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ABSTRACT

Northeast Bangladesh is located in the Meghna basin. The local community of northeast
Bangladesh is very much concerned about the flash flood as it damages the Boro rice
during the pre-monsoon season. Hence, long-term or seasonal flood prediction is
essential for many management decisions in agriculture and food security, water and
disaster risk reduction. El Nifio—Southern Oscillation (ENSO) can be significant
concerning seasonal flood prediction. They are also apprehensive about the impact of
climate change on the long-term rainfall pattern, which could influence the hydro-
climatic extremes like floods, droughts, and other extreme events. Therefore, this study
focused on determining the changes of future rainfall extremes under the warming
world and to find out if there exist any teleconnections between the pre-monsoon

rainfall and large scale process e.g., ENSO.

The trends of extreme rainfall indices over northeast Bangladesh during the pre-
monsoon and monsoon seasons were analyzed for the period 1984-2016. With access
to the highest number of available rainfall stations in northeast Bangladesh, the trends
of extreme rainfall events were investigated using the Mann-Kendall trend test and
Sen’s slope estimator. The Standard Normal Homogeneity and the Pettitt tests were
used in appraising the quality of the data. Among seven stations, the rainfall of
Sunamgan; station was found inhomogeneous and was not considered for trend
analysis. Most of the rainfall extremes indices showed a decreasing trend during the
pre-monsoon as well as monsoon season, with the most significant reduction during the
monsoon season. The total seasonal rainfall and consecutive wet days showed a
decreasing trend in both seasons. The consecutive dry days (CDD) showed an
increasing trend in the monsoon season only. Moreover, a decreasing trend was
observed in one-day maximum rainfall (RX1), five-day maximum rainfall (RX5), the
intensity of the daily rainfall over 25 mm (R25) during the pre-monsoon and 50 mm

(R50) during the monsoon.

The future trend and changes in rainfall extremes for northeast Bangladesh were
examined for the periods of 2041-2070 and 2071-2099. Six regional climate models
(RCMs) over the coordinated regional downscaling experiment (CORDEX) South Asia

domain considering two representative concentration pathways (RCPs), namely
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RCP4.5 and RCP8.5, were used for this purpose. The multi-model ensemble mean of
the extreme rainfall indices was generated using the Bayesian model averaging (BMA)
approach. The BMA mean is a weighted average related to each RCM’s predictive skill

during the training period.

Most of the extreme indices showed an increasing trend during the pre-monsoon season
for all future time slices except 2071-2099 for RCP4.5, while they showed a decreasing
trend for the baseline period (1976-2005) for the same season. Most of the extreme
indices showed a decreasing trend during the monsoon season for all future time slices,

which is similar to the baseline period.

The seasonal rainfall, together with other extreme indices, is expected to increase in the
future relative to the baseline period, except for a decrease of CDD during both pre-
monsoon and the monsoon season. The average pre-monsoon rainfall of the study area
is projected to increase by 12.93% and 18.42% under RCP4.5 for the period 2041-2070
and 2071-2099, respectively. The increase of the pre-monsoon rainfall for those
periods will be 18.18%, and 23.85%, respectively under RCP8.5. The average monsoon
rainfall of the study area is projected to increase by 4.96% and 2.27% under the RCP4.5
for the period 2041-2070 and 2071-2099, respectively. These increases in monsoon
rainfall for that period will be 6.56% and 6.40%, respectively for RCP8.5. It was also
noted that all the extreme indices except consecutive wet days (CWD) are expected to
increase significantly at the 95% confidence level during the pre-monsoon season.
Therefore, the study area is expected to experience more frequent floods in the future
in both the pre-monsoon and monsoon seasons as a consequence of climate change. In
particular, the intensity and the magnitude of the flash flood in the pre-monsoon are
expected to increase in the future as the extreme indices are likely to increase

significantly in the pre-monsoon season.

The present study also examined the relationship between El Nifio Southern Oscillation
(ENSO) and pre-monsoon rainfall, particularly in April over the Meghna basin and its
response under the warming world. Firstly, the relationship between April rainfall over
the Meghna basin and the heat low over central India during April was determined. The
heatwave creates a low-pressure system (Cyclonic) in central India and the high-
pressure system (Anticyclonic) in the Bay of Bengal. These two-systems trigger the

south-westerly moisture flow from the Bay of Bengal towards the Meghalaya Mountain
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region and cause heavy rainfall over the Meghna basin. The result showed that there is
a high inverse correlation (p> 0.55) between April rainfall over the Meghna basin and
heat low over central India during April. Considering these findings, the relationship of
different ENSO indices (e.g., ESOI, SOI, ONI, MEI) for several months (e.g., January,
February, and March) with April rainfall was determined. It was found that the Oceanic
Nifio Index (ONI) during January has the highest correlation value (p=0.52) and the
maximum spatial coverage of the correlation value for which it is statistically
significant (p=0.32 at the 95% confidence level) with April rainfall. It was also found
that in most of the cases, floods in April occurred either during El Nifio events or even
neutral events but not during the La-Nina events during January. Finally, the
relationship between ONI index during January and the heat low over central India
during April was determined and found that there is a high inverse correlation of
heatwave over central India in April with ONI index during January (p=-0.55). This
infers that if the ENSO index during January is positive, there is a possibility of heat
low over central India during April. On the other hand, it was shown that the heat low
over central India has an impact over heavy rainfall during April over the Meghna basin.
Therefore, it can be stated that the El Nifio during January is related to heavy rain during

April over the Meghna basin.

As ENSO would impact flash floods over the Meghna basin, how ENSO would be
influenced under the warming world was also studied. The result showed that the
intensity of El Nifio event increases with global warming under extreme scenario while
it is opposite in the case of a La Nifia event. However, there is no significant change in
ENSO amplitude under the warming climate. Hence, Northeast Bangladesh would
experience more frequent flooding in April as the El Niflo event is expected to increase

remarkably in the future.
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CHAPTER 1
INTRODUCTION

1.1. Background

Climate change is a significant concern and should be considered as one of the most
critical environmental issues faced in the world today [78]. Anthropogenic and natural
factors contribute to variations in climate. Combustion of fossil fuels and land-use
change are the primary anthropogenic activities responsible for changes in atmospheric
concentrations of greenhouse gases (GHGs) and the energy balance in the climate
system. On the other hand, the natural factor such as El Nino-Southern Oscillation
(ENSO), volcanic eruptions, and variation of solar radiation as well as the orbital

change of the earth also contribute to climate change [78].

Greenhouse gases such as carbon dioxide (CO»,) methane (CH4) and nitrous oxide
(N20) have increased in the atmosphere in significant quantities during recent centuries
[77,112,207]. Therefore, the average atmospheric temperature and sea levels have been
rising since the 19th century. Several observations have confirmed the increase in ocean
surface temperature; shrinkage of polar ice; the development of polar glaciers and

icebergs since the 1950s [181,196].

Global climate change is arguably changing rainfall patterns in different regions of the
world, with far-reaching environmental, social, and economic impacts for the local
communities. One of the notable change can be to the frequency and severity of the
extreme rainfall events, which can exacerbate the risks of climate-related damages in a
region. As rainfall patterns are specific to different regions, any changes in rainfall
brought by the global climatic change will be similarly specific [198]. For this reason,
communities need high-quality scientific information on historical trend and future
trend in rainfall extremes. They can use this information for adapting to changes in the

rainfall relative to both current climate variability and future climatic change [131].

1.2. The Rationale of the Study

Among the meteorological variables, rainfall is a significant concern for northeast
Bangladesh [20]. Heavy rainfall in the adjacent mountainous region of India causes a
flash flood during pre-monsoon and prolongs riverine flood during the monsoon.
During the pre-monsoon season, the region receives more than 900 mm rainfall, which

is three times higher than the average rainfall of the whole country. The pre-monsoon
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rainfall is also characterized by severe local storms known as nor’ Westers
(Kalbaishaki). These storms bring heavy rain, hail, gusty wind, lightning, and
sometimes tornadoes [133,214]. The sudden intrusion of the flash flood may damage
the agricultural production from about 0.33 million ha, worth TK 3486 million or 3%
of the national agricultural contribution to the gross domestic product (GDP) [62]. The
pre-monsoon flash floods can damage the seasonal Boro rice, which is the main crop
of the region [6]. Such events severely impact individual farmers, families,
communities, and the region’s food security. Therefore, a dedicated early flash flood
warning system is not only urgent for the survival of the people living here but also

necessary for saving the economy of the country.

At present, the Flood Forecasting and Warning Center (FFWC) of the Bangladesh
Water Development Board (BWDB) produce only short-term forecasts with (3-day lead
time). The short-term flash flood forecast may be very useful in harvesting the crop
early even before full maturity to capture at least part of it by the farmers. Seasonal
flood forecasts can be helpful in many management decisions in agriculture and food
security, water, and disaster risk reduction. To find a teleconnection between the
weather of a region and ENSO can be significant concerning to seasonal flood forecast.
Several studies on the relationship between the Indian summer monsoon and ENSO
have been conducted over the years [34,79,83,92,94,103,107,108,173,192]. However,
no study has been conducted to determine the relationship between ENSO and pre-
monsoon rainfall in the Meghna Basin, which includes northeast Bangladesh. If there
is a teleconnection between ENSO and the pre-monsoon rainfall over the Meghna basin,

it will help provide seasonal flash flood forecasting of the region.

Bangladesh is ranked as one of the most climate-vulnerable countries in the world. It is
at extreme risk of floods, tropical cyclones, sea-level rise, and drought, all of which
could drive millions of people to migrate [53]. Bangladesh is already experiencing
climate-induced hazards like storm surge, flood, and drought. Northeast Bangladesh is
experiencing a remarkable decreasing trend of annual precipitation during the last
decades [15]. Climate change is likely to influence the hydrological cycle in northeast
Bangladesh. If the policy-makers and local communities want to plan for changes in

extreme rainfall, they need knowledge about future rainfall variability. Therefore, it is



essential to understand the pattern of the regional rainfall variation and its past and

future trend.

1.3. Objectives and Outcomes
The main objective of this study is to understand how the rainfall extremes in northeast
Bangladesh may change in the future and how this rainfall is connected to large-scale

processes like ENSO.

To accomplish the main objective, the following specific objectives will be achieved

by this study:

e To analyze the trend of observed rainfall extremes in the northeast of
Bangladesh;

e Toinvestigate the performance of regional climate models (RCMs) to reproduce
characteristic rainfall patterns;

e To generate multi-model ensemble mean of the future rainfall extremes from
RCMs under the newly developed representative concentration pathways
(RCPs) for the study area;

e To determine the relationship between El Nifio Southern Oscillation (ENSO)
and pre-monsoon rainfall over the Meghna basin and its response under the
warming world.

The possible outcomes of this study will be to understand how the rainfall extremes in
the study area are expected to be impacted due to climate change. It will be helpful to
understand how the large-scale process like ENSO is connected to pre-monsoon rainfall
over the Meghna basin, particularly in northeast Bangladesh. It will also be beneficial

for seasonal flood forecasting.

1.4. Outline of the Thesis

This thesis contains nine chapters. The organization of the chapters is as follows:
Chapter 1 provides the background and rationale of the study. It also mentions the
objectives of the study. A literature review on global warming, emission scenarios, the
previous studies on historical trend & the future projection of rainfall of the study area,
ENSO is discussed in Chapter 2. The study area & data and the methodologies are
described in Chapter 3 and 4, respectively. Chapters 5 to 7 details the results and
discussions found in this study. Chapter 8 presents the discussions and implications of
the results of the study. Finally, Chapter 9 draws the conclusions and limitations of the

study. It also provides recommendations for further studies.
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CHAPTER 2
LITERATURE REVIEW

2.1. Global Warming

Global warming or climate change is defined as the long-term changes in weather
condition. It may be observed in both average conditions and extreme events [76]. The
world climate is mainly determined by solar radiation. When the amount of incoming
solar radiation (shortwave) equals the outgoing radiation (longwave), the earth surface
temperature remains the same. The key driver of the climate change is the trapping of
the outgoing solar radiation into the atmosphere because of increased concentrations of
aerosols, clouds, and greenhouse gases in the atmosphere while the incoming solar

radiation has remained the same [77].

Both the anthropogenic (such as greenhouse gas emissions from fossil fuel burning,
land-use change, waste management, deforestation) and natural (such as solar radiation,
volcanic eruption, ENSO) sources are responsible for global warming. However, the
anthropogenic sources have been found more responsible than other sources for climate
change [72,75]. The most significant human influence has been the emission of
greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Carbon dioxide
is a crucial GHGs, which has increased significantly since the industrial revolution
primarily for increased consumption of fossil fuels and rapid land-use change. The
atmospheric concentration of CO, in 2005 was higher than experienced in the past

6,50,000 years, and its growth rate is continuously increasing every year [75].

The effect of climate change mostly occurs in the atmosphere, on land surfaces, in the
oceans, and on land glaciers. In situ observations and glacier explorations reveal the
significant increase of greenhouse gases in the atmosphere during recent centuries [77,
78,112,207]. Several observations have revealed an increase in temperatures on land
and ocean surfaces that started over one hundred years ago. The global (land and ocean)
surface temperature has increased by 0.85°C over the period 1880-2012 confirmed by
multiple independently produced datasets [77,78] (Fig 2.1).



Fig 2.1 Observed global mean combined land and ocean surface temperature
anomalies, from 1850 to 2012 from three data sets. Top panel: annual mean values.
Bottom panel: decadal mean values, including the estimate of uncertainty for one
dataset (black). Anomalies are relative to the mean of 1961—-1990. (b) Map of the
observed surface temperature change from 1901 to 2012 derived from temperature
trends determined by linear regression from one dataset (orange line in panel a) [77].



Earth's average surface temperature rose by 0.7440.18 °C in the period from 1906 to
2005. The rate of warming almost doubled in the last half of that period (0.13+0.03 °C
per decade, against 0.07+£0.02 °C per decade) [75]. Several observations have
confirmed the increase of ocean surface temperature, shrinkage of polar ice, and

development of polar glaciers and icebergs since the 1950s [181,196].

Precipitation has increased over the mid-latitude land areas of the Northern Hemisphere
since 1901 (medium confidence before and high confidence after 1951 (Fig 2.2). There
is an area-averaged long-term positive or negative trends have low confidence for other
latitudes [77]. The extreme weather and climate events have changed since 1950. It is
very expected that the number of cold days and nights has reduced while the number of
hot days and nights has increased on the global scale. It is expected that the frequency
of heatwaves has increased in large parts of Europe, Asia, and Australia. There are
expected heavy precipitation events has increased in most of the land region [77]. The
frequency or intensity of heavy precipitation events has likely increased in North
America and Europe, while in other continents, there is medium confidence in changes

of it [77].

Fig 2.2 Maps of observed precipitation change from 1901 to 2010 and from 1951 to
2010 [77].

The sea level has risen at a higher rate since the mid-19th century than the previous two
millennia. It rose by 1.7 mm/year, 2.0 mm/year and 3.2 mm/year between 1901 and
2010, between 1971 and 2010 and between 1993 and 2010, respectively (Fig 2.3). The
frequency of the flood and drought event has also been reported to change. Since 1950,

the frequency of the drought has increased in Southern Europe and West Africa, while



it has decreased in central North America and northwestern Australia [76]. Though the
impact of climate change on the trend on historical flooding has not been identified yet,
the shift in the timing of spring peak flows is observed. Moreover, global and
continental-scale studies project an increase in flood hazard worldwide. However, it is

expected to decreases for central to western Eurasia and northern parts of North

America [40, 68].

Fig 2.3 Global mean sea level relative to the 1900—1905 mean of the longest-running
dataset, and with all datasets aligned to have the same value in 1993, the first year of
satellite altimetry data. All time-series (colored lines indicating different data sets)
show annual values, and were assessed, uncertainties are indicated by colored shading
[77].

2.2. Emission Scenario

Climate change impact assessment involves the simulation of future climate generated
by climate models using different scenarios of socio-economic and physical processes
[125. The objective of generating a scenario is to better understand the uncertainties for
reaching a robust decision under a wide range of future climates [115]. The
development of scenarios in climate change research based on socio-economic
scenarios such as projections of population, demographics, economic growth, energy
supply and demand, land use, and technological developments. These socio-economic
scenarios are used as input for complex socio-economic models to estimate emissions

scenarios of GHGs.

Intergovernmental Panel on Climate Change (IPCC) established several emissions
scenarios over the times such as the 1990 IPCC scenario A (SA90), the 1992 IPCC

scenario (IS92), the Special Report on Emission Scenarios (SRES) and Representative
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Concentration Pathways (RCP). RCP is the new emission scenarios adopted in 2014 by
the IPCC for its Fifth Assessment Report (ARS). These new emission scenarios define
four possible future climates based on the amount of greenhouse gases are emitted in
the upcoming years. The four RCPs such as RCP2.6, RCP4.5, RCP6, and RCP8.5, are
named after a possible range of radiative forcing values in the year 2100 relative to pre-
industrial values [209]. A detail description of the four RCPs is provided in Table 2.1
and Fig 2.4. They illustrate how the selected RCPs represents the literature in terms of

radiative forcing.

RCPs use a parallel approach in the development of its scenarios. In a parallel approach,
the socio-economic scenarios are not the starting point for the RCPs. It begins with the
identification of essential characteristics for scenarios of radiative forcing for climate
modeling. The most prominent of which is the level of radiative forcing in the year
2100 [130]. This parallel approach allows for socio-economic, emissions, and climate
scenarios to be developed in parallel with each other. In this way, changes can be made
to one individual scenario without having to restart the whole sequence. RCP emission
scenarios are used in the Coupled Model Inter-comparison Project Phase 5 (CMIP5)
multi-model experiment under the World Climate Research Program (WCRP) for

projecting the future climate scenarios.

Table 2.1 Description of the RCPs [130].

Scenario  Radiative €O, equivalent Pathway Model providing
forcing Concentration RCP*
(Wm~?) (p-p-m.)
RCP2.6 3.0 490 Peak before 2100 MESSAGE
and then decline
RCP4.5 4.5 650 Stabilization  after AIM
2100
RCP6 6.0 850 Stabilization  after GCAM
2100
RCP8.5 8.5 1370 Rising IMAGE

* MESSAGE, Model for Energy Supply Strategy Alternatives and their General Environmental Impact, International Institute for
Applied Systems Analysis, Austria; AIM, Asia-Pacific Integrated Model, National Institute for Environmental Studies, Japan;
GCAM, Global Change Assessment Model, Pacific Northwest National Laboratory, USA (previously referred to as MiniCAM);
IMAGE, Integrated Model to Assess the Global Environment, Netherlands Environmental Assessment Agency, The Netherlands.



Fig 2.4 Representative Concentration Pathways. (a) Changes in radiative forcing
relative to pre-industrial conditions and (b) Energy and industry CO2 emissions for
the RCP candidates [130].

2.3. GCMs and RCMs for Impact Studies

The general circulation model (GCM) represents the physical processes in the
atmosphere, ocean, cryosphere, and land surface [139]. It uses the Navier—Stokes
equations on a rotating sphere with thermodynamic terms of various energy sources
(radiation, latent heat). Atmospheric and Oceanic GCMs (AGCM and OGCM) are vital
components along with sea ice and land-surface components. It simulates the climate
using a 3-dimensional grid over the globe with a horizontal resolution of between 250
and 600 km and 10 to 20 vertical layers in the atmosphere [199]. It is an essential tool
for projecting future climate variables using emission scenarios. However, because of
the coarse spatial resolution, the direct use of GCMs output is limited since it cannot
adequately model many physical processes related to clouds [223]. Instead, their known
properties must be averaged over the larger scale in a technique known as
parameterization. GCMs has a limitation to simulate various feedback processes such
as water vapor and warming; clouds and radiation; ocean circulation and ice and snow

albedo [113].

The regional climate model (RCM) is dynamically downscaled from GCM, and it uses
GCM grid-point data as the boundary conditions [13]. Dynamic downscaling provides
information at a much better spatial resolution (0.5 degrees) which can be used as inputs
to basin-scale hydrological models. RCMs represent an advantage over GCM data for

representing small-scale processes since RCM simulations are more realistic when
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scaled, in comparison to GCM simulation data [32]. However, the spatial resolution of
RCMs remains too coarse for some applications and still represents spatial averages,

rather than local extremes [13].

2.4. Uncertainties Associated in Regional Climate Projection

There are three key sources of uncertainty in climate projection, such as GHG emission
scenarios, Atmosphere-Ocean General Circulation Model (AOGCM) configuration,
and AOGCM internal variability [59]. Uncertainty in GHG emission scenarios can be
examined by simulating different emission scenarios; uncertainty in AOGCM
configuration can be explored by using different AOGCMs or different model
configurations (e.g., physics parameters) within the same modeling system; and
uncertainty in AOGCM internal variability can be examined by executing different
realizations of the same scenario each using different initial conditions [59]. However,
for regional climate projections, there arise four additional sources of uncertainty such
as regional climate downscaling (RCD) configuration, RCD internal variability, RCD
method, and region of interest. The uncertainty in RCD configuration can be explored
in a similar way to AOGCM configuration. The uncertainty in RCD internal variability
can be examined in a similar way to AOGCM internal variability. The uncertainty in

the region of interest can be tested by applying the RCD models to different regions.

AOGCM configuration is one of the most significant sources of uncertainty in climate
projections since it accumulates all sources of uncertainties such as GHG emission
scenarios, model internal variability, and non-linearities in the climate system and for
the choice of RCD method [1]. Several studies have shown that the uncertainty in
AOGCM configuration and GHG emission scenarios are the primary sources of
uncertainty in climate change projections for longer timescales whereas the uncertainty

in AOGCM internal variability is most vital on shorter timescales [59].

The uncertainties in regional climate change projections need to be described entirely
to provide useful information for impact assessment studies. Sometimes it needs to be
reduced where possible. All the relevant uncertainty dimensions can be scrutinized by
generating ensembles of simulations. The probability density functions (PDFs) of
climatic variables of interest can be generated in order to capture all ranges of
uncertainty. The spread of the PDF gives a measure of uncertainty. The uncertainty

space of climate change projection can be sampled and examined more effectively if
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the ensembles are relatively larger. However, it is a challenging task to capture all the
ranges of uncertainties since it needs the completion of a large number of a

multidimensional matrix of experiments [1,58].

2.5. CORDEX Experiment
The Coordinated Regional Climate Downscaling Experiment (CORDEX) initiated by

the World Climate Research Program (WCRP) to guide a coordinated international
framework for producing improved regional climate change projections [136]. The
CORDEX framework aims to provide a benchmark for evaluating and possibly
improving models (model evaluation framework) together with exploring the
maximum range of the source of uncertainties through a set of experiments to produce

climate projections for impact and adaptation studies [136].

Table 2.2 CORDEX domain and their zone.

Domain Zone
1 South America
2 Central America
3 North America
4 Africa
5 Europe (EURO)
6 South Asia
7 East Asia
8 Central Asia
9 Australasia
10 Antarctica
11 Arctic
12 Mediterranean (MED)
13 Middle East North Africa (MENA)
14 South-East Asia (SEA)

Initially, in the CORDEX framework, there were twelve regions, covering the majority
of the populated land areas worldwide, plus both the Arctic and Antarctic [138] (Table
2.2). Afterward, WCRP included two new CORDEX domains for Arab and South-East
Asia. This selection of a domain is based partly on physical processes in different
regions, resources needed for the simulations and the availability of ongoing programs.
Initially, about 50 km (or 0.5 degrees) standard horizontal resolution was selected for
the first phase CORDEX simulations in order to allow worldwide participation [138].
However, at present, many groups are simulating RCMs with substantially higher grid

spacing (up to ~10 km).
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In the model evaluation framework, similar boundary condition was used for a selected
domain to evaluate the performance RCMs. Initially, the CORDEX framework utilized
the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim
re-analysis covering the period of 1989-2007. The climate projection framework is
based on the set of new GCMs supporting the IPCC Fifth Assessment Report (i.e.,
GCMs from CMIPS5). A large number of experiments were included in this simulation
setup considering new GHG scenarios for the 21% century, decadal prediction
experiments, experiments, including the carbon cycle and experiments aimed at

investigating specific feedback mechanisms [184].

2.6. Bias Correction of RCMs

The state-of-the-art climate data from RCMs have been used for climate change impact
studies. However, it is well established that the precipitation data from RCMs are biased
because of limited process understanding or insufficient spatial resolution [106].
Therefore, the output from RCMs needs to be corrected before applying for climate
change impact studies [35,106,119,187,208]. In recent years, extensive studies have
investigated different bias correction methods for providing a reliable estimate of

observed precipitation climatology given RCM output [27,74,106,171,188,191,194].

The simplest method is the delta correction method, in which an average bias (delta)
for a specified period is used to correct the bias [120]. This bias correction can be done
either as one delta for the whole period considered or for different steps like seasonal
or monthly deltas. Another approach calculates monthly correction factors that are

based on the ratio between observed and simulated values in the past [120].

A linear transformation function between one or more predictors and the predictand is
used in multiple linear regression methods [65, 70,189]. This method is used to adjust
mean and variance only of the observed and simulated rainfall. The Local Intensity
Scaling (LOCI) method can adjust the mean as well as both wet-day frequencies and

wet-day intensities of precipitation time series [171,189].

The power transformation method corrects the mean and variance of precipitation by
applying a non-linear correction in an exponential form [101,102,189]. Here, the
observed long-term monthly mean is mapped on the monthly mean of the corrected

daily simulated precipitation series.
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A somewhat modern approach called distribution mapping in which the distribution of
RCM simulated climate data is matched with the distribution of the observed climate
data to correct the distribution of the RCM simulated climate data. A transfer function
is generated to shift the occurrence distributions of precipitation and temperature
[22,168,174]. In the literature, it can be found in several other names such as
‘probability mapping’ [18, 74], ‘quantile-quantile mapping’ [19, 44, 82,168,182],
‘Statistical downscaling’ [146] and ‘histogram equalization’ [161,174,211]. Based on
adjusting the probability distribution, the quantile mapping method is sub-classed as
Empirical Quantile Mapping (eQM), Parametric Quantile Mapping (gamma
distribution, gQM) and a Special case of Parametric Quantile Mapping (gamma and

Generalized Pareto Distribution, gpQM).

Among various methods, distribution mapping-based methods are getting more popular
lately and have been applied to the downscale and correct temperature and precipitation

data from RCMs [11, 45, 47,146, 168, 190], particularly in hydrological studies.

2.7. Observed Trends of Rainfall in Bangladesh

Trend analysis of observed rainfall is essential for water resources planning and
management [183]. Therefore, trend analysis of extreme rainfall events is getting
importance in recent years [17,106]. Studies in different parts of the world indicate that
climate change has altered precipitation patterns resulting with resulting frequent
extreme weather events, such as floods, droughts, and rainstorms [39,170,183, 218].
Studies on historical rainfall record show that annual and seasonal rainfall in India has

decreased [14,109].

Previous studies have either considered Bangladesh [2,154] or India [80,127,143]
separately. These studies often consider trends in seasonal (including pre-monsoon and
monsoon) or annual rainfall. The trends vary between positive [42, 98] and negative
[41,99,127], depending on the region and the time period analyzed, but none has been
statistically significant. All the studies in northeast Bangladesh used rainfall for the
Sylhet station only. These studies have shown increasing trends for pre-monsoon and a
decreasing trend for the monsoon [92,176], which is similar to most studies over India.
However, total seasonal or annual rainfall is just one rainfall characteristic that can
change. Fewer studies have looked at changes in other characteristics. For example,

[176] found an insignificant increase of one-day maximum rainfall while a decrease of
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five-day maximum rainfall, consecutive wet day and consecutive dry day for the Sylhet
station for the last sixty years (1958-2007). Over the border in India, [150] found that
low-intensity rainfall has decreased and high-intensity rainfall had increased in
Cherrapunji, but only during the pre-monsoon. These results imply less, but more
intense rainy days over the region. By comparison, the Barak Basin further east seems

to have experienced an increase in the number of pre-monsoon rainy days [98].

2.8. Impact of Climate Change

Average global surface temperature and mean sea level rise are likely to increase over
the 21 century under all emission scenarios (see Table 2.3). Heat waves will occur
more often and last longer, and extreme precipitation events will become more intense
and frequent in many regions [78]. Multi-model projections of global climate model
indicate that there is likely to be frequent severe hydro-climatic extremes like floods,
droughts, and other extreme events in the future because of climate change

[71,103,135,167].

Table 2.3 Projected change in global mean surface temperature and global mean sea
level rise for the mid- and late 21st century, relative to the 19862005 period [78].

2046-2065 2081-2100
Scenarios Mean Likely range Mean  Likely range
RCP2.6 1.0 0.3-1.7 1.0 0.3-1.7
Global Mean
Surface RCP4.5 1.4 1.1-2.6 1.8 1.1-2.6
Temperature RCP6.0 1.3 1.4-3.1 2.2 1.4-3.1
Change (°C) RCPS8.5 2.0 2.6-4.8 3.7 2.6-4.8
RCP2.6 0.24 0.17-0.32 0.40 0.26-0.55
Global Mean  p~py s 0.26 0.19-033 047  0.32-0.63
Sea Level
Rise (m)  RCP6.0 0.25 0.18-0.32 0.48 0.33-0.63
RCPS.5 0.3 0.22-0.38 0.63 0.45-0.82

Several studies about future climate change on a global perspective concluded that the
extreme event would become intense and more frequent; the wet region will become
wetter and dry region will be drier during the 21st century [185, 33]. The high-intensity
rainfall event is likely to increase over the East Asia region under a global warming
scenario [26,220,204,103]. Global warming is likely to intensify monsoon precipitation
over a broad region encompassing South Asia [25, 96,100]. However, there are lots of

uncertainty in projecting future rainfall due to wide variations among the model

14



projections [8, 50, 93, and 98,165]. The India summer monsoon rainfall is likely to
increase moderately due to atmospheric warming. However, it is slightly
counterbalanced by weakening large-scale monsoon circulation [177]. Seasonal mean
rainfall and rainfall extreme over Bangladesh are likely to increase due to climate
change [98,141,158]. In recent years, India has suffered from significant heatwaves
during March-June. The rising trend of the number of intense heat waves in recent
decades has been vaguely attributed to global warming [154]. Several studies suggest

delaying the onset of the Indian summer monsoon due to global warming [46].

2.9. Mechanism of Pre-monsoon rainfall in Northeast Bangladesh

A substantial amount of rainfall occurs in northeast Bangladesh and the adjacent hilly
region of India during the months of March-May and causing a flash flood in this
region. However, this early summer rainfall is not completely understood by the
research community. A number of researchers [57, 61, 66, 104, 121, 159, 186] have
proposed different theories to explain the possible causes of pre-monsoon heavy rainfall
over Northeast Bangladesh. However, most of the theories related to the convection
mechanism triggered by the orography around the northeast region and others are
related to the diurnal convective maximum. A brief description of these theories is

given below.

Orographic lifting

The warm, moist southwesterly air from the Bay of Bengal is blowing towards the
Meghalaya Plateau and causes heavy rainfall on the windward side of the Meghalaya
Plateau resulting from the orographic uplifting of the moist air [176, 133, 66]. A heat
low over central India adjacent to the western border of Bangladesh resulting from
strong heating of the landmass triggered this southwesterly moisture flow from the Bay

of Bengal towards the Meghalaya Plateau [59,195].

Nocturnal jet

The strong low-level southerly or southwesterly jet from the Bay of Bengal is termed
as the nocturnal jet. It occurs when daytime convection ceases [59]. The nocturnal low-
level jet is responsible for the development of the convective systems by intersecting
with fronts or outflow boundaries that cause the late night or early morning rainfall

peak and flash floods in northeast Bangladesh [121].
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Katabatic convergence

The katabatic wind or mountain breeze is the denser cool air that flows downslope as a
gravity current. Some researchers have suggested that the night-time convective
maximum in northeast Bangladesh could be triggered when the katabatic wind from the

Meghalaya converge with the moisture prevailing wind off the Bay of Bengal [59].

Cold Pool convergence

A cold pool can be defined as a block/region of cold air that is cooler than the
surrounding air. The evaporative cooling of falling precipitation is responsible for the
development of a cold pool. The convergences of the cold pool air over northeast
Bangladesh at 925 hPa and warm moisture from the Bay of Bengal likely to be another

mechanism of pre-monsoon rainfall of this region.

2.10. Flash Flood in Northeast Bangladesh

The river system in northeast Bangladesh originates from adjacent hilly areas of Assam,
Meghalaya, and Tripura of India. The main tributary is the Barak River, which has a
considerable part of its catchment area located in India. When it enters Bangladesh at
Amalshid, it bifurcates into Surma and the Kushiyara rivers. Some other rivers originate
in India and pass-through this area such as Manu, Dhalai, Khowai. All these river
systems are fed mainly from the rainfall in the upstream catchment and some additional
local drainage systems within Bangladesh. If it rains heavily in the adjacent hilly areas
of the catchments, the run-off quickly accumulates and flows into Bangladesh. Flash
flood starts in these areas from mid-April i.e., before the onset of the southwesterly

monsoon. It can occur within a time-period between few minutes to a few hours.

Pre-monsoon flash flood, particularly in April, is a major concern for the community
since it destroys Boro rice, fisheries, and other livelihoods. The return period of a severe
flash flood is five years [164]. The most notable severe flash flood occurred in 1980,
1985, 1990, 2002, 2004, 2010, 2016, and 2017. Flash floods in the latter part of March
or early April are not a regular occurrence in the haor region as it happened in 2017. A
severe heatwave over central India caused heavy rainfall at the Meghalaya mountain
region at the end of March 2017. A total of 1,262mm of rain fell at Cherrapunji during
the period between March 28 and April 4 in 2017, which was 5.5 times greater than the
amount of rainfall during the same period in 2016. It devastated the Boro rice in six

haor districts that were worth TK 13,000.
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2.11. El Nifno—Southern Oscillation (ENSO)

ENSO is using to quantify and measure the variability of the large-scale process since
it reduces a climate process into a single number [180,193]. It is a complex interaction
between the atmosphere and ocean in the eastern and central equatorial Pacific that
reoccur on average every four years [67,149. It is a dominant mode of inter-annual
variability in the tropics and can significantly affect the climate of tropic and extratropic

[28].

The warm phase of it is termed as El Niflo, and the cold phase is termed as La Nifia
[49]. During the El Nifio event, the above-average sea surface temperature (SST)
weakens the easterly trade wind or sometimes starts blowing in another direction (Fig
2-5). This results slowing down the ocean current that moves away the surface water
from the western coast of South America, which in turn keeping the water of the coast

of Peru and Ecuador relatively warmer [38].

Fig 2.5 Schematic description of the large-scale ocean-atmosphere interactions
during the development of ENSO Phases. (a) El Nifio, (b) Normal condition and (c)
La Nina [60].

ENSO is the most prominent year-to-year climate fluctuation on Earth, alternating
between anomalously warm (El Nifio) and cold (La Nifia) sea surface temperature
(SST) conditions in the tropical Pacific. ENSO exerts its impacts on the remote regions
of the globe through atmospheric teleconnections, affecting extreme weather events
worldwide. However, these teleconnections are inherently nonlinear and sensitive to
ENSO SST anomaly patterns and amplitudes. In addition, teleconnections are
modulated by variability in the oceanic and atmospheric mean state outside the tropics

and by land and sea ice extent.

In an early sixteenth century, the fishermen in Peru and Ecuador first noticed this
unusual warming of eastern equatorial Pacific which typically began after Christmas

and referred to as El Nifio or Christ child or little boy. While during the La Nifia event,
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the below-average SST makes the normal easterly trade wind even stronger (Fig 2.5).
This results in a large-scale cooling of the eastern equatorial Pacific and termed as a
little girl. The ENSO affects the global climate, though it originates in the equatorial
Pacific. The countries in the eastern part of the Pacific like Peru and Chile experience
the vast amount of rainfall, whereas countries in the western side of the Pacific like
India, Australia, and Indonesia suffers from a severe drought during El Nifio. La Nifia
causes droughts in the eastern equatorial Pacific and floods in the western equatorial

Pacific.

Table 2.4 Geographic extent within which different SST based indices are calculated.

Index Longitude range Latitude range
Nifio-1+2 90°W- 80°W 0°-10°S

Nifio-3 150°W- 90°W 5°N-5°S

Nifo-4 160°E- 150°W 5°N-5°S

Nifo-3.4 170°E- 120°W 5°N-5°S

IMA 150°W-90°W 4°N-4°S

TNI 90°W- 80°W and 160°E- 150°W  0°-10°S and 5°N-5°S

Several indices are used to measure the phase and strength of ENSO events. However,
the application of a particular index is based on the purpose and the geographical
location of the region of interest. The most commonly used indices are generally
classified based on pressure and sea surface temperature (SST) [205]. The Southern
Oscillation Index (SOI) and the Equatorial Southern Oscillation Index (ESOI) are
pressure-based indexes. The SOI is calculated by subtracting atmospheric pressure at
sea level of Darwin from Tahiti. Therefore, during El Nifio, SOI is negative while
during La Nifia, SOl is positive. The limitation of SOl is that the ENSO phenomena are
mainly concentrated close to the equator while both Tahiti and Darwin are located
slightly south of the equator. To overcome this limitation, ESOI is introduced in which
the pressure difference between two places centered on the equator (5°S to 5°N) over
Indonesia and the eastern equatorial Pacific. The SST based indexes are Nifio-1+2,
Nifio-3, Nifio-4, Nifo-3.4, and Japan Meteorological Agency (JMA) [63,205]. These
indices are calculated by averaging sea surface temperature anomalies over the
particular region over the equatorial Pacific Ocean described in Table 2.4. Besides
indices mentioned above, Trans- Nifio Index (TNI) and the Multivariate ENSO Index
(MEI) are also used for measuring the phase and strength of the ENSO event. The TNI

is calculated by subtracting normalized anomalies of the SST of the Nifio-4 region from
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the Nifio-1+2 region. On the other hand, the MEI is calculated as the first principle
component analysis of the six main observed variables such as sea level pressure, zonal
and meridional components of the surface wind, SST, surface air temperature and total

cloudiness fraction of the sky [9,210].

The El Ni no Southern Oscillation (ENSO) controls the strength and position of the
Indian Summer Monsoon through modulation of the stationary Rossby wave of the
midlatitude [24]. Several studies [73,94,192] found that there is a decrease of Indian
monsoon rainfall during the warm phase of ENSO, but no such a relationship during
the cold phase of ENSO. However, preceding winter La Nifia reduces the strength of
the following Indian Summer Monsoon, which reduces the monsoon rainfall over India
[24]. The monsoon rainfall over northeast India tends to be higher in the years in which
the ENSO phase (warm to cold) transition occurred rapidly than other years [185].
Some studies over Bangladesh show weak or no correlation between ENSO and
monsoon rainfall [92,134]. There is some significant negative relationship between
monsoon rainfall at some stations in the northeastern parts of Bangladesh and ENSO
[175]. However, no study has been conducted to determine the relationship between
ENSO and pre-monsoon rainfall in Meghna Basin, which includes northeast

Bangladesh.
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CHAPTER 3
STUDY AREA AND DATA
3.1. Study Area

The study area is in northeast Bangladesh located approximately between 24°N to
25°N and 90.62°F to 92.50°E (Fig 3.1). Northeast Bangladesh encompasses seven
administrative districts of Bangladesh such as Sunamganj, Sylhet, Netrokona,
Moulvibazar, Habiganj, Kishorganj and Brahmanbaria. It is located within the basin of
the Meghna River. The total catchment area of the Meghna is 6500 square kilometers
of, which roughly 33% lies in northeast Bangladesh and 67%, lies in India [122].

Fig 3.1 Study area with rainfall stations.

The upper portion of the basin is the mountainous regions of Asam, Meghalaya and
Tripura states of India, while the lower portion of the basin is the flat and low-lying
areas of northeast Bangladesh. The Cherrapunji, well known as one of the wettest places
on Earth, is located very proximity to the study area. As a result, the rainfall pattern of
the adjacent hilly part of India has a significant influence on flooding in this region.
Therefore, in some cases, this study has been extended to the upper part of the Meghna

basin.
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From the climatic perspective, northeast Bangladesh is categorized by sub-tropical
humid conditions [64]. The dry winter (December to February), the pre-monsoon
(March to May), the monsoon (June to September) and the post-monsoon (October to
November) are the predominant seasons of this area [151]. The mean annual monsoon
and pre-monsoon rainfall varies from 2000mm to 6000mm, 1000mm to 4000mm,
respectively. The average pre-monsoon and monsoon rainfall of Cherrapunji is about

1700 mm and 7400 mm, respectively.

Northeast Bangladesh is known as the “haor region”, which is bowl-shaped, low-lying
floodplains. They have unique characteristics which are dry in the winter months and
flooded during the monsoon. There are over 400 small or large haors in northeast
Bangladesh [164]. The prominent hoars are the Hakaloki haor, Sumir haor, Dakhar
haor, Tanguyar haor, Gungiajuri haor, Mukhar haor, Kaowadighir haor. Around 70%
of northeast Bangladesh is under hoar in which 80% of the area is covered by Boro rice,
and 10% is covered by T.aman [6]. The biodiversity of the haor region makes it a unique

wetland ecosystem [164].
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Fig 3.2 Meghna river system.

The river system of the Meghna basin originates from the hills of Shillong and
Meghalaya, India. The Barak is the primary source of the Meghna river system, which

has a considerable catchment in the ridge and valley terrain of eastern Assam bordering
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Myanmar [52]. It crosses the Bangladesh border at Amalshid point of Sylhet and
bifurcates into Surma and Kushiyara rivers (Fig 3.2). The Surma and Kushiyara rivers
are flashy and receive water from rainfall at Cherrapunji and Tripura, respectively. The
two rivers rejoin at the Markuli point of Sylhet and flow via Bhairab as the Meghna to

join the Padma at Chandpur.

The haors are mostly dry from December to May, therefore, Boro rice is extensively
cultivated during this time. Boro rice is harvested during the pre-monsoon, which
accounts for most agricultural output and contributes significantly to the country’s total
rice production [6]. Pre-monsoon rainfall is, therefore, a significant concern for this
region. Heavy rainfall in April and May can cause flash floods, and that can damage
entire crops as it was seen in many places in April 2017. Between June to November,
the haors remain underwater and therefore fisheries play a significant role in the

livelihoods of many local communities.

3.2. Data
3.2.1. Observed data

The observed dataset comprises of daily rainfall data from seven weather stations in
northeast Bangladesh. Among the stations, only Sylhet station is maintained by the
Bangladesh Meteorological Department (BMD) and others are maintained by the
Bangladesh Water Development Board (BWDB). The observed rainfall data for the
period 1976-2016 were used in this study. A list of the observation stations, their names,

and their locations are shown in Fig 3.1 (also shown in Table 3.1).

Table 3.1 List Rainfall stations and their location.

Station ID  Station Name District Latitude Longitude

CL128 Sylhet Sylhet 24.90°N 91.88°E

CL63 Netrokona Netrokona 24.98°N 90.62°E
CL127 Sunamganj Sunamganj 25.00°N 91.44°E
CL122 Moulvi Bazar Moulvi Bazar 24.49°N 91.70°E
CL110 Habigan Habiganj 24.39°N 91.41°E
CL103 Brahman Baria ~ Brahman Baria 24.00°N 91.14°E
CL101 Bhairab Bazar Kishoreganj 24.00°N 91.00°E

3.2.2. Gridded data
In this study, ERA-Interim re-analysis gridded (0.5° spatial resolution) data of daily

rainfall, Ty, 05 » Trnin, mean sea level pressure(MSLP), U and V component of wind for
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the period 1979-2017 were used. Hadley Centre Global Sea Surface Temperature
(HadISST) with 1° spatial resolution was also used in this study.

3.2.3. Selection of the RCP scenario

Four representative concentration pathways (RCPs) are used as a basis for long-term
climate modeling experiments. The four RCPs together span the range of radiative
forcing values for the year 2100, as found in the literature, from 2.6 to 8.5 W/m2 (Fig
2.4). Among them, there is one mitigation scenario (RCP2.6), two medium stabilization
scenarios (RCP4.5/RCP6), and one very high baseline emissions scenario (RCPS.5).
RCP2.6 is the lowest emission scenario which aims to limit the increase of global mean
temperature below 2°C. Often these scenarios show negative emissions from energy
use in the second half of the 21 century. The scenario is very optimistic, as it requires
full participation and commitment of all countries in the world. However, outcomes of
recent climate summits at the highest level, and the annual Conferences of Parties to
the United Nations Framework Convention on Climate Change (UNFCC) do not point
in that direction. As this study aims to develop a robust and realistic rainfall projection,
RCP2.6 was not included in this study. This leaves the choice to two medium
stabilization scenarios (RCP4.5 and RCP6) and one very high baseline emission
scenario (RCP8.5). The best choice, in that case, is to include RCP4.5 and RCP8.5, thus
including one medium stabilization scenario and the high emissions scenario, and
covering the entire range of radiative forcing resulting from RCP4.6, RCP6, and

RCP8.5.

3.2.4. Climate model data

Daily rainfall data from six RCMs over the Coordinated Regional Climate Downscaling
Experiment (CORDEX) South Asia domain (Table 3.2) was used for this study. The
historical run from six RCMs for the 30 years (1976-2005) was taken for the baseline
period. Daily rainfall from RCMs for RCP4.5, as well as RCP8.5 for the period 2041-
2070 and 2071-2099, were used for projecting the future rainfall extremes for the study
area. The output of RCMs is available at the spatial resolution of 0.5°x0.5°. The
locations of weather stations do not match RCM grid points exactly. In this situation,
the RCM output was calculated at a weather station’s location by interpolating (Inverse

distance weighting method) four RCM grid points within which that station lies.
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Table 3.2 List of RCMs and their driving models.

RCM Driving GCM Institute GCM Model description
ACCESS ACCESS1-0 CSIRO- MOSES land surface model of
Australia UK Met Offices.
CCSM4 CCSM4 CSIRO- Community Climate System
Australia Model, NCAR of USA.
CNRM CNRM-CM5 CSIRO- Earth system model by National
Australia Centre for Meteorological
Research of French.
MPI MPI-ESM-LR CSIRO- Max Planck Institute Earth System
Australia Model at base resolution,
Germany.
MPI- MPI-M-MPI- MPI-CSC Max Planck Institute for
REMO ESM-LR Meteorology (MPI-M) based on
the MPI-ESM-LR model.
SMHI ICHEC, EC- SMHI-Sweden Irish Centre for High-End
EARTH Computing Earth System Model,

Irish Centre for High-End
Computing (ICHEC), European
Consortium ESM (EC-EARTH).

Table 3.3 Description of the GCMS and their institution.

GCMS Name Institution

ACCESS1-0 Commonwealth Scientific and Industrial Research Organization
(CSIRO) and Bureau of Meteorology (BOM), Australia.

CSIRO-Mk3-6-0  Australian Commonwealth Scientific and Industrial Research
Organization (CSIRO) Marine and Atmospheric Research
(Melbourne, Australia) in collaboration with the Queensland Climate
Change Centre of Excellence (QCCCE) (Brisbane, Australia).

EC-EARTH European Earth System Model

GFDL-CM3 Geophysical Fluid Dynamics Laboratory (GFDL) of National Oceanic
and Atmospheric Administration (NOAA).

HadGEM2-AO National Institute of Meteorological Research, Seoul, South Korea

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Kanagawa,
Japan (JAMSTEC); Atmosphere and Ocean Research Institute, The
University of Tokyo, Chiba, Japan (AORI); and National Institute for
Environmental Studies, Ibaraki, Japan (NIES).

MPI-ESM-LR Max Planck Institute for Meteorology.

MPI-ESM-MR Max Planck Institute for Meteorology.

MRI-CGCM3 Meteorological Research Institute, Tsukuba, Japan.

NorESM1-M Norwegian Climate Centre.

Monthly SST data from 10 General Circulation Model (GCM) under CMIP5 for
Representative Concentration Pathway, RCP4.5, and RCP8.5 for the period 2041-2070
and 2071-2100 were used for projecting the future ENSO index over Nino 3.4 region.
The SST data of control run from these GCMs ranges for the period 1976-2005 were
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chosen as the base period. The spatial resolution of these GCMs is varied between 0.25°

to 2°. Details of the GCMs and their institutes are presented in Table 3.3

3.2.5. ENSO data

Different ENSO indices such as Southern Oscillation Index (SOI), NOAA Oceanic
Nifio Index (ONI) at Nifio-3.4 region and Multivariate ENSO Index (MEI) were
collected from National Oceanic & Atmospheric Administration (NOAA) web portal
(https://www.esrl.noaa.gov/psd/enso/data.html). The plots of the monthly ENSO Index
for SOI, ESOI, ONI, and MEI for the period January 1961 to February 2018 are

presented in Fig 3.3.

Fig 3.3 Different ENSO indices used for this study.
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CHAPTER 4
METHODOLOGY

This chapter outlines the methodology used in this study, which can be subdivided into
four major sections. Section 4.1 describes the methods applied for trend analysis of
observed rainfall extremes for seven rainfall stations in the study area. Section 4.2 and
Section 4.3 present the brief descriptions of RCMs performance assessment and
projection rainfall of extremes, respectively. Finally, Section 4.4 details the connection
between large-scale processes such as ENSO and pre-monsoon rainfall and how ENSO

is likely to be impacted under the warming world.

4.1. Trend Analysis of Observed Rainfall Extremes

The trend analysis was performed for several different indices of rainfall extremes using
the Mann-Kendall trend test and Sen’s slope estimator. Though more extended data
period is better for trend analysis, the minimum length of the data period needs to be at
least 30 years [11]. Therefore, observed rainfall for the latest 33 years (1984-2016) was
used for trend analysis in this study. Before applying the trend analysis, the Standard
Normal Homogeneity Test (SNHT) and the Pettitt test was applied to check the
homogeneity of the data. The randomness of the index of rainfall extremes was checked
using an autocorrelation test. A brief discussion of the above mentioned statistical tests

was given following sub-sections.

4.1.1. Quality control of data

Homogeneity test

Homogeneity test is used to check if there is an error in the data series because of several
reasons such as station relocations, equipment changes, equipment drifts, and changes
in the method of data collection [2]. If the data series is subjected to any kind of error
other than climatic factors, the data series is called inhomogeneous. These
inhomogeneous data series needs to be either adjusted or discarded from further
analysis. The homogeneity test can be classified as absolute homogeneity and relative
homogeneity [2,54]. Data series from different stations are tested individually in
absolute homogeneity tests, while they are compared with neighboring reference

stations in relative homogeneity tests. However, it is tough to find a reference station
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with a high correlation and a homogeneous structure. Hence, in this study, the absolute

homogeneity test was applied to check the reliability of the data series.

Four homogeneity tests are generally used to test the homogeneity of the rainfall data,
such as Standard Normal Homogeneity Test (SNHT), Buishand Range (BR) test, Pettitt
test, and Von Neumann Ratio (VNR) test [126]. In the homogeneity test, the series is
considered as homogeneous if the annual values of Y; of the testing variables, Y are
independent and identically distributed under the null hypothesis [84]. Under the
alternative hypothesis, SNHT, BR test, and Pettitt test assume that the series comprised
of a break in the mean and considered as inhomogeneous. These three tests are capable
of detecting the year where the break occurs. However, VNR test cannot give
information on the year break because the test assumes that the series is not randomly
distributed under the alternative hypothesis. Among SNHT, BR test and Pettitt test,
SNHT is sensitive in detecting the breaks near the beginning, and at the end of the
series; BR test and Pettit test are sensitive to identify the break in the middle of the
series [84]. Moreover, the SNHT and BR are parametric, whereas the Pettitt test is a
non-parametric rank test. Within this test category, in this study, the Standard Normal
Homogeneity [7] and the Pettitt tests [145] were chosen since these two tests are more
widely used for the homogeneity test [126]. These two tests are discussed in Appendix
A (A1 &A2).

Autocorrelation test

The indices of rainfall extreme obtained from observed data series must be a series of
random events to get reliable trends from the trend analysis [221]. The autocorrelation
is generally performed to check the randomness of the data series. If the data series is
positively auto-correlated, then it is not a random event, and the resulting trend may not
be realistic [129]. In this study, first-order auto-correlation was applied to check the
randomness of the data. The theory of the above mentioned statistical tests is discussed

in Appendix A (A.3).

4.1.2. Selection of extreme rainfall indices
The decision to focus on extreme rainfall indices was guided by the collaborative
research-framing phase, as part of the TRACKS project approach to co-produce

knowledge of climate variability for adaptation, with communities in northeast
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Bangladesh. This framing, or co-design, of the research, sought to identify those
weather phenomena most important to local people and emerged over several rounds
of interaction between scientific project partners and different actors in communities in
northeast Bangladesh. The identification of the most critical weather phenomena began
with a large scoping meeting in Sylhet city September 2014, bringing together local
government officials, representatives of non-governmental organizations, scientists at
local universities and research institutes, and other groups such as teachers and
journalists. This scoping meeting identified local Sylhet communities vulnerable to
climate variability and change and led to the second round of interaction; conducting
234 interviews in Sunamganj Sadar, Jamalganj, Barlekha, and Hakaluki haor in
December 2014, with divers ‘grassroots’ actors. The third round of interaction brought
together a subset of those people interviewed in workshops in Sunamgnaj Sadar and
Barlekha in March 2016. Through this interaction, communities were able to make
precise the weather information that was more important to support local adaptation
efforts, and scientists were able to make clear limitations of the science, and what
information it is possible to provide. This interaction also allowed for discussion across
different knowledge systems, with climate and meteorological information discussed
relative to other local and traditional ways of knowing the weather and seasons, using
traditional calendars and natural signs for instance. The framing of this research also

drew on the published literature.

These interactions showed us that the local communities are particularly concerned
about the pre-monsoon rainfall, particularly its amount and distribution. For instance,
heavy rain at this time can cause flash floods that can damage or destroy the year’s main
Boro rice. The damages of Boro rice can have a substantial economic impact on the
local society. Once the importance of rainfall in the pre-monsoon season is understood,
the analysis had been split between both the pre-monsoon and monsoon seasons.
Though, the onset of the monsoon changes from year-to-year [159], however, a static
definition of the monsoon and pre-monsoon seasons was applied here in order to

facilitate comparison with previous studies [154,176].

In this study, the pre-monsoon and monsoon were defined as the months of March-May
and June-September, respectively. Next, appropriate rainfall indices had to be

identified. The selected indices (Table 4.1) reflect rapid flash floods, wet and dry

28



periods, and seasonal totals. The selection of indices is therefore meant to reflect some

challenges the local people told us about, but also be compared to previous and future

climate studies.

Table 4.1 List of indices of rainfall extremes used for trend analysis.

Index Descriptive name Definition Unit
RX1DAY  Daily maximum Seasonal maximum 1-day rainfall mm
rainfall
RX5DAY  5-day maximum Seasonal maximum 5-day rainfall mm
rainfall
R25mm Frequencies in days Number of extremely heavy rainfall days
days (RR>25mm) during pre-
monsoon
R50mm Frequencies in days Number of extremely heavy rainfall days
days (RR>50mm) during monsoon.
PRCPTOT Seasonal total wet ~ Seasonal total precipitation in wet ~ mm
day precipitation days
(RR>21mm)
CWD Consecutive wet Maximum number of consecutive days
days wet days in a season with RR>
Imm
CDD Consecutive dry Maximum number of consecutive days
days dry days in a season with
RR<Imm
SDII Simple daily Seasonal total precipitation divided mm/day

intensity index

by the number of wet days in the

s€ason

Through considerable discussion, eight indices of rainfall extremes were selected as
also proposed by Frich and Alexander [7,55]. These indices are presented in Table 4.1
with their respective definitions. Both the RX1DAY and RX5DAY represent extremely
heavy rainfall, RX1DAY causes flash flooding, while RX5DAY is more likely to cause
long-term riverine flooding. Through several discussions with the locals, it is
understood that the amount and distribution of PRCPTOT, especially during pre-
monsoon are significant in Boro rice production since it influences the seasonal water

levels in the haor.

4.1.3. Identification and quantification of trends
The trend of extreme rainfall indices listed in Table 4.1 was identified and quantified
using the Mann—Kendall test [88,118] and Sen’s Slope estimator [173], respectively.

The Mann-Kendall test is widely used for trend analysis of rainfall and other
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climatologic events [56,140,148,212,216,217]. It is a non-parametric test and is less
sensitive to a non-homogeneous time series. It can be applied to non-normally
distributed data and for data that contain outliers and non-linear trends [21]. According
to this test, the null hypothesis H, indicates that there is no trend and an alternative

hypothesis H;indicates that there is a trend [142].

Sen’s Slope method [173] was then applied to estimate the magnitude of the trend. A
time series of equally spaced data is required for this method and is not influenced by
missing values or gaps in the input data. Among the rainfall station considered, Sylhet
station has less missing values (0.5%), and Netrokona has more missing values (3.9%).
There are several methods used for filling missing values of daily rainfall values. The
most common methods used in the filling of the missing data include the closest station,
simple arithmetic averaging, inverse distance weighting, multiple regression, and the
normal ratio [117,128,213. In this study, Inverse Distance Weighting (IDW) method
was applied for filling the missing values as this widely used method is suitable for
rainfall stations that are closely spaced and the orographic features of the stations are
almost similar to each other [16,128]. For more information about the theory, please

see Appendix A (A4 & A.S).

4.2. Projection of Future Rainfall Extremes

In this study, changes of extreme rainfall indices (listed in Table 4.1) for the scenario
periods (2041-2070 & 2071-2099) regarding the reference period (1976-2005) were
estimated for RCP4.5 and RCP8.5 from six RCMs. However, beforehand, bias
correction of RCMs was performed, and the multi-model ensemble mean of extreme
indices was generated followed by the performance evaluation of the RCMs which were

discussed in following sub-sections.

4.2.1. Performance Evaluation of RCMs

The performance of RCMs was evaluated in terms of bias, root mean square error
(RMSE) and quantile-quantile (Q-Q) plot. The bias and RMSE are quantitative and
directional measure, while the Q-Q plot is a qualitative measure. The bias and RMSE
were calculated over average pre-monsoon and monsoon rainfall over the period 1976-

2005. The equation of bias and RMSE was discussed in Appendix A (A.6).
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Q—Q plot is a probability plot in which the quantiles of the two data set are plotted each
other. If the two distributions being compared are similar, the points in the Q—Q plot
will approximately lie on the line y = x. In this study, the quantile of the daily rainfall
from RCMs was plotted on the Y-axis, and the quantile of the observed rainfall was
plotted on the X-axis. If a particular point is below the y = x line, then it is
underestimated and vice versa. Therefore, in this way, the Q-Q plot can tell us which
rainfall intensity of RCMs is underestimated /overestimated or correctly matched with

observed rainfall.

4.2.2. Bias correction of RCMs

The downscaled rainfall data from the RCMs are affected by biases inherited from the
forcing GCMs [86]. Even within a single geographic region, different RCMs may
produce different results due to their model fundamentals, and climate forcing [44,
48,124,219. The biases in the RCMs include too much drizzle, errors in the mean and
failing to simulate heavy rainfall events [ 146]. Therefore, without removing or reducing

bias, multi-model means cannot be used for impact assessments.

In this study, the quantile mapping bias correction method was used since it has been
successfully and widely applied in climate change studies [106,155,187,188,197]. In
this method, cumulative distribution functions (CDF) were generated for both the
observed and RCM simulated rainfall firstly and then the CDF from an RCM simulated
value was matched to the observed value at the same CDF over a specified base period
[23,91]. All the daily rainfall values from the RCMs are scaled up or down according
to the adjusted CDF.

Though both parametric and nonparametric quantile mappings are widely used to
correct the bias of climate model output, a parametric method yields a better result [91].
This is because the parametric method is able to adjust the distributions of the model
output to agree with observed distributions. In this study, gamma distribution was
chosen since it represents rainfall data well, particularly for monthly and seasonal
values [87,91,146]. This method was applied to both the reference (1976-2005) and
scenario periods (2041-2070 and 2071-2099). A brief procedure of the quantile

mapping bias correction method is discussed in Appendix A (A.7).

31


https://en.wikipedia.org/wiki/Probability_plot

4.2.3. Multi-model ensemble mean

With the corrected RCM simulations, a multi-model ensemble mean was taken to
analyze possible future changes. Multi-model ensemble means have been shown to
outperform individual model output at the regional level [147,51. Among several
methods, the Bayesian Model Averaging (BMA) method provides a more reasonable
ensemble mean [152,202,223] since it gives higher weight to the RCM with better
predictive skills in the training period. This study used the RCMs output under the
CORDEX framework, and the observational data from seven rainfall station for the first

time.

Bayesian model averaging (BMA) produces a complete probability density function
(PDF) of the ensemble mean and quantifies the associated uncertainty of forecasts. The
BMA method has become increasingly popular since it produces a more reliable multi-
model ensemble mean [4,137,153]. In this approach, the PDF of the ensemble mean is
the weighted average of the conditional PDF of an individual model where the weights
are posterior probabilities of the models generating the forecasts and reflect the relative

contributions of each model to the overall predictive skill.

At first, the monthly values of extreme rainfall indices from daily time series were
derived to determine the BMA weight of it for each model. Then, the indices of the pre-
monsoon and monsoon seasons were separated. By doing so, three values for the pre-
monsoon and four values for the monsoon season for each index were obtained. In this
way, for a 30-year period, time series comprising 90 values for the pre-monsoon and

120 values for the monsoon season was obtained for the BMA computation.

However, beforehand, it was needed to know the distribution of the indices according
to the above discussions. For example, monthly rainfall totals of a particular season
were fitted for different distributions (e.g., normal, gamma, exponential) to determine
for which a specific distribution data sample is best fitted. Using the Kolmogorov—
Smirnov test and graphical techniques (histograms and density estimate), it was found
that the monthly rainfall data for the study area are best fitted by the gamma distribution.
As an example, a data histogram and the corresponding fitted gamma PDF for monthly
rainfall of Sylhet station are shown in Fig 4.1. As expected, rainfall data are positively
skewed with a long tail to the right of the distribution. This is the case for both the pre-

monsoon and monsoon seasons. The gamma distribution, while being asymmetric and
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bounded on the left by zero, provides a good fit to the empirical data, particularly in the
extreme left and right tails of the distribution. Therefore, the gamma distribution was

considered for generating the conditional PDF.

Fig 4.1 Histogram and gamma pdf for monthly rainfall of Sylhet station (a) Pre-

monsoon and (b) monsoon.
The maximum likelithood function for the BMA multi-model ensemble mean was
optimized using the Differential Evolution Adaptive Metropolis (DREAM) Markov
Chain Monte Carlo algorithm for estimating the BMA weights and variance
[200,201,203]. Finally, the DREAM scheme was used to search for the optimal global
solution of BMA weight [203]. A detail description of BMA is discussed in Appendix
A (A.8).
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4.3. Relationship between El Nifio Southern Oscillation (ENSO) and Pre-
monsoon Rainfall and its Response under the Warming World.

The relationships between ENSO and pre-monsoon rainfall in the Meghna basin was
performed in three steps. Firstly, the relationship between pre-monsoon rainfall and
heat low in central India during the pre-monsoon particularly, in April was determined.
Because the Southwesterly moisture flows from the Bay of Bengal is triggered by the
low-pressure system in central India which brings moist air towards the foothills of the
Meghalaya Mountain that feeds deep convection over the Meghna basin. Before
determining the relationship between heat low over India and ESNO, it is essential to
know the answer of two questions: firstly, does there exist any significant relationship
between pre-monsoon rainfall and ENSO? Secondly, if there is a significant
relationship between pre-monsoon rainfall and ENSO then among different ENSO
index (e.g., ESOI, SOI, ONI, and MEI) which is the best suited ENSO index for the
study area? Therefore, the relationship between the pre-monsoon rainfall and different
ENSO indexes (e.g., ESOIL, SOI, ONI, MEI) with different monthly lags was
determined in the second step. Since the heatwave produces heat low, the relationship
between the heatwave in central India during April and best suited ENSO index
(identified in the second step) was determined in the third step. Among different
indices, Excessive Heat Factor (EHF) can define heatwave more effectively since it
considers the existing moisture content, weather condition of two days before, and
climatological anomaly [160]. Therefore, in this study, Excessive Heat Factor (EHF)
was used to define heatwave, which is based on the Excess Heat Index and Heat Stress.
A brief discussion of the heatwave is given in Appendix A. Finally, the relationship
between heatwave (in terms of EHF)) in central India during April and best suited
ENSO index (identified in the second step) was determined in the third step. If a link
between the Indian heat low and pre-monsoon rainfall can be developed, this could be
helpful for short-term (monthly or seasonal scale flood forecasting. If a relationship
between ENSO and pre-monsoon rainfall (either directly or via a connection with the
Indian heat low) can be shown, this could be helpful for seasonal flood forecasting of
the region. It is noted here that the Spearman's Rank Order Correlation was used to
establish the above-mentioned relationship. The advantage of using Spearman's Rank
Order Correlation over Pearson correlation is that Spearman’s Rank Order Correlation
is a non-parametric method, and therefore, it does not require to follow any distribution

of the data.
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Using the sea surface temperature (SST) from the GCMs, the monthly oceanic nifio
index (ONI) was calculated for the Nino 3.4 region for the control and the scenario
period. The ONI index was calculated by subtracting the SST values from the 30 years
average SST over the Nino 3.4 region [110]. Until February 2013, the Climate
Prediction Center of National Oceanic and Atmospheric Administration used a 30-year
average of the three most recent complete decades, updated in each new decade. For
example, they used the 1961-1990 average for the 1990s and 1971-2000 average for
the 2000s. However, in this study, the average SST value was calculated according to
the latest guidelines of the Climate Prediction Center. According to this guideline, for
each 5-year period, the 30-year period was selected in such a way that the first year of
the 5-year period falls in the center of the 30-year period. For example, SST values for
the year 1956-1960 are compared to the average of 1941-1970. Similarly, SST values
for the year 1961-1965 are compared to the average of 1946-1975. The advantage of
this new method over the previous method is that it does not distort the ENSO climatic
record due to warming up or cooling down the past three decades in the tropical Pacific
[110]. The response to ENSO under warming world was studied in terms of ENSO
frequency (number ENSO event) and ENSO amplitude (standard deviation of the SST
anomaly). It was done by using the output (monthly SST data) of the latest available
GCMs under CMIPS5 for RCP4.5 and RCP8.5 during 2041-2070 and 2071-2100.
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CHAPTER S
TREND ANALYSIS OF OBSERVED RAINFALL
EXTREMES

5.1. Introduction

Rainfall extremes are one of the major causes of natural disasters, such as flash floods,
urban waterlogging, landslides, and crop damage [212]. Because of global climate
change and alteration of Earth’s hydrological, the heavy rainfall event has increased in
the past and likely to continue [10]. Hence, trends in extreme rainfall events for
historical record and future have received considerable attention in recent years because

of the many extreme events such as hurricanes, droughts, and floods observed.

Therefore, this chapter presents the trend analysis of observed rainfall extremes over
northeast Bangladesh for the period 1984-2016. This study extends on previous studies
of rainfall in northeast Bangladesh. Many of the previous studies on rainfall in northeast
Bangladesh were limited to Sylhet station only. A single rainfall station might not
represent the surrounding climate [212], as it may be influenced by a particular local
climate [81]. This study, therefore, performed on the observed dataset from seven
rainfall stations located across northeast Bangladesh. The trend was identified on
seasonal totals and seven other rainfall indices depicting different rainfall
characteristics. This study considers trends in the pre-monsoon and monsoon seasons
separately. Rainfall in these seasons can have different convective triggering
mechanisms, but can also impact the lives of the local communities in very different
ways. The detail descriptions of the data and the methodology were presented in

Chapter 3 and Chapter 4, respectively.

At first, the rainfall climatology of northeast Bangladesh was described using a new
dataset. After that, the results from the homogeneity and the auto-correlation tests were

discussed. In the final section, the results of the trend analysis were presented.

5.2. Spatial Distribution of Annual and Seasonal Rainfall

For the seven stations combined, the mean annual, monsoon, and pre-monsoon rainfall
of the study area was 3232mm, 1765mm and 780mm, respectively. The spatial
distribution of annual mean rainfall (Fig 5.1) shows that the north receives higher

rainfall than the south. The same pattern emerges throughout the year where the mean
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annual rainfall ranges from 6000mm along in the north to 2000mm in the south (Fig
5.1c). The mean pre-monsoon and monsoon rainfall increase, respectively from 590mm
to 950mm and from1000mm to 3700mm between the north and south of northeast
Bangladesh (Fig 5.1a and Fig 5.1b).

Fig 5.1 Spatial distribution of mean rainfall of the study area for (a) Pre-monsoon,
(b)Monsoon and (c)Annual.
The mean annual, monsoon and pre-monsoon rainfall of Sunamganj was higher than
the other stations. This is understandable because of the station’s proximity to the
Meghalaya foothills and Cherrapunji, India, one of the wettest weather stations in the
world. The long-term variation of annual, pre-monsoon and monsoon rainfall for each
station is presented as a Box-and-Whisker plot in Fig 5.2. The variability of rainfall is
high in Sunamganj for the pre-monsoon and the monsoon seasons. Other stations
showed much lower inter-annual variability. These results show how detailed the local

meteorology of the northeast region can be varied.
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Fig 5.2 The Box-and-Whisker plot of the spatiotemporal variation of rainfall of
northeast Bangladesh for the period of 1984 to 2016.

5.3. Quality control of the data

5.3.1. Homogeneity test

The result of the homogeneity test was presented in Fig 5.3. In this figure, it was
observed that the test statistics for most of the stations decreased from 1992 to 2000
and remained below the critical line while the Sunamganj it remained above the critical
line for the same period. For the data sets to be considered homogeneous, the value of
the “test statistic” needs to remain below the critical value [89,145]. The maximum
values of test statistics for annual rainfall for all seven stations except Sunamganj stayed
below the critical value for the 95% confidence level. Since the null hypothesis for the
SNHT as well as Pettit test was accepted at the 95% confidence level, these stations
were considered homogeneous at this confidence level. Whereas, the rainfall at

Sunamganj station was said to be inhomogeneous since the null hypothesis was rejected

Before deciding whether to discard the Sunamganj data, an attempt was taken to find
out what was wrong with the data set. It was started by trying to identify any change
points in the time series using the Student t-test at the 95% confidence level. It was
found that the trend in the Sunamganj data changed in 2005 (Fig B.1a in Appendix B).
The field officer who was responsible for data collection confirmed that there were
irregularities in the data collection for some years before 2005. The comparison of the
de-trending annual rainfall of Sunamganj with the nearest and meteorologically similar
station of Sylhet also justified the argument of field office (Fig B.1b in Appendix B). It
was found that the de-trending annual rainfall pattern of these two stations was similar

before 1998 and after 2005, which was not the case in between 1998 and 2005.
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Fig 5.3 The Test statistics of homogeneity test for annual rainfall for seven stations in
the northeast of Bangladesh for the period of 1984 to 2016 (a) SNHT test (b) Pettit
test.

5.3.2. Autocorrelation test

Autocorrelation test is necessary to determine the randomness of the data. If the data is
not random, the result of trend analysis may give false information. The first order
autocorrelation coefficient for the indices of rainfall extreme for seven stations of
northeast Bangladesh for the period of 1984 to 2016 was presented in Table 5.1. The
co-efficient which is within the 95% confidence interval is considered as independent
or random event. The interval of the autocorrelation coefficient at the 95% confidence
limit depends on sample size and the order of lag. In this study, the sample size is 33,
and hence, for a two-sided test, the interval of the auto co-relation coefficient at the
95% confidence limit is -0.37 to 0.31. The lag 1 autocorrelation coefficient of rainfall
extreme for the pre-monsoon and monsoon season was within the range of 95%
confidence limit so the indices were not auto-correlated either random event (Table

5.1). Therefore, the selected indices can be used for trend analysis.
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Table 5.1 The first order Autocorrelation coefficient for the indices of rainfall
extreme for seven stations of northeast Bangladesh for the period of 1984 to 2016.

R25

Station RX1 RX5 (R50) PRCPTOT CWD CDD SDII
o Sylhet -0.02 -0.10 -0.15 -0.30 -0.08 -0.05 0.06
S Habiganj 0.10 0.03 -0.19 0.00 -0.13  -0.19 -0.01
% Moulvibazar 0.18 0.15 -0.10 0.05 -0.06 -0.28 0.10
g Netrokona 0.17 0.21 0.05 0.15 -0.13  0.17 0.24
;;3 Brahmanbaria  -0.17  -0.09 -0.17 -0.13 -0.11  0.00 -0.30

Bhairab Bazar -0.01 -0.01 0.06 0.00 -0.10 -0.33 0.14

Sylhet -0.02  0.00 -0.27 -0.19 0.22 -0.17 -0.02
g Habiganj -0.14  0.16 -0.32 -0.29 -0.03 -0.07 -0.21
2 Moulvibazar -0.10 -0.27 -0.10 -0.11 -0.22  -0.22 0.01
§ Netrokona 022  -0.07 0.18 0.09 0.16 0.10 0.03
=  Brahmanbaria  -0.09  -0.17 -0.24 -0.23 0.10 0.14 -0.15

Bhairab Bazar -0.11  0.10 0.03 0.08 0.04 -0.24 -0.06

5.4. The trend of Indices of Rainfall Extremes

The trend analysis was performed on those stations that passed the quality control tests.
All the stations passed the autocorrelation test while the Sunamganj station failed to
pass the homogeneity test. Hence, the Sunamganj station was not considered for trend
analysis. The trend of extreme indices for the pre-monsoon and monsoon season are

discussed separately in the following sections.

5.4.1. Pre-monsoon

Fig 5.4 (a) showed that the one-day maximum rainfall (RX1) for all stations except
Sylhet and the five-day maximum rainfall (RX5) for all stations was decreased.
However, none of the stations showed a significant change in these two indices at the
95% confidence level. The most substantial decreases of RX1 (1.17 mm/year) and RX5
(2.0 mm/year) were at Moulvibazar (Table 5.2). The R25, PRCPTOT, and SDII also
decreased in most of the stations but not statistically significantly anywhere in Fig 5.4
(a). The most substantial decreases of R25, PRCPTOT, and SDII was 0.1 days/year at
Habiganj, 7.64mm/year at Moulvibazar and 0.24 mm/day/year at Bhairab Bazar,
respectively (Table 5.2). The CWD of most of the stations showed a decreasing trend,
and the CDD of most of the stations showed an increasing trend. However, these indices

were not statistically significant in any of the stations.
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Fig 5.4 The normalized test statistic (Zs) for the Mann-Kendall test of the indices of
rainfall extremes of six stations of northeast Bangladesh for the period of 1984 to
2016: (a) Pre-Monsoon and (b) Monsoon. The absolute Zs value which, is higher than
the critical value (Zc=1.96) are considered as statistically significant at 95%
confidence level.

Table 5.2 The Sen’s Slop estimator (Q) for indices of rainfall extremes for six
stations of northeast Bangladesh for the period of 1984 to 2016. The slopes
corresponding to statistically significant Zs in Fig 5.4 are underlined.

Station RX1 RX5 R25/R50 PRCPTOT CWD CDD SDII
Pre-monsoon
Sylhet 0.06 -0.36 0.09 4.32 -0.02 0.17 0.15
Netrokona -0.69 -1.91 -0.02 -2.74 0.04 -0.16 -0.12
MoulviBazar -1.17 -2 -0.09 -7.64 -0.03 -0.03 -0.17
Habigan;j -0.64 -1.57 -0.1 -2.98 -0.04 0.13 0.01
Brahman Baria  -0.17 -0.27 0.05 1.62 -0.09 -0.19 -0.12
Bhairab Bazar -0.74  -1.59 -0.07 -6.85 -0.01 0.1 -0.24
Monsoon
Sylhet -2.76  -4.00 -0.02 -13.61 -0.33 -0.03 -0.11
Netrokona -1.90 -3.43 -0.25 -25.35 0.04 0.05 -0.13
MoulviBazar -1.82 -3.33 -0.11 -17.02 -0.08 0.09 -0.09
Habigan;j -1.03  -1.95 -0.09 -3.79 -0.11  -0.01 0.10
Brahman Baria 025  -0.76 -0.04 -10.93 -0.14  0.20 0.10
Bhairab Bazar -1.19 -2.54 0.02 -12.02 -0.06  0.03 -0.15
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5.4.2. Monsoon

The RX1 at most of the stations exhibited downward trends in which Sylhet and
Netrokona decreased statistically significant at the 95% confidence level (Fig 5.4 b).
The RX1 decreased at a rate of 2.76 mm/year at Sylhet and 1.90 mm/year at Netrokona
(Fig 5.4 b). The RX5 decreased at all stations in which it decreased significantly at
Sylhet, Netrokona, and Moulvibazar. The decreasing rates of these three stations are
4.0mm/year, 3.43mm/year and 3.33mm/year, respectively. The PRCPTOT also showed
falling trends at every station, in which it decreased significantly at Netrokona and
Moulvibazar stations 25.35mm/year and 17.02mm/year, respectively. At all stations,
the R50 showed a decreasing trend in which one station decreased significantly. The
trend of CWD and CDD during monsoon season had an almost similar trend like pre-
monsoon season where most of the station showed a negative trend for CWD and the
positive trend of CDD. The CWD deceased significantly at Sylhet and Brahmanbaria
0.33days/year and 0.14days/year, respectively. The CDD increased significantly at
Brahmanbaria only 0.2days/year. Among the six stations, the SDII showed a falling
trend at four stations while rising trend at two stations. However, none of them was

statistically significant.

Several of the stations show decreasing (but not significant) trends in total pre-monsoon
rainfall, which agrees with previous studies [42,176]. Overall, the pre-monsoon climate
does not seem to change very rapidly since it was observed no significant trends for any
rainfall index during this season. Regarding the monsoon season, previous studies have
concluded that long-term monsoon rainfall over the Assam and Meghalaya state of
India has decreased, but not significantly [42,98,99,134,179. The results show that the
monsoon rainfall has decreased in all stations, most significantly at Netrokona.
Significantly decreasing trends in RX1 and RXS5 at the same station, including Sylhet,
was also observed. These results do not align with the narrative that total rainfall can
decrease, but extremes can increase. Overall, the results vary from the index to the index
and station to station. This shows how the local climate can be even in a relatively small

region like northeast Bangladesh.

Being in the downstream part of the Meghna Basin, northeast Bangladesh receives a
significant portion of water from the adjoining part of India. As the observed rainfall

data from India was not accessible, the trend was identified using observed data from

42



Bangladesh only. This trend analysis can, therefore, not directly show any changes in a

flash flood, riverine flood, or drought occurrence over the entire basin.

5.5. Summary

In this chapter, the trends of rainfall extremes of northeast Bangladesh for the period
1984 to 2016 for the pre-monsoon and monsoon seasons were explained. The daily
rainfall data of seven stations representing the seven administrative districts of this
region were used for this study. The trend analysis considered a number of different
indices of rainfall extremes and was performed using the Mann-Kendall trend test and

Sen’s slope estimator.

Before applying the trend test, the Standard Normal Homogeneity Test (SNHT) and the
Pettitt test was applied to check the homogeneity of the data. The randomness of the
index of rainfall extremes was checked using an autocorrelation test. Among the seven
stations, all stations were found to be homogeneous except Sunamganj, which was
found to be inhomogeneous, and all the stations passed the correlation test meaning the
index of rainfall extremes resulted from random events. The irregularities in data of the
Sunamganj station from 1998 to 2005, causing inhomogeneity of rainfall data were
identified using change-point analysis, comparing de-trending annual rainfall with the
nearby station and information from the field office. Hence, the Sunamganj station was

not considered for the trend analysis.

In general, all the extremes rainfall indices showed a decreasing trend in both seasons
over the region, with most of them decreased significantly during the monsoon. The
most significant finding is that over this region, the seasonal total rainfall and the
consecutive wet day exhibited a decreasing trend whereas the consecutive dry day saw
an increasing trend. The decreasing trend of one-day maximum rainfall, five-day
maximum rainfall, the intensity of the daily rainfall over 25mm during the pre-
monsoon, and 50mm during the monsoon, indicate a decrease in the magnitude and
intensity of rainfall, with implications for seasonal and flash-floods. While these trends
were observable over most stations, the trends were not always found to be statistically
significant, demanding continued research into rainfall extremes. If these decreasing
trends of rainfall extreme continue in the future, northeast Bangladesh may suffer from

significant water stress. While extreme flooding can be harmful to these communities,
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they have learned to live with the phases of ‘normal’ flooding. For example, the
reduction of pre-monsoon rainfall and an increase in consecutive dry days could affect
Boro rice production. Likewise, flooding brings a significant amount of coarse sand,
stone, and boulders from the surrounding mountains, with the harvesting of this
valuable resource employing many people. Similarly, the monsoon floods are necessary
for fertilizing the paddy field and replenishing fish stocks in the haor. Hence, the
findings from this study, together with future climate projections from climate models,
will be helpful for future planning and management of water resources in the region. In
the next chapter, the future trend and possible changes in rainfall extremes considering

climate change were discussed.
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CHAPTER 6
PROJECTION OF FUTURE RAINFALL EXTREMES
UNDER THE WARMING WORLD

6.1. Introduction

In Chapter 5, it was observed that most of the extreme rainfall indices showed a
decreasing trend in both seasons, with the most significant decrease during the
monsoon. Now it is essential to know how these rainfall extremes are likely to change
in future considering climate change. Therefore, in this chapter, the trend of rainfall
extremes over northeast Bangladesh for the period 2041-2070 and 2071-2099 as a
consequence of climate change was presented first. After that, the changes in rainfall
extremes for the same period regarding baseline (1976-2005) was analyzed. For these
purposes, six RCMs over the CORDEX South Asia domain considering two RCPs,
namely RCP4.5 and RCP8.5, were used. Multi-model ensemble means were generated
using a Bayesian Model Averaging (BMA) approach. In this approach, individual RCM
was assigned a weight according to its predictive skill during the training period.
Beforehand, the quantile mapping bias correction was performed after evaluating the
RCMs performance in simulating the present-day climate. The detail descriptions of

the data and the methodology were presented in Chapter 3 and Chapter 4, respectively.

6.2. Performance Evaluation of RCMs

The performance of RCMs over CORDEX South Asia domain was evaluated to
determine the ability to reproduce historical rainfall over northeast Bangladesh. It was
evaluated against observed station data in terms of bias, RMSE, and Q-Q plot for the
period of 1976-2005. The bias indicates the wetness or dryness of the model, while the
RMSE indicates the overall accuracy. The Q-Q plot shows if RCMs can simulate a
particular rainfall intensity or not. Therefore, bias and the RMSE were estimated on

monthly rainfall totals, while the Q-Q plot was drawn on daily rainfall.

In this study, only the pre-monsoon and monsoon season was considered as the study
area is subjected to pre-monsoon flash flood and monsoon flood, which cause enormous
damage to lives and lively hood of the region. The bias and RMSE of RCMs needed to
normalize for comparing them during the pre-monsoon and monsoon season.
Therefore, the actual bias and RMSE were normalized by mean seasonal rainfall and

standard deviation, respectively, from observed data. The normalized bias was negative
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for most of RCMs during the pre-monsoon and all RCMs during the monsoon (Fig 6.1).
Therefore, the average bias of the RCMs was also negative for both seasons. This means
that RCMs always underestimate in simulating present-day average rainfall for the
study area. It was also noted here that the normalized bias was higher for the monsoon

than pre-monsoon.

Fig 6.1 Normalized bias for different RCMs with respect to observed station rainfall
during the period of 1976-2005 for (a) Pre-monsoon and (b) monsoon.

The normalized RMSE of the RCMs were also higher during the monsoon than the pre-
monsoon (Fig 6.2). Therefore, it can be inferred that RCMs were less efficient in
simulating the higher amount of rainfall. The reasons for higher bias and RMSE of the
RCMs could be because of a lack of good quality high-resolution observed data.
Another reason could be the sparse observation because of the complex geography of
the study area. Lack of proper knowledge to use point measurement data in evaluating
the grid-based RCMs, particularly for sparse station networks with complex topography

could also be another reason.
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Fig 6.2 Normalized RMSE for different RCMs with respect to observed station
rainfall during the period of 1976-2005 for (a) Pre-monsoon and (b) monsoon.

Fig 6.3 Q-Q Plot for Sylhet station during 1976-2005 for (a) Pre-monsoon and (b)
Monsoon.

The Q-Q plot for Sylhet station showed that all the RCMs underestimated the low-

intensity rainfall and overestimated the high-intensity rainfall during the pre-monsoon
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(Fig 6.3). RCMs always underestimated the observed rainfall during the monsoon.
Other stations also showed similar behavior like Sylhet in simulating present-day

climate (see Fig B.2 and Fig B.3 in Appendix B).

6.3. Quantile Mapping Bias Correction of RCMs

The bias correction was performed on daily rainfall data for the pre-monsoon and
monsoon season independently after modifying wet-day frequencies of the RCMs
simulated rainfall as discussed in methodology in Chapter 4. However, the result of

Sylhet station only was presented here as an example (Fig 6.4).

Fig 6.4 Quantile-quantile plots for the uncorrected (colored marker) and corrected
(black marker) of simulated daily rainfall by RCMs against observed daily rainfall for
Sylhet: (a) Pre-monsoon and (b) Monsoon.

The result of this bias correction for other stations was similar to that shown in Fig 6.4
(see Fig B.3 and Fig B.4 in Appendix B). Seasonal total rainfall of the Sylhet station
before and after bias correction was shown in Table 6.1 as an example. Most of the
uncorrected RCMs overestimate the observed rainfall at high intensity but,
underestimated at low-intensity rainfall and also produce too many drizzle days during
the pre-monsoon season (Fig 6.4). In terms of total seasonal rainfall also for Sylhet, as
listed in Table 6.1, all RCMs simulate the almost equal amount of pre-monsoon rainfall
except SMHI. Also, it was noteworthy that the simulated seasonal rainfall from four
(ACCESS, CCSM4, MPI, and MPI-REMO) out of six RCMs was close to the observed
amount (1087 mm). After bias correction, the RCM simulation was closer to the
observed seasonal rainfall, and this improvement is evident for SMHI and CNRM
RCMs. Among all six RCMs, the most considerable seasonal rainfall difference

between simulation and observation is only 28 mm after bias correction.
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Table 6.1 Seasonal rainfall for Sylhet station before and after bias correction.

MPI-
Observed ACCESS CCSM4 CNRM MPI oo SMHI
. .
g Beforebias g7 y116 1050 1239 1134 1088 386
2 correction
o
E .
g AflerBias iae; 090 1072 1079 1081 1059 1076
a, correction
g Beforebias ;45 1171 1168 976 1049 1760 982
S correction
Z .
S AfterBias 5933 2707 2700 2710 2719 2712 2712
correction

During the monsoon season, all six RCMs underestimated the observed daily rainfall
considerably from low to high intensity (Fig 6.4). As a result, all the RCMs
underestimate the seasonal rainfall (Table 6.1). The RCM rainfall for the other stations
was also shown similar behavior like Sylhet. However, after the bias correction, the
RCM rainfall distributions and total amounts were similar to those of the observed
rainfall. The most substantial seasonal rainfall difference between RCMs and the

observation is only 33 mm.

6.4. Bayesian Model Averaging

With the corrected RCM simulations, the multi-model ensemble mean was generated
using the BMA method. Among several methods, the BMA method provides more
reasonable ensemble mean [152,202,222] since it gives higher weight to the RCM with
better predictive skills in the training period. Though BMA weights were calculated for
all extreme rainfall indices, the result of monthly rainfall in the pre-monsoon and
monsoon was presented here, for example. Histograms of the posterior marginal
probability density functions of the BMA weights of the monthly rainfall totals for the
individual ensemble members during the training period of Sylhet station for pre-
monsoon and monsoon respectively were presented in Fig 6.5 and Fig 6.6 (see Fig B.6
to Fig B.15 Appendix B for the other stations). In those figures, it was found that all the
histograms exhibit gamma distribution, as explained earlier. This means that there is
high confidence in the weights applied to each of the individual models. The optimal
values derived with the MCMC algorithm were separately indicated in each panel with

the ‘x’ symbol.
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Fig 6.5 Marginal posterior pdf of the DREAM derived BMA weights of monthly
rainfall totals for pre-monsoon of Sylhet station. The MCMC derived solution is
separately indicated in each panel with symbol ‘X’.

Fig 6.6 Marginal posterior pdf of the DREAM derived BMA weights of monthly
rainfall totals for the monsoon of Sylhet station. The MCMC derived solution is
separately indicated in each panel with symbol ‘X’.
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Fig 6.7 BMA weights of each RCM for monthly rainfall totals of different stations
during the historical period (1976-2005): (a) Pre-monsoon and (b) Monsoon.

The optimal BMA weights for rainfall of six rainfall stations were presented in Fig 6.7.
As noted previously, the BMA weights were calculated on monthly rainfall for the pre-
monsoon and monsoon seasons separately. The BMA weight reflects the overall
performance of the RCMs in capturing monthly rainfall for the study area. It reflects
the overall performance of the RCMs in capturing monthly rainfall. The RCMs showed
better performance at one station while worse performance in another station. No
particular RCM was consistent for capturing higher BMA weights for all stations (Fig
6.7). Similarly, the RCMs performance varied in different seasons. Therefore, it can be
inferred that there is no single best or worst model in simulating rainfall variation over

the region, according to the concept of a multi-model approach.

The multi-model ensemble mean of rainfall was calculated using BMA weights, and by
the simple arithmetic ensemble mean (AEM). The Normalized Root Mean Square Error
(NRMSE) (RMSE was normalized by the standard deviation of the observed data),
BMA and AEM for each RCMs were estimated to evaluate the performance of BMA
(Table 6.2). It is noteworthy that the NRMSE of the commonly used AEM is always
smaller than the corresponding statistic from each participating RCM for both seasons.
This phenomenon is consistent with the general notion that the ensemble means usually

outperforms all or most of the individual ensemble members [152]. Relative to the
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simple AEM, the NRMSE of the BMA is even smaller. The NRMSE of BMA weights
is lesser than all participating RCMs for all stations and seasons. For all six stations,
the average percentage of the decrease in NRMSE from the AEM to BMA varies from

3% during the pre-monsoon to 22% during the monsoon season.

Table 6.2 Normalized Root Mean Square Error (NRMSE) for seasonal rainfall of
different RCMs, Arithmetic Ensemble Mean (AEM) and BMA during the historical
period (1976-2005).

MPI-
Station ACCESS CCSM4 CNRM REMO MPI SMHI AEM BMA
Pre-monsoon
Sylhet 1.15 1.35 0.94 1.12 1.14 1.15 0.88 0.86
Sunamganj 1.04 1.32 1.12 1.06 1.02 122 0.80 0.78
Netrokona 1.17 1.01 1.10 096 1.13 122 0.75 0.72
Moulvibazar 1.05 1.36 1.05 1.33 1.30 0.99 0.81 0.76
Habigan;j 1.14 1.58 1.20 1.34 140 1.02 0.82 0.78
Bhiarabbazar 1.37 1.53 1.39 097 166 1.19 092 0.78
Monsoon
Sylhet 1.82 2.33 1.89 1.58 242 179 1.18 1.03
Sunamganj 1.89 1.98 1.89 1.58 237 184 1.39 1.01
Netrokona 2.25 1.95 1.95 1.72 234 176 1.22 1.07
Moulvibazar 1.82 2.00 1.97 1.60 199 157 1.19 1.13
Habigan;j 2.01 2.32 2.48 1.76 194 185 1.65 1.24

Bhiarab Bazar 1.81 2.22 2.29 1.62 198 1.86 1.43 1.26

It was assumed that the BMA weights should reflect relevant model skill in the multi-
model ensemble approach. In another way, it was anticipated that the RCMs having
higher BMA weights should produce lower NRMSE. Sometimes, the weights of the
RCMs were contradicted with NRMSE. For example, the model MPI received the
second-highest BMA weight at Sylhet station during the pre-monsoon (Fig 6.7) but
ranked the third lowest NRMSE among the six RCMs (Table 6.2). The paired
correlations could explain this inconsistent nature between individual simulations in the
ensemble. Sometimes, the RCMs with the higher BMA weight may have a lesser
correlation with the observed data and vice versa. A substantial amount of redundancy
caused this, and therefore results in de-weighing of the best single simulation and
overweighting of the worse single simulation. Other authors [203,209,222] also found

this kind of inconsistency in their studies.
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6.5. The trend of future rainfall extremes

A number of plots as per the Fig 6.8 and Fig 6.9 showed Mann—Kendall based trends
of the extreme rainfall indices in an intra-decadal time series (2041-2070 and 2071—
2099) domain for RCP4.5 as well as RCP8.5 during the pre-monsoon and monsoon
season, respectively. Sen's slopes were measured to determine the magnitude of
changes of extreme indices during the projected time scale (2041-2070 and 2071—
2099). The results of Sen's slope estimation are shown in Table 6.3 and Table 6.4 during

the pre-monsoon and monsoon season, respectively.

Pre-monsoon

In RCP4.5, most of the extremes indices showed an increasing trend for the time series
2041-2070 while in time series 2071 to 2099, some indices showed an increasing trend
and others showed a decreasing trend (Fig 6.8a and Fig 6.8b). A few of the stations,
PRCPTOT, and R25 for 2041-2070 time series and R25 for 2071-2099 times series
showed a significantly increasing trend. However, R99P and RX1 showed a significant
decreasing trend for the 2071-2099 time series. In RCP8.5, most of the extremes
indices showed an increasing trend for both 2041-2070 and 2071-2099 time series (Fig
6.8c and Fig 6.8d). Among them, R25, R95P, and R99P for 2041-2070 time series and
PRCPTOT, R25, R95P and R99P for 2071-2099 showed a significantly increasing
trend. The CDD showed a decreasing trend for RCP4.5 as well as RCP8.5 during both
time series in some stations. It decreased significantly during the 2071-2099 for
RCP8.5. The corresponding Sen's slopes of the extreme indices, which were
significantly increased or decreased in Fig 6.8 were made bold and underlined in Table

6.3.

During the pre-monsoon, most of the extreme indices except CDD showed a decreasing
trend for the period 1796-2005 (see Fig 5.4a) while most of the extreme indices showed
an increasing trend for the scenario period except 2071-2099 for RCP4.5 (Fig 6.8). This
increasing trend could be understood by analyzing the mechanisms of the pre-monsoon
rainfall over northeast Bangladesh. Among different mechanisms, (discussed in Section
2.1), the heat low over India is one of the major causes. A heat low over central India
adjacent to the western border of Bangladesh resulting from intense heating of the
landmass triggers the southwesterly moisture flow from the Bay of Bengal towards the

Meghalaya Plateau [159,195]. Due to global warming, the heat low over central India

53



is likely to increase [132,162]. This happening will cause more moisture flow toward
the Meghalaya mountain region in India and will result in a more extreme rainfall event
in northeast Bangladesh. Another cause can be explained by the Clausius—Clapeyron
(C-C) relationship. The atmospheric moisture-holding capacity is likely to increase
with the surface temperature through the C-C equation [144]. Several studies
[5,12,31,166,177] also argued that this increase of rainfall might be attributed to the
increase of low level (850 hPa) moisture content resulting from increased temperature
due to global warming. In the case of RCP4.5, the emission of CO2 peaking from 2040
to 2050, and it declines afterward while for RCP 8.5 it attains its peak in 2100 (Fig 2.4).
Therefore, between 2071 and 2099 for RCP4.5, the extreme indices were decreased in
most of the cases due to less moisture flow from the Bay of Bangle resulting from the

slowing down of rising the sea surface temperature.
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Fig 6.8 The normalized test statistic (Zs) of the Mann-Kendall test of the indices of
rainfall extremes considering all model ensemble mean derived by BMA for pre-
monsoon: (a) RCP 4.5(2041-2070),(b)RCP4.5(2071-2099),(c)RCP8.5(2041-2070),(d)
RCP8.5(2071-2099). (The absolute Zs value which is higher than the critical value
(Zc=1.96) are considered as statistically significant at 95% confidence level.

54



Table 6.3 Sens’s slope estimator of rainfall extremes considering all model ensemble
mean derived by BMA for two future time slices (2041-2070 and 2071-2099 under
RCP 4.5 and RCP 8.5 scenarios for Pre-monsoon. The corresponding Sen's slopes of
the extreme indices which were significantly increased or decreased in Fig 6.8 were
made bold and underlined.

[
§ -9 E a =] S v A A — s =
& 5 8 £z § = E 2 2 & %
-
L 45 2041-2070  -0.05 0.02 517 0.0 0.13 0.12 -0.55 040 0.00
e 2071-2099 -0.09 0.07 423 0.10 0.09 -0.08 -0.72 0.87 0.02
;ﬁ‘ g5 2041-2070 -0.08 0.07 840 0.10 042 1.00 097 2.00 0.11
2071-2099 -0.03 0.03 924 0.15 037 021 -052 -1.50 0.11
T 4 2041-2070 -0.06 -0.01 560 0.15 0.01 0.05 -038 0.04 0.0l
S 2071-2099 -0.03 0.04 558 0.07 023 -0.14 -046 0.68 0.06
g o5 2041-2070 -0.03 0.01 7.09 0.11 041 023 059 074 0.09
2 2071-2099 -0.09 0.03 649 0.7 022 -024 -1.17 -3.44 0.07
S 45 2041-2070 -0.04 0.05 022 007 0.03 052 -1.02 -191 -0.12
< 2071-2099 0.00 0.01 6.69 0.12 032 -071 049 273 0.14
§ 2041-2070 -0.03 0.05 372 0.09 0.12 -0.07 -022 0.02 -0.04
z 83 2071-2099 -0.22 -0.01 6.58 0.09 030 -0.08 0.05 -031 0.09
E 45 2041-2070 -0.07 0.02 430 007 0.02 0.03 010 091 0.00
= 2071-2099 -0.08 0.02 352 005 0.06 -003 -025 -0.16 -0.03
% 2041-2070 0.01 -0.03 2.18 0.03 0.18 0.19 023 071 0.02
§ 8.5 2071-2099 0.00 0.05 879 0.17 045 058 049 070 0.20
T 45 2041-2070 -0.05 0.02 0.16 004 -0.10 044 -054 -1.11 -0.04
En 2071-2099 -0.08 0.05 499 008 0.07 -036 037 0.89 0.00
E 8.5 2041-2070 -0.08 0.06 320 006 0.02 011 023 0.17 -0.01
2071-2099 -0.09 001 740 013 042 0.14 0.02 -0.10 0.11
E 45 2041-2070 -0.08 0.03 -0.07 004 -0.17 033 -076 -1.50 -0.12
§ T 2071-2099 -0.01 0.04 365 004 0.17 -062 0.12 0.77 0.00
_§ 2041-2070 -0.03 0.06 494 009 031 025 0.16 042 0.05
% 8.5 2071-2099 -0.14 0.02 10.71 0.13 049 096 058 235 0.17
Monsoon:

Most of the extremes indices showed an increasing trend for the time series 2041-2070
while it showed a decreasing trend in most of the cases for the time series 2071 to 2099
for RCP4.5 (Fig 6.9a and Fig 6.9a). CDD, CWD, RX1, and SDII for the 2041-2070
time series showed a significantly increasing trend in a few stations. However, all the

extreme indices except CDD and CWD showed a significant decreasing trend for 2071—
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2099 times series in almost all stations. In RCP8.5, most of the extremes indices showed
a decreasing trend for both 2041-2070 and 2071-2099 time series (Fig 6.9c and Fig
6.9d). Among them, almost all indices in most of the stations for 2041-2070 time series
in addition to CWD, PRCPTOT, R50, RX1 and SDII for 2071-2099 at some stations
showed a significant decreasing trend. The corresponding Sen's slopes of the extreme
indices, which were significantly increased or decreased in Fig 6.9 were made bold and

underlined in Table 6.4.
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Fig 6.9 The normalized test statistic (Zs) of the Mann-Kendall test of the indices of
rainfall extremes considering all model ensemble mean derived by BMA for
monsoon: (a) RCP 4.5(2041-2070),(b)RCP4.5(2071-2099),(c)RCP8.5(2041-2070),(d)
RCP8.5(2071-2099). (The absolute Zs value which is higher than the critical value
(Zc=1.96) are considered as statistically significant at 95% confidence level.

During the monsoon, the extreme indices showed a decreasing trend in most of the
cases except less increase during 2041 t02070 in RCP4.5 (Fig 6.9), which is like the
historical trend (Fig 5.4b). Several studies suggest that due to global warming under the
increasing greenhouse, the temperature of the landmass of the subcontinent will
increase slowly compared to the Indian Ocean, which will reduce the land-sea thermal
gradient over the Indian subcontinent [162]. Therefore, extreme indices showed a

decreasing trend during monsoon under almost emission scenarios.
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Table 6.4 Sense slope estimator of rainfall extremes considering all model ensemble
mean derived by BMA for two future time slices (2041-2070 and 2071-2099 under
RCP 4.5 and RCP 8.5 scenarios for monsoon. The corresponding Sen's slopes of the

extreme indices which were significantly increased or decreased in Fig 6.9 were made

bold and underlined.
= S
S A E a _ et o B N — v =
- 5 s £ s £ 2 2 % g
[~™

o 45 2041-2070 0.06 -0.17 10.88 0.04 0.11 037 115 137 0.14
S 77207122099 0.04 -0.19 -1429 -0.11 -027 -0.40 -0.61 -2.23 -0.10
% 8.5 2041-2070 0.00 -0.06 -19.58 -0.27 -0.48 -045 -086 -2.01 -0.16

' 2071-2099 -0.03 -0.20 -19.18 -0.17 -0.23 0.11 -0.38 -0.21 -0.21
'g 4s 2041-2070  0.05 -0.04 8.67 008 0.18 054 043 1.57 0.16
%‘) 2071-2099 0.02 -0.05 -30.30 -0.24 -0.66 -048 -1.34 -343 -0.23
S 8.5 2041-2070  0.00 -0.14 -3422 -0.23 -0.61 -0.32 -0.55 -2.19 -0.27
@ 7 20712099 002 -0.16 -31.14 028 -022 0.14 005 -0.73 -0.15
s 4s 2041-2070  0.03  0.06 -4.01 -0.01 -0.08 -0.22 -0.01 -043 0.00
% ' 2071-2099 0.00 -0.11 -14.70 -0.14 -0.22 -0.32 -0.58 -1.23 -0.10
E 8.5 2041-2070  0.00 -0.05 -17.55 -0.23 -0.67 -0.53 -0.89 -2.19 -0.14
z ' 2071-2099 0.00 -0.04 -7.37 -0.03 -0.15 -0.08 0.12 -0.56 -0.02
E 4s 2041-2070  0.03  0.14 3.96 005 024 001 -0.51 -023 0.07
S 7 20712099 0.06 -0.04 -11.50 -0.05 -0.16 -0.59 -145 -432 -0.07
% 25 2041-2070 0.00 -0.01 -11.39 -0.10 -0.41 -0.92 -1.34 -362 -0.11
zc ' 2071-2099  0.02 -0.11 -6.92 0.00 0.01 -0.02 032 -0.22 -0.01
= 45 2041-2070  0.03 0.12 2.34 -0.02 0.09 -0.17 037 -0.54 0.02
s ' 2071-2099 0.06 0.00 -14.67 -0.08 -0.40 -0.79 -091 -3.56 -0.12
= 2041-2070  0.02 -0.02 -11.18 -0.13 -0.47 -0.66 -0.87 -1.75 -0.11
T 85 50712099 001 004 537 002 009 -006 -021 040 -0.01
E 45 2041-2070 0.04  0.02 3.27 0.00 0.19 020 0.09 1.40 0.05
= ' 2071-2099 0.02 -0.04 -11.03 -0.09 -0.35 -0.62 -1.07 -2.77 -0.12
g 2041-2070 0.04 -0.01 -8.02 -0.07 -033 -046 -147 -3.77 -0.11
E 8.3 2071-2099  0.05 -0.05 -3.01 0.00 0.10 -0.29 -1.02 0.03 -0.01

6.6. Changes of Future Rainfall Extremes

The changes of future rainfall extremes were estimated for all RCMs, and for their

ensemble mean generated by BMA weight (see Fig 6.7). Fig 6.10 shows the variability

of the mean changes of extreme indices with respect to the baseline for Sylhet station.

The variability of the extreme indices for other stations is presented in Fig B.16 to Fig

B.20 in Appendix B.
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Fig 6.10 Box and whisker plots for changes of rainfall extremes of Sylhet station
considering all RCMs for two future time slices (2041-2070 and 2071-2099) relative
to the baseline period (1976-2005) under