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Abstract 
This report presents the design of a Built-In Self-Test (BIST) implemented Advanced 

Encryption Standard (AES) crypto-processor Application Specific Integrated Circuit 

(ASIC). AES has been proved as the strongest symmetric encryption algorithm declared 

by USA Govt. and it outperforms all other existing cryptographic algorithms. AES can 

be implemented in two approaches: software and hardware. The software 

implementation offers lower speed performance and limited physical security than that 

of hardware implementation.Due to enormous speed and security performances, now a 

lot of research fordesign of AES processor chipis reported in the literature. Nowadays 

testability of a complex chip is a burning issue. This research presented in this 

reportintroduces a solution of the testability problem for the AES crypto processor 

chip implementing mixed-mode BIST technique which is hybrid of pseudo random 

and deterministic technique. In designing the BIST implemented AES ASIC, the 

AES algorithm is simulated using JAVA software and tested using the NIST 

provided input and output data. Then, the ASIC is designed using Verilog Hardware 

Description Language (HDL). The BIST circuitry consists of a test manager, Linear 

Feedback Shift Register (LFSR), Output Response Analyzer (ORA), memory to 

store seed for pseudo random pattern, seed for deterministic test pattern, test length 

and golden signature integrated into the ASIC. In test mode of the ASIC, the test 

manager enables the LFSR and initializes it with seed value from the memory and 

generates desired number of pseudo-random test patterns which are applied to the 

AES ASIC and outputs are compressed through the ORA and then the test manger 

switches to the deterministic mode in which it generates deterministic test pattern 

using the seed value stored in the memory and apply to the AES ASIC and compress 

it accordingly. Finally, signature is generated in the ORA which is compared with 

that of golden signature stored in the memory. If both the signatures match each 

other, then the ASIC is ensured as fault free; otherwise it is faulty. The HDL design 

of the Crypto ASIC is simulated using ModelSim EDA software. The simulation 

results show that the BIST implanted ASIC is working as per desired functionalities.  

In the future, the ASIC can be implemented into FPGA hardware and its 

performance in terms of logic gates, speed and power can be measured. 
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CHAPTER 1 
INTRODUCTION 

 1.1 Introduction 

 Information and Communication Technology (ICT) has become an integral 

part of everyday life. Use of the Internet in every sphere of life has increased 

explosively during the last several decades, data security has become a main concern 

for anyone connected to the web. People want to protect their data from unauthorized 

access and data corruption. The one and only tool through which we can achieve data 

security is Cryptography. Cryptography is the main key to secure information during 

communication [1]. Cryptography is used in many applications encountered in 

everyday life such as mobile networks, internet of things, automated teller machines 

(ATMs), copy protection (especially protection against reverse engineering and 

software piracy), internet e-commerce, internet banking, military and government to 

facilitate secret communication and many more. Cryptography can be defined as the 

practice and the study of techniques for securing communication and data in the 

presence of adversaries. Techniques involve plenty of cryptographic algorithms. 

Almost all the cryptographic algorithms involve two main operations:  

Encryption and Decryption. 

 

 Encryption is the process of converting our information into an unreadable 

form called the ciphertext to unauthorized entities; on the other hand, decryption is 

just the opposite of encryption in which the original information is regained from the 

ciphertext to the intended entities. A number of algorithms on cryptography have 

been presented in the literature [2-5]. There are multiple cryptographic algorithms, 

among them Advanced Encryption Standard (AES) is one of the most secure and fits 

our needs in this project. U.S. government has adopted the AES to be used by 

Federal departments and agencies for protecting sensitive information. AES works 

efficiently both in software and hardware implementations. Another cryptographic 

algorithm DES was originally used in hardware implementations. AES supports key 

lengths of 128, 192, and 256 bits, making it exponentially stronger than the 56-bit 
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key of DES. In this project, 128 bits of key length is used for both encryption and 

decryption processes. Crypt-analytical attacks such as Brute-force, Linear crypt-

analysis and Differential crypt-analysis, etc., are proven ineffective to break AES. 

Hardware implementation of AES is much more advantageous than in software 

because of high-speed and high-volume secure communications combined with 

physical security. Hardware performance of AES is bigger and more significant than 

the software performance [6]. No correlation between software and hardware 

performance was found. 

 

 In hardware platform during the manufacturing process, we can have all 

kinds of defects falling in our IC; that is why, we need to test Integrated Circuit (IC). 

Testing a VLSI chip to guarantee its functionality is extremely complex, time 

consuming as well as expensive [7-10]. To mitigate such types of problems, self-

testing feature needs to be incorporated with the chip. Built-in self-test (BIST) is 

such kind of technique which enables a chip to test itself [11-15]. For complex chips, 

BIST can be thought of as an ideal because using external testing such as automated 

test equipment (ATE) is not cost-effective and convenient. This project focuses on 

implementing BIST in AES Crypto ASIC. In this design, LFSR is used to generate 

pseudorandom test pattern and Output Response Analyzer (ORA) is used as a data 

compression technique to implement BIST. 

 

1.2 Motivation 

Since the demand for privacy and security of information is increasing day by 

day due to the rapid growth of information and communication technology, so the 

need of protecting information is getting profound importance. Cryptographic 

algorithms form the fundamental aspect of this research field. The upcoming 

generation cryptosystem should meet the criteria like (i) resistance against all attacks, 

(ii) high speed and low latency, (iii) code compactness on a wide range of platforms, 

(iv) design simplicity [16].  Earlier researchers proposed a number of cryptographic 

algorithms [17-20]. After the break of the Data Encryption Standard (DES) in 1999 

by electronic frontiers organization, newer version of algorithms was proposed by 

the researchers. Since 2001, NIST has chosen Advanced Encryption Standard (AES) 
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[21-25] as the replacement of the popular algorithm DES. AES is now widely used in 

different kinds of applications in software and hardware implementations. Hardware 

implementation of the algorithm offers higher security and speed than that of 

software implementation. Due to enormous speed and security performances, now a 

lot of research for hardware realization of the AES processor is reported in the 

literature [21-25]. Some of the research focuses on hardware resource optimization 

[21], while some other on speed optimization [22-23] and some other on power 

consumption optimization [24-25]. Nowadays DFT (Design for testability) for a 

complex chip is a prime concern in VLSI design. Testing a VLSI chip to guarantee 

its functionality is extremely complex, time-consuming as well as expensive [26].  

To deal with the testing problem at the chip level, incorporating built-in self-test 

(BIST) capability inside a chip is a widely accepted approach [27]. When a chip is 

complex, then BIST is a norm of this day because external testing using ATE is not 

cost effective and less convenient in this case.  BIST implemented AES 

cryptoprocessor chip is not reported yet in the literature.  So, there are scopes of 

research on this topic. In this research, we focus on the verification of understanding 

of the AES algorithm using NIST provided input-output under the Java platform. 

Then, the ASIC will be designed using Verilog HDL and simulated using Modelsim 

software. No-fault simulation has been performed due to resource constraints. 

Moreover, no fabrication and implementation will be performed in physical 

hardware. 

 

1.3 Objective with Specific Aims 

 The objective of the project is to design an AES crypto processor ASIC 

implementing BIST technique. To realize the goal, we have the following aims:  

• To design the AES processor with state of the art BIST technique using 

Hardware Description Language (HDL) 

• To simulate the AES processor using JAVA platform 

• To design the software using HDL and simulate it using EDA software 
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1.4 Project Outline 

 The remaining parts of this project are organized as follows: Chapter 2 

conveys the background information on basic mathematics of the AES algorithm 

which is required for understanding the fundamental operations of different states of 

the AES algorithm. Chapter 2 also represents a brief overview of the algorithm 

including the Encryption and Decryption parts. Chapter 3 describes the proposed 

design. The design components are also discussed in this chapter. Chapter 4 reviews 

the simulation results and discusses of the proposed design. Finally, Chapter 5 

suggests conclusion as well as future work. 
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CHAPTER 2 
Fundamentals of AES Cryptographic Algorithm and 

Built-in-Self-Test Technique 
2.1  Introduction 

 Cryptography is a technique through which information is transformed into a 

secured format. It comes from the Greek word “Kryptos” which means “hidden 

secret” and “graphein” means writing. 

 

 The term cryptography has been used for thousands of years to keep 

messages secret.It was first evidenced in an inscription carved around 1900 BC, 

inside the main chamber of the tomb of Khnumhotep 2, in Egypt.The study of 

cryptography as science started around one hundred years ago, because of the growth 

of computer and communication network raises the risk of privacy of the information 

system to a certain extent.As a result, plenty of cryptographic algorithms are 

introduced to keep messages secure. Many of these cryptographic algorithms are 

widely implemented in our day-to-day applications such as the security of ATM 

cards, computer passwords, e-commerce, military, etc. 

 

2.2 Basic Mathematics for AES 

 In AES, Galois field arithmetic is used in nearly all layers; specially in the S-

Box and the MixColumn layer. A Galois field also called a finite-field. A finite-field 

is a set on which the operations of multiplication, addition, subtraction and division 

can be performed but these are different from those used for numbers.  

 

2.2.1  Addition 

 The addition of two elements in a finite field is achieved by “adding” the 

coefficients for the corresponding powers in the polynomials for the two elements. 

The addition is performed with the XOR operation (denoted by ⊕), i.e., modulo 2, 

so that 1⊕1 = 0, 1⊕0 = 1, and 0⊕0 = 0. 
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 Alternatively, addition of finite field elements can be described as the modulo 

2 addition of corresponding bits in the byte. For two bytes {a7 a6 a5 a4 a3 a2 a1 a0} and 

{b7 b6 b5 b4 b3 b2 b1 b0}, the sum is {c7 c6 c5 c4 c3 c2 c1 c0}, where each ci = ai⊕bi(i.e., 

c7 = a7⊕b7, c6 = a6⊕b6, ……., c0 = a0⊕b0). 

For example, the following expressions are equivalent to one another: 

(x6 + x4 + x2 + x + 1) ⊕ (x7+  x + 1) =x7 + x6 + x4 + x2 (polynomial notation); 

{01010111} ⊕ {10000011} = {11010100} (binary notation); 

{57} ⊕{83} = {d4} (hexadecimal notation). 

 

2.2.2 Multiplication 

 In the polynomial representation, multiplication in GF(28) (denoted by *) 

corresponds with the multiplication of polynomials modulo an irreducible 

polynomial of degree 8. A polynomial is irreducible if its only divisors are one and 

itself. For the AES algorithm, this irreducible polynomial is m(x) = x8 + x4 + x3 + x + 

1, For example, {57} * {83} = {c1}, because 

(x6 + x4 + x2 + x + 1) (x7 + x + 1) = x13 + x11 + x9 + x8 + x7 + x7 + x5 + x3 + x2 + x + 

     x6 + x4 + x2 + x + 1 

    = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1 

And 

X13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1 modulo (x8 + x4 + x3 + x + 1) 

= x7 + x6 + 1. 

If we represent the polynomial x7 + x6 + 1 in the binary manner then we will get the 

binary value 11000001. The equivalent hexadecimal value of 11000001 is c1 which 

is the desired result as shown above. 

The modular reduction by m(x) ensures that the result will be a binary polynomial of 

degree less than 8, and thus can be represented by a byte. Unlike addition, there is no 

simple operation at the byte level that corresponds to this multiplication. 

 

2.3 AES Operational Structure 

 AES performs all its computations on bytes rather than bits. AES interprets a 

plaintext block of 128 bits as 16 bytes. A 4x4 matrix is used to represent these 16 

bytes. Figure 2.1 shows the overall operational structure of AES algorithm. 
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Note that the final round of encryption process doesn’t perform the mix columns 

operation and the final round of decryption process doesn’t perform the inverse mix 

columns operation. 

 

2.4 Encryption Process of AES 

 Four different sub-processes are used in each round, one is permutation and 

three are substitution. The sub-processes together provide confusion, diffusion and 

nonlinearity. The stages are as follows: 

• Byte Substitution:A fixed table (S-box) is used to substitute the 16 input 

bytes. 

• Shift rows: In this sub-process, each of the four rows of the matrix is shifted 

to the left. The first row is not shifted. The second row is shifted one (byte) 

position to the left. The third row is shifted two positions to the left. The 

fourth row is shifted three positions to the left. 

• Mix columns: A special mathematical function is used in this sub-process. 

This function takes as input the four bytes of one column and outputs four 

completely new bytes, which replaces the original column. Finally, a new 

matrix containing new 16 bytes is obtained.  

• Add round key: The state matrix containing 16 bytes is considered as 128 

bits and is XORed to the 128 bits of the round key. After the last round, we 

get the ciphertext. 
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The Pseudo code for encryption is shown in Figure 2.2: 

 

 Cipher(byte in[16], byte out[16], word w[44]) 

 Begin 

  byte state[16] 

  state = in 

  AddRoundKey(state, w[0, 3]) 

  for round = 1 step 1 to 9 

   SubBytes(state) 

   ShiftRows(state) 

   MixColumns(state) 

   AddRoundKey(state, w[round*4, (round+1)*3]) 

  end for 

  SubBytes(state) 

  ShiftRows(state) 

  AddRoundKey(state, w[40,43]) 

  out = state 

 end 

 

    

 

Four transformations are described below: 

 

2.4.1 SubBytes Transformation 

 The SubBytes() transformation is a non-linear byte substitution that operates 

independently on each byte of the state using a substitution table (S-box). This S-box 

(Table. 2.1), which is invertible, is constructed by composing two transformations: 

 

1.Take the multiplicative inverse of each byte in the finite field GF(28), like the 

element {00} is mapped to itself. 

2. Apply the following affine transformation (over GF(2)): 

 bi
′ = bi⊕ b(i+4)mod 8 ⊕ b(i+5)mod 8⊕ b(i+6)mod 8⊕ b(i+7)mod 8⊕ ci 

Fig. 2.2: Pseudo code for AES encryption 
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for 0≤i<8, where bi is the ithbit of the byte, and ci is the ith bit of a byte c with the 

value {63} or {01100011}. Here and elsewhere, a prime on a variable (e.g., b′) 

indicates that the variable is to be updated with the value on the right. 

 

In matrix form, the affine transformation element of the S-box can be expressed as 

follows: 

 

  

  

 =      +       

 

 

 

 

 

 

The S-box used in the SubBytes() transformation is presented in hexadecimal form in 

Table 2.1. For example, if s1,1 = {53}, then the substitution value would be 

determined by the intersection of the row with index ‘5’ and the column with index 

‘3’ in Table 2.1. This would result in s1,1
′ having a value of {ED}. 
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b6
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b7
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1 0 0 0 1 1 1 1 
1 1 0 0 0 1 1 1 
1 1 1 0 0 0 1 1 
1 1 1 1 0 0 0 1 
1 1 1 1 1 0 0 0 
0 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 0 
0 0 0 1 1 1 1 1 
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b1
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b3
 

b4
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b6
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1 

1 

0 

0 

0 

1 

1 

0 

Fig. 2.3: Affine transformation element of the S-box 
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Table 2.1: S-box 

 
 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15 

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75 

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84 

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF 

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2 

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73 

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB 

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79 

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08 

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A 

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E 

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF 

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16 

 

2.4.2 ShiftRows Transformation 

 The ShiftRows step operates on the rows of the state. In each row, it 

cyclically shifts the bytes according to a certain offset value. The first row remains 

unchanged. In the second row, each byte is shifted one to the left. Similarly, the third 

and fourth rows are shifted according to the offsets of two and three respectively. 

 

  

 

 

 

 

 

    

 

a0,0 a0,1 a0,2 a0,3 

a1,1 a1,2 a1,3 a1,0 

a2,2 a2,3 a2,0 a2,1 

a3,3 a3,0 a3,1 a3,2 

a0,0 a0,1 a0,2 a0,3 

a1,0 a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 a2,3 

a3,0 a3,1 a3,2 a3,3 

Y 

X 

No change 

Shift 1 

Shift 2 

Shift 3 

Shift Rows 

Fig. 2.4: Shift Row Transformation 
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2.4.3 MixColumns Transformation 

 In this sub-process, an invertible linear transform is used to combine the four 

bytes of each column of the state. This stage takes four bytes as input and outputs 

four bytes, where all four output bytes are affected by each input byte. The 

ShiftRows and the MixColumns combinedly provide diffusion to the ciphertext. 

Each column is multiplied by a known matrix during this operation. In this 

multiplication operation, multiplication by 1 denotes no change, multiplication by 2 

denotes shifting to the left, and multiplication by 3 denotes shifting to the left and 

then performing XOR with the initial unchanged value. In the case where the value is 

larger than 0xFF, a conditional XOR with 0x1B should be performed after shifting. 

The column operations can be shown as follows. 

 

 

 =     

 

 

 

    

 

For the bytes in the first row of the state array, this operation can be stated as 

 S′
0,j = (0x02 * S0,j) ⊕(0x03 * S1,,j) ⊕S2,j ⊕S3,j 

For the bytes in the second row of the state array, this operation can be stated as 

 S′
1,j = S0,j⊕(0x02 * S1,j) ⊕(0x03 * S2,,j) ⊕S3,j 

For the bytes in the third row of the state array, this operation can be stated as 

 S′
2,j = S0,j⊕S1,j ⊕(0x02 * S2,j) ⊕(0x03 * S3,,j)  

For the bytes in the fourth row of the state array, this operation can be stated as 

 S′
3,j = (0x03 * S0,,j)  ⊕S1,j ⊕S2,j ⊕(0x02 * S3,j) 

 

 

 

 

 

02 03 01 01 
01 02 03 01 
01 01 02 03 

S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S′
0,0 S′

0,1 S′
0,2 S′

0,3 

S′
1,0 S′

1,1 S′
1,2 S′

1,3 

S′
2,0 S′

2,1 S′
2,2 S′

2,3 

S′
3,0 S′

3,1 S′
3,2 S′

3,3 
03 01 01 02 S3,0 S3,1 S3,2 S3,3 

Fig. 2.5: Mix Column Transformation 
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2.4.4 AddRoundKey Transformation 

 In this sub-process, the subkey is combined with the state. Based on 

Rijndael's key schedule a subkey is derived from the main key at each round. Each 

subkey is of the same size as the state. This operation is treated as a column-wise 

operation between the 4 bytes of a state column and one word of the round key. This 

transformation looks so simple but it also affects every bit of state. 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

   Fig. 2.6 Add Round Key Transformation 

 

2.4.5 Key Expansion 

 The 4-word key is feed to the AES key expansion algorithm and 

consequently, we get a linear array of 44 words. Each subkey is 128 bits long. Fig. 

2.7 shows the pseudocode for generating the subkeys from the actual key. 

 

 

 

 

b0,0 b0,1 b0,2 b0,3 

b1,0 b1,1 b1,2 b1,3 

b2,0 b2,1 b2,2 b2,3 

b3,0 b3,1 b3,2 b3,3 

a0,0 a0,1 a0,2 a0,3 

a1,0 a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 a2,3 

a3,0 a3,1 a3,2 a3,3 

k0,0 k0,1 k0,2 k0,3 

k1,0 k1,1 k1,2 k1,3 

k2,0 k2,1 k2,2 k2,3 

k3,0 k3,1 k3,2 k3,3 
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KeyExpansion (byte key[16], word w[44]) 

{ 

 word temp 

 for(i=0; i<4; i++)  w[i] = (key[4*i], key[4*i + 1], key[4*i +2], key[4*i + 3]); 

 for(i=4; i<44; i++) 

 { 

  temp = w[i-1]; 

  if (i mod 4 = 0)  temp = SubWord(RotWord(temp)) ⊕Rcon[i/4]; 

  w[i] = w[1-4] ⊕temp;  

 } 

} 

 

      

 

The initial key is put into the first four words of the expanded key. The remainder of 

the expanded key is put in four words. The preceding word, w[i-1] and the word four 

positions back w[i-4] are XOR’ed to generate each added word w[i]. This sub-

process follows a complex function which consists of two sub-functions. The sub-

functions are described as follows: 

• RotWord: In this sub-function, a one-byte left shift is performed on a word. 

Suppose an input word [B0, B1, B2, B3] is transformed into [B1, B2, B3, B0]. 

• SubWord: In this sub-function, a byte substitution is performed on each byte 

of its input word, using the S-box (Table 2.1). 

• The result of steps 1 and 2 is XORed with a round constant, Rcon[j]. 

The round constant can be assumed as a word whose three rightmost bytes are 

always 0. The XOR operation of a word with Rcon only affects the leftmost byte of 

the word. For each round, a new round constant is used which can be defined as 

Rcon[j] = (RC[J],0,0,0), with RC[1], RC[j] = 2*RC[j-1] and multiplication can be 

defined over the field GF(28). The hexadecimal form of RC[j] values are given in 

Table. 2.2: 

Fig. 2.7: Key expansion pseudocode 
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Table 2.2: Rcon constants 

J 1 2 3 4 5 6 7 8 9 10 

RC[j] 01 02 04 08 10 20 40 80 1B 36 

 

  

2.5 Overview of AES Cryptographic Algorithm 

 AES does not use a Feistel network. AES depends on a design principle 

known as a substitution-permutation network, and is efficient in both software and 

hardware. AES works with a fixed block size of 128 bits, and a key size of 128, 192, 

or 256 bits. AES works on a 4 x 4 column-major order array of bytes. Nearly, all 

AES calculations are performed in a particular finite field. For example, 16 bytes, 

b0,b1,…,b15 are represented using two-dimensional array as follows: 

 

 

 

 

  

 

The number of rounds are given as follows: 

• 10 rounds for 128-bit keys. 

• 12 rounds for 192-bit keys. 

• 14 rounds for 256-bit keys. 

In this project, key length of 128 bits are used for both encryption and decryption 

process. 

 

 

 

 

 

b0 b4 b8 b12 

b1 b5 b9 b13 

b2 b6 b10 b14 

b3 b7 b11 b15 
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TABLE 2.3: NOTATION 

LFSR A 32 stage Linear Feedback Shift Register with the characteristic polynomial 

f(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x 

+1 

⊕ Exclusive-OR (XOR) operator 

m << 1 Left circular shift operator, which rotates all bits of m to the left by 1 bits, as 

if the left and the right ends of m were joined. 

ki
(j) The j-th 128 bit key used in the i-th block cipher, j=1,2,3,4,5,6,7,8,9,10 

S(x) S-box used in encryption process 

S-1(x) Inverse S-box used in decryption process 

K The 128-bit secret key 

Ek(.) The encryption function of AES with 128-bit secret key K 

Dk(.) The decryption function of AES with 128-bit secret key K 

 

2.6 Decryption 

 In AES, all the layers can be inverted because AES is not a Feistel network. 

The inverse layers for the AES decryption round are showed in Fig. 2.1. As we 

know, XOR operation is its own inverse. The process of key addition layer is the 

same for both encryption mode and decryption mode. 

 

2.6.1 InvMixColumns Transformation 

 Inverse MixColumns operation is just the reverse of the MixColumns 

operation. Here the inverse of the matrix is used. Suppose the input bytes denoted by 

C0, C1, C2, C3 of the state C are multiplied by the inverse 4x4 matrix. The matrix is 

formed of constants. 

  

    

 =     

  

 
B3 C3 

B0 
B1 

B2 

0E 0B 0D 09 

09 0E 0B 0D 
0D 09 0E 0B 
0B 0D 09 0E 

C0 

C1 

C2 

Fig. 2.8: Matrix of constants used in Inverse Mix Column 
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The second column of output bytes (B4, B5, B6, B7) is computed by multiplying the 

four input bytes (C4, C5, C6, C7) by the same constant matrix and so on. 

 

2.6.2 InvShiftRows Transformation 

 In this Sublayer, the rows of the state matrix is rotated in the opposite 

direction. The first row will remain unchanged. Suppose the input of the ShiftRows 

sublayer is given as a state matrix B = (B0, B1, …, B15): 

 

 

 

 

 

Fig. 2.9: State matrix without byte shifting 

The final output is 

 

B0 B4 B8 B12 

B13 B1 B5 B9 

B10 B14 B2 B6 

B7 B11 B15 B3 

 

Fig. 2.10: State matrix with byte shift 

 

2.6.3 InvSubBytes  Transformation 

AES S-Box follows a one-to-one mapping; so an inverse S-Box can be constructed 

such that: 

  Ai = S-1 (Bi) = S-1 (S(Ai)), 

 

To reverse the S-Box substitution, at first the inverse of the affine transformation is 

computed. For each byte Bi the inverse affine transformation can be described as 

shown in table Table. 2.4. 

 

 

B0 B4 B8 B12 

B1 B5 B9 B13 

B2 B6 B10 B14 

B3 B7 B11 B15 

One position right shift 

Two positions right shift 

No shift 

Three positions right shift 
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Table 2.4: Inverse AES S-Box 

 
 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB 

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB 

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E 

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25 

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92 

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84 

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06 

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B 

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73 

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E 

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 bE 1B 

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4 

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F 

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF 

E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61 

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D 

 

   

 

 

 

 

 =      +    

 

 

 

 

 

 

X 

Y

F 

b0 

b1 

b2 

b3 

b4 

b5 

b6 

b7 

0 0 1 0 0 1 0 1 
1 0 0 1 0 0 1 0 
0 1 0 0 1 0 0 1 
1 0 1 0 0 1 0 0 
0 1 0 1 0 0 1 0 
0 0 1 0 1 0 0 1 
1 0 0 1 0 1 0 0 
0 1 0 0 1 0 1 0 

s0 

s1 

s2 

s3 

s4 

s5 

s6 

s7 

1 

0 

1 

0 

0 

0 

0 

0 
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In the second step, the reverse of Galois field inverse has to be performed such as Ai  

= (Ai
-1)-1. We need to compute Ai = (B′

i)-1∈GF(28). Finally, the vector Ai = (a7,…,a0) 

is the substituted result 

           Ai = S-1(Bi). 

 

2.6.4  Decryption Key Schedule 

 The key scheduling process is the same as encryption mode except the 

subkeys are used in the reverse order. 

 

2.7 Linear Feedback Shift Register 

 Linear feedback shift registers (LFSR) are one of the most efficient ways of 

describing and generating sequences in hardware implementations. LFSR is 

frequently used as a test pattern generator for BIST applications. One of the reasons 

is that an LFSR requires less combinational logic per flip-flop. An LFSR can be 

implemented in two basic ways. They are internal feedback and external feedback 

LFSRs as shown in Fig. 2.11 and 2.12 respectively. 

 

 
Fig. 2.11: Internal LFSR with P(X) = 1 + X + X3 + X4 

 

 
Fig. 2.12: External LFSR with P(X) = 1 + X + X3 + X4 

 

For LFSRs, n is referred to as the degree of the polynomial and results in an n-bit 

LFSR. The characteristic polynomial defines the construction of the LFSR (for either 
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internal or external feedback implementations) where the degree of the polynomial 

gives the number of flip-flops and the number of non-zero coefficients not including 

Xn and X0 gives the number of exclusive-OR gates. Fig. 2.11 shows an internal 

feedback shift register with characteristic polynomial, P(X) = 1 + X + X3 + X4 and 

Fig. 2.12 shows an external feedback shift register with characteristic polynomial, 

(X) = 1 + X + X3 + X4. The characteristic polynomial is an example of a non-

primitive polynomial. The LFSR is unable to generate all 2n-1 patterns using a single 

seed. The maximum number of patterns that can be generated by an n-bit LFSR is 2n-

1. An LFSR that can generate all the sequences of unique patterns before repeating 

the starting sequence is referred to as a maximum length sequence (also referred to as 

a maximal length sequence or as an m-sequence) LFSR. A primitive polynomial of 

degree 4 which generates maximum sequence patterns can be denoted by P′(X) = 1 + 

X + X4. It can be illustrated by Fig. 2.13 and 2.14. 

 

 
 

Fig. 2.13: An LFSR with characteristic polynomial as P′(X) = 1 + X + X4 

 

 

 

 
 

 

 

 

 

 

0111 

1111 1011 1001 1000 0100 0010 

0001 

1100 0110 0011 1101 1010 0101 

Fig. 2.14: Maximal length sequence produced 
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2.8 Test Compression Technique in BIST 

 The main motive of data compression is to reduce the complexity of test data 

in the field of fault diagnosis in digital systems. A data compression technique called 

self-testable and error-propagating space compression is proposed and analyzed. 

 

2.8.1 Mixed-mode BIST 

A mixed-mode BIST divides the testing process into two phases. In the first 

phase, a linear feedback shift register is used to implement pseudorandom test pattern 

generation. Faults that are hard to detect using pseudorandom pattern generation are 

called random-pattern-resistant (RPR) faults. The probability of detecting RPR faults 

can be increased by integrating a mixed-mode approach in BIST. Applying pseudo-

random patterns, we can achieve fault coverage of up to 60% to 80% only. In the 

second phase, deterministic test patterns are applied to find the remaining faults. 

Fault coverage can be improved by modifying the circuit under test which can be 

done by redesigning or inserting test points. But, it is not always possible because of 

performance restriction or intellectual property (IP) reasons. Moreover, the mixed-

mode approach supports structured delay fault testing and testing of intellectual 

property (IP) blocks.  

 

 There are a number of ways for generating deterministic patterns on-chip. 

Two approaches are described below: 

• ROM Compression: Deterministic patterns can be stored in a read-only-

memory (ROM); this is the simplest approach among all. 

• LFSR Reseeding: Another approach is to store LFSR seed values so that the 

seed values can be used to generate the test patterns. In this process, we can 

use the same LFSR which is used for generating the pseudo-random patterns 

also for generating the deterministic patterns by reseeding it with the 

computed seeds. Because the seeds are smaller than the test patterns, so they 

require less ROM storage. 
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2.9 LFSR for Response Compaction: Signature Analysis 

 LFSRs can be used as cyclic redundancy check code (CRCC) generator for 

response compaction. In this CRCC technique, data bits are compacted as a 

decreasing order coefficient polynomial. In CRCC technique, primary output 

polynomial is divided by its characteristic polynomial that leaves remainder of 

division in LFSR. Zero values are initialized as seed value to the LFSR. After testing, 

signature in LFSR is compared to the golden signature. For an output sequence of 

length N, there is a total of 2N-1 faulty sequence. Let the input sequence is 

represented as P(X) = Q(X)G(X) + R(X). G(X) is the characteristic polynomial. 

Q(X) is the quotient and R(X) is remainder or signature. The remainder R(X) will be 

equivalent as the fault-free one. The orders of P(X), G(X) and Q(X) are N, r and N-r 

respectively. Possibly there are 2N-r Q(X) or P(X). One of them will be fault free. The 

generalized form of aliasing probability can be written as follows: 

 

P(M) =  ≅  2-r 

 

 

 Characteristics Polynomial X5 + X3 + X + 1 

 
Fig. 2.15: Modular LFSR as a response compactor 

 

The divisor polynomial G(X) which contains two or more non-zero coefficients can 

detect all single-bit errors. 

 

 

 

 

2N-r - 1 

2N - 1 
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2.10 Multiple-Input Signature Register (MISR) 

           Too much hardware overhead problem is found in ordinary LFSR response 

compacter. If a circuit under test results in more than one output, in such cases 

multiple-input signature register compacts all outputs into one LFSR. It works 

because LFSR is linear and satisfies superposition principle. All responses are feed in 

one LFSR. The final remainder is XOR sum of remainders of polynomial divisions 

of each primary output by the characteristic polynomial. 

 
Fig. 2.16: Multiple input signature register 

 

The Fig. 2.16 depicts a m-stage MISR. The test responses remain unchanged on the 

circuit under test outputs after test cycle i, but the shifting clock has not yet been 

applied. 

Ri(x) = (m-1)th polynomial representing the test responses after test cycle i. 

Si(x) = polynomial representing the state of the MISR after test cycle i. 

Ri(x) = Ri,m-1xm-1 + Ri,m-2xm-2 +……….+ Ri,1x + Ri,0 

Si(x) = Si,m-1xm-1 + Si,m-2xm-2 +……….+ Si,1x + Si,0 

Si+1(x) = [Ri(x) + xSi(x)] mod G(x) 

G(x) is the characteristic polynomial 

Suppose the initial state of MISR is 0. So, 

S0(x) = 0 

S1(x) = [R0(x) + xS0(x)] mod G(x) = R0(x) 

S2(x) = [R1(x) + xS1(x)] mod G(x) = [R1(x) + R0(x)] mod G(x) 

 

 

Sn(x) = [xn-1R0(x) + xn-2R1(x) +……..+xRn-2(x) + Rn-1(x)] mod G(x) 
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After applying n patterns in MISR, we get the above signature. Suppose an n-bit 

response compactor containing m-bit error polynomial. Suppose an n-bit response 

compactor containing m-bit error polynomial. The degree of error polynomial is 

(m+n-2) which gives (2m+n-1 - 1) non-zero values. G(x) has 2n-1 -1 nonzero multiples 

that result m polynomials of degree<=m+n-2. 

 

P(M) =  

 

So, the probability of masking is ≈  

 

So, the probability of non masking is ≈ 1 -  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n-1 - 1 

2m+n-1 - 1 
1 

2m 
1 

2m 
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CHAPTER 3 
Design and Discussions 

3.1 Introduction 

In this chapter, the proposed design along with the intended procedure of 

the proposed ASIC using Verilog HDL will be described.  

 

3.2 AES CryptoprocessorArchitecture with BIST 

Fig 3.1 shows all the modules of the design and its internal connections and relations. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

It is one of the coding conventions to partition a complex design into 

different modules based on their specific functionality and features.  

Comparator 

Encryption 

Controller 

Module 

Test Pattern 

Generator 

Output Response 

Analyzer 

Decryption 

Memory to store 
Golden signatures 

Memory to store 
subkeys 

Memory to store 
subkeys 

AddRoundKey 

ShiftRows 

MixColumns 

InvSubByte 

InvShiftRows 

InvMixColumns 

SubBytes 

Memory to 
store plaintext 

and key 

Fig. 3.1: Functional Blocks of AES Crypto ASIC with BIST 
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In our design, we have used the following main blocks/modules: 

1. Encryption module 

2. AddRoundKey module 

3. SubBytes module 

4. ShiftRows module 

5. MixColumns module 

6. Decryption module 

7. InvSubByte module 

8. InvShiftRows module 

9.InvMixColumns module 

10.Test Pattern Generator module 

11. Output Response Analyzer module 

12. Controller module 

 

Encryption module: 

 A 128-bits array with a depth of 10 is used to store the 10 sub-keys. When the 

input pin ‘bistMode’ is set to 1 then the test mode is activated; otherwise the normal 

encryption process is performed. In the normal mode, the input key and the plaintext 

are fed to the input pins ‘key_byte’ and ‘state_byte’ respectively and then, it waits 

for the ‘load’ signal to load the plaintext and the key. When the ‘enable’ pin is set to 

high, the encryption process begins to work. The resultant encrypted ciphertext can 

be obtained from the output pin ‘state_out_byte’. When inputs ‘bistMode’ and 

‘encryptionForRandom’ both are set to 1, then the expected number of unique 

random patterns are generated using the LFSR and then fed to the circuit under test 

(CUT). As a result, we get the expected number of ciphertext values which are then 

fed to the output response analyzer (ORA) module. After that, the testing 

proceeds using expected number of pre-stored partial seed values each of 10 bits. 

These expected number of seed values are fed to the test pattern generator (TPG) 

module to make each of them 128 bits in length.  The expected number of 

deterministic patterns are fed to the CUT sequentially. As a result, we get expected 

number of encrypted ciphertext values sequentially, and then those are fed to the 

ORA module. The final result from the ORA module is matched with the golden 
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signature stored in the memory. If there is a match, a selected input ‘result’ is set to 

high indicating success; otherwise, it is set to low indicating failure. When the 

selected input pin ‘bistMode’ is set to 0, then the normal encryption process is ready 

to proceed based on the given plaintext and the input key.     

 

 

 

  

 

 

 

      

 
 

 

 When the ‘reset’ pin is set to high, then all the inputs are forced to go back to 

the zero states. The encryption module relies upon three modules: they are 

ShiftRows, MixColumns, and AddRoundKey. These three modules are instantiated 

in the encryption module. These three modules are described below. 

 

AddRoundKey Module: 

 This module is used in both encryption and decryption module. When the 

‘enable’ pin is set to high, the current input key and the input state is fed to the 

selected input pins‘inputKey’ and ‘inputState’ respectively. The XORed value of 

these two is obtained as the output value of this module and the ‘success’ pin is set to 

high as the feedback.  

 

 

 

 

 

state_out_byte Encryption 

Module 

key_byte 

state_byte 

clk 

rst 

enable 

load 

ready 

128 

128 

128 

Fig. 3.2: Block Diagram of Encryption Module 
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SubBytes Module: 

 The XORed value containing 128 bits from the AddRoundKey module is 

divided into 4 chunks of 32bits. Chunks are fed to the input pin‘valueI’ one by one. 

The substituted values are obtained as output. 

  

 

 

 
 

 

ShiftRows Module: 

 When ‘shiftEnable’ pin is set to high, then the shifting operation is started 

and after shifting the output pin, ‘valueShifted’ holds the shifted value. The ‘success’ 

pin is set to high as the feedback so that the rest could be continued.  

 

 

 

 

 

 

 

inputKey 

inputState 

clk 

enable 

reset success 

inputOut 
AddRoundKey 

Module 

128 

128 

128 

Fig. 3.2: Block Diagram of AddRoundKey Module 

SubBytes 
module valueI valueO 32 32 

Fig. 3.4: Block Diagram of SubBytes Module 

ShiftRows 
module 

clk 
shiftEnable 

value 
reset 

valueShifted 

success 

128 128 

Fig. 3.5: Block Diagram of ShiftRows Module 
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MixColumns Module: 

 When ‘enableMixColumn’ pin is set to high, then the operation begins to start 

and the resultant output is obtained on the output pin‘valueOut’. The ‘success’ pin is 

set to high as the feedback. 

 

 

 

 

 

 

 

 

 

Decryption Module: 

 This module also needs a 128-bits array with a depth of 10 is used to store the 

10 subkeys. When the input pin ‘bistMode’ is set to 1, then the test mode is 

activated; otherwise the normal decryption process is performed. In the normal 

mode, the input key and the ciphertext are fed to the input pins ‘key_byte’ and 

‘state_byte’ respectively and then, it waits for the ‘load’ signal to load the ciphertext 

and the key. When the ‘enable’ pin is set to high, the encryption process begins to 

work. The resultant decrypted plaintext can be obtained from the output pin 

‘state_out_byte’. When the input pins‘bistMode’ and ‘decryptionForRandom’ both 

are set to 1, then the expected number of unique random patterns are generated using 

the LFSR and then fed to the circuit under test (CUT).  As a result, we get expected 

number of decrypted values; these are then fed to the output response analyzer 

(ORA) module. After that, the testing proceeds using expected number ofpre-stored 

partial seed values each of 10 bits. These seed values are fed to the test pattern 

generator (TPG) module to make each of them 128 bits in length.Theexpected 

number of deterministic patterns are fed to the CUT. As a result, we get expected 

number of decrypted values sequentially, and then these are fed to the ORA module. 

The final result from the ORA module is matched with the golden signature stored in 

the memory. If there is a match, a selected input pin ‘result’ is set to high indicating 

MixColumns 

module 

clk 

enableMixColumn 

value 

reset 

valueOut 

success 

128 128 

Fig. 3.6: Block Diagram of MixColumns Module 
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success; otherwise, it is set to low indicating failure. When the selected input pin 

‘bistMode’ is set to 0, then the normal decryption process is ready to proceed based 

on the given ciphertext and the input key. 

 

 

 

 

 

 

 

 

 
 

  

 

 When the ‘reset’ pin is set to high, then all the inputs are forced to 

go back to the zero states.  The decryption module relies upon three 

modules: InvShiftRows, InvMixColumns, and InvSubBytes.  These three 

modules are instantiated in the decryption module. These three modules 

are described below. 

 

InvSubBytes Module: 

 The XORed value containing 128 bits from the AddRoundKey module is 

divided into 4 chunks of 32bits. Chunks are fed to the input pin‘data’ one by one. 

The substituted values are obtained as output. 

 

 

 

  

 

Decryption 

Module 

key_byte 
state_byte 

clk 

rst 

enable 

load 

ready 

State_out_byte 

128 

128 

128 

Fig. 3.7: Block Diagram of Decryption Module 

result data 
InvSubBytes 
Module 

32 32 

Fig. 3.8: Block Diagram of InvSubBytes Module 
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InvShiftRows Module: 

 When ‘enable’ pin is set to high, then the shifting operation is started and 

after shifting the output pin‘rotatedValue’ holds the shifted value. The ‘success’ pin 

is set to high as the feedback so that the remaining parts could be continued. 

 

 

 

 

 

 

 

 

 

 

InvMixColumns Module: 

 When ‘enable’ pin is set to high, then the operation begins to start and the 

resultant output is obtained on the output pin ‘outValue’. The success signal is set to 

high as the feedback. 
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Fig. 3.9: Block Diagram of InvShiftRows Module 
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Fig. 3.10: Block Diagram of InvMixColumns Module 
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Test Pattern Generator: 

 An LFSR is used as a test pattern generator that generates pseudorandom test 

patterns and these patterns are used as input to both encryption and decryption 

modules based on the ‘enable’ signal. 

 
 

 

 

 

 

 

 

 

 

 

 

 

F 

  

Output Response Analyzer: 

 In this module, an LFSR is exploited for the response compaction. First, the 

expected number of pseudo-random test patterns and then the 20 pre-stored 

deterministic patterns, which are formed into 128 bits in length, are fed to the 

selected input pin ‘valueToXor’ serially. The final compacted 32 bits output which is 

our candidate signature and this signature is matched with the golden signature. This 

compaction process is activated based on an input pin ‘oraEnable’ when it is set to 

high. 
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result 

bistMode 

clk 
Test Pattern Generator 
Module rst 

enable 

keyI 

16 

128 

enableEncryption 

enableDecryption 

Fig. 3.11: Block Diagram of Test Pattern Generator Module 
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Controller Module: 

 This controller module is used to control the sequences in which the modules 

will be activated in need.    
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Fig. 3.12: Block Diagram of Output Response Analyzer Module 
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Fig. 3.13: Block Diagram of Controller Module 
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Table 3.1: Mode of Operation 

Mode of Operation Values of selected input Selected Input 

Normal encryption 01 bistMode, normalEncryption 

Normal decryption 01 bistMode, normalDecryption 

Decryption followed 
by encryption of the 
same input 

01 bistMode, 

decryptionFollowsEncryption 

BIST mode 
(Encryption 
Module) 

11 bistMode, encryptionForRandom 

BIST mode 
(Encryption 
Module) 

11 bistMode, decryptionForRandom 
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3.3 Flow Chart of the Design 

 Fig 3.15: shows the Flowchart of the AES Crypto ASIC with BIST 

 

 

 
 

 

 

 
 In this project, the AES algorithm operates on a block of 128 bits 

of input and generates 128 bits of output. The key length is 128 bits for 

both encryption and decryption process. The 10 unique subkeys need ed 

Fig. 3.14: Flowchart of the AES Crypto ASIC with BIST 
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for 10 rounds are stored in a 128-bits array with a depth of 10. Based on 

the mode of operation, the Crypto ASIC can operate either in the normal 

mode or in the test mode. The LFSR is used to generate the expected 

number of test patterns for pseudo-random pattern testing. The generated 

pseudo-random patterns are fed to the output response analyzer (ORA) 

module sequentially. Twenty partial pre-determined patterns of 10 bits 

are stored in memory. These deterministic patterns ar e used as input to 

the test pattern generator module (TPG) sequentially so that each of them 

is formed of 128 bits in length and then fed to the ORA module 

sequentially. Finally, the obtained output from the ORA module which is 

the candidate signature of 32-bit length is matched with the golden 

signature which is also 32 bit in length. If there is a perfect matching , it 

indicates fault free; otherwise faulty.  

 

3.4 Tools Used 

 The following tools have been used to implement the project.  

• Java: The AES algorithm is implemented by using this general 

purpose language. 

• Verilog HDL: The AES algorithm is also implemented by using this 

hardware description language. 

• ModelSim: Simulation environment called ModelSim is used to execute 

the Verilog codes. 

• STS (Spring Tool Suite): It is an Eclipse based development environment. 

This IDE (integrated development environment) is used to run java source 

codes. 
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CHAPTER 4 
Results and Discussions 

 

4.1 Introduction 

This chapter describes simulation results of the BIST implemented crypto 

processor ASIC. Simulation has been performed in Java platform and then the 

correctness of output of the crypto processor has been verified using NIST provided 

data. Then the ASIC has been designed using Verilog HDL and it has been simulated 

in ModelSim software. Simulation results in different modes of operation of the 

ASIC are also presented in this chapter. 

 

4.2 Implementation of AES Algorithm in Java Platform 

 We have implemented the AES algorithm for both encryption and decryption 

by using java language and the Eclipse-based development environment Spring Tool 

Suite (STS). The algorithm is implemented with the key length of 128 bits for both 

encryption and decryption.  Blocks of 128 bit plaintext have been used as input of the 

encryption module which generates the ciphertext of the same length. Similarly 

Blocks of 128 bit ciphertext is used as input of the decryption module which 

generates the plaintext of the same length. The correctness of the implementation has 

been verified using NIST provided guide lines. According to the Federal Information 

Processing Standards Publication 197 published in November 26, 2001, if plaintext 

‘00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff’ and key ‘00 01 02 03 04 05 06 07 

08 09 0a 0b 0c 0d 0e 0f’ both are fed as input to the encryption module then it will 

produce resultant ciphertext ‘69 c4 e0 d8 6a 7b 4 30 d8 cd b7 80 70 b4 c5 5a’. 

Similarly if the generated ciphertext is fed as input to the decryption module then the 

resultant plaintext will be ‘00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff’. For the 

decryption purpose, we used the same key [29]. Fig. 4.1 shows the inputs that are 

required to proceed encryption process and the resultant ciphertext after the 

encryption. The input text and the input key are stored in the memory and are taken 

from the NIST publication. After the ten rounds, the obtained resultant ciphertext is 
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also displayed in the figure which is verified according to the NIST publication. Fig. 

4.2 shows the inputs that are required to proceed decryption process and the resultant 

plaintext after the decryption. The ciphertext and the input key are stored in the 

memory. The ciphertext and the input key is taken from the NIST publication. After 

the ten rounds, the obtained resultant plaintext is also displayed in the figure which is 

verified according to the NIST publication.     

 
Fig. 4.1:  Encryption class takes plaintext and produces ciphertext as result 

 

 
         Fig. 4.2:  Decryption class takes ciphertext and produces plaintext as result 
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4.3 Design of the Crypto-Processor ASIC and Simulation using ModelSim 

The BIST implemented Crypto Processor ASIC is designed using industry 

standard ASIC design software Verilog HDL. The design code is provided in the 

Appendix 1. Then the design has been simulated using in the different modes of 

operation of the ASIC using ModelSim software to verify its desired operation. NIST 

provide data as mentioned in the section 4.2 has also been used for this verification 

purpose. Fig. 4.3 shows the ModelSim simulation results of the encryption module in 

normal mode. Here two input pins ‘normalEncryption’ and ‘bistMode’ are set to ‘1’ 

and ‘0’ respectively which is indicated in this figure with the help of arrow shapes. 

The resultant ciphertext is displayed in the figure and verified according to the NIST 

publication. 

 

Normal Mode: 

 
 

Fig. 4.3: Simulation result of Encryption module in normal mode 

 

 In the normal mode, input pin ‘normalEncryption’ is set to high and input pin 

‘bistMode’ is set to low so that the initial key and the plain text are loaded into input 

pins 'key_byte' and 'valueI' respectively after that the encryption process starts. 

During this encryption process, the 10 subkeys are generated using the initial key and 

are stored in a 128-bits array with a depth of 10. 

‘normalEncryption’ high ‘bistMode’ low 
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The output pin 'cipherTextValue' provides the resultant ciphertext in its hexadecimal 

form (128'h29C3505F571420F6402299B31A02D73A).  

 

 

 
 

Fig. 4.4: Simulation result of Decryption module in normal mode 

 

 In the normal mode, input pin ‘normalDecryption’ is set to high and input pin 

‘bistMode’ is set to low so that the initial key and the cipher text are loaded into 

input pins 'key_byte' and 'valueI' respectively after that the decryption process starts. 

During this decryption process, the 10 subkeys are generated using the initial key and 

are stored in a 128-bits array with a depth of 10. 

The output pin 'plainTextValue' provides the resultant plaintext in its hexadecimal 

form (128'h54776F204F6E65204E696E652054776F). 

 

 
 

 
 

‘normalDecryption’ high ‘bistMode’ low 
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Fig. 4.5: Simulation result of Decryption process following Encryption process. 

 

 In the normal mode, input pins ‘decryptionFollowsEncryption’ and bistMode’ 

are set to 1 and 0 respectively so that the initial key and the plain text are loaded into 

input pins 'key_byte' and 'valueI' respectively; after that the encryption process starts. 

During this encryption process, the 10 subkeys are generated using the initial key and 

are stored in a 128-bits array with a depth of 10.The output pin 'cipherTextValue' 

provides the resultant ciphertext in its hexadecimal form 

(128'h29C3505F571420F6402299B31A02D73A). 

 

  The resultant ciphertext is treated as the input based on which the decryption 

process starts. Note that the same subkeys are used in the decryption process but in 

the descending order. Finally, the output pin 'plainTextValue' provides the resultant 

plaintext in its hexadecimal form (128'h54776F204F6E65204E696E652054776F). 

 

 

 

Plaintext is fed as input to the Encryption module 

The actual plaintext is obtained after decryption 
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Test Mode: 

 
 

 

Fig. 4.6: Simulation result of Encryption module in test mode (using expected 

number of pseudo-random test patterns and 20 pre-stored deterministic patterns) 

 

 To test the Encryption module using the expected number of pseudo-random 

patterns and deterministic patterns, two input pins 'bistMode' and 

'encryptionForRandom' are set to high. The expected number of pseudo-random 

patterns generated from the test pattern generator (TPG) module is fed as input to the 

circuit under test (CUT) one by one. Consequently, we will get a thousand number of 

ciphertext values; each of them is 128 bits in length which are also fed as input to the 

output response analyzer (ORA) module one by one. After that, 20 pre-stored seed 

values are sent to the TPG module to form each of them into 128 bits of length and 

then fed to the ORA module sequentially. The candidate signature which is obtained 

from the ORA module is then matched with the golden signature ‘8a70e9a7’ in 

hexadecimal form stored in the memory. If there is a perfect match, then the output 

pin 'result' is set to high to indicate successful testing; otherwise, it goes low to 

indicate failure.  

 

‘result’ high 

‘bistMode’ high 
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Fig. 4.7: Simulation result of Decryption module in test mode (using expected 

number of pseudo-random test patterns and 20 pre-stored deterministic patterns) 

 

 To test the Decryption module using the expected number of pseudo-random 

patterns, two input pins 'bistMode' and 'decryptionForRandom' are set to high. The 

thousand pseudo-random patterns generated from the test pattern generator (TPG) 

module are fed as input to the circuit under test (CUT) one by one. Consequently, we 

will get a thousand number of plaintext values; each of them is 128 bits in length 

which are also fed as input to the output response analyzer (ORA) module one by 

one. After that, 20 pre-stored seed values are sent to the TPG module to form each of 

them into 128 bits of length and then fed to the ORA module sequentially. The 

candidate signature which is obtained from the ORA module is then matched with 

the golden signature ‘c238995f’ in hexadecimal form stored in the memory. If there 

is a perfect match, then the output pin 'result' is set to high to indicate successful 

testing; otherwise, it goes low to indicate failure.  

 

 

 

 

‘result’ high 

‘bistMode’ high 



44 
 

 

4.4 Comparison results of the AES 

 Table 4.1 shows the comparison of the research with those of existing 

researches. It shows that the proposed research is unique in terms of BIST 

implementation.  

 

TABLE 4.1: Comparison results of the AES in terms of BIST implementation 
 

Research Platform Data-
Path 

BIST technique 

D. Osvik  [30] AVR 8 Not used 

D. Osvik  [30] ARM 32 Not used 

T. Babu  [31] ARM 128 Not used 

M. Hasamnis[32] NIOS II IDE 128 Not used 

O. Mourad [33] Handel-C 128 Not used 

M. Biglari [34] Maestro 128 Not used 

This work ModelSim 128 Properly implemented 

 

4.5 Discussion 

 In research, we have implemented Built-In-Self-Test implemented AES 

crypto-processor ASIC. BIST implemented, AES crypto-processor ASIC is not 

reported yet in the literature. In this project, both the encryption and decryption 

process is implemented in the Java platform to verify the correctness of the design 

according to the NIST publication. Then From the simulation results obtained from 

the ModelSim software, it is observed that the ASIC is performing desired 

functionality in its various mode of operation. Our research has been compared with 

those of other researchers and it shows that our research is unique in terms of BIST 

implementation into the ASIC. In our design we could not perform fault simulation 

of the ASIC due to limitation of resource and time. So switching point from 

pseudorandom to deterministic mode is not defined. So we have assumed only one 

thousand pseudo random test patterns and twenty deterministic test patterns to 

conduct the testing self-test of the ASIC. We also could not implement the design 
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into FPGA physical hardware and so we could not show that the BIST circuitry is 

capable of detecting faults in test mode. In future the ASIC will be implemented into 

FPGA physical hardware. 
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CHAPTER 5 
Conclusion 

5.1 Conclusion 

AES outperforms all the existing cryptographic algorithms and so many applications 

are coming out based on this. Hardware implementation offers tremendous speed and 

impressive security than that of software implementation. So a number of research is 

proposed for hardware implementation of AES. However the testability problem is 

not addressed nowhere which is now a burning issue for any complex VLSI chip. 

This research is an initiative to overcome this limitation through designing a AES 

Crypto ASIC implemented with mixed mode BIST technique.  The ASIC has been 

designed using Verilog HDL which is now an industry standard CASD software for 

VLSI design. The ASIC is simulated in its different mode of functionalities using 

two platforms: Jave and Modelsim CAD software. Simulation results in both 

environments prove the correctness of the design. Proper functionality has also been 

verified using NIST provided input and output. The ASIC has also been compared 

with those of other researchers and it shows that our research is unique in terms of 

BIST implementation. In our design we could not perform fault simulation of the 

ASIC due to limitation of resource and time. So switching point from pseudorandom 

to deterministic mode is not defined. So we have assumed only one thousand pseudo 

random test patterns and twenty deterministic test patterns to conduct the testing self-

test of the ASIC. In future the ASIC will be implemented into FPGA physical 

hardware. 

 

5.2 Future Works 

 This project offers several new areas that can be explored. In future, 

meticulous performance analysis and optimization in terms of power, speed, and 

hardware resources can be performed and also improve fault coverage. Moreover the 

ASIC will be implemented into FPGA physical hardware. 
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