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ABSTRACT 

 

This research propounds a variant of Gaussian process regression called Sparse Incremental 

Gaussian Process Regression (si-GPR).Traditional Gaussian process regression, although 

attractive for smaller datasets, possesses some inherent limitations regarding computation and 

storage requirements. As a result, traditional or batch-GPR performs poorly when employed for 

training a large set of data. Again, this algorithm can neither accommodate inputs that become 

available over time nor the training set that needs the removal of training points. Therefore, 

appropriate methods are necessitated to deal with these limitations effectively. To accomplish 

that, a sparse Gaussian process regression algorithm with an incremental learning and a 

decremental un-learning policy has been proposed. In this formulation, the idea of sparsification 

and undertaking streaming inputs have been merged with the provision of model forgetting. The 

rationale behind following this strategy is three-fold: to lessen the number of data instances to fit, 

to accommodate streaming input, and to minimize the computation and memory requirements as 

possible. As the prime aspiration was to lower the calculations without losing the accuracy, an 

economic update of the kernel matrix and the inverted lower Cholesky matrix has been rendered. 

The outcome of this research manifests promising results as it provides a general reduction in 

memory consumption and execution time. Moreover, the proposed si-GPR algorithm provides 

better fitting and predictions over the original Gaussian process regression. 
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CHAPTER-1 

INTRODUCTION 

 

1.1 Framework of the Study 

The emergence of machine learning is opening up newer dimensions in the field of 

engineering to tackle a wide variety of tasks. Learning from data without any prior knowledge 

of the system has changed the outlook of researchers. The field of Industrial and Production 

Engineering is no different from this paradigm. Machine learning has found its applications in 

various aspects of industrial engineering such as handling scheduling problems (Aytug, 

Bhattacharyya, Koehler, & Snowdon, 1994; Jain & Meeran, 1998), forecasting and supply 

chains (Carbonneau, Laframboise, & Vahidov, 2008; Lee, Kim, Park, & Kang, 2014), quality 

control (Lease, 2011), etc., and in production engineering such as managing uncertainties in 

manufacturing systems (Monostori, 2003), building just-in-time (JIT) production scheme 

when the system characteristics are stochastic and run on a rolling basis (Markham, Mathieu, 

& Wray, 2000; Wray, Rakes, & Rees, 1997), the problem of varying qualities of metal 

etching (Chatterjee, Croley, Ramamurti, & Chang, 1997), tool wear prediction (Dongdong 

Kong, Chen, & Li, 2018),machining parameter optimization (Gupta, Guntuku, Desu, & Balu, 

2015; Jurkovic, Cukor, Brezocnik, & Brajkovic, 2018),and so on.  

Regression analysis is a sub-category of supervised machine learning that enables to estimate 

the relationship that links the input variable(s) to the response variable(s). Gaussian process 

regression (GPR) is one such practice.GPR is a widely used kernel-based algorithm. 

However, the algorithm is expensive. Owing to the greater effort regarding computations 

which is O(d3), where d signifies the number of data instances (Rasmussen & Williams, 

2006), the process takes a great amount of time to perform the fitting and projection. 

Furthermore, the memory it takes to train a model and carry out predictions isO(d2) which is 

also substantial (Smola & Bartlett, 2001).  

To mitigate this problem, efficient algorithms have been proposed (Cheng & Boots, 2016; 

Lütz, Rodner, & Denzler, 2013; Nguyen-Tuong, Seeger, & Peters, 2009). A major proportion 

of those algorithms proposed sparse solutions to the problem, some preferred online learning, 
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while the rest provided other measures to improve the fundamental algorithm from its 

inherent pitfalls. 

This thesis addresses the limitation of the basic Gaussian process regression. To solve this 

issue, an incremental learning strategy based Gaussian process regression approach is 

proposed in this work that collaborates a sparsification operation, an incremental update, and 

a decremental un-learning approach to make the procedure more efficient. In the case of a 

new data point’s arrival, the model does not retrain the whole dataset again, rather with its 

inexpensive updates of kernel matrix and its lower Cholesky factor, the algorithm provides a 

good fit with much less computational effort. The proposed modifications are expected to 

serve the following functions: 

 

(i) The memory usage is reduced by a greater amount. 

(ii) The execution time is far less than the general algorithm. 

(iii) The accuracy isnot compromised given the size of the dataset. 

 

1.2 Objectives with Specific Aims 

The specific objectives of this research are:  

– To modify the existing Gaussian process regression routine with the introduction of 

incremental learning in a certain way that the resulting algorithm offers reduced 

computational expense and execution time without loss of accuracy.  

– To employ the modified algorithm into real-world problems of industrial engineering 

(e.g., demand forecasting and trend projection, parameter selection for manufacturing 

process optimization, etc.)  

 

1.3 Possible Outcome of the Research 

This thesis offers a modified methodology for an existing problem, i.e., regression. Mapping the 

relationship between input variables and the response variable(s)for large datasets using 
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Gaussian process regression will be memory and time-efficient. Hence, this research will be 

effective in solving a variety of industrial and manufacturing decision-making problems. 

 

1.4 Outline of the Methodology Used 

The methodology used is outlined below: 

i. The training set was segregated equally into two partitions, called the initial training set 

and the streaming set, respectively. With the help of a data clustering algorithm called 

CURE, a representative set was obtained from the initial training set and m<<n, where n 

indicates the instances of the initial training set and the instances of the representative 

dataset is denoted by m. Then, the kernel matrix for this smaller subset was computed. 

ii. The streaming set was used in such a way that every point is fed sequentially. Using 

the kernel matrix for the representative set as the base, the kernel matrix was updated as 

the points were passed on. In the event of the arrival of new data points, the model was 

not retrained, rather the kernel matrix was updated and the algorithm only fit the updated 

kernel matrix.  

iii. For making predictions, there needs to be an inversion of the kernel matrix. As a 

direct inversion of matrices is costly, this method is rarely implied for small datasets, let 

alone large ones. Rather, another method known as the Cholesky factorization is typically 

utilized (Rasmussen & Williams, 2006). In this thesis, Cholesky decomposition was used 

for the inversion of the covariance matrix. For the streaming input and any new input, an 

efficient update of the lower Cholesky factor was offered which decreases computation to 

a great extent. 

iv. During the fitting of the Gaussian process, the negative log marginal likelihood was 

minimized. 

v. After training was done, the algorithm was tested on the test sets. For evaluating the 

model performance, two error metrics were deployed: mean absolute error (MAE) and 

root mean squared error (RMSE). Moreover, the memory and time required for the 
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execution were calculated. Furthermore, the error scores, memory consumption, and 

execution time were matched against that of the basic GPR. 

 

 

1.5 Contribution of the Study 

This study proposes an algorithm that: 

– Answers to the continuous input problem and variable training size problem 

– Requires much less memory for the same computation 

– Offers great savings in terms of execution time 

– Does not sacrifice accuracy to the least 

– Provides even better fitting in terms of training accuracy for training sets and 

performance (i.e., accuracy, memory requirement, execution time) on test sets 

 

1.6 Limitation of the Study 

This research possesses some limitations regarding scope and resources. For the scope limitation, 

only single-output regression problem was addressed in this thesis where there is multi-output 

regression problem as well. Additionally, a predetermined set of kernels was used in this 

research. Also, the performance of the proposed algorithm was matched against that of the basic 

GPR algorithm only. As for the resource limitation, there was a ceiling on the size of the dataset 

handled. The current system specification allowed a maximum of somewhat over 8000 training 

points to be handled. With the proposed algorithm, datasets of greater size than this could have 

been handled using the current system specification; however, it would not have been possible to 

compare the performances of these two algorithms.   

 

1.7 Organization of the Thesis 

This thesis is organized as follows: 
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“Chapter1: Introduction” presents the background motivation of the study with defined 

objectives and also states the possible outcomes. Additionally, the methodology of this research, 

contribution, and limitation of this study has been addressed in this chapter. 

“Chapter2: Background Literature” summarizes the relevant publications regarding Gaussian 

Process Regression. 

“Chapter3: Gaussian Process Regression” states the theory of Gaussian Process Regression 

and other relevant terminologies. 

“Chapter4: Learning Dynamics in Machine Learning” discusses the two prime machine 

learning strategies, their properties, benefits, and limitations.  

“Chapter5: Proposed Sparse Incremental Gaussian Process Regression” talks about the 

modifications offered in this thesis elaborately. 

“Chapter6: Datasets and Experimentation” describes the datasets used in this research, their 

characteristics, visualization, and the experimentation procedure. 

“Chapter7: Result Analysis” presents the results and possible visualizations of the outcomes 

acquired from the experimentations and provides necessary justifications. 

“Chapter8: Conclusions and Future Work” passes a concluding note and directs to the 

possible future research opportunities. 
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CHAPTER2 

BACKGROUND LITERATURE 

 

Machine learning, a subcategory of artificial intelligence (AI), is a discipline of knowledge 

where machines are trained to act and make decisions as humans do (Alpaydin, 2004). This 

learning of machines can be broadly classified among three categories: supervised learning, 

unsupervised learning, and reinforcement learning (Dunjko, Taylor, & Briegel, 2016). 

Customarily speaking, for supervised learning, the response is labeled, i.e., it is specified which 

values of input produces certain output(s), where unsupervised learning has unlabeled output(s) 

and the usual notion is to infer patterns from the data (Sathya & Abraham, 2013). Reinforcement 

learning falls somewhere between these two classes, where the output(s) are not needed to be 

labeled and the process tries to balance between the available knowledge and the unknown area 

(Kaelbling, Littman, & Moore, 1996). This thesis solely focuses on supervised learning. 

The supervised learning area can again be stratified into two sub-domains: regression task and 

classification task. The main difference between these two sub-classes is that for the regression 

problem, the output is continuous whereas it is discrete for classification (Rasmussen & 

Williams, 2006). Gaussian process (GP) is an elegant way to infer function values at unseen 

points (Bernardo, Berger, Dawid, & Smith, 1998).GPs can be used in the context of both 

regression and classification tasks. When used for regression, GP is referred to as Gaussian 

process regression (GPR) and it is called Gaussian process classification (GPC) when employed 

for classification problems. This thesis deals with Gaussian process associated with regression, 

e.g., GPR. In section 2.1, a general background on GPR is provided. Section 2.2 provides a 

summary of sparse methodologies of GPR and section 2.3 presents the synopsis of incremental 

methodologies. 

 

2.1 General Background of Gaussian Process Regression 

Gaussian process regression comes with a rich history. Earlier publications containing the 

Gaussian process being used for regression date back to the 1940s (Kolmogoroff, 1941; Wiener, 
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1949). GPR is an ingenious way of fitting functions through observations where it can extract 

information about some latent functions from the available data. Defined completely by a mean 

function and a covariance function, this technique is quite effective for smaller datasets (Yuan, 

Wang, Yu, & Fang, 2008).Additionally, it can quantify the uncertainties of prediction, i.e., it 

provides error bars on predictions (Cheng & Boots, 2016). GPR has seen applications in a wide 

selection of problems. For instance, it has been used in multi-variable spectroscopic calibration 

(Chen, Morris, & Martin, 2007), reliable multi-objective optimization of wire-cut high-speed 

electrical discharge machining process (Yuan et al., 2008), producing a high-resolution image 

from a single image with lower resolution (He & Siu, 2011), analyzing the motion trajectory in 

traffic monitoring (Kim, Lee, & Essa, 2011), predicting the length of the day (Lei, Guo, Cai, Hu, 

& Zhao, 2015), modeling of sandy soil infiltration (Sihag, Tiwari, & Ranjan, 2017), prediction of 

tool wear (D. Kong, Chen, & Li, 2018), and numerous such diverse applications.  

Although GPR offers excellent performance regarding small datasets, the computational demand 

is high (Williams & Rasmussen, 1996). The reason for this high expense is due to the inversion 

of the covariance matrix of the training set which is required for making predictions. It has been 

noted that for n data points, GPR requires the inversion of an n ×n matrix that takes O(n3) time, 

O(n2) storage for training, and O(n) time for predicting the response on a test point (M. Seeger, 

Williams, & Lawrence, 2003). As a result, GPR becomes expensive as the data points keep 

increasing. Due to this poor scalability, GPR is hardly used for big datasets. Another limitation 

of this model is that it is vulnerable to overfitting (Mohammed & Cawley, 2017), i.e., that the 

model performs well on the training set, but produces poor results on the test set (Subramanian & 

Simon, 2013).A host of techniques have been employed by researchers to rectify these 

limitations. These techniques can be broadly divided into sparse methods and 

incremental/online/sequential learning methods.  

 

2.2 Sparse Methodologies of Gaussian Process Regression 

The earlier modifications of GPR were brought principally by the sparse methods (Lázaro-

Gredilla, Quiñonero-Candela, Rasmussen, & Figueiras-Vidal, 2010; Qi, Abdel-Gawad, & Minka, 

2010; M. Seeger et al., 2003; Alex J. Smola & Bartlett, 2001; Snelson & Ghahramani, 2006; 

Tipping, 2001; Titsias, 2009; Tresp, 2000; Walder, Kwang, & Schölkopf, 2008; C. K. I. 
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Williams & Seeger, 2001; Yoshioka & Ishii, 2001). The sparse methods are the lower-rank 

approximations of the full-rank Gaussian process that retain the behavior of the original model 

due to the intractability of GP for larger datasets(McIntire, Ratner, & Ermon, 2016). This is 

achieved generally through the means of inducing variables or pseudo-inputs, which are a subset 

of the original training set (Titsias, 2009). The number of inducing variables to work with is 

dependent on the user; however, the choice is crucial(M. Seeger et al., 2003). Inducing variables 

can be obtained from the training set by random selection or by optimization, or 

otherwise(Bauer, van der Wilk, & Rasmussen, 2016). It has been reported that a random 

selection of the inducing variables might lead to poor model performance(Lawrence, Seeger, & 

Herbrich, 2002). Anyhow, various sparse schemes have emerged in the literature. The underlying 

similarity of these methods is that every sparse algorithm used some form of approximations to 

obtain the inducing variables set/active set/pseudo-inputs. And the difference among these 

approaches lies in the form of approximation used. For instance, (Tipping, 2001) used a 

relevance vector machine (RVM) approximation, which is a finite linear model with Gaussian 

priors used on the weights. The significance of this model is that it can find sparse solutions like 

support vector machine while providing predictions as Bayesian kernel machines using a 

Gaussian process prior (Quiñonero-Candela & Winther, 2003). Then,(Williams & Seeger, 2001) 

proposed a Nystrӧm approximation for faster performance of GPR. Nystrӧm method is a 

numerical method (Baker, 1977) that is used to approximate the covariance matrix.  However, 

this approach does not conform to a probabilistic model, i.e., the prior covariance between the 

latent function values and the test function values was taken to be exact, which was inconsistent 

with the prior covariance of the latent function values (Williams, Rasmussen, Scwaighofer, & 

Tresp, 2002).Another significant pitfall was that the covariance matrix did not guarantee the 

positive definiteness, i.e., it produced negative covariance values (Quiñonero-Candela & 

Rasmussen, 2005). After that,(Smola & Bartlett, 2001) used a subset of regressors (SoR) 

approximation for their sparse greedy approach. SoR models are finite with linear parameters 

that take on specific prior weights. The approach is greedy in the sense that this algorithm tries to 

optimize the maximum a posteriori (MAP) approximation of the response variable(s) at each 

step. However, this model suffers from a serious limitation. While predicting function values in a 

region far from the active set, the model provides unreasonably smaller predictive variances 

which is not explained by the model (Quiñonero-Candela & Rasmussen, 2005), known as the 
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predictive variance problem. Later,(Yoshioka & Ishii, 2001)employed a dataset reduction 

scheme such that the derived dataset would depict the original dataset’s characteristics. They 

were able to demonstrate that with a very small number of representative points, their model 

could match the performance of the basic GPR; however, the prediction accuracy is contingent 

upon the allocation of the representative points. Afterwards,(M. Seeger et al., 2003)presented 

another sparse greedy approach where the deterministic training conditional (DTC) 

approximation or the projected process approximation (PPA) (Rasmussen & Williams, 2006) 

was utilized. DTC is based on likelihood approximation where the original likelihood of the full 

model is replaced by an approximation. This method assumes a deterministic relation between 

the latent function values and the inducing variables. The significance of this model is that it 

solves the limitation of the SoR model (Quiñonero-Candela & Rasmussen, 2005) and leads to the 

same results as (Smola & Bartlett, 2001)even though an approximated likelihood was used. 

However, (Quiñonero-Candela & Rasmussen, 2005) remarked that the DTC approximation does 

not conform to a Gaussian process exactly. Subsequently, two more sparse methodologies were 

offered by (Schwaighofer & Tresp, 2003)called fully independent conditional (FIC) 

approximation and partially independent training conditional (PITC) approximation. FIC is also 

a likelihood approximation as DTC, only FIC does not put a deterministic relation on the 

function values and the pseudo-inputs, rather it considers the conditional distribution as an 

additional independence assumption. For FIC, this independence assumption is valid for both the 

training set and the test set. PITC comes from another perspective and it differs from FIC in the 

sense that the conditional independence is now valid for a group of points in the training set. 

Interestingly, PITC improves upon the DTC approximation (Quiñonero-Candela & Rasmussen, 

2005). Fully independent training conditional (FITC) approximation was exercised by (Snelson 

& Ghahramani, 2006). FITC is different from FIC as the conditional independence exists over 

the training set only, not the test set. This is also a likelihood-based approximation procedure; 

however, it results in a richer covariance (Quiñonero-Candela & Rasmussen, 2005). 

Thereafter,(Walder et al., 2008)proposed a multiscale version of sparse GP, known as sparse 

multiscale Gaussian process (SMGP), which was a modification of FITC approximation. This 

method offered performance improvement over FITC; however, it required learning twice as 

many parameters (Lázaro-Gredilla et al., 2010). Later, (Titsias, 2009) proposed a variational 

approach to sparse GP, where the full GP was approximated using a large number of basis 
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functions. Basis function is a way of generalizing the non-linear relationship between the input 

and the output (Hensman & Lawrence, 2014). Although the proposed method by Titsias proved 

to be effective for the overfitting problem, the performance of this method was inferior to FITC 

or SMGP. After that,(Lázaro-Gredilla et al., 2010) presented a sparse spectrum Gaussian process 

(SSGP) that used a stationary trigonometric Bayesian model which was computationally 

economical and provided good performance.  

The implementation of sparse methods reduced the GPR complexity to some degree, many of 

whom reached the same conclusion. For example, the computational requirement in terms of 

training time was brought down to O(m2n) from O(n3), where, m is the size of the subset 

(inducing set) of the original dataset (m<<n) (Lawrence et al., 2002; Quiñonero-Candela & 

Rasmussen, 2005; M. Seeger et al., 2003; A. J. Smola & Bartlett, 2001; Snelson & Ghahramani, 

2006; Walder et al., 2008; C. K. I. Williams & Seeger, 2001; Yoshioka & Ishii, 2001). Memory 

needed for training was reduced to O(nm) from O(n2) (M. Seeger et al., 2003; A. J. Smola & 

Bartlett, 2001), prediction time decreased from O(n) to O(m) (M. Seeger et al., 2003; A. J. Smola 

& Bartlett, 2001), or O(m2) (M. Seeger et al., 2003; Snelson & Ghahramani, 2006), and 

computations for error bound was O(nm) rather than O(n2) (Smola & Bartlett, 2001).  

The methods described so far work in a batch setting. Batch learning refers to model learning 

where a bunch of data points is used simultaneously to gain information about the model 

behavior. In this case, the model does not retain the training knowledge, i.e., if a new data point 

arrives, the model will have to retrain itself (Carbonara & Borrowman, 1998). Batch learning 

assumes that the training dataset is readily available before modeling (Gepperth & Hammer, 

2016). However, this may not always happen. For example, if a particular application has a 

variable training set or incoming data points over a defined period (for example feedbacks, time-

dependent user-inputs), the model would have to train itself over and over for every new training 

point. To make matters worse, if the dataset is large, the batch mode will not be economical at all 

(Carbonara & Borrowman, 1998). In fact, limited processing power and storage capabilities of 

the system might render batch learning prohibitive altogether (Ade & Deshmukh, 2013). As a 

measure to treat the scalability problem, a certain learning mode is necessitated that does not 

assume the availability of training points beforehand and can adapt to events such as the arrival 
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of new data points or variable training set size. This mode is called incremental learning mode 

which is described next. 

 

2.3Incremental Methodologies of Gaussian Process Regression 

Incremental learning is a learning strategy that allows the model to expand its knowledge when 

new information of the system becomes available(Geng & Smith-Miles, 2009). It should be 

noted that incremental learning, also known as sequential learning, is sometimes used 

interchangeably with online learning, however, there is a subtle difference. In the case of online 

learning, the knowledge of training is not always retained depending on the modeler, whereas, 

incremental learning typically maintains this knowledge and updates the model according to the 

new data points without retraining the model from scratch(Saffari, Leistner, Santner, Godec, & 

Bischof, 2009). Many publications in the GP literature have treated incremental learning and 

online learning in the same sense; however, this thesis is using the term “incremental learning” to 

avoid any confusion.  

The incremental learning techniques regarding the Gaussian process try to update the posterior of 

the functions incrementally when the dataset is large. An interesting find from the literature 

survey is that all incremental algorithms have utilized sparsification to some extent as well. In 

almost all of the cases, the posterior probability has been approximated using some 

approximation routine. Among the pioneers of incremental learning based GPR algorithms, 

(Tresp, 2000) proposed a sparse approximate of GPR capable of online processing of data. In 

this method, models were trained on smaller datasets and the predictions were combined 

afterward. This approach further required an additional query of the data points. To circumvent 

this additional query, (Csató & Opper, 2002) presented an online version of sparse GPR, which 

greedily computes the approximate posterior by going through the dataset only once. The 

advantage of this model is that it can handle non-continuous likelihoods that might cause 

problems when Kalman filter or variational Gaussian approximations are used. Despite the 

advances, instances have been reported in this paper where this algorithm performs poorly 

compared to batch algorithms. Next,(Quiñonero-Candela & Winther, 2003)made use of 

relevance vector machines (Tipping, 2001) and presented an incremental learning routine as a 

variant of the expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977), 
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known as “Subspace EM”. The limitation of (Tipping, 2001)was that having as many basis 

functions as possible in the beginning leads to the same complexity as full GP. Therefore, it was 

suggested by Tipping to start with a single basis function and add basis functions as necessary. 

To keep computations minimum, basis functions were also to be removed as per demand. 

Later,(Quiñonero-Candela & Winther, 2003)used the EM algorithm to strategize this method 

formally and showed that it guaranteed convergence at the local maximum of model parameters. 

Subsequently,(Nguyen-Tuong, Peters, & Seeger, 2009)presented their approach to fastening the 

standard GPR using local GP models which were used to approximate the inverse dynamics for 

model-based robot control. By using distance-based measures to divide their data into regions 

and train individual GP models for each region, they were able to learn the parameters online and 

provide real-time predictions. Afterward,(Ranganathan, Yang, & Ho, 2010) proposed an online 

sparse matrix Gaussian processes (OSMGP). Their approach combines exact inference and 

online updates of the Cholesky factor of the kernel matrix. A limitation of this approach is that 

this method works under the presumption that the kernel matrix is inherently sparse. Following 

this,(De La Cruz, Owen, & Kulic, 2012) presented a refined version of sparse online Gaussian 

processes originally provided by (Csató & Opper, 2002)which allowed incremental updates on 

both the training set and the model hyperparameters. The significance of this approach was that it 

performed well even without initial training data for the learning of inverse dynamics in model-

based robot controls. Thereafter,(Cheng & Boots, 2016) presented an incremental variational 

sparse Gaussian process regression (iVSGPR) that combined sparsification with incremental 

model hyperparameter updates. The stochastic mirror ascent algorithm was used to update the 

approximate function posterior and the stochastic gradient ascent method was used for 

hyperparameter updates. This method solved a mini-GP in each iteration, thereby keeping 

computations tractable.  

Other than these approaches, models have been presented to provide the online version of 

variational batch algorithms (Hensman, Fusi, & Lawrence, 2013; Hoang, Hoang, & Low, 2015; 

Qi et al., 2010). For instance,(Qi et al., 2010) updated the FITC approximation by using the 

expectation propagation (EP) algorithm, which allows processing data online. After 

that,(Hensman et al., 2013)proposed a stochastic approximation of variational sparse GP 

originally offered by (Titsias, 2009) based on stochastic natural gradient ascent (Hoffman, Blei, 

Wang, & Paisley, 2013). Later,(Hoang et al., 2015) generalized all the sparse representations of 
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GP, i.e., PIC, FTC, DTC, etc. (commonly called SGPRs) and by applying the reverse variational 

method (as opposed to the variational method by (Titsias, 2009)), this algorithm can assure 

convergence of the predictive distribution of any of the SGPR models. 

In light of these preceding research, this thesis delves into Gaussian process regression with a 

sparse-incremental mindset. Although there have been a handful of incremental learning methods 

dealing with variable training set size, this thesis attempts to use a simpler and flexible 

approximation that provides decent results while maintaining accuracy at an acceptable level and 

keeping computations as low as possible. In the following chapter, the theoretical background on 

the Gaussian process regression and associated terminologies are presented and a discussion on 

the major learning strategies for a machine learning model can be found in the next-to-next 

chapter.  
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CHAPTER3 

GAUSSIAN PROCESS REGRESSION 

 

Gaussian process (GP) is a Bayesian kernel machine following a multivariate Gaussian 

distribution (Ranganathan et al., 2010). This method is Bayesian in the sense that it is based on 

Bayesian philosophy, where the model is provided a prior without seeing any data, and updates 

itself upon given some observations. The Gaussian process is kernelized because it uses kernel 

functions as a measure of covariance between any two random variables. In this chapter, the 

theoretical background of Gaussian processes is provided. At first, multivariate Gaussian 

distribution and two of its important properties called marginalization and conditioning are 

discussed in section 3.1 along with Bayesian philosophy in section 3.2. Section 3.3 talks about 

the Gaussian process and its two parameters: the mean function and the covariance function. 

Finally, these ideas have been brought together to relate to Gaussian process regression (GPR) in 

section 3.4.   

 

3.1 Multivariate Gaussian Distribution 

It is assumable that the founding brick of the Gaussian process is the Gaussian or Laplace-Gauss 

or normal distribution. Gaussian distribution is a continuous probability distribution (Walpole, R. 

E., & Myers, 2012). Infamously known for the “bell curve”, this distribution is widely used to 

represent random variables with unknown distributions (Casella & Berger, 2002). There are two 

parameters for Gaussian distribution. For a univariate Gaussian, these parameters are the mean 

and the variance of the random variable, and for a multivariate Gaussian, parameters include 

mean and the covariance between random variables (Tong, 2012). 

The probability density function (PDF) of a univariate Gaussian is given by: 

 f(X; μ, σ2) = 1
√2πσ2

 exp(- (X-μ)
2

2σ2 ) (3.1) 
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where μ is the mean and σ2is the variance of the random variable X. 

For the multivariate case, the distribution is defined by a mean vector, μ, and a covariance 

matrix, ∑. In a multivariate Gaussian setting, each of the random variables is normally 

distributed and their joint distribution is also normal. The probability density function (PDF) of a 

multivariate Gaussian is given by: 

 f(X; μ, Σ)= |2πΣ|-
1
2 exp (- 1

2
(X-μ)

T
Σ-1(X-μ)) (3.2) 

 

where X is a vector of random variables distributed according to a multi-variable Gaussian 

distribution. The following expression can be written from equation (3.2): 

 X ~ N (μ, ∑) (3.3) 

where, 

 μ = E (X) (3.4) 

 ∑ = Cov (Xi, Xj) (3.5) 

 

Two of the properties of multivariate Gaussian distribution are of importance regarding the 

Gaussian process. These are called marginalization and conditioning. 

 

3.1.1 Marginalization 

Marginalization allows extracting information about a random variable given a joint probability 

distribution of that variable with another random variable. 

For instance, if A and B are two random variables having a joint distribution of P(A, B), then 

information about either A or B can be found out by: 

 PA(a) = ∫ PA, B(a, b)dbb  = ∫ PA|B(a| b)b PB(b)db (3.6) 

 PB(b) = ∫ PA, B(a, b)daa  = ∫ PA|B(b| a)a PA(a)da (3.7) 
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The marginal distributions of the jointly Gaussian random variables are also Gaussian (Tong, 

2012). 

3.1.2 Conditioning 

This is another useful property of the multivariate normal distribution. Conditioning simply 

means finding the probability distribution of a random variable given another.  

For example, just as in the abovementioned case, the conditional distribution of A given B or the 

conditional distribution of B given A can be found by: 

 P(A|B) = PA,B (a,b)

∫ PA,B(a,b)dbB

 (3.8) 

 P(B|A) = PA,B (a,b)

∫ PA,B(a,b)daA

 (3.9) 

 

Similar to marginalization, conditioning on a Gaussian distribution yields another Gaussian 

distribution (Tong, 2012). 

 

3.2 Bayesian Philosophy 

Bayesian thinking is quite popular in probability and statistics. Bayes theorem provides the 

probability of an event given some apriori knowledge about that event and some other conditions 

upon which the outcome of the event may depend (Stone, 2013). Generally, the rule can be 

expressed as follows: 

 Posterior Probability = 
Prior Probability × Likelihood

Marginal Likelihood
 (3.10) 

 

In a Bayesian environment, an assumption about the probability of the concerned event is made, 

known as the prior probability or “belief”, because this is specified at the beginning without any 

knowledge of the system. The likelihood is a measure of fitness for function parameters used for 

models of unknown parameters, i.e., this is the probability of function values given some 

parameters. And, marginal likelihood is a likelihood function for when the parameter values have 
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been marginalized, i.e., this is the probability of function values given the input when the 

parameters have constant values. In a Bayesian system, marginal likelihood is also called 

“evidence”.  

For example, let us assume that there are some data points, D = {xi,yi}i=1
n . For a simple one-

dimensional linear noisy regression problem, the relation between input vector x and response 

vector y can be expressed as: 

 y = f(x) + ε (3.11) 

 f(x) = xTw (3.12) 

 

where w is the weight or parameter vector and ε is the Gaussian noise which is independently 

and identically distributed with zero-mean and a variance of σn
2. 

 ε ~ N (0, σn
2) (3.13) 

 

The prior probability is assigned to the weights. A zero-mean Gaussian distribution with 

covariance matrix ∑w is specified as the prior distribution for weights: 

 w ~ N (0, ∑w)  (3.14) 

 

The likelihood or the probability of observations given parameters can be expressed as P(y| x, 

w), that can be calculated easily if the independence assumption is considered: 

 P(y| x, w) = ∏ P(yi|xi, wi)n
i=1  (3.15) 

 

Equation (3.10) can be re-written as: 

 P(w| y, x) = P(w) × P(y|x, w)
P(y|x)

 (3.16) 

 

where, P(w| y, x) is the posterior probability that is calculated with the help of the prior 

probability, P(w), the likelihood P(y| x, w), and the marginal probability, P(y| x). 
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3.3 Gaussian Process 

The main task of machine learning is to deduce some idea about the function that fits through 

some observations that are known beforehand. Now, given these data points, there could be an 

infinite number of functions that fit through them. In the case of parametric methods, the 

parameters of the function are defined first and then the data points are observed later. Therefore, 

these methods try to fit the data through a predefined function. The limitation of this approach is 

that the data points may not conform to the function characteristics as it was specified arbitrarily 

(Fattahi, 2011). Therefore, it is not wise to specify the parameter prior to seeing some 

observations. This is one of the reasons for the poor performance of parametric methods(James, 

Witten, Hastie, & Tibshirani, 2013). 

As opposed to this, the Gaussian process is a non-parametric method that rather than specifying a 

function, specifies a distribution of functions from a prior belief. Then, upon having some 

observations, it updates the knowledge of the system. It is to be noted here that the term ‘non-

parametric’ does not refer to having any parameter, rather having an infinite number of 

parameters (Hall, 1989).  

Formally, Gaussian processes can be defined as a distribution of functions in an infinite domain, 

any finite linear combination of which produces a multivariate Gaussian distribution (Rasmussen 

& Williams, 2006). 

A Gaussian process is comprehensively defined using a mean function and a covariance 

function: 

 f ~ GP (m, k)  (3.17) 

 

where m is the mean function and k is the covariance function. They are defined as follows: 

 m(x) = E[ f (x)] (3.18) 

 k(x, x´) = E[( f (x) – m(x)) ( f (x´)-m(x´))] (3.19) 

 

The expression in equation (3.17) can be re-written as: 
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 f (x) ~ GP (m(x), k(x, x´)) (3.20) 

 

For any set of input points {xi}i=1
n , the function vector of these points f = [f(x1)…….f(xn)]T has a 

joint Gaussian distribution (Lázaro-Gredilla et al., 2010). 

 P(f | {xi}i=1
n ) = P(f |μ, ∑) (3.21) 

 

where μ is the mean vector and ∑ is the covariance matrix. 

In the following two subsections, the two parameters of the Gaussian process, i.e., the mean 

function and the covariance function are discussed. 

 

3.3.1 Mean Function 

The mean function is the first parameter of the Gaussian process. This parameter represents the 

average value of functions. In truth, the mean function is not much interesting, as the mean of the 

prior distribution does not affect the predictive mean. In fact, it has been shown that for a non-

zero mean function, the outcome is the same (Rasmussen & Williams, 2006). There is a 

convention of taking the mean of the prior distribution to be zero. Following the convention, this 

thesis considers a zero-mean function for the Gaussian prior. 

 

3.3.2 Covariance Function 

The covariance function is the heart and soul of the Gaussian process. GP does not seek to 

achieve the true form of the output function. Rather, it depends on the nearness of the data points 

to propose a guess about the corresponding function values. Intuitively speaking, if two data 

points are close, it is justified to assume that the function values relating to those points should 

also be close. Based on this intuition, the Gaussian process finds the closeness of function values 

through another function known as the covariance function or kernel function. 

Back to the first assumption of this model, as the prior mean is taken to be zero, it is the 

covariance matrix that now defines the characteristics of the prior distribution(Quiñonero-
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Candela & Rasmussen, 2005). The interesting point regarding this assumption is, as the prior 

becomes Gaussian and the likelihood is generally presumed to be Gaussian, the posterior 

distribution is also Gaussian. This simplification leads to an excellent advantage discussed in 

section 3.4. 

This covariance function is used to generate the covariance matrix, which is symmetric in nature. 

For an n×d input matrix, where d is the dimension of the input space, the covariance matrix has a 

size of n×n. The general term for the covariance functions between two points is kernel 

functions. Figure 3.1 presents a general classification of covariance functions (Rasmussen & 

Williams, 2006). 

 
Figure 3.1: Classification of covariance functions 

 

3.3.2.1 Stationary Covariance Function 

For two points x1 and x2, a covariance function, k is called stationary if k is a function of (x1-x2). 

This kind of covariance is unvarying to translation, i.e., the covariance function value depends 

only on the difference vector, not the original points x1 and x2(Genton, 2001). Popular stationary 

covariance functions include exponentiated quadratic function, rational quadratic function, etc. It 

can be noted here that the covariance function, k can also be a function of ||x1-x2||,in which case it 

will be called an isotropic kernel, where, ||x1-x2|| is the Euclidean distance or L2 norm (Horn & 

Johnson, 2012). For any vector x=( x1, x2, …., xn), the L2 norm is: 

Covariance Functions

Stationary Non-stationary
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 ||x||=√x1
2+x2

2+……+xn
2 (3.22) 

 

Stationary kernels are known to be used in both forms. Isotropic functions are also known as 

radial basis functions (RBF). 

 

3.3.2.1.1 Exponentiated Quadratic Kernel 

The exponentiated quadratic (EQ) kernel is also known as the squared exponential (SE) kernel. 

The kernel has the following form: 

 kES (x1, x2) = σ2 exp (−
(x1-x2)

2

2l2 ) (3.23) 

 

Here, σ2is the variance, and l is known as the length-scale. The variance is a scaling factor whose 

larger value means the points are far from the mean and a lower value means that the points are 

closer to the mean. The length-scale determines the smoothness of the function. The lower this 

value is, the "wigglier" the function is, i.e., the function values can change rapidly, whereas a 

larger length-scale provides a smoother function. Figure 3.2 shows the variation of output due to 

different variance and length-scale. It is clear from equation (3.23) that the more any two points 

x1and x2are close to each other, the less is the difference (x1-x2), resulting in a higher 

covariance, and vice-versa. This is how this kernel function provides a sense of similarity or 

closeness.   
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Figure 3.2: Variations of the exponentiated quadratic kernel 

3.3.2.1.2 Rational Quadratic Kernel 

Rational quadratic (RQ) kernel can be expressed as:  

 kRQ (x1, x2) = σ2 (1+ (x1-x2)
2

2αl2 )

-α

 (3.24) 

 

This kernel has 3 parameters: signal variance, σ2, length-scale, l, and scale-mix, α (α> 0). The 

RQ kernel is analogous to having an infinite sum of exponentiated quadratic kernels with 

different length-scales and α works as a weighting factor. As α→∞, the rational quadratic kernel 

becomes the exponentiated quadratic kernel. Figure 3.3 shows the variations in the RQ kernel for 

varying l and α for a constant noise variance, σ=1. 

  

  

Figure 3.3:Variations of the rational quadratic kernel (σ=1) 
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3.3.2.1.3 Matérn Kernel 

The Matérn kernel has the following expression:  

 kν (x1, x2) = σ2 21-ν

Γν
(√2ν ||x1-x2||

l
)

ν
Kν(√2ν ||x1-x2||

l
) (3.25) 

 

The parameters for the Matérn kernel are σ2,ν, and l. Here, Kν is a Bessel function (Abramowitz 

& Stegun, 1965),ν is the function order, σ2 is the overall variance, and length-scale, l is similar to 

the exponentiated quadratic kernel. Figure 3.4 shows variations of this kernel for various l and ν 

while variance was kept constant at σ=1. 

 

  

  

Figure 3.4: Variations of the Matérn kernel (σ=1) 

 

3.3.2.2 Non-stationary Covariance Function 

A covariance function k of two points x1 and x2is called non-stationary if k is not a function of  

(x1-x2). The functional relationship can vary in this case. Popular non-stationary covariance 

functions include dot product kernel, periodic kernel, polynomial kernel, etc. (Rasmussen & 

Williams, 2006). 
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3.3.2.2.1 Dot Product Kernel 

The dot product kernel’s expression is:  

 kdot (x1, x2) = σ2+x1.x2 (3.26) 

 

where the k is related to the points x1 and x2through (x1.x2). The only parameter isσ2, which is the 

overall variance. The dot product kernel is not much suited for the regression problem but is 

highly used in high-dimensional classification task (Schӧlkopf & Smola, 2002). Figure 3.5 

shows the variations of dot product kernel for different values of the signal variance. 

 

  

  

Figure 3.5: Variations of the dot product kernel 

 

3.3.2.2.2 Periodic Kernel 

The periodic kernel is a non-stationary kernel that is related to the inputs through a periodic 

function, specifically a sine function. This kernel was proposed by (MacKay, 1998). It is 

sometimes known as the exponential sine squared kernel and has the form of: 

 kPER (x1, x2) =  σ2exp (−
2 sin2 (π |x1-x2|/p)

l2 ) (3.27) 
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This kernel allows the modeling of periodic functions. The term p is the period that gives the 

distance between the repetitive function values and the length-scale, l has the same properties as 

in the EQ kernel. The variations of this kernel can be seen in Figure 3.6. 

  

  

Figure 3.6:Variations of the periodic kernel 

 

In Table 3.1, a summary of the most popular kernels has been presented in terms of their 

expression, parameters, and their class. 

Table 3.1: Popular kernel functions 

Name of the Kernel Expression Parameters Class 

Exponentiated Quadratic Equation (3.23) σ2, l Stationary 

Rational Quadratic Equation (3.24) σ2, l, α Stationary 

Matérn Equation (3.25) σ2, l, ν Stationary 

Dot Product Equation (3.26) σ2 Non-stationary 

Periodic Equation (3.27) σ2, l, p Non-stationary 
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There are some other popular kernels such as the constant kernel, white-noise kernel, Gaussian 

kernel, sigmoid kernel, etc. More about kernels can be found in (Duvenaud, 2014). It is to be 

noted that two or more kernels can be combined to make a hybrid kernel. The hybrid kernel 

might be appropriate in situations where the single kernel might not perform well. 

 

3.3.2.3 Kernel Hyperparameters  

One important feature of the kernel matrix is the hyperparameters. Generally, model parameters 

are values that are learned by the algorithm from training (Yuan et al., 2008). For instance, in the 

case of linear regression, the intercept and slope are the model parameters that are calculated 

based on some training datapoints. The algorithm does not start with some predefined value for 

parameters. However, model hyperparameters are values that are primarily defined by the 

practitioner. Hyperparameters are often used to learn the model parameters (Probst, Bischl, & 

Boulesteix, 2018). In the context of the Gaussian process, the parameters of the kernel functions 

are called the kernel hyperparameters because their values are set beforehand. 

 

3.3.2.4 Validity of Kernels 

Although there is a wide variety of kernels that may be used as the prior distribution, there is a 

certain restriction on the kernels to be a valid kernel. The condition is that the kernel needs to be 

apositive-definite (PD) or positive-semidefinite (PSD) in nature (Jylänki, Vanhatalo, & Vehtari, 

2011). This is known as the Mercer theorem (Fuchs & Rogosinski, 1942). A real-valued n×n 

matrix, k is called a positive-definite if satisfies vTkv>0, for all vectors v∈ℝn, and positive semi-

definite if vTkv≥0(Rasmussen & Williams, 2006). A symmetric matrix is positive definite if all 

the eigenvalues are positive and positive semi-definite if all the eigenvalues are non-negative. 

 

3.3.2.5 Significance of Kernels 

As stated earlier, the covariance function is one of the parameters of the Gaussian process. In 

typical machine learning practice, it is assumed that some form of feature function is available 

upon which the task (classification, regression, etc.) is performed. However, it is not always 
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possible to specify this feature function explicitly. For example, text-documents, atomic 

structures, and similar cases prohibit the use of an explicit feature function. For cases such as 

these, the logical way to perform the machine learning task is through “similarity functions” 

(Scholkopf & Smola, 2018). The key idea is to learn the similarity without the knowledge of the 

feature space. It is relatable that two close points will produce outputs that themselves are close. 

This is where the kernel functions come into aid. Kernel functions measure the similarity of 

function values corresponding to given data points. In the GP paradigm, covariance function or 

kernel function is what determines this closeness or similarity. And given the general notion of 

taking a zero-mean for the prior distribution, it is the kernel function that specifies the prior 

distribution entirely (Csató & Opper, 2002). Therefore, the covariance function or the kernel 

function is what the Gaussian process is built upon.  

 

3.4 Gaussian Process Regression (GPR) 

Regression is a machine learning routine to map the functional relation between the input 

variable(s) or regressor(s) and the response variable(s) (Draper & Smith, 1998). Regression can 

be broadly classified into two classes based on the characteristics of the relationship relating the 

input to the output: linear regression (LR)and nonlinear regression (NLR). For linear regression, 

the input is linked linearly with the response(s) and for nonlinear regression, the relation takes 

the form of some nonlinear function. Gaussian process regression is specifically suited for non-

linear regression tasks(Snelson & Ghahramani, 2006).  

GPR for two cases of nonlinear regression is discussed below: noiseless nonlinear regression and 

noisy nonlinear regression. For avoiding confusion, the response of a noiseless and noisy NLR is 

denoted by f and y, respectively. 

A typical nonlinear regression (NLR) problem is defined by: 

 f = ∑ wi
n
i=1 φi(xi) = Φ(xi).w  [noiseless NLR] (3.28) 

 y ~ f (x) + ɛ [noisy NLR] (3.29) 

 ɛ ~ N (0, σn
2)  (3.30) 
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Two variants of NLR are considered here. Equation (3.28) represents the noiseless non-linear 

regression, and equation (3.29) describes a noisy non-linear regression problem, where ɛ is the 

Gaussian noise. Here, Φ(xi) = [φ(x1), ……., φ(xn)] is the basis function vector with basis 

functions represented by φ(xi). The basis function is a way to map the relationship between the 

input and the response(Hensman & Lawrence, 2014). For linear regression, the basis function 

would be a linear function of x and for nonlinear regression, the basis function would be a 

nonlinear function of x. For example, the linear relationship can be of Φ(xi) = [x1, x2, …., xn], 

where Φ(xi) is linear in terms of x. In contrast, for non-linear regression, the relationship starts 

with x having an exponent of 2 or higher. Also, from equation (3.28), w = [w1, w2, …, wn]T 

represents the weight vector.  

Based on the Bayesian philosophy, the first task is to define the prior. After that, the posterior is 

calculated with the help of the evidence. 

 

3.4.1Defining the Prior 

In this regression problem, let the prior on the weight vector be defined by a Gaussian process: 

 w ~ N (0, ∑w) (3.31) 

 

for the function f(x) = φ(x)Tw, the mean and the covariance is defined by: 

 E[f(x)] = φ(x)TE(w) = 0 (3.32) 

 E[f(x) f(x̃)] =  φ(x)TE(wwT)φ(x̃) = φ(x)T∑wφ(x̃) (3.33) 

 

where, x̃ is another vector and the covariance of the weight vector, w is given by:  

 ∑w= E(wwT) = K(x, x̃) (3.34) 

 

It can be said from equations (3.32) and (3.33) that f(x) and f(x̃) are jointly Gaussian with zero-

mean and covariance of φ(x)T∑wφ(x̃). 



29 
 

It is noticeable that the specification of the covariance function defines a distribution over 

functions. In other words, different function values can be achieved for each value of the 

parameters of the kernel (i.e., hyperparameters) which conforms to a distribution of function 

values. It is possible to draw samples from this distribution of functions at points of interest. It is 

important to remember that in GPR, test points are taken into the modeling from the beginning. 

Let, x* be the test points. Using the prior distribution, evaluations can be made at x*, which is 

denoted by f* and is defined as: 

 f*=N (0, K(x*,x*)) [noiseless NLR] (3.35) 

 y*=N (0, K(x*,x*)) [noisy NLR] (3.36) 

 

3.4.2Posterior Predictive Distribution 

In general, the predictive posterior distribution is: 

 P(f*| x*, x, f) = ∫ P(f*|w, x, f, x*) P(w|x, f) dww  [noiseless NLR] (3.37) 

 P(y*| x*, x, y) = ∫ P(y*|w, x, y, x*) P(w|x, y) dww  [noisy NLR] (3.38) 

 

Here, x represents the training points, f and y are the observations at x for noiseless regression 

and noisy regression, respectively, and x*denotes the test points. Unfortunately, equations (3.37) 

and (3.38)do not result in a closed-form solution (Quiñonero-Candela & Rasmussen, 2005). 

However, there is a solution to this problem. Because of assuming a Gaussian likelihood and a 

Gaussian prior, the posterior distribution is also Gaussian and the predictive posterior 

distribution is given by: 

 P(f*| x*, x, f) = N(μ*,∑*) [noiseless NLR] (3.39) 

 P(y*| x*, x, y) = N(μ*,∑*) [noisy NLR] (3.40) 

 

where,μ* and ∑* are the mean and covariance of the predictive distribution respectively. The 

expressions of μ* and ∑* can be found easily. By definition of the Gaussian process, the joint 

distribution of the observed function values, f, and the predicted function values, f* is given by: 
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 [
f
f*

] ~ N (0, [
K(x, x) K(x, x*)
K(x*, x) K(x*,x*)]) [noiseless NLR] (3.41) 

 [
y
y*

] ~ N (0, [
K(x, x) + σn

2I K(x, x*)
K(x*, x) K(x*,x*)

]) [noisy NLR] (3.42) 

Using short notations,  

 [
f
f*

] ~ N (0, [
K K*
K* k*

]) [noiseless NLR] (3.43) 

 [
y
y*

]  ~ N (0, [
K+ σn

2I K*
K* k*

]) [noisy NLR] (3.44) 

 

Here, K = K(x, x) is the covariance matrix of the training points x, K*= K(x, x*)= K(x*, x) is the 

covariance matrix of training points x and test points x*, and k*= K(x*,x*) is the covariance 

matrix of the test points. If there are n number of training points and n* test points, K will be an 

n × n matrix, K*will be an n × n* or an n*× n matrix, and k* will be an n*× n* matrix. 

The main objective here is to incorporate the knowledge about the training data and discard those 

functions that do not agree with the observations. This is done with the help of conditioning. 

Conditioning on the joint distribution in equations (3.43) and (3.44) gives: 

f*| x*, x, f ~ N (K(x, x*)K(x, x)-1f,  K(x*, x*) – K(x, 

x*)K(x, x)-1K(x*, x)) 
[noiseless NLR] (3.45) 

y*| x*, x, y ~ N (K(x, x*)(K(x, x)+σn
2I)-1y, K(x*, x*)– K(x, x*)K(x, x)-1K(x*, x)) [noisy 

NLR] 
(3.46) 

 

or, 

 f*| x*, x, f ~ N (K*K-1f, k*– K*K-1K*) [noiseless NLR] (3.47) 

 y*| x*, x, y ~ N (K*(K+ σn
2I)-1y, k*– K*K-1K*) [noisy NLR] (3.48) 

 

Equations (3.47) and (3.48) give the mean and the covariance of the predictive posterior 

distribution for the noiseless case and noisy case, respectively. From equations (3.47) and (3.48): 
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 Predictive mean, μ*= K*K-1f [noiseless NLR] (3.49) 

 Predictive Covariance, ∑*= k*– K*K-1K* [noiseless NLR] (3.50) 

 Predictive mean, μ*= K*(K+ σn
2I)-1y [noisy NLR] (3.51) 

 Predictive Covariance, ∑*= k*– K*(K+ σn
2I)-1K* [noisy NLR] (3.52) 

 

From an earlier point, it was mentioned that mean of the prior distribution does not affect the 

posterior mean. From equations (3.49) or (3.51), it is evident that, despite using a zero-mean for 

the prior distribution, the predictive mean is not zero at all. It is also noticeable from equations 

(3.49) to (3.52) that an inversion of the kernel matrix of the training points, K is needed to make 

predictions. The main computational challenge occurs here. With n increasing, K increases 

proportionally in size (n × n), leading to unmanageable computations with large n. 

 

3.4.3 Optimizing Kernel Hyperparameters 

The kernel hyperparameters are the parameters of the kernel functions that are prespecified and 

not learned from the model. As the values of the hyperparameters are user-defined, it is 

important to find the optimum values for the hyperparameters, θ. The marginal likelihood or the 

evidence is linked to the kernel by the following equations (Rasmussen & Williams, 2006). 

Hyperparameters θ are embedded in the kernel function. 

 log P(f | X) = – 1
2

fTK-1f– 1
2

log |K| – n
2

log 2π [noiseless NLR] (3.53) 

 log P(y| X) = – 1
2

yT(K+ σn
2I)-1y – 1

2
log |K+ σn

2I| – n
2

log 2π [noisy NLR] (3.54) 

 

In equations (3.53) and (3.54), the first term denotes model fitting, the second term is for the 

model complexity depending only on the kernel function, and the last term represents a 

marginalization constant (Rasmussen & Williams, 2006). The optimum values of 

hyperparameters can be found by maximizing the log marginal likelihood or by minimizing the 

negative log-marginal likelihood (Lázaro-Gredilla et al., 2010). 
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In Figure 3.7, GPR has been presented graphically. Figure 3.7(a) shows the prior distribution 

over functions, where 30 samples have been taken. Figure 3.7(b) plots the observations. In figure 

3.7(c), the knowledge of the training data is fed to the prior distribution. Figure 3.7(d) illustrates 

that the GPR model only retains those functions that go through the observations and discards 

the rest of the functions. This is how a non-parametric method such as Gaussian process 

regression ensures that the parameters agree with the training knowledge. This figure also gives 

the predictive posterior distribution. It can be seen from Figure 3.7(a) that the function mean 

vector is represented by a bold black line. In Figure 3.7(d), this mean line is not at the zero-value 

anymore, rather it now represents the predictive posterior mean of the process. This proves a 

point made earlier in the chapter that the assumption of a zero-mean vector does not have any 

effect on the posterior mean whatsoever. 

 

 

 

 

(a)  (b) 

 

 

 

(d)  (c) 

Figure 3.7: Graphical representation of Gaussian process regression 
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3.4.4 Merits of Gaussian Process Regression 

Gaussian process regression is a widely used nonlinear fitting algorithm because it has the 

following properties:  

Exact Inference of Posterior Distribution: GPR allows the analytical calculation of the 

predictive posterior distribution. From equations(3.37) and (3.38), it can be seen that the 

expression could not be evaluated in closed-form. However, because of using a Gaussian process 

prior and a Gaussian likelihood, the predictive posterior distribution can be computed exactly in 

closed form. This is a rare property for a non-parametric method(Duvenaud, 2014). 

Quantification of Prediction Uncertainty: Typical kernel machines such as support vector 

machine are not probabilistic in nature, i.e., they cannot quantify the error in the prediction. 

However, Gaussian process regression overcomes this limitation of kernelized methods due to its 

explicit probabilistic formulation (Ranganathan et al., 2010). As a result, they can provide a 

confidence interval of their predictions.  

Efficiency for Smaller Datasets: Equations (3.49) to (3.52) presents the predictive posterior 

mean and covariance of the Gaussian process. The main computational burden occurs at the 

inversion of the kernel matrix. As long as the dataset is small or moderate in size, the basic GPR 

provides excellent performance in terms of computational time and memory. 

Superior Fitting Performance: A useful property of GPR is that it converges to the data 

distribution very rapidly. For typical parametric methods and even for other non-parametric 

methods, the number of training points plays a role in the model performance. Generally, these 

methods require relatively more data points to provide an acceptable model performance. 

However, it has been reported that GPR can perform at a satisfactory level even with a small set 

of training data (Yuan et al., 2008). 

Flexible Modelling: One of the reasons for the wide usage of GPR as a modeling tool is that it 

provides impeccable flexibility to the modeler. For instance, there is a wide range of kernel 

functions available, and the modeler can test the performance of the kernels and choose any 

kernel according to need.  Again, modeling with non-Gaussian likelihood is also possible. Of 

course, an exact posterior distribution cannot be for this case; however, approximate results can 

be achieved (Hensman et al., 2013; Jylänki et al., 2011).  
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3.4.5 Shortcomings of Gaussian Process Regression 

Despite having some excellent properties, GPR has limited usage in some cases due to the 

following limitations: 

Inefficacy to Handle Large Dataset: Equations (3.49) to (3.52) give that for making 

predictionsan inversion of the n×n covariance matrix is mandatory which has O(n3) 

computations and O(n2) memory (Lázaro-Gredilla et al., 2010). As n grows, it becomes 

computationally infeasible. Although the use of Cholesky decomposition reduces the 

computation in half, still GPR for big datasets is not time and memory-efficient (Alex J. Smola 

& Bartlett, 2001). 

Overfitting Issue: Gaussian process regression is quite susceptible to overfitting (Mohammed & 

Cawley, 2017). Overfitting refers to the problem where the model performs very well on the 

training set but gives poor predictions on the test set (Subramanian & Simon, 2013). As a result, 

the predictive distribution can amplify very small fluctuations in the training dataset. A possible 

treatment of overfitting is using some form of regularization such as ridge regression (Sarle, 

1996). 

 

Gaussian process regression, despite being an excellent regression method, is prohibitive in some 

cases, especially involving big datasets. To alleviate the limitations of the original model, 

researchers firstproposed sparse methods. Sparse methods, although lucrative, possess some 

inherent pitfalls, one of the main reasons behind thisisthat these methods areimplemented in a 

batch setting. To cope with the issue, incremental learning emerged. Eventually, the 

collaboration of many existing methods was seen in the literature. In the next chapter, a 

discussion on the principal learning dynamics of a typical machine learning model is presented. 

Based on the discussion of the next chapter, the proposed methodology is presented in the next-

to-next chapter.  
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CHAPTER4 

LEARNING DYNAMICS IN MACHINE LEARNING 

 

Before presenting the mechanism of the proposed methodology for Gaussian process regression 

in the next chapter, a discussion on learning schemes in machine learning seems appropriate. In 

this chapter, two principal learning techniques in machine learning namely batch learning and 

incremental learning have been discussed. In section 4.1, a description of batch learning, its 

assumptions, characteristics, merits, and limitations have been provided. Section 4.2 offers a 

discussion on incremental learning strategy, its properties, benefits, challenges, and applications. 

 

4.1 Batch Learning 

Batch learning is the traditional way to perform machine learning tasks. This is also known as 

offline learning. Generally, the dataset is allotted into two groups for this learning: a training set 

and a validation/test set. This is usually done in a 70%-30% ratio, although this is up to the user. 

The main reason for dividing the dataset into these two portions is, only training a model based 

on the dataset is not enough, information on the model performance is also important. Therefore, 

after training the model using the training set, the validation set is used to predict the model 

output(s) and compare it to the true output(s). At this point, some error metrics can help 

understand how competently the model is performing. The batch learning methodology is 

presented in Figure 4.1. 

4.1.1 Assumptions of Batch Learning 

Batch learning deems the following assumptions: 

Availability of training data:  The main assumption of batch learning is, it takes that all the 

training data is available before modeling(Bishop, 2006).  

Consistency in data characteristics: Batch learning considers the dataset and its characteristics 

to be static (Gepperth & Hammer, 2016),i.e., the underlying distribution of the data does not 

change over time.   
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Figure 4.1: The architecture of batch learning 
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4.1.2 Characteristics of Batch Learning 

Batch learning possesses the following characteristics: 

Simultaneous use of the full dataset: In batch learning, all training points are used at once 

(Nilsson, 1996). If there is any change in the training set, the model needs to be updated as a 

whole if operating in a batch setting. 

Memoryless property: Batch learning does not retain training knowledge (Mitchell, 1997). It 

can generate predictions based on a static training set. For any additional information, the model 

has no way of updating the existing knowledge other than to be trained again. 

 

4.1.3 Merits of Batch Learning 

Batch learning inherits the following advantages: 

Reliable estimation of model parameters: As batch learning uses every point in the dataset at 

the same time, model parameters can be learned with greater accuracy (Bottou & Cun, 2003). 

Even if this is an approximated measure, it is close to the actual parameters.  

Economy for smaller datasets: For small datasets, batch learning is quite effective. It does not 

take much time or memory to train a model on small datasets with batch learning (Cheng & 

Boots, 2016).  

 

4.1.4 Limitations of Batch Learning 

Some of the major limitations of batch learning are listed below: 

The high expense for big datasets: Computational complexity and memory requirement of 

batch learning generally grows with the data instances. When the size of the dataset grows, batch 

learning becomes expensive(Cheng & Boots, 2016). Typical time complexity and memory 

requirement for batch-GPR are O(n3) and O(n2), which increases with the dataset size (Smola & 

Bartlett, 2001). 
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Incapability to accommodate streaming input: For streaming input, batch learning fails to 

accommodate the processing because the algorithm will have to retrain every time a new training 

point becomes available, which is computationally infeasible (Ade & Deshmukh, 2013).s 

Inability to adjust to variable training set: Batch learning also fails when training data points 

are removed (Lütz et al., 2013). Retraining is inevitable for this case too. 

To overcome these shortcomings, another learning strategy called incremental learning has 

become popular. 

 

4.2 Incremental Learning 

Incremental learning is the most recent machine learning strategy. This learning scheme is also 

known as sequential learning. Incremental learning is sometimes used interchangeably with 

online learning; however, online learning might be slightly different in the sense that online 

learning is not committed to always keep the training knowledge in memory (Saffari et al., 

2009). Many researchers have used them to point at the same thing. Anyhow, the basic idea of 

incremental learning is to not consider the whole training dataset at once, rather taking up 

training points one-by-one and learning from it. Incremental learning offers certain key 

advantages because incremental learning does not confine itself to the assumptions of batch 

learning.  The incremental or sequential learning strategy can be perceived as in Figure 4.2.  

 

4.2.1 Characteristics of Incremental Learning 

Incremental learning has the following traits: 

Sequential use of training points: In contrast to batch learning, this methodology does not 

entertain the use of training sets in the traditional sense. Instead of the instantaneous learning 

from the training set, this model learns sequentially from individual points (Mitchell, 1997). 

Retention of model knowledge: Incremental learning is ought to hold on to the learning for as 

long as the modeler wants (Ade & Deshmukh, 2013). As this strategy is based on learning from a 

sequential feeding, the model will not work if it cannot remember what it has learned so far. That 
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is why the incremental learning model typically possesses the model knowledge retention 

property. 

 

Figure 4.2: The architecture of incremental learning 
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Alteration in data distribution: Batch learning takes the data characteristics to be static for 

granted, which may not work for incremental learning. As the application of incremental 

learning dictates the length of time for which the training points will be collected, there is no 

guarantee of how long this time is going to be. It could be in months, or even years. In this long 

period, the underlying data distribution might change (Tsymbal, 2004). Therefore, this 

assumption does not hold water for incremental learning. 

 

4.2.2 Merits of Incremental Learning 

Incremental learning is attractive as it provides the following benefits: 

Flexibility in modeling: This process can adjust to the new arrival of datapoints which makes it 

compatible to work with streaming input(Nguyen-Tuong, Seeger, et al., 2009). As a result, in the 

cases where the data is provided by human feedback can be handled with this kind of learning 

strategy. Not only for new arrivals, but the existing points in the training set can also be removed 

through appropriate “de-learning” techniques (Cao & Yang, 2015). 

Efficiency in memory usage: Incremental learning offers efficient memory consumption. As 

this kind of algorithm is often used in applications with memory or resource limitations, data are 

kept in a concise way that ensures inexpensive memory usage (Gepperth & Hammer, 2016).  

Control over model expense: Incremental learning scheme can control the cost to update the 

knowledge (Mouchaweh, Devillez, Lecolier, & Billaudel, 2002). Computations and memory 

requirements can be kept to a minimum (Nguyen-Tuong, Seeger, et al., 2009). 

 

4.2.3 Challenges with Incremental Learning 

Some real challenges with incremental learning are listed below: 

Online parameter adaptation: Incremental learning tries to provide a reliable model whenever 

a new data point is trained. In batch learning, all the data points arrive at the same time, so there 

is no problem in determining the parameters from the data. However, incremental learning does 

not permit knowing how many points to train in advance. As a result, the parameters need to be 
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estimated every time the model takes in new samples. This is a major challenge for incremental 

learning. 

Concept drift: One important presumption of batch learning is that it treats the observations as 

static, i.e., the data characteristics do not change over time. However, incremental learning works 

with a broader time-range. Therefore, the data characteristics might alter with time. This 

alteration in the distribution of the data is known as concept drift(Kulkarni & Ade, 2014; Polikar 

& Alippi, 2013; Tsymbal, 2004) Some typical concept drift seen in practice are: 

(i) Virtual concept drift: This drift refers to the changes in the input distribution. For the 

input x of a certain system, alterations in p(x) will be known as virtual concept drift 

(Ditzler, Roveri, Alippi, & Polikar, 2015). This occurs when the training data and the test 

data does not conform to the same distribution. This is also known as covariate 

shift(Sugiyama, Krauledat, & MÃžller, 2007).  

(ii) Real concept drift: This drift points to the changes in the marginal distribution of the 

output. For a set of input x and output y, if the marginal distribution or evidence p(y| x) 

changes with time, it is known as real concept drift (Gama, Žliobaitė, Bifet, Pechenizkiy, 

& Bouchachia, 2014). This is a serious problem for machine learning tasks, especially 

classification (Gepperth & Hammer, 2016). 

(iii) Concept shift: Concept drift can occur slowly or abruptly. If the change is sudden 

and vigorous, then this phenomenon is known as concept shift(Vorburger & Bernstein, 

2006). 

(iv) Local concept drift: If the drift occurs in a particular region, it is called local 

concept drift(Tsymbal, 2004).  

A combination of incremental and decremental learning might be helpful against concept drift 

(Raducanu & Vitria, 2008).  

Stability-plasticity dilemma: When concept drift exists in the system, another challenge 

presents itself regarding the timing and the means of updating the knowledge of the system. If 

the system is updated quickly, the new information is updated quickly; however, there is a 

chance that the old information is forgotten equally quickly. On the other hand, if the system is 



42 
 

slow to update, the old knowledge is kept all right but the new information might be lost due to 

the lag. This trading off of the knowledge between old and new models is known as the stability-

plasticity dilemma(Mermillod, Bugaiska, & Bonin, 2013). If the stability-plasticity dilemma gets 

even worse, it can give rise to catastrophic forgetting, which is extremely undesirable for 

machine learning models as this leads the model to forget everything it has learned so far 

(McCloskey & Cohen, 1989).  

Adaptive model complexity: For batch learning, model complexity is static. However, as the 

training samples vary from time to time for incremental models and full training knowledge is 

not available at any given moment, the model complexity is variable in this scenario. Due to this 

reason, resource allocation for incremental learning is of importance. A typical treatment of this 

issue is gradual de-learning of the model which allows the model to remove training points after 

the training set has reached a certain size (Gepperth & Hammer, 2016).  

Efficient memory management: Incremental models are needed particularly in the cases where 

there is a resource limitation (Ade & Deshmukh, 2013). Therefore, these models are required to 

store information concisely. This challenge limits these algorithms to use expensive 

approximations. Also, incremental learning methods sometimes require the use of decremental 

un-learning strategies to ensure optimum memory usage (Raducanu & Vitria, 2008).  

 

4.2.4 Applications of Incremental Learning 

Some of the applications of incremental learning are listed below: 

Big data analytics: Principal application of incremental learning methodology is in big data 

processing, unquestionably. Due to the high expense of batch learning in the context of big 

datasets, incremental learning by default becomes the preferred choice. For example, incremental 

learning has been popular with big datasets that allow only a single sweep of the training set due 

to memory limitations (Hammer, He, & Martinetz, 2014). Other than this, big data visualization 

(Malik, Hussain, & Wu, 2016), extreme learning in big data classification (Xin, Wang, Qu, & 

Wang, 2015), and network data processing (Dhanjal, Gaudel, & Clémençon, 2014) are some of 

the many examples of the use of incremental learning in the big data processing. 
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Robotics: Learning of the system dynamics and the human-robot interactions in robotics are 

inherently incremental. The system learns from a stream of data points arriving over time 

(Gepperth & Hammer, 2016). This is analogous to “lifelong learning” for humans. Other than 

robotics, autonomous driving is also using the basic principles of incremental learning 

(Mozaffari, Vajedi, & Azad, 2015). 

Image processing: Incremental learning is beneficial to applications involving training samples 

in the form of images or videos being available over time. Typical application areas include 

object identification, video surveillance, facial recognition (Bai, Ren, Zhang, & Zhou, 2015; 

Dewan, Granger, Marcialis, Sabourin, & Roli, 2016; Lu, Boukharouba, Boonært, Fleury, & 

Lecoeuche, 2014). 

 

Based on the description above, it suffices to say that batch learning is not a popular way of 

training machine learning models, especially for big datasets and streaming training points. Even 

if not for these applications, batch learning has other limitations. As a result, batch algorithms, in 

this context specifically batch-GPR is not attractive anymore. Naturally, the incremental 

implementation of Gaussian process regression is necessitated. In the next chapter, the proposed 

methodology that this thesis is proposing is presented in detail.  
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CHAPTER 5 

PROPOSED SPARSE INCREMENTAL GAUSSIAN PROCESS 

REGRESSION 

 

Gaussian process regression, despite being useful and efficient in certain situations, is not sparse, 

i.e., it considers the entire training set. Therefore, the algorithm struggles with additional 

computational complexity and memory requirements in general for larger datasets. As a result, 

sparse methodologies have been used massively among researchers to approximate the full-rank 

GPR. Additionally, some research proposed online learning strategies. In this chapter, a 

methodology called sparse-incremental Gaussian process regression (si-GPR) has been 

presented that combines sparse representation and incremental learning strategy. The proposed 

methodology uses a simpler yet effective approximation tool with a flexible model updating 

routine and an additional de-learning approach so that the proposed algorithm remains 

computationally feasible and provides better performance. In section 5.1, the notations used to 

denote the components of the algorithm are provided. Section 5.2 presents a general overview of 

the proposed algorithm. In section 5.3, a detailed breakdown of the algorithm is given with a 

flowchart. And finally, the pseudocodes for the modules are presented and explained in section 

5.4.  

 

5.1 Notations used for the Proposed si-GPR Algorithm 

Table 5.1 presents the notations used for explaining the si-GPR algorithm: 

Table 5.1: Notations for si-GPR algorithm 

Symbol Description 

n The original number of data points 

D Original dataset 

Dtrain Original training Set 

Dtest Test set 
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D1 Initial training set 

D2 Streaming set 

DR Representative set 

KR Kernel matrix of the representative set, DR 

LR Lower Cholesky factor of the kernel matrix, KR 

LR
-1 Inverse lower Cholesky factor of the kernel matrix, KR 

KRmax Maximum size of the kernel matrix 

XR Training matrix at any given iteration for streaming input 

Knew  Covariance vector of existing training vector with a new point 

K* The variance of the new point 

Kupdated Updated kernel matrix at any iteration for streaming points 

Lnew Lower Cholesky factor for the Knew matrix 

Lupdated Updated lower Cholesky factor for Kupdated at any iteration 

Lupdated
-1  Inverse lower Cholesky factorfor Kupdatedmatrix 

 

5.2 General Overview of Sparse Incremental Gaussian Process Regression (si-GPR) 

The proposed methodology consists of the following three phases: 

5.2.1 Phase-1: Approximation/ Sparsification  

This is the first phase of the proposed algorithm. The training set is segregated into two classes 

called the initial training set and the streaming set in a 50%-50% ratio. Phase-1 deals with only 

the initial training set. This algorithm does not seek to make predictions with the whole dataset, 

rather tries to approximate the original dataset without increasing computation. That is why this 

thesis has used a representative dataset instead of the original set. A representative dataset is a set 

that can replicate the behavior of the original dataset despite having lesser instances than the 

original set(Yoshioka & Ishii, 2001). An effective algorithm called clustering using 

representatives or CURE(Guha, Rastogi, & Shim, 1998)was used for this purpose. The output of 

this algorithm, i.e., the representative points tries to reproduce the geometry of the original 

clusters. This particular algorithm was used because it has some desirable properties:  
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(i) It can identify arbitrarily shaped clusters  

(ii) The algorithm is immune to outliers 

(iii) The computational requirement is less. The time complexity for this algorithm is O(n2), and 

the storage requirement is O(n), where n is the total number of data points. 

The operation of obtaining the representative set is known as the sparsification operation. The 

rationale for using sparsification was to gain a computational edge. After obtaining the 

representative set, the kernel matrix for this dataset, KR,and the lower Cholesky factor of theKR 

matrix, LR was calculated which were required for a specific reason mentioned in the next phase. 

 

5.2.2 Phase-2: Incremental Learning 

This phase allows the proposed algorithm to accommodate streaming input, i.e., input that 

arrives over time and is fed to the model sequentially. It should be noted here that this thesis did 

not handle actual streaming input due to resource limitations. To make up for this limitation, the 

streaming set was loaded in the memory at a time but the points were fed sequentially just as the 

real feedback input would have been. From the discussion in chapter 3, it is noticeable that an 

inversion of the covariance matrix needs to be performed to make predictions. In typical GPR, 

for n data instances, the covariance/kernel matrix is an n×n matrix, that needs to be computed at 

once. The inversion of the covariance matrix demands O(n3) operations. However, the streaming 

input will arrive over time and there is no guarantee regarding when the training might end. If the 

computations were to run every time a new point arrives, the incremental learning attempts 

would have been futile. If the kernel matrix is examined closely, it can be noticed that the 

interaction of a new point with the existing points can be expressed through a particular row and 

column of the kernel matrix. Hence, the idea of augmenting the kernel matrix and its lower 

Cholesky factor emerged rather than computing it in every single iteration. From phase-1, it can 

be seen that a kernel matrix of the representative set and its lower Cholesky factor was 

calculated. The basic idea of implementing incremental learning in this thesis was to extend 

these two matrices for each new point. Although the kernel matrix is being augmented here in 

every iteration, this will not be directly used for the inversion. Rather, the Cholesky factorization 

will be used to invert this matrix. The reason for using Cholesky decomposition instead of direct 
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inversion is due to the lesser computation required by the Cholesky method, almost half of the 

direct method of matrix inversion (Rasmussen &Williams, 2006). Now, for implementing the 

incremental learning, the idea is to augment the lower Cholesky factor in every iteration, which 

means appending the basic lower Cholesky factor by one row and one column. After the end of 

the training period, the inverse matrix of the augmented lower Cholesky factor was computed. 

From the equation (5.10), it should be clear that the inverse of the updated kernel matrix can be 

calculated through the inverse augmented lower Cholesky matrix.  It should also be mentioned 

here that the calculation of the kernel matrix might seem redundant at this stage; however, this is 

an important step for the de-learning strategy described in the next step.  

 

5.2.3 Phase-3: Decremental Un-learning 

Incremental learning algorithms are often used where there is a memory limitation. Therefore, it 

might be required to keep the computations tractable so that less memory is required. The 

management of the computations can be done through a sequential de-learning strategy. As the 

main computational burden comes from the kernel matrix, an operation can be performed that 

helps the kernel matrix be in a specific size. For instance, if the specified size of the kernel 

matrix is p×p, then when a new data point arrives, the algorithm deletes the first training 

instance, i.e., it deletes the first row and first column of the kernel matrix, so that the new point 

can be accommodated within the preferred size (p×p). This operation ensures the constant size of 

the kernel matrix, thereby confirming a steady training memory usage.  

 

In summary, this algorithm provides a lower-rank approximation through sparsification (phase-

1), an incremental learning strategy that allows sequential input and efficient kernel matrix 

inversion (phase-2), and a decremental unlearning approach that keeps the algorithm 

computationally feasible and also addresses the memory limitation issue (phase-3). Figure 5.1 

maps out the overall structure of the algorithm and the next section provides a detailed 

breakdown of the algorithm. 
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Figure 5.1: Flowchart for the proposed si-GPR algorithm 
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5.3 Detailed Breakdown of the Algorithm 

The outline of the proposed algorithm can be found in Figure 5.1.In this section, the proposed 

modifications have been offered. Steps 1 through 3  of the algorithm fall under phase-1, step 4 is 

dedicated to phase-2, phase-3 concerns step-5, step-6 denotes the end of the training, and step-7 

is related to the model validation. 

Step-1: The training set was divided into halves. The first part of the training set is called the 

initial training set, D1, and the other part is noted as the streaming set, D2. 

Step-2: A data clustering algorithm called CURE (Guha et al., 1998) was applied on the initial 

training set, D1, and a representative set, DR was obtained, which is smaller than the initial 

training set. 

Step-3: Using this representative dataset, DR, the kernel matrix for this set, KR was calculated. 

Additionally, the lower Cholesky factor of the kernel matrix, LR was also computed. 

Step-4: This step allows incremental learning. For the streaming set, D2, each data point will be 

fed successively. In this case, an efficient update of the kernel matrix is needed rather than going 

through the same calculation in each iteration. The strategy used to update the kernel matrix and 

the lower Cholesky factor is similar to (Nguyen-Tuong, Seeger, et al., 2009). 

Efficient Update of the Kernel Matrix:  

The basis for this update is the existing covariance matrix for the representative dataset, KR, that 

was obtained from step-3. Now, for every new training point that is fed one-by-one, only the last 

row and the last column need to be updated. Two interactions are involved here: the covariance 

of the existing training vector with the new point, Knew, and the variance of the point itself, K*. 

The update is given in equation (5.3). Because the kernel matrix is symmetric, only one of them 

(either the row or the column) needs to be calculated that can be transposed to get the other one. 

The last element of the matrix is the variance of the new point. In short, two quantities need to be 

calculated from equations (5.1) and (5.2), which will be used to extend the kernel matrix found 

from the representative set by one row and one column at a time for a new data point. The update 

on the kernel matrix can be seen graphically in Figure 5.2. 
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At the end of  

phase-1,KR 

K(x1, x1) K(x1, x2) …… K(x1, xn/2) 

K(x2, x1) K(x2, x2) …… K(x2, xn/2) 

⁞ ⁞ 
 

⁞ 

K(xn/2, x1) K(xn/2, x2) …… K(xn/2, xn/2) 
 

After 1st iteration in 

phase-2, for point 

xs1,Kupdated 

 

KR K(xR, xs1) 

K(xs1,xR) K(xs1, xs1) 
 

After 2nd iteration in 

phase-2, for point 

xs2,Kupdated 

KR K(xR, xs1) 
K(xR, xs2) 

K(xs1, xR) K(xs1, xs1) 

K(xs2, xR) K(xs2 , xs2) 
 

After nth iteration in 

phase-2, for point 

xsn,Kupdated 

 

KR K(xR, xs1) 
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…… 
K(xR, xsn) K(xs1, xR) K(xs1, xs1) 

K(xs2 , xR) K(xs2, xs2) 

⁞  

K(xsn, xR) K(xsn, xsn) 
 

Figure 5.2:Visualization of incremental updates of the kernel matrix 

⁞ 
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Let, the existing training vector now be XR and the new point x. The covariance of the existing 

training vector with the new point is denoted by Knew, and the variance of the new point is 

denoted by K*, that can be calculated from equations (5.1) and (5.2). 

 Knew= K (XR, x) (5.1) 

 K*= K (x, x) (5.2) 

 

Given the current covariance matrix KR, the updated kernel matrix will be: 

 Kupdated = [
KR Knew

Knew
T K*

] (5.3) 

 

Efficient Update of the Lower Cholesky Factor: 

For inversion of square matrices, popular methods such as the lower-upper (LU) decomposition 

(Rasmussen & Williams, 2006) or the Woodbury formula (M. W. Seeger, 2004)are generally 

incorporated.  

LU decomposition decomposes the original matrix to be inversed into two matrices: an upper 

triangular matrix, U, and a lower triangular matrix, L (Chapra & Canale, 2010). For a typical 

square matrix B, if the lower and upper factors are L and U respectively, then the following 

expression can be written: 

 B = LU (5.4) 

 B-1 = (LU)-1 (5.5) 

  = U-1L-1 (5.6) 

 

The inverse matrices of L and U can be obtained from equations (5.7) and (5.8). 

 LL-1 = I (5.7) 

 UU-1 = I (5.8) 
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When the matrix is symmetric, another technique similar to the LU decomposition known as the 

Cholesky decomposition is used. As the kernel matrix is symmetric, Cholesky decomposition 

can be incorporated for the inversion operation.  

A symmetric matrix A, it can be written as equation (5.4), where L is the lower Cholesky factor: 

 A = LLT (5.9) 

 A-1 = (LLT)
-1

  

  = (LT)
-1

L-1  

  = (L-1)
T
L-1 (5.10) 

 

It can be understood from equation (5.10) that only the inverse of the lower Cholesky factor 

needed to be calculated for finding the inverse of the original matrix. This simple operation 

reduces computations to a good extent. 

Now, for streaming input, the lower Cholesky of the kernel matrix, LR will be updated as 

follows: 

 Lupdated = [
LR 0

Lnew
T L*

] (5.11) 

 LRLnew = Knew (5.12) 

 L* = √K*  − ||Lnew||2 (5.13) 

After the training, only the inverse of Lupdated,denoted by Lupdated
-1 ,is needed to find out the 

inverse of the kernel matrix, Kupdated. 

Step-5: To keep the computations tractable, a decremental un-learning strategy is also offered. 

When the kernel matrix reaches a certain size, for every data point, one row and one column will 

be deleted from the top to keep the matrix in a prespecified shape.  

For example, when the size of Kupdated>KRmax, the algorithm starts deleting the first row and 

column from the current Kupdated matrix. The procedure is illustrated in Figure 5.3.  
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After pth 
iteration,Kupdated 
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⁞ 
 

⁞ 
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Figure 5.3: Visualization of decremental un-learning strategy 
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If the maximum size of the kernel matrix KRmax = p×p, then the matrix can follow the operations 

in Figure 5.3 to keep the computations in check. 

Step-6: When the program reached the end of the training, using the currently updated kernel 

matrix in the last iteration, the algorithm fitted a Gaussian process through it.  

Step-7: Based on this fitting, further evaluations were made on the validation or test dataset. 

There are some popular error metrics such as mean absolute error (MAE), mean squared error 

(MSE), mean percentage error (MPE), mean absolute percentage error (MAPE), etc. for 

validating the model performance. For testing the proposed algorithm, mean absolute error 

(MAE) and root mean squared error (RMSE) metrics were used from equations (5.14) and (5.15) 

as a basis of error evaluation. 

 MAE = 
∑ |ŷi- yi|

n
i=1

n
 (5.14) 

 RMSE = √∑
(ŷi- yi)

2

n
n
i=1  (5.15) 

 

where, 

yi = ith original response 

ŷi = ith approximated response 

n = Total number of data points 

The rationale behind using these two measures is that they are the most used error bars (Chai & 

Draxler, 2014)and the other metrics can be derived from them. It may be noted here, another 

popular metric for regression, R2 was not used. It was due to the reason that the R2 score is not a 

recommended performance estimator for the nonlinear regression problem and is often too risky 

(Cornell & Berger, 1987).  

Additionally, some performance benchmarks such as training time, training memory, testing 

time, testing memory, fitting accuracy, validation accuracy, etc. were evaluated to assess the 

performance of the proposed algorithm. 
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5.4 Pseudocodes for Algorithms used 

Overall, three algorithms have been combined to build the proposed algorithm: (a) Initial sparse 

algorithm (b) Incremental learning algorithm (c) Decremental un-learning algorithm. The initial 

sparse algorithm is presented in section 5.4.1. The incremental learning algorithm and the 

decremental learning algorithm are presented in sections 5.4.2 and 5.4.3, respectively. 

 

5.4.1 Pseudocode for Initial Sparse Algorithm 

This is the initial stage of the algorithm. The algorithm in Table 5.2 is applied in this stage to the 

initial training set, D1 to obtain the representative set, DR, the kernel matrix obtained from it, KR, 

and the lower Cholesky factor, LR. It is noticeable that the algorithm in Table 5.2 uses the CURE 

algorithm. The code for the CURE algorithm is given in Tables 5.3 and 5.4.  

 

Input: Initial Training Set, D1 

Output: Representative set, DR, kernel matrix, KR, lower Cholesky factor, LR 

Table 5.2: Initial sparse algorithm 

Algorithm-1: Initial Sparse Algorithm 

 

 

START 

INPUT{xi, yi}i=1

n
2  

APPLY the data clustering algorithm (Table 5.3) 

FIND the representative dataset, DR 

COMPUTE covariance matrix, KR for DR 

COMPUTE the lower Cholesky factor, LR 

 

END 
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5.4.1.1 Pseudocode for the Data Clustering Algorithm, CURE 

This data clustering algorithm treats every point as a cluster and merges them with the closest 

cluster in subsequent steps (Guha et al., 1998). Two data structures are used by CURE: a heap 

data structure (Cormen, Leiserson, & Rivest, 1990), and a k-d tree data structure (Samet, 1990). 

The heap structure arranges the distances of the clusters to the closest clusters in ascending order 

and the k-d tree structure stores the representative points for each cluster. Also, when two 

clusters are merged, the k-d tree structure computes the cluster which is currently closest to the 

newly merged cluster.    

This algorithm is provided in Table 5.3. It is to be noted that this procedure uses a concatenation 

module for merging the clusters which is given in Table 5.4. The notations, input parameters, 

and the output of the algorithm are provided below: 

 

Notations for CURE: 

cluster.mean = Mean of any cluster 

cluster.rep = Representative points of any cluster 

cluster.closest = Closest cluster to any cluster 

dist (p, q) = Distance between any two points p and q (Any Lp distance/ other kernels) 

extract_min = Routine for deleting the top element from the heap 

r = Number of well-scattered points 

 

Input: Initial training dataset, D1, and desired number of cluster, k 

Output: Representative cluster, c (Denoted as the representative dataset, DR in this thesis) 
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Table 5.3: Data clustering algorithm, CURE 

Algorithm-2: Data Clustering Algorithm, CURE 

 

 
START 
 
T := construct_kd_tree (D) 
Q:= construct_heap (D) 
 
WHILE size (Q) >k DO { 
a := extract_min (Q) 
b := a.closest 
delete (Q, b) 
 
c := concatenate (a, b) (Table 5.4) 
 
delete_rep (T, a); delete_rep (T, b); insert_rep (T, c) 
            c.closest := x /* x is an arbitrary cluster in Q */ 
 
FOR each x∈Q DO { 
IF dist (c, x) <dist (c, c.closest) 
c.closest := x 
IF x.closest is either a or b { 

IF dist (x, x.closest) <dist (x, c) 
x.closest := closest_cluster (T, x, dist (x, c)) 

ELSE 
x.closest := c 
relocate (Q, x) 
} 

ELSE IF dist (x, x.closest) >dist (x, c) { 
x.closest := c 
relocate (Q, x) 
} 

} 
insert (Q, c) 
} 
END 

 

 



58 
 

5.4.1.2 Pseudocode for the Concatenation Algorithm 

This function merges two clusters. The CURE algorithm proceeds by merging any cluster with 

its closest cluster. The algorithm in Table 5.4 is used for this operation. The merged cluster is 

used again in the algorithm in Table 5.3.  

Input: Any two clusters a and b 

Output: Merged cluster, c 

Table 5.4: Algorithm for concatenation of clusters 

Algorithm-3: Concatenate (a, b) 

 

START 
 
c:= a∪b 

c.mean = 
|a| a.mean + |b| b.mean

|a| + |b|
 

temp := ∅ 
 
FOR i := 1 to r DO { 
maxDist := 0 
FOReach point p in cluster c DO { 

IF i = l 
minDist := dist (p, c.mean) 

ELSE 
minDist := min{dist (p, q) : q∈ temp} 

IF (minDist ≥ maxDist){ 
maxDist := minDist 
maxPoint := p 
} 

} 
temp := temp ∪ {maxPoint} 
} 
 
FOReach point p in temp DO 

c.rep := c.rep ∪ {p + α*(c.mean - p) } 
 
return c 
END 
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Figure 5.4 presents the initial sparse algorithm graphically. The left side of the figure represents 

the training signal of the Manaus dataset (details are in chapter-6) which is used as the input for 

the initial sparse algorithm, known as the initial training set. The right-side figure presents the 

representative set obtained from the initial training set, i.e., the output from the initial sparse 

algorithm. Based on this set, the incremental learning algorithm proceeds. 

 

 

 

 

Figure 5.4: Visualization of obtaining the representative dataset, DR 

 

5.4.2 Pseudocode for Incremental Learning Algorithm 

This procedure is used for cases when the size of the training set is not fixed, or when a certain 

number of points become available at some time gap. Given this situation, it is important to 

update the kernel matrix efficiently. From earlier discussion, it is apparent that when a new data 

point becomes available, the only update in the previous matrix is the addition of a row and a 

column, which is just the interaction between the new point and the previous input vector. The 

update rule of the kernel matrix is given in equation (5.3). Table 5.5 provides the code for 

incremental learning. 

 

Input: Kernel matrix of the representative set KR, its lower Cholesky Factor LR, and the 

streaming set, D2 

Output: The updated kernel matrix, Kupdated and the updated lower Cholesky factor Lupdated 
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Table 5.5: Algorithm for incremental learning 

Algorithm-4: Incremental Learning Algorithm 

 

 

START 

Given K = KR: 

    For streaming data (xs, ys): 

COMPUTE Knew= K (XR, x) 

COMPUTE K*= K (x, x) 

COMPUTE KUpdated 

For the lower factor of Cholesky decomposition of KR, LR: 

LRLnew = Knew 

L* = √K*  − ||Lnew||2 

COMPUTE LUpdated 

FIT GPR using KUpdated 

END 

 

5.4.3 Pseudocode for Decremental Un-learning Algorithm 

When there is a larger stream of data points, the updated covariance matrix can grow much 

bigger. To keep the kernel matrix in check, this algorithm starts deleting rows and columns of the 

kernel matrix from the very beginning. For instance, if the maximum specified size of the kernel 

matrix, KRmax is 200 × 200, for the 201st data point, the algorithm will delete the first row and 

column of the matrix and then attach a row and column at the end of the matrix to keep it in a 

size of 200 × 200. Table 5.6 presents the code for the un-learning algorithm. 

 

Input: Kernel matrix, Kupdated at pth iteration 

Output: Updated kernel matrix, Kupdated at the end of the training 
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Table 5.6: Algorithm for decremental un-learning 

Algorithm-5: Decremental Un-learning Algorithm 

 

 

START 

Given Kupdated at pth iteration: 

When Kupdated ≥KRmax 

DELETE row[i] and column[i] for ith streaming point {i = 1, 2, ... , m} 

APPEND Knew and K* for new point  

UPDATE Kupdated 

FIT GPR using Kupdated 

 

END 

 

 

This chapter was dedicated to the mechanics of the proposed algorithm for implementing 

Gaussian process regression incrementally and economically. Given the modifications, the 

algorithm was tested for its efficacy. Some well-known regression datasets were used for this 

case. In the next chapter, a description of those datasets, their properties, visual representations, 

preprocessing, etc. are provided. The next-to-next chapter presents the results of these 

experiments on the selected datasets. 
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CHAPTER 6 

DATASETS AND EXPERIMENTATION  

 

The proposed algorithm in chapter-5 needs to be validated in terms of fitting and performance. 

Thus, the use of machine learning datasets is warranted to test the proposed model. In this 

chapter, a discussion on such datasets, their features, preprocessing of the datasets, environment 

for testing, etc. are presented. First, brief descriptions and visualization of the datasets used are 

provided in sections 6.1 and 6.2, respectively. Additionally, a discussion on preprocessing 

machine learning datasets is presented in section 6.3. Moreover, a brief look at the environment 

for experimentation is given in section 6.4. Finally, the conclusion of this chapter is drawn by a 

short note on preliminary testing for kernel selection in section 6.5. 

 

6.1 Brief Overview of the Datasets 

To test the validity of the proposed algorithms, some experimentations were performed. For this 

analysis, 7 datasets were used. These are fairly well-known datasets in the machine learning 

community. The general objective of selecting the datasets was to ensure variety in total data 

instances as well as in features. Overall, the total points range from 309 to 8192, and the datasets 

expand from a single feature to 12 features. Data characteristics of selected datasets also vary to 

some extent. In addition to having numerical features, categorical features were also handled. A 

brief description of the datasets is given below: 

 

6.1.1 Wool Dataset 

This is a time-series dataset containing the logarithmic ratio of fine-grade wool prices and the 

floor price set by the Australian Wool Corporation. The data values were taken for each week 

from July 1976 to June 1984 (Diggle, 1990). This is a two-dimensional dataset, where the data 

values are values of the price of wool against time. The task is to predict the price of the wool for 

an unseen period.  
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6.1.2 Istanbul Stock Exchange Dataset 

In this data set, returns of the Istanbul stock exchange with other international indices are 

collected. The duration of data collection was from January 5, 2009 to February 22, 2011 

(Akbilgic, Bozdogan, & Balaban, 2014). There are 8 features in this dataset including Istanbul 

stock exchange national 100 indexes, standard & poor’s 500 return index, stock market return 

index of Germany, stock market return index of UK, stock market return index of Japan, stock 

market return index of Brazil, MSCI European index, and MSCI emerging markets index. The 

task is to predict the stock index of Istanbul. 

 

6.1.3 Manaus Dataset 

This is a time-series dataset where data values represent the monthly averages of the daily stages 

(heights) of the Rio Negro river at Manaus, Brazil. The data covers 90 years from January 1903 

to December 1992. (Sternberg, 1987).This is also a two-dimensional dataset. 

 

6.1.4 German Healthcare Dataset 

Under the German healthcare reform, this dataset contains survey results from one year before 

and after the reform to assess if the number of visits to doctors has declined. This dataset is a 

sub-collection of the German Socio-Economic Panel (SOEP) (Rabe-Hesketh & Skrondal, 2008). 

Of the 12 features, there are age group, income, education, etc. and the target variable is the total 

number of visits to the doctor.  

 

6.1.5 Abalone Dataset 

This dataset contains the features such as length, diameter, heights, shell weights, etc. of the 

abalone shellfish. The task is to determine its age based on the rings it has. (Nash, Sellers, 

Talbot, Cawthorn, & Ford, 1994). This is a very popular dataset and the task associated with it 

can be formulated as both a classification and a regression problem. This thesis treated this task 

as a regression problem. 
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6.1.6 Tree Ring Dataset 

This is a univariate time-series dataset bearing the normalized tree-ring widths for each year. 

Data collection was performed by Donald A. Graybill from Gt. Basin Bristlecone Pine 2805M, 

3726-11810 in Methuselah Walk, California in 1980 (Graybill, 1985). The task is to predict the 

number of rings at a later period in time.  

 

6.1.7 Pumadyn-8nm Dataset 

This dataset is derived from a family of datasets concerned with a practical simulation of the 

kinematics of a Puma 560 robot arm. The angular acceleration of the links of the robot arm is to 

be predicted from information such as angular location, velocity, and torques (Ghahramani, 

1996). 

 

Table 6.1 presents a summary of the datasets used: 

 

Table 6.1: Datasets used in experimentations 

Title of the Dataset 
Total Data 

Points 

Number of 

Training Points 

Number of 

Test Points 

Number of 

Regressors 

Categorical 

Features 

1. Wool 309 200 109 1 N/A 

2. Istanbul Stock Exchange 537 300 237 8 N/A 

3. Manaus 1081 700 381 1 N/A 

4. German Healthcare 2228 1500 728 12 Yes 

5. Abalone 4177 3000 1177 8 Yes 

6. Tree Ring 7981 5000 2981 1 N/A 

7. Pumadyn-8nm 8192 5000 3192 8 N/A 
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6.2 Visualization of the Datasets 

This section presents the full or partial visualization of the training signal of the datasets used. 

The visualization remains tractable as long as the dataset is two-dimensional or three-

dimensional. However, visualization becomes difficult when the feature size increases. There is 

no direct way of visualizing high-dimensional datasets. In such cases, pair plots were utilized. A 

pair plot is a graphical way to represent the interactions of datasets having higher dimensions. 

This is essentially a scatter plot that offers a group of displays of paired combinations of the 

variables concerned (Emerson et al., 2013). Python’s matplotlib and seaborn library were used 

for visualization purposes.  

Among the datasets used, three datasets were two-dimensional (Wool, Manaus, Tree Ring). 

Training signals for these datasets are plotted in Figures 6.1 through 6.3, respectively. Pair plots 

have been used for the rest of the datasets, shown in Figures 6.4 through 6.7. Below are the 

representations of the datasets: 

 

 

Figure 6.1: Training signal for the Wool dataset 
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Figure 6.2: Training signal for the Manaus dataset 

 

 

 

Figure 6.3: Training signal for the Tree Ring dataset 
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Figure 6.4: Pair plot for the Istanbul Stock Exchange dataset 
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Figure 6.5: Pair plot for the German Healthcare Dataset 
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Figure 6.6: Pair plot for the Abalone dataset 
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Figure 6.7: Pair plot for the Pumadyn-8nm dataset 
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6.3 Data Preprocessing 

Data preprocessing is a crucial step in machine learning. Before proceeding to experimentations, 

some polishing of the datasets is often needed. Typical data preprocessing operations include 

data scaling or transformation, normalization, imputation of missing instances in the dataset, data 

reduction, extracting feature information, managing dissimilarities in feature characteristics, 

etc.(Kotsiantis, Kanellopoulos, & Pintelas, 2006). Despite being a major step for any machine 

learning routine, preprocessing is often ignored (García, Luengo, & Herrera, 2015). Lack of 

proper data-polishing can produce disastrous predictions (Oliveri, Malegori, Simonetti, & 

Casale, 2019). This processing takes various forms for various purposes. The most common 

preprocessing terms are discussed below: 

 

6.3.1 Data Scaling 

Data scaling or feature scaling is the most common form of preprocessing. It involves 

transforming data to fit into a certain range. The most common form of data scaling is rescaling 

and standardization. Rescaling, also known as min-max normalization, transforms feature values 

to have a range of [0, 1]. The following equation can be used to obtain min-max normalization: 

 x′= 
x-min(x)

max(x)-min(x)
 (6.1) 

 

where x, x′, min(x), and max(x) are the original feature vector, transformed feature vector, 

minimum value of x, and the maximum value of x, respectively.   

Standardization, also called z-score normalization, transforms a feature such that it follows a 

standard normal distribution. Therefore, the transformed vector will have a zero-mean and unit 

variance and the range of the data points is [-1, 1]. Standardization can be achieved through the 

following operation: 

 x′= 
x-x̅
σ

 (6.2) 
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where x, x′, x̅, and σ are the original feature vector, transformed feature vector, mean value of x, 

and standard deviation of x, respectively.   

Python’s scikit-learn library has various data scaling methods. For rescaling, the MinMaxScaler 

can be used and the StandardScaler can be used for standardization (Pedregosa et al., 2011). For 

this thesis, the StandardScaler module was used. 

 

6.3.2 Missing Value Imputation 

The datasets can have missing values in various instances. Missing values may appear due to 

mainly two reasons: either the data-point does not exist or it was not recorded. For the first 

reason, there is no point in trying to guess it, so it should be left as NaN (Not a Number). The 

second case can be handled in two ways. First, if the missing data occurrences are not substantial 

in number and they do not contribute much to the dataset, then these points can be dropped. The 

second way to handle this situation is to make intuitions about the data points. There are different 

ways to make these assumptions such as substituting the missing values by a constant, using the 

column mean (Schneider, 2001) or median, or even using regression techniques (Zhang, Qin, 

Zhu, Zhang, & Zhang, 2006), etc.   

 

6.3.3 Label Encoding 

Most often, a dataset can have categorical features. In regression tasks, these features cause 

problems. Therefore, they need to be managed first before proceeding further. Label encoding is 

a technique to convert these categorical features into machine-understandable numerical features. 

There exists an inherent problem with label encoding. When encoded, the qualitative features are 

given numeric values, which are generally in order (i.e., 0, 1, 2, etc.). Typically, there is no 

relation between the categorical features; however, after being encoded, the model can now 

wrongly assume a logical order among these classes. Nonetheless, it can be useful sometimes, 

especially when the classes of the features are in a logical order. Scikit-learn’s LabelEncoder 

module can be used for label encoding (Pedregosa et al., 2011). 

 



73 
 

6.3.4 One Hot Encoding 

To overcome the limitation of the label encoding method, a different technique called one hot 

encoding can be used. This is especially suitable for the case where there are several labels to a 

categorical feature with no logical order among them. What this method provides is, it adds a 

dummy column for each of the labels of the categorical features. For a certain data point, only 

one label from the feature will have the value of 1 and the remaining labels will be assigned a 0 

value. This is analogous to “turning a switch on” whenever it falls under that particular label. In 

this way, the problem with ordering is resolved. However, too much incorporation of dummy 

columns can increase the model’s complexity. Scikit-learn has a module names OneHotEncoder 

for this purpose (Pedregosa et al., 2011).  

 

6.4 Environment for Experimentation 

For executing these experiments, a popular Python distribution called Anaconda was used. The 

whole programming task was performed on Jupyter Notebook. Python needs to fetch some 

dependencies which are known as libraries as it is a general programming language. In this task, 

some popular Python libraries such as numpy, pandas, scikit-learn, pyclusturing, scipy, 

matplotlib, and seaborn were utilized. Scikit-learn has a built-in module for Gaussian process 

regression that implements the algorithm 2.1 from Rasmussen and Williams’s book (Rasmussen 

& Williams, 2006). For evaluating the datasets using the regular approach, the GPR module from 

this library was used. All of the experiments were carried out on a personal computer bearing the 

following specifications: 

 

Table 6.2:Specification of the system used for experimentation 

Processor Intel® Core™ i5 

Clock Speed 2.71 GHz 

RAM 8 GB 

Operating System Microsoft Windows 10, 64-bit 
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6.5 Preliminary Testing for Kernel Selection 

Kernels are the heart and soul of any Gaussian process. As GP is defined by a mean and a 

covariance or kernel function, the significance of kernels thus is self-explanatory. Also, when a 

zero mean function is assumed, the kernel solely defines the prior distribution (Csató & Opper, 

2002). In this thesis, every dataset was scaled beforehand to fit a standard normal distribution, 

hence the zero-mean assumption is in force. Therefore, kernels were the sole deciding factor of 

the performance of the algorithm. Now, not every dataset performs well under the same kernel. 

Therefore, choosing the appropriate kernel for the datasets is of importance. A preliminary 

examination for the choice of kernels has been performed for this reason.  

 

The following chapter presents the results of this examination. Additionally, the results of the 

final experimentations are also provided. The performance of the proposed algorithm has been 

evaluated and compared against that of the original algorithm in the next chapter.   
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CHAPTER-7  

RESULT ANALYSIS 

 

In this chapter, results from preliminary and final experimentation have been presented and 

analyzed. First, the results from the preliminary analysis have been presented in section 7.1, and 

based on this experiment, appropriate kernels have been chosen which is shown in section 7.2. In 

section 7.3, results from training using both of these algorithms have been provided in terms of 

training accuracy, estimated training memory requirement, and average training time. Section 7.4 

yields the results on the validation sets for both these algorithms. In this section, error analysis in 

terms of two popular error metrics has been provided. Additionally, results on average testing 

memory requirement and average test time for these methods have been shown. Finally, the 

chapter comes to an end with an overall comparison of the two algorithms regarding memory 

and execution time in section 7.5.   

 

7.1 Results of Preliminary Analysis 

Preliminary testing to select the appropriate kernel function was performed. A set of five popular 

covariance functions were used for this initial experimentation. These kernels are exponentiated 

quadratic kernel, rational quadratic kernel, periodic/exponential sine squared kernel, a product of 

the dot product and constant kernel, and Matérn kernel. (Duvenaud, 2014) pointed out that the 

marginal likelihood of any kernel on the training set should determine its appropriateness. The 

basis of the evaluation was the training accuracy and the negative log-marginal likelihood 

(nMLE) of the kernel. Comparatively higher accuracy of training and a comparatively lower 

negative log-marginal likelihood is attractive for a kernel function to be selected. The weightage 

is more on the training accuracy for this selection. Table 7.1 presents detailed information on this 

preliminary examination of all the datasets in respect of the training accuracy and nMLE value of 

each kernel. 
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Table 7.1: Results of preliminary testing 

Dataset Method Kernel Training Accuracy nMLE 

 

Wool 

Regular 

Exponentiated Quadratic 0.9947261223098804 -260173295.51791286 

Rational Quadratic 0.9999999999999697 -343835230.48067156 

Exponential Sine Squared 0.9958372243131 -113242811.03245380 

Constant* DotProduct 0.5743959296394401 -2594487150.3695316 

Matérn 0.9999999999999275 240.9177060911803 

 

Proposed 

Exponentiated Quadratic 0.996839650983412 -126068167.27726403 

Rational Quadratic 0.9999999999999697 -224741590.07447702 

Exponential Sine Squared 0.9999999999544017 -95444590.613737055 

Constant* DotProduct 0.3929351036656833 -15113911.556702454 

Matérn 0.9999999999999419 179.2544338015088 

 

Istanbul 

Stock 

Exchange 

Regular 

Exponentiated Quadratic 0.9999999999940168 -95.75415258597832 

Rational Quadratic 0.9999999999970566 -227.00254285753056 

Exponential Sine Squared - - 

Constant* DotProduct 0.8488243204387557 -3.314455175570295 

Matérn 0.9999999999947695 -189.7692644897769 

 

Proposed 

Exponentiated Quadratic 0.9999999999898639 203.0380248703991 

Rational Quadratic 0.9999999999919486 76.62507127743311 

Exponential Sine Squared - - 

Constant* DotProduct 0.8675436205575137 -7806939.8534250455 

Matérn 0.9999999999876777 90.834474066509841 

 

Manaus Regular 

Exponentiated Quadratic 0.39671439574630735 -7303956474549.592 

Rational Quadratic 1.0 -3560458019785.658 

Exponential Sine Squared 0.44473451939264236 -5995321653403.729 

Constant* DotProduct 0.011722420176489723 -7752202908299.67 
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Matérn 1.0 -284183643.3794945 

 

Proposed 

Exponentiated Quadratic 0.6960155371789778 -2888173340815.844 

Rational Quadratic 1.0 -1238779504719.6501 

Exponential Sine Squared 0.8242019406095086 -2390049874383.461 

Constant* DotProduct 0.02273618573122771 -3118724384497.8506 

Matérn 1.0 -39308967.95843716 

 

German 

Healthcare 

Regular 

Exponentiated Quadratic 0.9809116538940152 -19634200113046.93 

Rational Quadratic 0.9826274104535657 -2534609851069.555 

Exponential Sine Squared - - 

Constant* DotProduct 0.19851528889549797 -108511546373820.05 

Matérn 0.9810382794859024 -2522092842215.4272 

 

Proposed 

Exponentiated Quadratic 0.9993215409842112 -128881439757.23404 

Rational Quadratic 0.9389063484328224 -15838783721.572977 

Exponential Sine Squared - - 

Constant* DotProduct 0.42596712461376035 -15118057710720.252 

Matérn 0.9989296231966953 -15833399411.73557 

 

Abalone 

Regular 

Exponentiated Quadratic 1.0 -16559995479.24172 

Rational Quadratic 1.0 -175874.6957 

Exponential Sine Squared - - 

Constant* DotProduct 0.5232322008325582 -1545976207660.5745 

Matérn 1.0 -18337.88 

 

Proposed 

Exponentiated Quadratic 1.0 -433516761.1758648 

Rational Quadratic 1.0 -210456.83840256068 

Exponential Sine Squared - - 

Constant* DotProduct 0.624889454329584 -25422867355911.457 
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Matérn 1.0 -64523.73221023212 

 

Tree Ring 

Regular 

Exponentiated Quadratic 0.04055850104392911 -2411205152383.373 

Rational Quadratic 1.0 -2335117005120.7417 

Exponential Sine Squared 0.03994536322066167 -2400698008094.963 

Constant* DotProduct 0.0010549904101812002 -2427775021096.2285 

Matérn 0.9999999999999981 -256285016571.1286 

 

Proposed 

Exponentiated Quadratic 0.08834587671169558 -1087830373675.23 

Rational Quadratic 1.0 -1030742240704.2623 

Exponential Sine Squared 0.0520059047482767 -1073255303213.8119 

Constant* DotProduct 0.0025867544671799303 -1098826219129.2125 

Matérn 1.0 -20505844013.088062 

 

Pumadyn-

8nm 

Regular 

Exponentiated Quadratic 1.0 -25482.375788 

Rational Quadratic 1.0 -47245.225491965924 

Exponential Sine Squared - - 

Constant* DotProduct 0.5787774785820672 -316300472119932.2 

Matérn 1.0 -18794.66264085393 

 

Proposed 

Exponentiated Quadratic 1.0 -13572.801468487683 

Rational Quadratic 1.0 -31414.497920440943 

Exponential Sine Squared - - 

Constant* DotProduct 0.5716168735526539 -161238631976435.38 

Matérn 1.0 -11969.736093931422 

     

**Note: The blank space means the kernel did not return a positive semi-definite kernel matrix. 
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7.2 Selected Kernels for Datasets using Basic GPR and si-GPR 

Based on the training accuracy and the negative log marginal likelihood, the appropriate kernel 

for each dataset has been chosen. The results are displayed in Table 7.2.  

Table 7.2: Chosen kernels for basic GPR and si-GPR 

Dataset 
Chosen Kernel 

Basic GPR si-GPR 

Wool Rational Quadratic Rational Quadratic 

Istanbul Stock Exchange Rational Quadratic Rational Quadratic 

Manaus Rational Quadratic Rational Quadratic 

German Healthcare Rational Quadratic Exponentiated Quadratic 

Abalone Exponentiated Quadratic Exponentiated Quadratic 

Tree Ring Rational Quadratic Matérn 

Pumadyn-8nm Rational Quadratic Rational Quadratic 

 

7.3 Results from Experimentations on Training Sets 

In this section, the experimental outcomes for the training sets using both methodologies have 

been provided. First, section 7.3.1 shows a comparison of training points for both of the 

methodologies used. Section 7.3.2 summarizes the result for the basic GPR on training sets. The 

results are presented in terms of training accuracy, estimated memory requirement, and average 

training time. Section 7.3.3 also presents the same findings for the proposed algorithm. Section 

7.3.4 presents a visual comparison of these two methods based on training accuracy, anticipated 

memory requirement, and mean training time.  
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7.3.1 Comparison of Training Points used in Basic GPR and si-GPR 

The total number of training points used in the original and proposed GPR does not match due to 

using a sparsification operation. There is a significant reduction in the number of training points 

for the si-GPR algorithm. Table 7.3 provides that change concerning the training points used in 

both methods and the percentage reduction of training points for each dataset.  

Table 7.3: Comparison of the number of training points for basic GPR and si-GPR 

Dataset Basic GPR si-GPR %Reduction in Data Points 

Wool 200 110 45.00% 

Istanbul Stock Exchange 300 156 48.00% 

Manaus 700 360 48.57% 

German Healthcare 1500 756 49.60% 

Abalone 3000 1507 49.77% 

Tree Ring 5000 2510 49.80% 

Pumadyn-8nm 5000 2506 49.88% 

 

Figure 7.1 shows a graphical comparison of the training points for both methods. In this figure, 

the number of training points has been plotted against the datasets. The datasets were arranged in 

the ascending order of their training points. The last two datasets, the Tree Ring dataset, and the 

Pumadyn-8nm dataset, both have the same number of training points. When the data clustering 

algorithm was applied to all these datasets as part of the proposed algorithm, it could offer up to 

about a 50% reduction in the number of training points. This helps to bring down the memory 

usage or the training time by a good amount, which is shown later. 
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Figure 7.1: Comparison of training points for both methods 

 

7.3.2 Results of Basic GPR on Training Sets 

In Table 7.4, the results of the training sets for the basic GPR are presented.  

Table 7.4: Results obtained for training sets using basic GPR 

Dataset 
Training 

Accuracy 

Estimated Memory 

Requirement (MB) 

Average Training 

Time (s) 

Wool 0.9999999999999697 2.44140625 5.3 

Istanbul Stock Exchange 0.9999999999970566 5.493164063 11.3 

Manaus 1.0 29.90722656 93 

German Healthcare 0.982627410453565 137.3291016 804 

Abalone 1.0 549.3164063 2589 

Tree Ring 1.0 1525.878906 6576 

Pumadyn-8nm 1.0 1525.878906 8125 
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7.3.3 Results of si-GPR on Training Sets 

Table 7.5 provides the results of the training sets for si-GPR. 

Table 7.5: Results obtained for training sets using si-GPR 

Dataset 
Training 

Accuracy 

Estimated Memory 

Requirement (MB) 

Average Training 

Time (s) 

Wool 0.9999999999999697 0.738525391 2.71 

Istanbul Stock Exchange 0.9999999999919486 1.485351563 3.5 

Manaus 1.0 7.91015625 32.6 

German Healthcare 0.999321540984211 34.88378906 117 

Abalone 1.0 138.6138306 492 

Tree Ring 1.0 384.5275879 1146 

Pumadyn-8nm 1.0 383.3029785 1729 

 

In the following section, a comparison of the two approaches regarding the results of training 

sets is shown graphically. 

 

7.3.4 Visual Comparison of Basic GRR and si-GPR on Training Sets 

Figure 7.2 presents the comparison of the training accuracy of both original and proposed GPR, 

where the training accuracy has been plotted against the datasets. Generally, the performance of 

regression algorithms depends on the type of features, presence of missing values in the dataset, 

amount of noise in the system, etc.(Li et al., 2019). Some datasets even require specific kinds of 

scaling to offer good performance. Therefore, it is justified to say that fitting accuracy is heavily 

influenced by the characteristics of the datasets. It can be seen from Figure 7.2 that the training 

accuracy is almost perfect for the basic algorithm for every dataset except the German 

Healthcare dataset. The reason for the slightly lesser accuracy can be attributed to having more 

than one categorical feature in the set which affects the training accuracy directly. However, the 

proposed algorithm solves this issue for this dataset and provides consistent behavior for all the 
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datasets. This further proves that the proposed si-GPR algorithm handles categorical features 

better than the original algorithm.  

 

 

Figure 7.2: Comparison of training accuracy of basic and proposed GPR 

 

Figure 7.3 provides a comparison of memory consumption for training. It needs to be justified 

that the memory calculation was approximated and not exact because it was not possible to 

extract the true memory usage information from the system. The memory usage by the system is 

not static, i.e., the computer allocates variable memory as many times as the experiments are 

executed. Intuitively it makes sense that the more training points there are, the more system 

memory will be needed. That is why the memory requirement was calculated based on the 

operations and the object sizes to store the information in Python. Again, the datasets have been 

arranged in the ascending order of their training points. As a result, the plot has an increasing 

trend as it goes forward in the right direction of the horizontal axis. The last two datasets, i.e., 

Tree Ring and Pumadyn-8nm datasets also require the same amount of memory to train due to 

having the same number of training points. As for the si-GPR algorithm, the memory 

requirement also shows an increasing trend due to the order of the datasets; however, the 

memory requirements are way less than the basic GPR. One possible reason for the lesser 
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memory requirement can be attributed to the reduction in the number of training points. 

Additionally, the incremental update on the kernel matrix speeds up the proposed algorithm and 

requires much less computational power. The last two datasets, again, are reduced to the same 

number of data points and hence require the same memory for the si-GPR algorithm as well. 

 

 

Figure 7.3: Comparison of estimated memory requirement for both methods 

 

In Figure 7.4, the comparison of training time of the basic and proposed GPR has been shown. In 

this plot, the mean training time is plotted against the datasets. Training time is directly related to 

the number of training points, the complexity in data characteristics, and the presence of 

categorical features. As the datasets increase in the number of training points from left to right, 

the training time also increases accordingly. It is to be noted that the Tree Ring and the 

Pumadyn-8nm datasets have the same number of training points but they differ in the amount of 

time needed to train the model. The reason is that the Pumadyn-8nm dataset is a nine-

dimensional dataset and the Tree Ring dataset is a two-dimensional dataset. Due to the additional 

features, the complexity of the Pumadyn-8nm dataset increases, which directly attributes to an 

increase in the training time. A similar trend can be seen for si-GPR; however, the training time 

is reduced by a good amount. For example, to train a model of 5000 training points and 9 
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features, the basic GPR takes about 9000 seconds, whereas this is about one-ninth of that time 

for the si-GPR algorithm. This reduction in training time was due to the reduction of data points 

and incremental learning methodology.  

 

 

Figure 7.4: Comparison of average training time for both methods 

 

It is evident from Figures 7.2, 7.3, and 7.4 that the performance of the proposed algorithm over 

training datasets is superior to that of the basic algorithm whether it is training accuracy, memory 

requirement (estimated), or the execution time. 
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comparison regarding MAE score, RMSE score, estimated testing memory, and average testing 

time can also be found. 

7.4.1 Results of Basic GPR on Test Sets 

Table 7.6 gives the results of the test datasets for basic GPR. In this table, the error scores, the 

required memory, and the mean time for validation can be observed. 

Table 7.6: Results obtained for test sets using basic GPR 

Dataset MAE Score RMSE Score 
Estimated Memory 

Requirement (MB) 

Average 

Run Time (s) 

Wool 0.1141 0.1281 3.784179688 0.82 

Istanbul Stock Exchange 0.0045 0.0059 9.851074219 1.2 

Manaus 1.6550 2.1433 46.22802734 3 

German Healthcare 0.1403 0.5323 204.0710449 43 

Abalone 2.0078 2.7839 765.0146484 253 

Tree Ring 0.2427 0.3136 2435.913086 1096 

Pumadyn-8nm 0.9503 1.2258 2500.305176 2102 

 

7.4.2 Results of si-GPR on Test Sets 

The experimental outcome on the test datasets using the si-GPR algorithm can be seen in Table 

7.7. 

Table 7.7: Results obtained for test sets using si-GPR 

Dataset MAE Score RMSE Score 
Estimated Memory 

Requirement (MB) 

Average Run 

Time (s) 

Wool 0.0819 0.1093 1.477050781 0.082 

Istanbul Stock Exchange 0.0035 0.0047 3.751464844 0.19 

Manaus 1.5215 1.9356 16.30371094 1.8 

German Healthcare 0.1577 0.5396 68.52172852 30 

Abalone 1.8191 2.5136 246.9662476 93 
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Tree Ring 0.2355 0.3073 841.3647461 133 

Pumadyn-8nm 0.0853 0.6219 871.6854248 151 

 

The following section provides some visualization of the result on some of the test sets. As 

mentioned in Chapter 6, the visualization is not always possible due to high data dimensionality, 

the results from only the two-dimensional datasets could be represented. It should be noted that 

the prediction accuracy depends on the factors such as fitting accuracy, data complexity, choice 

of kernel functions, presence of class variables, etc. That is why the %reduction of error for the 

si-GPR varies from dataset to dataset. In addition to providing the visualization of predictions, 

the MAE and RMSE scores have been plotted against the test sets. Additionally, memory and 

time comparisons are also shown.  

 

7.4.3 Visual Comparison of Basic GRR and si-GPR on Test Sets 

At the beginning of this section, side-by-side comparisons of the results from the two-

dimensional datasets (i.e., Wool dataset, Manaus dataset, and Tree Ring dataset) have been 

presented graphically in Figures 7.5 through 7.10.  

 

  
Figure 7.5: Predictions on the Wool test set  

                    using basic GPR 

Figure 7.6: Predictions on the Wool test set   

                    using proposed GPR 
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Figures 7.5 and 7.6 present the predictions on the Wool dataset for basic GPR and si-GPR, 

respectively. From Tables 7.6 and 7.7, it can be seen that si-GPR offers 28.22% less MAE and 

14.68% less RMSE than the original algorithm. Although the error is reduced, deviations in 

certain regions still appear to be large. The reason for this deviation could be model overfitting. 

As mentioned in Chapter 2, GPR tends to overfit the training data. The proposed algorithm might 

not have solved the overfitting issue fully for this dataset; however, it treats the overfitting better 

than the original algorithm.   

 

  
Figure 7.7: Predictions on the Manaus test set 

                   using basic GPR 

Figure 7.8: Predictions on the Manaus test set  

                    using proposed GPR  

 

Figures 7.7 and 7.8 provide the prediction visualizations on the Manaus dataset. These models 

were not overfitted, and the si-GPR again exceeds the basic GPR in terms of prediction accuracy. 

The MAE score for this dataset has been reduced by 8.1% and the RMSE score has been 

decreased by 9.7% due to using si-GPR. 
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Figure 7.9: Predictions on the Tree Ring test  

                    set using basic GPR 

Figure 7.10: Predictions on the Tree Ring test  

                      set using proposed GPR 

 

Figures 7.9 and 7.10 present the predictions on the Tree Ring dataset. In this dataset, the 

variations for the predictions of si-GPR are lesser than that of the basic GPR. The si-GPR offers 

a 3% reduction in MAE score and a 2% reduction in the RMSE score. For this dataset, the 

performance of the basic algorithm is close to the si-GPR algorithm. The reason is that this is a 

two-dimensional dataset with no major complexity. There is no missing value or any class 

variable in this dataset. Still, the si-GPR can offer predictions with lesser error. 

 

 

Figure 7.11: Comparison of Mean Absolute Error (MAE) for both methods  
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Figure 7.11 presents the contrast of the algorithms concerning the MAE metric. From this figure, 

it can be seen for the first four datasets, the performances of the two algorithms are almost the 

same. For the Pumadyn-8nm dataset, this difference becomes quite apparent. This dataset is nine-

dimensional and basic GPR suffers in performance from higher data dimensionality. On the other 

hand, si-GPR could fit this dataset well in training as well as in testing. For the rest of the 

datasets, there is a smaller difference in the performance of the algorithms.  

 

 

Figure 7.12: Comparison of Root Mean Squared Error (RMSE) for both methods 

 

The RMSE score comparison can be seen in Figure 7.12. Generally, RMSE scores will always be 

equal to or greater than the MAE scores due to the triangular inequality (Chai & Draxler, 2014), 

which is reflected in the results. In this case, the same trend can be seen as the MAE scores, 

except that the difference between the RMSE scores regarding the Pumadyn-8nm dataset is 

slightly less than the MAE scores.  

Figures 7.13 and 7.14 provide visualization on the estimated testing memory and mean test time 

for basic GPR and si-GPR. In equation (3.49) in Chapter 3, it was stated that the computation 

calls for inverting the kernel matrix acquired from the training points while making predictions. 
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For a larger set of training points, the shape of the covariance matrix and the inverted covariance 

matrix is also large, hence requiring more memory consumption and more time for execution. As 

the new version allows lesser training points, all computational efforts are reduced in addition to 

providing better performance. Additionally, due to employing the incrementally learning and 

decrementally unlearning ranked data points, the joint covariance matrix of the training points 

and the test points for the si-GPR is always smaller in size than the original GPR algorithm.  

 

 

Figure 7.13: Comparison of estimated testing memory requirement for both methods  

 

Figure 7.13 shows the same trend as the training set due to similar reasons. The testing also 

requires considering the training set as the joint distribution is needed for making predictions. 

That is why the incorporation of the training set makes the trend remain the same. 
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Figure 7.14: Comparison of average testing time for both methods 

Figure 7.14 compares the mean time needed to validate the models. Basic GPR in this case 

works with the whole training set plus the test set, whereas si-GPR deals with the sparse training 

set plus the test set. There is a noticeable reduction in the total number of points these two 

algorithms are handling. It is evident from the figure that the proposed algorithm offers 

significant savings in test times. For instance, for the same test set of about 3000 points for the 

Pumadyn-8nm dataset, basic GPR takes 2102 seconds on average, where si-GPR takes only 151 

seconds, promising about 93% savings.   

 

7.5 Overall Memory and Time Requirements 

Results on training datasets and test datasets have been shown separately in the previous 

sections. The proposed modifications have offered promising results over each of the sections. In 

this segment, a general overview has been presented. At first, an overall comparison regarding 

total memory consumption has been shown in Table 7.8.  
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Table 7.8: Comparison of total memory requirement for basic GPR and si-GPR 

Dataset 
Total Memory Requirement (MB) 

% Memory Savings 
Basic GPR si-GPR 

Wool 6.225585938 2.215576172 64.41% 

Istanbul Stock Exchange 15.34423828 5.236816407 65.87% 

Manaus 76.13525390 24.21386719 68.20% 

German Healthcare 341.4001465 103.4055176 69.71% 

Abalone 1314.331055 385.5800782 70.66% 

Tree Ring 3961.791992 1119.545465 71.74% 

Pumadyn-8nm 4325.155456 1175.156216 72.83% 

 

The results of overall memory requirements have been shown graphically in Figure 7.15. In this 

case, both training and testing memory requirements have been taken into consideration. The si-

GPR algorithm has been efficient in both training memory and testing memory usage. Hence, the 

trend also continues for the total memory requirements.  

 

Figure 7.15: Comparison of estimated total memory requirement for both methods  
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Similarly, the average total execution time information is provided in Table 7.9, which is plotted 

in Figure 7.16.  

Table 7.9: Comparison of average total run time for basic GPR and si-GPR 

Dataset 
Average Total Run Time (s) 

%Time Savings 
Basic GPR si-GPR 

Wool 6.12 2.792 54.38% 

Istanbul Stock Exchange 12.5 4.5 64.00% 

Manaus 114 34.4 69.82% 

German Healthcare 769 163 78.80% 

Abalone 2842 585 79.42% 

Tree Ring 7672 1396 81.80% 

Pumadyn-8nm 10227 1760 82.79% 

 

 

Figure 7.16: Comparison of average total run time for both methods  

Figure 7.16 gives a comparison of the mean total run time of both algorithms. Similar to memory 

usage, si-GPR has used less training time and testing time than the basic GPR algorithm. As a 

result, the trend of time complexity also follows the same as the training and testing times.  
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Figure 7.17: Memory and time savings using si-GPR 

Figure 7.17 presents the savings in terms of memory consumption and total run time. It can be 

observed that the si-GPR offers about 64% to 73% lesser memory usage for the datasets used. 

Also, the savings regarding the training and testing ranges from about 54% to 83%. It is also 

clear from the plot that as the data points increase, the si-GPR becomes more efficient and the 

performance difference with the basic GPR becomes more apparent.  

 

In this chapter, the results from preliminary and final examination on the datasets using the basic 

GPR and si-GPR were presented. The results suffice that the si-GPR algorithm is better than the 

original algorithm in all aspects. The next chapter concludes the thesis. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Concluding Remarks 

The objective of this thesis was to present a Gaussian process regression methodology based on 

incremental learning. The problem of managing big datasets is ever increasing. The original 

GPR, being not economic with big datasets, called for a remedy to this problem. Also, traditional 

GPR is incapable of managing feedback-based datasets or training sets with variable sizes. 

Furthermore, the basic GPR fails to adjust to the resource limitation issue. Therefore, these 

problems were the focusing points of this thesis. Up to this point, a considerable quantity of 

research involving the sparse approximation of the problem has surfaced. Some other works have 

reported the use of online learning as well. This thesis offered an algorithm called sparse-

incremental Gaussian process regression (si-GPR) that merged the sparse implementation as well 

as incremental learning dynamic. The goal of si-GPR was to address the limitations of basic GPR 

in the context of big datasets, streaming training sets, and resource limitations.  

When the motivation was decreasing the calculational burden, a natural solution came to mind 

that involves lowering the number of data instances that the algorithm should fit. It is relatable 

that if every datapoint is considered, the computations are going to be lengthy and strenuous. 

Hence, the idea of a sparse representation emerged and implementing that vision together with 

the idea of sequentially augmenting the kernel matrix rather than computing it at once provided a 

computational advantage. It is mention-worthy that even after employing a sparse presentation 

using the representative dataset, the accuracy was not the least compromised, rather the modified 

version of the algorithm provided better results overall, which had also been a prime concern. In 

addition to a static training set, the thesis also outlined the method of handling variable training 

set size problems (streaming input and removing data points from the training set). To keep 

computations further on the leash, another scheme for un-learning was offered. The principal 

idea was to keep the kernel matrix fixed in a certain size so that it does not become costly to 

invert the matrix. To implement this, the algorithm began to ‘un-learn’ starting from the first 
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point when the kernel matrix surpassed the prespecified size. Keeping the kernel matrix at a 

certain size was also helpful to keep the computations tractable.  

The basic GPR and the proposed si-GPR were put to test using seven popular machine-learning 

datasets. Before that, a short preprocessing and experimentations for kernel selection were 

performed. The results of final testing showed that the proposed algorithm provides better 

performance in every aspect relative to the original GPR algorithm.  

 

8.2 Avenues for Future Research 

There have been some limitations regarding the scope and resources as stated earlier in Chapter1. 

Hence, some directions to venture in the future have been proposed. For example: 

– The data clustering method that was used could be changed to assess if any other 

clustering algorithm provides better performance. 

– It would be interesting to vary the selection of kernels. In the experiments, a set of fixed 

kernels were used. This selection can be augmented and their effect can be evaluated.  

– This thesis worked on the single-output regression problem. It would be compelling to 

extend this algorithm for the multivariate output problem.  

– The research can be extended to even bigger datasets, which could not be implemented 

due to resource limitations.  

– GPR has previously been used for classification problems as well. It would be nice to 

extend the si-GPR algorithm for the classification problem as well.  

– A comparison with other variants of sparse Gaussian process regression would be of 

significance. 

 

Hopefully, these ideas will be considered in subsequent research.  
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