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ABSTRACT 
 

Northeast Bangladesh is located in the Meghna basin. The local community of northeast 

Bangladesh is very much concerned about the flash flood as it damages the Boro rice 

during the pre-monsoon season. Hence, long-term or seasonal flood prediction is 

essential for many management decisions in agriculture and food security, water and 

disaster risk reduction. El Niño–Southern Oscillation (ENSO) can be significant 

concerning seasonal flood prediction. They are also apprehensive about the impact of 

climate change on the long-term rainfall pattern, which could influence the hydro-

climatic extremes like floods, droughts, and other extreme events. Therefore, this study 

focused on determining the changes of future rainfall extremes under the warming 

world and to find out if there exist any teleconnections between the pre-monsoon 

rainfall and large scale process e.g., ENSO.  

 

The trends of extreme rainfall indices over northeast Bangladesh during the pre-

monsoon and monsoon seasons were analyzed for the period 1984-2016. With access 

to the highest number of available rainfall stations in northeast Bangladesh, the trends 

of extreme rainfall events were investigated using the Mann-Kendall trend test and 

Sen’s slope estimator. The Standard Normal Homogeneity and the Pettitt tests were 

used in appraising the quality of the data. Among seven stations, the rainfall of 

Sunamganj station was found inhomogeneous and was not considered for trend 

analysis. Most of the rainfall extremes indices showed a decreasing trend during the 

pre-monsoon as well as monsoon season, with the most significant reduction during the 

monsoon season.  The total seasonal rainfall and consecutive wet days showed a 

decreasing trend in both seasons. The consecutive dry days (CDD) showed an 

increasing trend in the monsoon season only.  Moreover, a decreasing trend was 

observed in one-day maximum rainfall (RX1), five-day maximum rainfall (RX5), the 

intensity of the daily rainfall over 25 mm (R25) during the pre-monsoon and 50 mm 

(R50) during the monsoon. 

 

The future trend and changes in rainfall extremes for northeast Bangladesh were 

examined for the periods of 2041-2070 and 2071-2099. Six regional climate models 

(RCMs) over the coordinated regional downscaling experiment (CORDEX) South Asia 

domain considering two representative concentration pathways (RCPs), namely 



 
 

ix 
 

RCP4.5 and RCP8.5, were used for this purpose. The multi-model ensemble mean of 

the extreme rainfall indices was generated using the Bayesian model averaging (BMA) 

approach. The BMA mean is a weighted average related to each RCM’s predictive skill 

during the training period.  

 

Most of the extreme indices showed an increasing trend during the pre-monsoon season 

for all future time slices except 2071-2099 for RCP4.5, while they showed a decreasing 

trend for the baseline period (1976-2005) for the same season. Most of the extreme 

indices showed a decreasing trend during the monsoon season for all future time slices, 

which is similar to the baseline period. 

 

The seasonal rainfall, together with other extreme indices, is expected to increase in the 

future relative to the baseline period, except for a decrease of CDD during both pre-

monsoon and the monsoon season. The average pre-monsoon rainfall of the study area 

is projected to increase by 12.93% and 18.42% under RCP4.5 for the period 2041-2070 

and 2071-2099, respectively.  The increase of the pre-monsoon rainfall for those 

periods will be 18.18%, and 23.85%, respectively under RCP8.5. The average monsoon 

rainfall of the study area is projected to increase by 4.96% and 2.27% under the RCP4.5 

for the period 2041-2070 and 2071-2099, respectively. These increases in monsoon 

rainfall for that period will be 6.56% and 6.40%, respectively for RCP8.5. It was also 

noted that all the extreme indices except consecutive wet days (CWD) are expected to 

increase significantly at the 95% confidence level during the pre-monsoon season. 

Therefore, the study area is expected to experience more frequent floods in the future 

in both the pre-monsoon and monsoon seasons as a consequence of climate change. In 

particular, the intensity and the magnitude of the flash flood in the pre-monsoon are 

expected to increase in the future as the extreme indices are likely to increase 

significantly in the pre-monsoon season.  

 

The present study also examined the relationship between El Niño Southern Oscillation 

(ENSO) and pre-monsoon rainfall, particularly in April over the Meghna basin and its 

response under the warming world. Firstly, the relationship between April rainfall over 

the Meghna basin and the heat low over central India during April was determined. The 

heatwave creates a low-pressure system (Cyclonic) in central India and the high-

pressure system (Anticyclonic) in the Bay of Bengal. These two-systems trigger the 

south-westerly moisture flow from the Bay of Bengal towards the Meghalaya Mountain 
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region and cause heavy rainfall over the Meghna basin. The result showed that there is 

a high inverse correlation (ρ> 0.55) between April rainfall over the Meghna basin and 

heat low over central India during April. Considering these findings, the relationship of 

different ENSO indices (e.g., ESOI, SOI, ONI, MEI) for several months (e.g., January, 

February, and March) with April rainfall was determined.  It was found that the Oceanic 

Niño Index (ONI) during January has the highest correlation value (ρ=0.52) and the 

maximum spatial coverage of the correlation value for which it is statistically 

significant (ρ=0.32 at the 95% confidence level) with April rainfall. It was also found 

that in most of the cases, floods in April occurred either during El Niño events or even 

neutral events but not during the La-Nina events during January. Finally, the 

relationship between ONI index during January and the heat low over central India 

during April was determined and found that there is a high inverse correlation of 

heatwave over central India in April with ONI index during January (ρ=-0.55). This 

infers that if the ENSO index during January is positive, there is a possibility of heat 

low over central India during April. On the other hand, it was shown that the heat low 

over central India has an impact over heavy rainfall during April over the Meghna basin. 

Therefore, it can be stated that the El Niño during January is related to heavy rain during 

April over the Meghna basin. 

 

As ENSO would impact flash floods over the Meghna basin, how ENSO would be 

influenced under the warming world was also studied. The result showed that the 

intensity of El Niño event increases with global warming under extreme scenario while 

it is opposite in the case of a La Niña event. However, there is no significant change in 

ENSO amplitude under the warming climate. Hence, Northeast Bangladesh would 

experience more frequent flooding in April as the El Niño event is expected to increase 

remarkably in the future. 
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1. CHAPTER 1 

  INTRODUCTION 

1.1. Background 

Climate change is a significant concern and should be considered as one of the most 

critical environmental issues faced in the world today [78]. Anthropogenic and natural 

factors contribute to variations in climate. Combustion of fossil fuels and land-use 

change are the primary anthropogenic activities responsible for changes in atmospheric 

concentrations of greenhouse gases (GHGs) and the energy balance in the climate 

system. On the other hand, the natural factor such as El Niño-Southern Oscillation 

(ENSO), volcanic eruptions, and variation of solar radiation as well as the orbital 

change of the earth also contribute to climate change [78]. 

 

Greenhouse gases such as carbon dioxide (CO2,) methane (CH4) and nitrous oxide 

(N2O) have increased in the atmosphere in significant quantities during recent centuries 

[77,112,207]. Therefore, the average atmospheric temperature and sea levels have been 

rising since the 19th century. Several observations have confirmed the increase in ocean 

surface temperature; shrinkage of polar ice; the development of polar glaciers and 

icebergs since the 1950s [181,196]. 

 

Global climate change is arguably changing rainfall patterns in different regions of the 

world, with far-reaching environmental, social, and economic impacts for the local 

communities. One of the notable change can be to the frequency and severity of the 

extreme rainfall events, which can exacerbate the risks of climate-related damages in a 

region. As rainfall patterns are specific to different regions, any changes in rainfall 

brought by the global climatic change will be similarly specific [198]. For this reason, 

communities need high-quality scientific information on historical trend and future 

trend in rainfall extremes. They can use this information for adapting to changes in the 

rainfall relative to both current climate variability and future climatic change [131]. 

 

1.2. The Rationale of the Study 

Among the meteorological variables, rainfall is a significant concern for northeast 

Bangladesh [20]. Heavy rainfall in the adjacent mountainous region of India causes a 

flash flood during pre-monsoon and prolongs riverine flood during the monsoon. 

During the pre-monsoon season, the region receives more than 900 mm rainfall, which 

is three times higher than the average rainfall of the whole country. The pre-monsoon 
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rainfall is also characterized by severe local storms known as nor’ Westers 

(Kalbaishaki). These storms bring heavy rain, hail, gusty wind, lightning, and 

sometimes tornadoes [133,214].  The sudden intrusion of the flash flood may damage 

the agricultural production from about 0.33 million ha, worth TK 3486 million or 3% 

of the national agricultural contribution to the gross domestic product (GDP) [62]. The 

pre-monsoon flash floods can damage the seasonal Boro rice, which is the main crop 

of the region [6]. Such events severely impact individual farmers, families, 

communities, and the region’s food security. Therefore, a dedicated early flash flood 

warning system is not only urgent for the survival of the people living here but also 

necessary for saving the economy of the country. 

 

At present, the Flood Forecasting and Warning Center (FFWC) of the Bangladesh 

Water Development Board (BWDB) produce only short-term forecasts with (3-day lead 

time). The short-term flash flood forecast may be very useful in harvesting the crop 

early even before full maturity to capture at least part of it by the farmers. Seasonal 

flood forecasts can be helpful in many management decisions in agriculture and food 

security, water, and disaster risk reduction. To find a teleconnection between the 

weather of a region and ENSO can be significant concerning to seasonal flood forecast. 

Several studies on the relationship between the Indian summer monsoon and ENSO 

have been conducted over the years [34,79,83,92,94,103,107,108,173,192]. However, 

no study has been conducted to determine the relationship between ENSO and pre-

monsoon rainfall in the Meghna Basin, which includes northeast Bangladesh. If there 

is a teleconnection between ENSO and the pre-monsoon rainfall over the Meghna basin, 

it will help provide seasonal flash flood forecasting of the region.  

 

Bangladesh is ranked as one of the most climate-vulnerable countries in the world. It is 

at extreme risk of floods, tropical cyclones, sea-level rise, and drought, all of which 

could drive millions of people to migrate [53]. Bangladesh is already experiencing 

climate-induced hazards like storm surge, flood, and drought. Northeast Bangladesh is 

experiencing a remarkable decreasing trend of annual precipitation during the last 

decades [15]. Climate change is likely to influence the hydrological cycle in northeast 

Bangladesh. If the policy-makers and local communities want to plan for changes in 

extreme rainfall, they need knowledge about future rainfall variability. Therefore, it is 
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essential to understand the pattern of the regional rainfall variation and its past and 

future trend. 

 

1.3. Objectives and Outcomes 

The main objective of this study is to understand how the rainfall extremes in northeast 

Bangladesh may change in the future and how this rainfall is connected to large-scale 

processes like ENSO. 

 

To accomplish the main objective, the following specific objectives will be achieved 

by this study: 

 To analyze the trend of observed rainfall extremes in the northeast of 

Bangladesh; 

 To investigate the performance of regional climate models (RCMs) to reproduce 

characteristic rainfall patterns;  

 To generate multi-model ensemble mean of the future rainfall extremes from 

RCMs under the newly developed representative concentration pathways 

(RCPs) for the study area; 

 To determine the relationship between El Niño Southern Oscillation (ENSO) 

and pre-monsoon rainfall over the Meghna basin and its response under the 

warming world. 

 

The possible outcomes of this study will be to understand how the rainfall extremes in 

the study area are expected to be impacted due to climate change. It will be helpful to 

understand how the large-scale process like ENSO is connected to pre-monsoon rainfall 

over the Meghna basin, particularly in northeast Bangladesh. It will also be beneficial 

for seasonal flood forecasting. 

 

1.4. Outline of the Thesis 

This thesis contains nine chapters. The organization of the chapters is as follows: 

Chapter 1 provides the background and rationale of the study. It also mentions the 

objectives of the study. A literature review on global warming, emission scenarios, the 

previous studies on historical trend & the future projection of rainfall of the study area, 

ENSO is discussed in Chapter 2. The study area & data and the methodologies are 

described in Chapter 3 and 4, respectively. Chapters 5 to 7 details the results and 

discussions found in this study. Chapter 8 presents the discussions and implications of 

the results of the study. Finally, Chapter 9 draws the conclusions and limitations of the 

study. It also provides recommendations for further studies.  
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2. CHAPTER 2 

  LITERATURE REVIEW 
 

2.1. Global Warming  

Global warming or climate change is defined as the long-term changes in weather 

condition. It may be observed in both average conditions and extreme events [76]. The 

world climate is mainly determined by solar radiation. When the amount of incoming 

solar radiation (shortwave) equals the outgoing radiation (longwave), the earth surface 

temperature remains the same.  The key driver of the climate change is the trapping of 

the outgoing solar radiation into the atmosphere because of increased concentrations of 

aerosols, clouds, and greenhouse gases in the atmosphere while the incoming solar 

radiation has remained the same [77]. 

 

Both the anthropogenic (such as greenhouse gas emissions from fossil fuel burning, 

land-use change, waste management, deforestation) and natural (such as solar radiation, 

volcanic eruption, ENSO) sources are responsible for global warming. However, the 

anthropogenic sources have been found more responsible than other sources for climate 

change [72,75]. The most significant human influence has been the emission of 

greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Carbon dioxide 

is a crucial GHGs, which has increased significantly since the industrial revolution 

primarily for increased consumption of fossil fuels and rapid land-use change. The 

atmospheric concentration of 𝐶𝑂2 in 2005 was higher than experienced in the past 

6,50,000 years, and its growth rate is continuously increasing every year [75].   

 

The effect of climate change mostly occurs in the atmosphere, on land surfaces, in the 

oceans, and on land glaciers. In situ observations and glacier explorations reveal the 

significant increase of greenhouse gases in the atmosphere during recent centuries [77, 

78,112,207]. Several observations have revealed an increase in temperatures on land 

and ocean surfaces that started over one hundred years ago. The global (land and ocean) 

surface temperature has increased by 0.85°C over the period 1880-2012 confirmed by 

multiple independently produced datasets [77,78] (Fig 2.1).  
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Fig 2.1  Observed global mean combined land and ocean surface temperature 

anomalies, from 1850 to 2012 from three data sets. Top panel: annual mean values. 

Bottom panel: decadal mean values, including the estimate of uncertainty for one 

dataset (black). Anomalies are relative to the mean of 1961−1990. (b) Map of the 

observed surface temperature change from 1901 to 2012 derived from temperature 

trends determined by linear regression from one dataset (orange line in panel a)  [77]. 
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Earth's average surface temperature rose by 0.74±0.18 °C in the period from 1906 to 

2005. The rate of warming almost doubled in the last half of that period (0.13±0.03 °C 

per decade, against 0.07±0.02 °C per decade) [75]. Several observations have 

confirmed the increase of ocean surface temperature, shrinkage of polar ice, and 

development of polar glaciers and icebergs since the 1950s [181,196]. 

 

Precipitation has increased over the mid-latitude land areas of the Northern Hemisphere 

since 1901 (medium confidence before and high confidence after 1951 (Fig 2.2). There 

is an area-averaged long-term positive or negative trends have low confidence for other 

latitudes [77]. The extreme weather and climate events have changed since 1950. It is 

very expected that the number of cold days and nights has reduced while the number of 

hot days and nights has increased on the global scale. It is expected that the frequency 

of heatwaves has increased in large parts of Europe, Asia, and Australia. There are 

expected heavy precipitation events has increased in most of the land region [77]. The 

frequency or intensity of heavy precipitation events has likely increased in North 

America and Europe, while in other continents, there is medium confidence in changes 

of it [77]. 

 

 

Fig 2.2  Maps of observed precipitation change from 1901 to 2010 and from 1951 to 

2010 [77]. 

 

The sea level has risen at a higher rate since the mid-19th century than the previous two 

millennia. It rose by 1.7 mm/year, 2.0 mm/year and 3.2 mm/year between 1901 and 

2010, between 1971 and 2010 and between 1993 and 2010, respectively (Fig 2.3). The 

frequency of the flood and drought event has also been reported to change.  Since 1950, 

the frequency of the drought has increased in Southern Europe and West Africa, while 
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it has decreased in central North America and northwestern Australia [76]. Though the 

impact of climate change on the trend on historical flooding has not been identified yet, 

the shift in the timing of spring peak flows is observed. Moreover, global and 

continental-scale studies project an increase in flood hazard worldwide. However, it is 

expected to decreases for central to western Eurasia and northern parts of North 

America  [40, 68]. 

 

 

Fig 2.3  Global mean sea level relative to the 1900–1905 mean of the longest-running 

dataset, and with all datasets aligned to have the same value in 1993, the first year of 

satellite altimetry data. All time-series (colored lines indicating different data sets) 

show annual values, and were assessed, uncertainties are indicated by colored shading 

[77]. 

 

2.2. Emission Scenario  

Climate change impact assessment involves the simulation of future climate generated 

by climate models using different scenarios of socio-economic and physical processes 

[125. The objective of generating a scenario is to better understand the uncertainties for 

reaching a robust decision under a wide range of future climates [115]. The 

development of scenarios in climate change research based on socio-economic 

scenarios such as projections of population, demographics, economic growth, energy 

supply and demand, land use, and technological developments. These socio-economic 

scenarios are used as input for complex socio-economic models to estimate emissions 

scenarios of GHGs. 

 

Intergovernmental Panel on Climate Change (IPCC) established several emissions 

scenarios over the times such as the 1990 IPCC scenario A (SA90), the 1992 IPCC 

scenario (IS92), the Special Report on Emission Scenarios (SRES) and Representative 
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Concentration Pathways (RCP). RCP is the new emission scenarios adopted in 2014 by 

the IPCC for its Fifth Assessment Report (AR5). These new emission scenarios define 

four possible future climates based on the amount of greenhouse gases are emitted in 

the upcoming years. The four RCPs such as RCP2.6, RCP4.5, RCP6, and RCP8.5, are 

named after a possible range of radiative forcing values in the year 2100 relative to pre-

industrial values [209]. A detail description of the four RCPs is provided in Table 2.1 

and Fig 2.4. They illustrate how the selected RCPs represents the literature in terms of 

radiative forcing. 

 

RCPs use a parallel approach in the development of its scenarios. In a parallel approach, 

the socio-economic scenarios are not the starting point for the RCPs. It begins with the 

identification of essential characteristics for scenarios of radiative forcing for climate 

modeling. The most prominent of which is the level of radiative forcing in the year 

2100 [130].  This parallel approach allows for socio-economic, emissions, and climate 

scenarios to be developed in parallel with each other.  In this way, changes can be made 

to one individual scenario without having to restart the whole sequence. RCP emission 

scenarios are used in the Coupled Model Inter-comparison Project Phase 5 (CMIP5) 

multi-model experiment under the World Climate Research Program (WCRP) for 

projecting the future climate scenarios.  

 

Table 2.1  Description of the RCPs [130]. 

Scenario Radiative 

forcing 

(𝑊𝑚−2) 

𝐶𝑂2 equivalent 

Concentration 

(p.p.m.) 

Pathway Model providing 

RCP* 

RCP2.6 3.0 490 Peak  before 2100 

and  then decline 

MESSAGE 

RCP4.5 4.5 650 Stabilization after 

2100 

AIM 

RCP6 6.0 850 Stabilization after 

2100 

GCAM 

RCP8.5 8.5 1370 Rising IMAGE 

* MESSAGE, Model for Energy Supply Strategy Alternatives and their General Environmental Impact, International Institute for 

Applied Systems Analysis, Austria; AIM, Asia-Pacific Integrated Model, National Institute for Environmental Studies, Japan; 

GCAM, Global Change Assessment Model, Pacific Northwest National Laboratory, USA (previously referred to as MiniCAM); 

IMAGE, Integrated Model to Assess the Global Environment, Netherlands Environmental Assessment Agency, The Netherlands. 

 



 
 

9 
 

 

Fig 2.4  Representative Concentration Pathways. (a) Changes in radiative forcing 

relative to pre-industrial conditions and (b) Energy and industry CO2 emissions for 

the RCP candidates [130]. 

 

2.3. GCMs and RCMs for Impact Studies  

The general circulation model (GCM) represents the physical processes in the 

atmosphere, ocean, cryosphere, and land surface [139]. It uses the Navier–Stokes 

equations on a rotating sphere with thermodynamic terms of various energy sources 

(radiation, latent heat). Atmospheric and Oceanic GCMs (AGCM and OGCM) are vital 

components along with sea ice and land-surface components. It simulates the climate 

using a 3-dimensional grid over the globe with a horizontal resolution of between 250 

and 600 km and 10 to 20 vertical layers in the atmosphere [199]. It is an essential tool 

for projecting future climate variables using emission scenarios. However, because of 

the coarse spatial resolution, the direct use of GCMs output is limited since it cannot 

adequately model many physical processes related to clouds [223]. Instead, their known 

properties must be averaged over the larger scale in a technique known as 

parameterization. GCMs has a limitation to simulate various feedback processes such 

as water vapor and warming; clouds and radiation; ocean circulation and ice and snow 

albedo [113].  

 

The regional climate model (RCM) is dynamically downscaled from GCM, and it uses 

GCM grid-point data as the boundary conditions [13]. Dynamic downscaling provides 

information at a much better spatial resolution (0.5 degrees) which can be used as inputs 

to basin-scale hydrological models. RCMs represent an advantage over GCM data for 

representing small-scale processes since RCM simulations are more realistic when 
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scaled, in comparison to GCM simulation data [32]. However, the spatial resolution of 

RCMs remains too coarse for some applications and still represents spatial averages, 

rather than local extremes [13]. 

 

2.4. Uncertainties Associated in Regional Climate Projection  

There are three key sources of uncertainty in climate projection, such as GHG emission 

scenarios, Atmosphere-Ocean General Circulation Model (AOGCM) configuration, 

and AOGCM internal variability [59]. Uncertainty in GHG emission scenarios can be 

examined by simulating different emission scenarios; uncertainty in AOGCM 

configuration can be explored by using different AOGCMs or different model 

configurations (e.g., physics parameters) within the same modeling system; and  

uncertainty in AOGCM internal variability can be examined  by executing different 

realizations of the same scenario each using different initial conditions [59]. However, 

for regional climate projections, there arise four additional sources of uncertainty such 

as regional climate downscaling (RCD) configuration, RCD internal variability, RCD 

method, and region of interest. The uncertainty in RCD configuration can be explored 

in a similar way to AOGCM configuration. The uncertainty in RCD internal variability 

can be examined in a similar way to AOGCM internal variability. The uncertainty in 

the region of interest can be tested by applying the RCD models to different regions. 

 

AOGCM configuration is one of the most significant sources of uncertainty in climate 

projections since it accumulates all sources of uncertainties such as GHG emission 

scenarios,  model internal variability, and non-linearities in the climate system and for 

the choice of RCD method [1]. Several studies have shown that the uncertainty in 

AOGCM configuration and GHG emission scenarios are the primary sources of 

uncertainty in climate change projections for longer timescales whereas the uncertainty 

in AOGCM internal variability is most vital on shorter timescales [59].  

 

The uncertainties in regional climate change projections need to be described entirely 

to provide useful information for impact assessment studies. Sometimes it needs to be 

reduced where possible. All the relevant uncertainty dimensions can be scrutinized by 

generating ensembles of simulations. The probability density functions (PDFs) of 

climatic variables of interest can be generated in order to capture all ranges of 

uncertainty. The spread of the PDF gives a measure of uncertainty. The uncertainty 

space of climate change projection can be sampled and examined more effectively if 
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the ensembles are relatively larger. However, it is a challenging task to capture all the 

ranges of uncertainties since it needs the completion of a large number of a 

multidimensional matrix of experiments [1,58]. 

 

2.5. CORDEX Experiment  

The Coordinated Regional Climate Downscaling Experiment (CORDEX) initiated by 

the World Climate Research Program (WCRP) to guide a coordinated international 

framework for producing improved regional climate change projections [136]. The 

CORDEX framework aims to provide a benchmark for evaluating and possibly 

improving models (model evaluation framework) together with exploring the 

maximum range of the source of uncertainties through a set of experiments to produce 

climate projections for impact and adaptation studies [136]. 

 

Table 2.2  CORDEX domain and their zone. 

Domain Zone 

1 South America 

2 Central America 

3 North America 

4 Africa 

5 Europe (EURO) 

6 South Asia 

7 East Asia 

8 Central Asia 

9 Australasia 

10 Antarctica 

11 Arctic 

12 Mediterranean (MED) 

13 Middle East North Africa (MENA) 

14 South-East Asia (SEA) 

 

Initially, in the CORDEX framework, there were twelve regions, covering the majority 

of the populated land areas worldwide, plus both the Arctic and Antarctic [138] (Table 

2.2). Afterward, WCRP included two new CORDEX domains for Arab and South-East 

Asia. This selection of a domain is based partly on physical processes in different 

regions, resources needed for the simulations and the availability of ongoing programs.  

Initially, about 50 km (or 0.5 degrees) standard horizontal resolution was selected for 

the first phase CORDEX simulations in order to allow worldwide participation [138]. 

However, at present, many groups are simulating RCMs with substantially higher grid 

spacing (up to ~10 km). 
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In the model evaluation framework, similar boundary condition was used for a selected 

domain to evaluate the performance RCMs. Initially, the CORDEX framework utilized 

the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim 

re-analysis covering the period of 1989-2007. The climate projection framework is 

based on the set of new GCMs supporting the IPCC Fifth Assessment Report (i.e., 

GCMs from CMIP5). A large number of experiments were included in this simulation 

setup considering new GHG scenarios for the 21st century, decadal prediction 

experiments, experiments, including the carbon cycle and experiments aimed at 

investigating specific feedback mechanisms [184]. 

 

2.6. Bias Correction of RCMs  

The state-of-the-art climate data from RCMs have been used for climate change impact 

studies. However, it is well established that the precipitation data from RCMs are biased 

because of limited process understanding or insufficient spatial resolution [106]. 

Therefore, the output from RCMs needs to be corrected before applying for climate 

change impact studies [35,106,119,187,208]. In recent years, extensive studies have 

investigated different bias correction methods for providing a reliable estimate of 

observed precipitation climatology given RCM output [27,74,106,171,188,191,194].  

 

The simplest method is the delta correction method, in which an average bias (delta) 

for a specified period is used to correct the bias [120]. This bias correction can be done 

either as one delta for the whole period considered or for different steps like seasonal 

or monthly deltas. Another approach calculates monthly correction factors that are 

based on the ratio between observed and simulated values in the past [120]. 

 

A linear transformation function between one or more predictors and the predictand is 

used in multiple linear regression methods [65, 70,189].  This method is used to adjust 

mean and variance only of the observed and simulated rainfall. The Local Intensity 

Scaling (LOCI) method can adjust the mean as well as both wet-day frequencies and 

wet-day intensities of precipitation time series [171,189]. 

 

The power transformation method corrects the mean and variance of precipitation by 

applying a non-linear correction in an exponential form [101,102,189]. Here, the 

observed long-term monthly mean is mapped on the monthly mean of the corrected 

daily simulated precipitation series. 
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A somewhat modern approach called distribution mapping in which the distribution of 

RCM simulated climate data is matched with the distribution of the observed climate 

data to correct the distribution of the RCM simulated climate data.  A transfer function 

is generated to shift the occurrence distributions of precipitation and temperature 

[22,168,174]. In the literature, it can be found in several other names such as 

‘probability mapping’ [18, 74], ‘quantile-quantile mapping’ [19, 44, 82,168,182], 

‘Statistical downscaling’ [146] and ‘histogram equalization’ [161,174,211]. Based on 

adjusting the probability distribution, the quantile mapping method is sub-classed as 

Empirical Quantile Mapping (eQM), Parametric Quantile Mapping (gamma 

distribution, gQM) and a Special case of Parametric Quantile Mapping (gamma and 

Generalized Pareto Distribution, gpQM).  

 

Among various methods, distribution mapping-based methods are getting more popular 

lately and have been applied to the downscale and correct temperature and precipitation 

data from RCMs [11, 45, 47,146, 168, 190], particularly in hydrological studies.  

 

2.7. Observed Trends of Rainfall in Bangladesh  

Trend analysis of observed rainfall is essential for water resources planning and 

management [183]. Therefore, trend analysis of extreme rainfall events is getting 

importance in recent years [17,106]. Studies in different parts of the world indicate that 

climate change has altered precipitation patterns resulting with resulting frequent 

extreme weather events, such as floods, droughts, and rainstorms [39,170,183, 218].  

Studies on historical rainfall record show that annual and seasonal rainfall in India has 

decreased [14,109]. 

 

Previous studies have either considered Bangladesh [2,154] or India [80,127,143] 

separately. These studies often consider trends in seasonal (including pre-monsoon and 

monsoon) or annual rainfall. The trends vary between positive [42, 98] and negative 

[41,99,127], depending on the region and the time period analyzed, but none has been 

statistically significant. All the studies in northeast Bangladesh used rainfall for the 

Sylhet station only. These studies have shown increasing trends for pre-monsoon and a 

decreasing trend for the monsoon [92,176], which is similar to most studies over India. 

However, total seasonal or annual rainfall is just one rainfall characteristic that can 

change. Fewer studies have looked at changes in other characteristics. For example, 

[176] found an insignificant increase of one-day maximum rainfall while a decrease of 
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five-day maximum rainfall, consecutive wet day and consecutive dry day for the Sylhet 

station for the last sixty years (1958-2007).  Over the border in India, [150] found that 

low-intensity rainfall has decreased and high-intensity rainfall had increased in 

Cherrapunji, but only during the pre-monsoon. These results imply less, but more 

intense rainy days over the region. By comparison, the Barak Basin further east seems 

to have experienced an increase in the number of pre-monsoon rainy days [98]. 

 

2.8. Impact of Climate Change  

Average global surface temperature and mean sea level rise are likely to increase over 

the 21st century under all emission scenarios (see Table 2.3). Heat waves will occur 

more often and last longer, and extreme precipitation events will become more intense 

and frequent in many regions [78]. Multi-model projections of global climate model 

indicate that there is likely to be frequent severe hydro-climatic extremes like floods, 

droughts, and other extreme events in the future because of climate change 

[71,103,135,167].  

 

Table 2.3  Projected change in global mean surface temperature and global mean sea 

level rise for the mid- and late 21st century, relative to the 1986–2005 period [78]. 
 

  

Scenarios 

2046-2065 2081-2100 

Mean Likely range Mean Likely range 

Global Mean 

Surface 

Temperature 

Change (°C) 

RCP2.6 1.0 0.3-1.7 1.0 0.3-1.7 

RCP4.5 1.4 1.1-2.6 1.8 1.1-2.6 

RCP6.0 1.3 1.4-3.1 2.2 1.4-3.1 

RCP8.5 2.0 2.6-4.8 3.7 2.6-4.8 

Global Mean 

Sea Level 

Rise (m) 

RCP2.6 0.24 0.17-0.32 0.40 0.26-0.55 

RCP4.5 0.26 0.19-0.33 0.47 0.32-0.63 

RCP6.0 0.25 0.18-0.32 0.48 0.33-0.63 

RCP8.5 0.3 0.22-0.38 0.63 0.45-0.82 

 

Several studies about future climate change on a global perspective concluded that the 

extreme event would become intense and more frequent; the wet region will become 

wetter and dry region will be drier during the 21st century [185, 33]. The high-intensity 

rainfall event is likely to increase over the East Asia region under a global warming 

scenario [26, 220,204,103]. Global warming is likely to intensify monsoon precipitation 

over a broad region encompassing South Asia [25, 96,100]. However, there are lots of 

uncertainty in projecting future rainfall due to wide variations among the model 
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projections [8, 50, 93, and 98,165]. The India summer monsoon rainfall is likely to 

increase moderately due to atmospheric warming. However, it is slightly 

counterbalanced by weakening large-scale monsoon circulation [177]. Seasonal mean 

rainfall and rainfall extreme over Bangladesh are likely to increase due to climate 

change [98,141,158]. In recent years, India has suffered from significant heatwaves 

during March-June. The rising trend of the number of intense heat waves in recent 

decades has been vaguely attributed to global warming [154]. Several studies suggest 

delaying the onset of the Indian summer monsoon due to global warming [46]. 

 

2.9. Mechanism of Pre-monsoon rainfall in Northeast Bangladesh 

A substantial amount of rainfall occurs in northeast Bangladesh and the adjacent hilly 

region of India during the months of March-May and causing a flash flood in this 

region. However, this early summer rainfall is not completely understood by the 

research community. A number of researchers [57, 61, 66, 104, 121, 159, 186] have 

proposed different theories to explain the possible causes of pre-monsoon heavy rainfall 

over Northeast Bangladesh.  However, most of the theories related to the convection 

mechanism triggered by the orography around the northeast region and others are 

related to the diurnal convective maximum. A brief description of these theories is 

given below. 

 

Orographic lifting 

The warm, moist southwesterly air from the Bay of Bengal is blowing towards the 

Meghalaya Plateau and causes heavy rainfall on the windward side of the Meghalaya 

Plateau resulting from the orographic uplifting of the moist air [176, 133, 66]. A heat 

low over central India adjacent to the western border of Bangladesh resulting from 

strong heating of the landmass triggered this southwesterly moisture flow from the Bay 

of Bengal towards the Meghalaya Plateau [59,195].  

 

Nocturnal jet 

The strong low-level southerly or southwesterly jet from the Bay of Bengal is termed 

as the nocturnal jet. It occurs when daytime convection ceases [59]. The nocturnal low-

level jet is responsible for the development of the convective systems by intersecting 

with fronts or outflow boundaries that cause the late night or early morning rainfall 

peak and flash floods in northeast Bangladesh [121]. 
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Katabatic convergence 

The katabatic wind or mountain breeze is the denser cool air that flows downslope as a 

gravity current. Some researchers have suggested that the night-time convective 

maximum in northeast Bangladesh could be triggered when the katabatic wind from the 

Meghalaya converge with the moisture prevailing wind off the Bay of Bengal [59]. 

 

Cold Pool convergence 

A cold pool can be defined as a block/region of cold air that is cooler than the 

surrounding air. The evaporative cooling of falling precipitation is responsible for the 

development of a cold pool. The convergences of the cold pool air over northeast 

Bangladesh at 925 hPa and warm moisture from the Bay of Bengal likely to be another 

mechanism of pre-monsoon rainfall of this region. 

 

2.10. Flash Flood in Northeast Bangladesh 

The river system in northeast Bangladesh originates from adjacent hilly areas of Assam, 

Meghalaya, and Tripura of India. The main tributary is the Barak River, which has a 

considerable part of its catchment area located in India. When it enters Bangladesh at 

Amalshid, it bifurcates into Surma and the Kushiyara rivers. Some other rivers originate 

in India and pass-through this area such as Manu, Dhalai, Khowai. All these river 

systems are fed mainly from the rainfall in the upstream catchment and some additional 

local drainage systems within Bangladesh. If it rains heavily in the adjacent hilly areas 

of the catchments, the run-off quickly accumulates and flows into Bangladesh. Flash 

flood starts in these areas from mid-April i.e., before the onset of the southwesterly 

monsoon. It can occur within a time-period between few minutes to a few hours. 

 

Pre-monsoon flash flood, particularly in April, is a major concern for the community 

since it destroys Boro rice, fisheries, and other livelihoods. The return period of a severe 

flash flood is five years [164]. The most notable severe flash flood occurred in 1980, 

1985, 1990, 2002, 2004, 2010, 2016, and 2017. Flash floods in the latter part of March 

or early April are not a regular occurrence in the haor region as it happened in 2017. A 

severe heatwave over central India caused heavy rainfall at the Meghalaya mountain 

region at the end of March 2017. A total of 1,262mm of rain fell at Cherrapunji during 

the period between March 28 and April 4 in 2017, which was 5.5 times greater than the 

amount of rainfall during the same period in 2016. It devastated the Boro rice in six 

haor districts that were worth TK 13,000. 
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2.11. El Niño–Southern Oscillation (ENSO) 

ENSO is using to quantify and measure the variability of the large-scale process since 

it reduces a climate process into a single number [180,193]. It is a complex interaction 

between the atmosphere and ocean in the eastern and central equatorial Pacific that 

reoccur on average every four years [67,149. It is a dominant mode of inter-annual 

variability in the tropics and can significantly affect the climate of tropic and extratropic 

[28].  

 

The warm phase of it is termed as El Niño, and the cold phase is termed as La Niña 

[49]. During the El Niño event, the above-average sea surface temperature (SST) 

weakens the easterly trade wind or sometimes starts blowing in another direction (Fig 

2-5). This results slowing down the ocean current that moves away the surface water 

from the western coast of South America, which in turn keeping the water of the coast 

of Peru and Ecuador relatively warmer [38].  

 

Fig 2.5  Schematic description of the large-scale ocean-atmosphere interactions 

during the development of ENSO Phases. (a) El Niño, (b) Normal condition and (c) 

La Niña [60]. 
 

ENSO is the most prominent year-to-year climate fluctuation on Earth, alternating 

between anomalously warm (El Niño) and cold (La Niña) sea surface temperature 

(SST) conditions in the tropical Pacific. ENSO exerts its impacts on the remote regions 

of the globe through atmospheric teleconnections, affecting extreme weather events 

worldwide. However, these teleconnections are inherently nonlinear and sensitive to 

ENSO SST anomaly patterns and amplitudes. In addition, teleconnections are 

modulated by variability in the oceanic and atmospheric mean state outside the tropics 

and by land and sea ice extent. 

 

In an early sixteenth century, the fishermen in Peru and Ecuador first noticed this 

unusual warming of eastern equatorial Pacific which typically began after Christmas 

and referred to as El Niño or Christ child or little boy.  While during the La Niña event, 
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the below-average SST makes the normal easterly trade wind even stronger (Fig 2.5). 

This results in a large-scale cooling of the eastern equatorial Pacific and termed as a 

little girl. The ENSO affects the global climate, though it originates in the equatorial 

Pacific.  The countries in the eastern part of the Pacific like Peru and Chile experience 

the vast amount of rainfall, whereas countries in the western side of the Pacific like 

India, Australia, and Indonesia suffers from a severe drought during El Niño. La Niña 

causes droughts in the eastern equatorial Pacific and floods in the western equatorial 

Pacific. 

 

Table 2.4  Geographic extent within which different SST based indices are calculated. 

Index Longitude range Latitude range 

Niño-1+2 90°W- 80°W 0°-10°S 

Niño-3 150°W- 90°W 5°N-5°S 

Niño-4 160°E- 150°W 5°N-5°S 

Niño-3.4 170°E- 120°W 5°N-5°S 

JMA 150°W- 90°W 4°N-4°S 

TNI 90°W- 80°W and 160°E- 150°W 0°-10°S and 5°N-5°S 

 

Several indices are used to measure the phase and strength of ENSO events. However, 

the application of a particular index is based on the purpose and the geographical 

location of the region of interest. The most commonly used indices are generally 

classified based on pressure and sea surface temperature (SST) [205]. The Southern 

Oscillation Index (SOI) and the Equatorial Southern Oscillation Index (ESOI) are 

pressure-based indexes. The SOI is calculated by subtracting atmospheric pressure at 

sea level of Darwin from Tahiti. Therefore, during El Niño, SOI is negative while 

during La Niña, SOI is positive. The limitation of SOI is that the ENSO phenomena are 

mainly concentrated close to the equator while both Tahiti and Darwin are located 

slightly south of the equator. To overcome this limitation, ESOI is introduced in which 

the pressure difference between two places centered on the equator (5˚S to 5˚N) over 

Indonesia and the eastern equatorial Pacific. The SST based indexes are Niño-1+2, 

Niño-3, Niño-4, Niño-3.4, and Japan Meteorological Agency (JMA) [63,205]. These 

indices are calculated by averaging sea surface temperature anomalies over the 

particular region over the equatorial Pacific Ocean described in Table 2.4. Besides 

indices mentioned above, Trans- Niño Index (TNI) and the Multivariate ENSO Index 

(MEI) are also used for measuring the phase and strength of the ENSO event. The TNI 

is calculated by subtracting normalized anomalies of the SST of the Niño-4 region from 
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the Niño-1+2 region. On the other hand, the MEI is calculated as the first principle 

component analysis of the six main observed variables such as sea level pressure, zonal 

and meridional components of the surface wind, SST, surface air temperature and total 

cloudiness fraction of the sky [9,210]. 

 

The El Ni ̃no Southern Oscillation (ENSO) controls the strength and position of the 

Indian Summer Monsoon through modulation of the stationary Rossby wave of the 

midlatitude [24]. Several studies [73,94,192] found that there is a decrease of Indian 

monsoon rainfall during the warm phase of ENSO, but no such a relationship during 

the cold phase of ENSO. However, preceding winter La Niña reduces the strength of 

the following Indian Summer Monsoon, which reduces the monsoon rainfall over India 

[24]. The monsoon rainfall over northeast India tends to be higher in the years in which 

the ENSO phase (warm to cold) transition occurred rapidly than other years [185]. 

Some studies over Bangladesh show weak or no correlation between ENSO and 

monsoon rainfall [92,134]. There is some significant negative relationship between 

monsoon rainfall at some stations in the northeastern parts of Bangladesh and ENSO 

[175]. However, no study has been conducted to determine the relationship between 

ENSO and pre-monsoon rainfall in Meghna Basin, which includes northeast 

Bangladesh. 
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3. CHAPTER 3 
  STUDY AREA AND DATA 

3.1. Study Area  

The study area is in northeast Bangladesh located approximately between 240N to 

250𝑁 and 90.620𝐸 to 92.500𝐸 (Fig 3.1). Northeast Bangladesh encompasses seven 

administrative districts of Bangladesh such as Sunamganj, Sylhet, Netrokona, 

Moulvibazar, Habiganj, Kishorganj and Brahmanbaria. It is located within the basin of 

the Meghna River. The total catchment area of the Meghna is 6500 square kilometers 

of, which roughly 33% lies in northeast Bangladesh and 67%, lies in India [122].   

 

Fig 3.1  Study area with rainfall stations. 

 

The upper portion of the basin is the mountainous regions of Asam, Meghalaya and 

Tripura states of India, while the lower portion of the basin is the flat and low-lying 

areas of northeast Bangladesh. The Cherrapunji, well known as one of the wettest places 

on Earth, is located very proximity to the study area. As a result, the rainfall pattern of 

the adjacent hilly part of India has a significant influence on flooding in this region. 

Therefore, in some cases, this study has been extended to the upper part of the Meghna 

basin. 
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From the climatic perspective, northeast Bangladesh is categorized by sub-tropical 

humid conditions [64]. The dry winter (December to February), the pre-monsoon 

(March to May), the monsoon (June to September) and the post-monsoon (October to 

November) are the predominant seasons of this area [151]. The mean annual monsoon 

and pre-monsoon rainfall varies from 2000mm to 6000mm, 1000mm to 4000mm, 

respectively. The average pre-monsoon and monsoon rainfall of Cherrapunji is about 

1700 mm and 7400 mm, respectively. 

 

Northeast Bangladesh is known as the “haor region”, which is bowl-shaped, low-lying 

floodplains. They have unique characteristics which are dry in the winter months and 

flooded during the monsoon. There are over 400 small or large haors in northeast 

Bangladesh [164]. The prominent hoars are the Hakaloki haor, Sumir haor, Dakhar 

haor, Tanguyar haor, Gungiajuri haor, Mukhar haor, Kaowadighir haor.  Around 70% 

of northeast Bangladesh is under hoar in which 80% of the area is covered by Boro rice, 

and 10% is covered by T.aman [6]. The biodiversity of the haor region makes it a unique 

wetland ecosystem [164].  

 

 
Fig 3.2  Meghna river system. 

The river system of the Meghna basin originates from the hills of Shillong and 

Meghalaya, India. The Barak is the primary source of the Meghna river system, which 

has a considerable catchment in the ridge and valley terrain of eastern Assam bordering 
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Myanmar [52].  It crosses the Bangladesh border at Amalshid point of Sylhet and 

bifurcates into Surma and Kushiyara rivers (Fig 3.2). The Surma and Kushiyara rivers 

are flashy and receive water from rainfall at Cherrapunji and Tripura, respectively. The 

two rivers rejoin at the Markuli point of Sylhet and flow via Bhairab as the Meghna to 

join the Padma at Chandpur. 

 

The haors are mostly dry from December to May, therefore, Boro rice is extensively 

cultivated during this time. Boro rice is harvested during the pre-monsoon, which 

accounts for most agricultural output and contributes significantly to the country’s total 

rice production [6]. Pre-monsoon rainfall is, therefore, a significant concern for this 

region. Heavy rainfall in April and May can cause flash floods, and that can damage 

entire crops as it was seen in many places in April 2017. Between June to November, 

the haors remain underwater and therefore fisheries play a significant role in the 

livelihoods of many local communities. 

 

3.2. Data  

3.2.1. Observed data  

The observed dataset comprises of daily rainfall data from seven weather stations in 

northeast Bangladesh. Among the stations, only Sylhet station is maintained by the 

Bangladesh Meteorological Department (BMD) and others are maintained by the 

Bangladesh Water Development Board (BWDB). The observed rainfall data for the 

period 1976-2016 were used in this study. A list of the observation stations, their names, 

and their locations are shown in Fig 3.1 (also shown in Table 3.1). 

 

Table 3.1  List Rainfall stations and their location. 

Station ID Station Name District  Latitude  Longitude  

CL128 Sylhet Sylhet  24.90oN  91.88oE  

CL63 Netrokona Netrokona  24.98oN  90.62oE  

CL127 Sunamganj Sunamganj  25.00oN  91.44oE  

CL122 Moulvi Bazar Moulvi Bazar  24.49oN  91.70oE  

CL110 Habiganj Habiganj  24.39oN  91.41oE  

CL103 Brahman Baria Brahman Baria  24.00oN  91.14oE  

CL101 Bhairab Bazar Kishoreganj  24.00oN  91.00oE  

 

3.2.2. Gridded data  

In this study, ERA-Interim re-analysis gridded (0.50 spatial resolution) data of daily 

rainfall, 𝑇𝑚𝑎𝑥 , 𝑇𝑚𝑖𝑛, mean sea level pressure(MSLP), U and V component of wind for 
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the period 1979-2017 were used. Hadley Centre Global Sea Surface Temperature 

(HadISST) with 10 spatial resolution was also used in this study.  

 

3.2.3. Selection of the RCP scenario 

Four representative concentration pathways (RCPs) are used as a basis for long-term 

climate modeling experiments. The four RCPs together span the range of radiative 

forcing values for the year 2100, as found in the literature, from 2.6 to 8.5 W/m2 (Fig 

2.4). Among them, there is one mitigation scenario (RCP2.6), two medium stabilization 

scenarios (RCP4.5/RCP6), and one very high baseline emissions scenario (RCP8.5). 

RCP2.6 is the lowest emission scenario which aims to limit the increase of global mean 

temperature below 2°C. Often these scenarios show negative emissions from energy 

use in the second half of the 21st century. The scenario is very optimistic, as it requires 

full participation and commitment of all countries in the world. However, outcomes of 

recent climate summits at the highest level, and the annual Conferences of Parties to 

the United Nations Framework Convention on Climate Change (UNFCC) do not point 

in that direction. As this study aims to develop a robust and realistic rainfall projection, 

RCP2.6 was not included in this study. This leaves the choice to two medium 

stabilization scenarios (RCP4.5 and RCP6) and one very high baseline emission 

scenario (RCP8.5). The best choice, in that case, is to include RCP4.5 and RCP8.5, thus 

including one medium stabilization scenario and the high emissions scenario, and 

covering the entire range of radiative forcing resulting from RCP4.6, RCP6, and 

RCP8.5.  

3.2.4. Climate model data 

Daily rainfall data from six RCMs over the Coordinated Regional Climate Downscaling 

Experiment (CORDEX) South Asia domain (Table 3.2) was used for this study.  The 

historical run from six RCMs for the 30 years (1976-2005) was taken for the baseline 

period.  Daily rainfall from RCMs for RCP4.5, as well as RCP8.5 for the period 2041-

2070 and 2071-2099, were used for projecting the future rainfall extremes for the study 

area.  The output of RCMs is available at the spatial resolution of 0.5ox0.5o. The 

locations of weather stations do not match RCM grid points exactly. In this situation, 

the RCM output was calculated at a weather station’s location by interpolating (Inverse 

distance weighting method) four RCM grid points within which that station lies.  
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Table 3.2 List of RCMs and their driving models. 

RCM Driving GCM Institute GCM Model  description 

ACCESS ACCESS1-0 CSIRO-

Australia 

  MOSES land surface model of 

UK Met Offices. 

CCSM4 CCSM4 CSIRO-

Australia 

Community Climate System 

Model, NCAR of USA. 

CNRM CNRM-CM5 CSIRO-

Australia 

Earth system model by National 

Centre for Meteorological 

Research of French. 

MPI MPI-ESM-LR CSIRO-

Australia 

Max Planck Institute Earth System 

Model at base resolution, 

Germany. 

MPI- 

REMO 

MPI-M-MPI-

ESM-LR 

MPI-CSC Max Planck Institute for 

Meteorology (MPI-M) based on 

the MPI-ESM-LR model. 

SMHI ICHEC, EC-

EARTH 

SMHI-Sweden Irish Centre for High-End 

Computing Earth System Model, 

Irish Centre for High-End 

Computing (ICHEC), European 

Consortium ESM (EC-EARTH). 

 

 

Table 3.3 Description of the GCMS and their institution. 

GCMS Name Institution 

ACCESS1-0 Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM), Australia.  

CSIRO-Mk3-6-0 Australian Commonwealth Scientific and Industrial Research 

Organization (CSIRO) Marine and Atmospheric Research 

(Melbourne, Australia) in collaboration with the Queensland Climate 

Change Centre of Excellence (QCCCE) (Brisbane, Australia). 

EC-EARTH European Earth System Model 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory (GFDL) of National Oceanic 

and Atmospheric Administration (NOAA). 

HadGEM2-AO National Institute of Meteorological Research, Seoul, South Korea 

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Kanagawa, 

Japan (JAMSTEC); Atmosphere and Ocean Research Institute, The 

University of Tokyo, Chiba, Japan (AORI); and National Institute for 

Environmental Studies, Ibaraki, Japan (NIES). 

MPI-ESM-LR Max Planck Institute for Meteorology. 

MPI-ESM-MR Max Planck Institute for Meteorology. 

MRI-CGCM3 Meteorological Research Institute, Tsukuba, Japan. 

NorESM1-M Norwegian Climate Centre. 

 

Monthly SST data from 10 General Circulation Model (GCM) under CMIP5 for 

Representative Concentration Pathway, RCP4.5, and RCP8.5 for the period 2041-2070 

and 2071-2100 were used for projecting the future ENSO index over Nino 3.4 region.  

The SST data of control run from these GCMs ranges for the period 1976-2005 were 
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chosen as the base period. The spatial resolution of these GCMs is varied between 0.250 

to 20. Details of the GCMs and their institutes are presented in Table 3.3 

 

3.2.5. ENSO data  

Different ENSO indices such as Southern Oscillation Index (SOI), NOAA Oceanic 

Niño Index (ONI) at Niño-3.4 region and Multivariate ENSO Index (MEI) were 

collected from National Oceanic & Atmospheric Administration (NOAA) web portal 

(https://www.esrl.noaa.gov/psd/enso/data.html). The plots of the monthly ENSO Index 

for SOI, ESOI, ONI, and MEI for the period January 1961 to February 2018 are 

presented in Fig 3.3. 

 

Fig 3.3  Different ENSO indices used for this study. 

 

 

 

 

 

  

https://www.esrl.noaa.gov/psd/enso/data.html
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4. CHAPTER 4 
  METHODOLOGY 

 

This chapter outlines the methodology used in this study, which can be subdivided into 

four major sections. Section 4.1 describes the methods applied for trend analysis of 

observed rainfall extremes for seven rainfall stations in the study area. Section 4.2 and 

Section 4.3 present the brief descriptions of RCMs performance assessment and 

projection rainfall of extremes, respectively. Finally, Section 4.4 details the connection 

between large-scale processes such as ENSO and pre-monsoon rainfall and how ENSO 

is likely to be impacted under the warming world.   

  

4.1. Trend Analysis of Observed Rainfall Extremes  

The trend analysis was performed for several different indices of rainfall extremes using 

the Mann-Kendall trend test and Sen’s slope estimator. Though more extended data 

period is better for trend analysis, the minimum length of the data period needs to be at 

least 30 years [11]. Therefore, observed rainfall for the latest 33 years (1984-2016) was 

used for trend analysis in this study. Before applying the trend analysis, the Standard 

Normal Homogeneity Test (SNHT) and the Pettitt test was applied to check the 

homogeneity of the data. The randomness of the index of rainfall extremes was checked 

using an autocorrelation test. A brief discussion of the above mentioned statistical tests 

was given following sub-sections. 

 

4.1.1. Quality control of data  

Homogeneity test 

Homogeneity test is used to check if there is an error in the data series because of several 

reasons such as station relocations, equipment changes, equipment drifts, and changes 

in the method of data collection [2].  If the data series is subjected to any kind of error 

other than climatic factors, the data series is called inhomogeneous. These 

inhomogeneous data series needs to be either adjusted or discarded from further 

analysis. The homogeneity test can be classified as absolute homogeneity and relative 

homogeneity [2,54]. Data series from different stations are tested individually in 

absolute homogeneity tests, while they are compared with neighboring reference 

stations in relative homogeneity tests. However, it is tough to find a reference station 
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with a high correlation and a homogeneous structure.   Hence, in this study, the absolute 

homogeneity test was applied to check the reliability of the data series.  

 

Four homogeneity tests are generally used to test the homogeneity of the rainfall data, 

such as Standard Normal Homogeneity Test (SNHT), Buishand Range (BR) test, Pettitt 

test, and Von Neumann Ratio (VNR) test [126]. In the homogeneity test, the series is 

considered as homogeneous if the annual values of 𝑌𝑖 of the testing variables, 𝑌 are 

independent and identically distributed under the null hypothesis [84]. Under the 

alternative hypothesis, SNHT, BR test, and Pettitt test assume that the series comprised 

of a break in the mean and considered as inhomogeneous. These three tests are capable 

of detecting the year where the break occurs. However, VNR test cannot give 

information on the year break because the test assumes that the series is not randomly 

distributed under the alternative hypothesis. Among SNHT, BR test and Pettitt test, 

SNHT is sensitive in detecting the breaks near the beginning, and at the end of the 

series; BR test and Pettit test are sensitive to identify the break in the middle of the 

series [84]. Moreover, the SNHT and BR are parametric, whereas the Pettitt test is a 

non-parametric rank test. Within this test category, in this study, the Standard Normal 

Homogeneity [7] and the Pettitt tests [145] were chosen since these two tests are more 

widely used for the homogeneity test [126]. These two tests are discussed in Appendix 

A (A.1 & A.2). 

 

 Autocorrelation test 

The indices of rainfall extreme obtained from observed data series must be a series of 

random events to get reliable trends from the trend analysis [221]. The autocorrelation 

is generally performed to check the randomness of the data series. If the data series is 

positively auto-correlated, then it is not a random event, and the resulting trend may not 

be realistic [129]. In this study, first-order auto-correlation was applied to check the 

randomness of the data. The theory of the above mentioned statistical tests is discussed 

in Appendix A (A.3). 

 

4.1.2. Selection of extreme rainfall indices  

The decision to focus on extreme rainfall indices was guided by the collaborative 

research-framing phase, as part of the TRACKS project approach to co-produce 

knowledge of climate variability for adaptation, with communities in northeast 
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Bangladesh. This framing, or co-design, of the research, sought to identify those 

weather phenomena most important to local people and emerged over several rounds 

of interaction between scientific project partners and different actors in communities in 

northeast Bangladesh. The identification of the most critical weather phenomena began 

with a large scoping meeting in Sylhet city September 2014, bringing together local 

government officials, representatives of non-governmental organizations, scientists at 

local universities and research institutes, and other groups such as teachers and 

journalists. This scoping meeting identified local Sylhet communities vulnerable to 

climate variability and change and led to the second round of interaction; conducting 

234 interviews in Sunamganj Sadar, Jamalganj, Barlekha, and Hakaluki haor in 

December 2014, with divers ‘grassroots’ actors. The third round of interaction brought 

together a subset of those people interviewed in workshops in Sunamgnaj Sadar and 

Barlekha in March 2016. Through this interaction, communities were able to make 

precise the weather information that was more important to support local adaptation 

efforts, and scientists were able to make clear limitations of the science, and what 

information it is possible to provide. This interaction also allowed for discussion across 

different knowledge systems, with climate and meteorological information discussed 

relative to other local and traditional ways of knowing the weather and seasons, using 

traditional calendars and natural signs for instance. The framing of this research also 

drew on the published literature. 

 

These interactions showed us that the local communities are particularly concerned 

about the pre-monsoon rainfall, particularly its amount and distribution. For instance, 

heavy rain at this time can cause flash floods that can damage or destroy the year’s main 

Boro rice. The damages of Boro rice can have a substantial economic impact on the 

local society. Once the importance of rainfall in the pre-monsoon season is understood, 

the analysis had been split between both the pre-monsoon and monsoon seasons. 

Though, the onset of the monsoon changes from year-to-year [159], however, a static 

definition of the monsoon and pre-monsoon seasons was applied here in order to 

facilitate comparison with previous studies [154,176].  

 
In this study, the pre-monsoon and monsoon were defined as the months of March-May 

and June-September, respectively. Next, appropriate rainfall indices had to be 

identified. The selected indices (Table 4.1) reflect rapid flash floods, wet and dry 
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periods, and seasonal totals. The selection of indices is therefore meant to reflect some 

challenges the local people told us about, but also be compared to previous and future 

climate studies.  

 

Table 4.1 List of indices of rainfall extremes used for trend analysis. 

Index Descriptive name Definition Unit 

RX1DAY  Daily maximum 

rainfall 

Seasonal maximum 1-day rainfall mm 

RX5DAY 5-day maximum 

rainfall 

Seasonal maximum 5-day rainfall mm 

R25mm Frequencies in days Number of extremely heavy rainfall 

days (RR≥25mm) during pre-

monsoon 

days 

R50mm Frequencies in days Number of extremely heavy rainfall 

days (RR≥50mm) during monsoon. 

days 

PRCPTOT Seasonal total wet 

day precipitation 

Seasonal total precipitation in wet 

days 

(RR≥1mm) 

mm 

CWD Consecutive wet 

days 

Maximum number of consecutive 

wet days  in a season with RR≥
1mm 

days 

CDD Consecutive dry 

days 

Maximum number of consecutive 

dry days  in a season with 

RR<1mm 

days 

SDII Simple daily 

intensity index 

Seasonal total precipitation divided 

by the number of wet days in the 

season 

mm/day 

 

Through considerable discussion, eight indices of rainfall extremes were selected as 

also proposed by Frich and Alexander [7,55]. These indices are presented in Table 4.1 

with their respective definitions. Both the RX1DAY and RX5DAY represent extremely 

heavy rainfall, RX1DAY causes flash flooding, while RX5DAY is more likely to cause 

long-term riverine flooding. Through several discussions with the locals, it is 

understood that the amount and distribution of PRCPTOT, especially during pre-

monsoon are significant in Boro rice production since it influences the seasonal water 

levels in the haor. 

 

4.1.3. Identification and quantification of trends  

The trend of extreme rainfall indices listed in Table 4.1 was identified and quantified 

using the Mann–Kendall test [88,118] and Sen’s Slope estimator [173], respectively. 

The Mann-Kendall test is widely used for trend analysis of rainfall and other 
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climatologic events [56,140,148,212,216,217]. It is a non-parametric test and is less 

sensitive to a non-homogeneous time series. It can be applied to non-normally 

distributed data and for data that contain outliers and non-linear trends [21]. According 

to this test, the null hypothesis 𝐻0 indicates that there is no trend and an alternative 

hypothesis 𝐻1indicates that there is a trend [142].  

 

Sen’s Slope method [173] was then applied to estimate the magnitude of the trend.  A 

time series of equally spaced data is required for this method and is not influenced by 

missing values or gaps in the input data. Among the rainfall station considered, Sylhet 

station has less missing values (0.5%), and Netrokona has more missing values (3.9%).  

There are several methods used for filling missing values of daily rainfall values. The 

most common methods used in the filling of the missing data include the closest station, 

simple arithmetic averaging, inverse distance weighting, multiple regression, and the 

normal ratio [117,128,213. In this study, Inverse Distance Weighting (IDW) method 

was applied for filling the missing values as this widely used method is suitable for 

rainfall stations that are closely spaced and the orographic features of the stations are 

almost similar to each other [16,128]. For more information about the theory, please 

see Appendix A (A.4 & A.5). 

 

4.2.  Projection of Future Rainfall Extremes  

In this study, changes of extreme rainfall indices (listed in Table 4.1) for the scenario 

periods (2041-2070 & 2071-2099) regarding the reference period (1976-2005) were 

estimated for RCP4.5 and RCP8.5 from six RCMs. However, beforehand, bias 

correction of RCMs was performed, and the multi-model ensemble mean of extreme 

indices was generated followed by the performance evaluation of the RCMs which were 

discussed in following sub-sections. 

 

4.2.1. Performance Evaluation of RCMs  

The performance of RCMs was evaluated in terms of bias, root mean square error 

(RMSE) and quantile-quantile (Q-Q) plot. The bias and RMSE are quantitative and 

directional measure, while the Q-Q plot is a qualitative measure. The bias and RMSE 

were calculated over average pre-monsoon and monsoon rainfall over the period 1976-

2005. The equation of bias and RMSE was discussed in Appendix A (A.6). 
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Q–Q plot is a probability plot in which the quantiles of the two data set are plotted each 

other. If the two distributions being compared are similar, the points in the Q–Q plot 

will approximately lie on the line y = x.  In this study, the quantile of the daily rainfall 

from RCMs was plotted on the Y-axis, and the quantile of the observed rainfall was 

plotted on the X-axis. If a particular point is below the y = x line, then it is 

underestimated and vice versa. Therefore, in this way, the Q-Q plot can tell us which 

rainfall intensity of RCMs is underestimated /overestimated or correctly matched with 

observed rainfall. 

 

4.2.2. Bias correction of RCMs  

The downscaled rainfall data from the RCMs are affected by biases inherited from the 

forcing GCMs [86]. Even within a single geographic region, different RCMs may 

produce different results due to their model fundamentals, and climate forcing [44, 

48,124,219.  The biases in the RCMs include too much drizzle, errors in the mean and 

failing to simulate heavy rainfall events [146]. Therefore, without removing or reducing 

bias, multi-model means cannot be used for impact assessments. 

 

 In this study, the quantile mapping bias correction method was used since it has been 

successfully and widely applied in climate change studies [106,155,187,188,197].  In 

this method, cumulative distribution functions (CDF) were generated for both the 

observed and RCM simulated rainfall firstly and then the CDF from an RCM simulated 

value was matched to the observed value at the same CDF over a specified base period 

[23,91]. All the daily rainfall values from the RCMs are scaled up or down according 

to the adjusted CDF. 

 

Though both parametric and nonparametric quantile mappings are widely used to 

correct the bias of climate model output, a parametric method yields a better result [91]. 

This is because the parametric method is able to adjust the distributions of the model 

output to agree with observed distributions. In this study, gamma distribution was 

chosen since it represents rainfall data well, particularly for monthly and seasonal 

values [87,91,146]. This method was applied to both the reference (1976-2005) and 

scenario periods (2041-2070 and 2071-2099). A brief procedure of the quantile 

mapping bias correction method is discussed in Appendix A (A.7). 

 

https://en.wikipedia.org/wiki/Probability_plot
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4.2.3. Multi-model ensemble mean  

With the corrected RCM simulations, a multi-model ensemble mean was taken to 

analyze possible future changes. Multi-model ensemble means have been shown to 

outperform individual model output at the regional level [147,51. Among several 

methods, the Bayesian Model Averaging (BMA) method provides a more reasonable 

ensemble mean [152,202,223] since it gives higher weight to the RCM with better 

predictive skills in the training period. This study used the RCMs output under the 

CORDEX framework, and the observational data from seven rainfall station for the first 

time.  

 

Bayesian model averaging (BMA) produces a complete probability density function 

(PDF) of the ensemble mean and quantifies the associated uncertainty of forecasts.  The 

BMA method has become increasingly popular since it produces a more reliable multi-

model ensemble mean [4,137,153]. In this approach, the PDF of the ensemble mean is 

the weighted average of the conditional PDF of an individual model where the weights 

are posterior probabilities of the models generating the forecasts and reflect the relative 

contributions of each model to the overall predictive skill.  

 

At first, the monthly values of extreme rainfall indices from daily time series were 

derived to determine the BMA weight of it for each model. Then, the indices of the pre-

monsoon and monsoon seasons were separated. By doing so, three values for the pre-

monsoon and four values for the monsoon season for each index were obtained. In this 

way, for a 30-year period, time series comprising 90 values for the pre-monsoon and 

120 values for the monsoon season was obtained for the BMA computation.  

 

However, beforehand, it was needed to know the distribution of the indices according 

to the above discussions. For example, monthly rainfall totals of a particular season 

were fitted for different distributions (e.g., normal, gamma, exponential) to determine 

for which a specific distribution data sample is best fitted. Using the Kolmogorov–

Smirnov test and graphical techniques (histograms and density estimate), it was found 

that the monthly rainfall data for the study area are best fitted by the gamma distribution.  

As an example, a data histogram and the corresponding fitted gamma PDF for monthly 

rainfall of Sylhet station are shown in Fig 4.1. As expected, rainfall data are positively 

skewed with a long tail to the right of the distribution.  This is the case for both the pre-

monsoon and monsoon seasons.  The gamma distribution, while being asymmetric and 



 
 

33 
 

bounded on the left by zero, provides a good fit to the empirical data, particularly in the 

extreme left and right tails of the distribution.  Therefore, the gamma distribution was 

considered for generating the conditional PDF. 

 

Fig 4.1 Histogram and gamma pdf for monthly rainfall of Sylhet station (a) Pre-

monsoon and (b) monsoon. 
 

The maximum likelihood function for the BMA multi-model ensemble mean was 

optimized using the Differential Evolution Adaptive Metropolis (DREAM) Markov 

Chain Monte Carlo algorithm for estimating the BMA weights and variance 

[200,201,203]. Finally, the DREAM scheme was used to search for the optimal global 

solution of BMA weight [203]. A detail description of BMA is discussed in Appendix 

A (A.8). 
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4.3. Relationship between El Niño Southern Oscillation (ENSO) and Pre-

monsoon Rainfall and its Response under the Warming World.  

The relationships between ENSO and pre-monsoon rainfall in the Meghna basin was 

performed in three steps. Firstly, the relationship between pre-monsoon rainfall and 

heat low in central India during the pre-monsoon particularly, in April was determined. 

Because the Southwesterly moisture flows from the Bay of Bengal is triggered by the 

low-pressure system in central India which brings moist air towards the foothills of the 

Meghalaya Mountain that feeds deep convection over the Meghna basin.  Before 

determining the relationship between heat low over India and ESNO, it is essential to 

know the answer of two questions: firstly, does there exist any significant relationship 

between pre-monsoon rainfall and ENSO? Secondly, if there is a significant 

relationship between pre-monsoon rainfall and ENSO then among different ENSO 

index (e.g., ESOI, SOI, ONI, and MEI) which is the best suited ENSO index for the 

study area? Therefore, the relationship between the pre-monsoon rainfall and different 

ENSO indexes (e.g., ESOI, SOI, ONI, MEI) with different monthly lags was 

determined in the second step. Since the heatwave produces heat low, the relationship 

between the heatwave in central India during April and best suited ENSO index 

(identified in the second step) was determined in the third step.  Among different 

indices, Excessive Heat Factor (EHF) can define heatwave more effectively since it 

considers the existing moisture content, weather condition of two days before, and 

climatological anomaly [160]. Therefore, in this study, Excessive Heat Factor (EHF) 

was used to define heatwave, which is based on the Excess Heat Index and Heat Stress. 

A brief discussion of the heatwave is given in Appendix A. Finally, the relationship 

between heatwave (in terms of EHF)) in central India during April and best suited 

ENSO index (identified in the second step) was determined in the third step. If a link 

between the Indian heat low and pre-monsoon rainfall can be developed, this could be 

helpful for short-term (monthly or seasonal scale flood forecasting. If a relationship 

between ENSO and pre-monsoon rainfall (either directly or via a connection with the 

Indian heat low) can be shown, this could be helpful for seasonal flood forecasting of 

the region. It is noted here that the Spearman's Rank Order Correlation was used to 

establish the above-mentioned relationship. The advantage of using Spearman's Rank 

Order Correlation over Pearson correlation is that Spearman’s Rank Order Correlation 

is a non-parametric method, and therefore, it does not require to follow any distribution 

of the data. 
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Using the sea surface temperature (SST) from the GCMs, the monthly oceanic niño 

index (ONI) was calculated for the Nino 3.4 region for the control and the scenario 

period.  The ONI index was calculated by subtracting the SST values from the 30 years 

average SST over the Nino 3.4 region [110]. Until February 2013, the Climate 

Prediction Center of National Oceanic and Atmospheric Administration used a 30-year 

average of the three most recent complete decades, updated in each new decade. For 

example, they used the 1961-1990 average for the 1990s and 1971-2000 average for 

the 2000s. However, in this study, the average SST value was calculated according to 

the latest guidelines of the Climate Prediction Center. According to this guideline, for 

each 5-year period, the 30-year period was selected in such a way that the first year of 

the 5-year period falls in the center of the 30-year period. For example, SST values for 

the year 1956-1960 are compared to the average of 1941-1970. Similarly, SST values 

for the year 1961-1965 are compared to the average of 1946-1975. The advantage of 

this new method over the previous method is that it does not distort the ENSO climatic 

record due to warming up or cooling down the past three decades in the tropical Pacific 

[110]. The response to ENSO under warming world was studied in terms of ENSO 

frequency (number ENSO event) and ENSO amplitude (standard deviation of the SST 

anomaly).  It was done by using the output (monthly SST data) of the latest available 

GCMs under CMIP5 for RCP4.5 and RCP8.5 during 2041-2070 and 2071-2100. 
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5. CHAPTER 5 

  TREND ANALYSIS OF OBSERVED RAINFALL 

EXTREMES 
 

5.1. Introduction  

Rainfall extremes are one of the major causes of natural disasters, such as flash floods, 

urban waterlogging, landslides, and crop damage [212]. Because of global climate 

change and alteration of Earth’s hydrological, the heavy rainfall event has increased in 

the past and likely to continue [10]. Hence, trends in extreme rainfall events for 

historical record and future have received considerable attention in recent years because 

of the many extreme events such as hurricanes, droughts, and floods observed. 

 

Therefore, this chapter presents the trend analysis of observed rainfall extremes over 

northeast Bangladesh for the period 1984-2016. This study extends on previous studies 

of rainfall in northeast Bangladesh. Many of the previous studies on rainfall in northeast 

Bangladesh were limited to Sylhet station only. A single rainfall station might not 

represent the surrounding climate [212], as it may be influenced by a particular local 

climate [81]. This study, therefore, performed on the observed dataset from seven 

rainfall stations located across northeast Bangladesh. The trend was identified on 

seasonal totals and seven other rainfall indices depicting different rainfall 

characteristics. This study considers trends in the pre-monsoon and monsoon seasons 

separately. Rainfall in these seasons can have different convective triggering 

mechanisms, but can also impact the lives of the local communities in very different 

ways. The detail descriptions of the data and the methodology were presented in 

Chapter 3 and Chapter 4, respectively. 

 

At first, the rainfall climatology of northeast Bangladesh was described using a new 

dataset. After that, the results from the homogeneity and the auto-correlation tests were 

discussed. In the final section, the results of the trend analysis were presented. 

 

5.2. Spatial Distribution of Annual and Seasonal Rainfall  

For the seven stations combined, the mean annual, monsoon, and pre-monsoon rainfall 

of the study area was 3232mm, 1765mm and 780mm, respectively. The spatial 

distribution of annual mean rainfall (Fig 5.1) shows that the north receives higher 

rainfall than the south. The same pattern emerges throughout the year where the mean 
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annual rainfall ranges from 6000mm along in the north to 2000mm in the south (Fig 

5.1c). The mean pre-monsoon and monsoon rainfall increase, respectively from 590mm 

to 950mm and from1000mm to 3700mm between the north and south of northeast 

Bangladesh (Fig 5.1a and Fig 5.1b).  

 

 

Fig 5.1  Spatial distribution of mean rainfall of the study area for (a) Pre-monsoon, 

(b)Monsoon and  (c)Annual. 
 

The mean annual, monsoon and pre-monsoon rainfall of Sunamganj was higher than 

the other stations. This is understandable because of the station’s proximity to the 

Meghalaya foothills and Cherrapunji, India, one of the wettest weather stations in the 

world.  The long-term variation of annual, pre-monsoon and monsoon rainfall for each 

station is presented as a Box-and-Whisker plot in Fig 5.2. The variability of rainfall is 

high in Sunamganj for the pre-monsoon and the monsoon seasons. Other stations 

showed much lower inter-annual variability. These results show how detailed the local 

meteorology of the northeast region can be varied.   
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Fig 5.2  The Box-and-Whisker plot of the spatiotemporal variation of rainfall of 

northeast Bangladesh for the period of 1984 to 2016. 
 

5.3. Quality control of the data  

5.3.1. Homogeneity test 

The result of the homogeneity test was presented in Fig 5.3. In this figure, it was 

observed that the test statistics for most of the stations decreased from 1992 to 2000 

and remained below the critical line while the Sunamganj it remained above the critical 

line for the same period. For the data sets to be considered homogeneous, the value of 

the “test statistic” needs to remain below the critical value [89,145]. The maximum 

values of test statistics for annual rainfall for all seven stations except Sunamganj stayed 

below the critical value for the 95% confidence level. Since the null hypothesis for the 

SNHT as well as Pettit test was accepted at the 95% confidence level, these stations 

were considered homogeneous at this confidence level. Whereas, the rainfall at 

Sunamganj station was said to be inhomogeneous since the null hypothesis was rejected 

 

Before deciding whether to discard the Sunamganj data, an attempt was taken to find 

out what was wrong with the data set. It was started by trying to identify any change 

points in the time series using the Student t-test at the 95% confidence level. It was 

found that the trend in the Sunamganj data changed in 2005 (Fig B.1a in Appendix B). 

The field officer who was responsible for data collection confirmed that there were 

irregularities in the data collection for some years before 2005. The comparison of the 

de-trending annual rainfall of Sunamganj with the nearest and meteorologically similar 

station of Sylhet also justified the argument of field office (Fig B.1b in Appendix B). It 

was found that the de-trending annual rainfall pattern of these two stations was similar 

before 1998 and after 2005, which was not the case in between 1998 and 2005. 
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Fig 5.3  The Test statistics of homogeneity test for annual rainfall for seven stations in 

the northeast of Bangladesh for the period of 1984 to 2016 (a) SNHT test (b) Pettit 

test. 
 

5.3.2. Autocorrelation test 

Autocorrelation test is necessary to determine the randomness of the data. If the data is 

not random, the result of trend analysis may give false information. The first order 

autocorrelation coefficient for the indices of rainfall extreme for seven stations of 

northeast Bangladesh for the period of 1984 to 2016 was presented in Table 5.1. The 

co-efficient which is within the 95% confidence interval is considered as independent 

or random event. The interval of the autocorrelation coefficient at the 95% confidence 

limit depends on sample size and the order of lag. In this study, the sample size is 33, 

and hence, for a two-sided test, the interval of the auto co-relation coefficient at the 

95% confidence limit is -0.37 to 0.31. The lag 1 autocorrelation coefficient of rainfall 

extreme for the pre-monsoon and monsoon season was within the range of 95% 

confidence limit so the indices were not auto-correlated either random event (Table 

5.1). Therefore, the selected indices can be used for trend analysis. 
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Table 5.1  The first order Autocorrelation coefficient for the indices of rainfall 

extreme for seven stations of northeast Bangladesh for the period of 1984 to 2016. 

  Station RX1 RX5 

R25 

(R50) PRCPTOT CWD CDD SDII 

P
re

-m
o
n
so

o
n

 Sylhet -0.02 -0.10 -0.15 -0.30 -0.08 -0.05 0.06 

Habiganj 0.10 0.03 -0.19 0.00 -0.13 -0.19 -0.01 

Moulvibazar 0.18 0.15 -0.10 0.05 -0.06 -0.28 0.10 

Netrokona 0.17 0.21 0.05 0.15 -0.13 0.17 0.24 

Brahmanbaria -0.17 -0.09 -0.17 -0.13 -0.11 0.00 -0.30 

Bhairab Bazar -0.01 -0.01 0.06 0.00 -0.10 -0.33 0.14 

M
o
n
so

o
n

 

Sylhet -0.02 0.00 -0.27 -0.19 0.22 -0.17 -0.02 

Habiganj -0.14 0.16 -0.32 -0.29 -0.03 -0.07 -0.21 

Moulvibazar -0.10 -0.27 -0.10 -0.11 -0.22 -0.22 0.01 

Netrokona 0.22 -0.07 0.18 0.09 0.16 0.10 0.03 

Brahmanbaria -0.09 -0.17 -0.24 -0.23 0.10 0.14 -0.15 

Bhairab Bazar -0.11 0.10 0.03 0.08 0.04 -0.24 -0.06 

 

5.4. The trend of Indices of Rainfall Extremes  

The trend analysis was performed on those stations that passed the quality control tests.  

All the stations passed the autocorrelation test while the Sunamganj station failed to 

pass the homogeneity test. Hence, the Sunamganj station was not considered for trend 

analysis. The trend of extreme indices for the pre-monsoon and monsoon season are 

discussed separately in the following sections. 

 

5.4.1. Pre-monsoon  

Fig 5.4 (a) showed that the one-day maximum rainfall (RX1) for all stations except 

Sylhet and the five-day maximum rainfall (RX5) for all stations was decreased.  

However, none of the stations showed a significant change in these two indices at the 

95% confidence level.  The most substantial decreases of RX1 (1.17 mm/year) and RX5 

(2.0 mm/year) were at Moulvibazar (Table 5.2).  The R25, PRCPTOT, and SDII also 

decreased in most of the stations but not statistically significantly anywhere in Fig 5.4 

(a).  The most substantial decreases of R25, PRCPTOT, and SDII was 0.1 days/year at 

Habiganj, 7.64mm/year at Moulvibazar and 0.24 mm/day/year at Bhairab Bazar, 

respectively (Table 5.2). The CWD of most of the stations showed a decreasing trend, 

and the CDD of most of the stations showed an increasing trend. However, these indices 

were not statistically significant in any of the stations. 
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Fig 5.4  The normalized test statistic (Zs) for the Mann-Kendall test of the indices of 

rainfall extremes of six stations of northeast Bangladesh for the period of 1984 to 

2016: (a) Pre-Monsoon and (b) Monsoon. The absolute Zs value which, is higher than 

the critical value (Zc=1.96) are considered as statistically significant at 95% 

confidence level. 
 

Table 5.2  The Sen’s Slop estimator (Q) for indices of rainfall extremes for six 

stations of northeast Bangladesh for the period of 1984 to 2016. The slopes 

corresponding to statistically significant Zs in Fig 5.4 are underlined. 

 

Station RX1 RX5 R25/R50 PRCPTOT CWD CDD SDII 

Pre-monsoon 

Sylhet 0.06 -0.36 0.09 4.32 -0.02 0.17 0.15 

Netrokona -0.69 -1.91 -0.02 -2.74 0.04 -0.16 -0.12 

MoulviBazar -1.17 -2 -0.09 -7.64 -0.03 -0.03 -0.17 

Habiganj -0.64 -1.57 -0.1 -2.98 -0.04 0.13 0.01 

Brahman Baria  -0.17 -0.27 0.05 1.62 -0.09 -0.19 -0.12 

Bhairab Bazar -0.74 -1.59 -0.07 -6.85 -0.01 0.1 -0.24 

Monsoon 

Sylhet -2.76 -4.00 -0.02 -13.61 -0.33 -0.03 -0.11 

Netrokona -1.90 -3.43 -0.25 -25.35 0.04 0.05 -0.13 

MoulviBazar -1.82 -3.33 -0.11 -17.02 -0.08 0.09 -0.09 

Habiganj -1.03 -1.95 -0.09 -3.79 -0.11 -0.01 0.10 

Brahman Baria  0.25 -0.76 -0.04 -10.93 -0.14 0.20 0.10 

Bhairab Bazar -1.19 -2.54 0.02 -12.02 -0.06 0.03 -0.15 
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5.4.2. Monsoon  

The RX1 at most of the stations exhibited downward trends in which Sylhet and 

Netrokona decreased statistically significant at the 95% confidence level (Fig 5.4 b). 

The RX1 decreased at a rate of 2.76 mm/year at Sylhet and 1.90 mm/year at Netrokona 

(Fig 5.4 b). The RX5 decreased at all stations in which it decreased significantly at 

Sylhet, Netrokona, and Moulvibazar.  The decreasing rates of these three stations are 

4.0mm/year, 3.43mm/year and 3.33mm/year, respectively. The PRCPTOT also showed 

falling trends at every station, in which it decreased significantly at Netrokona and 

Moulvibazar stations 25.35mm/year and 17.02mm/year, respectively. At all stations, 

the R50 showed a decreasing trend in which one station decreased significantly. The 

trend of CWD and CDD during monsoon season had an almost similar trend like pre-

monsoon season where most of the station showed a negative trend for CWD and the 

positive trend of CDD. The CWD deceased significantly at Sylhet and Brahmanbaria 

0.33days/year and 0.14days/year, respectively.  The CDD increased significantly at 

Brahmanbaria only 0.2days/year. Among the six stations, the SDII showed a falling 

trend at four stations while rising trend at two stations. However, none of them was 

statistically significant. 

 

Several of the stations show decreasing (but not significant) trends in total pre-monsoon 

rainfall, which agrees with previous studies [42,176]. Overall, the pre-monsoon climate 

does not seem to change very rapidly since it was observed no significant trends for any 

rainfall index during this season. Regarding the monsoon season, previous studies have 

concluded that long-term monsoon rainfall over the Assam and Meghalaya state of 

India has decreased, but not significantly [42,98,99,134,179. The results show that the 

monsoon rainfall has decreased in all stations, most significantly at Netrokona. 

Significantly decreasing trends in RX1 and RX5 at the same station, including Sylhet, 

was also observed. These results do not align with the narrative that total rainfall can 

decrease, but extremes can increase. Overall, the results vary from the index to the index 

and station to station. This shows how the local climate can be even in a relatively small 

region like northeast Bangladesh.  

 

Being in the downstream part of the Meghna Basin, northeast Bangladesh receives a 

significant portion of water from the adjoining part of India. As the observed rainfall 

data from India was not accessible, the trend was identified using observed data from 
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Bangladesh only. This trend analysis can, therefore, not directly show any changes in a 

flash flood, riverine flood, or drought occurrence over the entire basin. 

 

5.5. Summary  

In this chapter, the trends of rainfall extremes of northeast Bangladesh for the period 

1984 to 2016 for the pre-monsoon and monsoon seasons were explained. The daily 

rainfall data of seven stations representing the seven administrative districts of this 

region were used for this study. The trend analysis considered a number of different 

indices of rainfall extremes and was performed using the Mann-Kendall trend test and 

Sen’s slope estimator.  

 

Before applying the trend test, the Standard Normal Homogeneity Test (SNHT) and the 

Pettitt test was applied to check the homogeneity of the data. The randomness of the 

index of rainfall extremes was checked using an autocorrelation test. Among the seven 

stations, all stations were found to be homogeneous except Sunamganj, which was 

found to be inhomogeneous, and all the stations passed the correlation test meaning the 

index of rainfall extremes resulted from random events. The irregularities in data of the 

Sunamganj station from 1998 to 2005, causing inhomogeneity of rainfall data were 

identified using change-point analysis, comparing de-trending annual rainfall with the 

nearby station and information from the field office. Hence, the Sunamganj station was 

not considered for the trend analysis.  

 

In general, all the extremes rainfall indices showed a decreasing trend in both seasons 

over the region, with most of them decreased significantly during the monsoon. The 

most significant finding is that over this region, the seasonal total rainfall and the 

consecutive wet day exhibited a decreasing trend whereas the consecutive dry day saw 

an increasing trend. The decreasing trend of one-day maximum rainfall, five-day 

maximum rainfall, the intensity of the daily rainfall over 25mm during the pre-

monsoon, and 50mm during the monsoon, indicate a decrease in the magnitude and 

intensity of rainfall, with implications for seasonal and flash-floods. While these trends 

were observable over most stations, the trends were not always found to be statistically 

significant, demanding continued research into rainfall extremes. If these decreasing 

trends of rainfall extreme continue in the future, northeast Bangladesh may suffer from 

significant water stress. While extreme flooding can be harmful to these communities, 



 
 

44 
 

they have learned to live with the phases of ‘normal’ flooding. For example, the 

reduction of pre-monsoon rainfall and an increase in consecutive dry days could affect 

Boro rice production. Likewise, flooding brings a significant amount of coarse sand, 

stone, and boulders from the surrounding mountains, with the harvesting of this 

valuable resource employing many people. Similarly, the monsoon floods are necessary 

for fertilizing the paddy field and replenishing fish stocks in the haor. Hence, the 

findings from this study, together with future climate projections from climate models, 

will be helpful for future planning and management of water resources in the region. In 

the next chapter, the future trend and possible changes in rainfall extremes considering 

climate change were discussed. 
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6. CHAPTER 6 

  PROJECTION OF FUTURE RAINFALL EXTREMES 

UNDER THE WARMING WORLD 
 

6.1. Introduction  

In Chapter 5, it was observed that most of the extreme rainfall indices showed a 

decreasing trend in both seasons, with the most significant decrease during the 

monsoon. Now it is essential to know how these rainfall extremes are likely to change 

in future considering climate change. Therefore, in this chapter, the trend of rainfall 

extremes over northeast Bangladesh for the period 2041-2070 and 2071-2099 as a 

consequence of climate change was presented first. After that, the changes in rainfall 

extremes for the same period regarding baseline (1976-2005) was analyzed. For these 

purposes, six RCMs over the CORDEX South Asia domain considering two RCPs, 

namely RCP4.5 and RCP8.5, were used. Multi-model ensemble means were generated 

using a Bayesian Model Averaging (BMA) approach. In this approach, individual RCM 

was assigned a weight according to its predictive skill during the training period. 

Beforehand, the quantile mapping bias correction was performed after evaluating the 

RCMs performance in simulating the present-day climate. The detail descriptions of 

the data and the methodology were presented in Chapter 3 and Chapter 4, respectively. 

 

6.2. Performance Evaluation of RCMs  

The performance of RCMs over CORDEX South Asia domain was evaluated to 

determine the ability to reproduce historical rainfall over northeast Bangladesh. It was 

evaluated against observed station data in terms of bias, RMSE, and Q-Q plot for the 

period of 1976-2005. The bias indicates the wetness or dryness of the model, while the 

RMSE indicates the overall accuracy. The Q-Q plot shows if RCMs can simulate a 

particular rainfall intensity or not. Therefore, bias and the RMSE were estimated on 

monthly rainfall totals, while the Q-Q plot was drawn on daily rainfall.  

 

In this study, only the pre-monsoon and monsoon season was considered as the study 

area is subjected to pre-monsoon flash flood and monsoon flood, which cause enormous 

damage to lives and lively hood of the region. The bias and RMSE of RCMs needed to 

normalize for comparing them during the pre-monsoon and monsoon season. 

Therefore, the actual bias and RMSE were normalized by mean seasonal rainfall and 

standard deviation, respectively, from observed data. The normalized bias was negative 
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for most of RCMs during the pre-monsoon and all RCMs during the monsoon (Fig 6.1). 

Therefore, the average bias of the RCMs was also negative for both seasons. This means 

that RCMs always underestimate in simulating present-day average rainfall for the 

study area. It was also noted here that the normalized bias was higher for the monsoon 

than pre-monsoon. 

 

Fig 6.1  Normalized bias for different RCMs with respect to observed station rainfall 

during the period of 1976-2005 for (a) Pre-monsoon and (b) monsoon. 
 

The normalized RMSE of the RCMs were also higher during the monsoon than the pre-

monsoon (Fig 6.2). Therefore, it can be inferred that RCMs were less efficient in 

simulating the higher amount of rainfall. The reasons for higher bias and RMSE of the 

RCMs could be because of a lack of good quality high-resolution observed data. 

Another reason could be the sparse observation because of the complex geography of 

the study area. Lack of proper knowledge to use point measurement data in evaluating 

the grid-based RCMs, particularly for sparse station networks with complex topography 

could also be another reason. 
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Fig 6.2  Normalized RMSE for different RCMs with respect to observed station 

rainfall during the period of 1976-2005 for (a) Pre-monsoon and (b) monsoon. 

 

 

Fig 6.3 Q-Q  Plot for Sylhet station during 1976-2005 for (a) Pre-monsoon and (b) 

Monsoon. 

 

The Q-Q plot for Sylhet station showed that all the RCMs underestimated the low-

intensity rainfall and overestimated the high-intensity rainfall during the pre-monsoon 
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(Fig 6.3). RCMs always underestimated the observed rainfall during the monsoon. 

Other stations also showed similar behavior like Sylhet in simulating present-day 

climate (see Fig B.2 and Fig B.3 in Appendix B).  

 

6.3. Quantile Mapping Bias Correction of RCMs  

The bias correction was performed on daily rainfall data for the pre-monsoon and 

monsoon season independently after modifying wet-day frequencies of the RCMs 

simulated rainfall as discussed in methodology in Chapter 4. However, the result of 

Sylhet station only was presented here as an example (Fig 6.4).  

 

Fig 6.4  Quantile-quantile plots for the uncorrected (colored marker) and corrected 

(black marker) of simulated daily rainfall by RCMs against observed daily rainfall for 

Sylhet: (a) Pre-monsoon and (b) Monsoon. 

 

The result of this bias correction for other stations was similar to that shown in Fig 6.4 

(see Fig B.3 and Fig B.4 in Appendix B). Seasonal total rainfall of the Sylhet station 

before and after bias correction was shown in Table 6.1 as an example.  Most of the 

uncorrected RCMs overestimate the observed rainfall at high intensity but, 

underestimated at low-intensity rainfall and also produce too many drizzle days during 

the pre-monsoon season (Fig 6.4). In terms of total seasonal rainfall also for Sylhet, as 

listed in Table 6.1, all RCMs simulate the almost equal amount of pre-monsoon rainfall 

except SMHI. Also, it was noteworthy that the simulated seasonal rainfall from four 

(ACCESS, CCSM4, MPI, and MPI-REMO) out of six RCMs was close to the observed 

amount (1087 mm).  After bias correction, the RCM simulation was closer to the 

observed seasonal rainfall, and this improvement is evident for SMHI and CNRM 

RCMs.  Among all six RCMs, the most considerable seasonal rainfall difference 

between simulation and observation is only 28 mm after bias correction. 
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Table 6.1  Seasonal rainfall for Sylhet station before and after bias correction. 

  Observed ACCESS CCSM4 CNRM MPI 
MPI- 

REMO 
SMHI 

P
re

-m
o
n
so

o
n

 

Before bias 

correction 
1087 1116 1050 1239 1134 1088 386 

After Bias 

correction 
1087 1090 1072 1079 1081 1059 1076 

M
o
n
so

o
n

 Before bias 

correction 
2733 1171 1168 976 1049 1760 982 

After Bias 

correction 
2733 2707 2700 2710 2719 2712 2712 

 

During the monsoon season, all six RCMs underestimated the observed daily rainfall 

considerably from low to high intensity (Fig 6.4). As a result, all the RCMs 

underestimate the seasonal rainfall (Table 6.1). The RCM rainfall for the other stations 

was also shown similar behavior like Sylhet. However, after the bias correction, the 

RCM rainfall distributions and total amounts were similar to those of the observed 

rainfall. The most substantial seasonal rainfall difference between RCMs and the 

observation is only 33 mm. 

 

6.4. Bayesian Model Averaging  

With the corrected RCM simulations, the multi-model ensemble mean was generated 

using the BMA method.  Among several methods, the BMA method provides more 

reasonable ensemble mean [152,202,222] since it gives higher weight to the RCM with 

better predictive skills in the training period. Though BMA weights were calculated for 

all extreme rainfall indices, the result of monthly rainfall in the pre-monsoon and 

monsoon was presented here, for example.  Histograms of the posterior marginal 

probability density functions of the BMA weights of the monthly rainfall totals for the 

individual ensemble members during the training period of Sylhet station for pre-

monsoon and monsoon respectively were presented in Fig 6.5 and Fig 6.6 (see Fig B.6 

to Fig B.15 Appendix B for the other stations). In those figures, it was found that all the 

histograms exhibit gamma distribution, as explained earlier. This means that there is 

high confidence in the weights applied to each of the individual models. The optimal 

values derived with the MCMC algorithm were separately indicated in each panel with 

the ‘x’ symbol.  



 
 

50 
 

 

Fig 6.5  Marginal posterior pdf of the DREAM derived BMA weights of monthly 

rainfall totals for pre-monsoon of Sylhet station. The MCMC derived solution is 

separately indicated in each panel with symbol ‘X’. 

 

 

Fig 6.6  Marginal posterior pdf of the DREAM derived BMA weights of monthly 

rainfall totals for the monsoon of Sylhet station. The MCMC derived solution is 

separately indicated in each panel with symbol ‘X’. 
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Fig 6.7  BMA weights of each RCM for monthly rainfall totals of different stations 

during the historical period (1976-2005): (a) Pre-monsoon and (b) Monsoon. 
 

The optimal BMA weights for rainfall of six rainfall stations were presented in Fig 6.7. 

As noted previously, the BMA weights were calculated on monthly rainfall for the pre-

monsoon and monsoon seasons separately. The BMA weight reflects the overall 

performance of the RCMs in capturing monthly rainfall for the study area. It reflects 

the overall performance of the RCMs in capturing monthly rainfall.  The RCMs showed 

better performance at one station while worse performance in another station. No 

particular RCM was consistent for capturing higher BMA weights for all stations (Fig 

6.7). Similarly, the RCMs performance varied in different seasons. Therefore, it can be 

inferred that there is no single best or worst model in simulating rainfall variation over 

the region, according to the concept of a multi-model approach. 

 

The multi-model ensemble mean of rainfall was calculated using BMA weights, and by 

the simple arithmetic ensemble mean (AEM). The Normalized Root Mean Square Error 

(NRMSE) (RMSE was normalized by the standard deviation of the observed data), 

BMA and AEM for each RCMs were estimated to evaluate the performance of BMA 

(Table 6.2).  It is noteworthy that the NRMSE of the commonly used AEM is always 

smaller than the corresponding statistic from each participating RCM for both seasons. 

This phenomenon is consistent with the general notion that the ensemble means usually 

outperforms all or most of the individual ensemble members [152]. Relative to the 
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simple AEM, the NRMSE of the BMA is even smaller. The NRMSE of BMA weights 

is lesser than all participating RCMs for all stations and seasons. For all six stations, 

the average percentage of the decrease in NRMSE from the AEM to BMA varies from 

3% during the pre-monsoon to 22% during the monsoon season. 

 

Table 6.2  Normalized Root Mean Square Error (NRMSE) for seasonal rainfall of 

different RCMs, Arithmetic Ensemble Mean (AEM) and BMA during the historical 

period (1976-2005). 

 Station ACCESS CCSM4 CNRM 

MPI-

REMO MPI SMHI AEM BMA 

Pre-monsoon 

Sylhet 1.15 1.35 0.94 1.12 1.14 1.15 0.88 0.86 

Sunamganj 1.04 1.32 1.12 1.06 1.02 1.22 0.80 0.78 

Netrokona 1.17 1.01 1.10 0.96 1.13 1.22 0.75 0.72 

Moulvibazar 1.05 1.36 1.05 1.33 1.30 0.99 0.81 0.76 

Habiganj 1.14 1.58 1.20 1.34 1.40 1.02 0.82 0.78 

Bhiarabbazar 1.37 1.53 1.39 0.97 1.66 1.19 0.92 0.78 

Monsoon 

Sylhet 1.82 2.33 1.89 1.58 2.42 1.79 1.18 1.03 

Sunamganj 1.89 1.98 1.89 1.58 2.37 1.84 1.39 1.01 

Netrokona 2.25 1.95 1.95 1.72 2.34 1.76 1.22 1.07 

Moulvibazar 1.82 2.00 1.97 1.60 1.99 1.57 1.19 1.13 

Habiganj 2.01 2.32 2.48 1.76 1.94 1.85 1.65 1.24 

Bhiarab  Bazar 1.81 2.22 2.29 1.62 1.98 1.86 1.43 1.26 

 

It was assumed that the BMA weights should reflect relevant model skill in the multi-

model ensemble approach.  In another way, it was anticipated that the RCMs having 

higher BMA weights should produce lower NRMSE. Sometimes, the weights of the 

RCMs were contradicted with NRMSE.  For example, the model MPI received the 

second-highest BMA weight at Sylhet station during the pre-monsoon (Fig 6.7) but 

ranked the third lowest NRMSE among the six RCMs (Table 6.2). The paired 

correlations could explain this inconsistent nature between individual simulations in the 

ensemble. Sometimes, the RCMs with the higher BMA weight may have a lesser 

correlation with the observed data and vice versa. A substantial amount of redundancy 

caused this, and therefore results in de-weighing of the best single simulation and 

overweighting of the worse single simulation. Other authors [203,209,222] also found 

this kind of inconsistency in their studies. 
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6.5. The trend of future rainfall extremes 

A number of plots as per the Fig 6.8 and Fig 6.9 showed Mann–Kendall based trends 

of the extreme rainfall indices in an intra-decadal time series (2041–2070 and 2071–

2099) domain for RCP4.5 as well as RCP8.5 during the pre-monsoon and monsoon 

season, respectively. Sen's slopes were measured to determine the magnitude of 

changes of extreme indices during the projected time scale (2041–2070 and 2071–

2099). The results of Sen's slope estimation are shown in Table 6.3 and Table 6.4 during 

the pre-monsoon and monsoon season, respectively. 

 

Pre-monsoon 

In RCP4.5, most of the extremes indices showed an increasing trend for the time series 

2041–2070 while in time series 2071 to 2099, some indices showed an increasing trend 

and others showed a decreasing trend (Fig 6.8a and Fig 6.8b). A few of the stations, 

PRCPTOT, and R25 for 2041–2070 time series and R25 for 2071–2099 times series 

showed a significantly increasing trend. However, R99P and RX1 showed a significant 

decreasing trend for the 2071–2099 time series. In RCP8.5, most of the extremes 

indices showed an increasing trend for both 2041–2070 and 2071–2099 time series (Fig 

6.8c and Fig 6.8d). Among them, R25, R95P, and R99P for 2041–2070 time series and 

PRCPTOT, R25, R95P and R99P for 2071–2099 showed a significantly increasing 

trend. The CDD showed a decreasing trend for RCP4.5 as well as RCP8.5 during both 

time series in some stations. It decreased significantly during the 2071–2099 for 

RCP8.5. The corresponding Sen's slopes of the extreme indices, which were 

significantly increased or decreased in Fig 6.8 were made bold and underlined in Table 

6.3.  

 

During the pre-monsoon, most of the extreme indices except CDD showed a decreasing 

trend for the period 1796-2005 (see Fig 5.4a) while most of the extreme indices showed 

an increasing trend for the scenario period except 2071-2099 for RCP4.5 (Fig 6.8). This 

increasing trend could be understood by analyzing the mechanisms of the pre-monsoon 

rainfall over northeast Bangladesh. Among different mechanisms, (discussed in Section 

2.1), the heat low over India is one of the major causes. A heat low over central India 

adjacent to the western border of Bangladesh resulting from intense heating of the 

landmass triggers the southwesterly moisture flow from the Bay of Bengal towards the 

Meghalaya Plateau [159,195]. Due to global warming, the heat low over central India 
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is likely to increase [132,162]. This happening will cause more moisture flow toward 

the Meghalaya mountain region in India and will result in a more extreme rainfall event 

in northeast Bangladesh. Another cause can be explained by the Clausius–Clapeyron 

(C-C) relationship. The atmospheric moisture-holding capacity is likely to increase 

with the surface temperature through the C-C equation [144]. Several studies 

[5,12,31,166,177] also argued that this increase of rainfall might be attributed to the 

increase of low level (850 hPa) moisture content resulting from increased temperature 

due to global warming. In the case of RCP4.5, the emission of CO2 peaking from 2040 

to 2050, and it declines afterward while for RCP 8.5 it attains its peak in 2100 (Fig 2.4). 

Therefore, between 2071 and 2099 for RCP4.5, the extreme indices were decreased in 

most of the cases due to less moisture flow from the Bay of Bangle resulting from the 

slowing down of rising the sea surface temperature.  

 

 

Fig 6.8  The normalized test statistic (Zs) of the Mann-Kendall test of the indices of 

rainfall extremes considering all model ensemble mean derived by BMA for pre-

monsoon: (a) RCP 4.5(2041-2070),(b)RCP4.5(2071-2099),(c)RCP8.5(2041-2070),(d) 

RCP8.5(2071-2099). (The absolute Zs value which is higher than the critical value 

(Zc=1.96) are considered as statistically significant at 95% confidence level. 
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Table 6.3  Sens’s slope estimator of rainfall extremes considering all model ensemble 

mean derived by BMA for two future time slices (2041-2070 and 2071-2099 under 

RCP 4.5 and RCP 8.5 scenarios for Pre-monsoon. The corresponding Sen's slopes of 

the extreme indices which were significantly increased or decreased in Fig 6.8 were 

made bold and underlined. 

S
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io
d

 

C
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D
 

P
R

C
P

T
O
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R
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5
 

R
9

5
P

 

R
9

9
P

 

R
X

1
 

R
X

5
 

S
D

II
 

S
y

lh
et

 4.5 
2041-2070 -0.05 0.02 5.17 0.10 0.13 0.12 -0.55 0.40 0.00 

2071-2099 -0.09 0.07 4.23 0.10 0.09 -0.08 -0.72 0.87 0.02 

8.5 
2041-2070 -0.08 0.07 8.40 0.10 0.42 1.00 0.97 2.00 0.11 

2071-2099 -0.03 0.03 9.24 0.15 0.37 0.21 -0.52 -1.50 0.11 

S
u

n
a

m
g

a
n

j 

4.5 
2041-2070 -0.06 -0.01 5.60 0.15 0.01 0.05 -0.38 0.04 0.01 

2071-2099 -0.03 0.04 5.58 0.07 0.23 -0.14 -0.46 0.68 0.06 

8.5 
2041-2070 -0.03 0.01 7.09 0.11 0.41 0.23 0.59 0.74 0.09 

2071-2099 -0.09 0.03 6.49 0.17 0.22 -0.24 -1.17 -3.44 0.07 

N
et

ro
k

o
n

a
 

4.5 
2041-2070 -0.04 0.05 0.22 0.07 0.03 0.52 -1.02 -1.91 -0.12 

2071-2099 0.00 0.01 6.69 0.12 0.32 -0.71 0.49 2.73 0.14 

8.5 
2041-2070 -0.03 0.05 3.72 0.09 0.12 -0.07 -0.22 0.02 -0.04 

2071-2099 -0.22 -0.01 6.58 0.09 0.30 -0.08 0.05 -0.31 0.09 

M
o
u

lv
ib

a
za

r 

4.5 
2041-2070 -0.07 0.02 4.30 0.07 0.02 0.03 0.10 0.91 0.00 

2071-2099 -0.08 0.02 3.52 0.05 0.06 -0.03 -0.25 -0.16 -0.03 

8.5 
2041-2070 0.01 -0.03 2.18 0.03 0.18 0.19 0.23 0.71 0.02 

2071-2099 0.00 0.05 8.79 0.17 0.45 0.58 0.49 0.70 0.20 

H
a
b

ig
a
n

j 

4.5 
2041-2070 -0.05 0.02 0.16 0.04 -0.10 0.44 -0.54 -1.11 -0.04 

2071-2099 -0.08 0.05 4.99 0.08 0.07 -0.36 0.37 0.89 0.00 

8.5 
2041-2070 -0.08 0.06 3.20 0.06 0.02 0.11 0.23 0.17 -0.01 

2071-2099 -0.09 0.01 7.40 0.13 0.42 0.14 0.02 -0.10 0.11 

B
h

a
ir

a
b

b
a
za

r 

4.5 
2041-2070 -0.08 0.03 -0.07 0.04 -0.17 0.33 -0.76 -1.50 -0.12 

2071-2099 -0.01 0.04 3.65 0.04 0.17 -0.62 0.12 0.77 0.00 

8.5 
2041-2070 -0.03 0.06 4.94 0.09 0.31 0.25 0.16 0.42 0.05 

2071-2099 -0.14 0.02 10.71 0.13 0.49 0.96 0.58 2.35 0.17 

 

Monsoon: 

Most of the extremes indices showed an increasing trend for the time series 2041–2070 

while it showed a decreasing trend in most of the cases for the time series 2071 to 2099 

for RCP4.5 (Fig 6.9a and Fig 6.9a). CDD, CWD, RX1, and SDII for the 2041–2070 

time series showed a significantly increasing trend in a few stations. However, all the 

extreme indices except CDD and CWD showed a significant decreasing trend for 2071–
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2099 times series in almost all stations. In RCP8.5, most of the extremes indices showed 

a decreasing trend for both 2041–2070 and 2071–2099 time series (Fig 6.9c and Fig 

6.9d). Among them, almost all indices in most of the stations for 2041–2070 time series 

in addition to CWD, PRCPTOT, R50, RX1 and SDII for 2071–2099 at some stations 

showed a significant decreasing trend. The corresponding Sen's slopes of the extreme 

indices, which were significantly increased or decreased in Fig 6.9 were made bold and 

underlined in Table 6.4.  

 

 

Fig 6.9  The normalized test statistic (Zs) of the Mann-Kendall test of the indices of 

rainfall extremes considering all model ensemble mean derived by BMA for 

monsoon: (a) RCP 4.5(2041-2070),(b)RCP4.5(2071-2099),(c)RCP8.5(2041-2070),(d) 

RCP8.5(2071-2099). (The absolute Zs value which is higher than the critical value 

(Zc=1.96) are considered as statistically significant at 95% confidence level. 

  
During the monsoon, the extreme indices showed a decreasing trend in most of the 

cases except less increase during 2041 to2070 in RCP4.5 (Fig 6.9), which is like the 

historical trend (Fig 5.4b). Several studies suggest that due to global warming under the 

increasing greenhouse, the temperature of the landmass of the subcontinent will 

increase slowly compared to the Indian Ocean, which will reduce the land-sea thermal 

gradient over the Indian subcontinent [162]. Therefore, extreme indices showed a 

decreasing trend during monsoon under almost emission scenarios. 
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Table 6.4  Sense slope estimator of rainfall extremes considering all model ensemble 

mean derived by BMA for two future time slices (2041-2070 and 2071-2099 under 

RCP 4.5 and RCP 8.5 scenarios for monsoon. The corresponding Sen's slopes of the 

extreme indices which were significantly increased or decreased in Fig 6.9 were made 

bold and underlined. 
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 4.5 
2041-2070 0.06 -0.17 10.88 0.04 0.11 0.37 1.15 1.37 0.14 

2071-2099 0.04 -0.19 -14.29 -0.11 -0.27 -0.40 -0.61 -2.23 -0.10 

8.5 
2041-2070 0.00 -0.06 -19.58 -0.27 -0.48 -0.45 -0.86 -2.01 -0.16 

2071-2099 -0.03 -0.20 -19.18 -0.17 -0.23 0.11 -0.38 -0.21 -0.21 

S
u

n
a

m
g

a
n

j 

4.5 
2041-2070 0.05 -0.04 8.67 0.08 0.18 0.54 0.43 1.57 0.16 

2071-2099 0.02 -0.05 -30.30 -0.24 -0.66 -0.48 -1.34 -3.43 -0.23 

8.5 
2041-2070 0.00 -0.14 -34.22 -0.23 -0.61 -0.32 -0.55 -2.19 -0.27 

2071-2099 -0.02 -0.16 -31.14 -0.28 -0.22 0.14 0.05 -0.73 -0.15 

N
et

ro
k

o
n

a
 

4.5 
2041-2070 0.03 0.06 -4.01 -0.01 -0.08 -0.22 -0.01 -0.43 0.00 

2071-2099 0.00 -0.11 -14.70 -0.14 -0.22 -0.32 -0.58 -1.23 -0.10 

8.5 
2041-2070 0.00 -0.05 -17.55 -0.23 -0.67 -0.53 -0.89 -2.19 -0.14 

2071-2099 0.00 -0.04 -7.37 -0.03 -0.15 -0.08 0.12 -0.56 -0.02 

M
o
u

lv
ib

a
za

r 

4.5 
2041-2070 0.03 0.14 3.96 0.05 0.24 0.01 -0.51 -0.23 0.07 

2071-2099 0.06 -0.04 -11.50 -0.05 -0.16 -0.59 -1.45 -4.32 -0.07 

8.5 
2041-2070 0.00 -0.01 -11.39 -0.10 -0.41 -0.92 -1.34 -3.62 -0.11 

2071-2099 0.02 -0.11 -6.92 0.00 0.01 -0.02 0.32 -0.22 -0.01 

H
a
b

ig
a
n

j 4.5 
2041-2070 0.03 0.12 2.34 -0.02 0.09 -0.17 0.37 -0.54 0.02 

2071-2099 0.06 0.00 -14.67 -0.08 -0.40 -0.79 -0.91 -3.56 -0.12 

8.5 
2041-2070 0.02 -0.02 -11.18 -0.13 -0.47 -0.66 -0.87 -1.75 -0.11 

2071-2099 0.01 -0.04 -5.37 -0.02 -0.09 -0.06 -0.21 0.40 -0.01 

B
h

a
ir

a
b

b
a
za

r 

4.5 
2041-2070 0.04 0.02 3.27 0.00 0.19 0.20 0.09 1.40 0.05 

2071-2099 0.02 -0.04 -11.03 -0.09 -0.35 -0.62 -1.07 -2.77 -0.12 

8.5 

2041-2070 0.04 -0.01 -8.02 -0.07 -0.33 -0.46 -1.47 -3.77 -0.11 

2071-2099 0.05 -0.05 -3.01 0.00 0.10 -0.29 -1.02 0.03 -0.01 

 
 

6.6. Changes of Future Rainfall Extremes  

The changes of future rainfall extremes were estimated for all RCMs, and for their 

ensemble mean generated by BMA weight (see Fig 6.7). Fig 6.10 shows the variability 

of the mean changes of extreme indices with respect to the baseline for Sylhet station.   

The variability of the extreme indices for other stations is presented in Fig B.16 to Fig 

B.20 in Appendix B. 
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Fig 6.10  Box and whisker plots for changes of rainfall extremes of Sylhet station 

considering all RCMs for two future time slices (2041-2070 and 2071-2099) relative 

to the baseline period (1976-2005) under RCP 4.5 and RCP 8.5 scenarios: (a) Pre-

monsoon and (b) Monsoon. 

 

During pre-monsoon, among all extreme indices, the variability of the relative changes 

was more significant for the one-day maximum rainfall (RX1) and lesser for the Simple 

Daily Intensity Index (SDII), implying more uncertainty associated in RX1 and lesser 

for SDII (Fig 6.10a). This result was not unexpected because the seasonal maximum 

daily rainfall is the single most significant value in a season and this value has the large 

excursion from year to year, while the rainfall intensity index is a quantity averaged 

over many days in a season. The uncertainty for all extremes indices was more 

significant for far future (2071-2099) and for higher RCP (RCP8.5) compare to lower 

RCPs in the near future. Considering all RCMs, the mean relative changes were positive 
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for all extreme indices except for consecutive dry day (CDD) and consecutive wet day 

(CWD) during pre-monsoon at Sylhet station. Therefore, the consecutive dry days 

become shorter over time.  Similar to pre-monsoon, the uncertainty in relative changes 

was lesser for SDII during monsoon (Fig 6.10b). Also, the significant variability was 

found for CWD, CDD, and R50.  The range of variability for changes in rainfall 

extremes was more significant during the pre-monsoon than the monsoon season.  The 

variability of the extreme indices for other stations exhibit almost similar pattern like 

Sylhet (see Fig B.16 to Fig B.20 in Appendix B). 

 

 

Fig 6.11  Box and whisker plots for changes of rainfall extremes over the study area 

considering all model ensemble mean derived by BMA for two future time slices 

(2041-2070 and 2071-2099) relative to the baseline period (1976-2005) under RCP 

4.5 and RCP 8.5 scenarios: (a) Pre-monsoon and (b) Monsoon. 
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The mean changes of extreme indices for all stations were generated to get an overview 

of the likely changes over the whole region (Fig 6.11). In the pre-monsoon season (Fig 

6.11a), the interquartile ranges of the box plot were negative for CDD while positive 

for RX1, RX5, PRCPTOT, R25, SDII, R95P, and R99P in future time slices under the 

RCP4.5 as well as RCP8.5 over the study area. This indicates an increasing level of 

changes for those indices with a positive range in the future.  

 

 
Fig 6.12  Average changes of rainfall extremes over the study area considering all 

model ensemble mean derived by BMA for two future time slices (2041-2070 and 

2071-2099) relative to the baseline period (1976-2005) under RCP 4.5 and RCP 8.5 

scenarios: (a) Pre-monsoon and (b) Monsoon. 
 

During the monsoon season (Fig 6.11a), the interquartile ranges of the box plot were 

relatively smaller at lower RCP (RCP4.5) during the near future (2041-2070). However, 

it was more significant for higher RCP (RCP8.5) during the far future (2071-2099). The 

variability of all extreme indices was more significant for the period 2071-2099 under 

the RCP8.5 for both seasons, which indicate that there was a more considerable 

uncertainty associated with RCMs in projecting rainfall extremes as the RCP increases 



 
 

61 
 

and time slice progresses from mid-century to the late century. Another most important 

thing was that the interquartile ranges of all extreme indices except CDD and CWD in 

both seasons were positive, meaning that all RCMs projected positive change. These 

positive changes made us more confident that these extreme indices were expected to 

increase in the future. The interquartile ranges of CDD in the monsoon and CWD in 

both seasons vary between positive and negative values; however, their median values 

were positive. Therefore, it could not be inferred with confidence that the CDD and 

CWD are likely to increase in the future. 

 

Average changes of rainfall extremes over the study area considering all stations, the 

multi-model ensemble mean derived by BMA was presented in Fig 6.12. All the 

extreme indices were projected to increase in the future, but a decrease of CDD and 

CWD under RCP8.5 for the period 2071-2099 during the pre-monsoon season (Fig 

6.12a).  

 

Table 6.5  p-values of average changes of rainfall extremes over the study area 

considering all model ensemble mean in different RCP scenarios using Mann–

Whitney U test. The extreme indices which changed significantly at 95 % confidence 

level (p-value ≤ 0.05) are bold and underlined. 

 
Index 

RCP4.5 RCP8.5 

 2041-2070 2071-2099  2041-2070 2071-2099 

P
re

-m
o
n
so

o
n

 

RX1 0.013 0.000 0.000 0.000 

RX5 0.100 0.003 0.012 0.000 

CDD 0.003 0.020 0.001 0.002 

CWD 0.234 0.581 0.919 0.323 

SDII 0.221 0.038 0.011 0.000 

PRCPTOT 0.008 0.001 0.002 0.000 

R99P 0.023 0.001 0.001 0.000 

R95P 0.025 0.001 0.001 0.000 

R25 0.038 0.019 0.025 0.019 

M
o
n
so

o
n

 

RX1 0.149 0.963 0.041 0.007 

RX5 0.621 0.853 0.239 0.120 

CDD 0.756 0.090 0.797 0.075 

CWD 0.058 0.846 0.034 0.273 

SDII 0.193 0.233 0.079 0.000 

PRCPTOT 0.362 0.700 0.182 0.093 

R99P 0.286 0.877 0.145 0.006 

R95P 0.677 0.805 0.322 0.057 

R50 0.240 0.301 0.213 0.086 
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During the monsoon, all the extreme rainfall indices were likely to increase in the future 

under all scenarios (Fig 6.12b).  However, the increasing rate of extreme indices was 

more significant in the pre-monsoon season than monsoon season. Moreover, all the 

extreme indices except CWD likely to change significantly at the 95% confidence level 

during the pre-monsoon season (see Table 6.5). The average pre-monsoon rainfall of 

the study area was projected to increase by 12.93% for the near future and 18.42% in 

the far future under RCP4.5.  Under the RCP8.5, it was projected to increase by 18.18% 

in the near future and 23.85% in the far future (Fig 6.12a). During the monsoon, it was 

projected to increase by 4.96% in the near future and 2.27% in the far future under the 

RCP4.5. However, it was projected to increase by 6.56% in the near future and 6.40% 

in the far future under the RCP8.5. Therefore, the study area is expected to experience 

more frequent floods in both the pre-monsoon and monsoon seasons when climate 

changes. Notably, the intensity and the magnitude of the flash flood in pre-monsoon is 

likely to increase more in the future as a result of the high increasing rate of most 

extreme indices related to the occurrence of the flash flood (e.g., PRCPTOT, RX1, 

SDII, R95p, R99p) with a high decrease rate of CDD. This situation is projected to be 

more intense as the century progresses. 

 

6.7. Summary  

The impact of climate change on extreme rainfall in northeast Bangladesh using six 

RCMs over CORDEX South Asia domain under the RCP4.5 and RCP8.5 was 

summarized here. Generally, the RCMs are affected by biases inherited from driving 

GCMs. It was found that the RCMs overestimate the heavy rainfall events and 

underestimate low rainfall events during the pre-monsoon season while 

underestimating as a whole during the monsoon season. Therefore, the quantile 

mapping method was applied to correct the bias associated with RCMs. After that, the 

BMA approach was used to generate the multi-model ensemble mean. The BMA mean 

is a weighted average related to each RCM’s predictive skill. A closer look at each 

RCM showed that no single model was best or worst in simulating rainfall variations 

over northeast Bangladesh. However, the BMA produced more reliable results since 

NRMSE of it was lower than all six individual models and the arithmetic multi-model 

ensemble mean. 
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The result of the trend analysis showed that most of the extreme indices showed an 

increasing trend for the scenario period, except 2071-2099 for RCP4.5 while it showed 

a decreasing trend for the baseline period during pre-monsoon season. The extreme 

indices decreased in most cases, similar to the historical trend during monsoon season. 

 

The seasonal rainfall, together with other extreme indices, is expected to increase with 

respect to baseline except for a decrease of CDD during both the pre-monsoon and 

monsoon seasons. However, the increasing rate of extreme indices is generally is more 

significant in the pre-monsoon season than monsoon season. The average pre-monsoon 

rainfall of the study area is projected to increase by 12.93% in the near future and 

18.42% in the far future under RCP4.5.  Under the RC8.5, it is projected to increase by 

18.18% in the near future and 23.85%. During the monsoon, it is projected to increase 

by 4.96% in the near future and 2.27% in the far future under the RCP4.5 while 6.56% 

in the near future and 6.40% in the far future under the RCP8.5. Therefore, the study 

area is likely to experience more frequent floods in the pre-monsoon season under the 

warming climate. Notably, the intensity and the magnitude of the flash flood in pre-

monsoon is expected to increase more in future because of the high, increasing rate of 

all extreme indices related to the occurrence of the flash flood (e.g., PRCPTOT, RX1, 

SDII, R95p, R99p). This situation is projected to be more intense in 2071-2099   than 

in 2041-2070.  

 

These results show that the pre-monsoon season, in particular, may witness the most 

significant changes in rainfall in northeast Bangladesh. Seasonal rainfall together with 

other extreme indices expected to increase, causing the occurrence of the more frequent 

high magnitude of flash floods putting the harvest of Boro rice, as well as infrastructure 

and lives at risk. This situation may intensify further as the century progresses. In the 

next chapter, the linkage of pre-monsoon rainfall with ENSO and its response under 

climate change is discussed. 
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7. CHAPTER 7 

RELATIONSHIP BETWEEN El NINO SOUTHERN 

OSCILLATION (ENSO) AND PRE-MONSOON 

RAINFALL AND ITS RESPONSE UNDER THE 

WARMING WORLD 

 

7.1. Introduction  

The historical and future trends of extreme rainfall indices were discussed in Chapter 5 

and Chapter 6, respectively. The changes in rainfall extreme indices with respect to 

baseline due to climate change was also described in Chapter 6. As it was discussed 

earlier that Boro rice is the main crop of northeast Bangladesh and the pre-monsoon 

rainfall is the primary concern of the community of the region since the pre-monsoon 

heavy rainfall destroys this Boro rice. Therefore, it is essential to know the behavior of 

the next pre-monsoon rainfall in one or two months in advance so that the communities 

can have enough time to search for advance measures to manage the risks. ENSO can 

have a high potential value in this aspect if it is possible to establish its relationship 

with the variability of the pre-monsoon rainfall of the region. In this context, this 

chapter describes the relationship between El Niño Southern Oscillation (ENSO) and 

pre-monsoon rainfall, particularly in April over the Meghna basin and its response 

under the warming world. 

 

The relationships between large-scale process and a pre-monsoon rainfall in the 

Meghna basin was performed in three steps. Firstly, the relationship between pre-

monsoon rainfall and heat low in central India during the pre-monsoon, particularly in 

April was determined. Because the southwesterly moisture flows from the Bay of 

Bengal is triggered by the low-pressure system in central India adjacent to the northwest 

border of Bangladesh which brings moist air towards the foothills of the Meghalaya 

Mountain which feeds deep convection over the Meghna basin.  Before determining the 

relationship between heat low over India and ESNO, it is essential to know the answer 

of two questions: firstly, does there exist any significant relationship between pre-

monsoon rainfall and ENSO? Secondly, if there is a significant relationship between 

pre-monsoon rainfall and ENSO then among different ENSO index (e.g., ESOI, SOI, 

ONI, and MEI) which is the best suited ENSO index for the study area? Therefore, the 

relationship between the pre-monsoon rainfall and different ENSO indexes (e.g., ESOI, 

SOI, ONI, MEI) with different monthly lags was determined in the second step. Since 
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heat wave produces heat low, the relationship between heat low in central India during 

April and best suited ENSO index (identified in the second step) was determined in the 

third step. The impact of climate change on ENSO was determined in terms of changes 

of ENSO frequency and intensity at different RCP scenarios with respect to the 

baseline. The detail description of the data and the methodology can be found in 

Chapter 3 and Chapter 4, respectively. 

 

In this chapter, the relationship between the rainfall of April and different ENSO indices 

was discussed first to show how April rainfall was connected with ENSO. After that, 

the possible changes in the intensity and magnitude of the ENSO index under different 

RCP scenarios in future time slices were discussed. 

 

7.2. Relationship between ENSO and pre-monsoon rainfall  

The southwesterly moisture flows from the Bay of Bengal towards the Meghalaya 

Mountain region driven by the heat low over central India adjacent to the north-western 

border of Bangladesh resulting from strong heating of the landmass causes heavy pre-

monsoon rainfall over the Meghna basin [159]. To investigate this mechanism, the wind 

map was plotted for some flooding events (e.g., 2004, 2010, 2016 and 2017) and some 

non-flooding events (e.g., 2008 and 2014) during April in Fig 7.1 and Fig 7.2, 

respectively. It was observed that there was a low-pressure system (Cyclonic) in central 

India and the high-pressure system (Anticyclonic) in the Bay of Bengal during the 

flooding event (Fig 7.1). However, there was no such situation during the non-flooding 

event (Fig 7.2).  

 

In the next steps, the relationship between pre-monsoon rainfall of Cherrapungi and 

heat low over central India during the pre-monsoon particularly, in April was 

established (Fig 7.3). Since the intense heating of the earth's surface creates low 

pressure in the surrounding area, this relationship was determined with MSL instead of 

heat low. It was found that there is a high inverse correlation (ρ≤-0.55) between April 

rainfall over the Cherrapungi and heat low over central India during April. Therefore, 

the mechanism of heavy pre-monsoon rainfall discussed in the previous section was 

justified by this relationship. 
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Fig 7.1  Average Wind flow direction during some flooding event in April: (a) April 9 

to April 19, 2004; (b) April 1 to April 4, 2010; (c) April 20 to April 30, 2016, and (d) 

April 1 to April 4, 2017. The low-pressure zone is marked with a solid red circle, and 

the high-pressure zone is marked with a dashed red circle. 
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Fig 7.2  Average Wind flow direction during some non-flooding event in April: (a) 

April 1 to April 30, 2008, and (b) April 1 to April 30, 2014. 

 

 

Fig 7.3  Correlation between MSL pressure and April rainfall over Cherrapunji during 

the year 1979 to 2017. 
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Before determining the relationship between heat low over India and ESNO, the 

relationship between the rainfall of April for the study area and different ENSO index 

with different monthly lags (e.g., December, January, and February) were identified the 

most significant ENSO index for the study area. The relationship between rainfalls of 

April in the study area with different ENSO index was presented in Fig 7.4. In this 

study, 38 years (1979 to 2017) data were used, and for this data period, the correlation 

value for a 95% confidence level is 0.32 [156].  The part of the study area in which the 

correlation value is statistically significant (p-value ≤0. 05) is shaded with red color, as 

shown in Fig 7.4. In this figure, it is observed that the ONI index during January (Fig 

7.4h) has the utmost correlation value (ρ=0.52) and SOI index during January (Fig 7.4b) 

has the uppermost spatial coverage of the correlation value for which it is statistically 

significant. However, the Cherrapunji, the rainfall of which station plays a vital role in 

flooding of the study area is outside of the statistically significant area for the SOI index 

during January. Therefore, it can be stated that the ONI index during January is 

important for forecasting of flooding during April for the study area. 

 

The normalized rainfall of Cherrapunji during April against ONI the index during 

January was also plotted to see how it influences the flooding of the study area (Fig 

7.5). The year in which the ONI index higher than 0.50C (less than 0.50C) are classified 

as El Niño (La Niña) year and any year not meeting the El Niño or La Niña phase 

criteria is defined as a neutral year [110]. In most of the cases, the normalized rainfall 

anomaly is positive (negative) for El Niño (La Niña) years, and there is a mixture of 

rainfall trend during the neutral year (Fig 7.5). The year in which there was a flood in 

April was also leveled in Fig 7.1 and found that all the flooding event occurred during 

El Niño or Neutral year except only 1985. From this figure, it can be concluded that 

most of the positive rainfall anomaly and the flooding events occurred when the ONI 

index during January is positive. 
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Fig 7.4  Correlation between April rainfall and different ENSO index for the period 

1979 to 2017: (a) SOI for December; (b) SOI for January; (c) SOI for February; (d) 

ESOI for December; (e) ESOI for January; (f) ESOI for February; (g) ONI for 

December; (h) ONI for January; (i) ONI for February; (j) MEI for December; (k) MEI 

for January and (l) MEI for February. The study area in which the correlation value is 

statistically significant (p-value <= 0.05) is shaded with red color. 
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Fig 7.5  Normalized rainfall anomaly for Cherrapunji during April and ONI Index for 

January during the year 1979 to 2017. The red level of the points indicates the 

flooding year in April. 

 

Finally, the relationship between the heat low over central India and the best suited 

ENSO index identified in the previous step was examined. This relationship was 

determined in terms of a heatwave since the heatwave generates heat low over central 

India. In this study, Excessive Heat Factor (EHF) was used to define heatwave, which 

is based on Excess Heat and Heat Stress. Therefore, the correlation between EHF over 

central India during April and previously identified best suited ENSO Index (ONI 

during January) was determined for the study area (Fig 7.6). Here, it was found that 

there is a high inverse correlation of heatwave over central India with the ONI index 

during January (ρ=-0.55). This infers that if the ENSO index during January is positive, 

then there is a possibility of heat low over central India during April. In the previous 

step, it was shown that the heat low over central India impacts over heavy rainfall during 

April over the Meghna basin. Therefore, it is proven that the El Niño during January is 

related to heavy rainfall during April over the Meghna basin, which was already shown 

in Fig 7.4 and Fig 7.5. This means that there is a high chance of a flood in April over 

the study area during the El Niño event. 
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Fig 7.6  Correlation between ONI during January and EHF over central India during 

April. 

 

7.3. Impact of global warming on ENSO  

In the previous section, it was identified that the ONI index during January is more 

sensitive to April rainfall for this study area. Therefore, it is imperative to examine the 

response of ENSO (i.e., ONI index) intensity and amplitude to the global warming 

scenario. Hence, the change of intensity and amplitude of ENSO in terms of ONI index 

was studied for all months as well as for January under the warming world using the 

output of 10 GCMs from CMIP5.  The ENSO intensity is defined as the number El 

Niño event (SST anomaly higher than 0.50 C) and La Niña Event (SST anomaly less 

than 0.50 C) for a particular time while the ENSO amplitude is defined as the standard 

deviation of the SST anomaly of that period. The percentage change of ENSO (i.e., 

ONI index) intensity for all month as well as for January and amplitude under RCP4.5 

and RCP8.5 for the period of 2041-2070 and 2071-2100 with respect to the baseline 

(1976-2005) were presented in Fig 7.7, Fig 7.8 and Fig 7.9, respectively. The result 

shows that the intensity of El Niño event increases as the day progresses under extreme 

scenario while it is opposite in the case of  La Niña event (Fig 7.7 and Fig 7.8). 

Therefore, under the warming world, the study area is subjected to more frequent 
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flooding in April since it was found that a positive correlation of flooding in April and 

ENSO. On the other hand, the amplitude of the ENSO index shows a different 

projection in the future under the warming world (Fig 7.9). 

 

Fig 7.7  Relative change of ENSO intensity for all month under warming world with 

respect to the baseline. 

 

 

Fig 7.8  Relative change of ENSO intensity for January under the warming world with 

respect to the baseline. 
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Fig 7.9  Relative change of ENSO amplitude under warming world with respect to the 

baseline. 
 

Some models showed a marked increase in ENSO amplitude, whereas others showed a 

decrease or nearly no change. Several studies have also drawn a similar conclusion 

regarding future scenarios of ENSO amplitude [29,30,49,90,95]. These uncertainties of 

ENSO amplitude are likely due to the biases of GCMs in projecting the mean climatic 

state of the equatorial Pacific and the physical process that control ENSO [2015]. 

 

7.4. Summary 

In this chapter, the relationship between the ENSO index and pre-monsoon rainfall, 

particularly in April over the Meghna basin and how ENSO is likely to be impacted 

under warming world was discussed. The correlation between different ENSO indices 

(such as SOI, ESOI, ONI, and MEI) during December, January, and February to April 

rainfall over the Meghna basin were determined to establish the relationship between 

ENSO index and April rainfall over the Meghna basin. It was found that the correlation 

varies (high to low) from East to West of the study area. Among the different set of 

combinations, the result showed that ONI index during January has the highest 

correlation value (ρ=0.52) with April rainfall and maximum spatial coverage of the 

correlation value for which it is statistically significant (0.32 for the 95 % confidence 

level). The Cherrapunji, the rainfall of which station plays a vital role in flooding of the 

study area, has fallen in the statistically significant area for the ONI index during 

January. Therefore, the ONI index during January was selected as the best-suited index 

among the different indices that were considered for this study area. 



 
 

74 
 

The normalized monthly rainfall anomaly during April of the Cherrapunji against ONI 

index during January was plotted to show how the ENSO influences the early flooding 

(floods in April when the principal crop of the study area is about to harvest) for the 

period 1979 to 2017. The plot showed that in most of the cases, early flooding occurs 

when the ENSO index is positive or even neutral in the NINO 3.4 region over the 

eastern equatorial Pacific. Therefore, we have to more careful about early flooding 

when there is El Niño or even Neutral during January.   

 

A heatwave over central India during the month of April-May- June is one of the 

primary concern for not only central India but also the whole Indian sub-continent. It 

occurs on average every 3 to 4 years and affects different parts of the continent 

differently. In this study, it was found that there is a high correlation (ρ≥0.55) between 

April rainfall over the Meghna basin and heat low over central India during April. The 

mechanism of this relationship is that heatwave creates a low-pressure system 

(Cyclonic) in central India and the high-pressure system (Anticyclonic) in the Bay of 

Bengal. This two-systems trigger the south-westerly moisture flow from the Bay of 

Bengal towards the Meghalaya Mountain region and causes heavy rainfall over the 

Meghna basin. It was also found that this heatwave is again related to the ENSO index 

(the correlation between the ONI index during January and heatwave over central India 

over 0.65). 

 

As it was found that El Niño influences early flooding over the Meghna basin, the 

impact of global warming on ENSO was also studied. The response to ENSO under 

warming world was studied in terms of ENSO frequency (number of ENSO events) as 

well as ENSO amplitude (standard deviation of the SST anomaly).  It was done by using 

the output (monthly SST data) of the latest available GCMs under CMIP5 for RCP4.5 

and RCP8.5 during 2041-2070 and 2071-2100.  The result showed that the intensity of 

El Niño event increases as the day progresses under extreme scenario while it is 

opposite in the case of a La Niña event. However, there is no significant change in 

ENSO amplitude under a warming climate. However, though, the study area is 

subjected to more frequent flooding in April as it found a remarkable increase of El 

Niño event in the future. In the next chapter, a brief discussion of the findings of the 

study and its implication was presented.  
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8. CHAPTER 8 

  DISCUSSIONS AND IMPLICATION OF THE RESULTS  
 

8.1. Introduction 

This study is about to understand how rainfall extremes in northeast Bangladesh may 

change in the future and how this rainfall is connected to large-scale processes like 

ENSO. It was undertaken as part of the broader Norwegian Research Council-funded 

TRACKS project (TRAnsforming Climate Knowledge with and for Society), which 

attempts to ‘co-produce’ an improved understanding of climate variability in northeast 

Bangladesh through active collaboration between scientific and local. In the framing 

phase, the project completed 234 qualitative interviews with people from communities 

in Jamalganj, Sunamganj, Hakaluki haor, and Barlekha, in November 2014; with these 

interviews, helping to identify the weather phenomena that have the most critical impact 

on communities and the information they need to adapt to these phenomena. The 

interviews voiced the communities’ need for information on rainfall, storms and 

associated flooding as a priority, particularly in the pre-monsoon season.  

 

This work covered the assessing the trend of extreme rainfall indices in past using daily 

rainfall data from seven rainfall stations, evaluation of the performance of RCMs in 

CORDEX south domain in simulating the present-day climate of the study area, bias 

correction of RCMS using quantile mapping method, trend analysis of rainfall extreme 

indices for future, projecting the extreme rainfall indices under the warming world 

using BMA approach. This work also covered investigating the teleconnection between 

large-scale process like ENSO and pre-monsoon rainfall and how it is likely to be 

influenced by climate change. 

 

8.2. Implication of the results  

This study found that most of the extremes rainfall indices showed a decreasing trend 

in the past (1984-216) for both seasons with most of them decreased significantly 

during the monsoon. This reduction of monsoon rainfall may be because of more 

significant warming of the Indian Ocean compared to the landmass of Indian sub-

continent. Since 1950, the Indian Ocean is warming rapidly compare to the landmass 

of Indian sub-continent. These results decrease in moisture flow from the Bay of Bengal 
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because of the reduction of land-sea thermal contrast, which decreases the monsoon 

rainfall over the Indian subcontinent [163]. 

 

Most of the extreme indices showed an increasing trend during the pre-monsoon season 

in the future (1941-2070 & 2071-2099) except 2071-2099 for RCP4.5. One of the 

causes of the increasing trend of extreme rainfall in the future during the pre-monsoon 

may be the increase of heat low over central India adjacent to the western border of 

Bangladesh because of global warming. This will result in more moisture flow toward 

the Meghalaya mountain region in India and causes in more extreme rainfall event in 

northeast Bangladesh.  Another cause can be explained by the Clausius–Clapeyron (C-

C) relationship. The atmospheric moisture-holding capacity is likely to increase with 

surface temperature through the C-C equation [144]. Several studies [5,12,31,166,177] 

also argued that this increase of rainfall might be attributed to the increase of low level 

(850 hPa) moisture content resulting from increased temperature due to global 

warming. 

 

The future, the extreme indices are expected to decrease in most cases similar to the 

historical trend during monsoon season. Several studies suggest that due to global 

warming under the increasing greenhouse, the temperature of the landmass of the 

subcontinent will increase slowly compared to the Indian Ocean, which will reduce the 

land-sea thermal gradient over the Indian subcontinent [166]. Therefore, extreme 

indices showed a decreasing trend during the monsoon under almost all emission 

scenarios. However, compared to baseline (1976-2005), the seasonal rainfall together 

with other extreme indices are expected to increase in the future (1941-2070 & 2071-

2099) expect a decrease of CDD during both the pre-monsoon and monsoon season. 

Though, the increasing rate of extreme indices is more significant in the pre-monsoon 

season than monsoon season. 

 

In this study, it was found that the pre-monsoon rainfall, particularly in April, is 

significantly influenced by the ONI index during January and in most of the cases, 

floods in April occur during the El Niño event or even Neutral event during January. It 

was also found that there is a high correlation (ρ≥0.55) between April rainfall over the 

Meghna basin and heat low over central India during April. This heatwave is again 

related to the El Niño event during January.  The intensity of El Niño events is likely 

to increase because of climate change.  
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These findings of the study show that the pre-monsoon season may witness the most 

significant changes in rainfall extremes in northeast Bangladesh. Seasonal rainfall 

together with other extreme indices likely to increase, causing the occurrence of the 

more frequent high magnitude of flash floods putting the harvest of Boro rice, 

infrastructure, fisheries, livelihood together with bio-diversity and ecological balance 

at risk. This situation may intensify further as the century progresses.  
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9. CHAPTER 9 

  CONCLUSIONS AND RECOMMENDATIONS 
 

9.1. Conclusions  

This study is about to understand how rainfall extremes in northeast Bangladesh may 

change in the future and how this rainfall is connected to large-scale processes like 

ENSO. The key findings that can be drawn based on the research described in this thesis 

are as follows: 

 

 Among the seven stations, only Sunamganj was found inhomogeneous and was 

not considered for trend analysis. All indices of rainfall extremes showed a 

decreasing trend in both seasons, with the most significant decrease during the 

monsoon. Importantly, it was found that a decreasing trend in the seasonal total 

rainfall and consecutive wet days, whereas there was an increasing trend in 

consecutive dry days. A decreasing trend in one-day maximum rainfall, five-

day maximum rainfall, the intensity of the daily rainfall over 25 mm during the 

pre-monsoon and 50 mm was observed during the monsoon. 

 

 RCMs underestimate in simulating present-day average rainfall of the study 

area during pre-monsoon as well as the monsoon season. However, the 

normalized bias and RMSE were higher for the monsoon than pre-monsoon. 

 

 The RCMs underestimated the low-intensity rainfall and overestimated the 

high-intensity rainfall during pre-monsoon while they always underestimated 

the observed rainfall during the monsoon.  

 

 The BMA weight showed that there was no single model that was best or worst 

in simulating rainfall variations over northeast Bangladesh. However, the BMA 

produced more reliable results compared to AEM as it has the lowest NRMSE 

for all six individual models. 

 

 The result of the trend analysis showed that most of the extreme indices 

exhibited an increasing trend for the scenario period, except far future (2071-

2099) for RCP4.5 while it showed a decreasing trend for the baseline period 

(1976-2005) during pre-monsoon season. The trend of the extreme indices 
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decreased in most of the cases which are similar to the historical trend during 

the monsoon season. 

 

 The seasonal rainfall, together with other extreme indices, is expected to 

increase both in pre-monsoon and monsoon season, expect a decrease of CDD 

during pre-monsoon with respect to the baseline period. However, the 

increasing rate of extreme indices is generally more significant in pre-monsoon 

season than monsoon season. 

 

 The average pre-monsoon rainfall of the study area is projected to increase by 

12.93% in the near future (2041-2070) and 18.42% in the far future (2071-2099) 

under RCP4.5.  Under the RC8.5, it is projected to increase by 18.18% in the 

near future and 23.85% in the far future. During the monsoon, it is projected to 

increase by 4.96% in the near future and 2.27% in the far future under the 

RCP4.5 while 6.56% in the near future and 6.40% in the far future under the 

RCP8.5.   

 

 All extreme indices related to the occurrence of the flash flood (e.g., PRCPTOT, 

RX1, SDII, R95p, R99p) is expected to increase. This situation is projected to 

be more intense in 2071-2099  than in 2041-2070.  

 

 These results indicate that the pre-monsoon season, in particular, may witness 

the most significant changes in rainfall in northeast Bangladesh. Seasonal 

rainfall together with other extreme indices expected to increase, causing the 

occurrence of the more frequent high magnitude of flash floods putting the 

harvest of Boro rice, as well as infrastructure and lives at risk. This situation 

may intensify further as the century progresses. 

 

 The correlation between different ENSO indices (such as SOI, ESOI, ONI, and 

MEI) during December, January, and February with April rainfall over the 

Meghna basin showed that it varies (from high to low) from East to West of the 

study area.  

 

 Among the different set of combinations, the ONI index during January has the 

highest correlation value (ρ=0.52) and maximum spatial coverage of the 
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correlation value for which it is statistically significant (ρ=0.32 for the 95% 

confidence level) with April rainfall.  

 

 This study found that in most of the cases, early flooding occurs when the ONI 

index during January is positive or even neutral in the NINO 3.4 region over the 

eastern equatorial Pacific. Therefore, we have to be more careful about early 

flooding when there is El Niño or even Neutral during January. 

 

 In this study, it was found that there is a high correlation (ρ≥0.55) between April 

rainfall over the Meghna basin and heat low over central India during April. 

 

  The mechanism of this relationship is that heatwave creates a low-pressure 

system (Cyclonic) in central India and the high-pressure system (Anticyclonic) 

in the Bay of Bengal. This two-system triggers the south-westerly moisture flow 

from the Bay of Bengal towards the Meghalaya Mountain region and causes 

heavy rainfall over the Meghna basin. It was also found that this heatwave is 

again related to the ENSO index (the correlation between the ONI index during 

January and heatwave over central India is over 0.65). 

 

 It was observed that the intensity of El Niño event is expected to increases as 

the day progresses under extreme scenario while it is opposite for the case of La 

Niña event. However, there is no significant change of ENSO amplitude under 

a warming climate. However, though, the study area is subjected to more 

frequent flooding in April as it was shown a remarkable increase of El Niño 

event in the future. 

 

9.2. Limitations of the study 

 The major limitation of this study was the lack of availability of observed 

rainfall data over the catchment areas of the Meghna basin located inside India. 

 Lack of continuous observed daily rainfall data from BMD and BWDB limits 

the study. 

 Challenges exist in comparing grid-based climate model data with a point-based 

observed data. 
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 The prediction of climate change has uncertainties arises from the social and 

economic aspects as well as earth system modeling. Therefore, the results of 

this study would also contain uncertainty.  

 Application of the bias correction method is another limitation of this study 

since there are many debates among the scientific community regarding better 

bias correction method. 

 

9.3. Recommendations  

 Impact of climate change on rainfall extremes was performed in the downstream 

part of the Meghna basin using observed rainfall data from Bangladesh part 

only. Therefore, further studies are needed to perform over the whole Meghna 

basin incorporating the observed rainfall data from India for the upstream part 

of the basin.  

 
 In this study, the impact of climate change on rainfall extremes due to 

anthropogenic causes was studied. However, more research is needed to 

investigate the combined effects of anthropogenic influences and the variability 

of the climate system especially, regarding changes in rainfall extremes. 

 

  In this case, as the rainfall extremes are likely to increase in future, it is 

necessary to examine the impact of changes of rainfall extremes on water 

resources and the extent of the flood at various urban and rural catchments of 

the study area. This study will provide some insights into the rainfall-runoff 

relationship and for a better understanding of its implication on different 

catchments. 

 

 In this study, RCMs under CMIP5 was used, which are much more improved 

from GCMs under CMIP3.  However, there exists a considerable bias and 

uncertainty in RCMs under CMIP5. Therefore, further studies are needed using 

the upcoming regional climate model under CMIP6. 

 
 Based on the result of this study, a detailed study of policy guidelines and 

adaptation strategies is recommended in future studies.  
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APPENDICES 
 

Appendix A: Theory 

 

A.1 Standard Normal Homogeneity Test 

The SNHT is sensitive in detecting the breaks near the beginning and the end of the 

series, and it assumes testing variables is normally distributed. In this test, a statistic 

T(y) is used to compare the mean of the first 𝑦  years with the last of (n-y) years and 

can be written as below: 

𝑇𝑦 = 𝑦𝑧1̅
2 + (𝑛 − 𝑦)𝑧2̅

2
, y =1,2,…,n                                                                 (1) 

Where, 𝑧1̅ =
1

𝑦
∑

(𝑌𝑖−𝑌)̅̅ ̅

𝑠

𝑛
𝑖=1  and 𝑧2̅ =

1

𝑛−𝑦
∑

(𝑌𝑖−𝑌)̅̅ ̅

𝑠

𝑛
𝑖=𝑦+1                                               (2) 

Where 𝑌𝑖 is the 𝑖𝑡ℎobservation, �̅� is the mean of the observations and 𝑠 is the standard 

deviation. The year 𝑦 consisted of a break if the value of  T is maximum. To reject the 

null hypothesis, the test statistic, 𝑇0 needs to be greater than the critical value, which is 

defined by [89]. 

𝑇0 = 𝑚𝑎𝑥⏟
1≤𝑦≤𝑛

𝑇𝑦                                                                                                                       (3) 

 

A.2 Pettit Test 

The Pettit test (Pettit 1979) is sensitive in detecting the breaks in the middle of the 

series, and it is a non-parametric rank test. This test is based on ranked data and ignore 

the normality of the series.  The test statistic 𝑃𝑦 is computed by the following equation. 

𝑃𝑦 = 2∑ 𝑟𝑖 − 𝑦(𝑛 + 1)
𝑛
𝑖=0                                                                            (4) 

 

Where 𝑟𝑖 is the rank of the 𝑖𝑡ℎ observation arranged in ascending order and y= 1, 2… 

n. The break occurs where in year K when 

𝑃𝑘 = 𝑚𝑎𝑥 ⏟  
1≤𝑦≤𝑛

|𝑃𝑦|                                                                                     (5) 

The value is then compared with the critical value by Pettit (1979). 
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A.3 Auto Correlation with One Day Lag 

Let the time series of length n be 𝑌𝑖 , 𝑖 = 1, … , 𝑛,. The lagged scatter plot for lag 1 is a 

scatter plot of the last observations against the first n-1 observations. The observations 

𝑌2,, 𝑌3, … . , 𝑌𝑛  are plotted against observations𝑌1,, 𝑌2, … . , 𝑌𝑛−1. The correlation co-

efficient is then given by 

𝑟 =
∑ (𝑦𝑛−�̅�(1))(𝑦𝑛+1−�̅�(2)
𝑛−1
𝑛=1

[∑ (𝑦𝑛−�̅�(1))
2𝑛−1

𝑛=1 ]
1
2⁄ [∑ (𝑦𝑛−�̅�(2))

2𝑛
𝑛=2 ]

1 2⁄                                                    (6) 

Where, �̅�(1)is the mean of the first 𝑛 − 1observations and �̅�(2) is the mean of the last 

𝑛 − 1observations. At 95% confidence level, the sample is a random event if  𝑟 is within 

the band of 
−1±1.96√𝑁−2

𝑁−1
. Where, 𝑁 is the sample size. 

 

A.4 Mann–Kendall Trend Test 

The Mann Kendall test is performed in an ordered time series. Each data are compared 

to all succeeding data. Initially, the value of S is anticipated to 0. If a latter data point 

is higher than an earlier data point, S is increased by 1. On the contrary, a latter data 

point is lesser than an earlier data point, S is decreased by 1. The net result of all such 

increments and decrements yields the final value of S.  

If 𝑌1, 𝑌2, 𝑌3, … . , 𝑌𝑛 represent 𝑛 data points then 𝑆 is given by 

 

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑌𝑗 − 𝑌𝑘)
𝑛
𝑗=𝑘+1

𝑛−1
𝐾=1                                                             (7) 

 

Where, 𝑌𝑗 and  𝑌𝑘 represents the data point at time 𝑗 𝑎𝑛𝑑 𝑘, 𝑗 > 𝑘  and  

 

𝑠𝑖𝑔𝑛(𝑌𝑗 − 𝑌𝑘) = {

1  𝑖𝑓(𝑌𝑗 − 𝑌𝑘) > 0

0  𝑖𝑓(𝑌𝑗 − 𝑌𝑘) = 0

−1  𝑖𝑓(𝑌𝑗 − 𝑌𝑘) < 0

                                               (8) 

 

The probability, associated with S and the sample size, n is then computed to quantify 

the significance of the trend statistically. If sample size, 𝑛 < 10, the value of |𝑆| is 

compared directly to the theoretical distribution of S derived by Mann and Kendall. If 

|𝑆| ≥ 𝑆𝛼/2  , where 𝑆𝛼/2 is the smallest S which has the probability less than α/2, the 

null hypothesis H0 is rejected in favor of H1 at a certain probability. A positive value of 

S indicates an upward trend, and a negative value of S indicates a downward trend.  
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If sample size, 𝑛 ≥ 10, the statistic S is approximately normally distributed with the 

mean and variance as follows. 

 

𝐸(𝑆) = 0                                                                                       (9) 

𝑉𝑎𝑟(𝑠) = [𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡(𝑡 − 1)(2𝑡 + 5)𝑡 ]/18                  (10) 

 

Where 𝑡 refers to the extent of any given tie and Σ𝑡 state the summation over all tie. 

The Normalized test statistic Z is computed as follows: 

 

𝑍 =

{
 
 

 
 

𝑆−1

√𝑉𝐴𝑅(𝑆)
 𝑖𝑓 𝑆 > 0

0 𝑖𝑓 𝑆 = 0
𝑆+1

√𝑉𝐴𝑅(𝑆)
 𝑖𝑓 𝑆 < 0

                                                                             (11) 

 

Therefore, in case |𝑍| ≤ 𝑍1−𝛼/2in a two-sided test for trend, the null hypothesis 𝐻0 

should be accepted at the level of significance. A positive value of S indicates an 

upward trend, and the negative value of S indicates a downward trend. 

 
A.5 Sen's Slope Estimator 

In the case of linear trend analysis, the Sen’s Slope method (Sen, 1968) is applied to 

estimate the magnitude of the trend. A time series of equally spaced data is required for 

this method and is not affected by missing values or gap in data. The slope estimates Q 

of N pairs of data are calculated as  

 

𝑄 =
𝑌𝑗−𝑌𝑘

𝑗−𝑘
                                                                                                          (12) 

 

Where 𝑄 is the slope between data points 𝑌𝑗 and𝑌𝑘, 

 

If there are 𝑛 values 𝑌𝑗 in the time series, then there will be as many as 𝑁 = 𝑛(𝑛 − 1)/2 

slope estimates 𝑄𝑖, The Sen’s estimator of the slope is the median of these 𝑁 values of 

𝑄𝑖. The N values of 𝑄𝑖 are ranked from the smallest to the largest, and the Sen’s 

estimator is 
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𝑄 = 𝑄[(𝑁+1)/2] , 𝑖𝑓 𝑁 𝑖𝑠 𝑜𝑑𝑑                                                                              (13) 

𝑄 =
1

2
(𝑄
[
𝑁

2
]
+ 𝑄

[
𝑁+2

2
]
) , 𝑖𝑓 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛                                                                   (14) 

 

A6. Bias and RMSE 

The bias and RMSE were calculated over average pre-monsoon and monsoon rainfall 

over the period of 1976-2005 which are given below. 

 

 

Bias=  



N

t

totm PP
N 1

,,

1
                                                                                               (15) 

RMSE=   











N

t

totm PP
N 1

2

,,

1
                                                                   (16) 

 

Where, toP ,   and tmP ,  is the observed and RCM rainfall, respectively at a time t  for a 

particular grid point. The bias and the RMSE were normalized by the mean and standard 

deviation of the observed data, respectively.  

 

A.7 Quantile Mapping Bias Correction 

A brief procedure of the quantile mapping bias correction is as follows: 

Step 1: In order to adjust the wet-day frequency of RCM simulated rainfall according 

to observed rainfall, a cut-off threshold corresponding to the wet day (≥1mm) is 

selected before applying quantile mapping method.   

Step 2: The gamma Cumulative Distribution Function (CDF) of the observed and RCM 

reference rainfall is determined for each month separately. 

Step 3:  The CDF of RCM reference simulation is mapped with CDF of observations 

for generating the transfer function. The schematic representation is presented in Fig 

A.1. 
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Fig  A-1  A schematic representation of quantile mapping bias-correction approach. A 

transfer function is used to correct rainfall intensity for RCMs simulation during the 

reference and scenario period. 

 

Step 4: Then, this correction function is finally used to correct the RCM scenario period. 

The equation of the transfer function can be expressed as: 

 

𝑃𝑟𝑒𝑓  
∗ (𝑑) = 𝐹𝛾

−1(𝐹𝛾(𝑃𝑟𝑒𝑓(𝑑)|𝛼𝑟𝑒𝑓,𝑚,𝛽𝑟𝑒𝑓,𝑚)|𝛼𝑜𝑏𝑠,𝑚,𝛽𝑜𝑏𝑠,𝑚)                                       (17) 

𝑃𝑠𝑐𝑒𝑛  
∗ (𝑑) = 𝐹𝛾

−1(𝐹𝛾(𝑃𝑠𝑐𝑒𝑛(𝑑)|𝛼𝑟𝑒𝑓,𝑚,𝛽𝑟𝑒𝑓,𝑚)|𝛼𝑜𝑏𝑠,𝑚,𝛽𝑜𝑏𝑠,𝑚)                                  (18) 

 

where, 𝑃𝑟𝑒𝑓(𝑑) = raw daily rainfall for reference simulation, 

𝑃𝑠𝑐𝑒𝑛(𝑑) = Raw daily rainfall for scenario simulation, 

 𝑃𝑟𝑒𝑓
∗ (𝑑) = Bias corrected daily rainfall for reference simulation, 

 𝑃𝑠𝑐𝑒𝑛
∗ (𝑑) = Bias corrected daily rainfall for scenario simulation, 

 𝐹𝛾
−1  = Transfer function for gamma distribution, 

𝛼𝑜𝑏𝑠,𝑚 = Shape parameter of gamma distribution for observed data of month m 

𝛼𝑟𝑒𝑓,𝑚 = Shape parameter of gamma distribution for the reference period of month m 

𝛽𝑜𝑏𝑠,𝑚 = Scale parameter of gamma distribution for observed data of month m 

𝛽𝑟𝑒𝑓,𝑚 = Scale parameter of gamma distribution for the reference period of month m 

 

A.8 Bayesian Model Averaging (BMA) 

Bayesian Model Averaging (BMA) produces a complete PDF of the ensemble mean 

and quantifies the associated uncertainty of forecasts.  In this approach, the predictive 

Probability Density Function (PDF) of the ensemble mean is the weighted average of 

the conditional PDF of an individual model, where the weights are posterior 
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probabilities of the models generating the forecasts and reflect the relative contributions 

of each individual model to the overall predictive skill. [69] comprehensively described 

the BMA theory, and Raftery et al., (2005) extended it for statistical post-processing of 

forecast ensembles. Given the training data 𝑌𝑇 and 𝑘 climate models (𝑀1… .𝑀𝑘), the 

forecast PDF of a variable 𝑌 is given by: 

 

𝑃(𝑌ǀ𝑌1, 𝑌2, … . . 𝑌𝑘) = ∑ 𝑃(𝑌ǀ𝑀𝑘)𝑃(𝑀𝑘ǀ𝑌
𝑇)𝑘

𝑘=1                                                          (19) 

 

where 𝑃(𝑌ǀ𝑀𝑘) is the conditional PDF of 𝑌 on 𝑀𝑘, given that 𝑀𝑘  is the best forecast 

in the ensemble and 𝑃(𝑀𝑘ǀ𝑌
𝑇)  is the posterior probability of model 𝑀𝑘  being the best 

one given the training data. The posterior model probabilities reflect how the model 𝑀𝑘  

performs to fit the training data and can be viewed as weights which are non-negative 

and added up to one, so that  ∑ 𝑤𝑘
𝑘
𝑘=1 = ∑ 𝑃(𝑀𝑘ǀ𝑌

𝑇)𝑘
𝑘=1 = 1. Thus equation (19) can 

be written as: 

 

   𝑃(𝑌ǀ𝑌1, 𝑌2, … . . 𝑌𝑘) = ∑ 𝑤𝑘𝑃(𝑌ǀ𝑀𝑘)
𝑘
𝑘=1                                                                 (20) 

 

The BMA method assumes that the conditional PDF, 𝑃(𝑌ǀ𝑀𝑘) of the individual model 

can be approximated by the normal distribution with mean 𝑎𝑘 + 𝑏𝑘 𝑀𝑘 and standard 

deviation 𝜎𝑘 which is given by:  

 

𝑃(𝑌ǀ𝑀𝑘) ~𝑁(𝑎𝑘 + 𝑏𝑘 𝑀𝑘,𝜎𝑘
2)                                                                                  (21)  

                                                                   

The values for 𝑎𝑘 and  𝑏𝑘 are estimated by simple linear regression of 𝑃(𝑌ǀ𝑀𝑘) on 𝑀𝑘 

for each model. Using the Kolmogorov–Smirnov test and graphical techniques 

(histograms and density estimate), it was found that the gamma distribution best fits the 

monthly rainfall data for the study area.  This is the case for both pre-monsoon and 

monsoon seasons.  Therefore, we considered the gamma distribution and modified the 

conditional PDF in equation 19. The conditional PDF for the gamma distribution with 

shape parameter α and scale parameter β can be given by: 

 

𝑃(𝑌ǀ𝑀𝐾) ~
1

𝛽Г(𝛼)
𝑌𝛼−1exp (−𝑌 𝛽⁄ )                                                                       (22) 
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for 𝑌 > 0.   𝑃(𝑌ǀ𝑀𝐾) = 0 for 𝑌 ≤ 0.  The mean of this distribution is 𝜇 = 𝛼𝛽 and its 

variance is 𝜎2 = 𝛼𝛽2. The parameters, 𝛼𝑘 = 𝜇𝑘
2/𝜎𝑘

2 and 𝛽𝑘 = 𝜎𝑘
2/𝜇𝑘 of the gamma 

distribution for the actual forecast, 𝑌𝑘 of a particular ensemble member can be derived 

from the following relationship: 

 

𝜇𝑘 = 𝑌�̅�                                                                                                                  (23) 

   and  

𝜎𝑘
2 = 𝑐0𝑌𝑘 + 𝑐1                                                                                                       (24) 

 

where, 𝑐0 and 𝑐1 are the coefficients of regression. 

Thus BMA multi-model ensemble mean is a conditional expectation which is defined 

as:  

 

�̅� = 𝐸⌈𝑌ǀ𝑀1,……𝑀𝑘⌉                                                                                              (25) 

 

The values of  𝑤𝑘 , 𝜎𝑘,  𝑐0  and 𝑐1 are estimated by the maximum likelihood function 

(ML) from simulated data set for the training period. The log-likelihood function, ℒ  for 

the BMA multi-model ensemble mean in equation (25) can be given as: 

 

ℒ (𝑤1, … . , 𝑤𝑘, 𝜎
2|𝑀1, …𝑀𝑘, 𝑃(𝑌ǀ𝑀𝐾)) = ∑ log (∑ 𝑤𝑘 𝑃(𝑌𝑛ǀ𝑀𝑘𝑛)

𝑘
𝑘=1 )𝑁

𝑛=1                 (26) 

 

where 𝑁 is the total number of measurement in the training dataset.  

 

To derive the ML estimation of model parameters, a common approach is to use an 

expectation-maximization algorithm [36, 37]. Given an initial set of the model 

parameters, the expectation-maximization algorithm will converge quickly to a fixed 

set of parameter estimation after a few iterations. However, there are some inherent 

limitations of expectation-maximization: (i) it provides a local optimal solution instead 

of the global convergence, (ii) it does not yield the uncertainty associated with final 

BMA weights and the variance [203]. To overcome this limitation of the expectation-

maximization approach, the ML function was optimized using the Differential 

Evolution Adaptive Metropolis Markov Chain Monte Carlo algorithm for estimating 

the BMA weights and variance [200,201,203]. The DREAM scheme is adapted from 

the Shuffled Complex Evolution Metropolis global optimization algorithm and is 
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capable of running multiple chains simultaneously for searching the global optimal 

solution [203]. 

 

A.9 Excessive Heat Factor (EHF) 

The Excess Heat Factor (EHF) is the joined effect of Excess Heat Index and Heat Stress. 

It provides a comparative measure of frequency, duration, and spatial distribution of a 

heatwave event. Positive values of EHF signifies the heatwave condition. 

The Excess Heat Index is defined as, 

 

𝐸𝐻𝐼𝑠𝑖𝑔 = 
(𝑇𝑖 + 𝑇𝑖−1+ 𝑇𝑖−2)

3
− 𝑇95                                                                     (27) 

 

Where 𝑇95 is the 95𝑡ℎ percentile of DMT (𝑇𝑖) for the climate reference period of 1979-

2017. The daily mean temperature was calculated by averaging the daily maximum and 

daily minimum temperatures which are defined as, 

 

𝑇 = ( 𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)/2                                                                               (28) 

 

The heat stress results when the temperature is warmer than the recent past average 

temperature for a certain period of time. It is characterized by comparing the current 

three days average daily mean temperature with previous 30 days daily mean 

temperature. It is also expressed as short-term (acclimatization) temperature anomaly. 

Therefore, the heat stress is defined as, 

 

𝐸𝐻𝐼𝑎𝑐𝑐𝑙 = 
𝑇𝑖+ 𝑇𝑖−1+ 𝑇𝑖−2

3
− ( 𝑇3 + …….   +  𝑇𝑡−32)/30                             (29) 

 

Where 𝑇𝑖 is the DMT on day 𝑖. In effect,  𝐸𝐻𝐼𝑎𝑐𝑐𝑙 is an anomaly of three-day DMT with 

respect to the previous 30 days. 

Therefore, the Excess Heat Factor (EHF) is defined as, 

 

𝐸𝐻𝐹 =  𝐸𝐻𝐼𝑠𝑖𝑔  × max (1, 𝐸𝐻𝐼𝑎𝑐𝑐𝑙)                                                            (30) 
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Appendix B: Supplementary Figures 

 

 

 

Fig  B.1 (a) Trend line of annual rainfall (mm) of Sunamganj before and after change 

point (2005). (b) Comparison of the de-trending annual rainfall of Sunamganj with 

Sylhet. 
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Fig  B.2 Quantile-quantile plots for the uncorrected of simulated daily rainfall by 

RCMs against observed daily rainfall for all stations during Pre-monsoon. 
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Fig  B.3 Quantile-quantile plots for the uncorrected of simulated daily rainfall by 

RCMs against observed daily rainfall for all stations during monsoon. 
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Fig  B.4 Quantile-quantile plots for the uncorrected (colored marker) and corrected 

(black marker) of simulated daily rainfall by RCMs against observed daily rainfall for 

all stations during pre-monsoon. 
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Fig B.5 Quantile-quantile plots for the uncorrected (colored marker) and corrected 

(black marker) of simulated daily rainfall by RCMs against observed daily rainfall for 

all stations during monsoon. 
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Fig B.6 Marginal posterior pdfs of the DREAM derived BMA weights of monthly 

rainfall totals for pre-monsoon of Sunamganj station. 

 

 

Fig B.7 Marginal posterior pdfs of the DREAM derived BMA weights of monthly 

rainfall totals for the monsoon of Sunamganj station. 
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Fig B.8 Marginal posterior pdfs of the DREAM derived BMA weights of monthly 

rainfall totals for pre-monsoon of Netrokona station. 

 

 

 

Fig B.9 Marginal posterior pdfs of the DREAM derived BMA weights of monthly 

rainfall totals for the monsoon of Netrokona station. 
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Fig B.10 Marginal posterior pdfs of the DREAM derived BMA weights of monthly 

rainfall totals for pre-monsoon of Moulvibazar station. 

 

 

 

Fig B.11 Marginal posterior pdfs of the DREAM derived BMA weights of monthly 

rainfall totals for the monsoon of Moulvibazar station. 
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Fig B.12 Marginal posterior pdfs of the DREAM derived BMA weights of monthly 

rainfall totals for pre-monsoon of Habiganj station. 

 

 

Fig B.13 Marginal posterior pdfs of the DREAM derived BMA weights of monthly 

rainfall totals for the monsoon of Habiganj station. 
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Fig B.14 Marginal posterior pdfs of the DREAM derived BMA weights of monthly 

rainfall totals for pre-monsoon of Bhairab Bazar station. 

 

 

Fig B.15 Marginal posterior pdfs of the DREAM derived BMA weights of monthly 

rainfall totals for the monsoon of Bhairab Bazar station. 
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Fig B.16 Box and whisker plots for changes of rainfall extremes of  Sunamganj 

station considering all RCMs  for two future time slices (2041-2070 and 2071-2099) 

relative to the baseline period (1976-2005) under RCP 4.5 and RCP 8.5 scenarios: (a) 

Pre-monsoon and (b) Monsoon. 
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Fig B.17 Box and whisker plots for changes of rainfall extremes of  Netrokona station 

considering all RCMs  for two future time slices (2041-2070 and 2071-2099) relative 

to the baseline period (1976-2005) under RCP 4.5 and RCP 8.5 scenarios: (a) Pre-

monsoon and (b) Monsoon. 
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Fig B.18 Box and whisker plots for changes of rainfall extremes of  Moulvibazar 

station considering all RCMs  for two future time slices (2041-2070 and 2071-2099) 

relative to the baseline period (1976-2005) under RCP 4.5 and RCP 8.5 scenarios: (a) 

Pre-monsoon and (b) Monsoon. 
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Fig B.19 Box and whisker plots for changes of rainfall extremes of  Habiganj station 

considering all RCMs  for two future time slices (2041-2070 and 2071-2099) relative 

to the baseline period (1976-2005) under RCP 4.5 and RCP 8.5 scenarios: (a) Pre-

monsoon and (b) Monsoon. 
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Fig B.20 Box and whisker plots for changes of rainfall extremes of  Bhairabbazar 

station considering all RCMs  for two future time slices (2041-2070 and 2071-2099) 

relative to the baseline period (1976-2005) under RCP 4.5 and RCP 8.5 scenarios: (a) 

Pre-monsoon and (b) Monsoon. 
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