

DESIGN OF A BUILT-IN-SELF-TEST IMPLEMENTED AES CRYPTO
PROCESSOR ASIC

by

Md. Shazzatur Rahman

MASTER OF ENGINEERING IN INFORMATION AND COMMUNICATIN

TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

2020

ii

iii

AUTHOR’S DECLARATION

It is hereby declared that this project or any part of it has not been submitted
elsewhere for the award of any degree or diploma.

Signature of the Candidate

 Md. Shazzatur Rahman

iv

DEDICATION

I dedicate this project to my honorable advisor Dr. Md. Liakot Ali because without

his help, I won’t be able to complete this work.

v

TABLE OF CONTENTS
Board of Examiners………………………………………………………………….ii

Author’s Declaration………………………………………………………………...iii

Table of Contents…….………………………………………………………………v

List of Figures……………………………………………………………………….vii

List of Tables... ix

List of Abbreviations and Technical Symbols and Terms……………………………x

Acknowledgements ... xi

Abstract .. xii

Chapter 1: Introduction .. 1

 1.1 Introduction………………………………………………………...1

 1.2 Motivation………………………………………………………….2

 1.3 Objective with specific aims…...…………………………………..3

 1.4 Project Outline…...………………………………………………...4

Chapter 2: Fundamentals of AES Cryptographic Algorithm

 and Built-In Self-Test Technique………………...……………….……5

 2.1 Introduction…...……………………………………………………5

 2.2 Basic mathematics for AES………...……………………………...5

 2.2.1 Addition……………..………………………………...…5

 2.2.2 Multiplication………..…………………………………..6

 2.3 AES operational structure………………………………………….6

 2.4 Encryption process of AES………………………………………...8

 2.4.1 SubBytes Tranformation……..…………………………..9

 2.4.2 SiftRows Transformation……………...………………..11

 2.4.3 MixColumns Transformation…………...………………12

 2.4.4 AddRoundKey Transformation…………..…………….13

 2.4.5 Key Expansion………………………………………….13

 2.5 Overview of AES Cryptographic Algorithm…………...……..…15

 2.6 Decryption……………...………………………………………...16

vi

 2.6.1 InvMixColumns Transformation….………………..…16

 2.6.2 InvShiftRows Transformation….…………………..…17

 2.6.3 InvSubBytes Transformtion………………………… 17

 2.6.4 Decryption key schedule…….………………………...19

 2.7 Linear Feedback Shift Register……...……………………………19

 2.8 Test compression technique in BIST……………...……………...21

 2.8.1 Mixed-mode BIST………….…………………………21

 2.9 LFSR for response compaction: signature analysis…...………22

 2.10 Multiple-Input Signature Register (MISR)……..……………….23

Chapter 3: Design and Discussions…….………………………..………………..25

 3.1 Introduction………..……………………………………………...25

 3.2 AES Cryptoprocessor Architecture with BIST...…….….………..25

 3.3 Flow chart of the Design……………………………..…………...35

 3.4 Tools used……..………………………………………………….36

Chapter 4: Results and Discussions…………….…………….……..………..…..37

 4.1 Introduction…………………………………….…………………37

 4.2 Implementation of AES algorithm in Java platform.……………..37

 4.3 Design of the Crypto-Processor ASIC and

 Simulation using ModelSim…………………………………...…39

 4.4 Comparison results of the AES.…………………………………..44

 4.5 Discussion ……………….…………….…………………………44

 4.6 Analysis of a failure scenario……….……………………….…....45

Chapter 5: Conclusion……………………………………………………….……46

 5.1 Conclusion…………….………………………………………….46

 5.2 Future Works……….…………………………………………….46

References 47

vii

List of Figures
Title Page No.

Figure 2.1: Basic Structure of AES 7

Figure 2.2: Pseudo code for AES encryption 9

Figure 2.3: Affine transformation element of the S-box 10

Figure 2.4: Shift Row Transformation 11

Figure 2.5: Mix Column Transformation 12

Figure 2.6: Add Round Key Transformation 13

Figure 2.7: Key expansion pseudocode 14

Figure 2.8: Matrix of constants used in Inverse MixColumn 16

Figure 2.9: State matrix without byte shifting 17

Figure 2.10: State matrix with byte shift 17

Figure 2.11: Internal LFSR with P(X) = 1 + X + X3 + X4 19

Figure 2.12: External LFSR with P(X) = 1 + X + X3 + X4 19

Figure 2.13: An LFSR with characteristic polynomial as

 P′(X) = 1 + X + X4 20

Figure 2.14: Maximal length sequence produced 20

Figure 2.15: Modular LFSR as a response compactor 22

Figure 2.16: Multiple input signature register 23

Figure 3.1: Functional block of AES Crypto ASIC with BIST 25

Figure 3.2: Block Diagram of Encryption Module 27

Figure 3.3: Block Diagram of AddRoundKey Module 28

Figure 3.4: Block Diagram of SubBytes Module 28

Figure 3.5: Block Diagram of ShiftRows Module 28

Figure 3.6: Block Diagram of MixColumns Module 29

Figure 3.7: Block Diagram of Decryption Module 30

Figure 3.8: Block Diagram of InvSubBytes Module 30

Figure 3.9: Block Diagram of InvShiftRows Module 31

Figure 3.10: Block Diagram of InvMixColumns Module 31

Figure 3.11: Block Diagram of Test Pattern Generator Module 32

Figure 3.12: Block Diagram of Output Response Analyzer Module 33

Figure 3.13: Block Diagram of Controller Module 33

viii

Figure3.14: Flowchart of the AES Crypto ASIC with BIST 35

Figure 4.1: Encryption class takes plaintext and produces

 ciphertext as result 38

Figure 4.2: Decryption class takes ciphertext and produces

 plaintext as result 38

Figure 4.3: Simulation result of Encryption module in normal mode 39

Figure 4.4: Simulation result of Decryption module in normal mode 40

Figure 4.5: Simulation result of Decryption process following

 Encryption process 41

Figure 4.6: Simulation result of Encryption module in test mode

 (using expected number of pseudo-random test

 patterns and 20 pre-stored deterministic patterns) 42

Figure 4.7: Simulation result of Decryption module in test mode

 (using expected number of pseudo-random test

 patterns and 20 pre-stored deterministic patterns) 43

ix

List of Tables
Title Page No.

Table 2.1: S-box 11

Table 2.2: Rcon constants 15

Table 2.3: NOTATION 16

Table 2.4: Inverse AES S-Box 18

Table 3.1: Mode of Operation 34

Table 4.1: Comparison results of the AES in terms of

BIST implementation 44

x

List of Abbreviations of Technical Symbols

and Terms

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

3DES Tripple-DES (Data Encryption Standard)

FPGA Field Programmable Gate Array

DSP Digital Signal Processor

DSA Digital Signature Algorithm

GF Galois Field

LUT Look-Up Table

RAM Random Access Memory

ROM Read Only Memory

S-Box A lookup table that holds non-linear substitute byte values

SubByte Byte Substitution operation

Shiftrows Shift row operation

MixColumn Mix Column operation

NIST National Institute of Standards and Technology

Rcon[] The Round Constant word array

RotWord A function that perform a cyclic byte shift operation

VHDL Very High Speed Integrated Circuit Hardware

 Description Language

Xor Exclusive-OR

CUT Circuit Under Test

BIST Built-In Self-Test

xi

Acknowledgement
At first, I would like to Almighty Allah (SWT) for giving me his divine

blessings and unlimited mercy. While working on my Master's project, I

came across many people who have supported and assisted me. First, I

want to express my heartiest thanks to my supervisor, Professor Dr. Md.

Liakot Ali for giving me the opportunity to do my Master's project under

his supervision. I would like to express many thanks for his invaluable

advice and ideas on the project and also for this devotion of time during

this program. His support and expertise resolved many hurdles that I

encountered throughout the research. Without his continuous support, this

project could not have been completed.

Finally, I would like to thank my beloved mother Nasima Akter for her

endless support in all respects which helped me to devote to the work.

xii

Abstract
This report presents the design of a Built-In Self-Test (BIST) implemented Advanced

Encryption Standard (AES) crypto-processor Application Specific Integrated Circuit

(ASIC). AES has been proved as the strongest symmetric encryption algorithm declared

by USA Govt. and it outperforms all other existing cryptographic algorithms. AES can

be implemented in two approaches: software and hardware. The software

implementation offers lower speed performance and limited physical security than that

of hardware implementation.Due to enormous speed and security performances, now a

lot of research fordesign of AES processor chipis reported in the literature. Nowadays

testability of a complex chip is a burning issue. This research presented in this

reportintroduces a solution of the testability problem for the AES crypto processor

chip implementing mixed-mode BIST technique which is hybrid of pseudo random

and deterministic technique. In designing the BIST implemented AES ASIC, the

AES algorithm is simulated using JAVA software and tested using the NIST

provided input and output data. Then, the ASIC is designed using Verilog Hardware

Description Language (HDL). The BIST circuitry consists of a test manager, Linear

Feedback Shift Register (LFSR), Output Response Analyzer (ORA), memory to

store seed for pseudo random pattern, seed for deterministic test pattern, test length

and golden signature integrated into the ASIC. In test mode of the ASIC, the test

manager enables the LFSR and initializes it with seed value from the memory and

generates desired number of pseudo-random test patterns which are applied to the

AES ASIC and outputs are compressed through the ORA and then the test manger

switches to the deterministic mode in which it generates deterministic test pattern

using the seed value stored in the memory and apply to the AES ASIC and compress

it accordingly. Finally, signature is generated in the ORA which is compared with

that of golden signature stored in the memory. If both the signatures match each

other, then the ASIC is ensured as fault free; otherwise it is faulty. The HDL design

of the Crypto ASIC is simulated using ModelSim EDA software. The simulation

results show that the BIST implanted ASIC is working as per desired functionalities.

In the future, the ASIC can be implemented into FPGA hardware and its

performance in terms of logic gates, speed and power can be measured.

1

CHAPTER 1
INTRODUCTION

 1.1 Introduction

 Information and Communication Technology (ICT) has become an integral

part of everyday life. Use of the Internet in every sphere of life has increased

explosively during the last several decades, data security has become a main concern

for anyone connected to the web. People want to protect their data from unauthorized

access and data corruption. The one and only tool through which we can achieve data

security is Cryptography. Cryptography is the main key to secure information during

communication [1]. Cryptography is used in many applications encountered in

everyday life such as mobile networks, internet of things, automated teller machines

(ATMs), copy protection (especially protection against reverse engineering and

software piracy), internet e-commerce, internet banking, military and government to

facilitate secret communication and many more. Cryptography can be defined as the

practice and the study of techniques for securing communication and data in the

presence of adversaries. Techniques involve plenty of cryptographic algorithms.

Almost all the cryptographic algorithms involve two main operations:

Encryption and Decryption.

 Encryption is the process of converting our information into an unreadable

form called the ciphertext to unauthorized entities; on the other hand, decryption is

just the opposite of encryption in which the original information is regained from the

ciphertext to the intended entities. A number of algorithms on cryptography have

been presented in the literature [2-5]. There are multiple cryptographic algorithms,

among them Advanced Encryption Standard (AES) is one of the most secure and fits

our needs in this project. U.S. government has adopted the AES to be used by

Federal departments and agencies for protecting sensitive information. AES works

efficiently both in software and hardware implementations. Another cryptographic

algorithm DES was originally used in hardware implementations. AES supports key

lengths of 128, 192, and 256 bits, making it exponentially stronger than the 56-bit

2

key of DES. In this project, 128 bits of key length is used for both encryption and

decryption processes. Crypt-analytical attacks such as Brute-force, Linear crypt-

analysis and Differential crypt-analysis, etc., are proven ineffective to break AES.

Hardware implementation of AES is much more advantageous than in software

because of high-speed and high-volume secure communications combined with

physical security. Hardware performance of AES is bigger and more significant than

the software performance [6]. No correlation between software and hardware

performance was found.

 In hardware platform during the manufacturing process, we can have all

kinds of defects falling in our IC; that is why, we need to test Integrated Circuit (IC).

Testing a VLSI chip to guarantee its functionality is extremely complex, time

consuming as well as expensive [7-10]. To mitigate such types of problems, self-

testing feature needs to be incorporated with the chip. Built-in self-test (BIST) is

such kind of technique which enables a chip to test itself [11-15]. For complex chips,

BIST can be thought of as an ideal because using external testing such as automated

test equipment (ATE) is not cost-effective and convenient. This project focuses on

implementing BIST in AES Crypto ASIC. In this design, LFSR is used to generate

pseudorandom test pattern and Output Response Analyzer (ORA) is used as a data

compression technique to implement BIST.

1.2 Motivation

Since the demand for privacy and security of information is increasing day by

day due to the rapid growth of information and communication technology, so the

need of protecting information is getting profound importance. Cryptographic

algorithms form the fundamental aspect of this research field. The upcoming

generation cryptosystem should meet the criteria like (i) resistance against all attacks,

(ii) high speed and low latency, (iii) code compactness on a wide range of platforms,

(iv) design simplicity [16]. Earlier researchers proposed a number of cryptographic

algorithms [17-20]. After the break of the Data Encryption Standard (DES) in 1999

by electronic frontiers organization, newer version of algorithms was proposed by

the researchers. Since 2001, NIST has chosen Advanced Encryption Standard (AES)

3

[21-25] as the replacement of the popular algorithm DES. AES is now widely used in

different kinds of applications in software and hardware implementations. Hardware

implementation of the algorithm offers higher security and speed than that of

software implementation. Due to enormous speed and security performances, now a

lot of research for hardware realization of the AES processor is reported in the

literature [21-25]. Some of the research focuses on hardware resource optimization

[21], while some other on speed optimization [22-23] and some other on power

consumption optimization [24-25]. Nowadays DFT (Design for testability) for a

complex chip is a prime concern in VLSI design. Testing a VLSI chip to guarantee

its functionality is extremely complex, time-consuming as well as expensive [26].

To deal with the testing problem at the chip level, incorporating built-in self-test

(BIST) capability inside a chip is a widely accepted approach [27]. When a chip is

complex, then BIST is a norm of this day because external testing using ATE is not

cost effective and less convenient in this case. BIST implemented AES

cryptoprocessor chip is not reported yet in the literature. So, there are scopes of

research on this topic. In this research, we focus on the verification of understanding

of the AES algorithm using NIST provided input-output under the Java platform.

Then, the ASIC will be designed using Verilog HDL and simulated using Modelsim

software. No-fault simulation has been performed due to resource constraints.

Moreover, no fabrication and implementation will be performed in physical

hardware.

1.3 Objective with Specific Aims

 The objective of the project is to design an AES crypto processor ASIC

implementing BIST technique. To realize the goal, we have the following aims:

• To design the AES processor with state of the art BIST technique using

Hardware Description Language (HDL)

• To simulate the AES processor using JAVA platform

• To design the software using HDL and simulate it using EDA software

4

1.4 Project Outline

 The remaining parts of this project are organized as follows: Chapter 2

conveys the background information on basic mathematics of the AES algorithm

which is required for understanding the fundamental operations of different states of

the AES algorithm. Chapter 2 also represents a brief overview of the algorithm

including the Encryption and Decryption parts. Chapter 3 describes the proposed

design. The design components are also discussed in this chapter. Chapter 4 reviews

the simulation results and discusses of the proposed design. Finally, Chapter 5

suggests conclusion as well as future work.

5

CHAPTER 2
Fundamentals of AES Cryptographic Algorithm and

Built-in-Self-Test Technique
2.1 Introduction

 Cryptography is a technique through which information is transformed into a

secured format. It comes from the Greek word “Kryptos” which means “hidden

secret” and “graphein” means writing.

 The term cryptography has been used for thousands of years to keep

messages secret.It was first evidenced in an inscription carved around 1900 BC,

inside the main chamber of the tomb of Khnumhotep 2, in Egypt.The study of

cryptography as science started around one hundred years ago, because of the growth

of computer and communication network raises the risk of privacy of the information

system to a certain extent.As a result, plenty of cryptographic algorithms are

introduced to keep messages secure. Many of these cryptographic algorithms are

widely implemented in our day-to-day applications such as the security of ATM

cards, computer passwords, e-commerce, military, etc.

2.2 Basic Mathematics for AES

 In AES, Galois field arithmetic is used in nearly all layers; specially in the S-

Box and the MixColumn layer. A Galois field also called a finite-field. A finite-field

is a set on which the operations of multiplication, addition, subtraction and division

can be performed but these are different from those used for numbers.

2.2.1 Addition

 The addition of two elements in a finite field is achieved by “adding” the

coefficients for the corresponding powers in the polynomials for the two elements.

The addition is performed with the XOR operation (denoted by ⊕), i.e., modulo 2,

so that 1⊕1 = 0, 1⊕0 = 1, and 0⊕0 = 0.

6

 Alternatively, addition of finite field elements can be described as the modulo

2 addition of corresponding bits in the byte. For two bytes {a7 a6 a5 a4 a3 a2 a1 a0} and

{b7 b6 b5 b4 b3 b2 b1 b0}, the sum is {c7 c6 c5 c4 c3 c2 c1 c0}, where each ci = ai⊕bi(i.e.,

c7 = a7⊕b7, c6 = a6⊕b6, ……., c0 = a0⊕b0).

For example, the following expressions are equivalent to one another:

(x6 + x4 + x2 + x + 1) ⊕ (x7+ x + 1) =x7 + x6 + x4 + x2 (polynomial notation);

{01010111} ⊕ {10000011} = {11010100} (binary notation);

{57} ⊕{83} = {d4} (hexadecimal notation).

2.2.2 Multiplication

 In the polynomial representation, multiplication in GF(28) (denoted by *)

corresponds with the multiplication of polynomials modulo an irreducible

polynomial of degree 8. A polynomial is irreducible if its only divisors are one and

itself. For the AES algorithm, this irreducible polynomial is m(x) = x8 + x4 + x3 + x +

1, For example, {57} * {83} = {c1}, because

(x6 + x4 + x2 + x + 1) (x7 + x + 1) = x13 + x11 + x9 + x8 + x7 + x7 + x5 + x3 + x2 + x +

 x6 + x4 + x2 + x + 1

 = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

And

X13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1 modulo (x8 + x4 + x3 + x + 1)

= x7 + x6 + 1.

If we represent the polynomial x7 + x6 + 1 in the binary manner then we will get the

binary value 11000001. The equivalent hexadecimal value of 11000001 is c1 which

is the desired result as shown above.

The modular reduction by m(x) ensures that the result will be a binary polynomial of

degree less than 8, and thus can be represented by a byte. Unlike addition, there is no

simple operation at the byte level that corresponds to this multiplication.

2.3 AES Operational Structure

 AES performs all its computations on bytes rather than bits. AES interprets a

plaintext block of 128 bits as 16 bytes. A 4x4 matrix is used to represent these 16

bytes. Figure 2.1 shows the overall operational structure of AES algorithm.

7

Add round key

Inverse sub bytes

Inverse shift rows

Inverse mix columns

columns
Add round key

Inverse sub bytes

Inverse shift rows

Inverse mix columns

columns
Add round key

Inverse sub bytes

Inverse shift rows

Add round key

R
ou

nd
 1

0
R

ou
nd

 9

R
ou

nd
 1

Plaintext

Add round key

Substitute bytes

Shift rows

Mix columns

Add round key

Substitute bytes

Shift rows

Mix columns

Add round key

Substitute bytes

Shift rows

Add round key

W[0,3]

Plaintext

Expand key

W[4,7]

W[36,39]

R
ou

nd
 1

R

ou
nd

 9

R
ou

nd
 9

Key
R

ou
nd

 1
0

W[40,43]

Ciphertext Ciphertext

(a) Encryption
(a) Decryption

Fig. 2.1: Basic Structure of AES

8

Note that the final round of encryption process doesn’t perform the mix columns

operation and the final round of decryption process doesn’t perform the inverse mix

columns operation.

2.4 Encryption Process of AES

 Four different sub-processes are used in each round, one is permutation and

three are substitution. The sub-processes together provide confusion, diffusion and

nonlinearity. The stages are as follows:

• Byte Substitution:A fixed table (S-box) is used to substitute the 16 input

bytes.

• Shift rows: In this sub-process, each of the four rows of the matrix is shifted

to the left. The first row is not shifted. The second row is shifted one (byte)

position to the left. The third row is shifted two positions to the left. The

fourth row is shifted three positions to the left.

• Mix columns: A special mathematical function is used in this sub-process.

This function takes as input the four bytes of one column and outputs four

completely new bytes, which replaces the original column. Finally, a new

matrix containing new 16 bytes is obtained.

• Add round key: The state matrix containing 16 bytes is considered as 128

bits and is XORed to the 128 bits of the round key. After the last round, we

get the ciphertext.

9

The Pseudo code for encryption is shown in Figure 2.2:

 Cipher(byte in[16], byte out[16], word w[44])

 Begin

 byte state[16]

 state = in

 AddRoundKey(state, w[0, 3])

 for round = 1 step 1 to 9

 SubBytes(state)

 ShiftRows(state)

 MixColumns(state)

 AddRoundKey(state, w[round*4, (round+1)*3])

 end for

 SubBytes(state)

 ShiftRows(state)

 AddRoundKey(state, w[40,43])

 out = state

 end

Four transformations are described below:

2.4.1 SubBytes Transformation

 The SubBytes() transformation is a non-linear byte substitution that operates

independently on each byte of the state using a substitution table (S-box). This S-box

(Table. 2.1), which is invertible, is constructed by composing two transformations:

1.Take the multiplicative inverse of each byte in the finite field GF(28), like the

element {00} is mapped to itself.

2. Apply the following affine transformation (over GF(2)):

 bi
′ = bi⊕ b(i+4)mod 8 ⊕ b(i+5)mod 8⊕ b(i+6)mod 8⊕ b(i+7)mod 8⊕ ci

Fig. 2.2: Pseudo code for AES encryption

10

for 0≤i<8, where bi is the ithbit of the byte, and ci is the ith bit of a byte c with the

value {63} or {01100011}. Here and elsewhere, a prime on a variable (e.g., b′)

indicates that the variable is to be updated with the value on the right.

In matrix form, the affine transformation element of the S-box can be expressed as

follows:

 = +

The S-box used in the SubBytes() transformation is presented in hexadecimal form in

Table 2.1. For example, if s1,1 = {53}, then the substitution value would be

determined by the intersection of the row with index ‘5’ and the column with index

‘3’ in Table 2.1. This would result in s1,1
′ having a value of {ED}.

b0
′

b1
′

b2
′

b3
′

b4
′

b5
′

b6
′

b7
′

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

b0

b1

b2

b3

b4

b5

b6

b7

1

1

0

0

0

1

1

0

Fig. 2.3: Affine transformation element of the S-box

11

Table 2.1: S-box

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

2.4.2 ShiftRows Transformation

 The ShiftRows step operates on the rows of the state. In each row, it

cyclically shifts the bytes according to a certain offset value. The first row remains

unchanged. In the second row, each byte is shifted one to the left. Similarly, the third

and fourth rows are shifted according to the offsets of two and three respectively.

a0,0 a0,1 a0,2 a0,3

a1,1 a1,2 a1,3 a1,0

a2,2 a2,3 a2,0 a2,1

a3,3 a3,0 a3,1 a3,2

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

Y

X

No change

Shift 1

Shift 2

Shift 3

Shift Rows

Fig. 2.4: Shift Row Transformation

12

2.4.3 MixColumns Transformation

 In this sub-process, an invertible linear transform is used to combine the four

bytes of each column of the state. This stage takes four bytes as input and outputs

four bytes, where all four output bytes are affected by each input byte. The

ShiftRows and the MixColumns combinedly provide diffusion to the ciphertext.

Each column is multiplied by a known matrix during this operation. In this

multiplication operation, multiplication by 1 denotes no change, multiplication by 2

denotes shifting to the left, and multiplication by 3 denotes shifting to the left and

then performing XOR with the initial unchanged value. In the case where the value is

larger than 0xFF, a conditional XOR with 0x1B should be performed after shifting.

The column operations can be shown as follows.

 =

For the bytes in the first row of the state array, this operation can be stated as

 S′
0,j = (0x02 * S0,j) ⊕(0x03 * S1,,j) ⊕S2,j ⊕S3,j

For the bytes in the second row of the state array, this operation can be stated as

 S′
1,j = S0,j⊕(0x02 * S1,j) ⊕(0x03 * S2,,j) ⊕S3,j

For the bytes in the third row of the state array, this operation can be stated as

 S′
2,j = S0,j⊕S1,j ⊕(0x02 * S2,j) ⊕(0x03 * S3,,j)

For the bytes in the fourth row of the state array, this operation can be stated as

 S′
3,j = (0x03 * S0,,j) ⊕S1,j ⊕S2,j ⊕(0x02 * S3,j)

02 03 01 01
01 02 03 01
01 01 02 03

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S′
0,0 S′

0,1 S′
0,2 S′

0,3

S′
1,0 S′

1,1 S′
1,2 S′

1,3

S′
2,0 S′

2,1 S′
2,2 S′

2,3

S′
3,0 S′

3,1 S′
3,2 S′

3,3
03 01 01 02 S3,0 S3,1 S3,2 S3,3

Fig. 2.5: Mix Column Transformation

13

2.4.4 AddRoundKey Transformation

 In this sub-process, the subkey is combined with the state. Based on

Rijndael's key schedule a subkey is derived from the main key at each round. Each

subkey is of the same size as the state. This operation is treated as a column-wise

operation between the 4 bytes of a state column and one word of the round key. This

transformation looks so simple but it also affects every bit of state.

 Fig. 2.6 Add Round Key Transformation

2.4.5 Key Expansion

 The 4-word key is feed to the AES key expansion algorithm and

consequently, we get a linear array of 44 words. Each subkey is 128 bits long. Fig.

2.7 shows the pseudocode for generating the subkeys from the actual key.

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

14

KeyExpansion (byte key[16], word w[44])

{

 word temp

 for(i=0; i<4; i++) w[i] = (key[4*i], key[4*i + 1], key[4*i +2], key[4*i + 3]);

 for(i=4; i<44; i++)

 {

 temp = w[i-1];

 if (i mod 4 = 0) temp = SubWord(RotWord(temp)) ⊕Rcon[i/4];

 w[i] = w[1-4] ⊕temp;

 }

}

The initial key is put into the first four words of the expanded key. The remainder of

the expanded key is put in four words. The preceding word, w[i-1] and the word four

positions back w[i-4] are XOR’ed to generate each added word w[i]. This sub-

process follows a complex function which consists of two sub-functions. The sub-

functions are described as follows:

• RotWord: In this sub-function, a one-byte left shift is performed on a word.

Suppose an input word [B0, B1, B2, B3] is transformed into [B1, B2, B3, B0].

• SubWord: In this sub-function, a byte substitution is performed on each byte

of its input word, using the S-box (Table 2.1).

• The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

The round constant can be assumed as a word whose three rightmost bytes are

always 0. The XOR operation of a word with Rcon only affects the leftmost byte of

the word. For each round, a new round constant is used which can be defined as

Rcon[j] = (RC[J],0,0,0), with RC[1], RC[j] = 2*RC[j-1] and multiplication can be

defined over the field GF(28). The hexadecimal form of RC[j] values are given in

Table. 2.2:

Fig. 2.7: Key expansion pseudocode

15

Table 2.2: Rcon constants

J 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

2.5 Overview of AES Cryptographic Algorithm

 AES does not use a Feistel network. AES depends on a design principle

known as a substitution-permutation network, and is efficient in both software and

hardware. AES works with a fixed block size of 128 bits, and a key size of 128, 192,

or 256 bits. AES works on a 4 x 4 column-major order array of bytes. Nearly, all

AES calculations are performed in a particular finite field. For example, 16 bytes,

b0,b1,…,b15 are represented using two-dimensional array as follows:

The number of rounds are given as follows:

• 10 rounds for 128-bit keys.

• 12 rounds for 192-bit keys.

• 14 rounds for 256-bit keys.

In this project, key length of 128 bits are used for both encryption and decryption

process.

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

16

TABLE 2.3: NOTATION

LFSR A 32 stage Linear Feedback Shift Register with the characteristic polynomial

f(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x

+1

⊕ Exclusive-OR (XOR) operator

m << 1 Left circular shift operator, which rotates all bits of m to the left by 1 bits, as

if the left and the right ends of m were joined.

ki
(j) The j-th 128 bit key used in the i-th block cipher, j=1,2,3,4,5,6,7,8,9,10

S(x) S-box used in encryption process

S-1(x) Inverse S-box used in decryption process

K The 128-bit secret key

Ek(.) The encryption function of AES with 128-bit secret key K

Dk(.) The decryption function of AES with 128-bit secret key K

2.6 Decryption

 In AES, all the layers can be inverted because AES is not a Feistel network.

The inverse layers for the AES decryption round are showed in Fig. 2.1. As we

know, XOR operation is its own inverse. The process of key addition layer is the

same for both encryption mode and decryption mode.

2.6.1 InvMixColumns Transformation

 Inverse MixColumns operation is just the reverse of the MixColumns

operation. Here the inverse of the matrix is used. Suppose the input bytes denoted by

C0, C1, C2, C3 of the state C are multiplied by the inverse 4x4 matrix. The matrix is

formed of constants.

 =

B3 C3

B0
B1

B2

0E 0B 0D 09

09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

C0

C1

C2

Fig. 2.8: Matrix of constants used in Inverse Mix Column

17

The second column of output bytes (B4, B5, B6, B7) is computed by multiplying the

four input bytes (C4, C5, C6, C7) by the same constant matrix and so on.

2.6.2 InvShiftRows Transformation

 In this Sublayer, the rows of the state matrix is rotated in the opposite

direction. The first row will remain unchanged. Suppose the input of the ShiftRows

sublayer is given as a state matrix B = (B0, B1, …, B15):

Fig. 2.9: State matrix without byte shifting

The final output is

B0 B4 B8 B12

B13 B1 B5 B9

B10 B14 B2 B6

B7 B11 B15 B3

Fig. 2.10: State matrix with byte shift

2.6.3 InvSubBytes Transformation

AES S-Box follows a one-to-one mapping; so an inverse S-Box can be constructed

such that:

 Ai = S-1 (Bi) = S-1 (S(Ai)),

To reverse the S-Box substitution, at first the inverse of the affine transformation is

computed. For each byte Bi the inverse affine transformation can be described as

shown in table Table. 2.4.

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

One position right shift

Two positions right shift

No shift

Three positions right shift

18

Table 2.4: Inverse AES S-Box

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 bE 1B

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

 = +

X

Y

F

b0

b1

b2

b3

b4

b5

b6

b7

0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

s0

s1

s2

s3

s4

s5

s6

s7

1

0

1

0

0

0

0

0

19

In the second step, the reverse of Galois field inverse has to be performed such as Ai

= (Ai
-1)-1. We need to compute Ai = (B′

i)-1∈GF(28). Finally, the vector Ai = (a7,…,a0)

is the substituted result

 Ai = S-1(Bi).

2.6.4 Decryption Key Schedule

 The key scheduling process is the same as encryption mode except the

subkeys are used in the reverse order.

2.7 Linear Feedback Shift Register

 Linear feedback shift registers (LFSR) are one of the most efficient ways of

describing and generating sequences in hardware implementations. LFSR is

frequently used as a test pattern generator for BIST applications. One of the reasons

is that an LFSR requires less combinational logic per flip-flop. An LFSR can be

implemented in two basic ways. They are internal feedback and external feedback

LFSRs as shown in Fig. 2.11 and 2.12 respectively.

Fig. 2.11: Internal LFSR with P(X) = 1 + X + X3 + X4

Fig. 2.12: External LFSR with P(X) = 1 + X + X3 + X4

For LFSRs, n is referred to as the degree of the polynomial and results in an n-bit

LFSR. The characteristic polynomial defines the construction of the LFSR (for either

20

internal or external feedback implementations) where the degree of the polynomial

gives the number of flip-flops and the number of non-zero coefficients not including

Xn and X0 gives the number of exclusive-OR gates. Fig. 2.11 shows an internal

feedback shift register with characteristic polynomial, P(X) = 1 + X + X3 + X4 and

Fig. 2.12 shows an external feedback shift register with characteristic polynomial,

(X) = 1 + X + X3 + X4. The characteristic polynomial is an example of a non-

primitive polynomial. The LFSR is unable to generate all 2n-1 patterns using a single

seed. The maximum number of patterns that can be generated by an n-bit LFSR is 2n-

1. An LFSR that can generate all the sequences of unique patterns before repeating

the starting sequence is referred to as a maximum length sequence (also referred to as

a maximal length sequence or as an m-sequence) LFSR. A primitive polynomial of

degree 4 which generates maximum sequence patterns can be denoted by P′(X) = 1 +

X + X4. It can be illustrated by Fig. 2.13 and 2.14.

Fig. 2.13: An LFSR with characteristic polynomial as P′(X) = 1 + X + X4

0111

1111 1011 1001 1000 0100 0010

0001

1100 0110 0011 1101 1010 0101

Fig. 2.14: Maximal length sequence produced

21

2.8 Test Compression Technique in BIST

 The main motive of data compression is to reduce the complexity of test data

in the field of fault diagnosis in digital systems. A data compression technique called

self-testable and error-propagating space compression is proposed and analyzed.

2.8.1 Mixed-mode BIST

A mixed-mode BIST divides the testing process into two phases. In the first

phase, a linear feedback shift register is used to implement pseudorandom test pattern

generation. Faults that are hard to detect using pseudorandom pattern generation are

called random-pattern-resistant (RPR) faults. The probability of detecting RPR faults

can be increased by integrating a mixed-mode approach in BIST. Applying pseudo-

random patterns, we can achieve fault coverage of up to 60% to 80% only. In the

second phase, deterministic test patterns are applied to find the remaining faults.

Fault coverage can be improved by modifying the circuit under test which can be

done by redesigning or inserting test points. But, it is not always possible because of

performance restriction or intellectual property (IP) reasons. Moreover, the mixed-

mode approach supports structured delay fault testing and testing of intellectual

property (IP) blocks.

 There are a number of ways for generating deterministic patterns on-chip.

Two approaches are described below:

• ROM Compression: Deterministic patterns can be stored in a read-only-

memory (ROM); this is the simplest approach among all.

• LFSR Reseeding: Another approach is to store LFSR seed values so that the

seed values can be used to generate the test patterns. In this process, we can

use the same LFSR which is used for generating the pseudo-random patterns

also for generating the deterministic patterns by reseeding it with the

computed seeds. Because the seeds are smaller than the test patterns, so they

require less ROM storage.

22

2.9 LFSR for Response Compaction: Signature Analysis

 LFSRs can be used as cyclic redundancy check code (CRCC) generator for

response compaction. In this CRCC technique, data bits are compacted as a

decreasing order coefficient polynomial. In CRCC technique, primary output

polynomial is divided by its characteristic polynomial that leaves remainder of

division in LFSR. Zero values are initialized as seed value to the LFSR. After testing,

signature in LFSR is compared to the golden signature. For an output sequence of

length N, there is a total of 2N-1 faulty sequence. Let the input sequence is

represented as P(X) = Q(X)G(X) + R(X). G(X) is the characteristic polynomial.

Q(X) is the quotient and R(X) is remainder or signature. The remainder R(X) will be

equivalent as the fault-free one. The orders of P(X), G(X) and Q(X) are N, r and N-r

respectively. Possibly there are 2N-r Q(X) or P(X). One of them will be fault free. The

generalized form of aliasing probability can be written as follows:

P(M) = ≅ 2-r

 Characteristics Polynomial X5 + X3 + X + 1

Fig. 2.15: Modular LFSR as a response compactor

The divisor polynomial G(X) which contains two or more non-zero coefficients can

detect all single-bit errors.

2N-r - 1

2N - 1

23

2.10 Multiple-Input Signature Register (MISR)

 Too much hardware overhead problem is found in ordinary LFSR response

compacter. If a circuit under test results in more than one output, in such cases

multiple-input signature register compacts all outputs into one LFSR. It works

because LFSR is linear and satisfies superposition principle. All responses are feed in

one LFSR. The final remainder is XOR sum of remainders of polynomial divisions

of each primary output by the characteristic polynomial.

Fig. 2.16: Multiple input signature register

The Fig. 2.16 depicts a m-stage MISR. The test responses remain unchanged on the

circuit under test outputs after test cycle i, but the shifting clock has not yet been

applied.

Ri(x) = (m-1)th polynomial representing the test responses after test cycle i.

Si(x) = polynomial representing the state of the MISR after test cycle i.

Ri(x) = Ri,m-1xm-1 + Ri,m-2xm-2 +……….+ Ri,1x + Ri,0

Si(x) = Si,m-1xm-1 + Si,m-2xm-2 +……….+ Si,1x + Si,0

Si+1(x) = [Ri(x) + xSi(x)] mod G(x)

G(x) is the characteristic polynomial

Suppose the initial state of MISR is 0. So,

S0(x) = 0

S1(x) = [R0(x) + xS0(x)] mod G(x) = R0(x)

S2(x) = [R1(x) + xS1(x)] mod G(x) = [R1(x) + R0(x)] mod G(x)

Sn(x) = [xn-1R0(x) + xn-2R1(x) +……..+xRn-2(x) + Rn-1(x)] mod G(x)

24

After applying n patterns in MISR, we get the above signature. Suppose an n-bit

response compactor containing m-bit error polynomial. Suppose an n-bit response

compactor containing m-bit error polynomial. The degree of error polynomial is

(m+n-2) which gives (2m+n-1 - 1) non-zero values. G(x) has 2n-1 -1 nonzero multiples

that result m polynomials of degree<=m+n-2.

P(M) =

So, the probability of masking is ≈

So, the probability of non masking is ≈ 1 -

2n-1 - 1

2m+n-1 - 1
1

2m
1

2m

25

CHAPTER 3
Design and Discussions

3.1 Introduction

In this chapter, the proposed design along with the intended procedure of

the proposed ASIC using Verilog HDL will be described.

3.2 AES CryptoprocessorArchitecture with BIST

Fig 3.1 shows all the modules of the design and its internal connections and relations.

It is one of the coding conventions to partition a complex design into

different modules based on their specific functionality and features.

Comparator

Encryption

Controller

Module

Test Pattern

Generator

Output Response

Analyzer

Decryption

Memory to store
Golden signatures

Memory to store
subkeys

Memory to store
subkeys

AddRoundKey

ShiftRows

MixColumns

InvSubByte

InvShiftRows

InvMixColumns

SubBytes

Memory to
store plaintext

and key

Fig. 3.1: Functional Blocks of AES Crypto ASIC with BIST

26

In our design, we have used the following main blocks/modules:

1. Encryption module

2. AddRoundKey module

3. SubBytes module

4. ShiftRows module

5. MixColumns module

6. Decryption module

7. InvSubByte module

8. InvShiftRows module

9.InvMixColumns module

10.Test Pattern Generator module

11. Output Response Analyzer module

12. Controller module

Encryption module:

 A 128-bits array with a depth of 10 is used to store the 10 sub-keys. When the

input pin ‘bistMode’ is set to 1 then the test mode is activated; otherwise the normal

encryption process is performed. In the normal mode, the input key and the plaintext

are fed to the input pins ‘key_byte’ and ‘state_byte’ respectively and then, it waits

for the ‘load’ signal to load the plaintext and the key. When the ‘enable’ pin is set to

high, the encryption process begins to work. The resultant encrypted ciphertext can

be obtained from the output pin ‘state_out_byte’. When inputs ‘bistMode’ and

‘encryptionForRandom’ both are set to 1, then the expected number of unique

random patterns are generated using the LFSR and then fed to the circuit under test

(CUT). As a result, we get the expected number of ciphertext values which are then

fed to the output response analyzer (ORA) module. After that, the testing

proceeds using expected number of pre-stored partial seed values each of 10 bits.

These expected number of seed values are fed to the test pattern generator (TPG)

module to make each of them 128 bits in length. The expected number of

deterministic patterns are fed to the CUT sequentially. As a result, we get expected

number of encrypted ciphertext values sequentially, and then those are fed to the

ORA module. The final result from the ORA module is matched with the golden

27

signature stored in the memory. If there is a match, a selected input ‘result’ is set to

high indicating success; otherwise, it is set to low indicating failure. When the

selected input pin ‘bistMode’ is set to 0, then the normal encryption process is ready

to proceed based on the given plaintext and the input key.

 When the ‘reset’ pin is set to high, then all the inputs are forced to go back to

the zero states. The encryption module relies upon three modules: they are

ShiftRows, MixColumns, and AddRoundKey. These three modules are instantiated

in the encryption module. These three modules are described below.

AddRoundKey Module:

 This module is used in both encryption and decryption module. When the

‘enable’ pin is set to high, the current input key and the input state is fed to the

selected input pins‘inputKey’ and ‘inputState’ respectively. The XORed value of

these two is obtained as the output value of this module and the ‘success’ pin is set to

high as the feedback.

state_out_byte Encryption

Module

key_byte

state_byte

clk

rst

enable

load

ready

128

128

128

Fig. 3.2: Block Diagram of Encryption Module

28

SubBytes Module:

 The XORed value containing 128 bits from the AddRoundKey module is

divided into 4 chunks of 32bits. Chunks are fed to the input pin‘valueI’ one by one.

The substituted values are obtained as output.

ShiftRows Module:

 When ‘shiftEnable’ pin is set to high, then the shifting operation is started

and after shifting the output pin, ‘valueShifted’ holds the shifted value. The ‘success’

pin is set to high as the feedback so that the rest could be continued.

inputKey

inputState

clk

enable

reset success

inputOut
AddRoundKey

Module

128

128

128

Fig. 3.2: Block Diagram of AddRoundKey Module

SubBytes
module valueI valueO 32 32

Fig. 3.4: Block Diagram of SubBytes Module

ShiftRows
module

clk
shiftEnable

value
reset

valueShifted

success

128 128

Fig. 3.5: Block Diagram of ShiftRows Module

29

MixColumns Module:

 When ‘enableMixColumn’ pin is set to high, then the operation begins to start

and the resultant output is obtained on the output pin‘valueOut’. The ‘success’ pin is

set to high as the feedback.

Decryption Module:

 This module also needs a 128-bits array with a depth of 10 is used to store the

10 subkeys. When the input pin ‘bistMode’ is set to 1, then the test mode is

activated; otherwise the normal decryption process is performed. In the normal

mode, the input key and the ciphertext are fed to the input pins ‘key_byte’ and

‘state_byte’ respectively and then, it waits for the ‘load’ signal to load the ciphertext

and the key. When the ‘enable’ pin is set to high, the encryption process begins to

work. The resultant decrypted plaintext can be obtained from the output pin

‘state_out_byte’. When the input pins‘bistMode’ and ‘decryptionForRandom’ both

are set to 1, then the expected number of unique random patterns are generated using

the LFSR and then fed to the circuit under test (CUT). As a result, we get expected

number of decrypted values; these are then fed to the output response analyzer

(ORA) module. After that, the testing proceeds using expected number ofpre-stored

partial seed values each of 10 bits. These seed values are fed to the test pattern

generator (TPG) module to make each of them 128 bits in length.Theexpected

number of deterministic patterns are fed to the CUT. As a result, we get expected

number of decrypted values sequentially, and then these are fed to the ORA module.

The final result from the ORA module is matched with the golden signature stored in

the memory. If there is a match, a selected input pin ‘result’ is set to high indicating

MixColumns

module

clk

enableMixColumn

value

reset

valueOut

success

128 128

Fig. 3.6: Block Diagram of MixColumns Module

30

success; otherwise, it is set to low indicating failure. When the selected input pin

‘bistMode’ is set to 0, then the normal decryption process is ready to proceed based

on the given ciphertext and the input key.

 When the ‘reset’ pin is set to high, then all the inputs are forced to

go back to the zero states. The decryption module relies upon three

modules: InvShiftRows, InvMixColumns, and InvSubBytes. These three

modules are instantiated in the decryption module. These three modules

are described below.

InvSubBytes Module:

 The XORed value containing 128 bits from the AddRoundKey module is

divided into 4 chunks of 32bits. Chunks are fed to the input pin‘data’ one by one.

The substituted values are obtained as output.

Decryption

Module

key_byte
state_byte

clk

rst

enable

load

ready

State_out_byte

128

128

128

Fig. 3.7: Block Diagram of Decryption Module

result data
InvSubBytes
Module

32 32

Fig. 3.8: Block Diagram of InvSubBytes Module

31

InvShiftRows Module:

 When ‘enable’ pin is set to high, then the shifting operation is started and

after shifting the output pin‘rotatedValue’ holds the shifted value. The ‘success’ pin

is set to high as the feedback so that the remaining parts could be continued.

InvMixColumns Module:

 When ‘enable’ pin is set to high, then the operation begins to start and the

resultant output is obtained on the output pin ‘outValue’. The success signal is set to

high as the feedback.

InvShiftRows
Module

clk

enable

data

reset

rotatedValue

success

128
128

Fig. 3.9: Block Diagram of InvShiftRows Module

InvMixColumns
Module

clk

enable

value

reset

outValue

success

128 128

Fig. 3.10: Block Diagram of InvMixColumns Module

32

Test Pattern Generator:

 An LFSR is used as a test pattern generator that generates pseudorandom test

patterns and these patterns are used as input to both encryption and decryption

modules based on the ‘enable’ signal.

F

Output Response Analyzer:

 In this module, an LFSR is exploited for the response compaction. First, the

expected number of pseudo-random test patterns and then the 20 pre-stored

deterministic patterns, which are formed into 128 bits in length, are fed to the

selected input pin ‘valueToXor’ serially. The final compacted 32 bits output which is

our candidate signature and this signature is matched with the golden signature. This

compaction process is activated based on an input pin ‘oraEnable’ when it is set to

high.

feedback

result

bistMode

clk
Test Pattern Generator
Module rst

enable

keyI

16

128

enableEncryption

enableDecryption

Fig. 3.11: Block Diagram of Test Pattern Generator Module

33

Controller Module:

 This controller module is used to control the sequences in which the modules

will be activated in need.

Output Response
Analyzer

clk
rst

sel

oraEnable

valueToXor

valueO
128

32

feedback

Fig. 3.12: Block Diagram of Output Response Analyzer Module

decryptionFollowsEncryption

Controller
Module

clk

rst
normalEncryption

normalDecryption

bistMode

encryptionForRandom
keyI

initialState
decryptionForRandom

plainTextValue

cipherTextValue

128

128

128

128

Fig. 3.13: Block Diagram of Controller Module

34

Table 3.1: Mode of Operation

Mode of Operation Values of selected input Selected Input

Normal encryption 01 bistMode, normalEncryption

Normal decryption 01 bistMode, normalDecryption

Decryption followed
by encryption of the
same input

01 bistMode,

decryptionFollowsEncryption

BIST mode
(Encryption
Module)

11 bistMode, encryptionForRandom

BIST mode
(Encryption
Module)

11 bistMode, decryptionForRandom

35

3.3 Flow Chart of the Design

 Fig 3.15: shows the Flowchart of the AES Crypto ASIC with BIST

 In this project, the AES algorithm operates on a block of 128 bits

of input and generates 128 bits of output. The key length is 128 bits for

both encryption and decryption process. The 10 unique subkeys need ed

Fig. 3.14: Flowchart of the AES Crypto ASIC with BIST

36

for 10 rounds are stored in a 128-bits array with a depth of 10. Based on

the mode of operation, the Crypto ASIC can operate either in the normal

mode or in the test mode. The LFSR is used to generate the expected

number of test patterns for pseudo-random pattern testing. The generated

pseudo-random patterns are fed to the output response analyzer (ORA)

module sequentially. Twenty partial pre-determined patterns of 10 bits

are stored in memory. These deterministic patterns ar e used as input to

the test pattern generator module (TPG) sequentially so that each of them

is formed of 128 bits in length and then fed to the ORA module

sequentially. Finally, the obtained output from the ORA module which is

the candidate signature of 32-bit length is matched with the golden

signature which is also 32 bit in length. If there is a perfect matching , it

indicates fault free; otherwise faulty.

3.4 Tools Used

 The following tools have been used to implement the project.

• Java: The AES algorithm is implemented by using this general

purpose language.

• Verilog HDL: The AES algorithm is also implemented by using this

hardware description language.

• ModelSim: Simulation environment called ModelSim is used to execute

the Verilog codes.

• STS (Spring Tool Suite): It is an Eclipse based development environment.

This IDE (integrated development environment) is used to run java source

codes.

37

CHAPTER 4
Results and Discussions

4.1 Introduction

This chapter describes simulation results of the BIST implemented crypto

processor ASIC. Simulation has been performed in Java platform and then the

correctness of output of the crypto processor has been verified using NIST provided

data. Then the ASIC has been designed using Verilog HDL and it has been simulated

in ModelSim software. Simulation results in different modes of operation of the

ASIC are also presented in this chapter.

4.2 Implementation of AES Algorithm in Java Platform

 We have implemented the AES algorithm for both encryption and decryption

by using java language and the Eclipse-based development environment Spring Tool

Suite (STS). The algorithm is implemented with the key length of 128 bits for both

encryption and decryption. Blocks of 128 bit plaintext have been used as input of the

encryption module which generates the ciphertext of the same length. Similarly

Blocks of 128 bit ciphertext is used as input of the decryption module which

generates the plaintext of the same length. The correctness of the implementation has

been verified using NIST provided guide lines. According to the Federal Information

Processing Standards Publication 197 published in November 26, 2001, if plaintext

‘00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff’ and key ‘00 01 02 03 04 05 06 07

08 09 0a 0b 0c 0d 0e 0f’ both are fed as input to the encryption module then it will

produce resultant ciphertext ‘69 c4 e0 d8 6a 7b 4 30 d8 cd b7 80 70 b4 c5 5a’.

Similarly if the generated ciphertext is fed as input to the decryption module then the

resultant plaintext will be ‘00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff’. For the

decryption purpose, we used the same key [29]. Fig. 4.1 shows the inputs that are

required to proceed encryption process and the resultant ciphertext after the

encryption. The input text and the input key are stored in the memory and are taken

from the NIST publication. After the ten rounds, the obtained resultant ciphertext is

38

also displayed in the figure which is verified according to the NIST publication. Fig.

4.2 shows the inputs that are required to proceed decryption process and the resultant

plaintext after the decryption. The ciphertext and the input key are stored in the

memory. The ciphertext and the input key is taken from the NIST publication. After

the ten rounds, the obtained resultant plaintext is also displayed in the figure which is

verified according to the NIST publication.

Fig. 4.1: Encryption class takes plaintext and produces ciphertext as result

 Fig. 4.2: Decryption class takes ciphertext and produces plaintext as result

39

4.3 Design of the Crypto-Processor ASIC and Simulation using ModelSim

The BIST implemented Crypto Processor ASIC is designed using industry

standard ASIC design software Verilog HDL. The design code is provided in the

Appendix 1. Then the design has been simulated using in the different modes of

operation of the ASIC using ModelSim software to verify its desired operation. NIST

provide data as mentioned in the section 4.2 has also been used for this verification

purpose. Fig. 4.3 shows the ModelSim simulation results of the encryption module in

normal mode. Here two input pins ‘normalEncryption’ and ‘bistMode’ are set to ‘1’

and ‘0’ respectively which is indicated in this figure with the help of arrow shapes.

The resultant ciphertext is displayed in the figure and verified according to the NIST

publication.

Normal Mode:

Fig. 4.3: Simulation result of Encryption module in normal mode

 In the normal mode, input pin ‘normalEncryption’ is set to high and input pin

‘bistMode’ is set to low so that the initial key and the plain text are loaded into input

pins 'key_byte' and 'valueI' respectively after that the encryption process starts.

During this encryption process, the 10 subkeys are generated using the initial key and

are stored in a 128-bits array with a depth of 10.

‘normalEncryption’ high ‘bistMode’ low

40

The output pin 'cipherTextValue' provides the resultant ciphertext in its hexadecimal

form (128'h29C3505F571420F6402299B31A02D73A).

Fig. 4.4: Simulation result of Decryption module in normal mode

 In the normal mode, input pin ‘normalDecryption’ is set to high and input pin

‘bistMode’ is set to low so that the initial key and the cipher text are loaded into

input pins 'key_byte' and 'valueI' respectively after that the decryption process starts.

During this decryption process, the 10 subkeys are generated using the initial key and

are stored in a 128-bits array with a depth of 10.

The output pin 'plainTextValue' provides the resultant plaintext in its hexadecimal

form (128'h54776F204F6E65204E696E652054776F).

‘normalDecryption’ high ‘bistMode’ low

41

Fig. 4.5: Simulation result of Decryption process following Encryption process.

 In the normal mode, input pins ‘decryptionFollowsEncryption’ and bistMode’

are set to 1 and 0 respectively so that the initial key and the plain text are loaded into

input pins 'key_byte' and 'valueI' respectively; after that the encryption process starts.

During this encryption process, the 10 subkeys are generated using the initial key and

are stored in a 128-bits array with a depth of 10.The output pin 'cipherTextValue'

provides the resultant ciphertext in its hexadecimal form

(128'h29C3505F571420F6402299B31A02D73A).

 The resultant ciphertext is treated as the input based on which the decryption

process starts. Note that the same subkeys are used in the decryption process but in

the descending order. Finally, the output pin 'plainTextValue' provides the resultant

plaintext in its hexadecimal form (128'h54776F204F6E65204E696E652054776F).

Plaintext is fed as input to the Encryption module

The actual plaintext is obtained after decryption

42

Test Mode:

Fig. 4.6: Simulation result of Encryption module in test mode (using expected

number of pseudo-random test patterns and 20 pre-stored deterministic patterns)

 To test the Encryption module using the expected number of pseudo-random

patterns and deterministic patterns, two input pins 'bistMode' and

'encryptionForRandom' are set to high. The expected number of pseudo-random

patterns generated from the test pattern generator (TPG) module is fed as input to the

circuit under test (CUT) one by one. Consequently, we will get a thousand number of

ciphertext values; each of them is 128 bits in length which are also fed as input to the

output response analyzer (ORA) module one by one. After that, 20 pre-stored seed

values are sent to the TPG module to form each of them into 128 bits of length and

then fed to the ORA module sequentially. The candidate signature which is obtained

from the ORA module is then matched with the golden signature ‘8a70e9a7’ in

hexadecimal form stored in the memory. If there is a perfect match, then the output

pin 'result' is set to high to indicate successful testing; otherwise, it goes low to

indicate failure.

‘result’ high

‘bistMode’ high

43

Fig. 4.7: Simulation result of Decryption module in test mode (using expected

number of pseudo-random test patterns and 20 pre-stored deterministic patterns)

 To test the Decryption module using the expected number of pseudo-random

patterns, two input pins 'bistMode' and 'decryptionForRandom' are set to high. The

thousand pseudo-random patterns generated from the test pattern generator (TPG)

module are fed as input to the circuit under test (CUT) one by one. Consequently, we

will get a thousand number of plaintext values; each of them is 128 bits in length

which are also fed as input to the output response analyzer (ORA) module one by

one. After that, 20 pre-stored seed values are sent to the TPG module to form each of

them into 128 bits of length and then fed to the ORA module sequentially. The

candidate signature which is obtained from the ORA module is then matched with

the golden signature ‘c238995f’ in hexadecimal form stored in the memory. If there

is a perfect match, then the output pin 'result' is set to high to indicate successful

testing; otherwise, it goes low to indicate failure.

‘result’ high

‘bistMode’ high

44

4.4 Comparison results of the AES

 Table 4.1 shows the comparison of the research with those of existing

researches. It shows that the proposed research is unique in terms of BIST

implementation.

TABLE 4.1: Comparison results of the AES in terms of BIST implementation

Research Platform Data-
Path

BIST technique

D. Osvik [30] AVR 8 Not used

D. Osvik [30] ARM 32 Not used

T. Babu [31] ARM 128 Not used

M. Hasamnis[32] NIOS II IDE 128 Not used

O. Mourad [33] Handel-C 128 Not used

M. Biglari [34] Maestro 128 Not used

This work ModelSim 128 Properly implemented

4.5 Discussion

 In research, we have implemented Built-In-Self-Test implemented AES

crypto-processor ASIC. BIST implemented, AES crypto-processor ASIC is not

reported yet in the literature. In this project, both the encryption and decryption

process is implemented in the Java platform to verify the correctness of the design

according to the NIST publication. Then From the simulation results obtained from

the ModelSim software, it is observed that the ASIC is performing desired

functionality in its various mode of operation. Our research has been compared with

those of other researchers and it shows that our research is unique in terms of BIST

implementation into the ASIC. In our design we could not perform fault simulation

of the ASIC due to limitation of resource and time. So switching point from

pseudorandom to deterministic mode is not defined. So we have assumed only one

thousand pseudo random test patterns and twenty deterministic test patterns to

conduct the testing self-test of the ASIC. We also could not implement the design

45

into FPGA physical hardware and so we could not show that the BIST circuitry is

capable of detecting faults in test mode. In future the ASIC will be implemented into

FPGA physical hardware.

46

CHAPTER 5
Conclusion

5.1 Conclusion

AES outperforms all the existing cryptographic algorithms and so many applications

are coming out based on this. Hardware implementation offers tremendous speed and

impressive security than that of software implementation. So a number of research is

proposed for hardware implementation of AES. However the testability problem is

not addressed nowhere which is now a burning issue for any complex VLSI chip.

This research is an initiative to overcome this limitation through designing a AES

Crypto ASIC implemented with mixed mode BIST technique. The ASIC has been

designed using Verilog HDL which is now an industry standard CASD software for

VLSI design. The ASIC is simulated in its different mode of functionalities using

two platforms: Jave and Modelsim CAD software. Simulation results in both

environments prove the correctness of the design. Proper functionality has also been

verified using NIST provided input and output. The ASIC has also been compared

with those of other researchers and it shows that our research is unique in terms of

BIST implementation. In our design we could not perform fault simulation of the

ASIC due to limitation of resource and time. So switching point from pseudorandom

to deterministic mode is not defined. So we have assumed only one thousand pseudo

random test patterns and twenty deterministic test patterns to conduct the testing self-

test of the ASIC. In future the ASIC will be implemented into FPGA physical

hardware.

5.2 Future Works

 This project offers several new areas that can be explored. In future,

meticulous performance analysis and optimization in terms of power, speed, and

hardware resources can be performed and also improve fault coverage. Moreover the

ASIC will be implemented into FPGA physical hardware.

47

References:
[1] Stallings, W., “Cryptography and Network Security: Principles and

Practices,” Pearson Education, Inc.2010

[2] Toa Bi Irie Guy-Cedric, Suchithra. R., “A Comparative Study on AES 128

BIT AND AES 256 BIT”, International Journal of Scientific Research in Computer

Science and Engineering, Vol.6, Issue.4, pp.30-33, August (2018)

[3] M.Pitchaiah, Philemon Daniel, Praveen, “Implementation of Advanced

Encryption Standard Algorithm”,International Journal of Scientific & Engineering

Research Volume 3, Issue 3, March -2012 ISSN 2229-5518

[4] R. Sivakumar, B. Balakumar, V. ArivuPandeeswaran, “A Study of

Encryption Algorithms (DES, 3DES and AES) for Information Security”,

International Research Journal of Engineering and Technology (IRJET) Volume:05

Issue:04 | Apr-2018

[5] Mahmoud RahallahAsassfeh, Mohammad Qatawneh and Feras Mohamed

AL-Azzeh, “PERFORMANCE EVALUATION OF BLOWFISH ALGORITHM ON

SUPERCOMPUTER IMAN1”, International Journal of Computer Networks &

Communication (IJCNC) Vol.10, No.2, March 2018

[6] Kris Gaj, Pawel Chodowiec, “Comparison of the hardware performance of

the AES candidates using reconfigurable hardware”, ResearchGate Conference Paper

January 2000

[7] Emad H. Khalil, M. H. Mahlawy, Fawzy Ibrahim and M. H. Abdel-Azeem,

“Design for Testability of Circuits and Systems; An overview”, Proceedings of the

5th ICEENG Conference, 16-18 May. 2006

[8] Usha Mehta, Kankar Dasgupta, and Niranjan Devashrayee, “Suitability of

Various Low-Power Testing Techniques for IP Core-Based SOC: A Survey”,

Hindawi Publishing Corporation VLSI Design Volume 2011, Article ID 948926, 7

pages doi:10.1155/2011/948926

[9] David Hely LCIS, Kurt Rosenfeld, Ramesh Karri, “Security Challenges

During VLSI Test”.

[10] Manfred Fleischer, “Testing Costs and Testing Capacity According to the

REACH Requirements – Results of a Survey of Independent and Corporate GLP

48

Laboratories in the EU and Switzerland”, Journal of Business Chemistry, Vol. 4,

Issue 3 September 2007

[11] Ritu Singh Thakur, Ravish Gupta, Akanksha Awasthi, “A Review Paper

based on Built is Self Test”, International Journal of Engineering Research &

Technology (IJERT), ISSN: 2278-0181, Vol. 5 Issue 02, February-2016

[12] ChirazKhedhiri, MounaKarmani and Belgacem Hamdi, “A BIST

GENERATOR CAD TOOL FOR NUMERIC INTEGRATED CIRCUITS”,

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2,

No.2, June 2011

[13] Preethy K John, Rony Antony P., “BIST Architecture for Multiple RAMs in

SOC”, 7th International Conference on Advances in Computing & Communications,

ICACC-2017, 22-24 August 2017, Cochin, India.

[14] DhwanitArunkumarJuneja, “UART TESTING UNDER BUILT-IN-SELF-

TEST (BIST) USING VERILOG ON FPGA”, International Research Journal of

Engineering and Technology (IRJET), Volume:06 ISSUE:09 | Sep 2019

[15] Sakshi Shrivastava, Sunil Malviya and Neelesh Gupta, “BUILT-IN SELF-

TEST ARCHITECTURE USING LOGIC MODULE”, International Journal of VLSI

design & Communication Systems (VLSICS) Vol.8, No.4, August 2017

[16] Manish J Patel, Nehal Parmar, Vishwas Chaudhari, “Design and

Implementation OF Logic-BIST Architecture for 12C Slave VLSI ASIC Design

Using Verilog”, JOURNAL OF INFORMATION, KNOWLEDGE AND

RESEARCH IN ELECTRONICS AND COMMUNICATION ENGINEERING.

[17] D. M. M. Alani, “DES96 - Improved DES Security”, IEEE 7th International

Multi-Conference on Systems, Signals and Devices, pp. 4244-7534, Jun. 2010

[18] D. Patel and R. Muresan, “TRIPLE-DES ASIC MODULE FOR A POWER-

SMARTSYSTEM-ON-CHIP ARCHITECTURE”, IEEE CCECE/CCGEI, Ottawa,

pp. 4244-0038, May 2006

[19] F. Li and P. Ming, “A Simplified FPGA Implementation Based on an

Improved DES Algorithm”, IEEE Third International Conference on Genetic and

Evolutionary Computing, pp. 7695-3899, Nov. 2010

[20] F. J. Kherad, M. V. Malakooti, H. R. Naji and P. Haghighat, “A New

Symmetric Cryptography Algorithm to Secure E-Commerce Transactions”, IEEE

49

International Conference on Financial Theory and Engineering, 12-15, pp. 4244-

7759, Mar. 2010.

[21] Borhan, R., Aziz R., “Successful Implementation of AES Algorithm in

Hardware”, Proceedings of International Conference on Electronics Design, Systems

and Applications, Malaysia, 2012

[22] Cai, X., Sun, R., Jingwei Liu, J., “An ultrahigh speed AES processor method

based on FPGA”, Proceedings of International Conference on Intelligent Networking

and Collaborative Systems, China 2013

[23] Dixit, P., Zalke, J., Admane, S., “Speed optimization of AES algorithm with

HardwareSoftware Co-design” , Proceedings of International Conference for

Convergence in Technology, India 2017

[24] Pammu, A. A., Chong, K., Lwin Ne, K. Z., Gwee, B., “High

Secured Low Power Multiplexer-LUT Based AES S-Box Implementation,

Proceedings of International Conference on Information Systems Engineering

(ICISE), USA, 2016

[25] Dao, M., Van-Phuc Hoang, V., Dao, V. Tran X., “An Energy Efficient AES

Encryption Core for Hardware Security Implementation in IoT Systems”,

Proceedings of International Conference on Advanced Technologies for

Communications, 2018

 [26] Wang, L., WU, C., Wen X., “ VLSI Test Principle and Architecture: Design

for Testability”, Elsevier, USA, 2006

[27] Mohan, M., SPillai,S. “Review on LFSR for Low Power BIST”, Proceedings

of 3rd International Conference on Computing Methodologies and Communication

(ICCMC), India, 2019

[28] Taweesak Reungpeerakul, Douglas Kay, and Samiha Mourad, “Partial-

Matching Technique in a Mixed-Mode BIST Environment”, IEEE

TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 59,

NO. 4, APRIL 2010.

[29] https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

[30] D. Osvik, J. Bos, D. Stefan and D. Canright, “Fast Software AES Encryption”,

FSE'10 Proceedings of 17th International Conference on Fast Software Encryption,

pp 75-93, 2010

https://ieeexplore.ieee.org/author/37085621405

50

[31] T. Babu, K. Murthy and G. Sunil, “AES Algorithm Implementation using

ARM Processor”, 2nd International Conference and workshop on Emerging Trends

in Technology (ICWET) Proceedings published by International Journal of

Computer Applications (IJCA), 2011

[32] M. Hasamnis, P. Jambhulkar and S. Limaye, “Implementation of AES as a

Custom”, Advanced Computing: An International Journal (ACIJ), vol.3, No.4, July

2012

[33] O. Mourad, S. Lotfy, M. Noureddine, B. Ahmed, T. Camel, "AES Embedded

Hardware Implementation", Adaptive Hardware and Systems, Second NASA/ESA

Conference, pp.103-109, 5-8 Aug. 2007

[34] M. Biglari, E. Qasemi, B. Pourmohseni, "Maestro: A high performance AES

encryption/decryption system", Computer Architecture and Digital Systems (CADS),

17th CSI International Symposium, pp.145-148, 30-31 Oct. 2013

