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ABSTRACT 

 
In a sensor system, the selection of appropriate sensors is very important to obtain a better 

classification performance. An optimized set of sensors is necessary for accurate analysis of 

different analytes. Adding many sensors to sensing systems does not improve the accuracy of 

the classification. On the contrary, the noise generated from the redundant sensors negatively 

affect the accuracy of the classification. In this research, robust and reliability-based multi-

objective sensor array optimization models are proposed to optimize the sensor arrays under 

uncertainty. Both selectivity and diversity criteria have been considered for constructing the 

objectives functions. A sensor system prototype capable of detecting analytes like smokes 

and volatile organic compounds has been designed and used to demonstrate the proposed 

model. A statistical criterion, general resolution factor (GRF) and Principal Component 

Analysis (PCA) are used to evaluate the optimization results. The experimental results 

indicate that the proposed methods can successfully identify the Pareto optimal solutions and 

an optimized set of sensor array, providing improved input quality for the pattern recognition.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the Study 

Sensor array systems are efficient and effective tools to detect chemical or biological 

constituents, e.g., volatile organic compounds (VOCs), in industrial control or in monitoring 

process. Sensing system has been successfully applied in different industries like food 

processing, pharmaceuticals, bio-medical, textile and leather manufacturing, etc. [1]. Its 

Industrial and Production Engineering applications include system optimization, process 

control, data analysis, industrial health & safety analysis, and uncertainty & reliability 

analysis, etc. [2]. Generally, a sensing system usually consists of three main components: an 

array of sensors, signal processing, and pattern recognition [3]. Sensor array optimization is 

the most important, because the sensor array responses directly determine the input quality 

for the pattern recognition [1]. 

The primary purpose of sensor array optimization is to select appropriate sensors with 

specific attributes [4]. Generally, the optimized set of sensors provides less entropy in the 

sensor system [3]. This sensor selection is a special type of feature selection process [5]. 

Different statistical methods and stochastic algorithms have been used in sensor array 

optimization [6]. With the growing complexity of optimization problems, stochastic 

techniques are becoming more and more popular. These methods are suitable for sensor array 

optimization because they can be easily adapted to identify the optimal variable set based on 

certain selection criteria [7, 8].  

In sensor array optimization, the sensitivities of different sensors are considered [3]. These 

sensitivities of the sensors may vary. Therefore, the uncertainty in the input variables is 

essential to be taken into account. Robustness-based optimization [9] and reliability-based 

optimization [10] are two approaches that can deal with optimization under uncertainty. 

However, much of the work has not been done yet on the robust and reliability-based sensor 

system optimization processes [11]. Therefore, development of robust and reliability-based 

multi-objective sensor array optimization model is still an open problem and thereby yields 

the scope of the proposed thesis.   
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1.2 Objectives with Specific Aims 
 

The specific objectives of this research are: 

(i) To develop robust and reliability-based multi-objective sensor array optimization 

formulation for minimizing entropy based on both selectivity (sensor’s response to 

the target analyte) and diversity (sensor’s response to the rest of the analytes) 

criteria. 

(ii) To design a sensor system capable of detecting smokes and different volatile 

organic compounds (VOCs). 

(iii) To select suitable sensors for the designed sensor system based on optimization 

results and remove redundant sensor elements to minimize the noise and distortions 

of the signals. 

1.3 Possible Outcomes 

The current research has developed and demonstrated robust and reliability-based approaches 

for multi-objective sensor array optimization. The framework is expected to contribute in 

various domains in industrial and production engineering, for example, system optimization, 

process control, industrial health and safety, uncertainty analysis, etc. 

1.4 Outline of Methodologies Used 

The methodologies used in this research is outlined below: 

(i) A deterministic multi-objective optimization problem has been formulated with the 

objectives being minimization of  entropy based on both selectivity and diversity 

criteria using Shannon’s information entropy theory and concept of information gain. 

(ii) A filter type feature selection process called Fast Correlation-Based Filter (FCBF) 

algorithm has been used for selecting the members of the sensor arrays. 

(iii) The input variables, parameters, functional relationships and uncertainty associated 

with the input variables have been identified using existing literature. 

(iv) A robustness-based and a reliability-based multi-objective sensor array optimization 

have been formulated with the objectives being minimization of entropy based on 

both selectivity and diversity criteria of the sensors. 

(v) A system of sensors capable of detecting smokes and other VOCs (Volatile Organic 

Compounds) has been designed using MQ (Message Queue) gas sensors and Arduino 

microcontroller.  
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(vi) Data have been collected from the sensors of the designed sensor system in (v).  

(vii) The robust and reliability-based multi-objective optimization methodology developed 

in step (iv) have been used for selecting suitable sensors for the designed sensor 

system.  

(viii) Deterministic optimization, robustness-based formulation and reliability-based 

formulation developed in step (i) and step (iv) have been solved using MATLAB. 

(ix) A statistical evaluation method, general resolution factor (GRF) and Principal 

Component Analysis (PCA) have been used to ensure the effectiveness of the 

optimization methods. GRF and PCA has been used verify the inherent quality of the 

input spaces for pattern recognition. 

1.5 Contributions of the Present Study 

This thesis contributes to developing robust and reliability-based multi-objective sensor array 

optimization formulations to minimize entropy based on both selectivity and diversity. The 

optimization model considers the uncertainties present in the input variables which is more 

appropriate than previously developed formulations in the literature. The consideration of 

uncertainty in design variables is a new addition to the sensor array optimization. The 

incorporation of uncertainty has enabled the model to be more robust and reliable in practical 

scenarios.  

The proposed model can identify a set of optimal sensors and remove redundant sensor 

elements to minimize the noise. The noise created by the redundant sensors are responsible 

for the poor performance of the sensor system. Therefore, removing excess sensors from the 

senor system ensures the improvement in solution quality and a better classification 

performance in the sensor systems. Moreover, industries will be benefitted economically by 

removing excess sensors without sacrificing quality. 

1.6 Organization of the Thesis 

The thesis report is organized in the following manner: 
Chapter 1 contains the necessary background of the thesis, specifically defined objectives, 

possible outcomes, a summary of the developed methodology, and the contributions of this 

study in the field of sensor array optimization. Chapter 2 contains a brief review of all the 

relevant literature. Chapter 3 provides the necessary theoretical background regarding 

optimization under uncertainty. The detail of the proposed methodology is described in 

Chapter 4. In Chapter 5, the proposed methodology is illustrated using a sensor system 

prototype and the results are discussed and evaluated. Finally, in Chapter 6, the thesis is 

concluded with recommendations for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Review on Sensor Array Optimization: 

Sensor array systems are highly sensitive sensing systems for detecting and quantifying toxic 

industrial chemicals with even very low concentration levels [12]. As mention earlier in 

Chapter 1, a sensing system mostly consists of three major components: a sensor array, signal 

processing, and pattern recognition. The sensor array is the most critical component among 

them since it responds to a wide range of chemical mixtures. Its response affects the input 

quality of the pattern recognition and classification part [3]. In other words, the classification 

accuracy is affected by the combination of the sensor array and is the most important 

performance measure of the sensing systems [1]. Adding many sensors to sensing systems 

does not boost the accuracy of the classification; quite the opposite, due to the collinearity 

that has a negative impact on the accuracy of the classification, some sensors may contain 

redundant or irrelevant information [1, 13]. Therefore, the sensor array optimization is the 

most significant step of sensing system optimization.  

Many studies have explored different methods for sensor array optimization to date. Lin and 

Suslick [14] have developed a colorimetric sensor array to detect tri-acetone triperoxide 

(TATP), one of the most dangerous primary explosives and is very difficult to detect. The 

traditional techniques are either expensive, either require a long sample preparation process 

or cannot detect TATP in the gas phase. However, the colorimetric sensor array is capable to 

detect TATP among 18 interferences (such as humidity, perfume, lotion, vinegar, laundry 

supplies, volatile organic compounds, etc.) [14]. Another study detected 20 toxic industrial 

chemicals (TICs) with 36 sensors at their PELs (permissible exposure limits) by developing a 

colorimetric sensor [15]. Commonly in food quality monitoring, Carbon Dioxide (CO2) is the 

main indicator of food quality [16, 17]. In addition, air pollutants, e.g., Hydrogen Sulfide 

(H2S) and Ammonia (NH3) as results of the protein decomposition, are an indicator of 

bacterial metabolites [18, 19]. The challenge is how to find the best-suited combination of 

sensors from several sensors with overlapping selectivity. 

Stochastic techniques are gaining popularity to identify the best combination of sensors [1]. 

Xu et al. [3] employed genetics algorithm (GA) to optimize the sensor arrays and to remove 
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the redundant sensors. Cluster analysis was also employed in their study to find the amount of 

sensor groups. They have used a statistical measure: General Resolution Factor (GRF) and 

Principal Component Analysis (PCA) to validate their optimization results. Another sensor 

array optimization analysis used 15 gas sensors for wound infection detection [20]. It 

combined genetic algorithms (GA) and quantum-behaved particle swarm optimization 

(QPSO) to create synchronous optimization between detectors and classifiers. This study 

proposed the weight of sensor as a degree of importance in classification. The traditional 

method of weighting offers 0 and 1 to mark the contribution of the sensors. If the weight of 

the sensor is 0, this means that no contribution is made. Conversely, 1 implies the full 

contribution of the sensor.  Their research used real numbers for weighting coefficients 

instead of using conventional weighting approaches. It is called the Importance Factor. The 

optimized sensor array based on the Importance Factor approach had an accuracy 

improvement equal to 7.5 percent with using SVM as a classifier. In addition, some studies 

have focused on problems with the optimization of the sensor array using function selection 

techniques, such as the use of the statistical and heuristic models like the Rough Set-Based 

approach [21], the Neural Network [22], the combination of function selection methods, etc. 

[23].  

Many researches employed the feature selection techniques in sensor array optimization. The 

main advantages of feature selection incudes increasing the speed of algorithm, minimizing 

the computation resources (e.g., memory, storage, and processor), obtaining a higher 

classification accuracy, and simplifying the data visualization [24]. To find the best subset of 

relevant features, feature selection techniques such as Filter, Wrapper, and Embedded are 

commonly used. In addition, because of its robustness, the filter technique is a promising 

approach to solving the over-fitting problem in classification [25, 26]. The uncertainty and 

annoyance caused by the over fitting hampers the classification performance. The key idea of 

the filter technique is generally the removal of redundant characteristics by quantifying the 

association between the characteristics.  

Saha et al. [27] have analyzed a sensor selection process by using three feature selection 

methods to select the most important sensors. They used multi-class support vector machine 

(SVM) to identify the observations, which are t-statistics, minimum redundancy maximum 

relevance techniques, and Fisher's criterion. Sathiskumar et al. [28] have introduced k-means, 

fuzzy c-means, and rough k-means clustering methods for the gas sensor array drift data 

collection. There are two different factors in optimal sensor systems, which are selectivity 
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and diversity. In sensor array systems, highly selective sensors are desired as they produce 

the most important information among the large range of mixtures for each chemical analyte. 

Therefore, if each sensor has a different sensitivity to each analyte [3], the sensor array 

system as a whole will generate specific response patterns for different analytes. This will 

increase the variety of the chemical analytes whose reaction patterns are successfully detected 

by the array of sensors. Therefore, the sensors which improve both the selectivity and 

diversity of the sensor array systems are selected in this study. However, much of the work 

has not been done considering the uncertainties in the input variable for sensor array 

optimization. However, in practical scenario, these uncertainties need to be considered for 

better results. Therefore, robustness and reliability-based optimization, which are capable of 

dealing with optimization under uncertainty, would be a good addition to the literature.  

2.2 Review on Optimization Under Uncertainty: 

The current research is intended to develop a methodology of multi-objective sensor array 

optimization under uncertainty. This uncertainty prevails in the natural characteristics of a 

design and observed data and this is often ignored in the deterministic optimization. 

Optimization under uncertainty has gained increasing attention in the last few decades due to 

this reason. There are now an extensive volume of methods and applications available for 

optimization under uncertainty. Robustness-based design [29, 30, 31, 32] and reliability-

based design [32, 33, 34, 35] are two prominent fields of optimization that consider the 

design parameter uncertainty. Robustness is the performance criteria for a system to operate 

continuously for a wide range of operational conditions and will be failed outside the 

conditions [36]. Taguchi developed the concept of robust design and proposed a method 

where the product performance or the output remains insensitive to the variation in design 

variables in the manufacturing process [37]. The variation in the design variables was 

designated as noise, which could be created from various factors in the manufacturing 

process.  

As all of the engineering models are becoming more and more complex day by day, applying 

statistical design tools in Taguchi’s method is not well enough to calculate optimal feasible 

solution for multiple measurements of performance and design constraints [38]. It was 

possible to achieve robustness in both performance outputs and design constraints due to the 

implementation of nonlinear programming in a robust design. [30]. There are normally some 

significant variables or elements in the system which cause uncertainty in the system. 

Uncertainty may arise from two sources, which are aleatory and epistemic [39]. Aleatory 
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uncertainty cannot be reduced due to including natural phenomena that exhibit natural 

variation like operating condition, material properties, geometric tolerances, etc. on the other 

hand, epistemic uncertainty arises from a lack of knowledge about the system or due to 

approximations in the system behavior models, or due to limited or subjective data. However, 

this study only considers the aleatory uncertainty. Epistemic uncertainty is out of the scope of 

this research.  

2.2.1 Review on robustness-based design optimization 

Zaman et al. [40] described four key elements of robustness-based design optimization : (1) 

maintaining robustness in the objective function, which is called objective robustness; (2) 

achieving robustness in the constraints, which is called feasibility robustness; (3) estimating 

the mean and the variance of the performance function; and (4) multi-objective optimization. 

In robustness-based optimization, objective robustness can be achieved by simultaneously 

optimizing the mean and minimizing variance of the objective function. Two types of 

robustness measurement processes are popular: one is based on the variance [30,31], and the 

other is based on the percentile difference [41]. On the other hand, feasibility robustness can 

be defined as the robustness in the constraints. Robustness in the constraints indicates 

satisfying the constraints of the design in the presence of uncertainty. Du and Chen [30] 

classified the methods of maintaining feasibility robustness into two categories: (i) methods 

based on stochastic and statistical analysis, e.g., a probabilistic feasibility formulation [42], 

and a moment matching formulation [29] and (ii) methods that do not use probabilistic and 

statistical analysis. Several methods have been developed which are not depending on 

probabilistic and statistical analysis like worst-case analysis [29], corner space evaluation 

[43], and manufacturing variation patterns (MVP) [44]. The feasible region reduction method 

[45] is general in application and normality assumption is not necessary. This is a tolerance 

design method, where the width of the feasible space in each direction is reduced by the 

amount of kσ, where k is a user defined constant and σ is the standard deviation of the 

performance function.  

The mean and the standard deviation or variance can be estimated through several methods. 

There are some existing methods for estimating the mean and standard deviation of 

performance function, which can be classified into three major categories: (1) Taylor series 

expansion methods, (2) Sampling based methods, and (3) Point estimate methods [32]. The 

Taylor series expansion method [30, 45, 46] is quite appreciable to measure the mean and 

variance of nonlinear performance function. However, the approximation may result in huge 
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error if the variances of the random variables are large [41]. Information on distribution of the 

random variables is required to estimate mean and variance by the sampling-based methods, 

which has made it expensive. Point estimate method [47] can be used to ease the computation 

of the derivatives required in the Taylor series expansion. Several types of point estimate 

methods [48] can be applied to estimate the mean and variance. Dimension reduction method 

(DRM) [49] is developed which overcomes the troubles associated with Taylor series 

expansion and sampling method. Multi-objective optimization can be achieved by optimizing 

the mean of the objective function and minimizing its variation [50]. Weighted sum approach 

has widespread application in multi-objective optimization for robust design problems [51]. 

Other optimization methods called ε-constrained method [52], goal programming [51], 

compromise programming (CP) [53] and physical programming [54] can be enlisted. There 

are different advantages and shortcomings of all those methods. 

2.2.2 Review on reliability-based design optimization 

Reliability-based design optimization (RBDO) uses numerical optimization algorithms to 

obtain optimal design with reliability [55]. The reliability optimization is usually performed 

to ensure a safety limit or target reliability for deterministic data. However, without 

considering the uncertainty may lead to system failure. Therefore, it is necessary to include 

uncertainty in the design constraints for having a reliable design [56]. The uncertainties can 

be modeled and represented using the probability theory. The reliability optimization may 

require to optimize a single or multi-objective function while satisfying the reliability 

constraints. The reliability constraints consider the probability of failure (Pf), which is related 

to the system's failure mode or design [57]. Different simulation methods with high 

computational abilities like Monte Carlo Simulation (MCS), importance sampling, etc., can 

be used to get a reliable solution. In the stochastic design, it is necessary to estimate the 

uncertainty of the random variables. The probability-based approach can have contributions 

to represent the uncertainty. After assessing the uncertainty,  the reliability based design 

optimization are employed to obtain an optimal and reliable solution [55].  

The key challenge of an RBDO problem is the assessment of a design's likelihood of failure 

as it takes a considerable effort to compute. Conventionally, under probabilistic constraints, 

RBDO problems are formulated as a stochastic optimization problem, where the solution is 

obtained by including the failure probability evaluation in the main optimization loop. 

Usually, this method leads to a nested optimization problem, referred to as the 

computationally extensive double loop approach [58]. RBDO based on First Order Reliability 
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Method (FORM) is a nested double loop approach that requires an optimization loop as well 

as a reliability loop, i.e. two optimizations are coupled. The well-known methods based on 

FORM technique are the Reliability Index Approach (RIA) [59] and the Performance 

Measure Approach (PMA) [60]. To reduce the computational cost, two approaches have been 

proposed. The first one is to separate the reliability assessment from the optimization loop 

and convert the RBDO problem into the sequences of deterministic optimization and 

reliability assessment cycles. This approach, namely the decoupled approach, is the key idea 

of the Sequential Optimization and Reliability Assessment (SORA) method [61]. The second 

approach, known as the single loop approach, consists of converting the probabilistic 

constraints into deterministic ones. Thus, the RBDO problem becomes a deterministic 

optimization problem. There are two main methods that use this approach: the Single Loop 

Approach (SLA) proposed by Liang et al. [62,63] and the Reliable Design Space (RDS) 

method proposed by Shan et al. [64]. However, Reliability Index Approach (RIA) approach is 

still more popular in the literature due to its simplicity and efficacy [59]. In this thesis, RBDO 

based on FORM method that follows the Reliability Index Approach (RIA) approach has 

been used. 
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CHAPTER 3 

THEORETICAL BACKGROUND 

3.1 Sensor Array Optimization 

Sensor array optimization is performed by selecting suitable descriptors, i.e., sensors, each 

with a particular attribute. Sensor selection is a special type of feature selection for input.  In 

general, the collection of features will find a subset of appropriate characteristics with a 

minimum size suitable for the target [65]. The resulting input with small dimensionality can 

reduce system complexity through feature selection, while retaining or improving prediction 

accuracy [66]. The general procedure of feature selection is composed of four parts:  

1. Generation of candidate subset  

2. Evaluation of subset 

3. Finding a stopping criterion 

4. Validation of subset 

There are two basic types of methods for feature selection: filter and wrapper [67, 68]. In 

order to test subsets, the wrapper approach uses specific classifiers, so the prediction 

accuracy for that specific classifier is high after selection. Wrapper strategies, however, 

usually have high computational costs and limited generalization. The method proposed in 

this thesis belongs to the filter type, which is suitable for general classification applications. 

During optimization, the efficiency of the different sensor arrays is evaluated by information 

measure, and the final selection result is accessed by independent validation through both 

statistical and visual inspection. Till now, only a few studies have addressed multi-objective 

optimization model on sensor selection, and most of them used single-objective optimization 

methods [3]. There appears to be only one ultimate goal in sensor array optimization: find a 

subset of sensors providing optimal input for classification. However, this aim can be best 

accomplished by simultaneously optimizing multiple targets that have a direct effect on the 

quality of the input. In other words, by simultaneously following multiple requirements that 

can guarantee high input feature space efficiency, the sensor array can be optimized. In 

application, the majority of optimization problems naturally require multiple objectives or 

goals. These goals are almost equally significant, and they are probably in conflict with each 

other. Generally, there is no common optimal solution for all objectives. Multi-objective, or 

multi-criterion optimization deals with this situation by locating a set of solutions with trade-
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offs among objectives. The general procedure of a multi-objective optimization includes two 

basic steps [69]: 

Step 1: Finding a Pareto optimal set consisting of solutions with compromise 

concerning different objectives. 

Step 2: Evaluating and choosing among those solutions based on higher-level 

information.  

After Step 1, a set of solutions is found for examining the trade-offs with respect to different 

objectives. In this way, the drawbacks of converting multi-objective into single-objective can 

be avoided. In this thesis, the weighted sum approach has been used to solve the multi-

objective problem. Then, in Step 2, some qualitative and subjective data can be used by 

decision makers to access and choose the final solution. Multi-objective optimizations have 

recently been used successfully in a wide variety of applications, such as transportation, 

production planning, scheduling, and forecasting, etc. [70]. For sensor array optimization, 

single-objective methods might fail to locate the true optimal sensor combinations, because 

they do not consider all significant factors. Selectivity and diversity are two such important 

factors for a sensor array. A sensor with high selectivity is needed for a wide range of vapors 

because it can provide the most important information about each vapor. A separate response 

pattern for each vapor should be provided by the array as a whole in the design of the sensor 

array. The pattern of response consists of responses from all sensors. If every sensor has 

different sensitivities with respect to each analyte, a sensor array would have distinct 

response profiles to different analytes. Based on their response patterns, the diversity allows 

the sensor array system to successfully recognize various vapors [1]. 

3.2 Design Optimization 

Optimization is a methodology that uses a mathematical description of a system to find the 

best possible solution based on the system's characteristic criterion, subjected to recognized 

constraints. Mathematical description of a system refers to an abstraction of a real system 

using mathematical expressions of relevant natural laws, physical properties, accumulated 

empirical evidence, and geometric features. A real system is difficult to analyze since a 

system existing in a real environment can undergo very complex situations. Thus, a 

mathematical description or model is essential to represent a system to increase the 

understanding of how a system works. Mathematical model representing a system generally 

includes the following elements— 
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1. Variables: These are entities that can assume different values within acceptable ranges 

and thus affect the system condition. For example— the sensitivities of a sensor. 

2. Parameters: These are entities that are given value set by the modeler to define a 

specific condition for the system. For example— maximum entropy value in a sensor 

system. 

3. Constants: These are entities fixed by natural laws, physical properties, and geometric 

features. For example— Shannon’s constant in entropy information theory. 

4. Mathematical Relations: These are mathematical expressions that include equalities, 

and inequalities involving system variables, parameters, and constants. These 

relations are used to describe the system's objective function, and the constraint 

functions represent the limitations imposed by its environment. 

Optimization requires a characteristic criterion of the system to be selected so that it can be 

used to compare the available alternatives for finding the best solution. The selected criterion 

is referred to as 'objective'. The mathematical relation representing the objective is known as 

'objective function'. The system under consideration can be subjected to limitations enforced 

by the natural laws, availability of material characteristics, and geometric compatibility. 

Thus, there exists a set of requirements that must be satisfied by any acceptable design. The 

conditional requirements are represented by the mathematical relation known as 'constraint 

function'. The term 'function' does not necessarily refer to a single mathematical relation; 

rather, it may be a system of equations. Therefore, the number of constraints and objective 

functions may be one or more. The steps involved in the formulation of a typical 

deterministic optimization problem can be summarized as follows: 

Step 1: Selecting a set of design variables from the system variables to describe the 

design alternatives. 

Step 2: Selecting an objective function to be minimized or maximized. The objective 

function is expressed in terms of related design variables, parameters, and constants. 

Step 3: Determining a set of constraint functions that must be satisfied by any 

acceptable design. The constraint functions are expressed in terms of related design 

variables, parameters, and constants. 

Step 4: Determining a set of values for the design variables, which minimize or 

maximize the objective function and satisfy all the constraint functions 

simultaneously. 



13 
 

An optimization problem can be formulated using different methodologies according to the 

nature of the problem. The following categories of optimization are discussed in this thesis— 

i. Deterministic optimization 

ii. Robustness-based design optimization (RDO) 

iii. Reliability-based design optimization (RBDO) 

iv. Multi-objective optimization 

These four categories of optimization have been discussed in the following sections of this 

chapter.  

3.2.1 Deterministic optimization 

The input variables in the designs and processes are considered as fixed quantities in the 

deterministic optimization formulation without considering any stochastic characteristics or 

data uncertainty in the variables. The deterministic optimization formulation can be written 

as: 

                                                                   min
𝒙

𝑓(𝒙)                                                            (3.1) 

                                                         s.t.  gi (x) ≤ 0; for all i                                                  (3.2) 

   hi (x) = 0; for all i                                                   (3.3) 

                                                                 lb ≤ x ≤ ub                                                            (3.4) 

where, f (x) is the objective function, x is expressed as a vector for design variables, gi(x) is 

the ith inequality constraint, hi(x) is the ith equality constraint, and lb and ub are the vectors 

of lower and upper bounds of the design variables.  

3.2.2 Robustness-based design optimization (RDO) 

In real situations, the input variables are normally uncertain and solution obtained from the 

deterministic design optimization could be sensitive to the variations of the input variables. 

Uncertainty analysis could be an important issue in the robustness-based design optimization. 

The deterministic design optimization could be used to get an optimal point which might be 

applied as an initial guess in the robustness-based optimization problem. In practice, the 

robust design optimization is complex in nature which requires nonlinear optimization. In this 

thesis, objective robustness is achieved by measuring the variation in the objective function 

through the variance or standard deviation. Feasibility robustness is achieved by feasible 

region reduction method. First order Taylor series expansion is used to estimate the mean and 
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variance of the objective function. Weighted sum method is used to trade off the multiple 

objectives in the performance function of the robust design optimization. The formulation of 

robustness-based design optimization considering only aleatory uncertainty is [40]: 

                                                      min
𝒙

𝑓 (𝜇, 𝜎) = w × μf  + v × σf                                        (3.5) 

                              s.t. LB+kσ (gi (d, z)) ≤ E (gi (d,z)) ≤ UB – kσ(gi(d, z)) for all i              (3.6) 

                                   lbi + kσ (xi) ≤ di ≤ ubi – kσ(xi)    for i = 1, 2, 3……nrdv                   (3.7) 

                                  lbi ≤ di ≤ ubi      for i = 1, 2, 3…….nddv                  (3.8) 

where, μf and σf are the mean value and standard deviation of the objective function, 

respectively; d is the vector deterministic variables which can be the mean values of the 

uncertain variables x; nrdv is the number of random design variables and nddv is the number 

of deterministic design variables; z is the vector of non-design input random variables. w ≥ 0 

and v ≥ 0 are the weighting coefficients where w + v =1 that represent the relative importance 

of the objectives μf and σf   respectively; E(gi(d,z)) is the mean and σ(gi(d,z)) is the standard 

deviation of the ith constraint. LB and UB are the vectors of lower and upper bounds of the 

constraints gi’s; lb and ub are the vectors of lower and upper bounds of the design variables. k 

is used here to adjust the robustness of the method against the level of conservatism of the 

solution. Considering the variations in the design variables, k reduces the feasible region and 

is related to the probability of constraint satisfaction. 

 

3.2.3 Reliability-based design optimization (RBDO) 

In the field of optimization, RBDO is a tool that optimizes objective function(s) ensuring that 

the reliabilities of the inequality constraints or limit state functions are above an acceptable 

threshold limit, taking into account the uncertainty in design variables and system parameters. 

A reliability of 0.99 for an inequality constraint implies that the constraint will not be violated 

in 99% cases under uncertainty of the input variables. In case of equality constraints, the 

equality relation must hold under uncertainty of the input variables. Reliability estimation 

requires an analysis of uncertainty to calculate failure probability that is used in the 

constraint. A typical RBDO problem can be formulated as: 
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                                                             min
𝒅

𝑓(𝒅, 𝝁𝑝)                                                            (3.9) 

                                           s.t.  𝑃𝑓𝑗 = P (𝑔𝑗(xr, p)≤ 0) ≤ P𝑓J𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒    for all j                     (3.10) 

                                                        ℎ𝑗(d, μp) = 0;                                            for all j                     (3.11) 

                                                       lb ≤ d ≤ ub ;                                                             (3.12) 

where, 𝑓 (d, μp) is the objective function; d is the vector of deterministic design variables (xd) 

as well as the mean values of the random design variables (xr) i.e. d = [xd  μxr]; μ𝑝 is the 

vector of mean values of random design parameters (p); 𝑔𝑗 (x𝑟, p) is the 𝑗th inequality 

constraint, and in RBDO literature 𝑔𝑗 (x𝑟,p) is also referred to as 'limit state function'; 𝑃𝑓𝑗 and 

𝑃𝑓𝑗𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 represent the failure probability and allowable (maximum) failure probability for 

𝑗th inequality constraint, respectively; ℎ𝑗 (d, μ𝑝) is the 𝑗th equality constraint. The vectors lb 

and ub represent lower and upper bounds of all the design variables, respectively. Note that, 

the objective function value is estimated at d and μ𝑝 in RBDO. Eq. (3.10) is referred to as 

probabilistic formulation of the inequality constraints or limit state functions and in RBDO 

literature the functional relation 𝑔𝑗 (x𝑟,p) is expressed in such a manner that failure or 

violation of inequality constraint is denoted by 𝑔𝑗 (x𝑟,p) ≤ 0, which is opposite to 

conventional optimization problem notation.  

The failure probability 𝑃𝑓𝑗 for the 𝑗th inequality constraint may be obtained by evaluating the 

integral in Eq. (3.13), which is the fundamental expression of the structural reliability 

problem: 

                                                      𝑃𝑓𝑗
 =  ∫ 𝑓𝒓(𝒓)𝑑𝑟

𝑔𝑗(𝒙𝒓,𝐩) ≤ 0
                                            (3.13) 

where, r is the vector of all the random variables (i.e. r  = [x𝑟  p]); 𝑓𝒓 (r) is the joint 

probability density function (PDF) of random vector r. Note that, 𝑔𝑗 (x𝑟,p) can also be 

rewritten as 𝑔𝑗 (r). Elements of r are assumed to be statistically independent and normally 

distributed.  

3.2.4 Multi-objective optimization 

In many practical applications, a user may want to optimize two or more objective functions 

simultaneously. These are called multi-objective, multi-criteria or vector optimization 

problems. Common approaches to multi-objective optimization include the weighted-sum 

method, 𝜀-constraint method, global criterion method, lexicographic method, etc. In this 
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thesis, the weighted-sum method has been used. The weighted sum approach are discussed 

briefly in the following subsections 

3.2.4.1 Weighted-sum method 

This is a method that aggregates all the objective functions by multiplying each of them with 

a weighting coefficient 𝑤𝑖 to form a single function, which is then minimized. The value of 

the weighting coefficients generally reflects the relative importance of the objectives. The 

optimization problem is formulated as follows: 

                                                                     min 
𝒙

∑ 𝑤𝑖𝑓𝑖(𝒙)𝐼
𝑖=0                                                  (3.14) 

                                                         s.t.  gj (x) ≤ 0;  for all j                                               (3.15) 

   hj (x) = 0;  for all j                                                (3.16) 

∑ 𝑤𝑖
𝐼
𝑖=0  = 1;  wi  > 0                                                 (3.17) 

                                                                 lb ≤ x ≤ ub                                                          (3.18) 

Here, 𝑓𝑖(𝒙) is the 𝑖th objective function; 𝑤𝑖 is the weighting coefficient of 𝑖th objective 

function. The weighting coefficients w can be used in two ways— the user may either set 𝑤𝑖 

to reflect preferences or systematically alter 𝑤𝑖 to yield different Pareto optimal points. 

3.2.4.2 𝜀-constraint method 

The 𝜀-constraint approach minimizes the single most important objective function 𝑓𝑠 (𝒙) with 

other objective functions treated as constraints. The optimization problem is formulated as 

follows: 

                                                                         min 
𝒙

𝑓𝑠(𝒙)                                                         (3.19) 

                                                         s.t.  gj (x) ≤ 0;  for all j                                               (3.20) 

   hj (x) = 0;   for all j                                               (3.21) 

     fi ≤  𝜀i;      for i = 1, 2, 3, … I                             (3.22) 

Here, 𝑓𝑠(𝒙) is the single most important objective function, and other objective functions 

(𝑓𝑖(𝒙); 𝑖≠𝑠) are incorporated as constraints; 𝜀𝑖 is the expected value used as corresponding 

upper bound for 𝑓𝑖(𝒙).  

In this research, the weighted-sum method has been used in Deterministic Optimization, 

Robustness and Reliability-based optimization. The following chapter discusses the proposed 

methodology of this thesis. 
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CHAPTER 4 

PROPOSED METHODOLOGY 

In this study, sensor array optimization is performed based on two criteria: high selectivity 

and high diversity of sensor array. The flowchart of the proposed method is shown in Figure 

4.1. First, cluster analysis is used to get primary grouping information, and degree of 

similarity between sensors. Through cluster analysis, the maximum size of sensor array can 

be roughly estimated. Members of each group are selected using Fast Correlation-Based 

Filter (FCBF) algorithm. First, the deterministic optimization formulation is solved to 

identify the Pareto optimal solutions. Then, robustness based and reliability based multi-

objective optimization is implemented to identify the Pareto sets of solutions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Flow chart of the Proposed Method 
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The solutions obtained from the robustness and reliability-based multi-objective optimization 

have been used to identify the optimal set of sensors. The performance of the set of sensors 

are evaluated by a statistical index, General Resolution Factor (GRF). In addition, the 

classification performance the selected sensors are visually evaluated with the aid of Principal 

Component Analysis (PCA). The details of each steps of the proposed method have been 

discussed in the rest of this chapter. 

4.1. Cluster analysis 

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects 

in the same group are more similar to each other than to those in other groups [28]. . With 

respect to some characteristic, observations in each cluster or group are similar to each other; 

and observations of different groups are different. Usually, similarity is decided by 

comparing the distances in some space: the smaller the distances between observations, the 

more similar they are. The most commonly used distance metric is the Euclidean distance. 

There are two types of cluster analysis:  

i. Hierarchical 

ii. Non-hierarchical 

This study employs the hierarchical clustering to find the number of clusters based on data 

similarity. The number of clusters is needed to determine the maximum number of features in 

the feature selection algorithm. Sensors are grouped into several subarrays based on their 

selectivity. The number of clusters is associated with the optimal amount of gas sensors in the 

sensor array [71]. To reflect distances between clusters, several methods for developing 

similarity matrix can be chosen: centroid, single-linkage, complete linkage, average-linkage 

and Ward’s method, etc. [72]. Centroid clustering with Euclidean distance is used in this 

thesis for its better handling of data. In this research, cluster analysis is employed to 

preliminarily analyze the approximate groups among all sensor candidates. 

4.2. Deterministic Model Formulation 

First, the deterministic multi-objective model is developed using the Shannon’s classical 

information theory [73].  

4.2.1 Objective function formulation 

In this thesis, two criteria: selectivity and diversity have been considered in objective function 

formulation. In this formulation, there are M potential sensors to identify N vapors. We need 

to optimize a subset of size K out of M potential sensors (K ≤ M) where, Sij denotes the 
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sensitivity of sensor j towards target vapor i.   The objective function 1 has been formulated 

as follows: 

Step 1: Normalization of matrix Sij with respect to the total sum of elements in jth column: 

                                                             𝑆𝑖𝑗 =  
𝑆𝑖𝑗

∑ 𝑆𝑖𝑗
𝑁
𝑖=1

                                                         (4.1) 

where i and j refer to the index of analyte and sensor, respectively. 

Step 2: Calculation of entropy, 𝐻(𝑆̃𝑗) for each selected sensor j: 

                                                        𝐻(𝑆𝑗) =  

log
1

∏ 𝑆̃𝑖𝑗
𝑆̃𝑖𝑗𝑁𝑁

𝑖=1

𝐾
                                             (4.2) 

Step 3: Getting the maximum entropy (Hmax) for sensor array of size K: 

                                                            𝐻𝑚𝑎𝑥 = log 𝐾                                                           (4.3) 

Step 4: Finally, the entropy-based objective function for a sensor array of size K is obtained 

as: 

                                                         𝑓1 =  
1

𝐾
∑

𝐻 (𝑆̃𝑗)

𝐻𝑚𝑎𝑥

𝐾
𝑗=1                                                    (4.4) 

Similarly, the objective function 2 has been formulated as follows: 

Step 1: Normalization of matrix Sij with respect to the total sum of elements in ith row: 

                                                             𝑆𝑖𝑗 =  
𝑆𝑖𝑗

∑ 𝑆𝑖𝑗𝑗
                                                            (4.5) 

where, i and j refer to the index of analyte and sensor, respectively, as before. 

Step 2: Calculation of entropy, 𝐻(𝑆̃𝑖) for each vapor class i: 

                                                         𝐻(𝑆̃𝑖) =  

log 
1

∏ 𝑆̃𝑖𝑗
𝑆̃𝑖𝑗𝑁𝑘

𝑗=1

𝐾
                                              (4.6) 

Step 3: Getting the maximum entropy (Hmax) of the classification task with N vapor classes: 

                                                            𝐻𝑚𝑎𝑥 = log 𝑁                                                           (4.7) 

Step 4: Finally, the entropy-based objective function of the classification task with N vapor 

classes: 

                                                         𝑓2 =  
1

𝑁
∑

𝐻 (𝑆̃𝑖)

𝐻𝑚𝑎𝑥

𝑁
𝑖=1 ;                                                   (4.8) 



20 
 

In this thesis, weighted sum approach has been used, taking w be the weight to solve the 

deterministic multi-objective problem. Therefore, our objective function becomes: 

                           𝑚𝑖𝑛 𝑓 (𝑓1, 𝑓2) = w × 
1

𝐾
 ∑

𝐻 (𝑆̃𝑗)

𝐻𝑚𝑎𝑥

𝐾
𝑗=1   + (1- w) × 

1

𝑁
 ∑

𝐻 (𝑆̃𝑖)

𝐻𝑚𝑎𝑥

𝑁
𝑖=1                (4.9) 

4.2.2 Constraints formulation 

In this thesis, the constraints have been developed based on the limitation proposed by 

Shannon in his information theory [73]. Here, the number of constraints depend on the 

number of sensors used and the number of analytes being analyzed. For a number of i 

analytes and  j number of sensors, there will be (i + j)  number of constraints. the constraints 

are formulated as follows: 

                                          gj = |
log 𝑆𝑗

−1

𝐾
− log 𝐾| <  0.1;  for j = 1, 2, 3……. K             (4.10) 

                                          gi = |log 𝑆𝑖
−1

𝑁
− log 𝑁| <  0.1;  for i = 1, 2, 3…….  N             (4.11) 

4.3 DO Model Formulation: 

Design variables and system parameters are considered fixed in the deterministic 

optimization formulation. The randomness in system parameters and uncertainty in obtaining 

precise design variables are not considered in this type of formulation. Using Eqs. (4.9) to 

(4.11), the deterministic optimization is formulated as: 

                                     𝑚𝑖𝑛 𝑓 = w × 
1

𝐾
 ∑

𝐻 (𝑆̃𝑗)

𝐻𝑚𝑎𝑥

𝐾
𝑗=1   + (1- w) × 

1

𝑁
 ∑

𝐻 (𝑆̃𝑖)

𝐻𝑚𝑎𝑥

𝑁
𝑖=1                (4.12) 

                                 s.t.    |
log 𝑆𝑗

−1

𝐾
−  log 𝐾| <  0.1;  for j = 1, 2, 3……. K                    (4.13) 

                                         |log 𝑆𝑖
−1

𝑁
− log 𝑁| <  0.1;  for i = 1, 2, 3…….  N                     (4.14) 

                                                                 lb ≤ Sij ≤ ub                                                        (4.15)                

Here, 𝑓 is the objective function, Sij is the vector of design variables, and 𝒍𝒃 and 𝒖𝒃 are the 

vectors of lower and upper bounds of design variables. In practice, the design variables and 

system parameters might be uncertain and solutions obtained from deterministic formulation 

can be sensitive due to the unaccounted uncertainty. 
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4.4 RDO Model Formulation:  

In robust-based design optimization, the uncertainty present in the design variables is 

considered. In this thesis, the aleatory uncertainty present in the sensitivities of the sensors 

has been considered. The mean values of the sensitivities are obtained from the average of 

multiple observations and 0.1 is considered as the standard deviation as suggested by Xu et 

al. [3]. By applying first order Taylor series expansion method, the mean and variance of the 

objective function and constraints can be obtained [46], respectively, using Eqs. (4.12) and 

(4.13) as follows. 

                                           𝜇𝑓 =  E (𝑓) =  
1

𝐾
∑

𝐻 (𝑆̃𝑗)

𝐻𝑚𝑎𝑥

𝐾
𝑗=1  ;                        (4.16) 

                                           σf 2 = ∑ (
𝜕 (𝑓)

𝜕𝑆𝑖𝑗
)2𝑉𝑎𝑟(𝑆𝑖𝑗)𝐾

𝑗=1                  (4.17) 

In this research, we have simultaneously minimized the mean and standard deviation of the 

first objective function which is based on selectivity criterion. The second objective function 

is converted to a constraint using the ε-constraint method using Eq. (3.22)  [74]. Our 

robustness based design optimization model can be written as: 

                     min
𝑺𝒊𝒋

𝑓 (𝜇, 𝜎) = w × 
1

𝐾
∑

𝐻 (𝑆̃𝑗)

𝐻𝑚𝑎𝑥

𝐾
𝑗=1   + (1-w) × √∑ ( 

𝜕 (𝑓)

𝜕𝑆𝑖𝑗
)

2
𝑉𝑎𝑟(𝑆𝑖𝑗)

𝐾
𝑗=1          (4.18)      

s.t. LB+kσ (
log 𝑆𝑗

−1

𝐾
− log 𝐾) ≤ E (

log 𝑆𝑗
−1

𝐾
− log 𝐾) ≤ UB – kσ (

log 𝑆𝑗
−1

𝐾
− log 𝐾)            (4.19)                

     LB+kσ (log 𝑆𝑖
−1

𝑁
−  log 𝐾) ≤ E (log 𝑆𝑖

−1

𝑁
− log 𝐾) ≤ UB – kσ (log 𝑆𝑖

−1

𝑁
−  log 𝐾)            (4.20)             

                                                lbij + k𝜎𝑠𝑖𝑗
 ≤  𝑬 (𝑺𝒊𝒋) ≤ ubij – k𝜎𝑠𝑖𝑗

                                      (4.21) 

where, the mean, 𝜇𝑓 and standard deviation, σf values of the objective function is obtained 

from Eq 4.12 and Eq. 4.13, respectively. 𝑬 (𝑺𝒊𝒋)  is the mean values of the uncertain design 

variables; i×j is the number of random design variables; w ≥ 0 is the weighting coefficients 

that represent the relative importance of the objectives; LB and UB are the vectors of lower 

and upper bounds of the inequality constraints; lb and ub are the vectors of lower and upper 

bounds of the design variables. k =1 is used here to adjust the robustness of the method 

against the level of conservatism of the solution. Considering the variations in the design 
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variables, k reduces the feasible region and is related to the probability of constraint 

satisfaction.  

4.5 RBDO Model Formulation: 

In this thesis, the FORM based RBDO is used. In FORM approach, failure probability for any 

limit state function can be estimated using three steps. These are as follows— 

Step 1: Transformation of the random variables r to the standard normal space u, such 

that: 

                                                             𝑢𝑖𝑗 = 
𝑟𝑖𝑗 − 𝜇𝑖𝑗 

𝜎𝑖𝑗
 ; for all i, j                                      (4.22) 

Step 2: Calculation of the most probable point (MPP) of failure, u∗. This point is the 

solution to the constrained optimization problem— 

                                                           u* = arg min (‖u ‖ g (u) = 0)                                   (4.23) 

where, ‖u‖ is the Euclidean norm of vector u; 𝑔(u) represents a limit state function. 

Step 3: Calculation of the reliability index 𝛽. For most practical problems, 𝛽 is greater 

than zero, in which case 𝛽 is also equal to ‖u*‖ The probability of failure is 

approximated as: 𝑃𝑓 = Φ(−𝛽), where Φ is the standard Gaussian cumulative 

distribution function (CDF). 

The main challenge in RBDO lies in handling the reliability constraints stated in Eq. (3.9). 

RBDO methods can be classified into 3 groups based on how reliability analysis is handled in 

the optimization process. These are— (i) nested double loop methods; (ii) single loop 

methods and (iii) decoupled methods. RBDO based on FORM is a nested double loop 

approach that requires an optimization loop, as well as a reliability loop, i.e., two 

optimizations, are coupled. Such coupling of the two optimization loops is computationally 

expensive. Several single loop methods and decoupled methods have been developed to 

reduce the computational burden of the nested approach. RBDO based on FORM can be 

classified into two approaches— Reliability Index Approach (RIA) and Performance 

Measure Approach (PMA). In this thesis, RBDO based on FORM is used that follows RIA. 

Therefore, the RBDO formulation stated by Eqs. (3.9) to (3.12), can be reformulated as 

follows: 
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                             𝑚𝑖𝑛 𝑓 (𝑓1, 𝑓2) = w × 
1

𝐾
∑

𝐻 (𝑆̃𝑗)

𝐻𝑚𝑎𝑥

𝐾
𝑗=1   + (1- w) × 

1

𝑁
∑

𝐻 (𝑆̃𝑖)

𝐻𝑚𝑎𝑥

𝑁
𝑖=1            (4.24) 

                                                s.t.  𝑃𝑓q = ϕ(-βq ) ≤  P𝑓q𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒                                                          

                         where, βq  = ‖uq*‖; and  uq* = arg min (‖u‖ gq (u) = 0) for all q             (4.25) 

                                                                     lb ≤ μij  ≤ ub                                                                  (4.26) 

where, 𝑓 is the objective function; μij is the mean values of the random design variables (𝑆𝑖𝑗); 

u is transformed standard normal space vector corresponding to the vector of all the random 

variables r ; 𝑔q (u) is the qth limit state function expressed in standard normal space; 𝛽q is the 

reliability index for qth limit state function; Φ is the standard Gaussian cumulative 

distribution function (CDF); 𝑃𝑓q and 𝑃𝑓q𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 represent the failure probability and 

allowable (maximum) failure probability for qth limit state function, respectively; μq* is the 

most probable point (MPP) of failure for qth limit state function; the vectors lb and ub 

represent lower and upper bounds of all the design variables, respectively. The probabilistic 

formulation of Eq. (3.10) is substituted by Eq. (4.25). The RBDO formulation stated by Eqs. 

(4.24) to (4.26), is used to solve the sensor array optimization problem. RBDO used in this 

thesis is formulated to deal with aleatory uncertainty only; epistemic uncertainty is out of the 

scope of this thesis. 

4.6 Evaluation of the Optimization Results 

4.6.1 General Resolution Factor (GRF) 

Several criteria have been proposed for evaluating the performance of the selected sensors  in 

the literature such as the classification rate [75], the distance measure [1, 3], and the 

comparison between classification rate and distance measure [76]. Considering that the 

classification rate does not only depend on the quality of input features but also on the 

parameter setting and the environment configuration, the evaluation result is produced by 

employing a classifier that does not guarantee the quality of the input features. Therefore, a 

high correct classification rate can mean overfitting. According to the above explanation, it 

will be necessary to verify the quality of the input features before they are consumed by 

another process. This work uses General Resolution Factor (GRF) to measure the input 

quality of the selected features. GRF can be expressed by the following equation [1]: 

                                                      GRF = √∑
(𝜇𝑖1 − 𝜇𝑖2)2

𝜎𝑖1
2  + 𝜎𝑖2

2
𝑚
𝑖=1                                 (4.27) 
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where, i is the index of feature; m is an integer and d ≥ 1, it equals to the total number of 

input feature(s); 𝜇𝑖1 and 𝜇𝑖2 are group mean values, and σi1 and σi2 are standard deviations of 

the two classes with respect to feature i. Assuming Gaussian distribution, the larger ratio 

between centroid distance √𝜇𝑖1  −  𝜇𝑖2 and √𝜎𝑖1
2  +  𝜎𝑖2

2  is related with a larger probability of 

correct classification rate [77]. Therefore, higher GRF value indicates better performance for 

a sensor group. 

4.6.2 Principal component analysis 

In this thesis, the input quality of each sensor group is demonstrated by Principal Component 

Analysis (PCA) plot. After the projection of original data, the resulting space can best explain 

the variation of original data in a sum-squared error sense [78]. Principal components (PCs) 

are new variables generated through linear transformation; and the axes corresponding to PCs 

are orthogonal to each other. Principal components are numbered according to the amount of 

variance in original data they account for. The first PC explains the maximum variance, the 

second PC accounts for the maximum variance that is not covered by the first PC, and so on 

[71]. The eigenvalues corresponding to those principal components are also in decreasing 

order. Usually, a few first PCs with the largest eigenvalues compose of the subspace 

dominating the original signal, while the remaining PCs contain noise [78]. PCA can reduce 

dimension, and eliminate noise through keeping only several first principal components. 

Two-dimensional and three-dimensional plots of dominating principal components are 

common tools for visual inspection of classification. In this research, two-dimensional PCA 

plot is used to evaluate the performance of the selected sensors graphically. 

The performance of the optimized set of sensor arrays are evaluated by the General 

Resolution Factor (GRF). Generally, the higher value of GRF indicates the better 

performance of the sensor array. Moreover, the classification performance of different sensor 

groups are evaluated with the aid of the Principal Component Analysis (PCA). The input 

quality of the selected sensors can be visually evaluated by their separation of the Principal 

Components (PCs).  The following chapter provides a numerical illustration of the proposed 

method with results and discussions. 
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CHAPTER 5 

NUMERICAL ILLUSTRATIONS 
 

5.1 Sensor System Setup 

A sensor array system includes several sensor elements each coated with certain sensing 

material which has particular sensitivity to analytes, such as vapors, smokes and different 

volatile organic compounds (VOCs). In this thesis, a Message Queue (MQ) based sensor 

system prototype is built for demonstrating the proposed model. The MQ sensors are low-

cost and reliable sensors that can detect various kinds of gases, smokes and particulates.  Our 

sensor system is built based on the Arduino platform. The sensor system is designed to test 

the presence of different gases. The sensor system used nine different MQ-based sensors. In 

Table 5.1, the types of MQ sensors used in this study are shown with their detecting 

capability. 

Table 5.1: Name of the MQ Sensors with their Selectivity 
Serial 

No Sensor Selectivity 

1 MQ2 LPG, Propane, Methane, Alcohol, Hydrogen, Smoke 

2 MQ3 Alcohol, Benzene, Methane (CH4), Hexane, LPG, CO2 

3 MQ4 Methane (CH4), CO and Natural gas 

4 MQ5 LPG, Natural gas 

5 MQ6 LPG, iso-butane, Propane 

6 MQ7 Carbon Monoxide (CO) 

7 MQ8 Hydrogen (H2) 

8 MQ9 Methane (CH4), Propane and CO2 

9 MQ135 Ammonia (NH3), NOx, Alcohol, Benzene, Smoke and CO2 

 
The sensor system consists of an Arduino UNO R3, nine different sensors as shown in Table 

5.1, breadboard, red and green LEDs, resistors, buzzer and different required wires. The 

open-source Arduino Software (IDE)was used to compile and upload the code to the UNO 

R3 board. The sensor system prototype is shown in Figure 5.1. 
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Figure 5.1: Sensor System Setup 

5.2 Calculation of Sensitivity 

The steady-state of sensor response is calculated from the relative differential resistance 

change. Usually, the relationship between sensor response and concentration is quasi-linear in 

some range of concentration. Therefore, the response of sensor i to the analyte j can be 

estimated as: 

       Rij ≅ SijCj                                                           (5.1) 

where, Sij is the sensitivity of the ith sensor to the jth analyte, Cj is the concentration in Parts 

Per Million (PPM). Here, sensitivity summarizes the essential attribute of senor response. In 

this study, sensitivity was used as the basis for sensor selection. In the sensor system, the 

vapors tested were: Carbon monoxide (CO), Liquefied Petroleum Gas (LPG), and Smoke. 

Generally, gas sensor is an analog sensor so the output data are the result of analog to digital 

conversion (ADC). The ADC value must be converted to obtain the resistance value of the 

sensor from Eq. (5.2) and Eq. (5.3). 

   Rsi =  
𝑉𝑐− 𝑉𝑅𝐿𝑖

𝑉𝑅𝐿𝑖 × 𝑅𝐿𝑖
                                                (5.2) 

  VRLi  =  𝐴𝐷𝐶𝑖 − 𝑉𝑐

𝐶𝑏𝑦𝑡𝑒
                                                (5.3) 
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where, Rs is sensor resistance at various concentrations; i is the number of sensors; Vc is the 

circuit voltage (5V±0.1); VRL is the voltage sensor in the sample space; RL is sensor load 

resistance; ADC is Analog to Digital Conversion values from each sensor; Cbyte : Byte of the 

used board (1024 byte). In this thesis, the value of sensor response and the concentration of 

the vapor in ppm are obtained from the readings from the Arduino Uno which is shown in the 

Arduino Software’s output interface to calculate the sensitivities of each sensor to each 

analyte. 

5.3 Cluster Analysis 

The data sets are primarily analyzed by cluster analysis. Euclidean distance is used as 

similarity measurement which gives similar grouping results. In hierarchical clustering, the 

dendrogram is used to allocate objects to clusters or groups based on the similarity 

measurement [78]. User can choose the number of clusters or groups according to his 

preference based on the similarity measure. In this thesis, we have chosen five clusters or 

groups. In Figure. 5.2, the dendrogram indicates that the 9 sensors could be roughly divided 

into different groups by cutting at a different level of similarity. Figure 5.2 shows that the 

grouping can be done as 3 sensors group, 4 sensors group, 5 sensors group and 7 sensors 

group by cutting the dendrogram at 97.5, 98.5, 99 and 99.5 percent similarity, respectively. 

We have also taken all 9 sensors in a group for comparison with other groups.  

 
Figure 5.2: Dendrogram for Cluster Analysis 
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The members of each groups are selected by the modified Fast Correlation-Based Filter 

(FCBF) proposed by Wijaya et al. [79]. The FCBF algorithm can find the best combination of 

sensor array with minimizing feature redundancy. The sensor groups with their selected 

member are shown in Table 5.2.  

Table 5.2: Sensor Groups after Cluster Analysis 

Sensor Array Sensor Members 

3 Sensors MQ4, MQ5, and MQ135 

4 Sensors MQ4, MQ5, MQ8 and MQ135 

5 Sensors MQ2, MQ4, MQ5, MQ8, and MQ135 

7 Sensors MQ2, MQ3, MQ4, MQ5, MQ7, MQ8, and MQ135 

All 9 Sensors MQ2, MQ3, MQ4, MQ5, MQ6, MQ7, MQ8, MQ9, and MQ135 

 

5.4 Results and Discussion 

After the cluster analysis, the deterministic, robust, and reliability-based multi-objective 

optimizations were realized in the MATLAB environment and run on a computer with Intel 

Core i5 processor, and 8 GB RAM. The results obtained from each of the formulations are 

discussed in the following sections. 

5.4.1 Results from deterministic formulation 

First, the deterministic problem formulated in Eqs. (4.12) to (4.15) has been solved. The 

weighted sum approach has been used to solve the multi-objective problem. The weight is 

taken from 0 to 1 with an increment of 0.1. The fmincon solver was used to solve the 

problem. The Pareto fronts obtained for different sensor groups of Table 5.2 using the 

deterministic formulation are shown in Figure 5.3.  
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Figure 5.3: Pareto Optimal Solutions for the deterministic problem for  
different sensors group 

As the weighting coefficient (𝑤) increases, the value of objective function 1 decreases and 

objective function 2 increases. As the problem is formulated as minimization problem, lower 

values for both objective function 1 and objective function 2 are desirable. From Figure 5.3, it 

can be observed that in deterministic formulation, for 4 sensors group the value for both 

objective functions is lower compared to other groups. For 3 sensors group and 5 sensors 

group, the value of objective functions is less than the value for 7 sensors group and 9 sensors 

group. It can be observed that, with the increase in number of sensors from 4 sensor group to 

9 sensor group, the performance of the sensor groups is degrading. Therefore, it can be 

concluded that the 4 sensors group can be chosen from the DO optimization.  In addition, the 

performance of 3 sensors group and 5 sensor group is better than 7 sensors group and 9 

sensors group. Specially, the performance significantly reduced in case of the 9 sensors group 

because the values of both objective functions are found to be higher than the other groups. In 

9 sensors group, the greater number of sensors is responsible for increased complexity 

leading to higher noise. The generation of more noise results in higher entropy which is 

responsible for their performance degradation. 
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5.4.2 Results from robustness-based formulation 

The RDO formulation presented in Eq. (4.16) to Eq. (4.21) of Chapter 4 is solved with 

multiple combinations of the weighting coefficients to obtain Pareto front for the multi-

objective optimization problem using MATLAB. We have used the fmincon solver for this 

purpose. The Pareto optimal solutions are obtained by varying 𝑤 from 0 to 1 with an 

increment of 0.1. The Pareto fronts obtained for different sensor groups from the robustness-

based formulation are shown in Figure 5.4.  

 

Figure 5.4: Pareto Optimal Solutions for the robustness-based problem for  

different sensors group 

As the weighting coefficient (𝑤) increases, the value of value of objective function 1 

decreases and objective function 2 increases. As the problem is formulated as minimization 

problem, lower values for both mean and standard deviation of the objective function are 

preferable. From Figure 5.4, it can be observed that the performance of 5 sensors group is 

best for having lowest values for both objective functions. The performance of 4 sensors 

group, 3 sensors group  and 5 sensors group can be considered as second, third, and fourth 

respectively. It can be observed that the performance degrades in either increasing or 

decreasing the number of sensors from 5 sensors groups. The performance of all 9 sensors 

together is poor because it fails to provide lower value for both the objective functions. 
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5.4.3 Results from reliability-based formulation 

The reliability-based design optimization (RBDO) formulation presented in Eq. (4.22) to Eq. 

(4.26) is solved using MATLAB. This problem is also solved using the fmincon solver of 

MATLAB. We have used the FORM method following RIA to solve the reliability-based 

method. The Pareto optimal solutions are obtained by varying 𝑤 from 0 to 1 with an 

increment of 0.1. The optimization loop includes reliability constraints that require prior 

evaluation of the reliability index (𝛽) through additional optimization processes for each limit 

state function or inequality constraint. The optimization processes for the evaluation of 𝛽 are 

executed in terms of standard normal vectors 𝒖 corresponding to the random vector 𝒓. No 

lower or upper bounds are imposed on 𝒖. The nested optimizations require higher 

computational effort compared to RDO approaches. The Pareto front obtained in RBDO 

formulation is depicted in Figure 5.5.  

 

Figure 5.5: Pareto Optimal Solutions for the reliability-based problem for 
 different sensors group 

As the weighting coefficient (𝑤) increases, the value of objective function 1 decreases and 

objective function 2 increases. As the problem is formulated as minimization problem, lower 

values for both objective functions are desirable. From the figure 5.5, it can be observed that 

the performance of 5 sensors group is optimal for providing lower values for both the 

objective functions. The performance of 4 sensors group and 7 sensors group can be 
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considered in next place after 5 sensors group. And, the performance of the 3 sensors group 

and 9 sensors group is poor compared to the other groups for having higher values for both 

the objective functions. Therefore, it can be said that the performance degrades in either 

increasing or decreasing the number of sensors from the optimal 5 sensors group. The 

absence of required number of sensors in 3 sensor group and presence of redundant sensors in 

9 sensors group might be responsible for their performance degradation, respectively. 

5.4.4 Discussions of results 

Pareto optimal solutions to the DO, RDO, and RBDO formulations provide multiple 

alternative sets of optimal values for the sensitivities to select optimal set of sensors for 

sensor array. The computational time of the different methods used in this thesis are 

compared in Table 5.3, for different sensors groups with the weighting coefficient, 𝑤 = 0.5.  

Table 5.3: Computational time in seconds for deterministic, robustness, and reliability-
based formulations 

Sensors Group Deterministic 
Optimization 

Robustness-based 
optimization 

Reliability-based 
optimization 

3 Sensors Group 1.22 sec 2.18 sec 118.11 sec 

4 Sensors Group 1.31 sec 2.25 sec 149.53 sec 

5 Sensors Group 1.45 sec 2.34 sec 181.19 sec 

7 Sensors Group 1.81 sec 2.55 sec 221.20 sec 

9 Sensors Group 1.97 sec 3.04 sec 245.77 sec 

The Pareto fronts obtained in different methods are illustrated in Figure 5.6 to compare the 

values of the two objective functions corresponding to different Pareto optimal solutions for 3 

sensors group, 4 sensors group, 5 sensors group, 7 sensors group and 9 sensors group, 

respectively. 

The Pareto optimal solutions offer a set of alternative combinations to be chosen according to 

the requirements of the user. The user can choose one of the Pareto optimal solutions and 

select the optimal sensor set for designing a sensor system. It can be observed from Figure 

5.6 (a) that for 3 sensors group, the objective function values provided by the RDO are 

preferable compared to those of DO and RBDO. In addition, from Table 5.3, it can be 

observed that the computational time involved in RDO approaches is lower compared to  
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 (a) (b) 

 (c)  (d) 

 
(e) 

Figure 5.6: Comparison among the Pareto Optimal Solutions obtained in DO, RDO and 
RBDO formulations for: (a) 3 sensors group (b) 4 sensors group (c) 5 sensors group (d) 

7 sensors group and (e) 9 sensors group 
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RBDO approaches but higher than DO. From figure 5.6 (b), it can be observed that the 

performance of RDO and RBDO is almost similar but better than DO. In this case, DO is 

taking less time than RDO and RBDO. Again, It can be observed from Figure 5.6 (c) that for 

5 sensors group the objective function values provided by the RBDO are preferable compared 

to those of DO and RDO. In contrast, the computational time involved in RBDO approaches 

is significantly higher compared to DO and RDO approaches. From Figure 5.6 (d), for 7 

sensors group, the objective function values provided by the RDO are preferable compared to 

those of DO and RBDO. In this case, the computational time involved in RDO approaches is 

lower compared to RBDO approaches but higher than DO. From Figure 5.6 (e), it can be 

observed that DO performed better in minimizing the objective functions in case of 9 sensors 

group compared to RDO and RBDO. From the Table 5.3, it can be observed that the 

computational time involved in DO approaches for 9 sensors group is lower compared to 

RDO and RBDO approaches. 

As the number of sensors increases, the computational complexity increases. Therefore, the 

computational time also increases for every formulation with higher number of sensors. By 

comparing the results for different sensors group, DO is found to be taking less 

computational time in all cases. RBDO is found to be taking more time in all cases due to 

presence of extra reliability loop as well as optimization loop. RDO lies in between DO and 

RBDO for all sensors groups. However, the performance of DO, RDO and RBDO in 

achieving lower values for objective functions varies for different sensors groups. It is 

recommended to use RDO for 3 sensors group, 4 sensor group, and 7 sensors group, RBDO 

for 5 sensors group and DO for 9 sensors groups. 

5.5 Evaluation of the Optimization Results 

As mentioned earlier, the performance of the selected sensors based on the optimization 

results are evaluated using General Resolution Factor (GRF). Quantitatively, the feature 

subset quality of each sensor group is compared based on GRF. First, the original space for 

each sensor combination is transformed into a new space by the help of PCA. GRF values are 

calculated by the first two of the corresponding principal components (PCs) from each sensor 

group. Table 5.4 summarized the GRF values obtained from each sensor groups. 
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Table 5.4: GRF values of Each Group 

Sensor Group GRF Value 

3 Sensors 0.23901 

4 Sensors 0.25417 

5 Sensors 0.26781 

7 Sensors 0.24925 

9 Sensors 0.22766 

From Table 5.4, it can be observed that the 5 sensors group has the highest GRF value than 

others. As the higher GRF value is related with a larger probability of correct classification 

rate [79]. Therefore, the performance of the 5 sensors can be considered as better than other 

groups. The GRF values for 4 sensors group and 7 sensors group are close to the 5 sensors 

group. The performance of the 4 sensors group and 7 sensors group stand next to the 5 

sensors group. The GRF value is the lower for 3 sensors group compared to 4, 5 and 7 

sensors group, thus, can be considered having poor performance than the 4, 5, and 7 sensors 

groups. And, the GRF value is lowest for using all 9 sensors together. Therefore, the 

performance of the 9 sensors group can be considered as poorest for having lowest GRF 

value among the five groups. 

The input qualities for pattern recognition provided by each sensor groups can be visually 

evaluated by the Principal Component Analysis [3]. In this thesis, 2-D PCA plots have been 

used the evaluate the performance of the sensor groups. The PCA plots for the different 

sensor groups are shown in Figure 5.7. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure. 5.7: PCA plot for sensor groups: (a) 3 sensors group (b) 4 sensors group (c) 5 
sensors group (d) 7 sensors and (e) 9 sensors 
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PCA plots in Figure 5.7 indicate that all sensor groups are able to differentiate different vapor 

classes. The observations for 3 sensors group, 4 sensors group, and 5 sensors group show that 

these groups are able to  separate the vapor classes without overlapping. The performance of 

the 5 sensors group is better in separating the vapor classes. Though, the 7 sensors group 

shows some overlapping, but is able to differentiate vapor classes satisfactorily. However, the 

overlapping is present to a large extent for 9 sensors group. The overlapping is caused by the 

presence of redundant sensors in 9 sensors group which is also responsible for their 

performance degradation.  

The outcome of the proposed method is to select suitable subset of sensors from a set of 

sensors. In this thesis, total 9 sensors have been used to demonstrate the proposed 

methodology. After cluster analysis, five groups are considered consisting 3 sensors, 4 

sensors, 5 sensors, 7 sensors, and 9 sensors, respectively. Our goal is to select the optimal set 

among these five groups. The deterministic optimization results shows that the performance 

of 4 sensors group is better. However, the results obtained from the deterministic 

optimization may fail due to the uncertainties present in the input variables. Optimization 

under uncertainty such as RDO and RBDO consider these uncertainties present in the input 

variables and provide more robust and reliable solutions. In our research, both robustness and 

reliability-based optimization results show that 5 sensors group is the optimal subset of 

sensors from the set of 9 sensors. The results obtained from RDO and RBDO considering the 

uncertainties in input variables is more reliable in real life scenario. Moreover, the GRF value 

is also higher for the 5 sensors group, and thus, supports the selection of 5 sensors group 

based on stochastic optimization results provided by RDO and RBDO. The performance of 

the 5 sensors group is visually evaluated by its classification performance using PCA. In the 

PCA plots, the 5 sensors group showed better separation with lowest overlapping than other 

sensor groups. Moreover, our optimization results from DO, RDO and RBDO shows that the 

performance of using all 9 sensors is the poorest among all other groups. The 9 sensors group 

has also the lowest GRF and highest overlapping in PCA plot, therefore indicating poorest 

performance among all groups. Therefore, using all 9 sensors together is not recommended at 

all. At least 2 redundant sensors need to be removed from the 9 sensors before using. 

However, using the 5 sensors group will be the optimal choice with a less chance of failure 

under uncertainties for getting improved input qualities for the pattern recognition part. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 

Multi-objective sensor array optimization under uncertainty can significantly improve the 

input quality for the pattern recognition of the sensor systems. In the sensor system, 

successful detection is essential because it might be directly responsible for losing lives and 

loss of financial assets. By considering the aleatory uncertainty in the input variable, the 

proposed method can provide more robust and reliable solution in practical scenario. In this 

research, robustness and reliability-based multi-objective optimization methods have been 

proposed for sensor array optimization. The proposed methods are able to successfully 

determine the Pareto sets of potential optimal solutions; which could provide improved input 

quality for the pattern recognition. More importantly, selectivity and diversity were 

simultaneously used as two criteria in optimization to find optimal sensor arrays. Moreover, 

the proposed multi-objective optimization method under uncertainty was demonstrated using 

a designed sensor system prototype. The optimization results is evaluated quantitatively 

through the statistical measure of resolving power: general resolution factor (GRF) and 

visually with the aid of principal component analysis. The GRF values showed that most of 

the selected sensor arrays performed better than the combinations employing all potential 

sensors. The comparison of corresponding PCA plots also supported that argument.  In 

general, this study provides the following contributions in the field of research: 

i. Incorporation of uncertainty in the input variables to obtain more robust and reliable 

solutions for the sensor array optimization. 

ii. Development of robust and reliability-based multi-objective sensor array optimization 

formulation considering both selectivity (sensor’s response to the target analyte) and 

diversity (sensor’s response to the rest of the analytes) criteria. 

iii. Selection of the best combination of sensor array from a set of sensors based on the 

optimization results obtained from DO, RDO and RBDO. 

iv. Removing redundant sensors from the sensor system which ensures that the industry 

can use a smaller number of sensors without sacrificing quality and become cost 

efficient. 

Our proposed model of multi-objective optimization under uncertainty is capable of 

providing high quality input for pattern recognition with fewer sensors. The demonstration of 
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the proposed methods using the sensor system prototype will facilitate the industries to 

understand and implement the proposed model easily in the practical arena. The application 

of this study is expected to significantly improve the sensor system design in the industrial 

sector. 

6.2 Future Work 

Several aspects of this research can be extended for the future development of sensor array 

optimization formulation. The determination of optimized location for placing these sensors 

would be a good addition. The sensor placement optimization will ensure the optimal 

locations for the sensors for better detection. Moreover, this thesis can be extended to 

consider the epistemic uncertainty. Therefore, future studies involving epistemic uncertainties 

and sensor placement optimization might improve the sensor system design.  
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