decreasing and converges to 0 within 540 days. That means the latently

infection is removed from the populations after 540 days without applying treat-

ment. But 540 days is a long time to increase the disease induced death rate of the

populations. So we need to apply treatment to control the outbreak. Further, in

figure 3.10, we illustrate the contour plot of R0 for various values of disease trans-

mition rate β and acute infection rate δ. Here we see that the disease transmition

rate β is more sensitive than acute infection rate δ. Hence we need to apply contol

in the susceptible class S(t) and the infected class I(t). We discuss details about
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Figure. 3.9. Dynamics of the latent class of Diphtheria Model forR0 = 0.463 < 1
within 540 days with three different intial condition

the Optimal controls and Coast-Effective Treatment Stategies in the next chapter.

Figure. 3.10. Contour plot of R0 for various values of β and δ



Chapter 4

Optimal Controls and

Cost-Effective Treatment

Strategies for Diphtheria

Epidemic

4.1 Introduction

The control theoretic concepts have been considered important in a wide variety

of disciplines. Since, too large dosage may not be desirable for patients while

too small dosage may be ineffective as therapy for the recommended therapeutic

agents. Optimal treatment strategies can decrease the possibility of diphtheria

transmission, pharmaceutical side effects, and expensive medication burden. To

avoid complication due to toxic effects of the drug, adequate amounts of drug in

a body compartment should be maintained. To avoid the hazard of side effect of

drug dose, our main aim is to find out the optimal drug dosage. Here the drug

input is the control and it is through the knowledge of their size that one has a

partial way of influencing the drug response behavior among patients.

Diphtheria-Tetanus-Pertussis (DTP) vaccine is administered to prevent Diphtheria

infected individuals to control the epidemic outbreak. The individuals which are

already infected need to treatment of Diphtheria. Various administration schemes

are used to improve patients’ lives and at the same time suppressing development

46
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of drug resistance, reduce evolution of new bacterial strains, minimize serious side

effects and also reduce the costs of drugs. The main purpose of this chapter is to

develop a mathematical framework that deduce an optimal control administration

scheme useful in improving the Diphtheria outbreak especially in poor resourced

settings.

4.2 Mathematical Model with Treatment

There are two way to control the diphtheria epidemic which are mostly used to

reduce the sucseptible and infected populations and increage the recovered popu-

lations. To reduce susceptible populations the mass vaccination need to apply to

the populations and to reduce the death rate of the infected population treatment

should be applied to the infected populations. Both procedure thus diminish the

spread of the Diphtheria outbreak. The primary attention of this chapter is to

establish an optimal methodology for administering vaccination therapies to fight

Diphtheria outbreak which specifically minimize of susceptible populations and

also minimize of the systemic cost.

If we let, u1(t) represents the applied vaccination as a function of time, then β

will be modified to become (1 − u1(t))β and it is meant to take into account the

effectiveness of the delivery. If we also let u2(t) be the applied treatment, then

the parameter δ will be modified to become (1− u2(t))δ. Hence the state system

becomes



dS(t)

dt
= λ− βS(t)I(t)− µS(t)− u1(t)S(t),

dL(t)

dt
= lβS(t)I(t)− (µ+ δ)L(t),

dI(t)

dt
= (1− l)βS(t)I(t) + δL(t)− (µ+ γ + α)I(t)− u2(t)I(t),

dR(t)

dt
= γI(t)− µR(t) + u1(t)S(t) + u2(t)I(t),

dN(t)

dt
= λ− µN(t)− αI(t).

(4.1)
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Figure. 4.1. Diagram interaction of each compartment

With initial conditions

S(0) = S0, L(0) = L0, I(0) = I0, R(0) = R0, N(0) = N0

and S(t), L(t), I(t), R(t), N(t) are free at final time Tf .
(4.2)

The optimal controls 0 ≤ u1(t), u2(t) ≤ 1 represent percentage effects of vaccina-

tion which apply on susceptible population and treatment therapy on the infected

populations. A schematic representation of the model (4.1) is given in figure 4.1.

4.3 Qualitative Study of the Model

Now we must prove that solutions to the system of differential equations (4.1)

exists and they are positive as well as bounded for all values of time in order to

retain the biological validity of the model,

Theorem 4.1. (Positivity) Let t0 > 0, In the model (4.1), if the initial conditions

satisfy S0 > 0, L0 > 0, I0 > 0 and R0 > 0, then for all t ∈ [0, t0] the functions

S(t), L(t), I(t) and R(t) will be remain positive in R4
+.



Chapter 4. Optimal Controls for Diphtheria Epidemic 49

Proof of Theorem 4.1. Since all of the parameters used in the system are positive,

we can place lower bounds on each of the equations given in the model. Thus,

dS(t)

dt
= λ− βS(t)I(t)− µS(t)− u1(t)S(t) ≥ −βS(t)I(t)− µS(t)− u1(t)S(t),

dL(t)

dt
= lβS(t)I(t)− (µ+ δ)L(t) ≥ −µL(t),

dI(t)

dt
= (1− l)βS(t)I(t) + δL(t)− (µ+ γ + α)I(t)− u2(t)I(t) ≥ −µI(t),

dR(t)

dt
= γI(t)− µR(t) + u1(t)S(t) + u2(t)I(t) ≥ −µR(t),

Through basic differential equations methods we can resolve the inequalities and

produce:

dS(t)

dt
≥ S(0)e−µt−k

∫ Tf
0 (βI(t)+u1)V dt,

dL(t)

dt
≥ L(0)e−µt > 0,

dI(t)

dt
≥ I(0)e−µt > 0,

dR(t)

dt
≥ R(0)e−µt > 0.

Thus, for all t ∈ [0, t0] the functions S(t), L(t), I(t) and R(t) will be positive and

remain in R4
+.

The boundedness of solutions to system (4.1-4.2) for finite time interval is needed

to investigate the existence of an optimal control of our model, now we examining

the priori boundedness of the state solutions.

Theorem 4.2. (Boundedness) Given (u1, u2) ∈ U , there exists bounded solutions

for the problems (4.1-4.2).

Proof of Theorem 4.2. The state variables we consider here represent supersolu-

tions for given problems (4.1-4.2). From the given equations we have

(S+L+I)′(t) = λ−µS−u1S−µL−δL−µI−γI−αI−u2I ≤ λ−µS−µL−µI.

Now, using X(t) = S(t) + L(t) + I(t) we get

X ′(t) ≤ λ− µX,
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which implies that

lim
t→∞

supX(t) ≤ λ

µ
,

The upper bound for X is also the upper bound for S, L, and I. Lastly

R′(t) = γI(t)− µR(t) + u1(t)S(t) + u2(t)I(t) ≤ γI(t) ≤ γλ

µ
,

which leads to

R(t) ≤ γλTf
µ
∈ R+, for all t ∈ [0, Tf ].

Since (u1(t), u2(t)) ∈ U , then, along with S(t), L(t), I(t) and R(t) are bounded

above. Via a maximum principle [26] theory for first-order nonlinear differential

equations, we obtain the solutions to the problems (4.1-4.2) bounded for all t ∈
[0, t0] and lies in the compact set

D =

{
(S, L, I, R) ∈ R4

+ : S, L, I ≤ λ

µ
,R ≤ γλTf

µ

}
,

where R4
+ = {(S, L, I, R) : S ≥ 0, L ≥ 0, I ≥ 0, R ≥ 0}.

Theorem 4.3. (Existence of Solution) Let t0 > 0, In the model (4.1), if the

initial conditions satisfy S0 > 0, L0 > 0, I0 > 0 and R0 > 0, then for all t ∈ R the

functions S(t), L(t), I(t) and R(t) will exist in R4
+.

Proof of Theorem 4.3. In the case of our model the system of ODEs are defined

by the function f : R4 → R4 as

f(y) =


λ− βSI − µS − u1S
lβSI − (µ+ δ)L

(1− l)βSI + δL− (µ+ γ + α)I − u2I
γI − µR + u1S + u2I


Note that f has a continuous derivative on R4 and thus, f is locally Lipschitz in

R4. Hence, by the Fundamental Existence and Uniqueness Theorem as well as

the theorems proved on positivity and boundedness of solutions, we know that

there exists a unique, positive, and bounded solution to the ordinary differential

equations given in (4.1-4.2).
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4.4 Optimal Control Problem

Our main objective is to miniimize the benefit based on the infected population

I and the systemic cost based on the percentage effect of the treatment and vac-

cination is being minimized (toxic side effects being avoided as much as possible

and not causing death). The objective functional is defined as,

J(u1, u2) =

∫ Tf

0

[
I(t) +

(
A1

2
u21(t) +

A2

2
u22(t)

)]
dt, (4.3)

where I(t) is the benefit based on the infected populations and the other terms are

systemic costs of the treatments. The benefit of treatment is based on the decrease

of infected populations and systemic costs of drugs are minimized. The positive

constants A1 and A2 represent desired weight on the benefit and cost, and u21, u
2
2

reflect the effectivity of the treatment [14]. The cost function is assumed to be

nonlinear, basing on the fact that there is no linear relationship between the effects

of treatment on infected populations hence the choice of a quadratic cost function.

We impose a condition for treatment time, t ∈ [0, Tf ], that monitors global effects

of these phenomena; treatment lasts for a given period of time because Diphtheria

can transmit and develop resistance to treatment after some finite time frame.

The time t = 0 is the time when treatment is initiated and time t = Tf is the time

when treatment is stopped.

The control set U is defined as

U =
{
u1, u2 are Lebesgue measurable, 0 ≤ u1(t), u2(t) ≤ 1, t ∈ [0, Tf ]

}
.

So we seek an optimal control pair, u∗1, u
∗
2 such that

J(u∗1, u
∗
2) = min

u1,u2∈U
J(u1, u2), (4.4)

subject to state constraints (4.1-4.2).

The basic framework of this problem is to prove the existence of the optimal

control, characterize the optimal control and establish uniqueness of the optimality

system.
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4.5 Existence of an Optimal Control Pair

Using the fact that the solution to each state equation is bounded (see Theorem

4.2). Now, the existence of an optimal control for the state system is analyzed

using the theory developed by Fleming and Rishel in [53].

Theorem 4.4. Given the objective functional

J(u1, u2) =

∫ Tf

0

[
I(t) +

(
A1

2
u21(t) +

A2

2
u22(t)

)]
dt,

where U = {(u2(t), u2(t)), piecewise continuous such that 0 ≤ u1(t), u2(t) ≤ 1} for

all t ∈ [0, Tf ] subject to equations of system (4.1-4.2) with S(0) = S0, L(0) = L0,

I(0) = I0 and R(0) = R0, then there exists an optimal control pair u∗1, u
∗
2 such

that

J(u∗1, u
∗
2) = min{J(u1, u2)|(u1, u2) ∈ U}.

Proof of Theorem 4.4. To prove this theorem, we follow the requirments from The-

orem 4.1 and Corollary 4.1 developed by Fleming and Rishel in [53] and verify

them. Let f(t,X,u) be the right-hand side of (4.1-4.2) for 0 ≤ t ≤ Tf where

X ∈ R4, u ∈ R2 where X = (S, L, I, R) and u = (u1, u2). Accordng to [53], the

following coditions are needed to satisfy for the existence:

(i) The class of all initial conditions with an optimal control pair u1, u2 in the

admissible control set along with each state equation being satisfied is not

empty. That is

|f(t, 0, 0)| ≤ C, |fX(t,X,u)| ≤ C(1 + |u|) and |fu(t,X,u)| ≤ C.

(ii) The admissible control set U is closed and convex.

(iii) Each right hand side of equations of system (4.1-4.2) is continuous, is bounded

above by a sum of the bounded control and the state, and can be written as

a linear function of an optimal control pair u1, u2 with coefficients depending

on time and the state variables. That is

f(t,X,u) = α(t,X) + γ(t,X)u and |f(t,X,u)| ≤ C1(1 + |X|+ |u|).
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(iv) The integrand of the functional J(u1, u2) is convex on the admissible control

set and is bounded above by C2−C1|u|β, where C1, C2 are positive constants

and β > 1.

In order to verify the theorem we write the right hand side of equations of system

(4.1-4.2) as

f(t,X,u) =


λ− βSI − µS − u1S
lβSI − (µ+ δ)L

(1− l)βSI + δL− (µ+ γ + α)I − u2I
γI − µR + u1S + u2I



It is easy to see that f(t,X,u) is of class C1 and |f(t, 0, 0)| = λ and we have

|fX(t,X,u)| =

∣∣∣∣∣∣∣∣∣∣


a11 0 −βS 0

lβI −(µ+ δ) lβS 0

(1− l)βI δ a33 0

u1 0 γ + u2 −µ


∣∣∣∣∣∣∣∣∣∣

where a11 = −βI − µ− u1, a33 = −(1− l)βS − (µ+ γ + α)− u2 and

|fu(t,X,u)| =

∣∣∣∣∣∣∣∣∣∣


−S 0

0 0

0 −I
S I


∣∣∣∣∣∣∣∣∣∣

Since S, L, I and R are bounded, then there exits a constant C such that

|f(t, 0, 0)| ≤ C, |fX(t,X,u)| ≤ C(1 + |u|) and |fu(t,X,u)| ≤ C.

By definition, U is closed. Take any controls u1, u2 ∈ U and θ ∈ [0, 1]. Then

θu1 + (1− θ)u2 ≥ 0,

with θu1 ≤ θ and (1− θ)u2 ≤ (1− θ). Then

θu1 + (1− θ)u2 ≤ θ + (1− θ) = 1,
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i.e 0 ≤ θu1 + (1 − θ)u2 ≤ 1, for all u1, u2 ∈ U and θ ∈ [0, 1]. Therefore, U is

convex and condition (ii) is satisfied. The right hand side of system (4.1-4.2) is

continuous, bilinear in the control and it can be written as:

f(t,X,u) = α(t,X) + γ(t,X)u.

Where

α(t,X) =


λ− βSI − µS
lβSI − (µ+ δ)L

(1− l)βSI + δL− (µ+ γ + α)I

γI − µR

 , γ(t,X) =


−S 0

0 0

0 −I
S I


are vector-valued functions of X. and the boundedness of solutions gives

|f(t,X,u)| ≤ C1(1 + |X|+ |u|),

where C1 depends on the coefficients of the system. Hence, satisfies condition (iii).

In order to verify the convexity of the integrand of our objective functional, J we

show that

(1− ε)J(t,X,u) + εJ(t,X,v) ≤ J(t,X, (1− ε)u + εv)

for 0 < ε < 1 and J(t,X,u) = I +
(A1

2
u21 +

A2

2
u22

)
.

Now

(1− ε)J(t,X,u) + εJ(t,X,v)− J(t,X, (1− ε)u + εv)

=(1− ε)
[
I +

(A1

2
u21 +

A2

2
u22

)]
+ ε
[
I +

(A1

2
v21 +

A2

2
v22

)]
−
[
I +

A1

2

(
(1− ε)u1 + εv1

)2
+
A2

2

(
(1− ε)u2 + εv2

)2]
=− A1

2

[(
(1− ε)u1 + εv1

)2
− (1− ε)u21 − εv21

]
− A2

2

[(
(1− ε)u2 + εv2

)2
− (1− ε)u22 − εv22

]
=
A1

2

(√
ε(1− ε)u1 −

√
ε(1− ε)v1

)2

+
A2

2

(√
ε(1− ε)u2 −

√
ε(1− ε)v2

)2

=
A1

2
ε(1− ε)(u1 − v1)2 +

A2

2
ε(1− ε)(u2 − v2)2 ≥ 0.
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Since A1, A2 > 0, J(t, I,u) is convex in U . Finally we need to show that J(t, I,u) ≤
C2 − C1|u|β, where C1 > 0 and β > 1. For our case

J(t, I,u) = I +
(A1

2
u21 +

A2

2
u22

)
≥ C2 − C1|u|2,

where C2 depends on the upper bound on infected population, and C1 > 0 since

A1, A2 > 0 and β = 2. So we conclude that there exists an optimal control pair.

4.6 The Optimality Conditions

The Pontryagin’s Maximum Principle [22] provides necessary conditions for an

optimal control problem. This principle converted the problem of finding a control

which minimizes the objective function J subject to the state system (4.1-4.2) to

the problem of maximizing the Hamiltonian H, pointwisely with respect to u1 and

u2. So it is sufficient to derive the Hamiltonian H instead of deriving the objective

function J defined in (4.3) in order to characterize the optimal controls u∗1 and

u∗2. The Hamiltonian is defined from the formulation of the objective function as

follows:

H = I(t) +

(
A1

2
u21(t) +

A2

2
u22(t)

)
+

4∑
i=1

λi(t)Fi,

where Fi is the right hand side of the differential equation of i-th state variable. By

applying Pontryagin’s Maximum Principle [22] we obtain the following theorem.

Theorem 4.5. There exists an optimal control u∗ = (u∗1, u
∗
2) and corresponding

solution S(t), L(t), I(t) and R(t), that maximizes J(u1, u2) over U. Furthermore,

there exists adjoint functions λ1(t), λ2(t), λ3(t) and λ4(t) satisfying the equations

λ′1(t) =λ1(t) (βI(t) + µ+ u1(t))− λ2(t)lβI(t)− λ3(t)(1− l)βI(t)− λ4(t)u1(t)

λ′2(t) =λ2(t)(µ+ δ)− λ3(t)δ

λ′3(t) =− 1 + λ1(t)βS(t)− λ2(t)lβS(t)− λ3 ((1− l)βS(t)− (µ+ α + γ)− u2(t))

− λ4(t)(γ + u2(t))

λ′4(t) =λ4(t)µ

(4.5)
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with transversality conditions

λi(Tf ) = 0, i = 1, 2, · · · , 4 (4.6)

Moreover, the optimal control is given by

u∗1(t) = min

(
max

(
0,

1

A1

(
λ1(t)− λ4(t)

)
S(t)

)
, 1

)
(4.7)

and

u∗2(t) = min

(
max

(
0,

1

A2

(
λ3(t)− λ4(t)

)
I(t)

)
, 1

)
(4.8)

Proof of Theorem 4.5. The adjoint equations and transversality conditions can be

obtained by using Pontryagin’s Maximum Principle such that

λ′1(t) =− ∂H

∂T
, λ1(Tf ) = 0,

λ′2(t) =− ∂H

∂I
, λ2(Tf ) = 0,

λ′3(t) =− ∂H

∂L
, λ3(Tf ) = 0,

λ′4(t) =− ∂H

∂V
, λ4(Tf ) = 0.

Since S(t), L(t), I(t) and R(t) do not have fixed values at the final time Tf , the

values of the associated adjoints λ1(t), λ2(t), λ3(t) and λ4(t) at the final time are

zero. The optimal control u∗1 and u∗2 on the interior of the control set can be solved

from the optimality conditions,

∂H

∂u1

∣∣∣∣
u1=u∗1

= 0, and
∂H

∂u2

∣∣∣∣
u2=u∗2

= 0.

That is
∂H

∂u1
= −A1u1 − λ1(t)S(t) + λ4(t)

)
S(t) = 0,

and
∂H

∂u2
= A2u2 − λ3(t)I(t) + λ4I(t) = 0.
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By using the bounds on the controls, we get

u∗1 =



0, if
∂H

∂u∗1
< 0

1

A1

(
λ1(t)− λ4(t)

)
S(t), if

∂H

∂u∗1
= 0

1 if
∂H

∂u∗1
> 0.

In compact notation

u∗1(t) = min

(
max

(
0,

1

A1

(
λ1(t)− λ4(t)

)
S(t)

)
, 1

)
.

Again, we get

u∗2 =



0 if
∂H

∂u∗2
< 0,

1

A2

(
λ3(t)− λ4(t)

)
I(t), if

∂H

∂u∗2
= 0

1 if
∂H

∂u∗2
> 0.

In compact notation

u∗2(t) = min

(
max

(
0,

1

A2

(
λ3(t)− λ4(t)

)
I(t)

)
, 1

)
.

In addition, the second derivative of the Hamiltonian H with respect to u1(t) and

u2(t) are negative, indicating a maximum at u∗ = (u∗1, u
∗
2). That is

∂2H

∂u2i
= −Ai ≤ 0, i = 1, 2 since Ai ≥ 0

We point out that the optimality system consists of the state system (4.1) with the

initial conditions (4.2), adjoint system (4.5) with transversality conditions (4.6),

and optimality condition (4.7-4.8). Thus, we have the following optimality system

at u∗(t) = (u∗1(t), u
∗
2(t)):
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

dS(t)

dt
= λ− βS(t)I(t)− µS(t)− u1(t)S(t)

dL(t)

dt
= lβS(t)I(t)− (µ+ δ)L(t)

dI(t)

dt
= (1− l)βS(t)I(t) + δL(t)− (µ+ γ + α)I(t)− u2(t)I(t)

dR(t)

dt
= γI(t)− µR(t) + u1(t)S(t) + u2(t)I(t)

λ′1(t) =λ1(t) (βI(t) + µ+ u1(t))− λ2(t)lβI(t)− λ3(t)(1− l)βI(t)− λ4(t)u1(t)

λ′2(t) =λ2(t)(µ+ δ)− λ3(t)δ

λ′3(t) =− 1 + λ1(t)βS(t)− λ2(t)lβS(t)− λ3 ((1− l)βS(t)− (µ+ α + γ)− u2(t))

− λ4(t)(γ + u2(t))

λ′4(t) =λ4(t)µ

S(0), L(0), I(0), R(0) ≥ 0

λi(Tf ) = 0, i = 1, 2, · · · , 4
(4.9)

where the controls u∗1(t) and u∗2(t) are given by (4.7) and (4.8) respectively.

4.7 Uniqueness of the Optimality System

Since the state system moves forward in time and the adjoint system moves back-

ward in time, we have a challenge with uniqueness. To prove uniqueness of so-

lutions of the optimality system for the small time interval, we use the following

theorems [14].

Theorem 4.6. The function u∗(c) = min(max(c, a), b) is Lipschitz continuous in

c, where a < b are some fixed positive constants.

Proof of Theorem 4.6. Consider c1, c2 real numbers and a, b as fixed positive con-

stants. We will show that the Lipschitz continuity holds in all possible cases for

max(c, a). Similar arguments hold for min(max(c, a), b) as well.

(i) c1 ≥ a, c2 ≥ a: |max(c1, a)−max(c2, a)| = |c1 − c2|.

(ii) c1 ≥ a, c2 ≤ a: |max(c1, a)−max(c2, a)| = |c1 − a| ≤ |c1 − c2|.
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(iii) c1 ≤ a, c2 ≥ a: |max(c1, a)−max(c2, a)| = |a− c2| ≤ |c1 − c2|.

(iv) c1 ≤ a, c2 ≤ a: |max(c1, a)−max(c2, a)| = |a− a| = 0 ≤ |c1 − c2|.

Hence |max(c1, a)−max(c2, a)| ≤ |c1− c2| and we have Lipschitz continuity of u∗

in c.

Theorem 4.7. For sufficiently small final time (Tf), bounded solutions to the

optimality system (4.9), are unique.

Proof of Theorem 4.7. Suppose (S, L, I, R, λ1, λ2, λ3, λ4) and (S, L, I, R, λ1, λ2, λ3, λ4)

are two non-identical solutions of our optimality system (4.9). To show that the

two solutions are equivalent, it is convenient to make a change of variables.

Let S = emtx1, L = emtx2, I = emtx3, R = emtx4, λ1 = e−mty1, λ2 = e−mty2,

λ3 = e−mty3, λ4 = e−mty4, S = emtx1, L = emtx2, I = emtx3, R = emtx4,

λ1 = e−mty1, λ2 = e−mty2, λ3 = e−mty3, λ4 = e−mty4.

where m > 0 is a positive constant to be chosen later. With the new variables the

optimality conditions become

u∗1 = min

(
max

(
0,
x1(y1 − y4)

A1

)
, 1

)
,

u∗2 = min

(
max

(
0,
x3(y3 − y4)

A2

)
, 1

)
,

u∗1 = min

(
max

(
0,
x1 (y1 − y4)

A1

)
, 1

)
,

u∗2 = min

(
max

(
0,
x3 (y3 − y4)

A2

)
, 1

)
.

For the first equation of system (4.9) we substitute S = emtx1 and get

ẋ1 +mx1 = λe−mt − βemtx1x3 − µx1 − u∗1x1

and for S = emt x1 we have

ẋ1 +m x1 = λe−mt − βemt x1 x3 − µ x1 − u∗1 x1.
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Subtracting the expression for S from the expression for S we have

ẋ1 − ẋ1 +m(x1 − x1) = −βemt(x1x3 − x1 x3)− µ(x1 − x1)− (u∗1x1 − u∗1 x1).

Multiplying by (x1 − x1) and integrating from t = 0 to t = Tf we have

1

2
(x1−x1)2(Tf ) + (m+ µ)

∫ Tf

0

(x1 − x1)2dt

= −β
∫ Tf

0

emt(x1x3 − x1 x3)(x1 − x1)dt−
∫ Tf

0

(u∗1x1 − u∗1 x1)(x1 − x1)dt

(4.10)

In order to simplify the right-hand expressions of (4.10), we need some elementary

inequalities.

By the elementary inequality (a+ b)2 ≤ 2(a2 + b2), we have

(x1y1 − x1 y1)2 = (x1y1 − x1y1 + x1y1 − x1 y1)2

= [x1(y1 − y1) + y1(x1 − x1)]2

≤ max{2x21, 2y12}[(x1 − x1) + (y1 − y1)]2

≤ C[(x1 − x1)2 + (y1 − y1)2],

where C depends on bounds for x1, y1. Another common expression can be used

repeatedly,

(xy − x y)(w − w) = (xy − xy + xy − x y)(w − w)

= y(x− x)(w − w) + x(y − y)(w − w)

≤ y2(x− x)2 + x2(y − y)2 + 2(w − w)2

≤ C[(x− x)2 + (y − y)2 + (w − w)2],
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where C depends on bounds for x, y.

Based on the above arguments and theorem 4.6, we find∫ Tf

0

(u∗1x1 − u∗1 x1)(x1 − x1)dt

≤ C1

∫ Tf

0

[
(u∗1 − u∗1)2 + (x1 − x1)2

]
dt

=

∫ Tf

0

[
1

A2
1

(
x1(y1 − y4)− x1 (y1 − y4

)
+ (x1 − x1)2

]
dt

≤ C ′1

∫ Tf

0

[
(x1 − x1)2 + (y1 − y1)2 + (y4 − y4)2

]
dt.

Also,

β

∫ Tf

0

emt(x1x3 − x1 x3)(x1 − x1)dt

≤ B1e
mTf

∫ Tf

0

[
(x1 − x1)2 + (x3 − x3)2

]
dt

Substituting above relations in equation (4.10), it becomes

1

2
(x1−x1)2(Tf ) + (m+ µ)

∫ Tf

0

(x1 − x1)2dt

≤ B1e
mTf

∫ Tf

0

[
(x1 − x1)2 + (x3 − x3)2

]
dt

+ C ′1

∫ Tf

0

[
(x1 − x1)2 + (y1 − y1)2 + (y4 − y4)2

]
dt

(4.11)

where the contant B1 and C ′1 obtained above are dependent on the system coef-

ficients as well as the bounds on the state and adjoint variables. For the second,

third and fourth equation of system (4.9) we substitute L = emtx2 and L = emt x2,

I = emtx3 and I = emt x3 , and R = emtx4 and R = emt x4 respectively then we

get

1

2
(x2−x2)2(Tf ) + (m+ µ+ δ)

∫ Tf

0

(x2 − x2)2dt

≤ B2e
mTf

∫ Tf

0

[
(x1 − x1)2 + (x2 − x2)2 + (x3 − x3)2

]
dt

(4.12)
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1

2
(x3 − x3)2(Tf ) + (m+ µ+ γ + α)

∫ Tf

0

(x3 − x3)2dt

≤ B3 e
mTf

∫ Tf

0

[
(x1 − x1)2 + (x3 − x3)2

]
dt

+ C ′2

∫ Tf

0

[
(x2 − x2)2 + (x3 − x3)2 + (y3 − y3)2 + (y4 − y4)2

]
dt

(4.13)

1

2
(x4 − x4)2(Tf ) + (m+ µ)

∫ Tf

0

(x4 − x4)2dt

≤ C ′3

∫ Tf

0

[
(x1 − x1)2 + (x3 − x3)2 + (x4 − x4)2 + (y1 − y1)2 + (y3 − y3)2

+ (y4 − y4)2
]
dt

(4.14)

For the fifth equation of system (4.9) we substitute λ1 = e−mty1 and λ1 = e−mt y1,

we get,

−ẏ1 +my1 = −βemty1x3 − µy1 − u∗1y1 + lβemty2x3 + (1− l)βemty3x3

and

−ẏ1 +m y1 = −βemt y1 x3 − µ y1 − u∗1 y1 + lβemt y2 x3 + (1− l)βemt y3 x3

Subtracting the expression for λ1 from the expression for λ1 , then multiplying by

(y1 − y1) and integrating from t = 0 to t = Tf we have,

1

2
(y1 − y1)2(0) + (m+ µ)

∫ Tf

0

(y1 − y1)2dt

≤ B4e
mTf

∫ Tf

0

[
(y1 − y1)2 + (x1 − x1)2

]
dt

+ B5e
mTf

∫ Tf

0

[
(y2 − y2)2 + (x3 − x3)2

]
dt

+ B6e
mTf

∫ Tf

0

[
(y3 − y3)2 + (x3 − x3)2

]
dt

+ C7

∫ Tf

0

[
(u∗1 − u∗1)2 + (y1 − y1)2

]
dt
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≤ B4e
mTf

∫ Tf

0

[
(y1 − y1)2 + (x1 − x1)2

]
dt

+ B5e
mTf

∫ Tf

0

[
(y2 − y2)2 + (x3 − x3)2

]
dt

+ B6e
mTf

∫ Tf

0

[
(y3 − y3)2 + (x3 − x3)2

]
dt

+ C ′4

∫ Tf

0

[
(x1 − x1)2 + (y1 − y1)2 + (y4 − y4)2

]
dt

(4.15)

Similarly for the sixth, seventh and eighth equation of system (4.9) we substitute

λ2 = e−mty2 and λ2 = e−mt y2 , λ3 = e−mty3 and λ3 = e−mt y3, and λ4 = e−mty4

and λ4 = e−mt y4 respectively, then we get,

1

2
(y2 − y2)2(0)+(m+ µ+ δ)

∫ Tf

0

(y2 − y2)2dt

≤ C ′5

∫ Tf

0

[
(y2 − y2)2 + (y3 − y3)2

]
dt

(4.16)

1

2
(y3 − y3)2(0) + (m+ µ+ γ + α)

∫ Tf

0

(y3 − y3)2dt

≤ B7e
mTf

∫ Tf

0

[
(x1 − x1)2 + (y1 − y1)2 + (y3 − y3)2

]
dt

+ B8e
mTf

∫ Tf

0

[
(x1 − x1)2 + (y2 − y2)2 + (y3 − y3)2

]
dt

+ C ′6

∫ Tf

0

[
(x3 − x3)2 + (y3 − y3)2 + (y4 − y4)2

]
dt

+ C ′7

∫ Tf

0

[
(y3 − y3)2 + (y4 − y4)2

]
dt

(4.17)
1

2
(y4 − y4)2(0) + (m+ µ)

∫ Tf

0

(y4 − y4)2dt = 0 (4.18)

where Bi(i = 1, 2, ....9) and Cj(j = 1, 2, ..7) depend on the coefficients and the

bounds of the state variables and co-state variables.

We obtain total eight integral equations and to show uniqueness, the integral

equations are combined. Adding all the eight estimates gives
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1

2
(x1 − x1)2(Tf ) +

1

2
(x2 − x2)2(Tf ) +

1

2
(x3 − x3)2(Tf ) +

1

2
(x4 − x4)2(Tf )+

1

2
(y1 − y1)2(0) +

1

2
(y2 − y2)2(0) +

1

2
(y3 − y3)2(0) +

1

2
(y4 − y4)2(0) + (m+ µ)∫ Tf

0

(x1 − x1)2dt+ (m+ µ+ δ)

∫ Tf

0

(x2 − x2)2dt+ (m+ µ+ γ + α)

∫ Tf

0

(x3−

x3)
2dt+ (m+ µ)

∫ Tf

0

(x4 − x4)2dt+ (m+ µ)

∫ Tf

0

(y1 − y1)2dt+ (m+ µ+ δ)∫ Tf

0

(y2 − y2)2dt+ (m+ µ+ γ + α)

∫ Tf

0

(y3 − y3)2dt+ (m+ µ)

∫ Tf

0

(y4 − y4)2dt

≤ B1e
mTf

∫ Tf

0

[
(x1 − x1)2 + (x3 − x3)2

]
dt+ C ′1

∫ Tf

0

[
(x1 − x1)2 + (y1 − y1)2+

(y4 − y4)2
]
dt+B2e

mTf

∫ Tf

0

[
(x1 − x1)2 + (x2 − x2)2 + (x3 − x3)2

]
dt+B3 e

mTf∫ Tf

0

[
(x1 − x1)2 + (x3 − x3)2

]
dt + C ′2

∫ Tf

0

[
(x2 − x2)2 + (x3 − x3)2 + (y3 − y3)2

+ (y4 − y4)2
]
dt+ C ′3

∫ Tf

0

[
(x1 − x1)2 + (x3 − x3)2 + (x4 − x4)2 + (y1 − y1)2+

(y3 − y3)2 + (y4 − y4)2
]
dt+B4e

mTf

∫ Tf

0

[
(y1 − y1)2 + (x1 − x1)2

]
dt+ B5e

mTf∫ Tf

0

[
(y2 − y2)2 + (x3 − x3)2

]
dt+B6e

mTf

∫ Tf

0

[
(y3 − y3)2 + (x3 − x3)2

]
dt+ C ′4∫ Tf

0

[
(x1 − x1)2 + (y1 − y1)2 + (y4 − y4)2

]
dt+ C ′5

∫ Tf

0

[
(y2 − y2)2 + (y3 − y3)2

]
dt

+B7e
mTf

∫ Tf

0

[
(x1 − x1)2 + (y1 − y1)2 + (y3 − y3)2

]
dt+B8e

mTf

∫ Tf

0

[
(x1 − x1)2

+ (y2 − y2)2 + (y3 − y3)2
]
dt+ C ′6

∫ Tf

0

[
(x3 − x3)2 + (y3 − y3)2 + (y4 − y4)2

]
dt

+ C ′7

∫ Tf

0

[
(y3 − y3)2 + (y4 − y4)2

]
dt

Thus from the above expression, using the non-negativity of the variable expres-

sions evaluated at the initial and the final time and simplifying the inequality
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[
(m+ µ)− (B1 +B2 +B3 +B7 +B8 +B9)e

mTf − (C ′1 + C ′3 + C ′4)
] ∫ Tf

0

(x1 − x1)2dt

+
[
(m+ µ+ δ)−B2e

mTf − C ′2
] ∫ Tf

0

(x2 − x2)2dt+
[
(m+ µ+ γ + α)− (B1 +B2

+B3 +B5 +B6)e
mTf − (C ′2 + C ′3 + C ′6)

] ∫ Tf

0

(x3 − x3)2dt+
[
(m+ µ)− C ′3

]
∫ Tf

0

(x4 − x4)2dt+
[
(m+ µ)− (B4 +B7)e

mTf − C ′1 + C ′3 + C ′4)
] ∫ Tf

0

(y1 − y1)2dt

+
[
(m+ µ+ δ)− (B5 +B8)e

mTf − C ′5
] ∫ Tf

0

(y2 − y2)2dt+
[
(m+ µ+ γ + α)−

(B6 +B7 +B8 +B9)e
mTf − (C ′2 + C ′3 + C ′5 + C ′6 + C ′7)

] ∫ Tf

0

(y3 − y3)2dt+[
(m+ µ)− (C ′1 + C ′2 + C ′3 + C ′4 + C ′6 + C ′7

] ∫ Tf

0

(y4 − y4)2dt+ ≤ 0

(4.19)

Here all the coefficients of all integrals in (4.19) are non-negative if we choose a

sufficiently large m and sufficiently small Tf .

For example, if we fix

m > B1 +B2 +B3 +B7 +B8 +B9 + C ′1 + C ′3 + C ′4 − µ

and

emTf <
(m+ µ)− (C ′1 + C ′3 + C ′4)

B1 +B2 +B3 +B7 +B8 +B9

i.s

Tf <
1

m
ln

(m+ µ)− (C ′1 + C ′3 + C ′4)

B1 +B2 +B3 +B7 +B8 +B9

then the coefficient (m+µ)− (B1 +B2 +B3 +B7 +B8 +B9)e
mTf − (C ′1 +C ′3 +C ′4)

for the integral
∫ Tf
0

(x1 − x1)2dt will be non-negative. Similar arguments apply to

remaining integral terms, we can obtain all of the other ms and Tfs. Take the

maximum of all of the ms used as m and the minimum of the Tfs used as Tf , then

the coefficient of each integral term in (4.19) is non-negative. This implies that

x1 = x1, x2 = x2, x3 = x3, x4 = x4, y1 = y1, y2 = y2, y3 = y3, y4 = y4
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and

S = S, L = L, I = I, R = R, λ1 = λ1, λ2 = λ2, λ3 = λ3, λ4 = λ4

Hence the solution of (4.9) is unique for small time. This ends the proof.

4.8 Numerical Result

Numerical solutions to the optimality system comprising of the state equation

(4.1), adjoint equation (4.5), control characterizations equation (4.6) and corre-

sponding initial/final conditions are carried out using the forward-backward sweep

method (implemented in MATLAB) and the parameters set in Table 3.1. The algo-

rithm starts with an initial guess for the optimal controls and the state variables

are then solved forward in time using Rung Kutta method of the fourth order.

Then the state variables and initial control guess are used to solve the adjoint

equation (4.5) backward in time with given final condition (4.6), employing the

backward fourth order Runge Kutta method. The controls u1(t) and u2(t) are then

updated and used to solve the state and then the adjoint system. This iterative

process terminates when the current state, adjoint, and control values converge

sufficiently [35].

In this section, we use numerical simulations to support the analytical results

previously established and to provide examples about the dynamics of diphthe-

ria disease. We use the following initial conditions {S(0), L(0), I(0), R(0)} =

{60000, 250, 1000, 1000} and the value of the parameters are estimated in the pre-

vious chapter given in Table 3.1. In the previous chapter, we see that the basic

reproduction number R0 = 7.29 which indicates that the disease is very much in-

fectious. For this reason here we use bigger initial contions of the state variable S

and I from the previous chapter. Comparing this value with the previous chapter

it seems approximately after 40 days.

Figure 4.2, 4.3, 4.4, and 4.5 represent the disease dynamics of the state variables

with control and without control. Here we use the controls in susceptible class

S(t) and infected class I(t). Comparing with-control with without-control, figure

4.2 and 4.4 illustrate the significant change of these classes and figure 4.3 and
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4.5 illustrate the impact on the latent class L(t) and recovered class R(t) of this

changing.

0 5 10 15 20 25 30 35 40 45 50

Days
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4

6

S
(
t
)

10
4

Without Control With Control

Figure. 4.2. Diphtheria disease dynamics of Susceptible population with control
and without control

4.8.1 Treatment strategies

To illustrate the effect of different optimal control strategies on the spread of dis-

ease in a population, we will consider the following combination of time-dependent

controls making up three control strategies A-C:

Strategy A (Only Vaccination): In this strategy, we only use of vaccination to

the population and no use of treatment to the population. Hence for the Strategy

A, the controls u1(t) = 1 and u2(t) = 0.

Strategy B (Only Treatment): In this strategy, we only use of treatment to the

population and no use of vaccination to the population. Hence for the Strategy

B, the controls u2(t) = 1 and u1(t) = 0.
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Figure. 4.3. Diphtheria disease dynamics of Latent population with control and
without control
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Figure. 4.4. Diphtheria disease dynamics of Infected population with control
and without control
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Figure. 4.5. Diphtheria disease dynamics of Recovered population with control
and without control

Strategy C (Both Vaccination and Treatment) : Here we use both vaccina-

tion and treatment to the population. Therefore for the Strategy C, the controls

u1(t) = u2(t) = 1.

Now we are applying the three different control strategies on the state variables

to obtain the best strategy by comparing the results of these strategies. Figures

4.6, 4.7, 4.8, and 4.9 represent the different effects of these strategies. From these

figure we observed that the strategy C (combined control) feedback the best result.

For Strategy A figure 4.10 illustrates that, if we use only vaccination to the popula-

tion we need to apply it 100% from first 38 days. After that it should be gradually

decreasing and finaly after 50 days it should be closed. For Strategy B figure 4.11

illustrates that if we use only treatment to the population we have to apply it

100% from first 11 days. After that it should be decreasing sharply till 14th day

and then should apply 55% till 47th day then it further decreasing sharply and

finaly after 50 days it should be closed. For Strategy C, figure 4.12 illustrates that

if we use both controls to the population then we have to apply vaccination 100%

from first 4 days. After that it should be decreasing sharply to 10% till 7th day

and then it should be gradually decreasing and finaly after 50 days it should be
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Figure. 4.6. Disease dynamics of Susceptible population in different Strategies
and without control
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Figure. 4.7. Disease dynamics of Latent population in different Strategies and
without control
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Figure. 4.8. Disease dynamics of Infected population in different Strategies and
without control
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Figure. 4.9. Disease dynamics of Recovered population in different Strategies
and without control
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closed. While using both controls figure 4.13 illustrates the simulation results of

the control treatment. Here it indicates that we should apply treatment 100% to

the population from 1st 8 days and then it should be decreasing till 11th day to

35% and further gradually decreasing to 27% till 15th dayand then it should be

continuing till 43th day and lastly it should be gradually decreasing to 0% to the

final day.
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Figure. 4.10. Simulation results of the control u1(t) while using only vaccination

4.9 Cost-effectiveness analysis

Next, we have performed a cost-effectiveness analysis. In order to justify the costs

associated with health intervention(s) or strategy (strategies) such as treatment,

or vaccination the associated benefits are usually evaluated using cost-effectiveness

analysis [8]. In this section we will consider three approaches, the infection averted

ratio (IAR), the average cost-effectiveness ratio (ACER) and the incremental cost-

effectiveness ratio (ICER).
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Figure. 4.11. Simulation results of the control u2(t) while using only treatment
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Figure. 4.12. Simulation results of the control u1(t) while using both controls

4.9.1 Infection averted ratio

The infection averted ratio (IAT) is stated as

IAR =
Number of infection averted

Number of recovered
(4.20)

The number of infection averted above is given as the difference between the

total infectious individuals without control and the total infectious individuals
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Figure. 4.13. Simulation results of the control u2(t) while using both controls

with control. The strategy with the highest ratio is the most effective. Using

the parameter values in Table 3.1, the IAR for each intervention strategy was

determined. Figure 4.14 shows the IAR for the three strategies implemented (see

also Table 4.1. Strategy B involving only treatment (u1(t) = 0 and u2(t) = 1)

that means applying only treatment produced the highest ratio and was therefore

the most effective. This is followed by Strategy C involving the combination of

both vaccination and treatment (u1(t) = u2(t) = 1). Strategy A involving only

vaccination (u1(t) = 1, u2(t) = 0) use was the least effective, this in part was due

to the low number of infection averted using this strategy (see Table 4.1).

4.9.2 Average Cost-Effectiveness Ratio (ACER)

Next, we considered the average cost-effectiveness ratio (ACER) which deals with

a single intervention, evaluating it against the no intervention baseline option.

ACER is calculated as

ACER =
Total cost produced by the intervention

Total number of infection averted
(4.21)

Figure 4.15 shows that the most cost-effective strategy is strategy C, followed by

Strategy B and Strategy A is the least cost-effective (see also Table 4.1).
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Figure. 4.14. IAR plots indicating the effect of the control strategies A, B, and
C
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Figure. 4.15. ACER plots indicating the effect of the control strategies A, B,
and C
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Table. 4.1. Total infection averted, Total cost, IAR and ACER.

Strategies Total infection averted Total cost IAR ACER

Strategy A 13498205 5744411 0.280958 0.425569

Strategy B 18357955 882587.1 0.433781 0.048077

Strategy C 19083531 156317.7 0.341351 0.008191

To further investigate the cost-effectiveness of the various control strategies, we

evaluated the incremental cost-effectiveness ratio (ICER).

4.9.3 Incremental Cost-Effectiveness Ratio

Disease control and eradication in a community can be both labor intensity and

expensive. Thus, to determine the most cost-effective strategy to use, it is im-

perative to carry out a costeffectiveness analysis. To achieve this, the differences

between the various costs and health outcomes of implementing these different

interventions are compared by calculating the incremental cost-effectiveness ratio

(ICER). The ICER is the additional cost per additional health outcome and we

assume that the costs of the various control interventions are directly proportional

to the number of controls deployed. To compare competing intervention strate-

gies (usually two or more) incrementally, one intervention is compared with the

next-less-effective alternative [8]. Thus, the ICER is calculated as

ICER =
Difference in infection averted costs in strategies i and j

Difference in total number of infection averted in strategies i and j
(4.22)

The ICER numerator includes (where applicable) the differences in the costs of

disease averted or cases prevented, the costs of intervention(s), and the costs of

averting productivity losses among others. The ICER denominator on the other

hand is the differences in health outcomes which may include the total number of

infections averted or the number of susceptibility cases prevented.

To implement the ICER, we simulate the model using the various interventions

strategies. Using these simulation results, we rank the control strategies in in-

creasing order of effectiveness based on infection averted, we have that Strategy

C averted the least number of infections, followed by Strategy A, Strategy D, and
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Strategy B which averted the most number of infections.

The ICER is computed as follows:

ICER(A) =
5744411

13498205
= 0.425569

ICER(B) =
882587.1− 5744411

18357955− 13498205
= −1.00043

ICER(C) =
156317.7− 882587.1

19083531− 18357955
= −1.00096

Table. 4.2. Incremental cost-effectiveness raio in increasing order of total infec-
tion averted

Strategies Total infection averted Total cost ICER

Strategy A 13498205 5744411 0.425569

Strategy B 18357955 882587.1 -1.00043

Strategy C 19083531 156317.7 -1.00096

A look at Table 4.2 shows, since ICER for strategy A is positive, the comparison

shows a cost saving of 0.425569 for Strategy A over Strategy B and Strategy

C. The lower ICER for Strategy B and Strategy C indicate that, Strategy B

and Strategy C strongly dominate Strategy A. This implies that Strategy A will

be more expensive to implement compare to Strategy B and Strategy C; thus,

Strategy A is excluded from further analysis. Hence, we obtain the following

numerical computations given in Table 4.3 by excluding Strategy A and comparing

the remaining strategies.

Table. 4.3. Incremental cost-effectiveness raio in increasing order of total infec-
tion averted

Strategies Total infection averted Total cost ICER

Strategy B 18357955 882587.1 -1.00043

Strategy C 19083531 156317.7 -1.00096

Table 4.3 shows that Strategy B and Strategy C have negative ICER value. Which

indicates that Strategy B and Strategy C in Table 4.3 are cost-effective, but the

Strategy C has the least negative ICER value which simply implies that Strategy

C is more cost -effective compare to Strategy B.
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Repeating the entire process, we can determine the next most cost-effective strat-

egy. Thus, we found that Strategy B is the next cost-effective strategy after

Strategy C.

From the result, it is concluded that Strategy C (combination of both control

variables u1 and u2) has the least ICER and therefore is more cost-effective than

both of the Strategy B and Strategy A for control of only treatment and vaccination

respectively. This result agrees with the results obtaining in Figure 4.16 for the

objective functional for the the control strategies A, B, and C.
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Figure. 4.16. Total Cost plots indicating the effect of the control strategies A,
B, and C
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Conclusion and Future Works

In this study, we sought to learn more about Diphtheria by introducing and ana-

lyzing mathematical models of immune system dynamics in the presence of vacci-

nation therapy. We began by developing and analyzing several models for Diph-

theria infection and, using data from Diphtheria infected individuals, compared

the models to determine which best fit the data for long time dynamics. We proved

existence, uniqueness, positivity, and boundedness for the models and derived the

conditions on basic reproduction number that guarantees the asymptotic stabil-

ity of the equilibria. Our model determined that during primary infection the

interaction between the populations plays a key role in characterizing Diphthe-

ria infection. Our model, which included a latent compartment, maintained the

greater basic reproduction number which suggests that the modified model was

the best at capturing the long term dynamics and behavior of the infection. In

addition to examining untreated systems, we also examined how treatment im-

pacts the proliferation of Diphtheria. In doing so, we used asymptotic stability

analyses to define treatment thresholds in order to eliminate the virus and clear

the infection. Additionally, we were able to estimate necessary drug efficacy of

treatment for infected patients and estimate necessary vaccine efficacy of vacci-

nation for susceptible populations and apply optimal control theory to prove the

existence of the optimal treatment solution. This would allow health sector of the

country to controll a Diphtheria outbreak. Furthermore, our findings illustrate

that combination therapy (strategy C) can provide the more effective strategy

than individual treatment (strategy B) and vaccination (strategy A) which in-

dicates that it is with much lower coast. The values of the objective function

at the optimal control shows that the greatest effects do occur when vaccination

79
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is initiated earliest. Also, results of the numerical simulations indicate that the

rate of recovred populations increased and infected population decreased due to

treatment parameter.

Some of the possible future directions of this work are briefly outlined below.

1. In many literature [2], to make the production of S-populations desensity de-

pendent, the logistic growth has been considered during the chronic infection

of Diphtheria. To trace out long term disease infectious from the beginning the

proliferation rate of susceptible S-populations can be considered to be a logistic

growth function.

dS(t)

dt
= λ+ rS(t)

(
1− S(t)

Smax

)
− βS(t)I(t)− µS(t),

dL(t)

dt
= (1− l)βS(t)I(t)− (µ+ δ)L(t),

dI(t)

dt
= lβS(t)I(t) + δL(t)− (µ+ α + γ)I(t),

dR(t)

dt
= γI(t)− µR(t).

2. Our mathematical descriptions have generally been limited to nonlinear or-

dinary differential equations describing the average behavior throughout the

whole populations under the assumption that the environment is well-mixed or

spatially-homogeneous. Unfortunately, such an assumption is not valid during

infection or at sites of viral entry [50]. So the propagation of Virus cells into

the body not only depends on time but also to the space. Proposed spatial

model:

∂S

∂t
= λ− βS(x, t)I(x, t)− µS(x, t),

∂L

∂t
= (1− l)βS(x, t)I(x, t)− (µ+ δ)L(x, t),

∂I

∂t
= q∆I(x, t) + lβS(x, t)I(x, t) + δL(x, t)− (µ+ γ + α)I(x, t),

∂R

∂t
= γI(x, t)− µR(x, t).

Here, d > 0 is the diffusion coefficients of virions with ∆ being the Laplacian

operator.
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