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ABSTRACT 

 

Representation and propagation of different types of uncertainties (aleatory and epistemic) are 

increasingly being acknowledged in the design and optimization of complex systems. Statistical 

moment-based existing uncertainty representation approaches quantify uncertainties in an input 

quantity through moment bounds, and for this purpose, estimate different moments of a random 

variable from different sample sets. However, being not independent of each other, all the moments 

of the same random variable should be calculated from the same sample dataset. Again, existing 

approaches compute the widest possible (most conservative) range for each of the moments which 

offer maximum possible alternative values of uncertain variable, and is regarded as worst case 

from the aspect of uncertainty quantification. Therefore, first part of this thesis proposes a new 

probabilistic uncertainty representation approach that bags all the advantages of probabilistic 

approaches and simultaneously eliminates the limitations of existing methods. Proposed method 

includes development of a function of interest, and optimization of this function yields effective 

estimation of all the moment bounds of a random variable described by either multiple interval 

data or a combination of multiple interval and sparse point data. Then, these moment bounds are 

used to fit uncertain data to bounded Johnson distribution through utilization of moment matching. 

Finally, proposed uncertainty representation method is demonstrated with four numerical 

problems, which include three challenge problems from Sandia Epistemic Uncertainty Workshop, 

and the results are compared with earlier studies. Again, uncertainty propagation through 

multidisciplinary system is difficult due to the presence of interdisciplinary coupling, and it 

becomes more difficult when uncertainty incorporates in the input quantity. Therefore, second part 

of this thesis presents a unified probabilistic framework for the representation and propagation of 

both aleatory and epistemic uncertainty through multidisciplinary system. Proposed framework 

exploits worst-case maximum likelihood estimation (WMLE) method to quantify uncertainty, and 

likelihood-based multidisciplinary analysis (LAMDA) method to propagate the uncertainty 

through multidisciplinary system. Finally, a numerical problem and an engineering problem (Fire 

detection satellite) are used to demonstrate our proposed framework. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the Study 

Design and Optimization of complex engineering systems or processes are the major concern of 

Industrial Engineering (IE). Multidisciplinary Design Analysis (MDA) and Optimization (MDO) 

are increasingly being recognized as a systematic approach to design and optimization of complex 

IE systems. However, presence of uncertainty in the system input quantities and the models in 

real-life engineering problems, such as supply chain management (Borodin et al., 2016), system 

reliability and risk analysis (Zaman and Mahadevan, 2017), additive manufacturing (Hu and 

Mahadevan, 2017), industrial robotics (Wu et al., 2019), etc., make single and multidisciplinary 

system design analysis computationally more challenging. Uncertainty appears in a system design 

analysis either in a form of aleatory (natural variability) or epistemic (i.e. intervals from experts). 

Several probabilistic and non-probabilistic approaches are available in literature including Helton 

et al (2004), Ferson and Hajagos (2004), Zaman et al. (2011a), Sankararaman and Mahadevan 

(2011), Zaman and Dey (2017), Yin et al. (2018), Hu et al. (2019), Peng et al. (2020), etc., each 

approach having its own benefits and limitations in representation and propagation of both aleatory 

and epistemic uncertainties through single disciplinary system. 

Among these, probabilistic approaches based on statistical moment bounds (e.g., Zaman et al. 

(2011a); Peng et al. (2020)) are gradually becoming popular among the researchers to represent 

epistemic uncertainty. Moment bounding approaches estimate different moments of a random 

variable by using different configurations of the interval data. However, moments are not 

independent of each other for an arbitrary random variable. Therefore, it is still an open problem 

to develop an approach that can estimate optimal (narrowest possible) bounds preserving the 

dependency among all the moments of a random variable, and finally propagate these input 

uncertainties through system models. This is one of the focuses of this thesis. 

Again, all existing uncertainty representation and propagation approaches are not explicitly 

effective for multidisciplinary analysis problems due to the additional requirement of satisfying 

interdisciplinary compatibility. A likelihood-based uncertainty propagation method is proposed in 

Sankararaman and Mahadevan (2012) to efficiently propagate aleatory uncertainty through 
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multidisciplinary system. Liang et al. (2015) has generalized this approach to deal with both 

aleatory and epistemic uncertainties. This generalized approach represents the epistemic 

uncertainty of an input variable as a nonparametric probability density function (PDF). Since 

propagating nonparametric PDF through single or multidisciplinary system is difficult and 

inefficient, a likelihood-based approach overcoming this difficulty is yet to be available. This 

thesis has intended to focus on this point. 

 

1.2 Objectives with Specific Aims 

The specific objectives of the research are: 

 To develop a probabilistic framework to represent the epistemic uncertainty of the system 

input variables characterized by either multiple interval data or a mixture of multiple 

interval and discrete point data, which confirms the narrowest possible bound of the system 

response CDFs. 

 To develop a unified probabilistic framework to represent both sparse and/or interval 

uncertainty and way of propagating this type of uncertainties through a feedback-coupled 

Multidisciplinary Analysis (MDA) system. 

 

1.3 Contributions of the Present Study 

This thesis proposes a probabilistic uncertainty representation method based on statistical moment 

bounds which is capable of overcoming the limitations of the existing uncertainty representation 

approaches. The proposed approach is demonstrated with four example problems including three 

from Sandia epistemic uncertainty workshop (Oberkampf et al., 2004) challenge problems to show 

its effectiveness. 

This thesis also introduces a likelihood-based unified framework that can efficiently represent 

different types of epistemic uncertainties, and propagate these uncertainties through 

multidisciplinary systems. One numerical and one complex engineering problems have been 

solved using the proposed framework to show its efficacy in representing and propagating different 

types of uncertainties. 

1.4 Organization of the Thesis 

The rest of this thesis report is organized in the following manner: 
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Chapter 2 reviews the existing approaches in literature relevant to the scope of this thesis. Chapter 

3 provides necessary theoretical backgrounds including definition of uncertainty, its sources and 

classification, different uncertainty representation approaches, uncertainty propagation approaches 

for single and multidisciplinary systems. Chapter 4 presents proposed probabilistic methodology 

for representation of epistemic uncertainty of the input variables described by either multiple 

intervals or a combination of multiple interval and point data based on statistical moments.  

Uncertainty quantified in Chapter 4 is propagated through the single disciplinary system in Chapter 

5. Additionally, four numerical example problems including three challenge problems from Sandia 

epistemic uncertainty workshop are also solved in this chapter. Chapter 6 presents a unified 

likelihood-based uncertainty representation and propagation framework for multidisciplinary 

system. This chapter also illustrates the proposed framework with a mathematical MDA problem 

and an engineering MDA problem. Finally, Chapter 7 concludes the thesis report with overall 

conclusive remarks and recommendations for future work regarding uncertainty representation and 

propagation. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Inclusion of different forms of uncertainty in system input variable is common in almost every 

model-based engineering design, and it has significant impact on the output of the design. Failure 

in identifying input uncertainty may influence the design badly. Therefore, proper uncertainty 

representation of each input quantity of the model is very important for effective propagation of 

the identified uncertainty through model to quantify output uncertainty, and finally for active 

communication with the decision makers. This chapter presents a brief review of the available 

methods in literature regarding uncertainty representation, and propagation through single and 

multidisciplinary systems.  

Uncertainty usually arises in two classes – aleatorty and epistemic. Aleatory uncertainty is the 

inherent variability of the process (mostly irreducible), and epistemic uncertainty is the state-of-

knowledge uncertainty about the system (mostly reducible by gathering more information). More 

detail discussions regarding aleatory and epistemic uncertainties are available in Section 3.1. Since 

it is frequently required to estimate the distribution of epistemic variable from insufficient amount 

of data like intervals from expert opinion, methods to represent interval data are undoubtedly of 

significant importance.  

Sandia epistemic uncertainty project (Oberkampf et al., 2004) arranged a workshop to gather and 

compare the state of the art methods from the researchers and practitioners regarding 

representation and propagation of epistemic uncertainty including interval data. With an eye 

toward comparison of the collected methods, the workshop also introduced a set of challenge 

problems, and provided numerical values of input quantities of the problems. A number of 

uncertainty theories and ideas regarding representation and propagation of interval uncertainty are 

presented in the workshop, and the results and findings are summarized in Ferson et al. (2004). 

Some of the presented theories include polynomial chaos expansions (Red-Horse and Benjamin, 

2004), Dempster-Shafer formulation (Klir, 2004; Helton et al., 2004), information-gap models 

(Ben-Haim, 2004), probability boxes (Ferson and Hajagos, 2004), probability and possibility 

distributions (Helton et al., 2004), random sets (Berleant and Zhang, 2004), sets of probability 

measures (Fetz and Oberguggenberger, 2004), fuzzy sets (Fetz and Oberguggenberger, 2004), 
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random intervals (Fetz and Oberguggenberger, 2004), etc. The benefits and drawbacks of these 

interval uncertainty theories usually depend on the available information regarding uncertain 

variables. 

In general, representation approaches of interval uncertainty can be classified into two broad 

categories - non-probabilistic and probabilistic. Beer et al. (2013) listed some non-probabilistic 

approaches popular in representing epistemic uncertainty including interval data. Evidence theory 

(Shafer, 1976) is one of the fundamental non-probabilistic approaches to represent interval data. It 

can represent interval uncertainty by using belief measure. This theory helps in aggregating 

evidences from a number of sources, and reaching at a degree of belief that considers all possible 

evidences. Agarwal et al. (2004), Guo and Du (2009), Zhang et al. (2015), and Yang et al. (2017) 

used evidence theory to represent epistemic uncertainty including interval data. Some researchers 

used convex model (Ben-Haim and Elishakoff, 1990) to represent interval uncertainty because of 

its capacity in interpreting the extreme system output when input variables are uncertain. Convex 

model is basically a set of functions, where each function is representative of an uncertain event. 

Most common examples of non-probabilistic convex model include interval and ellipsoid model 

(Ni et al., 2018). Wang et al. (2014), Dey et al. (2016) and Huang et al. (2018) have utilized 

possibility or fuzzy set theory to represent interval uncertainty, where fuzzy membership function 

is employed. 

The non-probabilistic uncertainty representation approaches mentioned above can be adopted to 

represent epistemic uncertainty including interval data. However, in case of real-life engineering 

problem, these approaches have experienced some challenges. One of the major drawbacks of non-

probabilistic uncertainty representation and propagation approaches is that, these approaches are 

computationally expensive because of the requirement of nested analysis of interval variables 

during uncertainty propagation. Again, if input variables of a model have both aleatory and 

epistemic uncertainties, non-probabilistic uncertainty representation approaches cannot represent 

both types of uncertainty in a unified framework. Usually, evidence theories or fuzzy theories are 

used to represent interval data, whereas probabilistic approaches are employed to deal with 

aleatory uncertainties.  

Furthermore, according to Helton et al. (2008), decision makers are not clearly aware of these non-

traditional non-probabilistic uncertainty representation approaches. Additional efforts are required 
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to make the decision makers fully aware of the results of the uncertainty analysis performed by 

these non-probabilistic approaches, as communication of these results with decision makers is one 

of the fundamental stages of uncertainty analysis. 

In a target of achieving computational competency, representing both aleatory and epistemic 

uncertainties in a unified framework, and making decision makers informed of the final results of 

uncertainty analysis from scratch, a number of probabilistic approaches are available in literature 

to deal with interval data. 

Sankararaman and Mahadevan (2011) proposed a likelihood-based nonparametric approach 

(LBNA) to represent a variable described by a mixture of both discrete point and multiple interval 

data. Motivated by Meeker and Escobar (1995), they have utilized the probability density function 

for discrete point data and cumulative distribution function for interval data in constructing the 

likelihood function. In order to make the assumption of any specific distribution type redundant, 

LBA represented epistemic uncertainty through a nonparametric PDF. Additionally, this approach 

is applied to solve some challenge problems from Sandia epistemic uncertainty workshop to show 

its efficacy in representing interval uncertainty. However, propagating uncertainty described by a 

nonparametric PDF is not straightforward even through simple single disciplinary system. Another 

likelihood based epistemic uncertainty representation approach titled Worst-case Maximum 

Likelihood Estimation (WMLE) proposed by Zaman and Dey (2017) can eliminate this difficulty 

by constructing a parametric CDF of epistemic variable described by both discrete point and 

interval data. 

Zhang and Shields (2018) introduced a probabilistic uncertainty representation and propagation 

approach based on information theory. Initially they list a set of candidate probability models by 

multimodel inference rule, in such a way that each of the candidate model can presumably 

represent the uncertain variable. Then, Bayesian inference is used to approximate the joint 

probability density of each of the models.  

The use of statistical moments (i.e., mean, variance, skewness, kurtosis, etc.) is becoming popular 

gradually in representing multiple types of epistemic uncertainties. Zaman et al. (2011a) proposed 

a probabilistic uncertainty representation approach titled Moment Bounding Approach (MBA) to 

represent interval data based on lower and upper bounds of the first four statistical moments of the 

variable. This approach utilized the concept of moment matching in order to fit four parameter 
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family of Johnson distributions to data. Peng et al. (2020) proposed another uncertainty 

representation approach based on moment bounds. This approach has employed cubic normal 

transformation to sample points from moment bounds of the first through fourth moment of the 

variable. 

The moment bounding approaches including both Zaman et al. (2011a) and Peng et al. (2020) 

estimate the lower and upper bounds of the first four moments of a variable described by interval 

data by minimizing and maximizing corresponding moment expression. Since this technique 

estimate moments by independently optimizing respective moment expression, it unintentionally 

estimates different moments of a particular random variable from different sets of realizations. 

More specifically, realizations set obtained using optimization of first moment expression is used 

to estimate first moment bounds of a random variable, in the same way, realizations sets obtained 

by optimizing second, third, and fourth moment expressions are used to estimate the bounds on 

second, third, and fourth moments respectively of the same random variable. More specifically, 

realizations set obtained using optimization of first moment expression is used to estimate first 

moment bounds of a random variable, in the same way, realizations sets obtained by optimizing 

second, third, and fourth moment expressions are used to estimate the bounds on second, third, 

and fourth moments respectively of the same random variable. However, moments are not 

independent, and thus, all the moments of a random variable should be calculated from the same 

set of realizations. An approach to represent epistemic uncertainty based on moment bounds 

excluding this limitation is yet to be developed. 

This thesis proposes an optimization-based epistemic uncertainty representation approach in 

Chapter 4 based on moment bounds. The proposed formulation introduces a new function of 

interest aggregating all the moment expressions in a single function. Optimization of this function 

yields a single set of realizations, and this set of realizations is used to estimate all the moments of 

the uncertain variable. Accordingly, proposed approach bags all the advantages of probabilistic 

uncertainty representation approaches as well as bypasses the limitation of the existing moment 

bounding approaches. 

Uncertainty propagation is another important element of uncertainty analysis.  After successfully 

representing different types of uncertainties in the input variable, it is required to propagate these 

uncertainties through single or multidisciplinary systems. Uncertainty propagation through single 
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disciplinary system is quite straightforward, and a number of researches, available in literature, 

deal with the propagation of both aleatory and epistemic uncertainty through single disciplinary 

systems including Zadeh (2002), Ferson et al. (2003), Agarwal et al. (2004), Du et al. (2006), 

Helton et al. (2007), Zhang and Huang (2009), Sankararaman and Mahadevan (2011), Zaman et 

al. (2011b), Matsumura and Haftka (2013), Zaman and Dey (2017), etc.; but, in case of 

multidisciplinary system, individual disciplines are coupled with one or more coupling variables, 

which require performing multidisciplinary analysis (MDA).  Multidisciplinary systems emerge 

in a number of practical engineering applications, e.g., fluid–structure interaction (Belytschko, 

1980), thermal-structural analysis (Thornton, 1992, Culler and McNamara, 2010), topology 

optimization (Dunning et al., 2011), turbine-engine cycle analysis (Hearn et al, 2016), etc.  

Individual disciplines of a multidisciplinary system are coupled by one or more coupling variables 

that make MDA methods computationally expensive. This coupling between two disciplines can 

be either feedforward (single-directional) or feedback (bidirectional). Propagation methods for 

aleatory uncertainty through feedforward system include Monte Carlo methods, first-order 

reliability method (FORM), and second-order reliability method (SORM), etc. (Haldar and 

Mahadevan, 2000). Handling feedforward coupling is relatively easy, while handling feedback 

coupling is challenging. The challenges multiply with the inclusion of aleatory and epistemic 

uncertainty in case of both feedforward and feedback couplings. Methods at hand regarding the 

propagation of uncertainty through feedback coupled MDA are few in number. Again, most of the 

available methods can only deal with aleatory uncertainty, such as Gu et al. (2000), Kokkolaras et 

al (2006), Du and Chen (2005), Mahadevan and Smith (2006), Sankararaman and Mahadevan 

(2012), etc. 

Another broad classification of MDA methods is available in literature (Chaudhuri et al., 2017). It 

categorizes the methods into three categories. First category is fixed point iteration (FPI) based 

approach. Examples of this group of approaches involve Cramer et al (1994), Alexandrov and 

Kodiyalam (1998), and many more. In this case, coupled disciplinary analysis continues to be 

iterated as long as a feasible fixed point iteration solution is achieved. Habitually fixed point 

iteration is computationally expensive, and feedback coupled multidisciplinary analysis becomes 

more expensive when uncertainty is involved in the analysis. If uncertainty involves, sets of 

realizations need to be sampled (e.g., Monte Carlo sampling) over uncertain parameters of the 
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input variable, and it is required to perform fixed point iteration for each set of realizations. Thus, 

inclusion of uncertainty in coupled multidisciplinary system makes the approaches of this category 

almost computationally prohibited. 

Methods of the second category replace this computationally expensive fixed point iteration with 

relevant surrogate models to propagate uncertainty through coupled multidisciplinary system. 

Arnst et al. (2012), Arnst et al. (2013), Chen et al (2013), Arnst et al (2014), and Jiang et al (2015) 

are some of the examples of methods that use surrogate model instead of fixed point iteration to 

approximate coupling variables of a coupled MDA system. Chaudhuri et al. (2017) introduced 

another uncertainty propagation method based on surrogate model which includes approximation 

of the coupling variables of multidisciplinary system by a low fidelity surrogate model, and then 

refinement of this surrogates by using adaptive sampling. Methods of this category use surrogate 

in place of FPI, and the efficiency of these methods are highly dependent on the exact 

approximation of the coupling variables. However, in case of practical coupled MDA system, these 

surrogate based existing methods cannot promise exact convergence to fixed point feasible 

solution. 

The third category approaches are based on the concept of decoupling the coupled disciplines to 

propagate uncertainty through feedback coupled multidisciplinary system. These methods include 

fully or partially decoupled approaches. Methods outlined in Du and Chen (2005), and Mahadevan 

and Smith (2006) are the examples of fully decoupled approach, while the method described in 

Sankararaman and Mahadevan (2012) is representative of a partially decoupled approach. 

Capacity to bypass coupled analysis as well as computationally expensive fixed point iteration in 

multidisciplinary system analysis are the fundamental advantages of the fully or partially 

decoupled approaches. However, all of these partially or fully decoupling approaches can only 

propagate aleatory uncertainty through multidisciplinary system. Zaman (2010) introduced a 

probabilistic method for the propagation of both aleatory and epistemic uncertainty through 

multidisciplinary systems, which has utilized the fully decoupled formulation developed by 

Mahadevan and Smith (2006). In case of multidisciplinary multilevel systems, multidisciplinary 

outputs become the inputs to higher level discipline, and therefore, it is required to maintain the 

functional dependence between the coupling variables, and accordingly between the 

multidisciplinary outputs. Sankararaman and Mahadevan (2012) argued that, fully decoupled 
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approach cannot maintain this functional dependence, as a result, fully decoupled MDA is a good 

choice for the case when the target is to get only the statistics of the multidisciplinary outputs. 

Sankararaman and Mahadevan (2012) also claimed that, partially decoupled approach can 

successfully maintain this functional dependence. Therefore, this thesis is concerned about 

partially decoupled multidisciplinary analysis methods. 

Liang et al. (2015) extended the partially decoupled approach proposed by Sankararaman and 

Mahadevan (2012), so that it can propagate aleatory and epistemic uncertainty through 

multidisciplinary system. However, this approach represents the epistemic uncertainty of system 

input variable as nonparametric PDF, and it is generally accepted that propagating a nonparametric 

PDF through multidisciplinary coupled system is not straightforward due to the anonymity 

regarding distribution type and parameter. Therefore, this thesis has proposed a likelihood-based 

multidisciplinary analysis method in Chapter 6, which waives the difficulty of the existing method 

regarding distribution anonymousness. 
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CHAPTER 3 

THEORETICAL BACKGROUND 

 

3.1 Uncertainty: Sources and Classification 

Oberkampf and Roy (2010) defined uncertainty as imprecision or inaccuracy in a value. This 

imprecision or inaccuracy can be involved in a value from a number of sources in various forms. 

According to Haldar and Mahadevan (2000), uncertainty usually appears in any real-life 

engineering model from either cognitive or noncognitive sources.  

Cognitive or qualitative sources of uncertainty are related to the ambiguousness of an engineering 

model while the basis of model formulation is solely intellectual beliefs and assumptions. 

Cognitive sources cover the uncertainties associated with interpretation of specific parameters 

(e.g., performance), definition of experience of the relevant personality (i.e., engineers, workers, 

etc.), assessment of external influence (i.e., environmental impact), evaluation of existing 

condition of the project, approximation of human interaction factors and many more (Ayyub, 

1994). 

Noncognitive or quantitative sources can be categorized into three different categories, such as (i) 

inherent variability of any observation, (ii) statistical uncertainty due to limited data, and (iii) 

modeling uncertainty (Haldar and Mahadevan, 2000). 

In general, uncertainty appears in engineering design in two forms – aleatory and epistemic. 

Aleatory uncertainty is the internal randomness of a quantity which is natural and irreducible. 

Stochastic uncertainty, irreducible uncertainty, variability, inherent uncertainty, etc. are used in 

literature to cite aleatory uncertainty. It appears due to the variations in production processes, 

operating conditions, quality control techniques, surrounding factors, etc. On the other hand, 

epistemic uncertainty arises due to shortage of knowledge about system, and if more knowledge 

can be gathered, this type of uncertainty can be minimized. In literature, a number of epistemic 

uncertainty classification approaches are available including Thunnissen (2003), and Zhuang and 

Pan (2012). Among these, one approach that covers almost rest of the approaches are outlined 

below according to Zaman and Mahadevan (2017). 
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i. Statistical uncertainty: Statistical uncertainty arises due to stochastic but inadequately 

known quantity. This happens when input random variables are provided as discrete 

point data or interval data, and it is required to estimate the probability distributions of 

the variable from this available data. Distribution parameters inferred from this 

available data are uncertain. If it is possible to collect more data about random variable, 

then epistemic uncertainty regarding distribution parameter can be minimized, but 

aleatory uncertainty still prevails. Probabilistic methods are more efficient to quantify 

statistical uncertainty. 

ii. Subjective uncertainty: Subjective uncertainty arises due to fixed but inadequately 

known physical quantity. This happens when information regarding a quantity is 

available as an interval from experts, and the true value of the quantity lies within the 

lower and upper limits of the interval. If it is feasible to gather more information about 

the system, subjective uncertainty will disappear and the quantity turns into a fixed 

value. Non-probabilistic methods are more effective for quantification of subjective 

uncertainty.  

iii. Model uncertainty: Model uncertainty arises due to system modeling errors. Rebba et 

al. (2006) classified model errors into two types, such as (1) model form error, and (2) 

solution approximation error. This type of uncertainty can be reduced by approximating 

model form more precisely or adopting more accurate numerical solution method. 

Bayesian methods can be utilized to quantify model uncertainty. 

iv. Method uncertainty: Method uncertainty arises from the choice of different solution 

methods of a problem. When an engineering problem is solved by several methods, 

results may vary because of this uncertainty. Method uncertainty can be reduced by 

way of proper selection of the method based on their relative advantages and 

drawbacks. 

When different types of uncertainty are incorporated in input variables, it needs to be represented 

for effective uncertainty propagation. Since this thesis is concerned about epistemic uncertainty, 

the following section discusses several such probabilistic representation approaches of epistemic 

uncertainty. 
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3.2 Representation of Epistemic Uncertainty 

As discussed in Chapter 2, there are a number of probabilistic and non-probabilistic uncertainty 

representation approaches available in literature. This thesis is interested in only probabilistic 

approaches. Therefore, three probabilistic uncertainty representation approaches, such as moment 

bounding approach (Zaman et al., 2011a), likelihood-based approach (Sankararaman et al., 2011), 

and worst-case maximum likelihood estimation (Zaman and Dey, 2017) methods are discussed 

below. 

3.2.1 Moment Bounding Approach (MBA) 

If a random variable is described by interval data, it is not possible to calculate the accurate 

moments of the variable because there are infinite number of potential probability distributions 

that can represent the interval data. Therefore, moment bounding approach (MBA) developed by 

Zaman et al. (2011a) estimates the lower and upper bounds of first four moments of the variable, 

in such a way that, all the moments of potential distributions are bound to fall within respective 

moment bounds. MBA can represent uncertainty in a variable described by single interval data, 

multiple interval data, or a mixture of both multiple interval and sparse point data.  
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3.2.1.1 MBA for single interval data 

The approach to estimate the lower and upper bounds of the moments of a random variable 

described by only single interval data are summarized in Table 3.1.  

Table 3.1: Moment estimation technique for single interval data 

Moment Condition 
Formula 

Lower bound Upper bound 

1 PMF = 1 at lower 

           end point 

           = 0 elsewhere 

PMF = 1 at upper 

            end point 

           = 0 elsewhere 

)(  1 xEM   

2 PMF = 1 at any 

        point 

           = 0 elsewhere 

PMF = 0.5 at each 

point   22
2 )(  xExEM   

3 PMF = 0.2113 at 

        lower end point 

     = 0.7887 at upper 

end point 

PMF = 0.7887 at  

lower end point 

= 0.2113 at upper 

end point 

        323
3 23 xExExExEM   

4 PMF = 1 at any 

point 

           = 0 elsewhere 

PMF = 0.7887 at 

one   

       of the end 

points 

= 0.2113 at the other 

end point 

             42234
4 364 xExExExExExEM   

Note:       (PMF).Function  Massy Probabilit  and 4or  3,or  2,or  ,1for  
2

1




i
i

i
k

i
k xpkxpxxE  
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3.2.1.2 MBA for multiple interval data 

If a random variable X is described by multiple interval data, the lower and upper bounds on first 

four moments of X can be estimated using the procedure illustrated in Table 3.2. 

Table 3.2: Moment estimation technique for multiple interval data 

Moment Formula 

1 

Lower Bound 







 



n

i
ix

n
M

1
1

1  

       where, 𝑥𝑖 = 𝑙𝑏𝑖,     𝑖 = {1, 2, . . ., 𝑛}  

Upper Bound 







 



n

i
ix

n
M

1
1

1  

         where, 𝑥𝑖 = 𝑢𝑏𝑖,     𝑖 = {1, 2, . . ., 𝑛}                   

k 

 
 
















n

i

k
n

j
jikxxx

x
n

x
n

M
n 1 1,....,,

11 maxmin/
21

 

𝑠. 𝑡. 𝑙𝑏𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑏𝑖,        𝑖 = {1, 2, … , 𝑛} 

where, n is the number of intervals and for 4or  3, ,2k minimizing or maximizing 

the objective function yields the lower or upper bounds of kth moment. 

 

3.2.1.3 MBA for a mixture of both multiple interval and sparse point data 

Suppose an arbitrary random variable X is defined by m intervals and n discrete point data, 

collected from independent sources. First m observations are interval data, which are bounded to 

lie within corresponding interval 𝑙𝑏𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑏𝑖 , for 𝑖 = {1, 2, . . . , 𝑚}. Following n observations 

are discrete point data fixed at their corresponding values 𝑐𝑖 for 𝑖 = {1, 2, . . ., 𝑛}. Technique to 

estimate lower and upper bounds of the first four moments of random variable X is illustrated in 

Table 3.3 below. 
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Table 3.3: Moment estimation technique for multiple interval and sparse point data 

Moment Formula 

1 

Lower Bound 











 





nm

i
ix

nm
M

1
1

1  

    where, 𝑥𝑖 = 𝑙𝑏𝑖,     𝑖 = {1, 2, . . ., 𝑚} 

                𝑥𝑚+𝑖 =  𝑐𝑖,      𝑖 = {1, 2, . . ., 𝑛} 

Upper Bound 











 





nm

i
ix
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M

1
1

1  

where, 𝑥𝑖 = 𝑢𝑏𝑖,     𝑖 = {1, 2, . . ., 𝑚} 

                𝑥𝑚+𝑖 =  𝑐𝑖,      𝑖 = {1, 2, . . ., 𝑛} 

k 

 
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




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
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













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x
nm

x
nm

M
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𝑠. 𝑡. 𝑙𝑏𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑏𝑖,        𝑖 = {1, 2, … , 𝑚} 

where, 𝑥𝑚+𝑖 =  𝑐𝑖 for 𝑖 = {1, 2, . . ., 𝑛} and minimized or maximized values of M2, 
M3 and M4 are the lower or upper bounds on the second, third and fourth moments, 
respectively. 

 

So far, moment bounding approach (MBA) of this section can quantify the uncertainty of an input 

variable described by single interval, multiple intervals, or a mixture of multiple interval and 

discrete points, in a form of moment lower and upper bounds. Once moment bounds are available, 

these can be utilized to fit interval data to any empirical probability distributions, such as Pearson, 

Beta, Lambda, or Johnson family of distributions. Zaman et al. (2011b) considered four-parameter 

Johnson distributions for this purpose because of its ability in representing normal, lognormal, 

bounded, or unbounded distributions, and flexibility in transforming a continuous random variable 

to standard normal space; and finally utilized moment matching approach to fit data to bounded 

Johnson distributions, which yields family of CDFs of the variable. Thus, MBA represents the 

uncertainty of a variable through multiple representative CDFs. Details of Johnson distributions 

and moment matching approach are available in Appendix A and B. The following subsection 

presents a nonparametric approach to represent epistemic uncertainty. 
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3.2.2 Likelihood-based Nonparametric Representation of Epistemic Uncertainty (LBNA)  

Sankararaman and Mahadevan (2011) developed a likelihood-based nonparametric approach 

(LBNA) to represent epistemic uncertainty. Let a random variable X be described by n interval 

data and m sparse point data. The overall range (between minimum and maximum values of X) of 

these data are divided into a finite number of uniform divisions to get a set of discretization 

points 𝑞𝑖(𝑖 = {1, 2, … , 𝑄}). If the PDF values at each of these Q points be 𝑓𝑋(𝑥𝑖 = 𝑞𝑖) = 𝑝𝑖 for 

𝑖 = {1, 2, … , 𝑄}, then by using any of the interpolation techniques (i.e., linear, spline-based, 

Gaussian process interpolation, etc.) the PDF over the entire range of the random variable X can 

be approximated. Sankararaman and Mahadevan (2011) formulated the likelihood function L(p) 

as shown in Eq. (3.1). 

 𝐿(𝒑) ∝ [∏[𝐹𝑋(𝑏𝑖|𝒑) − 𝐹𝑋(𝑎𝑖|𝒑)]

𝑛

𝑖=1

] [∏ 𝑓𝑋(𝑥𝑖|𝒑)

𝑚

𝑗=1

] (3.1) 

 

Likelihood of Eq. (3.1) depends on (i) number of discretization points Q, (ii) corresponding PDF 

values pi, and (iii) the choice of interpolation technique. By maximizing the likelihood function of 

Eq. (3.1) or solving the constrained optimization problem in Eq. (3.2), the value of PDF at different 

discretization points can be estimated. 

 

𝑚𝑎𝑥
𝒑     𝐿(𝒑) 

𝑠. 𝑡.  𝑝𝑖 ≥ 0 for ∀𝑝𝑖 ∈ 𝒑 

𝑓𝑥(𝑥) ≥ 0 for ∀𝑥 

∫ 𝑓𝑥(𝑥)𝑑𝑥 = 1 

(3.2) 

Interpolation of the PDF values obtained at different discretization points using Eq. (3.2) provides 

the overall PDF of the random variable X. Thus, uncertainty of a random variable characterized by 

interval and sparse point data can be represented through a nonparametric probability density 

function using LBNA method of this subsection. The following subsection presents another 

likelihood-based epistemic uncertainty representation approach. 
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3.2.3 Worst-case Maximum Likelihood Estimation (WMLE) Method 

For a random variable X defined by n intervals and m discrete points, WMLE (Zaman and Dey, 

2017) uses a likelihood function as in Eq. (3.3).  

      















 





nm

mi
i

m

j
ii pxfpcxfpL

11
| |  (3.3) 

Where, first m observations are kept fixed at their corresponding point values ci, and the subsequent 

n observations are from n intervals constrained to lie within their corresponding lower and upper 

bounds. However, likelihood function of Eq. (3.3) requires the expression of probability density 

function of the random variable. In this regard, WMLE uses four parameter bounded Johnson 

distribution because it can dismiss the probability of data falling outside their respective interval. 

Again, WMLE optimizes log-likelihood instead of direct likelihood function of Eq. (3.3) to enjoy 

computational convenience.  

The generalized formulation of WMLE is given in Eq. (3.4). In this formulation, the inner loop 

optimization minimizes the likelihood and estimates the lower bound (worst) of the likelihood, 

and the outer loop optimization maximizes the minimized likelihood in inner loop. 

 
      xpLpxf

xp
;log|minmax   

𝑠. 𝑡. 𝑙𝑏𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑏𝑖,        𝑖 = {(𝑚 + 1), (𝑚 + 2), … , (𝑚 + 𝑛)} 

(3.4) 

 

The optimization of Eq. (3.4) yields the four parameter of bounded Johnson distribution, and thus 

WMLE represents epistemic uncertainty of a variable through a parametric distribution. 

Among abovementioned three uncertainty representation approaches, MBA method provides 

multiple CDFs, LBNA method provides single nonparametric PDF, and WMLE method provides 

single parametric CDF of uncertain variable embedded with epistemic uncertainty. 

After effective uncertainty representation, another element of uncertainty analysis is uncertainty 

propagation. The following section discusses several approaches for uncertainty propagation 

through single disciplinary system. 
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3.3 Uncertainty Propagation through Single Disciplinary System 

Representing interval data to a manageable and easy-to-handle format is the key to effective and 

efficient uncertainty propagation through system response models. Well-established uncertainty 

propagation methods, e.g., first-order reliability method (FORM), second-order reliability method 

(SORM), Monte Carlo simulations (MCS) can easily handle probabilistic format of epistemic 

uncertainty. Approach developed by Zaman et al. (2011b) can propagate both probabilistic and 

non-probabilistic types of uncertainty though system model. This thesis has utilized this 

propagation approach to clarify our proposed method in Chapter 4. 

Zaman et al. (2011b) classified epistemic uncertainty related problems into two cases (Case 1: 

input variables defined by interval data, and Case 2: input variable distribution parameters defined 

by interval data), and suggested both (i) sampling and (ii) optimization-based methodologies for 

the propagation of uncertainties through a single disciplinary system for each of the cases. 

Although the detailed methodologies are available in the cited reference, a glimpse of it is outlined 

below. 

3.3.1 Sampling-based uncertainty propagation method 

Sampling-based approach suggests to propagate a family of input CDFs by following any 

probabilistic propagation methods (e.g., MCS, FORM, SORM, etc.) through the system equation 

to get a family of output response CDFs. This approach is computationally expensive. 

3.3.2. Optimization-based uncertainty propagation method 

Computationally expensive sampling approach can be replaced by efficient Percentile-Based 

Optimization (PBO), or Expectation-Based Optimization (EBO) methods. 

PBO minimizes and maximizes the system response 𝑔𝛼(𝑥|𝑚) at different percentile values (α) to 

get the lower and upper bounds of the system response CDF, respectively, at that particular α level. 

To obtain the rigorous minimum and maximum system response CDF bounds by PBO, it is 

required to perform the optimization a number of times at different percentile points, which is 

computationally expensive and time consuming. On the other hand, EBO minimizes and 

maximizes the expectation of the system response 𝐸(𝑔(𝑥|𝑚)) and approximates the lower and 

upper bounds of the system response CDFs. EBO is less expensive than PBO because it requires 

single optimization for both the lower bound and the upper bound of output CDF. 
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PBO and EBO formulations are illustrated in Table 3.4 for Case 1 (input variable described by 

interval data) and Table 3.5 for Case 2 (input variable distribution parameters described by interval 

data), where the symbols carry similar meanings as in Zaman et al. (2011b). 

Table 3.4: PBO and EBO for Case 1 

PBO EBO 
 mxg

m
|  maxmin/ 
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Table 3.5: PBO and EBO for Case 2 

 Lower Bound Upper Bound 

PBO 

    
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m D
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Optimization constraints are exactly the same for all the cases of PBO and EBO in Tables 3.4 and 

3.5. First two constraints ensure that decision variables m lie within the corresponding moment 

bounds 𝑎𝑖 ≤ 𝑚𝑖 ≤ 𝑏𝑖 for i = 1, 2, ..., 4 and the last two constraints give the confirmation that the 

selected moments agree with the bounded Johnson distribution fit. 

Uncertainty propagation through single disciplinary system is quite straightforward. However, in 

case of multidisciplinary systems, it is complicated due to the presence of multidisciplinary 

coupling. The following section discusses uncertainty propagation through multidisciplinary 

system.  
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3.4 Multidisciplinary Analysis (MDA) Under Uncertainty 

Consider a simple multidisciplinary system as shown in Figure 3.1. Here, x1 and x2 are the local 

input variables to discipline 1 and 2, respectively, xs are the shared variable, which are common to 

each of discipline 1 and 2. Again, discipline 1 and 2 are coupled by feedback coupling variables 

u12 and u21. g1 and g2 are the outputs of discipline 1 and 2, and same time, inputs to discipline 3, 

and finally  f is the overall system output. Since coupled system output g1 and g2 is used for further 

analysis to compute f, the system in Figure 3.1 is not only a multidisciplinary but also a multilevel 

system. The comprehensive target in this problem includes calculation of subsystem and system 

response statistics through multidisciplinary analysis. Since “Analysis 1” and “Analysis 2” are 

coupled by coupling variables u12 and u21, without decoupling the analyses, it is difficult to 

perform subsystem analyses and subsequently system analysis.  

 
 

Figure 3.1: A multidisciplinary system 
 

If the probability distributions of the input variables are provided, then, the target of the 

multidisciplinary system shown in Figure 3.1 is to evaluate the probability distributions of the 

subsystem outputs g1 and g2, and overall system output f. In this process, an important intermediary 

step is to estimate the probability distributions of the coupling variables u12 and u21. For this, as 

mentioned in Chapter 2, this thesis utilized the concept of partially decoupling the coupling 

Analysis 1 

 
Analysis 2 

 

𝒙𝒔 𝒙𝟏 𝒙𝟐 

 

Analysis 3 
 

𝒖𝟏𝟐 

𝒖𝟐𝟏 
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between discipline 1 and 2 following the approach illustrated in Sankararaman and Mahadevan 

(2012). 

In Figure 3.1, starting with an initial guess of u12, “Analysis 2” provides a value of u21. Again, 

since u21 is an input to “Analysis 1”, after performing individual disciplinary analysis in “Analysis 

1”, the output should be u12 itself. Sankararaman and Mahadevan (2012) introduced a function 

named G as shown in Figure 3.2 to illustrate this simple concept. 

 
Figure 3.2: Definition of function G 

 

From Figure 3.2, G function can be written as Eq. (3.5). 

       xxuAAxuAxuGUu ,,,, 1221211121212   (3.5) 

Once the converged value of u12 can be estimated using Eq. (3.5), the feedback coupling of Figure 

3.2 becomes easily manageable feedforward coupling as shown in Figure 3.3. 

 
 

Figure 3.3: A partially decoupled multidisciplinary system 

Analysis 1 
𝐴1(𝑢(𝑥), 𝑥) 

Analysis 2 
𝐴2(𝑢(𝑥), 𝑥)   

 

Analysis 1 
 

Analysis 2 
 

𝒙𝒔 𝒙𝟏 𝒙𝟐 

 

Analysis 3 
 

𝒖𝟏𝟐 

𝒖𝟐𝟏 
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Based on Figure 3.2 and Eq. 3(.5), the following two subsection discuss two multidisciplinary 

analysis methods to estimate the probability density function of the coupling variables u12 and u21. 

3.4.1 Sampling outside fixed point iteration (SOFPI) 

Sampling outside Fixed Point Iteration (SOFPI) method (Sankararaman and Mahadevan (2012), 

Ghosh and Mavris (2020)) is based on the well-known fixed point iteration (FPI) algorithm. If the 

probability distributions of the input variables (local and shared) are available, then SOFPI method 

can be used to approximate the probability distributions of the coupling variables u12 and u21. The 

steps of SOFPI propagation through multidisciplinary systems are discussed below. 

Step 1 Generate N number of random samples for each of local and shared input variables of   

multidisciplinary system. 

Step 2 Take a set of realizations of the input variables. 

Step 3 Estimate the converged value of u12 of Eq. (3.6) using fixed point iteration. 

 

(𝑢12)𝑛+1 = 𝐴1(𝐴2((𝑢12)𝑛, 𝑥), 𝑥) 

 

(3.6) 

 

Step 4 Repeat Step 2 and 3 with N different sets of realizations to get N number of converged 

u12 values. 

Step 5 Propagate converged values of u12 obtained in Step 4 through 𝑢21 = 𝐴2(𝑢12, 𝑥) to get 

the same number of u21 values. 

 

Since the input variables are generated randomly using distribution information, convergent values 

of the coupling variables will also be random. These convergent values are used to estimate the 

probability density function of the coupling variables using any nonparametric density estimator 

(e.g., kernel density estimator). Thus, SOFPI method estimates the entire distribution of the 

coupling variables. 

3.4.2 Likelihood-based Approach for Multidisciplinary Analysis (LAMDA) 

SOFPI method requires generating samples of input variables using distribution information. 

Likelihood-based MDA (LAMDA) approach (Sankararaman and Mahadevan, 2012) discards this 

necessity of computationally expensive sampling. Motivated by the maximum likelihood 
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estimation (MLE) principle, LAMDA utilizes the whole likelihood function to attain not only the 

maximum estimate but also the entire probability density function of the parameter.  

If likelihood of given data L(p) is defined as the probability of observing the data given parameter 

p, then, up to a proportionality constant, the likelihood of a particular value of coupling variable 

u12 can be defined as the probability of satisfying interdisciplinary compatibility constraint (U12 = 

u12) conditioned on u12 as shown in Eq. (3.7). 

     12121212 | uuUPuL   (3.7) 

 

Again, since probability of a particular point is zero, the calculation of probability in Eq. (3.8) 

requires a modification. In this regard, Pawitan (2001) suggested to integrate the conditional PDF 

over an infinitesimally small interval [𝑢12 −
𝜀

2
, 𝑢12 +

𝜀

2
]  around u12 as shown in Eq. (3.8), where 

ε is the interval length.  

      12

2

2

1212121212

12

12

12
|| dUuUfuuUP

u

u

U











 (3.8) 

The integration in Eq. (3.8) can be evaluated by utilizing First Order Reliability Method (FORM) 

according to Sankararaman and Mahadevan (2012). Utilization of FORM includes evaluation of 

the probability of a limit state function 𝐻 ≡ ℎ(𝑥) to be less than or equal to hc, that 

is 𝑃(ℎ(𝑥) ≤ ℎ𝑐). Again, 𝑃(ℎ(𝑥) ≤ ℎ𝑐) is the cumulative distribution function (CDF) of 𝐻 ≡ ℎ(𝑥) 

at the point 𝐻 = ℎ𝑐. By using this concept, the lower bound integral hl and the upper bound integral 

hu in Eq. (3.8) can be easily evaluated using Eqs. (3.9) and (3.10), respectively. 

      2    2      ijijijijijUl uUPuuUFh
ij

 (3.9) 

      2   2      ijijijijijUu uUPuuUFh
ij

 (3.10) 

 

Once the lower bound and upper bound integrals of Eq. (3.8) are evaluated, Eq. (3.11) 

approximates the likelihood of u12. 
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

lu hhuL 
  )( 12  (3.11) 

 

After evaluating likelihood of u12 at few points, the PDFs of u12 can be approximated by Eq. (3.12). 

 
 

 


1212

12
12   )(

duuL
uLuf  (3.12) 

where, 𝐿(𝑢12) ≠ 0. Using Eq. (3.12), someone can estimate PDF values at different u12 points, 

and interpolation of these calculated PDF values yields the entire PDF of the coupling variable u12. 

Thus, LAMDA method estimates the entire PDF of the coupling variable u12, and helps in 

decoupling the multidisciplinary analyses. PDF of u12 is used to estimate the PDF of u21, and in 

this manner, coupling variables u12 and u21 becomes independent variables, similar to input 

variables x. 

So far, if the probability distributions of the input variables of a multidisciplinary coupling system 

are at hand, we can estimate the probability distributions of the coupling variables and partially 

decouple the coupled disciplines. Once the probability distributions of the coupling variables be 

available, then uncertainty propagation through upper level subsystem and system analysis 

becomes similar to traditional uncertainty propagation through single disciplinary system. 

Uncertainty propagation through single or multidisciplinary systems becomes more complicated 

when the uncertainty associated with input variables is of epistemic type. Therefore, effective 

representation of input uncertainty is a prerequisite for effective uncertainty propagation through 

single or multidisciplinary systems. The following chapter proposes a new approach to uncertainty 

representation of input variables characterized by multiple interval data or a mixture of both 

multiple interval and discrete point data. 

 

 

 

 

 



27 | P a g e  
 

CHAPTER 4 

PROPOSED PROBABILISTIC APPROACH FOR REPRESENTATION OF 

EPISTEMIC UNCERTAINTY  

 

In this chapter, this thesis proposes a probabilistic uncertainty representation approach to represent 

a random quantity described by either multiple interval data, or a mixture of sparse point and 

multiple interval data. As discussed in Chapter 2, a number of probabilistic and non-probabilistic 

uncertainty representation methods are ready for use in literature. Generally, non-probabilistic 

methods are computationally expensive due to the requirement of nested analysis in the presence 

of interval uncertainty. Additionally, absence of any non-probabilistic unified formulation that can 

represent both aleatory and epistemic uncertainty simultaneously pushes researchers and 

practitioners to adopt probabilistic uncertainty representation methods. 

This thesis focuses on probabilistic uncertainty representation methods based on statistical 

moments (e.g., mean, variance, skewness, kurtosis, etc.). Statistical moment based probabilistic 

methods (e.g., Zaman et al., 2011a; Peng et al., 2020; etc.) are labelled as moment bounding 

approaches (MBA) in literature because these methods include estimation of lower and upper 

bounds of different moments of a random variable. To estimate different moment bounds, existing 

moment bounding approaches (outlined in Section 3.2.1) optimize individual moment expression. 

For example, estimation of bounds on the first, second, third and fourth moments of a random 

variable includes individual optimization of the first through fourth moment expressions, 

respectively. Individual optimization of the first four moment expressions provides four different 

sets of realizations, and these four different sets of realizations are used to estimate the first four 

moments of the same random variable. Since different statistical moments of a random variable 

are not independent of each other, all the moments of a variable should be calculated from the 

same realizations.  

Again, existing moment bounding approaches estimate the maximum and minimum possible 

bounds of different moments of a random variable to include all possible combinations of different 

moments. Thus, these approaches provide widest possible moment interval of an epistemic 

variable. Consequently, this is the most conservative way of representing epistemic uncertainty. 

But, the probability of selecting the true value of a variable with reduced error increases in case of 
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selection from narrower bound than from wider one. Therefore, this thesis proposes an 

optimization-based probabilistic framework titled Feasible Moment Bounding Approach (FMBA) 

for representation of different types of epistemic uncertainty, which can circumvent the limitations 

of the existing moment bounding approaches. 

Proposed FMBA formulation includes development of a function of interest by adding the squared 

differences of the moments. Optimization of this function yields a single set of realizations of an 

input random variable, which are then used to estimate all the moments of the same random 

variable. By optimizing the single objective function to estimate all the moments of a random 

variable, the proposed formulation excludes the requirement of individual optimization of each 

moment expression independently, and thus eliminates the drawbacks of the existing moment 

bounding approaches.  

Existing MBA minimizes and maximizes the individual moment expressions, and estimates the 

minimum and maximum possible moment bounds, consequently, bounds obtained by existing 

MBA are the most conservative or widest possible. On the other hand, proposed FMBA optimizes 

a single function and utilizes the optimized set of realizations to estimate all the moments instead 

of individually optimizing each moment expressions. Thus, resulting moment bounds of a random 

variable obtained by the proposed FMBA will always be narrower than the ones obtained by the 

existing MBA. 

It can be obtained by using any empirical probability distribution system, such as Johnson family 

of distributions, Pearson family of distributions  

Any empirical probability distribution system, such as Johnson family of distributions or Pearson 

family of distributions can be utilized for the purpose. This thesis uses a four-parameter family of 

Johnson distributions, because it can replicate the shape of a number of named probability 

distributions including normal distribution, lognormal distribution, etc. Additionally, Johnson 

distributions is useful in transforming a continuous random variable into standard normal space, 

which can be effectively used in Reliability-based design optimization (RBDO) approaches. 

However, details of Johnson distributions can be found in Appendix A. 

After effective quantification of uncertainty of the random variable through first four moment 

bounds, it is required to approximate the probability distribution (distribution type and distribution 
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parameters) of the variable. Any empirical probability distribution systems, such as Johnson family 

of distributions, Pearson family of distributions, Beta family of distributions, or Lambda family of 

distributions can be utilized for the purpose. This thesis uses a four-parameter family of Johnson 

distributions, because (i) it can replicate the shape of normal distribution, lognormal distribution, 

bounded distributions, or unbounded distributions; additionally, (ii) it is useful in transforming a 

continuous random variable into standard normal space, which can be effectively used in 

Reliability-based design optimization (RBDO) approaches. More specifically, bounded Johnson 

distribution is a reasonable choice for fitting interval data as it gives confirmation of not selecting 

any distribution parameter that results in realizations of the arbitrary random variable out of actual 

interval set (Zaman et al., 2011b). Details of Johnson distributions is provided in Appendix A.  

Again, for the purpose of fitting data to Johnson family of distributions, this thesis utilizes 

statistical moment matching approach as outlined in Appendix B. Thus, the proposed FMBA 

represents a random variable having epistemic uncertainty through a family of cumulative 

distribution functions (CDFs). Structured formulations of proposed FMBA is described in the 

following section.  

4.1 Proposed Feasible Moment Bounding Approach (FMBA) 

The Proposed FMBA can accommodate both multiple interval data, and a mixture of multiple 

interval and discrete point data. Estimation technique of lower and upper bounds of first four 

moments of an arbitrary random variable described by multiple interval data are outlined in Section 

4.1.1, and variable described by a mixture of both multiple interval and discrete point data in 

Section 4.1.2. 

4.1.1 FMBA for multiple interval data 

Consider an arbitrary random variable X described by n number of intervals. Interval data are 

gathered from different sources (i.e., expert opinions), and sources are assumed independent of 

each other. The feasible bounds on the first four moments of the variable X having n intervals can 

be estimated in three steps as follows. 

Step 1: Calculate the lower and upper bounds on first four moments of the random variable 

X described by multiple interval data using existing moment bounding approach 

(MBA) outlined in Section 3.2.1.2. 
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Step 2a: Solve the following optimization problem in Eq. (4.1) for the lower bounds of all the 

moments. 
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(4.1) 

where, n is the number of intervals and 𝑚𝑖𝑙𝑏_𝑚𝑏𝑎is the lower bound of ith (i = 1, 

2, 3, 4) moment of X, which is calculated in Step 1 using the existing MBA. 

 
 

Step 2b: Solve the following optimization problem in Eq. (4.2) for the upper bounds of all the 
moments. 
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(4.2) 

where, n is the number of interval and 𝑚𝑖𝑢𝑏_𝑚𝑏𝑎is the upper bound of ith (i = 1, 

2, 3, 4) moment of X, which is calculated in Step 1 using the existing MBA. 
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Step 3: Minimization of Eq. (4.1) in Step 2a and Eq. (4.2) in Step 2b yield two sets of 

realizations of the random variable X. Realizations set obtained in Step 2a is used to 

calculate the lower bounds of first four moments of the variable X by using moment 

expressions outlined in Section 3.2.1.2. Similarly, upper bounds of first four 

moments of the variable X can be calculated by utilizing the optimized realizations 

set of Step 2b and moment expressions of Section 3.2.1.2. 

 

4.1.2 FMBA for a mixture of multiple interval and sparse point data 

The technique to estimate the feasible bounds on the first four moments of a random variable X 

having m intervals and n sparse point data (𝑐𝑗 for 𝑗 = {1, 2, … , 𝑛}) can be illustrated by following 

three steps. 

Step 1: Calculate the bounds on the first through fourth moments of an arbitrary random 

variable X defined by both multiple interval data and discrete point data using the 

existing moment bounding approach (MBA) discussed in Section 3.2.1.3. 

Step 2a: Solve the following optimization problem in Eq. (4.3) for the lower bounds of all the 

moments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     }..., ,2,1{          .. miubxlbts iii   
 

(4.3) 

where, 𝑚𝑘𝑙𝑏_𝑚𝑏𝑎 is the lower bound of kth (k = 1, 2, 3, 4) moment, which is 

calculated in Step 1 using the existing MBA, and }..., ,2,1{for  njcx jjm  . 
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Step 2b: Solve the following optimization problem in Eq. (4.4) for the upper bound of all the 

moments. 
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(4.4) 

where, mbakubm _ is the upper bound of kth (k = 1, 2, 3, 4) moment, which is 

calculated in step 1 using existing MBA, and } ..., ,2 ,1{for  njcx jjm  . 
 

Step 3: Step 2a and Step 2b yield two optimized realization sets of the random variable X, 

which are used in Step 3 to calculate the lower and upper bounds of the first four 

moments respectively through the utilization of moment expressions outlined in 

Section 3.2.1.3 

 

Once the uncertainty of the random variable X (described by either multiple interval data or a 

mixture of multiple interval and discrete point data) are quantified in a form of lower and upper 

bounds on the first four moments following Section 4.1.1 and 4.1.2, the probability distribution of 

X can easily be approximated using any of the available empirical probability distributions. As 

mentioned earlier, this thesis makes proper use of four-parameter family of Johnson distributions 

for the purpose, and utilizes moment (statistical) matching to fit data to the cited distributions 

family. 

The computational efforts of proposed FMBA is almost similar to existing MBA method except 

the requirements of two additional optimizations in Step 2a and 2b. Zaman et al. (2011a) argued 

with numerical examples for both overlapping and non-overlapping types of intervals that, if 



33 | P a g e  
 

number of intervals increases, existing MBA is found to be scalable in polynomial time; and, this 

assertion holds true for our proposed FMBA. 

The generalized formulations of the proposed FMBA, starting from arbitrary random variable 

available in a form of multiple interval data or a mixture of multiple interval and sparse point data 

to CDFs of the random variable is illustrated in Figure 4.1. 
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Figure 4.1: Proposed feasible moment bounding approach (FMBA) for the representation of 

epistemic uncertainty 

 

In the following section, proposed FMBA is illustrated with two numerical example problems. 

 

Calculation of lower bounds of first 
four moments using MBA (Section 

3.2.1) 

Calculation of upper bounds of first 
four moments using MBA (Section 

3.2.1) 

Minimization of a function of interest 
at the moment lower bounds (Eq. 
(4.1) for interval data and (4.3) for 

mixed data) 

Minimization of a function of 
interest at the moment upper bounds 
(Eq. (4.2) for interval data and (4.4) 

for mixed data) 

Calculation of lower bounds of first 
four moments using individual 

moment expression (Section 3.2.1) 

Optimized decision variable set for 
upper bounds 

Optimized decision variable set for 
lower bounds 

Calculation of upper bounds of first 
four moments using individual 

moment expression (Section 3.2.1) 

Arbitrary random variable described by 

multiple interval data, or mixture of 

multiple interval and point data 

Fitting Johnson distribution to data 
using moment matching (Appendix B) 

Multiple CDFs of the random variable 
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4.2 Numerical Examples 

In this section, we demonstrate our proposed feasible moment bounding approach by two example 

problems. Since our proposed approach can represent a random variable defined by either multiple 

interval data or a mixture of multiple interval and sparse point data, this section presents two 

examples for these two types of problems. Example 4.1 consists of only multiple interval data, and 

Example 4.2 deals with both multiple interval and sparse point data. 

4.2.1 Example 4a 

Consider an arbitrary random variable a described by multiple interval data set ([0.5, 0.7], [0.3, 

0.8], [0.1, 1.0]). It is required to quantify the uncertainty associated with variable a. For the 

purpose, lower and upper bounds of the first four statistical moments of uncertain variable a are 

estimated following existing MBA and our proposed FMBA. Existing MBA estimates different 

moment bounds from different realization sets, whereas proposed FMBA estimates all the moment 

bounds using single realizations set. Then, bounded Johnson distribution is fitted to data by means 

of moment matching approach, and resulting family of 150 sample CDFs are plotted in Figure 4.2 

for each of the methods. Additionally, another uncertainty representation approach WMLE as 

outlined in Section 3.2.3 is also used to represent the uncertainty of variable a, and subsequently, 

resulting single representative CDF of the variable is superposed in the same figure (Figure 4.2). 

 
Figure 4.2: WMLE based CDF, MBA and FMBA based family of CDFs for variable a of 

Example 4a 
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Figure 4.2 clears up that CDFs (red) obtained using proposed FMBA are totally contained by CDFs 

(black) obtained using existing MBA. In other words, CDF bounds of the random variable a is 

narrower in case of proposed FMBA than that of existing MBA method. Again, single 

representative CDF (solid blue) of variable a found using WMLE approach is also successfully 

accommodated by CDFs (black) found using proposed FMBA method. 

4.2.2 Example 4b 

Random variable b is assumed to be described by three sets of interval ([0.4, 0.85], [0.2, 0.9], [0.0, 

1.0]) and two sparse point data {0.55, 0.65}. After quantifying the uncertainty of variable b in a 

form of lower and upper bounds of first through fourth statistical moments using both MBA and 

FMBA, data is fitted to bounded Johnson distributions (Appendix A) following moment matching 

approach (Appendix B), and resulting family of sample CDFs are plotted in Figure 4.3 for both 

MBA and FMBA. Similar to Example 4.1, proposed FMBA based CDFs (red) of variable b are 

fully enveloped by existing MBA based CDFs (black), or CDF bounds following FMBA method 

is narrower than CDF bounds following MBA method. 

 
Figure 4.3: WMLE based CDF, MBA and FMBA based family of CDFs for variable b of 

Example 4b 
 

The interpretation from the figures both in example 4a and 4b are well aligned to our claims 

regarding proposed feasible moment bounding approach (FMBA). Proposed FMBA can represent 

uncertainty of a random variable described by either multiple interval data or mixture of multiple 
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interval and discrete point data in a form of multiple CDFs excluding the limitations of existing 

MBA. Now it is required to investigate either represented uncertainty using proposed FMBA can 

effectively and efficiently propagate through systems. The following chapter discusses the 

propagation of the uncertainty represented by our proposed FMBA through single disciplinary 

system. 
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Chapter 5 

PROBABILISTIC PROPAGATION OF EPISTEMIC UNCERTAINTY 

THROUGH SINGLE DISCIPLINARY SYSTEM 

 

Our proposed uncertainty representation method, feasible moment bounding approach (FMBA) 

can effectively represent different types of epistemic uncertainty as discussed in Chapter 4. Now, 

this uncertainty in the input variable needs to be propagated through the model. A number of 

uncertainty propagation approaches are available in literature. In this thesis, we have used a unified 

probabilistic approach (Zaman et al, 2011b) as outlined in Section 3.3 to propagate input variable 

uncertainty through single disciplinary system. In this chapter, first, we have represented the input 

variable uncertainty defined by either multiple interval or a mixture of multiple interval and sparse 

point data using the proposed FMBA, and then propagated this uncertainty through single 

disciplinary system by using sampling-based optimization, percentile-based optimization (PBO) 

and expectation-based optimization (EBO) methods. The following section illustrates the overall 

uncertainty representation and propagation strategy through four numerical examples, which 

includes three challenge problems, and compare the results with the earlier studies. The following 

section illustrates the overall uncertainty representation and propagation strategy through four 

numerical examples including three challenge problems, and compare the results with the earlier 

studies. 

5.1 Numerical Examples 

In this section, four numerical problems are solved to show how uncertainty of a random input 

variable propagates through a single disciplinary system. Among these, first three problems are 

adopted from Sandia epistemic uncertainty workshop (Oberkampf et al, 2004). Sandia workshop 

has proposed six challenge problems to show how to represent, aggregate and propagate epistemic, 

and a mixture of aleatory and epistemic uncertainty through simple single disciplinary model. All 

six challenge problems are designed based on either single interval or multiple interval data, and 

we solve three relevant challenge problems from the workshop. Additionally, since our proposed 

FMBA can also represent variable described by a mixture of multiple interval and sparse point 

data, we solve one extra problem outside the workshop to cover this extra feature of the proposed 

approach. 
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Consider an algebraic function of the form 

  abay   (5.1) 

where, y is the system response. Let a and b be two continuous input variables, which are 

independent to each other and assumed to be positive real numbers, and available information 

regarding a and b are summarized in Table 5.1. Our goal is to show how uncertainty in input 

variable a and b propagate through the model  abay   and to quantify the uncertainty in system 

response y assuming the model as perfect or zero model form error.  

Table 5.1: Numerical values for four example problems 

Problem Input variable a Input variable b 

Example 5a [0.1, 1.0] ([0.6, 0.8], [0.4, 0.85], [0.2, 0.9], [0, 1]) 

Example 5b ([0.5, 0.7], [0.3, 0.8], [0.1, 1.0]) ([0.6, 0.6], [0.4, 0.85], [0.2, 0.9], [0, 1]) 

Example 5c ([0.5, 0.7], [0.3, 0.8], [0.1, 1.0]) Lognormally distributed with two 

parameter: 

• ([0.6, 0.8], [0.2, 0.90], [0.0, 1.0]) 

• ([0.3, 0.4], [0.2, 0.45], [0.1, 0.5]) 

Example 5d ([0.5, 0.7], [0.3, 0.8], [0.1, 1.0]) ([0.4, 0.85], [0.2, 0.9], [0.0, 1.0]) and 

{0.55, 0.65} 

 

5.1.1 Example 5a (Challenge Problem 2) 

Example 5a is the second challenge problem from the Sandia workshop. In this problem, the 

uncertain input variable a is defined by single interval [0.1, 1.0], and b is described by multiple 

interval data ([0.6, 0.8], [0.4, 0.85], [0.2, 0.9], [0, 1]). We present the uncertainty representation of 

input variable a and b in the form of CDF obtained using proposed FMBA in Figure 5.1 and 5.2, 
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respectively, and propagate these CDFs through the system model 𝑦 = (𝑎 + 𝑏)𝑎 with the help of 

three uncertainty propagation methods – PBO, EBO and Sampling.  

  
Figure 5.1: CDFs of input variable a of 

example 5a 
Figure 5.2: CDFs of input variable b of 

Example 5a 

 
Figure 5.3: Bounds on system response CDFs of Example 5a 

 

As discussed in Chapter 3, PBO minimizes or maximizes the system response values at different 

percentile points, whereas EBO minimizes or maximizes at the expected values, therefore, 

minimized PBO bound should always be lower than minimized EBO bound, and maximized PBO 

bound be higher than maximized EBO bound. For this example, this thesis has optimized the 

system response at 11 percentile points, and interpolated the points to get overall PBO bounds.  

Since in Figure 5.3, lower bound of CDFs obtained by PBO (red) is lower than that of EBO lower 

bound (blue), upper bound of CDFs obtained by PBO (red) is higher than that of EBO upper bound 
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(blue), and sampling CDFs are within the bounds, it is clear that uncertainty represented by 

proposed FMBA can effectively propagate through systems. Now, in order to compare our 

proposed FMBA with the existing MBA, we plot PBO bounds in Figure 5.4 and EBO bounds in 

Figure 5.5 for both MBA and FMBA.  

  
Figure 5.4: PBO based comparison of bounds 

on system response CDFs of Example 5a 
Figure 5.5: EBO based comparison of bounds 

on system response CDFs of Example 5a 
 

Figure 5.4 and 5.5 shows that, proposed FMBA bounds of the system response is narrower than 

existing MBA bounds, which is one of the goals of our proposed FMBA. Thus, FMBA can 

effectively represent the interval uncertainty bypassing the limitations of existing MBA. 

5.1.2 Example 5b (Challenge Problem 3) 

Example 5b is the third challenge problem of the workshop. For this problem, the input variables 

a and b both are multiple interval data described by ([0.5, 0.7], [0.3, 0.8], [0.1, 1.0]), and ([0.6, 

0.6], [0.4, 0.85], [0.2, 0.9], [0.0, 1.0]), respectively. Uncertainty in variable a is already represented 

in Figure 4.2 of Example 4a, and variable b has an uncertainty representation as shown in Figure 

5.6. Similar to Example 5a, uncertainty in input variable a and b, represented using proposed 

FMBA, is propagated through Eq. (5.1) following PBO, EBO and Sampling propagation methods, 

and resulting bounds on system response CDFs are reported in Figure 5.7. One point is necessary 

to note that, this thesis has performed PBO at 11 percentile points, and interpolation of these points 

yield PBO bounds. 
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Figure 5.6: CDFs of input variable b of 

example 5b 
Figure 5.7: Bounds on system response CDFs 

of Example 5b 
 

Again, PBO and EBO based bounds on system response y are plotted in Figure 5.8 and 5.9, 

respectively, for both proposed FMBA and existing MBA, and the figures show that, bounds 

obtained using FMBA (blue) is narrower than MBA (red) in each of the cases. 

  
Figure 5.8: PBO based comparison of bounds 

on system response CDFs of Example 5b 
Figure 5.9: EBO based comparison of bounds 

on system response CDFs of Example 5b 
 

5.1.3 Example 5c (Challenge Problem 5) 

This is the fifth challenge problem of Sandia epistemic uncertainty workshop. For this problem, 

input variable a is multiple interval data ([0.5, 0.7], [0.3, 0.8], [0.1, 1.0]), and b is characterized by 

log-normal probability distribution with imprecise distribution parameters. Two parameters (mean 
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and standard deviation) of log-normal distribution are specified by multiple intervals ([0.6, 0.8], 

[0.2, 0.9], [0.0, 1.0]) and ([0.3, 0.4], [0.2, 0.45], [0.1, 0.5]). After quantifying the uncertainty using 

proposed FMBA, sample CDFs for each of input variable a and two log-normal distribution 

parameters are shown in Figure 4.2 of Example 4a, Figure 5.6, and Figure 5.7, respectively with 

associated WMLE representation. Once the uncertainty of two log-normal distribution parameters 

are quantified, uncertainty in input variable b can easily be determined as shown in Figure 5.12. 

Then, available input variable uncertainty is propagated through system, and resulting bounds on 

system response CDFs are depicted in Figure 5.13. 

  
Figure 5.10: CDFs of mean of input variable 

b of example 5c  
Figure 5.11: CDFs of standard deviation of 

input variable b of example 5c 

  
Figure 5.12: CDFs of input variable b of 

example 5c 
Figure 5.13: Bounds on system response 

CDFs of Example 5c 
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Figure 5.13 shows that, PBO bounds (red) are almost overlapped with EBO bounds (blue), 

therefore, this thesis has performed PBO at 15 percentile points instead of 11 points for this 

example. Since none of the PBO points in Figure 5.13 goes beyond EBO bounds, it can be said 

that proposed FMBA can effectively represent the uncertainty in input variable a and b. Bounds 

on system response CDFs obtained by both existing MBA and proposed FMBA are shown in 

Figure 5.14 and 5.15 for PBO and EBO based propagation. Both the figures show that, FMBA 

bound (blue) is narrower than MBA bound (red). 

  
Figure 5.14: PBO based comparison of 

bounds on system response CDFs of Example 
5c 

Figure 5.15: EBO based comparison of 
bounds on system response CDFs of Example 

5c 
 

5.1.4 Example 5d 

Sandia workshop challenge problems are focused on system input variables only having single or 

multiple interval data. However, our proposed FMBA can also effectively represent uncertainty of 

input variables defined by a mixture of multiple interval and sparse point data as outlined in Section 

4.1.2. Therefore, our fourth example problem is here to show the effectiveness of this additional 

feature of proposed FMBA.  

For this problem, input variable a is defined by multiple interval data ([0.5, 0.7], [0.3, 0.8], [0.1, 

1.0]) having uncertainty representation as shown in Figure 4.2. Input variable b is a random 

variable characterized by a mixture of three interval ([0.4, 0.85], [0.2, 0.9], [0.0, 1.0]) and two 

discrete points {0.55, 0.65}, and has an uncertainty representation as displayed in Figure 4.3. 
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Uncertainty in input variable a and b, represented using proposed FMBA, is permitted to propagate 

through the system  abay   according to sampling, PBO and EBO methods, and the resulting 

bounds on the system response CDFs are exhibited in Figure 5.16. Finally, to compare the efficacy 

of the proposed FMBA in representing input variable uncertainty, PBO bounds on system response 

CDFs for both MBA and FMBA are shown in Figure 5.17, and similarly EBO bounds on system 

response CDFs are shown in Figure 5.18. For both PBO and EBO cases, proposed FMBA bounds 

(blue) on system response CDFs are narrower than existing MBA bounds (red).   

  
Figure 5.16: Bounds on system response 

CDFs of Example 5d  
Figure 5.17: PBO based comparison of 

bounds on system response CDFs of Example 
5d 

 
Figure 5.18: EBO based comparison of bounds on system response CDFs of Example 5d 

 



46 | P a g e  
 

For each of the four numerical examples, it is observed that, input variable uncertainty represented 

by proposed FMBA can effectively propagate through the system, and bounds on system response 

CDFs for both PBO and EBO are narrower in case of proposed FMBA comparing with existing 

MBA.  

5.1.5 Computational cost of the example problems 

Once the uncertainty of a and b be quantified in a form of CDFs using MBA and FMBA methods, 

successive propagation steps (PBO or EBO) are similar for both MBA and FMBA. In this thesis, 

we have observed the computational cost of this propagation step for each of the four numerical 

examples in terms of number of function evaluations and program run time, and summarized in 

Table 5.2. 

Table 5.2: Computational cost (function evaluations and time) of the example problems 

Problem Percentile 
Points 

Function 
evaluations Time (s) Function 

evaluations Time (s) 

MBA 
+  

PBO 

FMBA 
+  

PBO 

MBA 
+  

PBO 

FMBA 
+  

PBO 

MBA 
+  

EBO 

FMBA 
+  

EBO 

MBA 
+  

EBO 

FMBA 
+  

EBO 

Ex. 5a 11 25123 28660 13126 16407 531 619 182 303 

Ex. 5b 11 26485 23940 16531 13237 2128 1917 707 590 

Ex. 5c 15 57267 57140 31549 30809 6676 2005 2350 1315 

Ex. 5d 11 27781 23502 16561 10728 874 586 455 234 

 

Since both MBA and FMBA quantify uncertainty of the input variables in a form of family of 

CDFs, and these CDFs are propagated through system model, therefore, computational cost of the 

propagation step does not differ much due to the change in choice between existing MBA and 

proposed FMBA. Table 5.2 shows that, in case of Example 5a, function evaluations number and 

program execution times are higher for FMBA than MBA, whereas, in case of Example 5b, 5c and 

5d, both number of function evaluations and program run times are smaller for proposed approach 

than existing one. This does not establishes the superiority of the proposed FMBA in 

computational competency, rather it is due to the fact that, the accuracy of PBO and EBO method 

depends on how accurately nonlinear optimization is being performed. To lessen the convergence 
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related issues of nonlinear optimization problems, we have utilized genetic algorithm in this thesis. 

So, proposed FMBA is competitive in computational competency to existing MBA despite being 

able to circumvent the limitations of existing MBA.  

Again, we have observed that, PBO and EBO bounds are very close for Example 5c (Figure 5.13), 

therefore, we have used 15 percentile points for this particular example and 11 percentile points 

for Example 5a, 5b and 5c, which leads larger number of function counts and longer program 

execution times for Example 5c than remaining three example problems. 

5.1.6. Result analysis of the example problems 

Researchers have come up with different approaches regarding representation, aggregation and 

propagation of aleatory and epistemic uncertainty through system model from the very beginning 

of the announcement of Sandia workshop challenge problems. Several such researchers reported 

the bounds on the expected values of the system response y of the challenge problems. Ferson et 

al. (2004) and Zaman et al. (2011b) have summarized these results in a tabular format.  

Estimating moment bounds following our proposed FMBA, fitting Johnson distributions to data 

using matching statistical moments, and propagating the uncertainty through model by EBO 

methodology, this thesis has estimated the lower and upper bounds of the expected values (mean) 

of system response y for each of the four example problems, and the results are summarized in 

Table 5.3 with earlier studies. Example 5d, an additional example problem, introduced in this paper 

to show the validity of our proposed FMBA in representing uncertainty in input variables, which 

are described by both multiple interval and sparse point data, has also been included in the 

summary results in Table 5.3. 
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Table 5.3: Comparison of expected values of system response bounds for four example problems  

Problem Kozine and 
Utkin (2004) 

de Cooman and 
Troffaes (2004) 

Ferson and 
Hajagos 
(2004) 

MBA based 
propagation 

(Zaman et al., 
2011b) 

FMBA based 

propagation (this 

thesis) 

Ex. 5a [0.93, 1.84] [0.956196, 1.8] [0.84, 1.89] [0.6922, 2] [0.8596, 1.7941] 

Ex. 5b [0.944, 1.473] [1.04881, 1.2016] [0.83, 1.56] [0.6922, 2] [0.8932, 1.5806] 

Ex. 5c [1.45, 2.824] [1.54027, 2.19107] [1.05, 3.79] [0.6922, 8.4681] [0.7177, 1.664] 

Ex. 5d - - - - [0.8992, 1.4618] 

 

The results of four numerical example problems of Table 5.3 are in terms of bounds on the 

expected value of system output. Last column of the table is based on results found in this thesis. 

Though Sandia workshop challenge problems have no right or unique results (Oberkampf et al, 

2004), a comparative agreement among different solutions of the same problem is noticed from 

the table. One additional comment can be made about proposed FMBA based bounds on expected 

values of system response that, these bounds can be considered as optimal or best possible, because 

bound widths could not be any narrower but still envelope all the sample CDFs of system output 

as shown in Figure 5.3 of Example 5a, 5.7 of Example 5b, 5.13 of Example 5c, and 5.16 of 

Example 5d.  

So far, this chapter has described the propagation of different types of epistemic uncertainty 

through single disciplinary system. However, if the system consists of multiple disciplines with 

mutual coupling, uncertainty propagation through system becomes more complicated. The 

following chapter proposes a unified formulation for the representation and propagation of 

different types of uncertainty through multidisciplinary systems. 
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CHAPTER 6 

PROPOSED UNIFIED LIKELIHOOD-BASED DECOUPLING APPROACH 

TO MULTIDISCIPLINARY ANALYSIS UNDER EPISTEMIC 

UNCERTAINTY 

 

The success of any uncertainty representation approach is solely depended on the effective 

propagation of the represented uncertainty through system models. In literature, a number of 

methods are available to represent both aleatory and epistemic uncertainty, and to propagate those 

uncertainty through single or multidisciplinary system. Sankararaman and Mahadevan (2011) 

proposed a likelihood based epistemic uncertainty representation approach titled LBNA, which 

can represent a variable with epistemic uncertainty through a single nonparametric probability 

density function (PDF). Zaman et al. (2011a) suggested a moment bounding approach (MBA), 

which includes representing a variable having epistemic uncertainty through multiple 

representative cumulative distribution functions (CDFs). Zaman and Dey (2017) came up with 

another likelihood based worst-case maximum likelihood estimation (WMLE) approach to 

represent variable with epistemic uncertainty through a single CDF. All of these three uncertainty 

representation approaches are reviewed earlier in Section 3.2. Once uncertainty associated with all 

the input variables are in a manageable format, then this uncertainty can be propagated through 

multidisciplinary systems using any of the multidisciplinary analysis (MDA) methods. For this 

purpose, this thesis uses likelihood-based approach for multidisciplinary analysis (LAMDA) 

method which is discussed in section 3.4. 

Figure 6.1 below shows a flowchart, to aggregate the representation and propagation of epistemic 

uncertainty through multidisciplinary systems. This thesis is interested in two highlighted boxes 

of Figure 6.1. The box in the left side is used to show uncertainty representation approaches, and 

the right side box is to present MDA methodologies. After performing multidisciplinary analysis 

in right side box, the PDFs of the coupling variables will be available, and can be utilized in 

subsequent subsystem and system level analyses.  
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Figure 6.1: Representation and propagation of epistemic uncertainty through MDA systems 

 

6.1 Proposed Approach for the Representation and Propagation of Epistemic Uncertainty 

through Multidisciplinary System 

Liang et al. (2015) represented the epistemic uncertainty in the input variable using likelihood-

based nonparametric approach (LBNA) developed by Sankararaman and Mahadevan (2011), and 

performed the multidisciplinary analysis (MDA) using likelihood-based approach for 

multidisciplinary analysis (LAMDA) method proposed by Sankararaman and Mahadevan (2012). 

As mentioned earlier, their likelihood-based LBNA estimates a nonparametric PDF of an uncertain 

variable, and propagation of this nonparametric PDF through systems is difficult and 

computationally expensive due to the shortage of information about distribution type and 

distribution parameters. Therefore, this thesis has proposed a likelihood based unified approach 

for representation and propagation of epistemic uncertainty in multidisciplinary system. The 

proposed approach as illustrated in Figure 6.2 uses the worst-case maximum likelihood estimation 

(WMLE) method to represent the input variable containing epistemic uncertainty through a 

parametric CDF, and LAMDA method to accomplish multidisciplinary analysis. Since proposed 

approach has utilized two already discussed methods (WMLE and LAMDA) in a single 

framework, the significance of the notations used in Figure 6.2 are same as the ones discussed in 

Sections 3.2.3 and 3.4.2 of Chapter 3. 

MDA approach (i.e., SOFPI, 

LAMDA, etc.) 

Epistemic uncertainty 

representation approach (i.e., 

LBNA, WMLE, MBA, etc.) 

Subsystem analysis 

System analysis 

Input variables (PDF, or 

point and/or interval data) 

Input variables (PDF) 
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Figure 6.2: Proposed unified decoupling approach to represent and propagate epistemic 

uncertainty through MDA system 

 

Input variable 
(given as PDF, 
or point and/or 
interval data) 

Input variable given as point 
and/or interval data 

Input variable 
given as PDF 

Likelihood function L(p) of variable X 

 

WMLE formulation of variable X 

 

 

Bounded Johnson PDF of the input variables   

Available PDF of all input variables 

  

 

Available PDFs of all input + coupling variables 

PDFs of sub-system outputs, and finally 
system output. 
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The proposed formulation of Figure 6.2 has two sequential steps. The first step is to represent the 

uncertainty of the uncertain input variables using WMLE approach, and the second step is to 

propagate the uncertainty through multidisciplinary system model using LAMDA approach. The 

input variables of a multidisciplinary system may be available as probability density function 

(PDF), or discrete point data and/or interval data. Among these, input variables having probability 

distributions are ready to be used in uncertainty propagation step of the formulation, however, 

input variables described by multiple intervals or mixture of multiple intervals and discrete point 

data need to go through the first step. To represent the uncertainty of the input variables 

characterized by multiple intervals or mixture of multiple intervals and points data, WMLE 

formulates a likelihood function of uncertain variable X and maximizes the minimum (worst case) 

of the likelihood to get four parameter of the bounded Johnson distributions. Once the probability 

distributions of the uncertain input variables can be estimated, then all the input variables come to 

a same level and become qualified to be used in uncertainty propagation of the second step using 

LAMDA method, which is discussed in Section 3.4. LAMDA estimates the probability density 

function of the coupling variables, and to do so, it calculates the conditional likelihood at some 

discrete points of the coupling variable, and subsequently evaluates the PDF of the coupling 

variable. Once the PDF of the coupling variable be available, multidisciplinary coupled system 

turns into multidisciplinary partially decoupled system, and allows to propagate these PDFs of the 

coupling variables as well as input variables through higher level subsystem and system analyses 

to get the PDFs of the desired output. 

By estimating a parametric distributions of the variable having different types of epistemic 

uncertainty, the proposed method can bypass the complications regarding nonparametric 

distributions of the existing likelihood-based MDA methodology. However, it is needed to make 

clear that, our unified proposed formulation utilizes WMLE method proposed by Zaman and Dey 

(2017) in place of LBNA method proposed by Sankararaman and Mahadevan (2011) to represent 

epistemic uncertainty, but multidisciplinary analysis LAMDA is common in both existing 

(developed by Liang et al., 2015) and proposed formulations. Therefore, to make the illustration 

easily understandable, we have used “WMLE + LAMDA” and “LBNA + LAMDA” to indicate 

the proposed and existing approaches, respectively. “WMLE + LAMDA” signifies that, epistemic 

uncertainty of the variable is represented by WMLE approach, and multidisciplinary analysis is 
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performed according to LAMDA approach, and similar interpretation holds true for “LBNA + 

LAMDA”. 

This following two sections have demonstrated the proposed formulation with a numerical MDA 

problem, and an engineering MDA problem. Both numerical and engineering problems have been 

used to compare the proposed “WMLE + LAMDA” approach with the existing “LBNA + 

LAMDA” approach. 

 

6.2 Mathematical MDA Problem 

This example problem is considered from Liang et al. (2015) with minor modification. Since 

model error uncertainty is out of scope of this thesis, it excludes model error related terms in the 

problem formulation as shown in Figure 6.3. There are three individual disciplinary analysis, 

among them “Analysis 1” and “Analysis 2” are mutually coupled by two feedback coupling 

variables u12 and u21. Subsystem level output g1 and g2 are the inputs to “Analysis 3”, and f is the 

output of the same analysis. To calculate system level output f, it is required to calculate subsystem 

level outputs g1 and g2. Again, to calculate g1 and g2, coupled analyses need to be decoupled. To 

decouple the coupled analyses, estimation of at least one of the coupling variables is a must. In 

this example problem, this thesis has estimated the probability density function (PDF) of the 

coupling variable u12. Once the PDF of u12 is estimated, the coupling between Analysis 1 and 

Analysis 2 can be solved easily, and subsequent subsystem and system level analyses can easily 

be converted to feedforward analysis from complex feedback coupling analysis as discussed in 

Chapter 3. 
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Figure 6.3: Mathematical Multidisciplinary Analysis (MDA) Problem 

 

Among five input quantities, x = (x1, x2, x3, x4, x5), x1 is a shared input to both Analysis 1 and 

Analysis 2, while rest of the quantities are local to their respective analysis. For some of these 

variables, probability distributions are available. Input variables x1, x2 and x3 are normally 

distributed, x4 is log-normally distributed, and on the other hand, x5 is a mixture of both sparse 

point and multiple interval data. All of the input variables are assumed to be uncertain, and they 

are not mutually correlated. Distribution information and data of all the input variables are listed 

in Table 6.1.  

 

 

 

 

 

 

 

Analysis 1 

 

Analysis 2 

 

 

  

Analysis 3 
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Table 6.1: Data of five input variables for mathematical MDA problem 

Input variable Type Data 

x1 Normal distribution Mean: 1, Std.: 0.1 

x2 Normal distribution Mean: 1, Std.: 0.1 

x3 Normal distribution Mean: 1, Std.: 0.1 

x4 Lognormal distribution Mean: 1, Std.: 0.1 

x5 Mixed 

Mixture of three intervals 

([0, 2], [0.02, 1.97], [0.14, 1.89])  

and two point data {0.99, 1.02} 

 

As shown in Table 6.1, the first four input variables have probabilistic information about their 

respective probability distribution, but the last input variable x5 is represented only by three 

intervals and two specific point data. As discussed earlier, first four input variables having 

probabilistic information can be used directly in the uncertainty propagation through 

multidisciplinary system. Since input variable x5 is characterized by a mixture of three intervals 

and two point data, uncertainty associated with x5 needs to be represented first. To represent the 

epistemic uncertainty in variable x5, proposed formulation has used WMLE uncertainty 

representation approach as outlined in Section 3.2 of Chapter 3.  

Existing formulation proposed by Liang et al. (2015) has used LBNA method to represent the 

uncertainty of the input variable. However, as mentioned before, this approach provides a 

nonparametric probability distribution of variable x5, and propagating this nonparametric PDF 

through multidisciplinary system is difficult and computationally expensive. Therefore, the 

proposed unified likelihood-based approach has utilized the worst-case maximum likelihood 

estimation (WMLE) method to represent the uncertainty of variable x5; this method can represent 

an uncertain variable through a parametric CDF, and thus allow efficient uncertainty propagation. 

Uncertainty representation of variable x5 is displayed in Figure 6.4 as cumulative distribution 

functions (CDFs) following LBNA, WMLA and moment bounding approach (MBA). LBNA 

method provides a nonparametric PDF of x5, and nonparametric PDF is not furnished with 

information regarding distribution type and distribution parameter. Therefore, as in Sankararaman 
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and Mahadevan (2011), this thesis has used first-order reliability method (FORM) to convert 

nonparametric PDF to nonparametric CDF. FORM method calculates discrete CDF values at some 

sampled points. Through interpolation of those discrete CDF values, the overall CDF of the 

variable x5 can be approximated, and for that reason, the CDF in Figure 6.4 by LBNA method is 

little bit irregular. However, it is clear from Figure 6.4 that, CDF obtained using WMLE method 

is well aligned with the CDF found by LBNA method, and also falls within MBA multiple CDFs. 

 
Figure 6.4: CDFs of input variable x5 

 

After representing the epistemic uncertainty in variable x5 by above mentioned methods, it is time 

to propagate the uncertainty through multidisciplinary system by performing multidisciplinary 

analysis (MDA). This thesis has used LAMDA approach for this purpose. 

While existing formluation (LBNA + LAMDA) represents the uncertainty in x5 by LBNA method 

(nonparametric probability distribution) and propagates the uncertainty of the input variables 

through mustidisciplinary system using LAMDA approach, proposed formulation (WMLE + 

LAMDA) uses WMLE method (parametric probability distribution) to represent the uncertainty 

in x5 and LAMDA approach to propagate the uncertainty through system, and resulting PDFs of 

coupling variable u12 using both existing and proposed formulations are depicted in Figure 6.5. 
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Figure 6.5: PDFs of coupling variable u12 

 

It is clear form Figure 6.5 that PDFs of the coupling variable u12 obtained by the existing “LBNA 

+ LAMDA” and proposed “WMLE + LAMDA” formulations are almost similar. Since the PDF 

of one of the coupling variables, u12 is available as shown in Figure 6.5, the PDF of another 

coupling variable u21 can easily be found by simple one-directional propagation as discussed in 

Section 3.4, and the results are displayed in Figure 6.6. 

 
Figure 6.6: PDFs of coupling variable u21 

 

So far, the PDFs of two coupling variable u12 and u21 are available as shown in Figures 6.5 and 

6.6. Then the PDFs of the coupling variables as well as the PDFs of the input variables are 
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propagated through subsystem and system equation to obtain subsystem level output g1 and system 

level output f, and resulting PDFs of g1 and f are plotted in Figures 6.7 and 6.8, respectively. 

 
Figure 6.7: PDFs of subsystem output g1 

 

 
Figure 6.8: PDFs of system output f 

 

The PDFs of the two coupling variables u12 and u21, subsystem output g1 and overall system output 

f obtained using  existing formulation (LBNA + LAMDA) and proposed formulation (WMLE + 

LAMDA) are already compared in earlier figures. Additionally, we compare the CDFs of u12, u21, 

g1 and f obtained by representing the uncertainty in input variable x5 using LBNA, WMLE and 

MBA, and propagating the uncertainty through multidisciplinary systems using sampling-based 
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SOFPI method for each of the representation method, and the resulting CDFs are depicted in Figure 

6.9 and 6.10. 

  
(a) (b) 

Figure 6.9: Uncertainty propagation-based comparison of CDFs of coupling variable (a) u12, and 

(b) u21 for different uncertainty representation approaches 

 

  
(a) (b) 

Figure 6.10: Uncertainty propagation-based comparison of CDFs of (a) system level output g1, 

and (b) overall system output f for different uncertainty representation approaches 
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The Statistics (Mean and Standard deviation) of two coupling variables u12 and u21 are summarized 

in Table 6.2 obtained using existing and proposed formulations. 

Table 6.2: Mean and Standard deviation of coupling variables u12 and u21 

Uncertainty 

representation 

method 

Uncertainty 

propagation 

method 

Coupling variables 

u12 u21 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

LBNA LAMDA 8.9047 0.4519 11.8965 0.6987 

WMLE LAMDA 8.9192 0.5312 11.9828 0.8432 

 

Similarly, the mean and standard deviation of subsystem output g1 and overall system output f are 

listed in Table 6.3.  

Table 6.3: Mean and Standard deviation of sub-system output g1 and overall system output f 

Uncertainty 

representation 

method 

Uncertainty 

propagation 

method 

Sub-system output g1 System output f 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

LBNA LAMDA 12.4007 1.2271 -10.0052 1.1681 

WMLE LAMDA 12.4861 1.3156 -10.0658 1.2243 

 

The results from Table 6.2 and 6.3 indicate that, sinstead of being fundamentally dissimilar, 

existing and proposed formulations yield almost the same statistics for the coupling variables, 

subsystem and system level outputs. 

For this mathematical MDA problem, number of individual disciplinary analysis (DA) and 

execution time for existing and proposed formulations are listed in Table 6.4. 
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Table 6.4: Computational effort of different uncertainty representation and propagation methods 
to estimate the PDF of the coupling variable u12. 

Uncertainty 

representation method 

Uncertainty 

propagation method 

Number of 

disciplinary analysis 

(DA) 

Execution time (s) 

LBNA LAMDA 1,098 27.89 

WMLE LAMDA 1,030 21.69 

 

The following remarks can be made from Table 6.4. 

 Existing formulation (LBNA + LAMDA) uses LBNA method to represent the epistemic 

uncertainty in the input variable x5, which estimates the nonparametric probability density 

function of x5. Again, proposed formulation (WMLE + LAMDA) uses WMLE method to 

represent x5, which evaluates the parametric CDF of x5. For uncertainty propagation 

through multidisciplinary system, both existing and proposed formulations use LAMDA 

method. For this mathematical example problem, the proposed formulation requires less 

number of disciplinary analyses than existing formulation by 6.19%, and also proposed 

formulation requires lower program execution time than existing formulation by 22.23%.  

 LAMDA method is common in both existing and proposed formulations. It estimates the 

PDF values at some discrete points of the coupling variable u12, and interpolation of these 

PDF values approximates the overall PDF of u12. Therefore, number of discrete points is a 

major issue in the accuracy of PDF estimation in case of LAMDA. More discrete points 

confirms more accurate and smoother PDF. However, increasing number of discrete points 

increases the computational effort (number of disciplinary analysis required and program 

run time). 15 uniformly distributed discrete points are considered in this thesis to 

approximate the PDF of the coupling variable u12 for both existing and proposed 

formulations. 

Similar to the mathematical MDA problem of this section, the following section illustrates an 

engineering MDA problem to demonstrate our proposed formulation. 
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6.3 Engineering MDA Problem (Hypothetical Fire Detection Satellite Model) 

This problem was primarily illustrated by Wertz and Larson (1999). Fire Detection Satellite 

(FireSat) is a hypothetical but realistic spacecraft. It consists of huge number of subsystems, and 

subsystems are coupled by complex feed-forward and feedback coupling variables. Detecting, 

identifying, and monitoring forest fires in near real time are the fundamental goal of FireSat. It is 

aimed to carry a large sized accurate optical sensor (length: 3.2 m, weight: 720 kg and angular 

resolution: 8.8e-07 radians). Ferson et al. (2009) and Zaman (2010) considered the modified 

version of the Firesat problem.  

This thesis have used a simplified subset of FireSat subsystems considered by Zaman (2010) based 

on Ferson et al. (2009). Simplified FireSat spacecraft has three subsystems: i) Orbit Analysis, ii) 

Attitude Control, and iii) Power subsystem, as shown in Figure 6.11.  

 
Figure 6.11: Three-discipline fire detection satellite 

 

Figure 6.11 indicates that, the Orbit subsystem is connected to both Power and Attitude control 

subsystems in forward direction, but Power and Attitude control subsystems are mutually coupled 

Altitude 
(H) 

Other sources of power (Pother) 

Orbit period (Δtorbit) 

Satellite velocity (v) 

Max. slewing angle (θslew) 

Max. and Min. 
moment of 
inertia (Imax and 
Imin)  

Power: Attitude 
Control System 
(PACS)   

Orbit period (Δtorbit) 

Eclipse period (Δteclipse) Orbit Power 

Attitude 
Control 

Total power (Ptot) 

Area of solar array (Asa) 
Total torque, τtot 
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through three coupling variables PACS, Imax and Imin, which made FireSat problem a complex 

multidisciplinary analysis (MDA) problem. 

This thesis has considered a particular satellite structure holding two solar panels extended out 

from the main spacecraft body. The length and width of each of these panel are L and W 

respectively, and panel inner edge is constrained to maintain a distance L from the centerline of 

the satellite main body as sketched in Figure 6.12 according to Ferson et al (2009). 

 
Figure 6.12: Schematic diagram for the spacecraft solar array 

 

The functional relationships among three individual disciplines of FireSat are shortly described 

below. 

Subsystem 1: The Orbit Subsystem 

The inputs to the orbit subsystem are: orbit altitude (H), earth’s radius (RE), target diameter (ϕtarget), 

and earth’s gravity constant (µ). The outputs of this subsystem are illustrated through Eqs. (6.1) to 

(6.4). 

The satellite velocity: 
HR

v
E 


   (6.1) 

The orbit period: 
v

HRHRt EE
orbit

)(2)(2
3 








  (6.2) 
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The maximum eclipse time: 













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E
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eclipse arcsin
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 (6.3) 

The maximum slewing angle: 
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R
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R

R
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sin
arctan





  (6.4) 

Subsystem 2: The Attitude Control Subsystem 

The Attitude Control Subsystem has 23 inputs listed in Table 6.5.  

Table 6.5: List of 23 inputs to the Attitude Control Subsystem of FireSat 

 orbit altitude (H),  

 earth’s radius (RE), 

 minimum and maximum 

moment of inertia of the 

spacecraft obtained in 

Power subsystem (Imax 

and Imin),  

 the deviation of major 

moment axis from local 

vertical (θ),  

 moment arm for the solar 

radiation torque which is 

the distance between the 

center of gravity of the 

spacecraft and the center 

of the solar pressure (Lsp),  

 average solar flux (Fs),  

 Max. slewing angle 

(θslew), 

 surface reflectivity or 

reflectance factor (q),  

 surface area off which 

solar radiation is reflected 

(As),  

 Slewing time (Δtslew), 

magnetic moment of the 

Earth in Am2 (M),  

 residual dipole of the 

spacecraft (RD),  

 moment arm for 

aerodynamic drag torque 

or the distance between 

the spacecraft’s center of 

gravity and the center of 

the aerodynamic pressure 

(La),  

 atmospheric density (ρ),  

 light speed (c),   

 sun incidence angle or the 

angle at which the sun 

radiation hits the 

spacecraft surface (i), 

 drag coefficient (Cd),  

 cross sectional surface 

area in the direction of 

flight (A),  

 satellite velocity (v),  

 rotation velocity of 

reaction wheel (ωmax),  

 number of reaction 

wheels (n), and 

 holding power (Phold), i.e., 

the power required to 

maintain the constant 

velocity (ωmax). 
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Subsystem output total torque (τtot) is the maximum of slewing torque (τslew) and disturbance torque 

(τdist), and its value is calculated using below mentioned equations. 

  distslewtot  ,max  (6.5) 

 

  max2
4 I
tslew

slew
slew





  (6.6) 

 
2222
amspgdist    (6.7) 

 

 
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   iqA
c
FL s

s
spsp cos1  (6.9) 

 

 3
2

HR
MR

E

D
m


  (6.10) 

 
2

2
1 AvCL daa    (6.11) 

 

Where, τg, τsp, τm and τa are the torques due to gravity gradient, solar radiation, magnetic field 

interaction, and aerodynamic drag, respectively. Two inputs Imax and Imin of attitude control 

subsystem are the output of power subsystem. Therefore, as long as the values of Imax and Imin are 

not available from power subsystem, it is not possible to perform individual disciplinary analysis 

of attitude control subsystem. Again, attitude control subsystem produces another variable PACS as 

in Eq. (6.12), which is the input to power subsystem, and thus attitude control and power 

subsystems are coupled by three coupling variables (Imax, Imin and PACS). 

 

 holdtotACS nPP  max  (6.12) 
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Subsystem 3: The Power Subsystem 

16 inputs to the power subsystem are summarized in Table 6.6.  

Table 6.6: List of 16 inputs to the Power Subsystem of FireSat 

 attitude control power 

(PACS), 

 other sources of power 

(Pother), 

 orbit period (Δtorbit), 

 eclipse period (Δteclipse), 

 sun incidence angle (i), 

 inherent degradation of 

the array (Id), 

 average solar flux (Fs), 

 power efficiency (η), 

 lifetime of the spacecraft 

(LT), 

 degradation in power 

production capability in 

% per year (εdeg), 

 length to width ratio of 

solar array (rlw), 

 number of solar arrays 

(nsa), 

 average mass density of 

solar arrays (ρsa), 

 thickness of solar panels 

(t), 

 distance between the 

panels (D), and 

 moments of inertia of the 

main body of the 

spacecraft (IbodyX, IbodyY 

and IbodyZ). 

 

There are two major outputs of this subsystem. These are the total power (Ptot) and the area of the 

solar array (Asa). In simplified FireSat formulation, attitude control subsystem is the only consumer 

that consumes power explicitly, and all other sources of power consumption are aggregated into 

term Pother. Power from attitude control subsystem and power from other sources are arithmetically 

summed to obtain the total power Ptot as in Eq. (6.13). 

 otherACStot PPP   (6.13) 

 

Now consider, the required power for the spacecraft during eclipse and daylight be Pe and Pd, and 

the length of time period spent per orbit in eclipse and daylight be Te and Td, respectively. In this 

thesis, it is assumed that, spacecraft’s required power during both eclipse and daylight are exactly 

equal to the total power Pe = Pd = Ptot. This thesis also assumes that Te = Δteclipse and Td = Δtorbit - 

Te. Based on these assumptions required power output Psa is calculated as Eq. (6.14). 
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8.06.0  (6.14) 

 

At the beginning and end of life, the array’s power production capacities can be computed 

according to Eqs. (6.15) and (6.16). 

  iIFP dsBOL cos  (6.15) 

  LT
BOLEOL PP deg1   (6.16) 

 

Eq. (6.17) calculates the area of the solar array Asa, which is needed to confirm the power 
requirements of the spacecraft. 

 
EOL

sa
sa P

PA   (6.17) 

 

As mentioned before, two outputs Imax and Imin of power subsystem are taken as inputs by attitude 

control subsystem. Hence, to perform individual disciplinary analysis in attitude control 

subsystem, the expression of Imax and Imin are crucial. Again, since the requirement is to estimate 

the critical value (maximum and minimum) of the moment of inertia other than average value, it 

is essential to calculate moment of inertia in all three directions (X, Y, and Z).  Equations to 

calculate length (L), width (W), mass (msa), and finally maximum and minimum moment of inertia 

(Imax and Imin) are provided below.  

 
sa

lwsa

n
rAL   (6.18) 

 
salw
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AW   (6.19) 

 LWtmsa 2  (6.20) 
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 bodysatot III   (6.24) 

  totZtotYtotX IIII ,,maxmax   (6.25) 

  totZtotYtotX IIII ,,minmin   (6.26) 

 

FireSat is a complex MDA problem including a large number of input quantities. Sankararaman 

and Mahadevan (2012), Chaudhuri et al (2017), Baptista et al (2018), Isaac et al (2018), Friedman 

et al (2018) had solved this multidisciplinary problem considering all the input variables having 

aleatory uncertainty only. Again, Zaman and Mahadevan (2017), and Kibria (2018) had regarded 

the input variables having epistemic uncertainty, but described by only single interval data. To the 

best of knowledge, no one in literature had solved this complex MDA problem where input 

variables are described by multiple interval data, or a mixture of both multiple interval and discrete 

point data. Therefore, this thesis has considered this research gap, and assumed the input variables 

of FireSat problem as having either aleatory uncertainty or epistemic uncertainty described by 

mixture of multiple interval and discrete point data. 

However, several input quantities are considered to be deterministic, and numerical details of these 

quantities are listed in Table 6.7.  
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Table 6.7: Numerical details of deterministic variables for FireSat problem 

No. Variable Symbol Unit Data 

1 Earth’s radius ER  m 6,378,140 

2 Gravitational parameter   m3 s-2 3.986 x 1014 

3 Target diameter ett arg  M 235,000 

4 Light speed c  m s-1 2.9979 x 108 

5 Area reflecting radiation sA  m2 13.85 

6 Sun incidence angle i  deg 0 

7 Slewing time period slewt  s 760 

8 Magnetic moment of earth M  A m2 7.96 x 1015 

9 Atmospheric density   kg m-3 5.1480 x 10-11 

10 Cross-sectional in flight direction A  2m  13.85 

11 No. of reaction wheels n  - 3 

12 Maximum velocity of a wheel max  rpm 6000 

13 Holding power holdP  W 20 

14 Inherent degradation of array dI  - 0.77 

15 Power efficiency   - 0.22 

16 Lifetime of spacecraft LT  Years 15 

17 
Degradation in power production 

capability 
deg  % per year 0.0375 

18 Length to width ratio of solar 
array 

lwr  - 3 

19 Number of solar arrays san  - 3 

20 Average mass density to arrays sa  kg m3 700 

21 Thickness of solar panels t  m 0.005 

22 Distance between panels D  m 2 

23 Moments of inertia of spacecraft 
body 

bodyI  kg m2 
Ibody,X = Ibody,Y=6200; 

Ibody,Z=4700 
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Rest of the input quantities are assumed to have either aleatory or epistemic uncertainties, and 

numerical details of these quantities are summarized in Table 6.8. 

Table 6.8: Numerical details of stochastic and epistemic variables for Firesat problem 

No. Variable Symbol Unit 

Data 

Mean 
Standard 

Deviation 

1 Altitude H  M 18,000,000 1,000,000 

2 Power other than ACS otherP  W 1,000 50 

3 Average solar flux sF  W/m2 1,400 20 

4 Deviation of moment axis   deg 15 1 

5 Moment arm for radiation torque spL  M 2 0.4 

6 Reflectance factor q  - 0.5 1 

7 Residual dipole of spacecraft DR  Am2 5 1 

8 Moment arm for aerodynamic torque aL  M 2 0.4 

9 Drag coefficient dC  - 

Mixture of three intervals 

([0.2, 2.2], [0.3,2.4], 

[0.4,2.3]) and two point data 

{0.9, 1.15} 

 

All the variables listed in Table 6.8 have aleatory uncertainty except for drag coefficient Cd. It is a 

variable having epistemic uncertainty described by both multiple interval and sparse point data. 

Representing the uncertainty in the variable Cd is the first step of the proposed unified formulation. 

Existing formulation (LBNA + LAMDA) estimates the nonparametric probability distribution of 

the epistemic variable drag coefficient Cd using LBNA method, and proposed formulation (WMLE 

+ LAMDA) estimates the parametric probability distribution of Cd using WMLE method. The 

CDFs obtained by these two methods are compared with sample CDFs found by implementing 

MBA approach in Figure 6.13. 
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Figure 6.13: CDFs of input variable Cd 

 

After representing the uncertainty of variable Cd using both LBNA and WMLE methods as shown 

in Figure 6.13, uncertainty is allowed to propagate through multidisciplinary system following 

LAMDA method, and the resulting PDFs of three coupling variables PACS, Imax, and Imin of the 

FireSat problem are reported in Figures 6.14, 6.15, and 6.16, respectively. 

 
Figure 6.14: PDFs of coupling variable PACS 
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Figure 6.15: PDFs of coupling variable Imax 

 

 
Figure 6.16: PDFs of coupling variable Imin 

 

Once the PDFs of the three coupling variables are available, the PDFs of three system outputs such 

as Total Output Power Ptot, Area of Solar Array Asa, and Total Torque τtot can be approximated by 

simple uncertainty propagation through Eqs. (6.13), (6.17), and (6.5), and approximated PDFs are 

reported in Figures 6.17, 6.18 and 6.19, respectively. 
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Figure 6.17: PDFs of system output: Total Output Power Ptot 

 

 
Figure 6.18: PDFs of system output: Area of Solar Array Asa 
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Figure 6.19: PDFs of system output: Total Torque τtot 

 

Additionally, this thesis has also compared the CDFs of three coupling variables of the FireSat 

problem PACS, Imax, and Imin yielded from sampling-based SOFPI method in Figure 6.20, while 

uncertainty of input variable Cd is represented by LBNA, WMLE and MBA uncertainty 

representation methods. 
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(a) (b) 

 
(c) 

Figure 6.20: Uncertainty propagation-based comparison of CDFs of three coupling variables 

(a) Power: Attitude Control Subsystem PACS, (b) Maximum Moment of Inertia Imax, and (c) 

Minimum Moment of Inertia Imin for different uncertainty representation approaches 

 

Tables 6.9 and 6.10 are used to compare the statistics (mean and standard deviation) of three 

coupling variables and three system outputs of this problem calculated following existing and 

proposed formulations. 
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Table 6.9: Statistics (Mean and Standard deviation) of three coupling variables PACS, Imax, and 
Imin 

Uncertainty 

representation 

method 

Uncertainty 

propagation 

method 

`Coupling variable 

PACS Imax Imin 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

LBNA LAMDA 154.55 39.46 6623.51 22.52 5126.68 22.74 

WMLE LAMDA 155.70 39.42 6625.85 23.66 5129.04 23.89 

 

 

Table 6.10: Statistics (Mean and Standard deviation) of three system level output Ptot, Asa, and 
Ttot 

Uncertainty 

representation 

method 

Uncertainty 

propagation 

method 

`System output 

Ptot Asa Ttot 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

LBNA LAMDA 1153.20 40.8917 12.1009 0.42820 0.01544 0.00680 

WMLE LAMDA 1156.86 42.7892 12.1450 0.44921 0.01614 0.00713 

 

From Tables 6.9 and 6.10, it can be said that, means and standard deviations of three coupling 

variables (PACS, Imax, and Imin) and three system outputs (Ptot, Asa, and τtot) of FireSat problem are 

almost similar for both existing and proposed formulations. 

Finally, the number of disciplinary analyses (DA) and program execution time to estimate the PDF 

of one of the coupling variable PACS are reported in Table 6.11 to compare the computational effort 

of existing (LBNA + LAMDA) and proposed (WMLE + LAMDA) formulations. To compare the 

computational costs of Table 6.11, an additional piece of information needs to keep in mind is that 

LAMDA method have used 15 discrete points to construct the PDF of the coupling variable PACS. 
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Table 6.11: Computational effort of different uncertainty representation and propagation 
methods to estimate the PDF of the coupling variable PACS 

Uncertainty 

representation method 

Uncertainty 

propagation method 

Number of 

disciplinary analysis 

(DA) 

Execution time (s) 

LBNA LAMDA 1,548 28.78 

WMLE LAMDA 1,338 23.99 

 

Table 6.11 indicates that, similar to the mathematical problem, both the number of disciplinary 

analyses and program execution times are smaller for the proposed “WMLE + LAMDA” 

formulation than the existing “LBNA + LAMDA” formulation. To be specific, the proposed 

“WMLE + LAMDA” reduces the number of disciplinary analyses by 13.56% than the existing 

“LBNA + LAMDA” formulation. 

Therefore, based on the results and computational expenses of both mathematical MDA problem 

and FireSat problem, we can conclude that the proposed “WMLE + LAMDA” formulation can 

perform as accurately as existing “LBNA + LAMDA” formulation, at the same time, it represents 

the uncertainty in the input variable through a parametric CDF, which can eliminates the 

complexity of propagating a nonparametric PDF through multidisciplinary system models used by 

existing formulation. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

This thesis proposes a new probabilistic feasible moment bounding approach (FMBA) for the 

representation of epistemic uncertainty arising from either multiple interval data or a mixture of 

both multiple interval and discrete point data. The proposed FMBA methodology includes 

calculation of statistical moment bounds, and then use of these bounds to approximate the 

probability distribution of the uncertain variable. Data can be fitted to any four-parameter family 

of distributions including Beta, Pearson, Johnson, and Lambda distributions. This thesis has used 

moment matching approach to fit data of uncertain variable to four-parameter family of Johnson 

distributions, as it can effectively map a number of common probability distributions, such as 

normal, lognormal, bounded or unbounded. Thus, the proposed FMBA represents variable with 

epistemic uncertainty through a family of parametric CDFs. The advantages offered by the 

proposed approach can be summarized as follows: 

(a) Conventional moment bounding approaches estimate the first, second, third and fourth 

moments of a random variable by optimizing respective moment equation, and thus 

individual moments are calculated from individual sample sets. However, all moments of 

a variable should be calculated from the same sample set. The proposed FMBA eliminates 

this limitation through the development of a single function aggregating first to fourth 

moment equation, and optimization of this function facilitates the estimation of all 

moments of a random variable from the same sample set. 

(b) Existing approaches calculate the widest possible interval for each of the moments, which 

is the most conservative way of representing epistemic uncertainty. Conservative 

representation makes decision regarding design of a system more complicated by providing 

more alternatives. In this case, the proposed FMBA provides narrower moment bounds 

than the existing methods. 

(c) Traditional uncertainty representation approaches usually represent different types of 

uncertainty in different formats. However, the proposed FMBA can represent uncertainty 
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in a random variable defined by either multiple interval data, or a mixture of multiple 

interval and discrete point data through parametric CDFs. 

(d) By representing the uncertainty in a variable through parametric CDF, the proposed FMBA 

facilitates effective implementation of computationally more competent uncertainty 

propagation methods such as FORM, SORM, MCS, etc. 

(e) Additionally, the solutions of Sandia epistemic uncertainty workshop challenge problems 

obtained by the proposed FMBA approach are appeared to be compatible with the results 

reported by the existing approaches. 

Thus, proposed FMBA has the potential to effectively represent epistemic uncertainty emerging 

from multiple interval data, or a mixture of discrete point and multiple interval data. 

Again, this thesis has proposed a unified formulation for the representation and propagation of 

epistemic uncertainty through multidisciplinary systems. The proposed formulation employs the 

worst-case maximum likelihood estimation (WMLE) method for the purpose of representation of 

epistemic uncertainty, and the likelihood-based multidisciplinary analysis (LAMDA) method to 

propagate uncertainty through the coupled multidisciplinary system. The proposed formulation 

(WMLE + LAMDA) is demonstrated with one numerical and one practical multidisciplinary 

analysis problems, and the results are compared with existing formulation (LBNA + LAMDA). 

Existing formulation represents the uncertainty in the input variable as nonparametric PDF, and 

propagates this PDF through multidisciplinary system. However, propagating a nonparametric 

PDF through systems is difficult due to the absence of information regarding distribution type and 

distribution parameters. Proposed formulation bypasses this limitation by representing the input 

variable uncertainty as a parametric CDF. 

7.2 Future Work 

The proposed methodologies consider input quantities as independent of each other. However, it 

may not be the case for the real-world problems. Future research may concentrate on representation 

and propagation of epistemic uncertainty based on statistical moments considering correlation 

among input quantities. Again, this thesis only focuses on multidisciplinary analysis (MDA), it 

can be extended to multidisciplinary design optimization (MDO). Additionally, this thesis 

considers only Johnson family of distributions to fit data, but other family of distributions (i.e., 

Pearson distribution) can also be explored. 
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APPENDICES 

 

Appendix A: Johnson Family of Distribution 

Johnson distribution is a four parameter (δ, γ, ξ and λ) family of distributions. Researchers are 

interested in this distribution because it can be fitted to sample data set from almost any probability 

distribution type. The first step of fitting data to Johnson distribution includes transformation of 

these data to standard normal space. Johnson, 1949 proposed a generalized equation (Eq. (A1)) to 

transform a continuous random variable, x into standard normal variable, z. 

 






 







xfz  (A1) 

 

Where,  f  - transformation functions 

 z - standard normal variable,  1,0~ Nz  

 δ and γ - shape parameters 

 ξ - location parameter 

 λ - scale parameter 

 

Again, transformation function  yf  in Eq. (A1) can be of four different forms (Table A.1) to map 

normal, lognormal, bounded, and unbounded Johnson distributions as shown, where 𝑦 =
𝑥−𝜉

𝜆
. 

Table A1: Johnson’s four distribution functions 

Distribution  yf  

Normal distribution, SN  )( yyf   

Log-normal distribution, SL  )ln()( yyf   

Bounded Johnson distribution, SB )
1

ln()(
y

yyf


  

Unbounded Johnson distribution, SU )1ln()( 2  yyyf  
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Since Johnson family of distributions can represent sample data in probabilistic format without 

knowing distribution information, it cancels out the necessity of checking a number of candidate 

named distributions (i.e. normal, lognormal etc.) in the race of being best fit to that particular 

sample. Therefore, Johnson distribution is a convenient choice for the transformation of data 

having no distribution information to a probabilistic format. 

 

Appendix B: Fitting Johnson Distributions to Data 

Parameter estimation of Johnson distribution is one of the major task in fitting Johnson distribution 

to data. For this purpose, DeBrota et al (1988) proposed four approaches including moment 

matching and percentile matching. Among these, this thesis has used moment matching approach 

to fit Johnson distributions to data.  

B.1 Fitting Johnson distributions to point data 

Available point data may fit to any one of normal, lognormal, bounded and unbounded Johnson 

distribution types. To find out the best one, a standard three step approach (Venkatraman and 

Wilson, 1987) is available in literature as discussed below. 

Step 1: From the point data set x, calculate second (m2), third (m3) and fourth (m4) moments. 

Step 2: Calculate 3
2

2
3

1 m
m

  and  2
2

4
2 m

m
  

Step 3: Find out the suitable distribution family by using chart in Figure A.1. 

 

If information regarding distribution type is available, then anyone can calculate distribution 

parameters from sample point data. Once the values of distribution parameters are ready for use, 

it is easy to return x space from standard normal space by using inverse translation of z as Eq. (B1), 

where  1,0~ Nz . 
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Here,  

3
2

2
3

1 m
m

  

2
2

4
2 m

m
  

where,  

m2 = second moment 

m3 = third moment 

m4 = fourth moment 

Figure A.1: Chart for the identification of Johnson distribution family (Marhadi, 2007). 

 

B.2 Fitting Johnson distributions to interval data 

Fitting Johnson distribution to interval data involves estimation of four Johnson parameters δ, γ, ξ, 

and λ. If variable described by interval data are available as moment bounds, moment matching 

approach can be utilized to fit Johnson distribution to these bounds. In response of this, Zaman et 

al (2011) proposed a sampling-based approach, which includes generating random sample of 

moments from already estimated moment bounds, and fitting single Johnson distribution to each 

sampled moments set. Detail steps of sampling-based approach are outlined below. 

Step 1: Estimate lower and upper bounds on the first through fourth moments of a random 

variable defined by single, or multiple interval, or mixture of both multiple interval 

and sparse point data. 

Step 2: Pick a set of first four moments (m1, m2, m3, and m4) from their respective bounds. This 

selection can be done by using any discretization method. Choice of sampling approach 

may affect final results. This thesis uses uniform distribution in this regard. 

Step 3: Since true value must prevail within the overall bounds [min(lower bounds) max(upper 

bounds)] of the data, we can assume the distribution type as bounded Johnson 

distribution. 
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Step 4: Estimate four parameters of the bounded Johnson distribution by using moment 

matching approach. 

Step 5: Step 2, 3 and 4 yield a single Johnson distribution, and in the same way desired number 

of distribution can be obtained to form family of distributions. 

 

 


