
i

 A MODIFIED APPROACH TOWARDS GAUSSIAN PROCESS

REGRESSION BASED ON INCREMENTAL LEARNING

by

MEHNUMA TABASSUM

A thesis submitted to the

Department of Industrial and Production Engineering,

Bangladesh University of Engineering and Technology,

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

INDUSTRIAL AND PRODUCTION ENGINEERING

Department of Industrial and Production Engineering (IPE)

Bangladesh University of Engineering and Technology (BUET)

December 28, 2020

ii

iii

CANDIDATE’S DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the

award of any degree or diploma.

Mehnuma Tabassum

Student ID: 1017082027

iv

ABSTRACT

This research propounds a variant of Gaussian process regression called Sparse Incremental

Gaussian Process Regression (si-GPR).Traditional Gaussian process regression, although

attractive for smaller datasets, possesses some inherent limitations regarding computation and

storage requirements. As a result, traditional or batch-GPR performs poorly when employed for

training a large set of data. Again, this algorithm can neither accommodate inputs that become

available over time nor the training set that needs the removal of training points. Therefore,

appropriate methods are necessitated to deal with these limitations effectively. To accomplish

that, a sparse Gaussian process regression algorithm with an incremental learning and a

decremental un-learning policy has been proposed. In this formulation, the idea of sparsification

and undertaking streaming inputs have been merged with the provision of model forgetting. The

rationale behind following this strategy is three-fold: to lessen the number of data instances to fit,

to accommodate streaming input, and to minimize the computation and memory requirements as

possible. As the prime aspiration was to lower the calculations without losing the accuracy, an

economic update of the kernel matrix and the inverted lower Cholesky matrix has been rendered.

The outcome of this research manifests promising results as it provides a general reduction in

memory consumption and execution time. Moreover, the proposed si-GPR algorithm provides

better fitting and predictions over the original Gaussian process regression.

v

ACKNOWLEDGEMENT

The author acknowledges deepest thanks and indebtedness to the honorable supervisor, Dr.

AKM Kais Bin Zaman, Professor, Department of Industrial and Production Engineering, BUET

for his constant guidance and whole-hearted supervision throughout the M.Sc. thesis. His

valuable suggestions and encouragements urged the author to complete this thesis on-time. It was

an honor for the author to work under his supervision.

The author extends her thanks to Dr. Nikhil Ranjan Dhar, Professor and Head, Department of

Industrial and Production Engineering, BUET, Dr. Sultana Parveen, Professor, Department of

Industrial and Production Engineering, BUET, Dr. Shuva Ghosh, AssociateProfessor,

Department of Industrial and Production Engineering, BUET,and Dr. Md. Farhad Hossain,

Professor, Department of Electrical and Electronics Engineering, BUET for the constructive

assessment and remarks.

The family has always been a part of the author’s journey. She expresses her gratitude for doing

this thankless job.

Last but not the least; the author conveys heartfelt regards to the Almighty Allah, the greatest, for

every blessing He has bestowed upon her, for nothing would have been possible without that.

vi

LIST OF TABLES

Sl. No. Title of the Table Page No.

 Chapter-3

1 Table 3.1: Popular kernel functions 25

 Chapter-5

2 Table 5.1: Notations for si-GPR algorithm 44

3 Table 5.2: Initial sparse algorithm 55

4 Table 5.3: Data clustering algorithm, CURE 57

5 Table 5.4: Algorithm for concatenation of clusters 58

6 Table 5.5: Algorithm for incremental learning 60

7 Table 5.6: Algorithm for decremental un-learning 61

 Chapter-6

8 Table 6.1: Datasets used in experimentations 64

9 Table 6.2: Specification of the system used for experimentation 73

 Chapter-7

10 Table 7.1: Results of preliminary testing 76

11 Table 7.2: Chosen kernels for basic GPR and si-GPR 79

12 Table 7.3: Comparison of the number of training points for basic GPR

and si-GPR

80

13 Table 7.4: Results obtained for training sets using basic GPR 81

14 Table 7.5: Results obtained for training sets using si-GPR 82

15 Table 7.6: Results obtained for test sets using basic GPR 86

16 Table 7.7: Results obtained for test sets using si-GPR 86

17 Table 7.8: Comparison of total memory requirement for basic GPR

and si-GPR

92

18 Table 7.9: Comparison of average total run time for basic GPR and si-

GPR

93

vii

LIST OF FIGURES

Sl. No. Title of the Figure Page No.

 Chapter-3

1 Figure 3.1: Classification of covariance functions 20

2 Figure 3.2: Variations of the exponentiated quadratic kernel 22

3 Figure 3.3: Variations of the rational quadratic kernel (σ=1) 22

4 Figure 3.4: Variations of the Matérn kernel (σ=1) 23

5 Figure 3.5: Variations of the dot product kernel 24

6 Figure 3.6: Variations of the periodic kernel 25

7 Figure 3.7: Graphical representation of Gaussian process regression 32

 Chapter-4

8 Figure 4.1: The architecture of batch learning 36

9 Figure 4.2: The architecture of incremental learning 39

 Chapter-5

10 Figure 5.1: Flowchart for the proposed si-GPR algorithm 48

11 Figure 5.2: Visualization of incremental updates of the kernel matrix 50

12 Figure 5.3: Visualization of decremental un-learning strategy 53

13 Figure 5.4: Visualization of obtaining the representative dataset 59

 Chapter-6

14 Figure 6.1: Training signal for the Wool dataset 65

15 Figure 6.2: Training signal for the Manaus dataset 66

16 Figure 6.3: Training signal for the Tree Ring dataset 66

17 Figure 6.4: Pair plot for the Istanbul Stock Exchange dataset 67

18 Figure 6.5: Pair plot for the German Healthcare Dataset 68

19 Figure 6.6: Pair plot for the Abalone dataset 69

20 Figure 6.7: Pair plot for the Pumadyn-8nm dataset 70

viii

 Chapter-7

21 Figure 7.1: Comparison of training points for both methods 81

22 Figure 7.2: Comparison of training accuracy of basic and proposed

GPR

83

23 Figure 7.3: Comparison of estimated memory requirement for both

methods

84

24 Figure 7.4: Comparison of average training time for both methods 85

25 Figure 7.5: Predictions on the Wool test set using basic GPR 87

26 Figure 7.6: Predictions on the Wool test set using proposed GPR 87

27 Figure 7.7: Predictions on the Manaus test set using basic GPR 88

28 Figure 7.8: Predictions on the Manaus test set using proposed GPR 88

29 Figure 7.9: Predictions on the Tree Ring test set using basic GPR 88

30 Figure 7.10: Predictions on the Tree Ring test set using proposed GPR 88

31 Figure 7.11: Comparison of Mean Absolute Error (MAE) for both

methods

89

32 Figure 7.12: Comparison of Root Mean Squared Error (RMSE) for

both methods

90

33 Figure 7.13: Comparison of estimated testing memory requirement for

both methods

91

34 Figure 7.14: Comparison of average testing time for both methods 91

35 Figure 7.15: Comparison of estimated total memory requirement for

both methods

93

36 Figure 7.16: Comparison of average total run time for both methods 94

37 Figure 7.17: Memory and time savings using si-GPR 94

ix

LIST OF ACRONYMS

AI : Artificial Intelligence

CURE : Clustering Using Representatives

DITC : Deterministic Independent Training Conditional

DTC : Deterministic Training Conditional

EM : Expectation-Maximization

EP : Expectation Propagation

EQ : Exponentiated Quadratic

FITC : Fully Independent Training Conditional

FTC : Fully Training Conditional

GP : Gaussian Process

GPC : Gaussian Process Classification

GPR : Gaussian Process Regression

i-VSGPR : Incremental Variational Sparse Gaussian Process Regression

JIT : Just in Time

LR : Linear Regression

LU : Lower-Upper

MAE : Mean Absolute Error

MAP : Maximum a Posteriori

MAPE : Mean Absolute Percentage Error

MPE : Mean Percentage Error

MSE : Mean Squared Error

NaN : Not a Number

nMLE : Negative Log Marginal Likelihood

NLR : Nonlinear Regression

OSMGP : Online Sparse-Matrix Gaussian Process

PD : Positive Definite

PDF : Probability Density Function

PSD : Positive Semi-definite

PITC : Partially Independent Training Conditional

x

PPA : Projected Process Approximation

RBF : Radial Basis Function

RKHS : Reproducing Kernel-Hilbert Space

RMSE : Root Mean Squared Error

RQ : Rational Quadratic

RVM : Relevance Vector Machine

SE : Squared Exponential

si-GPR : Sparse Incremental Gaussian Process Regression

SGPR : Sparse Gaussian Process Regression

SMGP : Sparse Multiscale Gaussian Process

SoR : Subset of Regressors

SSGP : Sparse Spectrum Gaussian Process

xi

TABLE OF CONTENTS

 Page No.

ABSTRACT iv

ACKNOWLEDGEMENT v

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ACRONYMS ix

CHAPTER1: INTRODUCTION 1

1.1 Framework of the Study 1

1.2 Objectives with Specific Aims 2

1.3 Possible Outcome of the Research 2

1.4 Outline of the Methodology Used 3

1.5 Contribution of the Study 4

1.6 Limitation of the Study 4

1.7 Organization of the Thesis 4

CHAPTER2:BACKGROUND LITERATURE 6

2.1 General Background of Gaussian Process Regression 6

2.2Sparse Methodologies of Gaussian Process Regression 7

2.3Incremental Methodologies of Gaussian Process Regression 11

CHAPTER3: GAUSSIAN PROCESS REGRESSION 14

3.1 Multivariate Gaussian Distribution 14

3.1.1 Marginalization 15

3.1.2 Conditioning 16

3.2 Bayesian Philosophy 16

3.3 Gaussian Process 18

3.3.1 Mean Function 19

3.3.2 Covariance Function 19

xii

3.3.2.1StationaryCovariance Function 20

3.3.2.1.1 Exponentiated Quadratic Kernel 21

3.3.2.1.2Rational Quadratic Kernel 22

3.3.2.1.3Matérn Kernel 23

3.3.2.2 Non-stationary Covariance Function 23

3.3.2.2.1 Dot Product Kernel 24

3.3.2.2.2 Periodic Kernel 24

3.3.2.3 Kernel Hyperparameters 26

3.3.2.4 Validity of Kernels 26

3.3.2.5 Significance of Kernels 26

3.4 Gaussian Process Regression (GPR) 27

3.4.1 Defining the Prior 28

3.4.2 Posterior Predictive Distribution 29

3.4.3 Optimizing Kernel Hyperparameters 31

3.4.4 Merits of Gaussian Process Regression 32

3.4.5 Shortcomings of Gaussian Process Regression 33

CHAPTER4: LEARNING DYNAMICS IN MACHINE LEARNING 35

4.1 Batch Learning 35

4.1.1 Assumptions of Batch Learning 35

4.1.2 Characteristics of Batch Learning 37

4.1.3Merits of Batch Learning 37

4.1.4Limitations of Batch Learning 37

4.2 Incremental Learning 38

4.2.1 Characteristics of Incremental Learning 38

4.2.2 Merits of Incremental Learning 40

4.2.3 Challenges with Incremental Learning 40

4.2.4 Applications of Incremental Learning 42

CHAPTER5: PROPOSED SPARSE INCREMENTAL GAUSSIAN PROCESS

 REGRESSION

44

xiii

5.1 Notations used for the Proposed si-GPR Algorithm 44

5.2 General Overview of Sparse Incremental Gaussian Process Regression

(si-GPR)
45

5.2.1 Phase-1: Approximation/ Sparsification 45

5.2.2 Phase-2: Incremental Learning 46

5.2.3 Phase-3: Decremental Un-learning 47

5.3 Detailed Breakdown of the Algorithm 49

5.4 Pseudocodes for Algorithms used 55

5.4.1 Pseudocode for Initial Sparse Algorithm 55

5.4.1.1 Pseudocode for the Data Clustering Algorithm, CURE 56

5.4.1.2 Pseudocode for the Concatenation Algorithm 58

5.4.2 Pseudocode for Incremental Learning Algorithm 59

5.4.3 Pseudocode for Decremental Un-learning Algorithm 60

CHAPTER6: DATASETS AND EXPERIMENTATION 62

6.1Brief Overview of the Datasets 62

6.1.1 Wool Dataset 62

6.1.2 Istanbul Stock Exchange Dataset 63

6.1.3 Manaus Dataset 63

6.1.4 German Healthcare Dataset 63

6.1.5 Abalone Dataset 63

6.1.6 Tree Ring Dataset 64

6.1.7 Pumadyn-8nm Dataset 64

6.2 Visualization of the Datasets 65

6.3Data Preprocessing 71

6.3.1 Data Scaling 71

6.3.2 Missing Value Imputation 72

6.3.3 Label Encoding 73

6.3.4 One Hot Encoding 73

6.4 Environment for Experimentation 73

6.5 Preliminary Testing for Kernel Selection 74

xiv

CHAPTER7: RESULT ANALYSIS 75

7.1 Results of Preliminary Analysis 75

7.2Selected Kernels for Datasets using Basic GPR and si-GPR 79

7.3 Results from Experimentations on Training Sets 79

7.3.1Comparison of Training Points used in Basic GPR and si-GPR 80

7.3.2 Results of Basic GPR on Training Sets 81

7.3.3 Results of si-GPR on Training Sets 82

7.3.4Visual Comparison of Basic GRR and si-GPR on Training Sets 82

7.4 Results from Experimentations on Test Sets 85

7.4.1 Results of Basic GPR on Test Sets 86

7.4.2 Results of si-GPR on Test Sets 86

7.4.3 Visual Comparison of Basic GRR and si-GPR on Test Sets 87

7.5Overall Memory and Time Requirement 92

CHAPTER8: CONCLUSIONS AND FUTURE WORK 96

8.1 Concluding Remarks 96

8.2 Avenues for Future Research 97

REFERENCES 98

1

CHAPTER-1

INTRODUCTION

1.1 Framework of the Study

The emergence of machine learning is opening up newer dimensions in the field of

engineering to tackle a wide variety of tasks. Learning from data without any prior knowledge

of the system has changed the outlook of researchers. The field of Industrial and Production

Engineering is no different from this paradigm. Machine learning has found its applications in

various aspects of industrial engineering such as handling scheduling problems (Aytug,

Bhattacharyya, Koehler, & Snowdon, 1994; Jain & Meeran, 1998), forecasting and supply

chains (Carbonneau, Laframboise, & Vahidov, 2008; Lee, Kim, Park, & Kang, 2014), quality

control (Lease, 2011), etc., and in production engineering such as managing uncertainties in

manufacturing systems (Monostori, 2003), building just-in-time (JIT) production scheme

when the system characteristics are stochastic and run on a rolling basis (Markham, Mathieu,

& Wray, 2000; Wray, Rakes, & Rees, 1997), the problem of varying qualities of metal

etching (Chatterjee, Croley, Ramamurti, & Chang, 1997), tool wear prediction (Dongdong

Kong, Chen, & Li, 2018),machining parameter optimization (Gupta, Guntuku, Desu, & Balu,

2015; Jurkovic, Cukor, Brezocnik, & Brajkovic, 2018),and so on.

Regression analysis is a sub-category of supervised machine learning that enables to estimate

the relationship that links the input variable(s) to the response variable(s). Gaussian process

regression (GPR) is one such practice.GPR is a widely used kernel-based algorithm.

However, the algorithm is expensive. Owing to the greater effort regarding computations

which is O(d3), where d signifies the number of data instances (Rasmussen & Williams,

2006), the process takes a great amount of time to perform the fitting and projection.

Furthermore, the memory it takes to train a model and carry out predictions isO(d2) which is

also substantial (Smola & Bartlett, 2001).

To mitigate this problem, efficient algorithms have been proposed (Cheng & Boots, 2016;

Lütz, Rodner, & Denzler, 2013; Nguyen-Tuong, Seeger, & Peters, 2009). A major proportion

of those algorithms proposed sparse solutions to the problem, some preferred online learning,

2

while the rest provided other measures to improve the fundamental algorithm from its

inherent pitfalls.

This thesis addresses the limitation of the basic Gaussian process regression. To solve this

issue, an incremental learning strategy based Gaussian process regression approach is

proposed in this work that collaborates a sparsification operation, an incremental update, and

a decremental un-learning approach to make the procedure more efficient. In the case of a

new data point’s arrival, the model does not retrain the whole dataset again, rather with its

inexpensive updates of kernel matrix and its lower Cholesky factor, the algorithm provides a

good fit with much less computational effort. The proposed modifications are expected to

serve the following functions:

(i) The memory usage is reduced by a greater amount.

(ii) The execution time is far less than the general algorithm.

(iii) The accuracy isnot compromised given the size of the dataset.

1.2 Objectives with Specific Aims

The specific objectives of this research are:

– To modify the existing Gaussian process regression routine with the introduction of

incremental learning in a certain way that the resulting algorithm offers reduced

computational expense and execution time without loss of accuracy.

– To employ the modified algorithm into real-world problems of industrial engineering

(e.g., demand forecasting and trend projection, parameter selection for manufacturing

process optimization, etc.)

1.3 Possible Outcome of the Research

This thesis offers a modified methodology for an existing problem, i.e., regression. Mapping the

relationship between input variables and the response variable(s)for large datasets using

3

Gaussian process regression will be memory and time-efficient. Hence, this research will be

effective in solving a variety of industrial and manufacturing decision-making problems.

1.4 Outline of the Methodology Used

The methodology used is outlined below:

i. The training set was segregated equally into two partitions, called the initial training set

and the streaming set, respectively. With the help of a data clustering algorithm called

CURE, a representative set was obtained from the initial training set and m<<n, where n

indicates the instances of the initial training set and the instances of the representative

dataset is denoted by m. Then, the kernel matrix for this smaller subset was computed.

ii. The streaming set was used in such a way that every point is fed sequentially. Using

the kernel matrix for the representative set as the base, the kernel matrix was updated as

the points were passed on. In the event of the arrival of new data points, the model was

not retrained, rather the kernel matrix was updated and the algorithm only fit the updated

kernel matrix.

iii. For making predictions, there needs to be an inversion of the kernel matrix. As a

direct inversion of matrices is costly, this method is rarely implied for small datasets, let

alone large ones. Rather, another method known as the Cholesky factorization is typically

utilized (Rasmussen & Williams, 2006). In this thesis, Cholesky decomposition was used

for the inversion of the covariance matrix. For the streaming input and any new input, an

efficient update of the lower Cholesky factor was offered which decreases computation to

a great extent.

iv. During the fitting of the Gaussian process, the negative log marginal likelihood was

minimized.

v. After training was done, the algorithm was tested on the test sets. For evaluating the

model performance, two error metrics were deployed: mean absolute error (MAE) and

root mean squared error (RMSE). Moreover, the memory and time required for the

4

execution were calculated. Furthermore, the error scores, memory consumption, and

execution time were matched against that of the basic GPR.

1.5 Contribution of the Study

This study proposes an algorithm that:

– Answers to the continuous input problem and variable training size problem

– Requires much less memory for the same computation

– Offers great savings in terms of execution time

– Does not sacrifice accuracy to the least

– Provides even better fitting in terms of training accuracy for training sets and

performance (i.e., accuracy, memory requirement, execution time) on test sets

1.6 Limitation of the Study

This research possesses some limitations regarding scope and resources. For the scope limitation,

only single-output regression problem was addressed in this thesis where there is multi-output

regression problem as well. Additionally, a predetermined set of kernels was used in this

research. Also, the performance of the proposed algorithm was matched against that of the basic

GPR algorithm only. As for the resource limitation, there was a ceiling on the size of the dataset

handled. The current system specification allowed a maximum of somewhat over 8000 training

points to be handled. With the proposed algorithm, datasets of greater size than this could have

been handled using the current system specification; however, it would not have been possible to

compare the performances of these two algorithms.

1.7 Organization of the Thesis

This thesis is organized as follows:

5

“Chapter1: Introduction” presents the background motivation of the study with defined

objectives and also states the possible outcomes. Additionally, the methodology of this research,

contribution, and limitation of this study has been addressed in this chapter.

“Chapter2: Background Literature” summarizes the relevant publications regarding Gaussian

Process Regression.

“Chapter3: Gaussian Process Regression” states the theory of Gaussian Process Regression

and other relevant terminologies.

“Chapter4: Learning Dynamics in Machine Learning” discusses the two prime machine

learning strategies, their properties, benefits, and limitations.

“Chapter5: Proposed Sparse Incremental Gaussian Process Regression” talks about the

modifications offered in this thesis elaborately.

“Chapter6: Datasets and Experimentation” describes the datasets used in this research, their

characteristics, visualization, and the experimentation procedure.

“Chapter7: Result Analysis” presents the results and possible visualizations of the outcomes

acquired from the experimentations and provides necessary justifications.

“Chapter8: Conclusions and Future Work” passes a concluding note and directs to the

possible future research opportunities.

6

CHAPTER2

BACKGROUND LITERATURE

Machine learning, a subcategory of artificial intelligence (AI), is a discipline of knowledge

where machines are trained to act and make decisions as humans do (Alpaydin, 2004). This

learning of machines can be broadly classified among three categories: supervised learning,

unsupervised learning, and reinforcement learning (Dunjko, Taylor, & Briegel, 2016).

Customarily speaking, for supervised learning, the response is labeled, i.e., it is specified which

values of input produces certain output(s), where unsupervised learning has unlabeled output(s)

and the usual notion is to infer patterns from the data (Sathya & Abraham, 2013). Reinforcement

learning falls somewhere between these two classes, where the output(s) are not needed to be

labeled and the process tries to balance between the available knowledge and the unknown area

(Kaelbling, Littman, & Moore, 1996). This thesis solely focuses on supervised learning.

The supervised learning area can again be stratified into two sub-domains: regression task and

classification task. The main difference between these two sub-classes is that for the regression

problem, the output is continuous whereas it is discrete for classification (Rasmussen &

Williams, 2006). Gaussian process (GP) is an elegant way to infer function values at unseen

points (Bernardo, Berger, Dawid, & Smith, 1998).GPs can be used in the context of both

regression and classification tasks. When used for regression, GP is referred to as Gaussian

process regression (GPR) and it is called Gaussian process classification (GPC) when employed

for classification problems. This thesis deals with Gaussian process associated with regression,

e.g., GPR. In section 2.1, a general background on GPR is provided. Section 2.2 provides a

summary of sparse methodologies of GPR and section 2.3 presents the synopsis of incremental

methodologies.

2.1 General Background of Gaussian Process Regression

Gaussian process regression comes with a rich history. Earlier publications containing the

Gaussian process being used for regression date back to the 1940s (Kolmogoroff, 1941; Wiener,

7

1949). GPR is an ingenious way of fitting functions through observations where it can extract

information about some latent functions from the available data. Defined completely by a mean

function and a covariance function, this technique is quite effective for smaller datasets (Yuan,

Wang, Yu, & Fang, 2008).Additionally, it can quantify the uncertainties of prediction, i.e., it

provides error bars on predictions (Cheng & Boots, 2016). GPR has seen applications in a wide

selection of problems. For instance, it has been used in multi-variable spectroscopic calibration

(Chen, Morris, & Martin, 2007), reliable multi-objective optimization of wire-cut high-speed

electrical discharge machining process (Yuan et al., 2008), producing a high-resolution image

from a single image with lower resolution (He & Siu, 2011), analyzing the motion trajectory in

traffic monitoring (Kim, Lee, & Essa, 2011), predicting the length of the day (Lei, Guo, Cai, Hu,

& Zhao, 2015), modeling of sandy soil infiltration (Sihag, Tiwari, & Ranjan, 2017), prediction of

tool wear (D. Kong, Chen, & Li, 2018), and numerous such diverse applications.

Although GPR offers excellent performance regarding small datasets, the computational demand

is high (Williams & Rasmussen, 1996). The reason for this high expense is due to the inversion

of the covariance matrix of the training set which is required for making predictions. It has been

noted that for n data points, GPR requires the inversion of an n ×n matrix that takes O(n3) time,

O(n2) storage for training, and O(n) time for predicting the response on a test point (M. Seeger,

Williams, & Lawrence, 2003). As a result, GPR becomes expensive as the data points keep

increasing. Due to this poor scalability, GPR is hardly used for big datasets. Another limitation

of this model is that it is vulnerable to overfitting (Mohammed & Cawley, 2017), i.e., that the

model performs well on the training set, but produces poor results on the test set (Subramanian &

Simon, 2013).A host of techniques have been employed by researchers to rectify these

limitations. These techniques can be broadly divided into sparse methods and

incremental/online/sequential learning methods.

2.2 Sparse Methodologies of Gaussian Process Regression

The earlier modifications of GPR were brought principally by the sparse methods (Lázaro-

Gredilla, Quiñonero-Candela, Rasmussen, & Figueiras-Vidal, 2010; Qi, Abdel-Gawad, & Minka,

2010; M. Seeger et al., 2003; Alex J. Smola & Bartlett, 2001; Snelson & Ghahramani, 2006;

Tipping, 2001; Titsias, 2009; Tresp, 2000; Walder, Kwang, & Schölkopf, 2008; C. K. I.

8

Williams & Seeger, 2001; Yoshioka & Ishii, 2001). The sparse methods are the lower-rank

approximations of the full-rank Gaussian process that retain the behavior of the original model

due to the intractability of GP for larger datasets(McIntire, Ratner, & Ermon, 2016). This is

achieved generally through the means of inducing variables or pseudo-inputs, which are a subset

of the original training set (Titsias, 2009). The number of inducing variables to work with is

dependent on the user; however, the choice is crucial(M. Seeger et al., 2003). Inducing variables

can be obtained from the training set by random selection or by optimization, or

otherwise(Bauer, van der Wilk, & Rasmussen, 2016). It has been reported that a random

selection of the inducing variables might lead to poor model performance(Lawrence, Seeger, &

Herbrich, 2002). Anyhow, various sparse schemes have emerged in the literature. The underlying

similarity of these methods is that every sparse algorithm used some form of approximations to

obtain the inducing variables set/active set/pseudo-inputs. And the difference among these

approaches lies in the form of approximation used. For instance, (Tipping, 2001) used a

relevance vector machine (RVM) approximation, which is a finite linear model with Gaussian

priors used on the weights. The significance of this model is that it can find sparse solutions like

support vector machine while providing predictions as Bayesian kernel machines using a

Gaussian process prior (Quiñonero-Candela & Winther, 2003). Then,(Williams & Seeger, 2001)

proposed a Nystrӧm approximation for faster performance of GPR. Nystrӧm method is a

numerical method (Baker, 1977) that is used to approximate the covariance matrix. However,

this approach does not conform to a probabilistic model, i.e., the prior covariance between the

latent function values and the test function values was taken to be exact, which was inconsistent

with the prior covariance of the latent function values (Williams, Rasmussen, Scwaighofer, &

Tresp, 2002).Another significant pitfall was that the covariance matrix did not guarantee the

positive definiteness, i.e., it produced negative covariance values (Quiñonero-Candela &

Rasmussen, 2005). After that,(Smola & Bartlett, 2001) used a subset of regressors (SoR)

approximation for their sparse greedy approach. SoR models are finite with linear parameters

that take on specific prior weights. The approach is greedy in the sense that this algorithm tries to

optimize the maximum a posteriori (MAP) approximation of the response variable(s) at each

step. However, this model suffers from a serious limitation. While predicting function values in a

region far from the active set, the model provides unreasonably smaller predictive variances

which is not explained by the model (Quiñonero-Candela & Rasmussen, 2005), known as the

9

predictive variance problem. Later,(Yoshioka & Ishii, 2001)employed a dataset reduction

scheme such that the derived dataset would depict the original dataset’s characteristics. They

were able to demonstrate that with a very small number of representative points, their model

could match the performance of the basic GPR; however, the prediction accuracy is contingent

upon the allocation of the representative points. Afterwards,(M. Seeger et al., 2003)presented

another sparse greedy approach where the deterministic training conditional (DTC)

approximation or the projected process approximation (PPA) (Rasmussen & Williams, 2006)

was utilized. DTC is based on likelihood approximation where the original likelihood of the full

model is replaced by an approximation. This method assumes a deterministic relation between

the latent function values and the inducing variables. The significance of this model is that it

solves the limitation of the SoR model (Quiñonero-Candela & Rasmussen, 2005) and leads to the

same results as (Smola & Bartlett, 2001)even though an approximated likelihood was used.

However, (Quiñonero-Candela & Rasmussen, 2005) remarked that the DTC approximation does

not conform to a Gaussian process exactly. Subsequently, two more sparse methodologies were

offered by (Schwaighofer & Tresp, 2003)called fully independent conditional (FIC)

approximation and partially independent training conditional (PITC) approximation. FIC is also

a likelihood approximation as DTC, only FIC does not put a deterministic relation on the

function values and the pseudo-inputs, rather it considers the conditional distribution as an

additional independence assumption. For FIC, this independence assumption is valid for both the

training set and the test set. PITC comes from another perspective and it differs from FIC in the

sense that the conditional independence is now valid for a group of points in the training set.

Interestingly, PITC improves upon the DTC approximation (Quiñonero-Candela & Rasmussen,

2005). Fully independent training conditional (FITC) approximation was exercised by (Snelson

& Ghahramani, 2006). FITC is different from FIC as the conditional independence exists over

the training set only, not the test set. This is also a likelihood-based approximation procedure;

however, it results in a richer covariance (Quiñonero-Candela & Rasmussen, 2005).

Thereafter,(Walder et al., 2008)proposed a multiscale version of sparse GP, known as sparse

multiscale Gaussian process (SMGP), which was a modification of FITC approximation. This

method offered performance improvement over FITC; however, it required learning twice as

many parameters (Lázaro-Gredilla et al., 2010). Later, (Titsias, 2009) proposed a variational

approach to sparse GP, where the full GP was approximated using a large number of basis

10

functions. Basis function is a way of generalizing the non-linear relationship between the input

and the output (Hensman & Lawrence, 2014). Although the proposed method by Titsias proved

to be effective for the overfitting problem, the performance of this method was inferior to FITC

or SMGP. After that,(Lázaro-Gredilla et al., 2010) presented a sparse spectrum Gaussian process

(SSGP) that used a stationary trigonometric Bayesian model which was computationally

economical and provided good performance.

The implementation of sparse methods reduced the GPR complexity to some degree, many of

whom reached the same conclusion. For example, the computational requirement in terms of

training time was brought down to O(m2n) from O(n3), where, m is the size of the subset

(inducing set) of the original dataset (m<<n) (Lawrence et al., 2002; Quiñonero-Candela &

Rasmussen, 2005; M. Seeger et al., 2003; A. J. Smola & Bartlett, 2001; Snelson & Ghahramani,

2006; Walder et al., 2008; C. K. I. Williams & Seeger, 2001; Yoshioka & Ishii, 2001). Memory

needed for training was reduced to O(nm) from O(n2) (M. Seeger et al., 2003; A. J. Smola &

Bartlett, 2001), prediction time decreased from O(n) to O(m) (M. Seeger et al., 2003; A. J. Smola

& Bartlett, 2001), or O(m2) (M. Seeger et al., 2003; Snelson & Ghahramani, 2006), and

computations for error bound was O(nm) rather than O(n2) (Smola & Bartlett, 2001).

The methods described so far work in a batch setting. Batch learning refers to model learning

where a bunch of data points is used simultaneously to gain information about the model

behavior. In this case, the model does not retain the training knowledge, i.e., if a new data point

arrives, the model will have to retrain itself (Carbonara & Borrowman, 1998). Batch learning

assumes that the training dataset is readily available before modeling (Gepperth & Hammer,

2016). However, this may not always happen. For example, if a particular application has a

variable training set or incoming data points over a defined period (for example feedbacks, time-

dependent user-inputs), the model would have to train itself over and over for every new training

point. To make matters worse, if the dataset is large, the batch mode will not be economical at all

(Carbonara & Borrowman, 1998). In fact, limited processing power and storage capabilities of

the system might render batch learning prohibitive altogether (Ade & Deshmukh, 2013). As a

measure to treat the scalability problem, a certain learning mode is necessitated that does not

assume the availability of training points beforehand and can adapt to events such as the arrival

11

of new data points or variable training set size. This mode is called incremental learning mode

which is described next.

2.3Incremental Methodologies of Gaussian Process Regression

Incremental learning is a learning strategy that allows the model to expand its knowledge when

new information of the system becomes available(Geng & Smith-Miles, 2009). It should be

noted that incremental learning, also known as sequential learning, is sometimes used

interchangeably with online learning, however, there is a subtle difference. In the case of online

learning, the knowledge of training is not always retained depending on the modeler, whereas,

incremental learning typically maintains this knowledge and updates the model according to the

new data points without retraining the model from scratch(Saffari, Leistner, Santner, Godec, &

Bischof, 2009). Many publications in the GP literature have treated incremental learning and

online learning in the same sense; however, this thesis is using the term “incremental learning” to

avoid any confusion.

The incremental learning techniques regarding the Gaussian process try to update the posterior of

the functions incrementally when the dataset is large. An interesting find from the literature

survey is that all incremental algorithms have utilized sparsification to some extent as well. In

almost all of the cases, the posterior probability has been approximated using some

approximation routine. Among the pioneers of incremental learning based GPR algorithms,

(Tresp, 2000) proposed a sparse approximate of GPR capable of online processing of data. In

this method, models were trained on smaller datasets and the predictions were combined

afterward. This approach further required an additional query of the data points. To circumvent

this additional query, (Csató & Opper, 2002) presented an online version of sparse GPR, which

greedily computes the approximate posterior by going through the dataset only once. The

advantage of this model is that it can handle non-continuous likelihoods that might cause

problems when Kalman filter or variational Gaussian approximations are used. Despite the

advances, instances have been reported in this paper where this algorithm performs poorly

compared to batch algorithms. Next,(Quiñonero-Candela & Winther, 2003)made use of

relevance vector machines (Tipping, 2001) and presented an incremental learning routine as a

variant of the expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977),

12

known as “Subspace EM”. The limitation of (Tipping, 2001)was that having as many basis

functions as possible in the beginning leads to the same complexity as full GP. Therefore, it was

suggested by Tipping to start with a single basis function and add basis functions as necessary.

To keep computations minimum, basis functions were also to be removed as per demand.

Later,(Quiñonero-Candela & Winther, 2003)used the EM algorithm to strategize this method

formally and showed that it guaranteed convergence at the local maximum of model parameters.

Subsequently,(Nguyen-Tuong, Peters, & Seeger, 2009)presented their approach to fastening the

standard GPR using local GP models which were used to approximate the inverse dynamics for

model-based robot control. By using distance-based measures to divide their data into regions

and train individual GP models for each region, they were able to learn the parameters online and

provide real-time predictions. Afterward,(Ranganathan, Yang, & Ho, 2010) proposed an online

sparse matrix Gaussian processes (OSMGP). Their approach combines exact inference and

online updates of the Cholesky factor of the kernel matrix. A limitation of this approach is that

this method works under the presumption that the kernel matrix is inherently sparse. Following

this,(De La Cruz, Owen, & Kulic, 2012) presented a refined version of sparse online Gaussian

processes originally provided by (Csató & Opper, 2002)which allowed incremental updates on

both the training set and the model hyperparameters. The significance of this approach was that it

performed well even without initial training data for the learning of inverse dynamics in model-

based robot controls. Thereafter,(Cheng & Boots, 2016) presented an incremental variational

sparse Gaussian process regression (iVSGPR) that combined sparsification with incremental

model hyperparameter updates. The stochastic mirror ascent algorithm was used to update the

approximate function posterior and the stochastic gradient ascent method was used for

hyperparameter updates. This method solved a mini-GP in each iteration, thereby keeping

computations tractable.

Other than these approaches, models have been presented to provide the online version of

variational batch algorithms (Hensman, Fusi, & Lawrence, 2013; Hoang, Hoang, & Low, 2015;

Qi et al., 2010). For instance,(Qi et al., 2010) updated the FITC approximation by using the

expectation propagation (EP) algorithm, which allows processing data online. After

that,(Hensman et al., 2013)proposed a stochastic approximation of variational sparse GP

originally offered by (Titsias, 2009) based on stochastic natural gradient ascent (Hoffman, Blei,

Wang, & Paisley, 2013). Later,(Hoang et al., 2015) generalized all the sparse representations of

13

GP, i.e., PIC, FTC, DTC, etc. (commonly called SGPRs) and by applying the reverse variational

method (as opposed to the variational method by (Titsias, 2009)), this algorithm can assure

convergence of the predictive distribution of any of the SGPR models.

In light of these preceding research, this thesis delves into Gaussian process regression with a

sparse-incremental mindset. Although there have been a handful of incremental learning methods

dealing with variable training set size, this thesis attempts to use a simpler and flexible

approximation that provides decent results while maintaining accuracy at an acceptable level and

keeping computations as low as possible. In the following chapter, the theoretical background on

the Gaussian process regression and associated terminologies are presented and a discussion on

the major learning strategies for a machine learning model can be found in the next-to-next

chapter.

14

CHAPTER3

GAUSSIAN PROCESS REGRESSION

Gaussian process (GP) is a Bayesian kernel machine following a multivariate Gaussian

distribution (Ranganathan et al., 2010). This method is Bayesian in the sense that it is based on

Bayesian philosophy, where the model is provided a prior without seeing any data, and updates

itself upon given some observations. The Gaussian process is kernelized because it uses kernel

functions as a measure of covariance between any two random variables. In this chapter, the

theoretical background of Gaussian processes is provided. At first, multivariate Gaussian

distribution and two of its important properties called marginalization and conditioning are

discussed in section 3.1 along with Bayesian philosophy in section 3.2. Section 3.3 talks about

the Gaussian process and its two parameters: the mean function and the covariance function.

Finally, these ideas have been brought together to relate to Gaussian process regression (GPR) in

section 3.4.

3.1 Multivariate Gaussian Distribution

It is assumable that the founding brick of the Gaussian process is the Gaussian or Laplace-Gauss

or normal distribution. Gaussian distribution is a continuous probability distribution (Walpole, R.

E., & Myers, 2012). Infamously known for the “bell curve”, this distribution is widely used to

represent random variables with unknown distributions (Casella & Berger, 2002). There are two

parameters for Gaussian distribution. For a univariate Gaussian, these parameters are the mean

and the variance of the random variable, and for a multivariate Gaussian, parameters include

mean and the covariance between random variables (Tong, 2012).

The probability density function (PDF) of a univariate Gaussian is given by:

 f(X; μ, σ2) = 1
√2πσ2

 exp(- (X-μ)
2

2σ2) (3.1)

15

where μ is the mean and σ2is the variance of the random variable X.

For the multivariate case, the distribution is defined by a mean vector, μ, and a covariance

matrix, ∑. In a multivariate Gaussian setting, each of the random variables is normally

distributed and their joint distribution is also normal. The probability density function (PDF) of a

multivariate Gaussian is given by:

 f(X; μ, Σ)= |2πΣ|-
1
2 exp (- 1

2
(X-μ)

T
Σ-1(X-μ)) (3.2)

where X is a vector of random variables distributed according to a multi-variable Gaussian

distribution. The following expression can be written from equation (3.2):

 X ~ N (μ, ∑) (3.3)

where,

 μ = E (X) (3.4)

 ∑ = Cov (Xi, Xj) (3.5)

Two of the properties of multivariate Gaussian distribution are of importance regarding the

Gaussian process. These are called marginalization and conditioning.

3.1.1 Marginalization

Marginalization allows extracting information about a random variable given a joint probability

distribution of that variable with another random variable.

For instance, if A and B are two random variables having a joint distribution of P(A, B), then

information about either A or B can be found out by:

 PA(a) = ∫ PA, B(a, b)dbb = ∫ PA|B(a| b)b PB(b)db (3.6)

 PB(b) = ∫ PA, B(a, b)daa = ∫ PA|B(b| a)a PA(a)da (3.7)

16

The marginal distributions of the jointly Gaussian random variables are also Gaussian (Tong,

2012).

3.1.2 Conditioning

This is another useful property of the multivariate normal distribution. Conditioning simply

means finding the probability distribution of a random variable given another.

For example, just as in the abovementioned case, the conditional distribution of A given B or the

conditional distribution of B given A can be found by:

 P(A|B) = PA,B (a,b)

∫ PA,B(a,b)dbB

 (3.8)

 P(B|A) = PA,B (a,b)

∫ PA,B(a,b)daA

 (3.9)

Similar to marginalization, conditioning on a Gaussian distribution yields another Gaussian

distribution (Tong, 2012).

3.2 Bayesian Philosophy

Bayesian thinking is quite popular in probability and statistics. Bayes theorem provides the

probability of an event given some apriori knowledge about that event and some other conditions

upon which the outcome of the event may depend (Stone, 2013). Generally, the rule can be

expressed as follows:

 Posterior Probability =
Prior Probability × Likelihood

Marginal Likelihood
 (3.10)

In a Bayesian environment, an assumption about the probability of the concerned event is made,

known as the prior probability or “belief”, because this is specified at the beginning without any

knowledge of the system. The likelihood is a measure of fitness for function parameters used for

models of unknown parameters, i.e., this is the probability of function values given some

parameters. And, marginal likelihood is a likelihood function for when the parameter values have

17

been marginalized, i.e., this is the probability of function values given the input when the

parameters have constant values. In a Bayesian system, marginal likelihood is also called

“evidence”.

For example, let us assume that there are some data points, D = {xi,yi}i=1
n . For a simple one-

dimensional linear noisy regression problem, the relation between input vector x and response

vector y can be expressed as:

 y = f(x) + ε (3.11)

 f(x) = xTw (3.12)

where w is the weight or parameter vector and ε is the Gaussian noise which is independently

and identically distributed with zero-mean and a variance of σn
2.

 ε ~ N (0, σn
2) (3.13)

The prior probability is assigned to the weights. A zero-mean Gaussian distribution with

covariance matrix ∑w is specified as the prior distribution for weights:

 w ~ N (0, ∑w) (3.14)

The likelihood or the probability of observations given parameters can be expressed as P(y| x,

w), that can be calculated easily if the independence assumption is considered:

 P(y| x, w) = ∏ P(yi|xi, wi)n
i=1 (3.15)

Equation (3.10) can be re-written as:

 P(w| y, x) = P(w) × P(y|x, w)
P(y|x)

 (3.16)

where, P(w| y, x) is the posterior probability that is calculated with the help of the prior

probability, P(w), the likelihood P(y| x, w), and the marginal probability, P(y| x).

18

3.3 Gaussian Process

The main task of machine learning is to deduce some idea about the function that fits through

some observations that are known beforehand. Now, given these data points, there could be an

infinite number of functions that fit through them. In the case of parametric methods, the

parameters of the function are defined first and then the data points are observed later. Therefore,

these methods try to fit the data through a predefined function. The limitation of this approach is

that the data points may not conform to the function characteristics as it was specified arbitrarily

(Fattahi, 2011). Therefore, it is not wise to specify the parameter prior to seeing some

observations. This is one of the reasons for the poor performance of parametric methods(James,

Witten, Hastie, & Tibshirani, 2013).

As opposed to this, the Gaussian process is a non-parametric method that rather than specifying a

function, specifies a distribution of functions from a prior belief. Then, upon having some

observations, it updates the knowledge of the system. It is to be noted here that the term ‘non-

parametric’ does not refer to having any parameter, rather having an infinite number of

parameters (Hall, 1989).

Formally, Gaussian processes can be defined as a distribution of functions in an infinite domain,

any finite linear combination of which produces a multivariate Gaussian distribution (Rasmussen

& Williams, 2006).

A Gaussian process is comprehensively defined using a mean function and a covariance

function:

 f ~ GP (m, k) (3.17)

where m is the mean function and k is the covariance function. They are defined as follows:

 m(x) = E[f (x)] (3.18)

 k(x, x´) = E[(f (x) – m(x)) (f (x´)-m(x´))] (3.19)

The expression in equation (3.17) can be re-written as:

19

 f (x) ~ GP (m(x), k(x, x´)) (3.20)

For any set of input points {xi}i=1
n , the function vector of these points f = [f(x1)…….f(xn)]T has a

joint Gaussian distribution (Lázaro-Gredilla et al., 2010).

 P(f | {xi}i=1
n) = P(f |μ, ∑) (3.21)

where μ is the mean vector and ∑ is the covariance matrix.

In the following two subsections, the two parameters of the Gaussian process, i.e., the mean

function and the covariance function are discussed.

3.3.1 Mean Function

The mean function is the first parameter of the Gaussian process. This parameter represents the

average value of functions. In truth, the mean function is not much interesting, as the mean of the

prior distribution does not affect the predictive mean. In fact, it has been shown that for a non-

zero mean function, the outcome is the same (Rasmussen & Williams, 2006). There is a

convention of taking the mean of the prior distribution to be zero. Following the convention, this

thesis considers a zero-mean function for the Gaussian prior.

3.3.2 Covariance Function

The covariance function is the heart and soul of the Gaussian process. GP does not seek to

achieve the true form of the output function. Rather, it depends on the nearness of the data points

to propose a guess about the corresponding function values. Intuitively speaking, if two data

points are close, it is justified to assume that the function values relating to those points should

also be close. Based on this intuition, the Gaussian process finds the closeness of function values

through another function known as the covariance function or kernel function.

Back to the first assumption of this model, as the prior mean is taken to be zero, it is the

covariance matrix that now defines the characteristics of the prior distribution(Quiñonero-

20

Candela & Rasmussen, 2005). The interesting point regarding this assumption is, as the prior

becomes Gaussian and the likelihood is generally presumed to be Gaussian, the posterior

distribution is also Gaussian. This simplification leads to an excellent advantage discussed in

section 3.4.

This covariance function is used to generate the covariance matrix, which is symmetric in nature.

For an n×d input matrix, where d is the dimension of the input space, the covariance matrix has a

size of n×n. The general term for the covariance functions between two points is kernel

functions. Figure 3.1 presents a general classification of covariance functions (Rasmussen &

Williams, 2006).

Figure 3.1: Classification of covariance functions

3.3.2.1 Stationary Covariance Function

For two points x1 and x2, a covariance function, k is called stationary if k is a function of (x1-x2).

This kind of covariance is unvarying to translation, i.e., the covariance function value depends

only on the difference vector, not the original points x1 and x2(Genton, 2001). Popular stationary

covariance functions include exponentiated quadratic function, rational quadratic function, etc. It

can be noted here that the covariance function, k can also be a function of ||x1-x2||,in which case it

will be called an isotropic kernel, where, ||x1-x2|| is the Euclidean distance or L2 norm (Horn &

Johnson, 2012). For any vector x=(x1, x2, …., xn), the L2 norm is:

Covariance Functions

Stationary Non-stationary

21

 ||x||=√x1
2+x2

2+……+xn
2 (3.22)

Stationary kernels are known to be used in both forms. Isotropic functions are also known as

radial basis functions (RBF).

3.3.2.1.1 Exponentiated Quadratic Kernel

The exponentiated quadratic (EQ) kernel is also known as the squared exponential (SE) kernel.

The kernel has the following form:

 kES (x1, x2) = σ2 exp (−
(x1-x2)

2

2l2) (3.23)

Here, σ2is the variance, and l is known as the length-scale. The variance is a scaling factor whose

larger value means the points are far from the mean and a lower value means that the points are

closer to the mean. The length-scale determines the smoothness of the function. The lower this

value is, the "wigglier" the function is, i.e., the function values can change rapidly, whereas a

larger length-scale provides a smoother function. Figure 3.2 shows the variation of output due to

different variance and length-scale. It is clear from equation (3.23) that the more any two points

x1and x2are close to each other, the less is the difference (x1-x2), resulting in a higher

covariance, and vice-versa. This is how this kernel function provides a sense of similarity or

closeness.

22

Figure 3.2: Variations of the exponentiated quadratic kernel

3.3.2.1.2 Rational Quadratic Kernel

Rational quadratic (RQ) kernel can be expressed as:

 kRQ (x1, x2) = σ2 (1+ (x1-x2)
2

2αl2)

-α

 (3.24)

This kernel has 3 parameters: signal variance, σ2, length-scale, l, and scale-mix, α (α> 0). The

RQ kernel is analogous to having an infinite sum of exponentiated quadratic kernels with

different length-scales and α works as a weighting factor. As α→∞, the rational quadratic kernel

becomes the exponentiated quadratic kernel. Figure 3.3 shows the variations in the RQ kernel for

varying l and α for a constant noise variance, σ=1.

Figure 3.3:Variations of the rational quadratic kernel (σ=1)

23

3.3.2.1.3 Matérn Kernel

The Matérn kernel has the following expression:

 kν (x1, x2) = σ2 21-ν

Γν
(√2ν ||x1-x2||

l
)

ν
Kν(√2ν ||x1-x2||

l
) (3.25)

The parameters for the Matérn kernel are σ2,ν, and l. Here, Kν is a Bessel function (Abramowitz

& Stegun, 1965),ν is the function order, σ2 is the overall variance, and length-scale, l is similar to

the exponentiated quadratic kernel. Figure 3.4 shows variations of this kernel for various l and ν

while variance was kept constant at σ=1.

Figure 3.4: Variations of the Matérn kernel (σ=1)

3.3.2.2 Non-stationary Covariance Function

A covariance function k of two points x1 and x2is called non-stationary if k is not a function of

(x1-x2). The functional relationship can vary in this case. Popular non-stationary covariance

functions include dot product kernel, periodic kernel, polynomial kernel, etc. (Rasmussen &

Williams, 2006).

24

3.3.2.2.1 Dot Product Kernel

The dot product kernel’s expression is:

 kdot (x1, x2) = σ2+x1.x2 (3.26)

where the k is related to the points x1 and x2through (x1.x2). The only parameter isσ2, which is the

overall variance. The dot product kernel is not much suited for the regression problem but is

highly used in high-dimensional classification task (Schӧlkopf & Smola, 2002). Figure 3.5

shows the variations of dot product kernel for different values of the signal variance.

Figure 3.5: Variations of the dot product kernel

3.3.2.2.2 Periodic Kernel

The periodic kernel is a non-stationary kernel that is related to the inputs through a periodic

function, specifically a sine function. This kernel was proposed by (MacKay, 1998). It is

sometimes known as the exponential sine squared kernel and has the form of:

 kPER (x1, x2) = σ2exp (−
2 sin2 (π |x1-x2|/p)

l2) (3.27)

25

This kernel allows the modeling of periodic functions. The term p is the period that gives the

distance between the repetitive function values and the length-scale, l has the same properties as

in the EQ kernel. The variations of this kernel can be seen in Figure 3.6.

Figure 3.6:Variations of the periodic kernel

In Table 3.1, a summary of the most popular kernels has been presented in terms of their

expression, parameters, and their class.

Table 3.1: Popular kernel functions

Name of the Kernel Expression Parameters Class

Exponentiated Quadratic Equation (3.23) σ2, l Stationary

Rational Quadratic Equation (3.24) σ2, l, α Stationary

Matérn Equation (3.25) σ2, l, ν Stationary

Dot Product Equation (3.26) σ2 Non-stationary

Periodic Equation (3.27) σ2, l, p Non-stationary

26

There are some other popular kernels such as the constant kernel, white-noise kernel, Gaussian

kernel, sigmoid kernel, etc. More about kernels can be found in (Duvenaud, 2014). It is to be

noted that two or more kernels can be combined to make a hybrid kernel. The hybrid kernel

might be appropriate in situations where the single kernel might not perform well.

3.3.2.3 Kernel Hyperparameters

One important feature of the kernel matrix is the hyperparameters. Generally, model parameters

are values that are learned by the algorithm from training (Yuan et al., 2008). For instance, in the

case of linear regression, the intercept and slope are the model parameters that are calculated

based on some training datapoints. The algorithm does not start with some predefined value for

parameters. However, model hyperparameters are values that are primarily defined by the

practitioner. Hyperparameters are often used to learn the model parameters (Probst, Bischl, &

Boulesteix, 2018). In the context of the Gaussian process, the parameters of the kernel functions

are called the kernel hyperparameters because their values are set beforehand.

3.3.2.4 Validity of Kernels

Although there is a wide variety of kernels that may be used as the prior distribution, there is a

certain restriction on the kernels to be a valid kernel. The condition is that the kernel needs to be

apositive-definite (PD) or positive-semidefinite (PSD) in nature (Jylänki, Vanhatalo, & Vehtari,

2011). This is known as the Mercer theorem (Fuchs & Rogosinski, 1942). A real-valued n×n

matrix, k is called a positive-definite if satisfies vTkv>0, for all vectors v∈ℝn, and positive semi-

definite if vTkv≥0(Rasmussen & Williams, 2006). A symmetric matrix is positive definite if all

the eigenvalues are positive and positive semi-definite if all the eigenvalues are non-negative.

3.3.2.5 Significance of Kernels

As stated earlier, the covariance function is one of the parameters of the Gaussian process. In

typical machine learning practice, it is assumed that some form of feature function is available

upon which the task (classification, regression, etc.) is performed. However, it is not always

27

possible to specify this feature function explicitly. For example, text-documents, atomic

structures, and similar cases prohibit the use of an explicit feature function. For cases such as

these, the logical way to perform the machine learning task is through “similarity functions”

(Scholkopf & Smola, 2018). The key idea is to learn the similarity without the knowledge of the

feature space. It is relatable that two close points will produce outputs that themselves are close.

This is where the kernel functions come into aid. Kernel functions measure the similarity of

function values corresponding to given data points. In the GP paradigm, covariance function or

kernel function is what determines this closeness or similarity. And given the general notion of

taking a zero-mean for the prior distribution, it is the kernel function that specifies the prior

distribution entirely (Csató & Opper, 2002). Therefore, the covariance function or the kernel

function is what the Gaussian process is built upon.

3.4 Gaussian Process Regression (GPR)

Regression is a machine learning routine to map the functional relation between the input

variable(s) or regressor(s) and the response variable(s) (Draper & Smith, 1998). Regression can

be broadly classified into two classes based on the characteristics of the relationship relating the

input to the output: linear regression (LR)and nonlinear regression (NLR). For linear regression,

the input is linked linearly with the response(s) and for nonlinear regression, the relation takes

the form of some nonlinear function. Gaussian process regression is specifically suited for non-

linear regression tasks(Snelson & Ghahramani, 2006).

GPR for two cases of nonlinear regression is discussed below: noiseless nonlinear regression and

noisy nonlinear regression. For avoiding confusion, the response of a noiseless and noisy NLR is

denoted by f and y, respectively.

A typical nonlinear regression (NLR) problem is defined by:

 f = ∑ wi
n
i=1 φi(xi) = Φ(xi).w [noiseless NLR] (3.28)

 y ~ f (x) + ɛ [noisy NLR] (3.29)

 ɛ ~ N (0, σn
2) (3.30)

28

Two variants of NLR are considered here. Equation (3.28) represents the noiseless non-linear

regression, and equation (3.29) describes a noisy non-linear regression problem, where ɛ is the

Gaussian noise. Here, Φ(xi) = [φ(x1), ……., φ(xn)] is the basis function vector with basis

functions represented by φ(xi). The basis function is a way to map the relationship between the

input and the response(Hensman & Lawrence, 2014). For linear regression, the basis function

would be a linear function of x and for nonlinear regression, the basis function would be a

nonlinear function of x. For example, the linear relationship can be of Φ(xi) = [x1, x2, …., xn],

where Φ(xi) is linear in terms of x. In contrast, for non-linear regression, the relationship starts

with x having an exponent of 2 or higher. Also, from equation (3.28), w = [w1, w2, …, wn]T

represents the weight vector.

Based on the Bayesian philosophy, the first task is to define the prior. After that, the posterior is

calculated with the help of the evidence.

3.4.1Defining the Prior

In this regression problem, let the prior on the weight vector be defined by a Gaussian process:

 w ~ N (0, ∑w) (3.31)

for the function f(x) = φ(x)Tw, the mean and the covariance is defined by:

 E[f(x)] = φ(x)TE(w) = 0 (3.32)

 E[f(x) f(x̃)] = φ(x)TE(wwT)φ(x̃) = φ(x)T∑wφ(x̃) (3.33)

where, x̃ is another vector and the covariance of the weight vector, w is given by:

 ∑w= E(wwT) = K(x, x̃) (3.34)

It can be said from equations (3.32) and (3.33) that f(x) and f(x̃) are jointly Gaussian with zero-

mean and covariance of φ(x)T∑wφ(x̃).

29

It is noticeable that the specification of the covariance function defines a distribution over

functions. In other words, different function values can be achieved for each value of the

parameters of the kernel (i.e., hyperparameters) which conforms to a distribution of function

values. It is possible to draw samples from this distribution of functions at points of interest. It is

important to remember that in GPR, test points are taken into the modeling from the beginning.

Let, x* be the test points. Using the prior distribution, evaluations can be made at x*, which is

denoted by f* and is defined as:

 f*=N (0, K(x*,x*)) [noiseless NLR] (3.35)

 y*=N (0, K(x*,x*)) [noisy NLR] (3.36)

3.4.2Posterior Predictive Distribution

In general, the predictive posterior distribution is:

 P(f*| x*, x, f) = ∫ P(f*|w, x, f, x*) P(w|x, f) dww [noiseless NLR] (3.37)

 P(y*| x*, x, y) = ∫ P(y*|w, x, y, x*) P(w|x, y) dww [noisy NLR] (3.38)

Here, x represents the training points, f and y are the observations at x for noiseless regression

and noisy regression, respectively, and x*denotes the test points. Unfortunately, equations (3.37)

and (3.38)do not result in a closed-form solution (Quiñonero-Candela & Rasmussen, 2005).

However, there is a solution to this problem. Because of assuming a Gaussian likelihood and a

Gaussian prior, the posterior distribution is also Gaussian and the predictive posterior

distribution is given by:

 P(f*| x*, x, f) = N(μ*,∑*) [noiseless NLR] (3.39)

 P(y*| x*, x, y) = N(μ*,∑*) [noisy NLR] (3.40)

where,μ* and ∑* are the mean and covariance of the predictive distribution respectively. The

expressions of μ* and ∑* can be found easily. By definition of the Gaussian process, the joint

distribution of the observed function values, f, and the predicted function values, f* is given by:

30

 [
f
f*

] ~ N (0, [
K(x, x) K(x, x*)
K(x*, x) K(x*,x*)]) [noiseless NLR] (3.41)

 [
y
y*

] ~ N (0, [
K(x, x) + σn

2I K(x, x*)
K(x*, x) K(x*,x*)

]) [noisy NLR] (3.42)

Using short notations,

 [
f
f*

] ~ N (0, [
K K*
K* k*

]) [noiseless NLR] (3.43)

 [
y
y*

] ~ N (0, [
K+ σn

2I K*
K* k*

]) [noisy NLR] (3.44)

Here, K = K(x, x) is the covariance matrix of the training points x, K*= K(x, x*)= K(x*, x) is the

covariance matrix of training points x and test points x*, and k*= K(x*,x*) is the covariance

matrix of the test points. If there are n number of training points and n* test points, K will be an

n × n matrix, K*will be an n × n* or an n*× n matrix, and k* will be an n*× n* matrix.

The main objective here is to incorporate the knowledge about the training data and discard those

functions that do not agree with the observations. This is done with the help of conditioning.

Conditioning on the joint distribution in equations (3.43) and (3.44) gives:

f*| x*, x, f ~ N (K(x, x*)K(x, x)-1f, K(x*, x*) – K(x,

x*)K(x, x)-1K(x*, x))
[noiseless NLR] (3.45)

y*| x*, x, y ~ N (K(x, x*)(K(x, x)+σn
2I)-1y, K(x*, x*)– K(x, x*)K(x, x)-1K(x*, x)) [noisy

NLR]
(3.46)

or,

 f*| x*, x, f ~ N (K*K-1f, k*– K*K-1K*) [noiseless NLR] (3.47)

 y*| x*, x, y ~ N (K*(K+ σn
2I)-1y, k*– K*K-1K*) [noisy NLR] (3.48)

Equations (3.47) and (3.48) give the mean and the covariance of the predictive posterior

distribution for the noiseless case and noisy case, respectively. From equations (3.47) and (3.48):

31

 Predictive mean, μ*= K*K-1f [noiseless NLR] (3.49)

 Predictive Covariance, ∑*= k*– K*K-1K* [noiseless NLR] (3.50)

 Predictive mean, μ*= K*(K+ σn
2I)-1y [noisy NLR] (3.51)

 Predictive Covariance, ∑*= k*– K*(K+ σn
2I)-1K* [noisy NLR] (3.52)

From an earlier point, it was mentioned that mean of the prior distribution does not affect the

posterior mean. From equations (3.49) or (3.51), it is evident that, despite using a zero-mean for

the prior distribution, the predictive mean is not zero at all. It is also noticeable from equations

(3.49) to (3.52) that an inversion of the kernel matrix of the training points, K is needed to make

predictions. The main computational challenge occurs here. With n increasing, K increases

proportionally in size (n × n), leading to unmanageable computations with large n.

3.4.3 Optimizing Kernel Hyperparameters

The kernel hyperparameters are the parameters of the kernel functions that are prespecified and

not learned from the model. As the values of the hyperparameters are user-defined, it is

important to find the optimum values for the hyperparameters, θ. The marginal likelihood or the

evidence is linked to the kernel by the following equations (Rasmussen & Williams, 2006).

Hyperparameters θ are embedded in the kernel function.

 log P(f | X) = – 1
2

fTK-1f– 1
2

log |K| – n
2

log 2π [noiseless NLR] (3.53)

 log P(y| X) = – 1
2

yT(K+ σn
2I)-1y – 1

2
log |K+ σn

2I| – n
2

log 2π [noisy NLR] (3.54)

In equations (3.53) and (3.54), the first term denotes model fitting, the second term is for the

model complexity depending only on the kernel function, and the last term represents a

marginalization constant (Rasmussen & Williams, 2006). The optimum values of

hyperparameters can be found by maximizing the log marginal likelihood or by minimizing the

negative log-marginal likelihood (Lázaro-Gredilla et al., 2010).

32

In Figure 3.7, GPR has been presented graphically. Figure 3.7(a) shows the prior distribution

over functions, where 30 samples have been taken. Figure 3.7(b) plots the observations. In figure

3.7(c), the knowledge of the training data is fed to the prior distribution. Figure 3.7(d) illustrates

that the GPR model only retains those functions that go through the observations and discards

the rest of the functions. This is how a non-parametric method such as Gaussian process

regression ensures that the parameters agree with the training knowledge. This figure also gives

the predictive posterior distribution. It can be seen from Figure 3.7(a) that the function mean

vector is represented by a bold black line. In Figure 3.7(d), this mean line is not at the zero-value

anymore, rather it now represents the predictive posterior mean of the process. This proves a

point made earlier in the chapter that the assumption of a zero-mean vector does not have any

effect on the posterior mean whatsoever.

(a) (b)

(d) (c)

Figure 3.7: Graphical representation of Gaussian process regression

33

3.4.4 Merits of Gaussian Process Regression

Gaussian process regression is a widely used nonlinear fitting algorithm because it has the

following properties:

Exact Inference of Posterior Distribution: GPR allows the analytical calculation of the

predictive posterior distribution. From equations(3.37) and (3.38), it can be seen that the

expression could not be evaluated in closed-form. However, because of using a Gaussian process

prior and a Gaussian likelihood, the predictive posterior distribution can be computed exactly in

closed form. This is a rare property for a non-parametric method(Duvenaud, 2014).

Quantification of Prediction Uncertainty: Typical kernel machines such as support vector

machine are not probabilistic in nature, i.e., they cannot quantify the error in the prediction.

However, Gaussian process regression overcomes this limitation of kernelized methods due to its

explicit probabilistic formulation (Ranganathan et al., 2010). As a result, they can provide a

confidence interval of their predictions.

Efficiency for Smaller Datasets: Equations (3.49) to (3.52) presents the predictive posterior

mean and covariance of the Gaussian process. The main computational burden occurs at the

inversion of the kernel matrix. As long as the dataset is small or moderate in size, the basic GPR

provides excellent performance in terms of computational time and memory.

Superior Fitting Performance: A useful property of GPR is that it converges to the data

distribution very rapidly. For typical parametric methods and even for other non-parametric

methods, the number of training points plays a role in the model performance. Generally, these

methods require relatively more data points to provide an acceptable model performance.

However, it has been reported that GPR can perform at a satisfactory level even with a small set

of training data (Yuan et al., 2008).

Flexible Modelling: One of the reasons for the wide usage of GPR as a modeling tool is that it

provides impeccable flexibility to the modeler. For instance, there is a wide range of kernel

functions available, and the modeler can test the performance of the kernels and choose any

kernel according to need. Again, modeling with non-Gaussian likelihood is also possible. Of

course, an exact posterior distribution cannot be for this case; however, approximate results can

be achieved (Hensman et al., 2013; Jylänki et al., 2011).

34

3.4.5 Shortcomings of Gaussian Process Regression

Despite having some excellent properties, GPR has limited usage in some cases due to the

following limitations:

Inefficacy to Handle Large Dataset: Equations (3.49) to (3.52) give that for making

predictionsan inversion of the n×n covariance matrix is mandatory which has O(n3)

computations and O(n2) memory (Lázaro-Gredilla et al., 2010). As n grows, it becomes

computationally infeasible. Although the use of Cholesky decomposition reduces the

computation in half, still GPR for big datasets is not time and memory-efficient (Alex J. Smola

& Bartlett, 2001).

Overfitting Issue: Gaussian process regression is quite susceptible to overfitting (Mohammed &

Cawley, 2017). Overfitting refers to the problem where the model performs very well on the

training set but gives poor predictions on the test set (Subramanian & Simon, 2013). As a result,

the predictive distribution can amplify very small fluctuations in the training dataset. A possible

treatment of overfitting is using some form of regularization such as ridge regression (Sarle,

1996).

Gaussian process regression, despite being an excellent regression method, is prohibitive in some

cases, especially involving big datasets. To alleviate the limitations of the original model,

researchers firstproposed sparse methods. Sparse methods, although lucrative, possess some

inherent pitfalls, one of the main reasons behind thisisthat these methods areimplemented in a

batch setting. To cope with the issue, incremental learning emerged. Eventually, the

collaboration of many existing methods was seen in the literature. In the next chapter, a

discussion on the principal learning dynamics of a typical machine learning model is presented.

Based on the discussion of the next chapter, the proposed methodology is presented in the next-

to-next chapter.

35

CHAPTER4

LEARNING DYNAMICS IN MACHINE LEARNING

Before presenting the mechanism of the proposed methodology for Gaussian process regression

in the next chapter, a discussion on learning schemes in machine learning seems appropriate. In

this chapter, two principal learning techniques in machine learning namely batch learning and

incremental learning have been discussed. In section 4.1, a description of batch learning, its

assumptions, characteristics, merits, and limitations have been provided. Section 4.2 offers a

discussion on incremental learning strategy, its properties, benefits, challenges, and applications.

4.1 Batch Learning

Batch learning is the traditional way to perform machine learning tasks. This is also known as

offline learning. Generally, the dataset is allotted into two groups for this learning: a training set

and a validation/test set. This is usually done in a 70%-30% ratio, although this is up to the user.

The main reason for dividing the dataset into these two portions is, only training a model based

on the dataset is not enough, information on the model performance is also important. Therefore,

after training the model using the training set, the validation set is used to predict the model

output(s) and compare it to the true output(s). At this point, some error metrics can help

understand how competently the model is performing. The batch learning methodology is

presented in Figure 4.1.

4.1.1 Assumptions of Batch Learning

Batch learning deems the following assumptions:

Availability of training data: The main assumption of batch learning is, it takes that all the

training data is available before modeling(Bishop, 2006).

Consistency in data characteristics: Batch learning considers the dataset and its characteristics

to be static (Gepperth & Hammer, 2016),i.e., the underlying distribution of the data does not

change over time.

36

Figure 4.1: The architecture of batch learning

START

Training Set Validation/
Test Set

Model

Trained Model

Generating Predictions

Is the model
performing

well?

Evaluating Performance

Make Necessary
Refinement

END

No

Yes

Dataset

37

4.1.2 Characteristics of Batch Learning

Batch learning possesses the following characteristics:

Simultaneous use of the full dataset: In batch learning, all training points are used at once

(Nilsson, 1996). If there is any change in the training set, the model needs to be updated as a

whole if operating in a batch setting.

Memoryless property: Batch learning does not retain training knowledge (Mitchell, 1997). It

can generate predictions based on a static training set. For any additional information, the model

has no way of updating the existing knowledge other than to be trained again.

4.1.3 Merits of Batch Learning

Batch learning inherits the following advantages:

Reliable estimation of model parameters: As batch learning uses every point in the dataset at

the same time, model parameters can be learned with greater accuracy (Bottou & Cun, 2003).

Even if this is an approximated measure, it is close to the actual parameters.

Economy for smaller datasets: For small datasets, batch learning is quite effective. It does not

take much time or memory to train a model on small datasets with batch learning (Cheng &

Boots, 2016).

4.1.4 Limitations of Batch Learning

Some of the major limitations of batch learning are listed below:

The high expense for big datasets: Computational complexity and memory requirement of

batch learning generally grows with the data instances. When the size of the dataset grows, batch

learning becomes expensive(Cheng & Boots, 2016). Typical time complexity and memory

requirement for batch-GPR are O(n3) and O(n2), which increases with the dataset size (Smola &

Bartlett, 2001).

38

Incapability to accommodate streaming input: For streaming input, batch learning fails to

accommodate the processing because the algorithm will have to retrain every time a new training

point becomes available, which is computationally infeasible (Ade & Deshmukh, 2013).s

Inability to adjust to variable training set: Batch learning also fails when training data points

are removed (Lütz et al., 2013). Retraining is inevitable for this case too.

To overcome these shortcomings, another learning strategy called incremental learning has

become popular.

4.2 Incremental Learning

Incremental learning is the most recent machine learning strategy. This learning scheme is also

known as sequential learning. Incremental learning is sometimes used interchangeably with

online learning; however, online learning might be slightly different in the sense that online

learning is not committed to always keep the training knowledge in memory (Saffari et al.,

2009). Many researchers have used them to point at the same thing. Anyhow, the basic idea of

incremental learning is to not consider the whole training dataset at once, rather taking up

training points one-by-one and learning from it. Incremental learning offers certain key

advantages because incremental learning does not confine itself to the assumptions of batch

learning. The incremental or sequential learning strategy can be perceived as in Figure 4.2.

4.2.1 Characteristics of Incremental Learning

Incremental learning has the following traits:

Sequential use of training points: In contrast to batch learning, this methodology does not

entertain the use of training sets in the traditional sense. Instead of the instantaneous learning

from the training set, this model learns sequentially from individual points (Mitchell, 1997).

Retention of model knowledge: Incremental learning is ought to hold on to the learning for as

long as the modeler wants (Ade & Deshmukh, 2013). As this strategy is based on learning from a

sequential feeding, the model will not work if it cannot remember what it has learned so far. That

39

is why the incremental learning model typically possesses the model knowledge retention

property.

Figure 4.2: The architecture of incremental learning

START

Continuous
Training Input

Model

Model Learning

No

Is
training
done?

Yes

Trained Model

Prediction Generation

Model Performance
Evaluation

END

Is the model
performing

well?

Make Necessary
Adjustment

No

Yes

40

Alteration in data distribution: Batch learning takes the data characteristics to be static for

granted, which may not work for incremental learning. As the application of incremental

learning dictates the length of time for which the training points will be collected, there is no

guarantee of how long this time is going to be. It could be in months, or even years. In this long

period, the underlying data distribution might change (Tsymbal, 2004). Therefore, this

assumption does not hold water for incremental learning.

4.2.2 Merits of Incremental Learning

Incremental learning is attractive as it provides the following benefits:

Flexibility in modeling: This process can adjust to the new arrival of datapoints which makes it

compatible to work with streaming input(Nguyen-Tuong, Seeger, et al., 2009). As a result, in the

cases where the data is provided by human feedback can be handled with this kind of learning

strategy. Not only for new arrivals, but the existing points in the training set can also be removed

through appropriate “de-learning” techniques (Cao & Yang, 2015).

Efficiency in memory usage: Incremental learning offers efficient memory consumption. As

this kind of algorithm is often used in applications with memory or resource limitations, data are

kept in a concise way that ensures inexpensive memory usage (Gepperth & Hammer, 2016).

Control over model expense: Incremental learning scheme can control the cost to update the

knowledge (Mouchaweh, Devillez, Lecolier, & Billaudel, 2002). Computations and memory

requirements can be kept to a minimum (Nguyen-Tuong, Seeger, et al., 2009).

4.2.3 Challenges with Incremental Learning

Some real challenges with incremental learning are listed below:

Online parameter adaptation: Incremental learning tries to provide a reliable model whenever

a new data point is trained. In batch learning, all the data points arrive at the same time, so there

is no problem in determining the parameters from the data. However, incremental learning does

not permit knowing how many points to train in advance. As a result, the parameters need to be

41

estimated every time the model takes in new samples. This is a major challenge for incremental

learning.

Concept drift: One important presumption of batch learning is that it treats the observations as

static, i.e., the data characteristics do not change over time. However, incremental learning works

with a broader time-range. Therefore, the data characteristics might alter with time. This

alteration in the distribution of the data is known as concept drift(Kulkarni & Ade, 2014; Polikar

& Alippi, 2013; Tsymbal, 2004) Some typical concept drift seen in practice are:

(i) Virtual concept drift: This drift refers to the changes in the input distribution. For the

input x of a certain system, alterations in p(x) will be known as virtual concept drift

(Ditzler, Roveri, Alippi, & Polikar, 2015). This occurs when the training data and the test

data does not conform to the same distribution. This is also known as covariate

shift(Sugiyama, Krauledat, & MÃžller, 2007).

(ii) Real concept drift: This drift points to the changes in the marginal distribution of the

output. For a set of input x and output y, if the marginal distribution or evidence p(y| x)

changes with time, it is known as real concept drift (Gama, Žliobaitė, Bifet, Pechenizkiy,

& Bouchachia, 2014). This is a serious problem for machine learning tasks, especially

classification (Gepperth & Hammer, 2016).

(iii) Concept shift: Concept drift can occur slowly or abruptly. If the change is sudden

and vigorous, then this phenomenon is known as concept shift(Vorburger & Bernstein,

2006).

(iv) Local concept drift: If the drift occurs in a particular region, it is called local

concept drift(Tsymbal, 2004).

A combination of incremental and decremental learning might be helpful against concept drift

(Raducanu & Vitria, 2008).

Stability-plasticity dilemma: When concept drift exists in the system, another challenge

presents itself regarding the timing and the means of updating the knowledge of the system. If

the system is updated quickly, the new information is updated quickly; however, there is a

chance that the old information is forgotten equally quickly. On the other hand, if the system is

42

slow to update, the old knowledge is kept all right but the new information might be lost due to

the lag. This trading off of the knowledge between old and new models is known as the stability-

plasticity dilemma(Mermillod, Bugaiska, & Bonin, 2013). If the stability-plasticity dilemma gets

even worse, it can give rise to catastrophic forgetting, which is extremely undesirable for

machine learning models as this leads the model to forget everything it has learned so far

(McCloskey & Cohen, 1989).

Adaptive model complexity: For batch learning, model complexity is static. However, as the

training samples vary from time to time for incremental models and full training knowledge is

not available at any given moment, the model complexity is variable in this scenario. Due to this

reason, resource allocation for incremental learning is of importance. A typical treatment of this

issue is gradual de-learning of the model which allows the model to remove training points after

the training set has reached a certain size (Gepperth & Hammer, 2016).

Efficient memory management: Incremental models are needed particularly in the cases where

there is a resource limitation (Ade & Deshmukh, 2013). Therefore, these models are required to

store information concisely. This challenge limits these algorithms to use expensive

approximations. Also, incremental learning methods sometimes require the use of decremental

un-learning strategies to ensure optimum memory usage (Raducanu & Vitria, 2008).

4.2.4 Applications of Incremental Learning

Some of the applications of incremental learning are listed below:

Big data analytics: Principal application of incremental learning methodology is in big data

processing, unquestionably. Due to the high expense of batch learning in the context of big

datasets, incremental learning by default becomes the preferred choice. For example, incremental

learning has been popular with big datasets that allow only a single sweep of the training set due

to memory limitations (Hammer, He, & Martinetz, 2014). Other than this, big data visualization

(Malik, Hussain, & Wu, 2016), extreme learning in big data classification (Xin, Wang, Qu, &

Wang, 2015), and network data processing (Dhanjal, Gaudel, & Clémençon, 2014) are some of

the many examples of the use of incremental learning in the big data processing.

43

Robotics: Learning of the system dynamics and the human-robot interactions in robotics are

inherently incremental. The system learns from a stream of data points arriving over time

(Gepperth & Hammer, 2016). This is analogous to “lifelong learning” for humans. Other than

robotics, autonomous driving is also using the basic principles of incremental learning

(Mozaffari, Vajedi, & Azad, 2015).

Image processing: Incremental learning is beneficial to applications involving training samples

in the form of images or videos being available over time. Typical application areas include

object identification, video surveillance, facial recognition (Bai, Ren, Zhang, & Zhou, 2015;

Dewan, Granger, Marcialis, Sabourin, & Roli, 2016; Lu, Boukharouba, Boonært, Fleury, &

Lecoeuche, 2014).

Based on the description above, it suffices to say that batch learning is not a popular way of

training machine learning models, especially for big datasets and streaming training points. Even

if not for these applications, batch learning has other limitations. As a result, batch algorithms, in

this context specifically batch-GPR is not attractive anymore. Naturally, the incremental

implementation of Gaussian process regression is necessitated. In the next chapter, the proposed

methodology that this thesis is proposing is presented in detail.

44

CHAPTER 5

PROPOSED SPARSE INCREMENTAL GAUSSIAN PROCESS

REGRESSION

Gaussian process regression, despite being useful and efficient in certain situations, is not sparse,

i.e., it considers the entire training set. Therefore, the algorithm struggles with additional

computational complexity and memory requirements in general for larger datasets. As a result,

sparse methodologies have been used massively among researchers to approximate the full-rank

GPR. Additionally, some research proposed online learning strategies. In this chapter, a

methodology called sparse-incremental Gaussian process regression (si-GPR) has been

presented that combines sparse representation and incremental learning strategy. The proposed

methodology uses a simpler yet effective approximation tool with a flexible model updating

routine and an additional de-learning approach so that the proposed algorithm remains

computationally feasible and provides better performance. In section 5.1, the notations used to

denote the components of the algorithm are provided. Section 5.2 presents a general overview of

the proposed algorithm. In section 5.3, a detailed breakdown of the algorithm is given with a

flowchart. And finally, the pseudocodes for the modules are presented and explained in section

5.4.

5.1 Notations used for the Proposed si-GPR Algorithm

Table 5.1 presents the notations used for explaining the si-GPR algorithm:

Table 5.1: Notations for si-GPR algorithm

Symbol Description

n The original number of data points

D Original dataset

Dtrain Original training Set

Dtest Test set

45

D1 Initial training set

D2 Streaming set

DR Representative set

KR Kernel matrix of the representative set, DR

LR Lower Cholesky factor of the kernel matrix, KR

LR
-1 Inverse lower Cholesky factor of the kernel matrix, KR

KRmax Maximum size of the kernel matrix

XR Training matrix at any given iteration for streaming input

Knew Covariance vector of existing training vector with a new point

K* The variance of the new point

Kupdated Updated kernel matrix at any iteration for streaming points

Lnew Lower Cholesky factor for the Knew matrix

Lupdated Updated lower Cholesky factor for Kupdated at any iteration

Lupdated
-1 Inverse lower Cholesky factorfor Kupdatedmatrix

5.2 General Overview of Sparse Incremental Gaussian Process Regression (si-GPR)

The proposed methodology consists of the following three phases:

5.2.1 Phase-1: Approximation/ Sparsification

This is the first phase of the proposed algorithm. The training set is segregated into two classes

called the initial training set and the streaming set in a 50%-50% ratio. Phase-1 deals with only

the initial training set. This algorithm does not seek to make predictions with the whole dataset,

rather tries to approximate the original dataset without increasing computation. That is why this

thesis has used a representative dataset instead of the original set. A representative dataset is a set

that can replicate the behavior of the original dataset despite having lesser instances than the

original set(Yoshioka & Ishii, 2001). An effective algorithm called clustering using

representatives or CURE(Guha, Rastogi, & Shim, 1998)was used for this purpose. The output of

this algorithm, i.e., the representative points tries to reproduce the geometry of the original

clusters. This particular algorithm was used because it has some desirable properties:

46

(i) It can identify arbitrarily shaped clusters

(ii) The algorithm is immune to outliers

(iii) The computational requirement is less. The time complexity for this algorithm is O(n2), and

the storage requirement is O(n), where n is the total number of data points.

The operation of obtaining the representative set is known as the sparsification operation. The

rationale for using sparsification was to gain a computational edge. After obtaining the

representative set, the kernel matrix for this dataset, KR,and the lower Cholesky factor of theKR

matrix, LR was calculated which were required for a specific reason mentioned in the next phase.

5.2.2 Phase-2: Incremental Learning

This phase allows the proposed algorithm to accommodate streaming input, i.e., input that

arrives over time and is fed to the model sequentially. It should be noted here that this thesis did

not handle actual streaming input due to resource limitations. To make up for this limitation, the

streaming set was loaded in the memory at a time but the points were fed sequentially just as the

real feedback input would have been. From the discussion in chapter 3, it is noticeable that an

inversion of the covariance matrix needs to be performed to make predictions. In typical GPR,

for n data instances, the covariance/kernel matrix is an n×n matrix, that needs to be computed at

once. The inversion of the covariance matrix demands O(n3) operations. However, the streaming

input will arrive over time and there is no guarantee regarding when the training might end. If the

computations were to run every time a new point arrives, the incremental learning attempts

would have been futile. If the kernel matrix is examined closely, it can be noticed that the

interaction of a new point with the existing points can be expressed through a particular row and

column of the kernel matrix. Hence, the idea of augmenting the kernel matrix and its lower

Cholesky factor emerged rather than computing it in every single iteration. From phase-1, it can

be seen that a kernel matrix of the representative set and its lower Cholesky factor was

calculated. The basic idea of implementing incremental learning in this thesis was to extend

these two matrices for each new point. Although the kernel matrix is being augmented here in

every iteration, this will not be directly used for the inversion. Rather, the Cholesky factorization

will be used to invert this matrix. The reason for using Cholesky decomposition instead of direct

47

inversion is due to the lesser computation required by the Cholesky method, almost half of the

direct method of matrix inversion (Rasmussen &Williams, 2006). Now, for implementing the

incremental learning, the idea is to augment the lower Cholesky factor in every iteration, which

means appending the basic lower Cholesky factor by one row and one column. After the end of

the training period, the inverse matrix of the augmented lower Cholesky factor was computed.

From the equation (5.10), it should be clear that the inverse of the updated kernel matrix can be

calculated through the inverse augmented lower Cholesky matrix. It should also be mentioned

here that the calculation of the kernel matrix might seem redundant at this stage; however, this is

an important step for the de-learning strategy described in the next step.

5.2.3 Phase-3: Decremental Un-learning

Incremental learning algorithms are often used where there is a memory limitation. Therefore, it

might be required to keep the computations tractable so that less memory is required. The

management of the computations can be done through a sequential de-learning strategy. As the

main computational burden comes from the kernel matrix, an operation can be performed that

helps the kernel matrix be in a specific size. For instance, if the specified size of the kernel

matrix is p×p, then when a new data point arrives, the algorithm deletes the first training

instance, i.e., it deletes the first row and first column of the kernel matrix, so that the new point

can be accommodated within the preferred size (p×p). This operation ensures the constant size of

the kernel matrix, thereby confirming a steady training memory usage.

In summary, this algorithm provides a lower-rank approximation through sparsification (phase-

1), an incremental learning strategy that allows sequential input and efficient kernel matrix

inversion (phase-2), and a decremental unlearning approach that keeps the algorithm

computationally feasible and also addresses the memory limitation issue (phase-3). Figure 5.1

maps out the overall structure of the algorithm and the next section provides a detailed

breakdown of the algorithm.

48

Figure 5.1: Flowchart for the proposed si-GPR algorithm

No

Yes

START

Initial Training
Set, D1

Streaming Set,
D2

Representative Set,
DR

Calculate Kernel Matrix, KRand
lower Cholesky Factor, LR

Augment KR and LR by
one row and one column
for each streaming point

KR>KRmax?
Delete ith row and

column, i = 1, …, p

Training
Dataset, Dtrain

Is Training
Finished?

Test Dataset,
Dtest

Validate Model

END

C
U

R
E

Dataset, D

Yes

No

Sp
ar

si
fic

at
io

n

In
cr

em
en

ta
l L

ea
rn

in
g

Decremental Un-learning

49

5.3 Detailed Breakdown of the Algorithm

The outline of the proposed algorithm can be found in Figure 5.1.In this section, the proposed

modifications have been offered. Steps 1 through 3 of the algorithm fall under phase-1, step 4 is

dedicated to phase-2, phase-3 concerns step-5, step-6 denotes the end of the training, and step-7

is related to the model validation.

Step-1: The training set was divided into halves. The first part of the training set is called the

initial training set, D1, and the other part is noted as the streaming set, D2.

Step-2: A data clustering algorithm called CURE (Guha et al., 1998) was applied on the initial

training set, D1, and a representative set, DR was obtained, which is smaller than the initial

training set.

Step-3: Using this representative dataset, DR, the kernel matrix for this set, KR was calculated.

Additionally, the lower Cholesky factor of the kernel matrix, LR was also computed.

Step-4: This step allows incremental learning. For the streaming set, D2, each data point will be

fed successively. In this case, an efficient update of the kernel matrix is needed rather than going

through the same calculation in each iteration. The strategy used to update the kernel matrix and

the lower Cholesky factor is similar to (Nguyen-Tuong, Seeger, et al., 2009).

Efficient Update of the Kernel Matrix:

The basis for this update is the existing covariance matrix for the representative dataset, KR, that

was obtained from step-3. Now, for every new training point that is fed one-by-one, only the last

row and the last column need to be updated. Two interactions are involved here: the covariance

of the existing training vector with the new point, Knew, and the variance of the point itself, K*.

The update is given in equation (5.3). Because the kernel matrix is symmetric, only one of them

(either the row or the column) needs to be calculated that can be transposed to get the other one.

The last element of the matrix is the variance of the new point. In short, two quantities need to be

calculated from equations (5.1) and (5.2), which will be used to extend the kernel matrix found

from the representative set by one row and one column at a time for a new data point. The update

on the kernel matrix can be seen graphically in Figure 5.2.

50

At the end of

phase-1,KR

K(x1, x1) K(x1, x2) …… K(x1, xn/2)

K(x2, x1) K(x2, x2) …… K(x2, xn/2)

⁞ ⁞

⁞

K(xn/2, x1) K(xn/2, x2) …… K(xn/2, xn/2)

After 1st iteration in

phase-2, for point

xs1,Kupdated

KR K(xR, xs1)

K(xs1,xR) K(xs1, xs1)

After 2nd iteration in

phase-2, for point

xs2,Kupdated

KR K(xR, xs1)
K(xR, xs2)

K(xs1, xR) K(xs1, xs1)

K(xs2, xR) K(xs2 , xs2)

After nth iteration in

phase-2, for point

xsn,Kupdated

KR K(xR, xs1)
K(xR, xs2)

……
K(xR, xsn) K(xs1, xR) K(xs1, xs1)

K(xs2 , xR) K(xs2, xs2)

⁞

K(xsn, xR) K(xsn, xsn)

Figure 5.2:Visualization of incremental updates of the kernel matrix

⁞

⁞

51

Let, the existing training vector now be XR and the new point x. The covariance of the existing

training vector with the new point is denoted by Knew, and the variance of the new point is

denoted by K*, that can be calculated from equations (5.1) and (5.2).

 Knew= K (XR, x) (5.1)

 K*= K (x, x) (5.2)

Given the current covariance matrix KR, the updated kernel matrix will be:

 Kupdated = [
KR Knew

Knew
T K*

] (5.3)

Efficient Update of the Lower Cholesky Factor:

For inversion of square matrices, popular methods such as the lower-upper (LU) decomposition

(Rasmussen & Williams, 2006) or the Woodbury formula (M. W. Seeger, 2004)are generally

incorporated.

LU decomposition decomposes the original matrix to be inversed into two matrices: an upper

triangular matrix, U, and a lower triangular matrix, L (Chapra & Canale, 2010). For a typical

square matrix B, if the lower and upper factors are L and U respectively, then the following

expression can be written:

 B = LU (5.4)

 B-1 = (LU)-1 (5.5)

 = U-1L-1 (5.6)

The inverse matrices of L and U can be obtained from equations (5.7) and (5.8).

 LL-1 = I (5.7)

 UU-1 = I (5.8)

52

When the matrix is symmetric, another technique similar to the LU decomposition known as the

Cholesky decomposition is used. As the kernel matrix is symmetric, Cholesky decomposition

can be incorporated for the inversion operation.

A symmetric matrix A, it can be written as equation (5.4), where L is the lower Cholesky factor:

 A = LLT (5.9)

 A-1 = (LLT)
-1

 = (LT)
-1

L-1

 = (L-1)
T
L-1 (5.10)

It can be understood from equation (5.10) that only the inverse of the lower Cholesky factor

needed to be calculated for finding the inverse of the original matrix. This simple operation

reduces computations to a good extent.

Now, for streaming input, the lower Cholesky of the kernel matrix, LR will be updated as

follows:

 Lupdated = [
LR 0

Lnew
T L*

] (5.11)

 LRLnew = Knew (5.12)

 L* = √K* − ||Lnew||2 (5.13)

After the training, only the inverse of Lupdated,denoted by Lupdated
-1 ,is needed to find out the

inverse of the kernel matrix, Kupdated.

Step-5: To keep the computations tractable, a decremental un-learning strategy is also offered.

When the kernel matrix reaches a certain size, for every data point, one row and one column will

be deleted from the top to keep the matrix in a prespecified shape.

For example, when the size of Kupdated>KRmax, the algorithm starts deleting the first row and

column from the current Kupdated matrix. The procedure is illustrated in Figure 5.3.

53

After pth
iteration,Kupdated

K(x1, x1) K(x1, x2) …… K(x1, xp)

K(x2, x1) K(x2, x2) …… K(x2, xp)

⁞ ⁞

⁞

K(xp, xp) K(xp, x2) …… K(xp, xp)

At (p+1)th
iteration,
Kupdated

K(x1, x1) K(x1, x2) …… K(x1, xp)

K(x2, x1)

K(x2, x2) …… K(x2, xp)

K(x2,xp+1)

⁞ ⁞

⁞

⁞

K(xp, x1) K(xp, x2) …… K(xp, xp)

K(xp,xp+1)

 K(xp+1, x2) K(xp+1, x3) …… K(xp+1, xp+1)

At (p+2)th
iteration,
Kupdated

K(x2, x2) K(x2, x3) …… K(x2, xp+1)

K(x3, x2)

K(x3, x3) …… K(x3, xp+1)

K(x3,xp+2)

⁞ ⁞

⁞

⁞

K(xp+1, x2) K(xp+1, x3) …… K(xp+1, xp+1)

K(xp+1,xp+2)

 K(xp+2, x3) K(xp+2, x4) …… K(xp+2, xp+2)

Figure 5.3: Visualization of decremental un-learning strategy

⁞

⁞

⁞

⁞

⁞

⁞

54

If the maximum size of the kernel matrix KRmax = p×p, then the matrix can follow the operations

in Figure 5.3 to keep the computations in check.

Step-6: When the program reached the end of the training, using the currently updated kernel

matrix in the last iteration, the algorithm fitted a Gaussian process through it.

Step-7: Based on this fitting, further evaluations were made on the validation or test dataset.

There are some popular error metrics such as mean absolute error (MAE), mean squared error

(MSE), mean percentage error (MPE), mean absolute percentage error (MAPE), etc. for

validating the model performance. For testing the proposed algorithm, mean absolute error

(MAE) and root mean squared error (RMSE) metrics were used from equations (5.14) and (5.15)

as a basis of error evaluation.

 MAE =
∑ |ŷi- yi|

n
i=1

n
 (5.14)

 RMSE = √∑
(ŷi- yi)

2

n
n
i=1 (5.15)

where,

yi = ith original response

ŷi = ith approximated response

n = Total number of data points

The rationale behind using these two measures is that they are the most used error bars (Chai &

Draxler, 2014)and the other metrics can be derived from them. It may be noted here, another

popular metric for regression, R2 was not used. It was due to the reason that the R2 score is not a

recommended performance estimator for the nonlinear regression problem and is often too risky

(Cornell & Berger, 1987).

Additionally, some performance benchmarks such as training time, training memory, testing

time, testing memory, fitting accuracy, validation accuracy, etc. were evaluated to assess the

performance of the proposed algorithm.

55

5.4 Pseudocodes for Algorithms used

Overall, three algorithms have been combined to build the proposed algorithm: (a) Initial sparse

algorithm (b) Incremental learning algorithm (c) Decremental un-learning algorithm. The initial

sparse algorithm is presented in section 5.4.1. The incremental learning algorithm and the

decremental learning algorithm are presented in sections 5.4.2 and 5.4.3, respectively.

5.4.1 Pseudocode for Initial Sparse Algorithm

This is the initial stage of the algorithm. The algorithm in Table 5.2 is applied in this stage to the

initial training set, D1 to obtain the representative set, DR, the kernel matrix obtained from it, KR,

and the lower Cholesky factor, LR. It is noticeable that the algorithm in Table 5.2 uses the CURE

algorithm. The code for the CURE algorithm is given in Tables 5.3 and 5.4.

Input: Initial Training Set, D1

Output: Representative set, DR, kernel matrix, KR, lower Cholesky factor, LR

Table 5.2: Initial sparse algorithm

Algorithm-1: Initial Sparse Algorithm

START

INPUT{xi, yi}i=1

n
2

APPLY the data clustering algorithm (Table 5.3)

FIND the representative dataset, DR

COMPUTE covariance matrix, KR for DR

COMPUTE the lower Cholesky factor, LR

END

56

5.4.1.1 Pseudocode for the Data Clustering Algorithm, CURE

This data clustering algorithm treats every point as a cluster and merges them with the closest

cluster in subsequent steps (Guha et al., 1998). Two data structures are used by CURE: a heap

data structure (Cormen, Leiserson, & Rivest, 1990), and a k-d tree data structure (Samet, 1990).

The heap structure arranges the distances of the clusters to the closest clusters in ascending order

and the k-d tree structure stores the representative points for each cluster. Also, when two

clusters are merged, the k-d tree structure computes the cluster which is currently closest to the

newly merged cluster.

This algorithm is provided in Table 5.3. It is to be noted that this procedure uses a concatenation

module for merging the clusters which is given in Table 5.4. The notations, input parameters,

and the output of the algorithm are provided below:

Notations for CURE:

cluster.mean = Mean of any cluster

cluster.rep = Representative points of any cluster

cluster.closest = Closest cluster to any cluster

dist (p, q) = Distance between any two points p and q (Any Lp distance/ other kernels)

extract_min = Routine for deleting the top element from the heap

r = Number of well-scattered points

Input: Initial training dataset, D1, and desired number of cluster, k

Output: Representative cluster, c (Denoted as the representative dataset, DR in this thesis)

57

Table 5.3: Data clustering algorithm, CURE

Algorithm-2: Data Clustering Algorithm, CURE

START

T := construct_kd_tree (D)
Q:= construct_heap (D)

WHILE size (Q) >k DO {
a := extract_min (Q)
b := a.closest
delete (Q, b)

c := concatenate (a, b) (Table 5.4)

delete_rep (T, a); delete_rep (T, b); insert_rep (T, c)
 c.closest := x /* x is an arbitrary cluster in Q */

FOR each x∈Q DO {
IF dist (c, x) <dist (c, c.closest)
c.closest := x
IF x.closest is either a or b {

IF dist (x, x.closest) <dist (x, c)
x.closest := closest_cluster (T, x, dist (x, c))

ELSE
x.closest := c
relocate (Q, x)
}

ELSE IF dist (x, x.closest) >dist (x, c) {
x.closest := c
relocate (Q, x)
}

}
insert (Q, c)
}
END

58

5.4.1.2 Pseudocode for the Concatenation Algorithm

This function merges two clusters. The CURE algorithm proceeds by merging any cluster with

its closest cluster. The algorithm in Table 5.4 is used for this operation. The merged cluster is

used again in the algorithm in Table 5.3.

Input: Any two clusters a and b

Output: Merged cluster, c

Table 5.4: Algorithm for concatenation of clusters

Algorithm-3: Concatenate (a, b)

START

c:= a∪b

c.mean =
|a| a.mean + |b| b.mean

|a| + |b|

temp := ∅

FOR i := 1 to r DO {
maxDist := 0
FOReach point p in cluster c DO {

IF i = l
minDist := dist (p, c.mean)

ELSE
minDist := min{dist (p, q) : q∈ temp}

IF (minDist ≥ maxDist){
maxDist := minDist
maxPoint := p
}

}
temp := temp ∪ {maxPoint}
}

FOReach point p in temp DO

c.rep := c.rep ∪ {p + α*(c.mean - p) }

return c
END

59

Figure 5.4 presents the initial sparse algorithm graphically. The left side of the figure represents

the training signal of the Manaus dataset (details are in chapter-6) which is used as the input for

the initial sparse algorithm, known as the initial training set. The right-side figure presents the

representative set obtained from the initial training set, i.e., the output from the initial sparse

algorithm. Based on this set, the incremental learning algorithm proceeds.

Figure 5.4: Visualization of obtaining the representative dataset, DR

5.4.2 Pseudocode for Incremental Learning Algorithm

This procedure is used for cases when the size of the training set is not fixed, or when a certain

number of points become available at some time gap. Given this situation, it is important to

update the kernel matrix efficiently. From earlier discussion, it is apparent that when a new data

point becomes available, the only update in the previous matrix is the addition of a row and a

column, which is just the interaction between the new point and the previous input vector. The

update rule of the kernel matrix is given in equation (5.3). Table 5.5 provides the code for

incremental learning.

Input: Kernel matrix of the representative set KR, its lower Cholesky Factor LR, and the

streaming set, D2

Output: The updated kernel matrix, Kupdated and the updated lower Cholesky factor Lupdated

60

Table 5.5: Algorithm for incremental learning

Algorithm-4: Incremental Learning Algorithm

START

Given K = KR:

 For streaming data (xs, ys):

COMPUTE Knew= K (XR, x)

COMPUTE K*= K (x, x)

COMPUTE KUpdated

For the lower factor of Cholesky decomposition of KR, LR:

LRLnew = Knew

L* = √K* − ||Lnew||2

COMPUTE LUpdated

FIT GPR using KUpdated

END

5.4.3 Pseudocode for Decremental Un-learning Algorithm

When there is a larger stream of data points, the updated covariance matrix can grow much

bigger. To keep the kernel matrix in check, this algorithm starts deleting rows and columns of the

kernel matrix from the very beginning. For instance, if the maximum specified size of the kernel

matrix, KRmax is 200 × 200, for the 201st data point, the algorithm will delete the first row and

column of the matrix and then attach a row and column at the end of the matrix to keep it in a

size of 200 × 200. Table 5.6 presents the code for the un-learning algorithm.

Input: Kernel matrix, Kupdated at pth iteration

Output: Updated kernel matrix, Kupdated at the end of the training

61

Table 5.6: Algorithm for decremental un-learning

Algorithm-5: Decremental Un-learning Algorithm

START

Given Kupdated at pth iteration:

When Kupdated ≥KRmax

DELETE row[i] and column[i] for ith streaming point {i = 1, 2, ... , m}

APPEND Knew and K* for new point

UPDATE Kupdated

FIT GPR using Kupdated

END

This chapter was dedicated to the mechanics of the proposed algorithm for implementing

Gaussian process regression incrementally and economically. Given the modifications, the

algorithm was tested for its efficacy. Some well-known regression datasets were used for this

case. In the next chapter, a description of those datasets, their properties, visual representations,

preprocessing, etc. are provided. The next-to-next chapter presents the results of these

experiments on the selected datasets.

62

CHAPTER 6

DATASETS AND EXPERIMENTATION

The proposed algorithm in chapter-5 needs to be validated in terms of fitting and performance.

Thus, the use of machine learning datasets is warranted to test the proposed model. In this

chapter, a discussion on such datasets, their features, preprocessing of the datasets, environment

for testing, etc. are presented. First, brief descriptions and visualization of the datasets used are

provided in sections 6.1 and 6.2, respectively. Additionally, a discussion on preprocessing

machine learning datasets is presented in section 6.3. Moreover, a brief look at the environment

for experimentation is given in section 6.4. Finally, the conclusion of this chapter is drawn by a

short note on preliminary testing for kernel selection in section 6.5.

6.1 Brief Overview of the Datasets

To test the validity of the proposed algorithms, some experimentations were performed. For this

analysis, 7 datasets were used. These are fairly well-known datasets in the machine learning

community. The general objective of selecting the datasets was to ensure variety in total data

instances as well as in features. Overall, the total points range from 309 to 8192, and the datasets

expand from a single feature to 12 features. Data characteristics of selected datasets also vary to

some extent. In addition to having numerical features, categorical features were also handled. A

brief description of the datasets is given below:

6.1.1 Wool Dataset

This is a time-series dataset containing the logarithmic ratio of fine-grade wool prices and the

floor price set by the Australian Wool Corporation. The data values were taken for each week

from July 1976 to June 1984 (Diggle, 1990). This is a two-dimensional dataset, where the data

values are values of the price of wool against time. The task is to predict the price of the wool for

an unseen period.

63

6.1.2 Istanbul Stock Exchange Dataset

In this data set, returns of the Istanbul stock exchange with other international indices are

collected. The duration of data collection was from January 5, 2009 to February 22, 2011

(Akbilgic, Bozdogan, & Balaban, 2014). There are 8 features in this dataset including Istanbul

stock exchange national 100 indexes, standard & poor’s 500 return index, stock market return

index of Germany, stock market return index of UK, stock market return index of Japan, stock

market return index of Brazil, MSCI European index, and MSCI emerging markets index. The

task is to predict the stock index of Istanbul.

6.1.3 Manaus Dataset

This is a time-series dataset where data values represent the monthly averages of the daily stages

(heights) of the Rio Negro river at Manaus, Brazil. The data covers 90 years from January 1903

to December 1992. (Sternberg, 1987).This is also a two-dimensional dataset.

6.1.4 German Healthcare Dataset

Under the German healthcare reform, this dataset contains survey results from one year before

and after the reform to assess if the number of visits to doctors has declined. This dataset is a

sub-collection of the German Socio-Economic Panel (SOEP) (Rabe-Hesketh & Skrondal, 2008).

Of the 12 features, there are age group, income, education, etc. and the target variable is the total

number of visits to the doctor.

6.1.5 Abalone Dataset

This dataset contains the features such as length, diameter, heights, shell weights, etc. of the

abalone shellfish. The task is to determine its age based on the rings it has. (Nash, Sellers,

Talbot, Cawthorn, & Ford, 1994). This is a very popular dataset and the task associated with it

can be formulated as both a classification and a regression problem. This thesis treated this task

as a regression problem.

64

6.1.6 Tree Ring Dataset

This is a univariate time-series dataset bearing the normalized tree-ring widths for each year.

Data collection was performed by Donald A. Graybill from Gt. Basin Bristlecone Pine 2805M,

3726-11810 in Methuselah Walk, California in 1980 (Graybill, 1985). The task is to predict the

number of rings at a later period in time.

6.1.7 Pumadyn-8nm Dataset

This dataset is derived from a family of datasets concerned with a practical simulation of the

kinematics of a Puma 560 robot arm. The angular acceleration of the links of the robot arm is to

be predicted from information such as angular location, velocity, and torques (Ghahramani,

1996).

Table 6.1 presents a summary of the datasets used:

Table 6.1: Datasets used in experimentations

Title of the Dataset
Total Data

Points

Number of

Training Points

Number of

Test Points

Number of

Regressors

Categorical

Features

1. Wool 309 200 109 1 N/A

2. Istanbul Stock Exchange 537 300 237 8 N/A

3. Manaus 1081 700 381 1 N/A

4. German Healthcare 2228 1500 728 12 Yes

5. Abalone 4177 3000 1177 8 Yes

6. Tree Ring 7981 5000 2981 1 N/A

7. Pumadyn-8nm 8192 5000 3192 8 N/A

65

6.2 Visualization of the Datasets

This section presents the full or partial visualization of the training signal of the datasets used.

The visualization remains tractable as long as the dataset is two-dimensional or three-

dimensional. However, visualization becomes difficult when the feature size increases. There is

no direct way of visualizing high-dimensional datasets. In such cases, pair plots were utilized. A

pair plot is a graphical way to represent the interactions of datasets having higher dimensions.

This is essentially a scatter plot that offers a group of displays of paired combinations of the

variables concerned (Emerson et al., 2013). Python’s matplotlib and seaborn library were used

for visualization purposes.

Among the datasets used, three datasets were two-dimensional (Wool, Manaus, Tree Ring).

Training signals for these datasets are plotted in Figures 6.1 through 6.3, respectively. Pair plots

have been used for the rest of the datasets, shown in Figures 6.4 through 6.7. Below are the

representations of the datasets:

Figure 6.1: Training signal for the Wool dataset

66

Figure 6.2: Training signal for the Manaus dataset

Figure 6.3: Training signal for the Tree Ring dataset

67

Figure 6.4: Pair plot for the Istanbul Stock Exchange dataset

68

Figure 6.5: Pair plot for the German Healthcare Dataset

69

Figure 6.6: Pair plot for the Abalone dataset

70

Figure 6.7: Pair plot for the Pumadyn-8nm dataset

71

6.3 Data Preprocessing

Data preprocessing is a crucial step in machine learning. Before proceeding to experimentations,

some polishing of the datasets is often needed. Typical data preprocessing operations include

data scaling or transformation, normalization, imputation of missing instances in the dataset, data

reduction, extracting feature information, managing dissimilarities in feature characteristics,

etc.(Kotsiantis, Kanellopoulos, & Pintelas, 2006). Despite being a major step for any machine

learning routine, preprocessing is often ignored (García, Luengo, & Herrera, 2015). Lack of

proper data-polishing can produce disastrous predictions (Oliveri, Malegori, Simonetti, &

Casale, 2019). This processing takes various forms for various purposes. The most common

preprocessing terms are discussed below:

6.3.1 Data Scaling

Data scaling or feature scaling is the most common form of preprocessing. It involves

transforming data to fit into a certain range. The most common form of data scaling is rescaling

and standardization. Rescaling, also known as min-max normalization, transforms feature values

to have a range of [0, 1]. The following equation can be used to obtain min-max normalization:

 x′=
x-min(x)

max(x)-min(x)
 (6.1)

where x, x′, min(x), and max(x) are the original feature vector, transformed feature vector,

minimum value of x, and the maximum value of x, respectively.

Standardization, also called z-score normalization, transforms a feature such that it follows a

standard normal distribution. Therefore, the transformed vector will have a zero-mean and unit

variance and the range of the data points is [-1, 1]. Standardization can be achieved through the

following operation:

 x′=
x-x̅
σ

 (6.2)

72

where x, x′, x̅, and σ are the original feature vector, transformed feature vector, mean value of x,

and standard deviation of x, respectively.

Python’s scikit-learn library has various data scaling methods. For rescaling, the MinMaxScaler

can be used and the StandardScaler can be used for standardization (Pedregosa et al., 2011). For

this thesis, the StandardScaler module was used.

6.3.2 Missing Value Imputation

The datasets can have missing values in various instances. Missing values may appear due to

mainly two reasons: either the data-point does not exist or it was not recorded. For the first

reason, there is no point in trying to guess it, so it should be left as NaN (Not a Number). The

second case can be handled in two ways. First, if the missing data occurrences are not substantial

in number and they do not contribute much to the dataset, then these points can be dropped. The

second way to handle this situation is to make intuitions about the data points. There are different

ways to make these assumptions such as substituting the missing values by a constant, using the

column mean (Schneider, 2001) or median, or even using regression techniques (Zhang, Qin,

Zhu, Zhang, & Zhang, 2006), etc.

6.3.3 Label Encoding

Most often, a dataset can have categorical features. In regression tasks, these features cause

problems. Therefore, they need to be managed first before proceeding further. Label encoding is

a technique to convert these categorical features into machine-understandable numerical features.

There exists an inherent problem with label encoding. When encoded, the qualitative features are

given numeric values, which are generally in order (i.e., 0, 1, 2, etc.). Typically, there is no

relation between the categorical features; however, after being encoded, the model can now

wrongly assume a logical order among these classes. Nonetheless, it can be useful sometimes,

especially when the classes of the features are in a logical order. Scikit-learn’s LabelEncoder

module can be used for label encoding (Pedregosa et al., 2011).

73

6.3.4 One Hot Encoding

To overcome the limitation of the label encoding method, a different technique called one hot

encoding can be used. This is especially suitable for the case where there are several labels to a

categorical feature with no logical order among them. What this method provides is, it adds a

dummy column for each of the labels of the categorical features. For a certain data point, only

one label from the feature will have the value of 1 and the remaining labels will be assigned a 0

value. This is analogous to “turning a switch on” whenever it falls under that particular label. In

this way, the problem with ordering is resolved. However, too much incorporation of dummy

columns can increase the model’s complexity. Scikit-learn has a module names OneHotEncoder

for this purpose (Pedregosa et al., 2011).

6.4 Environment for Experimentation

For executing these experiments, a popular Python distribution called Anaconda was used. The

whole programming task was performed on Jupyter Notebook. Python needs to fetch some

dependencies which are known as libraries as it is a general programming language. In this task,

some popular Python libraries such as numpy, pandas, scikit-learn, pyclusturing, scipy,

matplotlib, and seaborn were utilized. Scikit-learn has a built-in module for Gaussian process

regression that implements the algorithm 2.1 from Rasmussen and Williams’s book (Rasmussen

& Williams, 2006). For evaluating the datasets using the regular approach, the GPR module from

this library was used. All of the experiments were carried out on a personal computer bearing the

following specifications:

Table 6.2:Specification of the system used for experimentation

Processor Intel® Core™ i5

Clock Speed 2.71 GHz

RAM 8 GB

Operating System Microsoft Windows 10, 64-bit

74

6.5 Preliminary Testing for Kernel Selection

Kernels are the heart and soul of any Gaussian process. As GP is defined by a mean and a

covariance or kernel function, the significance of kernels thus is self-explanatory. Also, when a

zero mean function is assumed, the kernel solely defines the prior distribution (Csató & Opper,

2002). In this thesis, every dataset was scaled beforehand to fit a standard normal distribution,

hence the zero-mean assumption is in force. Therefore, kernels were the sole deciding factor of

the performance of the algorithm. Now, not every dataset performs well under the same kernel.

Therefore, choosing the appropriate kernel for the datasets is of importance. A preliminary

examination for the choice of kernels has been performed for this reason.

The following chapter presents the results of this examination. Additionally, the results of the

final experimentations are also provided. The performance of the proposed algorithm has been

evaluated and compared against that of the original algorithm in the next chapter.

75

CHAPTER-7

RESULT ANALYSIS

In this chapter, results from preliminary and final experimentation have been presented and

analyzed. First, the results from the preliminary analysis have been presented in section 7.1, and

based on this experiment, appropriate kernels have been chosen which is shown in section 7.2. In

section 7.3, results from training using both of these algorithms have been provided in terms of

training accuracy, estimated training memory requirement, and average training time. Section 7.4

yields the results on the validation sets for both these algorithms. In this section, error analysis in

terms of two popular error metrics has been provided. Additionally, results on average testing

memory requirement and average test time for these methods have been shown. Finally, the

chapter comes to an end with an overall comparison of the two algorithms regarding memory

and execution time in section 7.5.

7.1 Results of Preliminary Analysis

Preliminary testing to select the appropriate kernel function was performed. A set of five popular

covariance functions were used for this initial experimentation. These kernels are exponentiated

quadratic kernel, rational quadratic kernel, periodic/exponential sine squared kernel, a product of

the dot product and constant kernel, and Matérn kernel. (Duvenaud, 2014) pointed out that the

marginal likelihood of any kernel on the training set should determine its appropriateness. The

basis of the evaluation was the training accuracy and the negative log-marginal likelihood

(nMLE) of the kernel. Comparatively higher accuracy of training and a comparatively lower

negative log-marginal likelihood is attractive for a kernel function to be selected. The weightage

is more on the training accuracy for this selection. Table 7.1 presents detailed information on this

preliminary examination of all the datasets in respect of the training accuracy and nMLE value of

each kernel.

76

Table 7.1: Results of preliminary testing

Dataset Method Kernel Training Accuracy nMLE

Wool

Regular

Exponentiated Quadratic 0.9947261223098804 -260173295.51791286

Rational Quadratic 0.9999999999999697 -343835230.48067156

Exponential Sine Squared 0.9958372243131 -113242811.03245380

Constant* DotProduct 0.5743959296394401 -2594487150.3695316

Matérn 0.9999999999999275 240.9177060911803

Proposed

Exponentiated Quadratic 0.996839650983412 -126068167.27726403

Rational Quadratic 0.9999999999999697 -224741590.07447702

Exponential Sine Squared 0.9999999999544017 -95444590.613737055

Constant* DotProduct 0.3929351036656833 -15113911.556702454

Matérn 0.9999999999999419 179.2544338015088

Istanbul

Stock

Exchange

Regular

Exponentiated Quadratic 0.9999999999940168 -95.75415258597832

Rational Quadratic 0.9999999999970566 -227.00254285753056

Exponential Sine Squared - -

Constant* DotProduct 0.8488243204387557 -3.314455175570295

Matérn 0.9999999999947695 -189.7692644897769

Proposed

Exponentiated Quadratic 0.9999999999898639 203.0380248703991

Rational Quadratic 0.9999999999919486 76.62507127743311

Exponential Sine Squared - -

Constant* DotProduct 0.8675436205575137 -7806939.8534250455

Matérn 0.9999999999876777 90.834474066509841

Manaus Regular

Exponentiated Quadratic 0.39671439574630735 -7303956474549.592

Rational Quadratic 1.0 -3560458019785.658

Exponential Sine Squared 0.44473451939264236 -5995321653403.729

Constant* DotProduct 0.011722420176489723 -7752202908299.67

77

Matérn 1.0 -284183643.3794945

Proposed

Exponentiated Quadratic 0.6960155371789778 -2888173340815.844

Rational Quadratic 1.0 -1238779504719.6501

Exponential Sine Squared 0.8242019406095086 -2390049874383.461

Constant* DotProduct 0.02273618573122771 -3118724384497.8506

Matérn 1.0 -39308967.95843716

German

Healthcare

Regular

Exponentiated Quadratic 0.9809116538940152 -19634200113046.93

Rational Quadratic 0.9826274104535657 -2534609851069.555

Exponential Sine Squared - -

Constant* DotProduct 0.19851528889549797 -108511546373820.05

Matérn 0.9810382794859024 -2522092842215.4272

Proposed

Exponentiated Quadratic 0.9993215409842112 -128881439757.23404

Rational Quadratic 0.9389063484328224 -15838783721.572977

Exponential Sine Squared - -

Constant* DotProduct 0.42596712461376035 -15118057710720.252

Matérn 0.9989296231966953 -15833399411.73557

Abalone

Regular

Exponentiated Quadratic 1.0 -16559995479.24172

Rational Quadratic 1.0 -175874.6957

Exponential Sine Squared - -

Constant* DotProduct 0.5232322008325582 -1545976207660.5745

Matérn 1.0 -18337.88

Proposed

Exponentiated Quadratic 1.0 -433516761.1758648

Rational Quadratic 1.0 -210456.83840256068

Exponential Sine Squared - -

Constant* DotProduct 0.624889454329584 -25422867355911.457

78

Matérn 1.0 -64523.73221023212

Tree Ring

Regular

Exponentiated Quadratic 0.04055850104392911 -2411205152383.373

Rational Quadratic 1.0 -2335117005120.7417

Exponential Sine Squared 0.03994536322066167 -2400698008094.963

Constant* DotProduct 0.0010549904101812002 -2427775021096.2285

Matérn 0.9999999999999981 -256285016571.1286

Proposed

Exponentiated Quadratic 0.08834587671169558 -1087830373675.23

Rational Quadratic 1.0 -1030742240704.2623

Exponential Sine Squared 0.0520059047482767 -1073255303213.8119

Constant* DotProduct 0.0025867544671799303 -1098826219129.2125

Matérn 1.0 -20505844013.088062

Pumadyn-

8nm

Regular

Exponentiated Quadratic 1.0 -25482.375788

Rational Quadratic 1.0 -47245.225491965924

Exponential Sine Squared - -

Constant* DotProduct 0.5787774785820672 -316300472119932.2

Matérn 1.0 -18794.66264085393

Proposed

Exponentiated Quadratic 1.0 -13572.801468487683

Rational Quadratic 1.0 -31414.497920440943

Exponential Sine Squared - -

Constant* DotProduct 0.5716168735526539 -161238631976435.38

Matérn 1.0 -11969.736093931422

**Note: The blank space means the kernel did not return a positive semi-definite kernel matrix.

79

7.2 Selected Kernels for Datasets using Basic GPR and si-GPR

Based on the training accuracy and the negative log marginal likelihood, the appropriate kernel

for each dataset has been chosen. The results are displayed in Table 7.2.

Table 7.2: Chosen kernels for basic GPR and si-GPR

Dataset
Chosen Kernel

Basic GPR si-GPR

Wool Rational Quadratic Rational Quadratic

Istanbul Stock Exchange Rational Quadratic Rational Quadratic

Manaus Rational Quadratic Rational Quadratic

German Healthcare Rational Quadratic Exponentiated Quadratic

Abalone Exponentiated Quadratic Exponentiated Quadratic

Tree Ring Rational Quadratic Matérn

Pumadyn-8nm Rational Quadratic Rational Quadratic

7.3 Results from Experimentations on Training Sets

In this section, the experimental outcomes for the training sets using both methodologies have

been provided. First, section 7.3.1 shows a comparison of training points for both of the

methodologies used. Section 7.3.2 summarizes the result for the basic GPR on training sets. The

results are presented in terms of training accuracy, estimated memory requirement, and average

training time. Section 7.3.3 also presents the same findings for the proposed algorithm. Section

7.3.4 presents a visual comparison of these two methods based on training accuracy, anticipated

memory requirement, and mean training time.

80

7.3.1 Comparison of Training Points used in Basic GPR and si-GPR

The total number of training points used in the original and proposed GPR does not match due to

using a sparsification operation. There is a significant reduction in the number of training points

for the si-GPR algorithm. Table 7.3 provides that change concerning the training points used in

both methods and the percentage reduction of training points for each dataset.

Table 7.3: Comparison of the number of training points for basic GPR and si-GPR

Dataset Basic GPR si-GPR %Reduction in Data Points

Wool 200 110 45.00%

Istanbul Stock Exchange 300 156 48.00%

Manaus 700 360 48.57%

German Healthcare 1500 756 49.60%

Abalone 3000 1507 49.77%

Tree Ring 5000 2510 49.80%

Pumadyn-8nm 5000 2506 49.88%

Figure 7.1 shows a graphical comparison of the training points for both methods. In this figure,

the number of training points has been plotted against the datasets. The datasets were arranged in

the ascending order of their training points. The last two datasets, the Tree Ring dataset, and the

Pumadyn-8nm dataset, both have the same number of training points. When the data clustering

algorithm was applied to all these datasets as part of the proposed algorithm, it could offer up to

about a 50% reduction in the number of training points. This helps to bring down the memory

usage or the training time by a good amount, which is shown later.

81

Figure 7.1: Comparison of training points for both methods

7.3.2 Results of Basic GPR on Training Sets

In Table 7.4, the results of the training sets for the basic GPR are presented.

Table 7.4: Results obtained for training sets using basic GPR

Dataset
Training

Accuracy

Estimated Memory

Requirement (MB)

Average Training

Time (s)

Wool 0.9999999999999697 2.44140625 5.3

Istanbul Stock Exchange 0.9999999999970566 5.493164063 11.3

Manaus 1.0 29.90722656 93

German Healthcare 0.982627410453565 137.3291016 804

Abalone 1.0 549.3164063 2589

Tree Ring 1.0 1525.878906 6576

Pumadyn-8nm 1.0 1525.878906 8125

0

1000

2000

3000

4000

5000

6000

N
um

be
r

of
 T

ra
in

in
g

Po
in

ts

Dataset

Comparison of Training Points used in Both Methods

Basic GPR

si-GPR

82

7.3.3 Results of si-GPR on Training Sets

Table 7.5 provides the results of the training sets for si-GPR.

Table 7.5: Results obtained for training sets using si-GPR

Dataset
Training

Accuracy

Estimated Memory

Requirement (MB)

Average Training

Time (s)

Wool 0.9999999999999697 0.738525391 2.71

Istanbul Stock Exchange 0.9999999999919486 1.485351563 3.5

Manaus 1.0 7.91015625 32.6

German Healthcare 0.999321540984211 34.88378906 117

Abalone 1.0 138.6138306 492

Tree Ring 1.0 384.5275879 1146

Pumadyn-8nm 1.0 383.3029785 1729

In the following section, a comparison of the two approaches regarding the results of training

sets is shown graphically.

7.3.4 Visual Comparison of Basic GRR and si-GPR on Training Sets

Figure 7.2 presents the comparison of the training accuracy of both original and proposed GPR,

where the training accuracy has been plotted against the datasets. Generally, the performance of

regression algorithms depends on the type of features, presence of missing values in the dataset,

amount of noise in the system, etc.(Li et al., 2019). Some datasets even require specific kinds of

scaling to offer good performance. Therefore, it is justified to say that fitting accuracy is heavily

influenced by the characteristics of the datasets. It can be seen from Figure 7.2 that the training

accuracy is almost perfect for the basic algorithm for every dataset except the German

Healthcare dataset. The reason for the slightly lesser accuracy can be attributed to having more

than one categorical feature in the set which affects the training accuracy directly. However, the

proposed algorithm solves this issue for this dataset and provides consistent behavior for all the

83

datasets. This further proves that the proposed si-GPR algorithm handles categorical features

better than the original algorithm.

Figure 7.2: Comparison of training accuracy of basic and proposed GPR

Figure 7.3 provides a comparison of memory consumption for training. It needs to be justified

that the memory calculation was approximated and not exact because it was not possible to

extract the true memory usage information from the system. The memory usage by the system is

not static, i.e., the computer allocates variable memory as many times as the experiments are

executed. Intuitively it makes sense that the more training points there are, the more system

memory will be needed. That is why the memory requirement was calculated based on the

operations and the object sizes to store the information in Python. Again, the datasets have been

arranged in the ascending order of their training points. As a result, the plot has an increasing

trend as it goes forward in the right direction of the horizontal axis. The last two datasets, i.e.,

Tree Ring and Pumadyn-8nm datasets also require the same amount of memory to train due to

having the same number of training points. As for the si-GPR algorithm, the memory

requirement also shows an increasing trend due to the order of the datasets; however, the

memory requirements are way less than the basic GPR. One possible reason for the lesser

0.980000

0.985000

0.990000

0.995000

1.000000

Tr
ai

ni
ng

 A
cc

ur
ac

y

Dataset

Comparison of Training Accuracy for Both Methods

Basic GPR

si-GPR

84

memory requirement can be attributed to the reduction in the number of training points.

Additionally, the incremental update on the kernel matrix speeds up the proposed algorithm and

requires much less computational power. The last two datasets, again, are reduced to the same

number of data points and hence require the same memory for the si-GPR algorithm as well.

Figure 7.3: Comparison of estimated memory requirement for both methods

In Figure 7.4, the comparison of training time of the basic and proposed GPR has been shown. In

this plot, the mean training time is plotted against the datasets. Training time is directly related to

the number of training points, the complexity in data characteristics, and the presence of

categorical features. As the datasets increase in the number of training points from left to right,

the training time also increases accordingly. It is to be noted that the Tree Ring and the

Pumadyn-8nm datasets have the same number of training points but they differ in the amount of

time needed to train the model. The reason is that the Pumadyn-8nm dataset is a nine-

dimensional dataset and the Tree Ring dataset is a two-dimensional dataset. Due to the additional

features, the complexity of the Pumadyn-8nm dataset increases, which directly attributes to an

increase in the training time. A similar trend can be seen for si-GPR; however, the training time

is reduced by a good amount. For example, to train a model of 5000 training points and 9

0
200
400
600
800

1000
1200
1400
1600

Tr
ai

ni
ng

 M
em

or
y

(M
B

)

Dataset

Comparison of Estimated Training Memory for Both Methods

Basic GPR

si-GPR

85

features, the basic GPR takes about 9000 seconds, whereas this is about one-ninth of that time

for the si-GPR algorithm. This reduction in training time was due to the reduction of data points

and incremental learning methodology.

Figure 7.4: Comparison of average training time for both methods

It is evident from Figures 7.2, 7.3, and 7.4 that the performance of the proposed algorithm over

training datasets is superior to that of the basic algorithm whether it is training accuracy, memory

requirement (estimated), or the execution time.

7.4 Results from Experimentation on Test Sets

For validating the test sets, the mean absolute error (MAE) and the root mean squared error

(RMSE) metrics were used. In section 7.4.1, the results of test sets using basic GPR is presented.

Similarly, section 7.4.2 presents the results for the proposed algorithm. Section 7.4.3 offers a

graphical comparison of the predictions made using both algorithms. Additionally, the

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

A
ve

ra
ge

 T
ra

in
in

g
Ti

m
e

(s
)

Dataset

Comparison of Average Training Time for Both Methods

Basic GPR

si-GPR

86

comparison regarding MAE score, RMSE score, estimated testing memory, and average testing

time can also be found.

7.4.1 Results of Basic GPR on Test Sets

Table 7.6 gives the results of the test datasets for basic GPR. In this table, the error scores, the

required memory, and the mean time for validation can be observed.

Table 7.6: Results obtained for test sets using basic GPR

Dataset MAE Score RMSE Score
Estimated Memory

Requirement (MB)

Average

Run Time (s)

Wool 0.1141 0.1281 3.784179688 0.82

Istanbul Stock Exchange 0.0045 0.0059 9.851074219 1.2

Manaus 1.6550 2.1433 46.22802734 3

German Healthcare 0.1403 0.5323 204.0710449 43

Abalone 2.0078 2.7839 765.0146484 253

Tree Ring 0.2427 0.3136 2435.913086 1096

Pumadyn-8nm 0.9503 1.2258 2500.305176 2102

7.4.2 Results of si-GPR on Test Sets

The experimental outcome on the test datasets using the si-GPR algorithm can be seen in Table

7.7.

Table 7.7: Results obtained for test sets using si-GPR

Dataset MAE Score RMSE Score
Estimated Memory

Requirement (MB)

Average Run

Time (s)

Wool 0.0819 0.1093 1.477050781 0.082

Istanbul Stock Exchange 0.0035 0.0047 3.751464844 0.19

Manaus 1.5215 1.9356 16.30371094 1.8

German Healthcare 0.1577 0.5396 68.52172852 30

Abalone 1.8191 2.5136 246.9662476 93

87

Tree Ring 0.2355 0.3073 841.3647461 133

Pumadyn-8nm 0.0853 0.6219 871.6854248 151

The following section provides some visualization of the result on some of the test sets. As

mentioned in Chapter 6, the visualization is not always possible due to high data dimensionality,

the results from only the two-dimensional datasets could be represented. It should be noted that

the prediction accuracy depends on the factors such as fitting accuracy, data complexity, choice

of kernel functions, presence of class variables, etc. That is why the %reduction of error for the

si-GPR varies from dataset to dataset. In addition to providing the visualization of predictions,

the MAE and RMSE scores have been plotted against the test sets. Additionally, memory and

time comparisons are also shown.

7.4.3 Visual Comparison of Basic GRR and si-GPR on Test Sets

At the beginning of this section, side-by-side comparisons of the results from the two-

dimensional datasets (i.e., Wool dataset, Manaus dataset, and Tree Ring dataset) have been

presented graphically in Figures 7.5 through 7.10.

Figure 7.5: Predictions on the Wool test set

 using basic GPR

Figure 7.6: Predictions on the Wool test set

 using proposed GPR

88

Figures 7.5 and 7.6 present the predictions on the Wool dataset for basic GPR and si-GPR,

respectively. From Tables 7.6 and 7.7, it can be seen that si-GPR offers 28.22% less MAE and

14.68% less RMSE than the original algorithm. Although the error is reduced, deviations in

certain regions still appear to be large. The reason for this deviation could be model overfitting.

As mentioned in Chapter 2, GPR tends to overfit the training data. The proposed algorithm might

not have solved the overfitting issue fully for this dataset; however, it treats the overfitting better

than the original algorithm.

Figure 7.7: Predictions on the Manaus test set

 using basic GPR

Figure 7.8: Predictions on the Manaus test set

 using proposed GPR

Figures 7.7 and 7.8 provide the prediction visualizations on the Manaus dataset. These models

were not overfitted, and the si-GPR again exceeds the basic GPR in terms of prediction accuracy.

The MAE score for this dataset has been reduced by 8.1% and the RMSE score has been

decreased by 9.7% due to using si-GPR.

89

Figure 7.9: Predictions on the Tree Ring test

 set using basic GPR

Figure 7.10: Predictions on the Tree Ring test

 set using proposed GPR

Figures 7.9 and 7.10 present the predictions on the Tree Ring dataset. In this dataset, the

variations for the predictions of si-GPR are lesser than that of the basic GPR. The si-GPR offers

a 3% reduction in MAE score and a 2% reduction in the RMSE score. For this dataset, the

performance of the basic algorithm is close to the si-GPR algorithm. The reason is that this is a

two-dimensional dataset with no major complexity. There is no missing value or any class

variable in this dataset. Still, the si-GPR can offer predictions with lesser error.

Figure 7.11: Comparison of Mean Absolute Error (MAE) for both methods

0

0.5

1

1.5

2

2.5

M
A

E
Sc

or
e

Dataset

Comparison of MAE Score of Basic and Proposed GPR

Basic GPR

si-GPR

90

Figure 7.11 presents the contrast of the algorithms concerning the MAE metric. From this figure,

it can be seen for the first four datasets, the performances of the two algorithms are almost the

same. For the Pumadyn-8nm dataset, this difference becomes quite apparent. This dataset is nine-

dimensional and basic GPR suffers in performance from higher data dimensionality. On the other

hand, si-GPR could fit this dataset well in training as well as in testing. For the rest of the

datasets, there is a smaller difference in the performance of the algorithms.

Figure 7.12: Comparison of Root Mean Squared Error (RMSE) for both methods

The RMSE score comparison can be seen in Figure 7.12. Generally, RMSE scores will always be

equal to or greater than the MAE scores due to the triangular inequality (Chai & Draxler, 2014),

which is reflected in the results. In this case, the same trend can be seen as the MAE scores,

except that the difference between the RMSE scores regarding the Pumadyn-8nm dataset is

slightly less than the MAE scores.

Figures 7.13 and 7.14 provide visualization on the estimated testing memory and mean test time

for basic GPR and si-GPR. In equation (3.49) in Chapter 3, it was stated that the computation

calls for inverting the kernel matrix acquired from the training points while making predictions.

0

0.5

1

1.5

2

2.5

3

R
M

SE
 S

co
re

Dataset

Comparison of RMSE Score of Basic and Proposed GPR

Basic GPR

si-GPR

91

For a larger set of training points, the shape of the covariance matrix and the inverted covariance

matrix is also large, hence requiring more memory consumption and more time for execution. As

the new version allows lesser training points, all computational efforts are reduced in addition to

providing better performance. Additionally, due to employing the incrementally learning and

decrementally unlearning ranked data points, the joint covariance matrix of the training points

and the test points for the si-GPR is always smaller in size than the original GPR algorithm.

Figure 7.13: Comparison of estimated testing memory requirement for both methods

Figure 7.13 shows the same trend as the training set due to similar reasons. The testing also

requires considering the training set as the joint distribution is needed for making predictions.

That is why the incorporation of the training set makes the trend remain the same.

0

500

1000

1500

2000

2500

3000

Es
tim

at
ed

 T
es

tin
g

M
em

or
y

(M
B

)

Dataset

Comparison of Estimated Testing Memory for Both Methods

Basic GPR

si-GPR

92

Figure 7.14: Comparison of average testing time for both methods

Figure 7.14 compares the mean time needed to validate the models. Basic GPR in this case

works with the whole training set plus the test set, whereas si-GPR deals with the sparse training

set plus the test set. There is a noticeable reduction in the total number of points these two

algorithms are handling. It is evident from the figure that the proposed algorithm offers

significant savings in test times. For instance, for the same test set of about 3000 points for the

Pumadyn-8nm dataset, basic GPR takes 2102 seconds on average, where si-GPR takes only 151

seconds, promising about 93% savings.

7.5 Overall Memory and Time Requirements

Results on training datasets and test datasets have been shown separately in the previous

sections. The proposed modifications have offered promising results over each of the sections. In

this segment, a general overview has been presented. At first, an overall comparison regarding

total memory consumption has been shown in Table 7.8.

0

500

1000

1500

2000

2500

A
ve

ra
ge

 T
es

tin
g

Ti
m

e
(s

)

Dataset

Comparison of Average Testing Time for Both Methods

Basic GPR

si-GPR

93

Table 7.8: Comparison of total memory requirement for basic GPR and si-GPR

Dataset
Total Memory Requirement (MB)

% Memory Savings
Basic GPR si-GPR

Wool 6.225585938 2.215576172 64.41%

Istanbul Stock Exchange 15.34423828 5.236816407 65.87%

Manaus 76.13525390 24.21386719 68.20%

German Healthcare 341.4001465 103.4055176 69.71%

Abalone 1314.331055 385.5800782 70.66%

Tree Ring 3961.791992 1119.545465 71.74%

Pumadyn-8nm 4325.155456 1175.156216 72.83%

The results of overall memory requirements have been shown graphically in Figure 7.15. In this

case, both training and testing memory requirements have been taken into consideration. The si-

GPR algorithm has been efficient in both training memory and testing memory usage. Hence, the

trend also continues for the total memory requirements.

Figure 7.15: Comparison of estimated total memory requirement for both methods

0
500

1000
1500
2000
2500
3000
3500
4000

Es
tim

at
ed

 M
em

or
y

(M
B

)

Dataset

Comparison of Total Memory Requirement for Both Methods

Basic GPR

si-GPR

94

Similarly, the average total execution time information is provided in Table 7.9, which is plotted

in Figure 7.16.

Table 7.9: Comparison of average total run time for basic GPR and si-GPR

Dataset
Average Total Run Time (s)

%Time Savings
Basic GPR si-GPR

Wool 6.12 2.792 54.38%

Istanbul Stock Exchange 12.5 4.5 64.00%

Manaus 114 34.4 69.82%

German Healthcare 769 163 78.80%

Abalone 2842 585 79.42%

Tree Ring 7672 1396 81.80%

Pumadyn-8nm 10227 1760 82.79%

Figure 7.16: Comparison of average total run time for both methods

Figure 7.16 gives a comparison of the mean total run time of both algorithms. Similar to memory

usage, si-GPR has used less training time and testing time than the basic GPR algorithm. As a

result, the trend of time complexity also follows the same as the training and testing times.

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 T
ot

al
 R

un
 T

im
e

(s
)

Dataset

Comparison of Average Total Run Time for Both Methods

Basic GPR

si-GPR

95

Figure 7.17: Memory and time savings using si-GPR

Figure 7.17 presents the savings in terms of memory consumption and total run time. It can be

observed that the si-GPR offers about 64% to 73% lesser memory usage for the datasets used.

Also, the savings regarding the training and testing ranges from about 54% to 83%. It is also

clear from the plot that as the data points increase, the si-GPR becomes more efficient and the

performance difference with the basic GPR becomes more apparent.

In this chapter, the results from preliminary and final examination on the datasets using the basic

GPR and si-GPR were presented. The results suffice that the si-GPR algorithm is better than the

original algorithm in all aspects. The next chapter concludes the thesis.

53.00%

58.00%

63.00%

68.00%

73.00%

78.00%

83.00%

88.00%

309 537 1081 2228 4177 7981 8192

%
 S

av
in

gs

Total Data Points

Time and Memory Savings for si-GPR

%Memory Savings

%Time Savings

96

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Concluding Remarks

The objective of this thesis was to present a Gaussian process regression methodology based on

incremental learning. The problem of managing big datasets is ever increasing. The original

GPR, being not economic with big datasets, called for a remedy to this problem. Also, traditional

GPR is incapable of managing feedback-based datasets or training sets with variable sizes.

Furthermore, the basic GPR fails to adjust to the resource limitation issue. Therefore, these

problems were the focusing points of this thesis. Up to this point, a considerable quantity of

research involving the sparse approximation of the problem has surfaced. Some other works have

reported the use of online learning as well. This thesis offered an algorithm called sparse-

incremental Gaussian process regression (si-GPR) that merged the sparse implementation as well

as incremental learning dynamic. The goal of si-GPR was to address the limitations of basic GPR

in the context of big datasets, streaming training sets, and resource limitations.

When the motivation was decreasing the calculational burden, a natural solution came to mind

that involves lowering the number of data instances that the algorithm should fit. It is relatable

that if every datapoint is considered, the computations are going to be lengthy and strenuous.

Hence, the idea of a sparse representation emerged and implementing that vision together with

the idea of sequentially augmenting the kernel matrix rather than computing it at once provided a

computational advantage. It is mention-worthy that even after employing a sparse presentation

using the representative dataset, the accuracy was not the least compromised, rather the modified

version of the algorithm provided better results overall, which had also been a prime concern. In

addition to a static training set, the thesis also outlined the method of handling variable training

set size problems (streaming input and removing data points from the training set). To keep

computations further on the leash, another scheme for un-learning was offered. The principal

idea was to keep the kernel matrix fixed in a certain size so that it does not become costly to

invert the matrix. To implement this, the algorithm began to ‘un-learn’ starting from the first

97

point when the kernel matrix surpassed the prespecified size. Keeping the kernel matrix at a

certain size was also helpful to keep the computations tractable.

The basic GPR and the proposed si-GPR were put to test using seven popular machine-learning

datasets. Before that, a short preprocessing and experimentations for kernel selection were

performed. The results of final testing showed that the proposed algorithm provides better

performance in every aspect relative to the original GPR algorithm.

8.2 Avenues for Future Research

There have been some limitations regarding the scope and resources as stated earlier in Chapter1.

Hence, some directions to venture in the future have been proposed. For example:

– The data clustering method that was used could be changed to assess if any other

clustering algorithm provides better performance.

– It would be interesting to vary the selection of kernels. In the experiments, a set of fixed

kernels were used. This selection can be augmented and their effect can be evaluated.

– This thesis worked on the single-output regression problem. It would be compelling to

extend this algorithm for the multivariate output problem.

– The research can be extended to even bigger datasets, which could not be implemented

due to resource limitations.

– GPR has previously been used for classification problems as well. It would be nice to

extend the si-GPR algorithm for the classification problem as well.

– A comparison with other variants of sparse Gaussian process regression would be of

significance.

Hopefully, these ideas will be considered in subsequent research.

98

REFERENCES

Abramowitz, M., & Stegun, I. A. (1965). Handbook of Mathematical Functions. Dover
Publications, New York, USA.

Ade, R. R., & Deshmukh, P. R. (2013). Methods for Incremental Learning: A Survey.
International Journal of Data Mining & Knowledge Management Process, 3(4), 119.

Akbilgic, O., Bozdogan, H., & Balaban, M. E. (2014). A novel Hybrid RBF Neural Networks
model as a forecaster. Statistics and Computing, 24(3), 365–375.

Alpaydin, E. (2004). Introduction to Machine Learning. MIT Press.

Aytug, H., Bhattacharyya, S., Koehler, G. J., & Snowdon, J. L. (1994). A review of machine
learning in scheduling. IEEE Transactions on Engineering Management, 41(2), 165–171.

Bai, X., Ren, P., Zhang, H., & Zhou, J. (2015). An incremental structured part model for object
recognition. Neurocomputing, 154, 189–199.

Baker, C. T. (1977). The Numerical Treatment of Integral Equations.

Bauer, M., van der Wilk, M., & Rasmussen, C. E. (2016). Understanding Probabilistic Sparse
Gaussian Process Approximations. Advances in Neural Information Processing Systems,
1533–1541.

Bernardo, J., Berger, J., Dawid, A., & Smith, A. (1998). Regression and Classification using
Gaussian Process Priors. Bayesian Statistics 6, 475.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Bottou, L., & Cun, Y. (2003). Large scale online learning. Advances in Neural Information
Processing Systems, 16, 217–224.

Cao, Y., & Yang, J. (2015). Towards making systems forget with machine unlearning. 2015
IEEE Symposium on Security and Privacy, 463–480. IEEE.

Carbonara, L., & Borrowman, A. (1998). A comparison of batch and incremental supervised
learning algorithms. European Symposium on Principles of Data Mining and Knowledge
Discovery, 264–272.

Carbonneau, R., Laframboise, K., & Vahidov, R. (2008). Application of machine learning
techniques for supply chain demand forecasting. European Journal of Operational
Research, 184(3), 1140–1154.

Casella, G., & Berger, R. L. (2002). Statistical inference. Pacific Grove, CA: Duxbury.

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error
(MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model
Development, 7(3), 1247–1250.

Chapra, S. C., & Canale, R. P. (2010). Numerical methods for engineers. Boston: McGraw-Hill

99

Higher Education.

Chatterjee, A., Croley, D., Ramamurti, V., & Chang, K. Y. (1997). Application of machine
learning to manufacturing: results from metal etch. Nineteenth IEEE/CPMT International
Electronics Manufacturing Technology Symposium, 372–377. IEEE.

Chen, T., Morris, J., & Martin, E. (2007). Gaussian process regression for multivariate
spectroscopic calibration. Chemometrics and Intelligent Laboratory Systems, 87, 59–71.
https://doi.org/10.1016/j.chemolab.2006.09.004

Cheng, C.-A., & Boots, B. (2016). Incremental Variational Sparse Gaussian Process Regression.
Advances in Neural Information Processing Systems, 4410–4418.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to Algorithms. MIT Press.

Cornell, J. A., & Berger, R. D. (1987). Factors that influence the value of the coefficient of
determination in simple linear and nonlinear regression models. Phytopathology, 77(1), 63–
70.

Csató, L., & Opper, M. (2002). Sparse On-Line Gaussian Processes. Neural Computation, 14(3),
641–668.

De La Cruz, J. S., Owen, W., & Kulic, D. (2012). Online Learning of Inverse Dynamics via
Gaussian Process Regression. IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1), 1–22.

Dewan, M. A. A., Granger, E., Marcialis, G. L., Sabourin, R., & Roli, F. (2016). Adaptive
appearance model tracking for still-to-video face recognition. Pattern Recognition, 49, 129–
151.

Dhanjal, C., Gaudel, R., & Clémençon, S. (2014). Efficient eigen-updating for spectral graph
clustering. Neurocomputing, 131, 440–452.

Diggle, P. J. (1990). Time Series: A Biostatistical Introduction (No. 04; QA280, D5.).

Ditzler, G., Roveri, M., Alippi, C., & Polikar, R. (2015). Learning in nonstationary
environments: A survey. IEEE Computational Intelligence Magazine, 10(4), 12–25.

Draper, N. R., & Smith, H. (1998). Applied regression analysis. John Wiley & Sons.

Dunjko, V., Taylor, J. M., & Briegel, H. J. (2016). Quantum-enhanced Machine Learning.
Physical Review Letters, 117(13).

Duvenaud, D. (2014). Automatic Model Construction with Gaussian Processes. University of
Cambridge.

Emerson, J. W., Green, W. A., Schloerke, B., Crowley, J., Cook, D., Hofmann, H., & Wickham,
H. (2013). The generalized pairs plot. Journal of Computational and Graphical Statistics,
22(1), 79–91.

100

Fattahi, S. (2011). A Comparative Study of Parametric and Nonparametric Regressions. Iranian
Economic Review, 16(30), 19–43.

Fuchs, W. H. J., & Rogosinski, W. W. (1942). A note on Mercer’s theorem. Journal of the
London Mathematical Society, 1(4), 204–210.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on
concept drift adaptation. ACM Computing Surveys (CSUR), 46(4), 1–37.

García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining. Cham,
Switzerland: Springer International Publishing.

Geng, X., & Smith-Miles, K. (2009). Incremental Learning.

Genton, M. G. (2001). Classes of Kernels for Machine Learning: a Statistics Perspective. Journal
of Machine Learning Research, 2(Dec), 299–312.

Gepperth, A., & Hammer, B. (2016). Incremental learning algorithms and applications.
European Sympoisum on Artificial Neural Networks (ESANN).

Ghahramani, Z. (1996). The pumadyn datasets.

Graybill, D. A. (1985). Western US tree-ring index chronology data for detection of arboreal
response to increasing carbon dioxide.

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An Efficient Clustering Algorithm for Large
Databases. ACM Sigmod Record, 27(2), 73–84.

Gupta, A. K., Guntuku, S. C., Desu, R. K., & Balu, A. (2015). Optimisation of turning
parameters by integrating genetic algorithm with support vector regression and artificial
neural networks. The International Journal of Advanced Manufacturing Technology, 77(1–
4), 331–339.

Hall, P. (1989). On convergence rates in nonparametric problems. International Statistical
Review, 57(1), 45–58.

Hammer, B., He, H., & Martinetz, T. (2014). Learning and modeling big data. ESANN, 343–352.

He, H., & Siu, W. (2011). Single Image Super-Resolution using Gaussian Process Regression.
CVPR, 449–456.

Hensman, J., Fusi, N., & Lawrence, N. D. (2013). Gaussian Processes for Big Data. ArXiv
Preprint ArXiv:1309.6835. https://doi.org/10.1016/S0074-7696(01)08005-6

Hensman, J., & Lawrence, N. D. (2014). Nested variational compression in deep Gaussian
processes. ArXiv Preprint ArXiv:1412.1370.

Hoang, T. N., Hoang, Q. M., & Low, K. H. (2015). A Unifying Framework of Anytime Sparse
Gaussian Process Regression Models with Stochastic Variational Inference for Big Data.
32nd International Conference on Machine Learning, 569–578.

Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic Variational Inference.
The Journal of Machine Learning Research, 14(1), 1303–1347.

101

Horn, R. A., & Johnson, C. R. (2012). Matrix analysis. Cambridge university press.

Jain, A. S., & Meeran, S. (1998). Job-shop scheduling using neural networks. International
Journal of Production Research, 36(5), 1249–1272.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning.
New York: Springer.

Jurkovic, Z., Cukor, G., Brezocnik, M., & Brajkovic, T. (2018). A comparison of machine
learning methods for cutting parameters prediction in high speed turning process. Journal of
Intelligent Manufacturing, 29(8), 1683–1693.

Jylänki, P., Vanhatalo, J., & Vehtari, A. (2011). Robust Gaussian Process Regression with a
Student- t Likelihood. Journal of Machine Learning Research, 12(Nov), 3227–3257.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research, 4, 237–285.

Kim, K., Lee, D., & Essa, I. (2011). Gaussian process regression flow for analysis of motion
trajectories. 2011 International Conference on Computer Vision, 1164–1171. IEEE.

Kolmogoroff, A. (1941). Interpolation und extrapolation von stationaren zufalligen folgen.
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 5(1), 3–14.

Kong, D., Chen, Y., & Li, N. (2018). Gaussian process regression for tool wear prediction.
Mechanical Systems and Signal Processing, 104, 556–574.

Kong, Dongdong, Chen, Y., & Li, N. (2018). Gaussian process regression for tool wear
prediction. Mechanical Systems and Signal Processing, 104, 556–574.

Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2006). Data preprocessing for supervised
leaning. International Journal of Computer Science, 1(2), 111–117.

Kulkarni, P., & Ade, R. (2014). Incremental learning from unbalanced data with concept class,
concept drift and missing features: a review. International Journal of Data Mining &
Knowledge Management Process, 4(6), 15.

Lawrence, N. D., Seeger, M., & Herbrich, R. (2002). Fast Sparse Gaussian Process Methods:
The Informative Vector Machine. Neural Information Processing Systems, 13.

Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen, C. E., & Figueiras-Vidal, A. R. (2010).
Sparse Spectrum Gaussian Process Regression. Journal of Machine Learning Research, 11,
1865–1881.

Lease, M. (2011). On quality control and machine learning in crowdsourcing. Workshops at the
Twenty-Fifth AAAI Conference on Artificial Intelligence.

Lee, H., Kim, S. G., Park, H. W., & Kang, P. (2014). Pre-launch new product demand
forecasting using the Bass model: A statistical and machine learning-based approach.
Technological Forecasting and Social Change, 86, 49–64.

Lei, Y., Guo, M., Cai, H., Hu, D., & Zhao, D. (2015). Prediction of Length-of-day Using
Gaussian Process Regression. The Journal of Navigation, 68(3), 563–575.

102

https://doi.org/10.1017/S0373463314000927

Lu, Y., Boukharouba, K., Boonært, J., Fleury, A., & Lecoeuche, S. (2014). Application of an
incremental SVM algorithm for on-line human recognition from video surveillance using
texture and color features. Neurocomputing, 126, 132–140.

Lütz, A., Rodner, E., & Denzler, J. (2013). I Want to Know More-Efficient Multi-Class
Incremental Learning Using Gaussian Processes. Pattern Recognition and Image Analysis,
23(3), 402–407.

MacKay, D. J. (1998). Introduction to Gaussian Processes. NATO ASI Series F Computer and
Systems Sciences, 168, 133–166.

Malik, Z. K., Hussain, A., & Wu, J. (2016). An online generalized eigenvalue version of
Laplacian Eigenmaps for visual big data. Neurocomputing, 173, 127–136.

Markham, I. S., Mathieu, R. G., & Wray, B. A. (2000). Kanban setting through artificial
intelligence: A comparative study of artificial neural networks and decision trees. Integrated
Manufacturing Systems, 11(4), 239–246.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation, 24, 109–165.

McIntire, M., Ratner, D., & Ermon, S. (2016). Sparse Gaussian Processes for Bayesian
Optimization. UAI, (June).

Mermillod, M., Bugaiska, A., & Bonin, P. (2013). The stability-plasticity dilemma: Investigating
the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in
Psychology, 4, 504.

Mitchell, T. (1997). Introduction to machine learning. Machine Learning, 7, 2–5.

Mohammed, R. O., & Cawley, G. C. (2017). Over-Fitting in Model Selection with Gaussian
Process Regression. International Conference on Machine Learning and Data Mining in
Pattern Recognition, 192–205.

Monostori, L. (2003). AI and machine learning techniques for managing complexity, changes
and uncertainties in manufacturing. Engineering Applications of Artificial Intelligence,
16(4), 277–291.

Mouchaweh, M. S., Devillez, A., Lecolier, G. V., & Billaudel, P. (2002). Incremental learning in
fuzzy pattern matching. Fuzzy Sets and Systems, 132(1), 49–62.

Mozaffari, A., Vajedi, M., & Azad, N. L. (2015). A robust safety-oriented autonomous cruise
control scheme for electric vehicles based on model predictive control and online sequential
extreme learning machine with a hyper-level fault tolerance-based supervisor.
Neurocomputing, 151, 845–856.

Nash, W. J., Sellers, T. L., Talbot, S. R., Cawthorn, A. J., & Ford, W. B. (1994). The Population
Biology of Abalone (Haliotis species) in Tasmania. I. Blacklip Abalone (H. rubra) from the
North Coast and the Islands of Bass Strait. Sea Fisheries Division, Technical Report 48,
411.

103

Nguyen-Tuong, D., Peters, J., & Seeger, M. (2009). Local Gaussian Process Regression for Real
Time Online Model Learning and Control. Advances in Neural Information Processing
Systems, 1193–1200.

Nguyen-Tuong, D., Seeger, M., & Peters, J. (2009). Model learning with local Gaussian process
regression. Advanced Robotics, 23(15), 2015–2034.

Nilsson, N. J. (1996). Introduction to machine learning: An early draft of a proposed textbook.

Oliveri, P., Malegori, C., Simonetti, R., & Casale, M. (2019). The impact of signal pre-
processing on the final interpretation of analytical outcomes–A tutorial. Analytica Chimica
Acta, 1058, 9–17.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Vanderplas,
J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12, 2825–2830.

Polikar, R., & Alippi, C. (2013). Guest editorial learning in nonstationary and evolving
environments. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 9–11.

Probst, P., Bischl, B., & Boulesteix, A. L. (2018). Tunability: Importance of hyperparameters of
machine learning algorithms. ArXiv Preprint ArXiv:1802.09596.

Qi, Y., Abdel-Gawad, A. H., & Minka, T. P. (2010). Sparse-posterior Gaussian Processes for
general likelihoods. 26th Conference on Uncertainty in Artificial Intelligence, 450–457.

Quiñonero-Candela, J., & Rasmussen, C. E. (2005). A Unifying View of Sparse Approximate
Gaussian Process Regression. Journal of Machine Learning Research, 6(Dec), 1939–1959.

Quiñonero-Candela, J., & Winther, O. (2003). Incremental Gaussian Processes. Advances in
Neural Information Processing Systems, 1025–1032.

Rabe-Hesketh, S., & Skrondal, A. (2008). Multilevel and longitudinal modeling using Stata. In
STATA press.

Raducanu, B., & Vitria, J. (2008). Face recognition by artificial vision systems: A cognitive
perspective. International Journal of Pattern Recognition and Artificial Intelligence, 22(5),
899–913.

Ranganathan, A., Yang, M.-H., & Ho, J. (2010). Online Sparse Gaussian Process Regression and
Its Applications. IEEE TRANSACTIONS ON IMAGE PROCESSING, 20(2), 391–404.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning.
Cambridge, MA: MIT Press.

Saffari, A., Leistner, C., Santner, J., Godec, M., & Bischof, H. (2009). On-line Random Forests.
2009 Ieee 12th International Conference on Computer Vision Workshops, Iccv Workshops,
1393–1400. IEEE.

Samet, H. (1990). The Design and Analysis of Spatial Data Structures. Addison-Wesley
Publishing Company Inc., New York.

Sarle, W. S. (1996). Stopped training and other remedies for overfitting. Computing Science and

104

Statistics, 352–360.

Sathya, R., & Abraham, A. (2013). Comparison of Supervised and Unsupervised Learning
Algorithms for Pattern Classification. International Journal of Advanced Research in
Artificial Intelligence, 2(2), 34–38.

Schneider, T. (2001). Analysis of incomplete climate data: Estimation of mean values and
covariance matrices and imputation of missing values. Journal of Climate, 14(5), 853–871.

Scholkopf, B., & Smola, A. J. (2018). Learning with kernels: support vector machines,
regularization, optimization, and beyond. Adaptive Computation and Machine Learning
series.

Schwaighofer, A., & Tresp, V. (2003). Transductive and inductive methods for approximate
Gaussian process regression. Advances in Neural Information Processing Systems, 977–
984.

Schӧlkopf, B., & Smola, A. J. (2002). Learning with Kernels. MIT Press.

Seeger, M. W. (2004). Low rank updates for the Cholesky decomposition. Univ. of California at
Berkeley, Tech. Rep.

Seeger, M., Williams, C. K. I., & Lawrence, N. D. (2003). Fast Forward Selection to Speed Up
Sparse Gaussian Process Regression. Artificial Intelligence and Statistics 9, Number EPFL-
CONF-161318.

Sihag, P., Tiwari, N. K., & Ranjan, S. (2017). Modelling of infiltration of sandy soil using
gaussian process regression. Modeling Earth Systems and Environment, 3(3), 1091–1110.
https://doi.org/10.1007/s40808-017-0357-1

Smola, A. J., & Bartlett, P. (2001). Sparse Greedy Gaussian Process Regression. Advances in
Neural Information Processing Systems, 619–625.

Smola, Alex J., & Bartlett, P. (2001). Sparse Greedy Gaussian Process Regression. Advances in
Neural Information Processing Systems, 619–625. https://doi.org/10.1255/nirn.1392

Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian Processes using Pseudo-inputs.
Advances in Neural Information Processing Systems, 1257–1264.

Sternberg, H. O. R. (1987). Aggravation of Floods in the Amazon River as a Consequence of
Deforestation ? Geografiska Annaler: Series A, Physical Geography, 69(1), 201–219.

Stone, J. V. (2013). Bayes’ rule: A tutorial introduction to Bayesian analysis. Sebtel Press.

Subramanian, J., & Simon, R. (2013). Overfitting in prediction models–is it a problem only in
high dimensions? Contemporary Clinical Trials, 36(2), 636–641.

Sugiyama, M., Krauledat, M., & MÃžller, K. R. (2007). Covariate shift adaptation by
importance weighted cross validation. Journal of Machine Learning Research, 8(May),
985–1005.

Tipping, M. E. (2001). Sparse Bayesian Learning and the Relevance Vector Machine. Journal of
Machine Learning Research, 1(Jan), 211–244.

105

Titsias, M. K. (2009). Variational Learning of Inducing Variables in Sparse Gaussian Processes.
Artificial Intelligence and Statistics, 567–574.

Tong, Y. L. (2012). The multivariate normal distribution. Springer Science & Business Media.

Tresp, V. (2000). A Bayesian Committee Machine. Neural Computation, 12(11), 2719–2741.

Tsymbal, A. (2004). The problem of concept drift: definitions and related work. In Computer
Science Department, Trinity College Dublin (Vol. 106).

Vorburger, P., & Bernstein, A. (2006). Entropy-based concept shift detection. Sixth International
Conference on Data Mining (ICDM’06), 1113–1118. IEEE.

Walder, C., Kwang, I. K., & Schölkopf, B. (2008). Sparse Multiscale Gaussian Process
Regression. Proceedings of the 25th International Conference on Machine Learning, 1112–
1119.

Walpole, R. E., & Myers, R. H. (2012). Probability & statistics for engineers & scientists.
Pearson Education Limited.

Wiener, N. (1949). Extrapolation, Interpolation and Smoothing of Stationary Time Series. MIT
Press.

Williams, C. K. I., & Rasmussen, C. E. (1996). Gaussian processes for Regression. Advances in
Neural Information Processing Systems, 514–520.

Williams, C. K. I., & Seeger, M. (2001). Using the Nystrom Method to Speed Up Kernel
Machines. Advances in Neural Information Processing Systems, 682–688.

Williams, C. K., Rasmussen, C. E., Scwaighofer, A., & Tresp, V. (2002). Observations on the
Nyström method for Gaussian process prediction.

Wray, B. A., Rakes, T. R., & Rees, L. P. (1997). Neural network identification of critical factors
in a dynamic just-in-time Kanban environment. Journal of Intelligent Manufacturing, 8(2),
83–96.

Xin, J., Wang, Z., Qu, L., & Wang, G. (2015). Elastic extreme learning machine for big data
classification. Neurocomputing, 149, 464–471.

Yoshioka, T., & Ishii, S. (2001). Fast Gaussian Process Regression using Representative Data.
International Joint Conference on Neural Networks, 132–137.

Yuan, J., Wang, K., Yu, T., & Fang, M. (2008). Reliable multi-objective optimization of high-
speed WEDM process based on Gaussian process regression. International Journal of
Machine Tools and Manufacture, 48, 47–60.
https://doi.org/10.1016/j.ijmachtools.2007.07.011

Zhang, C., Qin, Y., Zhu, X., Zhang, J., & Zhang, S. (2006). Clustering-based missing value
imputation for data preprocessing. 2006 4th IEEE International Conference on Industrial
Informatics, 1081–1086. IEEE.

106

