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Abstract 
Viscous incompressible fluid in a steady two-dimensional natural convection flow 

considering viscous dissipation along a uniformly heated vertical wavy surface in 

presence of internal heat absorption and variable viscosity has been investigated in 

this thesis. Using the appropriate transformations of variables of the basic governing 

equations are changed to non-dimensional boundary layer equations, which are solved 

numerically by employing the implicit finite difference method together with Keller-

box scheme. The program code of this method has been developed in FORTRAN. 

Attention is focused on the evolution of the surface shear stress in terms of local skin 

friction, rate of heat transfer in terms of local Nusselt Number, velocity, temperature, 

isotherms as well as the streamlines for a selection of parameter sets consisting of 

viscosity parameter ε, heat absorption parameterQ, Eckert NumberEc, Prandtl number 

Prand the amplitude of wavinessof the surface α.The results obtained from the 

numerical study have been discussed emphasizing the physical prospects and shown 

graphically by utilizing the visualizing software TECHPLOT. 

The skin friction coefficient Cfx, the rate of heat transfer in terms of Nusselt number 

Nux, the velocity, the temperature, the streamlines as well as the isotherms are shown 

graphically in figures for different values of the viscosity variation parameter ε (= 0.0 

to 60.0), heat absorption parameter Q(= -0.40 to 0.0), Eckert number Ec (= 0.0 to 8.0), 

the amplitude of waviness of the surface α(= 0.0 to 0.4)and Prandtl number Pr (= 0.73 

, 3.0, 7.0, 15.5) which correspond to the air at 2100°K, water at20�, 60� and  

100�respectively. 

The results of the present investigations for heat absorption parameter Q, the rate of 

heat transfer and velocity increases and the skin friction coefficient and temperature 

decreases. For increasing Eckert number Ec, the skin friction coefficient, velocity and 

temperature are increases, but the significant decreases over the whole boundary layer 

for the rate of heat transfer. The comparisons of the present numerical results with 

previous published works performed and the results show excellent agreement. 
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Chapter One 
Introduction 
 

Natural Convection is the mode of energy transfer between a solid surface and the 

adjacent liquid or gas that is in motion and it involves the combined effects of 

conduction and fluid motion. The faster the fluid motion, the greater the heat transfers 

due to convection. Natural convection flow is often encountered in cooling of nuclear 

reactors or in the study of the structure of stars and planets. In natural convection, 

fluid surrounding a heat source receives heat and by thermal expansion becomes less 

dense and rises. The surrounding, cooler fluid then moves to replace it. It has attracted 

a great deal of attention from researchers because of its presence both in nature and 

engineering applications. In engineering applications, convection is commonly 

visualized in the formation of microstructures during the cooling of molten metal, and 

fluid flows around shrouded heat-dissipation fins and solar ponds. A very common 

industrial application of natural convection is free air cooling without the aid of fans: 

this can happen on small scales (computer chips) to large scale process equipment. 

 

The surrounding fluid then moves to replace it. This cooler fluid is then heated and 

the process continues, forming convection current. Since there is no external fan to 

accelerate the heat transfer, the design of the heat sink should be thermally efficient to 

dissipate maximum amount of heat. The driving force for natural convection is 

buoyancy, a result of differences in fluid density. Because of this, the presence of a 

proper acceleration such as arises from resistance to gravity, or an equivalent force 

(arising from acceleration, centrifugal force or Coriolis effect), is essential for natural 

convection. For example, natural convection essentially does not operate in free-fall 

(inertial) environments, such as that of the orbiting International Space Station, where 

other heat transfer mechanisms are required to prevent electronic components from 

overheating. The natural convection procedures are governed essentially by three 

features namely the body force, the temperature difference in the flow field and the 

fluid density variations with temperature. The manipulation of natural convection heat 

transfer can be deserted in the case of large Reynolds number and very small Grashof 
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number. Alternately, the natural convection should be the governing aspect for large 

Grashof number and small Reynolds number. The analysis of natural convection has 

been considerable interest to engineers and scientists since it is important in many 

industrial and natural problems. There are many physical processes in which 

buoyancy forces resulting from thermal diffusion play an important role in the 

convection transfer of heat.  

 

Few examples of the heat transfer by naturalconvection can be found in geophysics 

and energy related engineering problems such as natural circulation in geothermal 

reservoirs, refrigerator coils, hot radiator used for heating a room, transmission line, 

porous insulations, solar power collectors, spreading of pollutants etc.In nature, 

convection cells formed from air raising above sunlight-warmed land or water are a 

major feature of all-weather systems. Convection is also seen in the rising plume of 

hot air from fire, oceanic currents, and sea-wind formation (where upward convection 

is also modified by Coriolis forces).  

 

It is also necessary to study the heat transfer from an irregular surface because 

irregular surfaces are often present in many applications. It is often encountered in 

heat transfer devices to enhance heat transfer. Laminar natural convection flow from 

irregular surfaces can be used for transferring heat in several heat transfer devices, for 

examples, flat- plate solar collectors, flat-plat condensers in refrigerators, heat 

exchanger, functional clothing design, geothermal reservoirs and other industrial 

applications. They are widely used in space heating, refrigeration, air conditioning, 

power plants, chemical plants, petrochemical plants, petroleumrefineries and natural 

gas processing. One common example of a heat exchanger is the radiator used in 

vehicles, in which the heat generated from engine transferred to air flowing through 

the radiator. Heat exchanger also widely used in industry both for cooling and heating 

large scale industrial process. 

 

It is a model problem for the investigation of heat transfer from roughened surfaces in 

order to understand heat transfer enhancement. The sinusoidal wavy surface can be 

viewed as an approximation too much practical geometries in heat transfer. A good 
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example is a cooling fin. Since cooling fins have a larger area than a flat surface, they 

are better heat transfer devices. Another example is a machine-roughened surface for 

heat transfer enhancement. The interface between concurrent or countercurrent two-

phase flow is another example remotely related to this problem. Such an interface is 

always wavy and momentum transfer across it is by no means similar to that across a 

smooth, flat surface, and neither is the heat transfer. Also, a wavy interface can have 

an important effect on the condensation process. 

 

Viscosity is a term used to describe resistance to flow at a particular temperature. A 

liquid of a high internal resistance to flow is described as 

viscosity (such as honey atroomtemperature). A liquid with a low internal resistance 

to flow is described as having a low viscosity (Such as water at room temperature). 

The internal resistance being referred to is related to the abilityfor 

molecules torearrange and move past each other. This rearrangement is necessary for 

flow. Liquids make up of small molecules have a low viscosity, and liquids with long 

chain molecules (such as plastics) have a much higher viscosity. 

 

The viscosity of materials generally decreases with increasing temperature. This is 

true of plastics. Plastics also generally decrease in viscosity with increasing shear. 

Shear is created when twisting or sliding motion is imposed on a material; such as 

when plastic is being melted in extrusion or injection molding by the rotation of the 

screw while the barrel remains stationary. In injection molding, shear is also created 

as plastic moves past itself and the walls of the sprue, runner and cavity walls during 

injection. Faster injection promotes a lower material viscosity.  

 

Viscosity, thermal conductivity etc. are physical properties which may be changed 

significantly with temperature. Temperature decreases the viscosity of liquids and 

increases theviscosity of gases. When the temperature is 100℃, 500℃ and 800℃, the 

viscosity of air is 1.3289, 2.671 and 3.625 kg݉ିଵିݏଵ respectively. The viscosity of 

water is 1006.523, 471.049, 282.425 and 138.681 kg݉ିଵିݏଵ respectively at 20℃, 

60℃, 100℃ and 200℃ temperature. 
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The viscous dissipation effect plays an important role in natural convection in various 

devices which are subjected to large deceleration or which operate at high rotational 

speeds and also in strong gravitational field processes on large scales(on large 

planets),in geological process and in nuclear engineering in connection with the 

cooling of reactors. The irreversible process by means of which the work done by a 

fluid on adjacent layers due to the action of shear forces is transformed into heat is 

defined as viscous dissipation. It is also important in the flow of fluids having high 

viscosities. Temperature of the fluid increases because of it.   

 

In any type of fluid flow there must present variable viscosity. Due to temperature, 

viscosity varies in fluid. In any simple flow such as in hot water flow through duct 

water molecules must make collisions among them which create temperature as a 

result viscosity varies. We can say about outer surface of the Sun. There occur many 

reactions simultaneously as a result temperature creates as well as viscosity also 

varies. Generally, viscous dissipation is taken to be theirreversible transfer of 

mechanical energy to heat by the flow working against the viscous stresses. 

 

The study of temperature and heat transfer is of great importance to the engineers 

because of its almost universal occurrence in many branches of science and 

engineering. Heat generation is a volumetric phenomenon. That is, it occurs 

throughout the body of a medium. Therefore, the rate of heat generation in a medium 

is usually specified per unit volume. Heat generation is the ability to emit greater-

than-normal heat from the body. The amount of heat generated or absorbed per unit 

volume is defined as )( TTQ , where Q being a constant, which may take either 

positive or negative. The source term represents the heat generation when Q˃  0 and 

the heat absorption when Q˃  0. 
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1.1  Literature Review 
 

Now a days, viscosity is playing a vital role in case of natural convection flows. The 

two-dimensional laminar natural convection of a Newtonian fluid and heat transfer 

problem has been presented by many investigators because of its considerable 

practical applications.Keller [15] investigatednumerical methods in boundary layer 

theory. The effect of significant viscosity variation on convective heat transport in 

water-saturated porous media investigated by Gray et al.[6]. Yao [32]studied natural 

convection along a vertical wavy surface. He has found that the frequency of the local 

heat transfer rate was twice then that of the wavy surface.Ithasfound that the 

investigation results for Physical and computational aspects of convective heat 

transfer by Cebeci and Bradshaw [5]. Yao and Moulic[20]added uniform heat flux 

parameter on natural convection along a vertical wavy surface. Heat transfer on 

natural convection was converted into sinusoidal wavy surface by Bhavnani 

andBergles[4].Mehta and Sood[18]analyzed transient free convection flow with 

temperature dependent viscosity in a fluid saturated porous media.Munir et al. [21] 

proposed natural convection of a viscous fluid with viscosity inversely proportional to 

linear function of temperature from a vertical wavy cone.Heat transfer in a viscous 

fluid over a stretching sheet with viscous dissipation and internal heat generation 

studied by Vejravelu and Hadjinicolaou[31]. Rees and Pop [29] presented a note of 

free convection along a vertical wavy surface in a porous medium. Kafoussius and 

Williams[12]researched effect of temperature dependent viscosity on the free 

convective laminar boundary layer flow past a vertical isothermal flat 

plate.Hossainand Pop [7] explored magnetohydrodynamic boundary layer flow and 

heat transfer on a continuous moving wavy surface. Natural convection along a wavy 

vertical plate to non-Newtonian fluids investigated by Kim[16]. Rees and Kafoussius 

studied numerically on the combined free and forced convective laminar boundary 

layer flow past a vertical isothermal flat plate with temperature dependent viscosity 

[13]. Again,Rees and Hossain[8]researched combined heated and mass transfer in 

natural convection flow from a vertical wavy surface. They also [9] investigated flow 

of viscous incompressible fluid with temperature dependent viscosity and thermal 

conductivity past a permeable wedge with uniform surface heat flux.Chamkha and 

Ramadan [28] considered analytical solutions for Hydromagnetic free convection of a 
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particulate suspension from an inclined plate with heat absorption. Hossain et al.[22] 

investigated natural convection with variable viscosity and thermal conductivity from 

a vertical wavy cone. They found that natural convection of a viscous fluid with 

viscosity inversely proportional to linear function of temperature from a vertical wavy 

cone. On the other hand, Kabir et al.[11] introduced natural convection of fluid with 

temperature dependent viscosity from heated vertical wavy surface.Jang et al. [10] 

performed natural convection heat and mass transfer along a vertical wavy 

surface.Natural convection flow along a vertical wavy surface with uniform surface 

temperature in presence of heat generation/absorption investigated by Molla et al.[19]. 

Alam et al. [2]studied viscous dissipation effects on MHD natural convection flow 

over a sphere in the presence of heat generation.MHD free convection flow along a 

heated vertical wavy surface with heat generation presented by Ahmed [1].Nasrin and 

Alim [23] consideredMHD free convection flow along a vertical flat plate with 

thermal conductivity and viscosity depending on temperature. Parveen and Alim 

[25]investigated that effect of temperature-dependent variable viscosity on magneto 

hydrodynamic natural convection flow along a vertical wavy surface. They also 

investigated [26] Joule heating and MHD free convection flow along a vertical wavy 

surface with viscosity and thermal conductivity dependent on temperature.Laminar 

free convection over a vertical wavy surface embedded in a porous medium saturated 

with a nanofluid were studiedby Mahdy and Ahmed [17].Ali [3]analyzed transition of 

free convection boundary layer flow.Nath and Parveen [24]proposed effects of 

viscous dissipation and heat generation on natural convection flow along a vertical 

wavy surface.Parveen and Alim [27] examined numerical solution of temperature 

dependent thermal conductivity on MHD free convection flow with Jouleheating 

along a vertical wavy surface.Tajul and Parveen [30] considered natural convection 

flow along a vertical wavy surface with the effect of viscous dissipation and magnetic 

field in presence of Joule heating. 

 

In the light of above literatures, none of the above investigations considered the effect 

of heat absorption, viscous dissipation on natural convection flow with variable 

viscosity along a vertical wavy surface. The present study addresses the natural 

convection flow along a vertical wavy surface with the effects of heat absorption and 

viscous dissipation under variable viscosity.  
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The results will be obtained for different values of relevant physical parameters 

(viscosity variation parameter ε, heat absorption parameter Q, Eckert numberEc, the 

amplitude of the waviness αof the surface and Prandtl numberPr) and will be shown 

in graphs as well as in tables.  
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1.2  Main Objectives of the Present Works 
 

The aim of this research is to investigate numerically the effects of temperature 

dependent variable viscosity, viscous dissipation and heat absorption on natural 

convection flow viscous incompressible fluid along a vertical wavy surface.The 

stream is assumed to flow in the upward vertical direction. Here the surface 

temperature Twis higher than the ambient temperature T. Solutions will be obtained 

and analyzed for the velocity and temperature profiles, the streamlines and isotherms 

patterns, the surface shear stress in terms of the local skin friction coefficient and the 

rate of heat transfer in terms of local Nusselt number over the whole boundary layer 

for a selection of parameters set consisting of viscosity variation parameter, Eckert 

number, heat absorption parameter, the amplitude of the waviness of the surface and 

Prandtl number. 

The major objectives of the present study are: 

 To develop the mathematical model regarding the proposed study. 

 To reduce the mathematical model into a system of non-dimensional 

ordinary differential equations using suitable transformations. 

 To solve the system of ordinary differential equations numerically with 

the help of implicit finite difference method together with the Keller-

Box scheme. 

 To investigate the effects of dimensionless parameters namely viscosity 

variation parameter, Eckert number, heat absorption parameter, Prandtl 

number and amplitude-to-length ratio of the wavy surface on local heat 

transfer rate, skin friction coefficient, velocity, temperature with 

streamlines and isotherms. 

 To present the numerical results graphically for different values of the 

parameters entering into the present study. 

 To compare the present results with other published works.  
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1.3  Outline of Methodology 
 
There are generally three types of numerical techniques depending on the types of 

problem to be solved. They are (i) Finite Element (ii) Finite Difference and (iii) Finite 

Volume Method.  The Finite Difference Method is very efficient for programming 

and rapid convergence among of the three methods. The transformed boundary layer 

equations are solved numerically with the help of implicit finite difference method 

together with the Keller-box scheme [15], which has been in details by Cebeci and 

Bradshaw [5]. The momentum and energy equations are first converted into a system 

of first order differential equations. Then these equations are expressed in finite 

difference forms by approximating the functions and their derivatives in terms of the 

center differences. Denoting the mesh points in the x and -plane by xi andj where i 

= 1, 2,...,M and j = 1, 2,…,N, central difference approximations are made, such that 

those equations involving x explicitly are centered at (xi-1/2 ,j-1/2) and the remainder at 

(xi,j-1/2), where j-1/2 = 1/2(j +j-1) etc. The above central difference approximations 

reducethe system of first order differential equations to a set of non-linear difference 

equations for the unknown at xi in terms of their values at xi-1. The resulting set of 

non-linear difference equations are solved by using the Newton’s quasi-linearization 

method. The Jacobian matrix has a block-tridiagonal structure and the difference 

equations are solved using a block-matrix version of the Thomas algorithm. The 

whole procedure namely reduction to first order followed by central difference 

approximations, Newton’s Quasi-linearization method and the block Thomas 

algorithm, is well known as Keller-box method. 

 

Effects of various parameters on the velocity and temperature profiles, the surface 

shear stress in terms of the skin friction coefficient, the rate of heat transfer in terms 

of local Nusselt number, the streamlines as well as the isotherms are shown 

graphically for different values of parameters entering into the problem using the post 

processing software TECPLOT and also in tabular form. 

In the program test, a finer axial step size is tried and find to give acceptable accuracy. 

A uniform grid of 201 points is used in x- direction with Δ x =0.05, while a non-

uniform grid of 76 points lying between η = 0.0 and 10.0 is chosen. Grid points are 
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concentrated towards the heated surface in order to improve resolution and accuracy 

of the computed values of the surface shear stress and rate of heat transfer. During the 

program test, the convergent criteria for the relative errors between two iterations are 

less 10-5. It means that iterative procedure is stopped when the maximum change 

between successive iterates is less than 10-5.  

 

1.4 Outline of this Thesis 
 

In chapter one, a brief introduction is presented with aim and objectives. This chapter 

also consists of a literature review of the past studies regarding natural convection, 

temperature dependent physical properties like viscosity, viscous dissipation and heat 

transfer in various irregular surfaces. 

 

The basic governing equations for this work are shown in standard vector form and 

mathematical modeling of the problem are discussed and the governing equations 

associated with boundary conditions for this work are converted to dimensionless 

form using suitable transformations in chapter two. 

 

In chapter three, effects of viscous dissipation with variable viscosity has been 

investigated on natural convection flow along a vertical wavy surface. The skin 

friction coefficient Cfx, the rate of heat transfer in terms of Nusselt number Nux, the 

velocity, the temperature, the streamlines as well as the isotherms have been exhibited 

graphically in figures for different values of the viscosity  variation parameter ε , heat 

absorption parameter Q, Eckert number Ec , the amplitude of waviness of the surface 

α and Prandtl number Pr for 0.73, 3.0, 7.0, 15.5which correspond to the air at 

2100°K, water at 100�, 60� and 20� respectively.Inthis chapter, comparison of 

present numerical result with previous work represented in tabular form. The value of 

skin friction coefficient Cfx, the rate of heat transfer in terms of Nusselt number Nux 

are represented for different values of viscosity variation parameter ε, the amplitude 

of waviness of the surface αand the Eckert number Ec, the velocity and temperature 

are represented for different values of the amplitude of waviness of the surface α and 

Prandtl number Prin tabular form. 
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Overall Conclusions and extension of the present work have been presented and 

relevant references have been quoted at the end of the thesis paper and the implicit 

finite difference method of solving the problems numerically is displayed in 

Appendix. 
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Chapter Two 
Mathematical modeling of the flow problem 
 
This chapter describes the effects of viscous dissipation under temperature dependent 

variable viscosity on natural convection flow of viscous incompressible fluid along a 

uniformly heated vertical wavy surface. Using the appropriate transformations, the 

governing equations with associated boundary conditions are converted to non-

dimensional boundary layer equations, which are solved numerically by employing 

the implicit finite difference methods, known as Keller-box Scheme.  

 

2.1  Governing equations of the flow 

The continuity equation  
Thecontinuity equation for viscous incompressible electrically conducting fluid 

remains same as that of usual continuity equation    0 q  (2.1.1) 

The Navier-Stokes equation 
The motion of the conducting fluid across the magnetic field generates electric 

currents, which change the magnetic field and the action of the magnetic field on 

these current give rises to mechanical forces, which modify the flow of the fluid. 

Thus, the fundamental equation of the magneto-fluid combines the equations of the 

motion from fluid mechanics with Maxwell’s equations from electrodynamics. 

Then the Navier-stokes equation for a viscous incompressible fluid may be written in 

the following form: 

  BJFqPqq


 2   (2.1.2) 
 
where  is the fluid density,  is the viscosity and P is the pressure. The first term on 

the right-hand side of equation (2.1.2) is the pressure gradient, second term is the 

viscosity, third term is the body force per unit volume and last term is the 

electromagnetic force due to motion of the fluid. 
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The energy equation 
The energy equation for a viscous incompressible fluid is obtained by adding the 

electromagnetic energy term into the classical gas dynamic energy equation. This 

equation can be written as  

   


 quTkTqCP
22    (2.1.3) 

 
Where, kis the thermal conductivity, CP is the specific heat with constant pressure. In 

the physical problem of temperature variation, u(x,y,z,t) is the temperature and α is 

the thermal diffusivity. For the mathematical treatment it is sufficient to consider the 

case α = 1. The left side of equation (2.1.3) represents the net energy transfer due to 

mass transfer, the first term on the right-hand side represents conductive heat transfer 

and second term is heat absorption term and third term is for viscous dissipation term.  

 
Where  VUq ,

 , U and V are the velocity components along the X and Y axes 

respectively, F


 is the body force per unit volume which is defined as -ρg, the terms 

J
  and B


 are respectively the current density and magnetic induction vector and the 

term BJ


  is the force on the fluid per unit volume produced by the interaction of the 

current and magnetic field in the absence of excess charges, T is the temperature of 

the fluid in the boundary layer, g is the acceleration due to gravity, k is the thermal 

conductivity and CP is the specific heat at constant pressure and μ is the viscosity of 

the fluid.  

Here,  is the vector differential operator and is defined for two-dimensional case as  

y
l

x
l yx 







 ˆˆ  

Where xl̂  and yl̂  are the unit vector along x and y axes respectively. When the 

external electric field is zero and the induced electric field is negligible.  
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2.2Physical Model of the Problem 
 
The steady two-dimensional laminar free convection boundary layer flow of a viscous 

incompressible fluid along a vertical wavy surface in presence of temperature 

dependent variable viscosity is considered. It is assumed that the wavy surface is 

electrically insulated and is maintained at a uniform temperature Tw. Far above the 

wavy plate, thefluid is stationary and is kept at atemperature T, whereTw>T. The 

boundary layer analysis outlined below allows )(x being arbitrary, but our detailed 

numerical work will assume that the surface exhibits sinusoidal deformations. The 

wavy surface may be described by 

 









L
xnxy w

 sin)(       (2.2.1) 

where Lis the characteristic length associated with the wavy surface. 

The geometry of the wavy surface and the two-dimensional Cartesian coordinate 

system are shown in Fig. 2.1. 

 

 
 

 
   

 L  
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 ݒ̄
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T
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 ݑ̄
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 ݔ̄

T

 

Figure 2.1: The coordinate system and the physical model. 
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2.3  Formulation of the problem 
 
Under the usual Boussinesq approximation, the equations governing the flow can 

be written as: 

0







y
v

x
u

 (2.3.1) 

  )(.11











 TTgu

x
p

y
uv

x
uu 


 (2.3.2) 

 v
y
p

y
vv

x
vu 










 


.11

 (2.3.3) 




















y

u

pC
TT

pC
Q

T
pC

k
y
Tv

x
Tu

2

)(02 


 (2.3.4) 

 

where ),( yx are the dimensional coordinates along and normal to the tangent of the 

surface and ),( vu are the velocity components parallel to ),( yx , 

)//( 22222 yx  is the Laplacian operator, gis the acceleration due to 

gravity, p is the dimensional pressure of the fluid,  is the density,k is the thermal 

conductivity,  is the coefficient of thermal expansion, (T) is the viscosity of the 

fluid depending on temperature T of the fluidin the boundary layer region and Cp is 

the specific heat due to constant pressure and  (= /) is the kinematic viscosity.  

 

The boundary conditions relevant to the above problem are 

)(,0,0 xyyatTTvu ww   (2.3.5a) 

  yasppTTu ,,0 (2.3.5b) 

 

where Tw is the surface temperature, Tis the ambient temperature of the fluid and 

Pis the pressure of fluid outside the boundary layer. 

 

There are very few forms of viscosity variation available in the literature. Among 

them we have considered that one which is appropriate for liquid introduced by 

Hossain et al. [9] as follows: 
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*[1 ( )]T T       (2.3.6) 

where μ is the viscosity of the ambient fluid and 
ff T














 1* is a constant 

evaluated at the film temperature of the flow )(21  TTT wf .   

 
2.4 Transformation of the Governing equations 
 

Using Prandtl’s transposition theorem to transform the irregular wavy surface into 

a flat surface as extended by Yao [33] and boundary-layer approximation, the 

following dimensionless variables are introduced for non-dimensioning the 

governing equations,  

4
1

, Gr
L

yy
L
xx 

 , pGrLp 1
2

2



 

 uvGrLvuGrLu x






 







4
1

2
1

, ,








TT
TT

w

 (2.4.1) 

3
2

)(
, L

TTg
Gr

dx
d

xd
d w

x 
 

   

 

where  is the dimensionless temperature function and (u, v) are the dimensionless 

velocity components parallel to (x, y). Here (x, y) are not orthogonal, but a regular 

rectangular computational grid can be easily fitted in the transformed coordinates. 

It is also worthwhile to point out that (u, v) are the velocity components parallel 

to(x, y) which are not parallel to the wavy surface and  (= /) is the kinematic 

viscosity. 

 

The conservation equations for the flow characterized with steady, laminar and 

two-dimensional boundary layer; under the usual Boussinesq approximation, 

dimensionless form of the continuity, momentum and energy equations can be 

written as: 
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Where
k

C p 


Pr  is the Prandtl number,
2

1

2
0

CpGr

LQ
Q


  is the heat absorption 

parameter, 
)(2

2




TTCL
GrEc
wp

 is the Eckert number, )(*
 TTw  

 

It can easily be seen that the convection induced by the wavy surface is described 

by Eqns. (2.4.2)–(2.4.5). We further notice that, Eq. (2.4.4) indicates that the 

pressure gradient along the y-direction is )( 4
1GrO , which implies that lowest 

order pressure gradient along x -direction can be determined from the inviscid flow 

solution. For the present problem this pressure gradient ( 0 xp ) is zero. Eq. 

(2.4.4) further shows that ypGr  /4
1

 is )1(O and is determined by the left-hand 

side of this equation. Thus, the elimination of yp  /  from Eqns. (2.4.3) and 

(2.4.4) leads to 
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The corresponding boundary conditions for the present problem then turn into  


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Now we introduce the following transformations to reduce the governing equations to 

a convenient form: 

),(,),,( 4
1

4
3

 xyxxfx   (2.4.8) 

 

where η is the pseudo similarity variable and ψ is the stream function that satisfies the 

Eq. (2.4.2) and is defined by  

x
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u


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
 , .(2.4.9) 

 

Introducing the transformations given in Eqn. (2.4.8) and into Eqns. (2.4.6) and 

(2.4.5) then gets, 
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(2.4.11)

 
The boundary conditions (2.4.7) now take the following form: 


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In the above equations prime denote the differentiation with respect to η. 

 

In practical applications, the physical quantities of principle interest are the shearing 

stress w and the rate of heat transfer in terms of the skin-friction coefficients Cfx and 

Nusselt number Nux respectively, which can be written as 

2
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00 ).(   and ).(where   ywyw Tnkqun  (2.4.14) 

  



19 
 

Using the transformations (2.4.8) into Eq. (2.4.13), the local skin friction coefficient, 

Cfx and the rate of heat transfer in terms of the local Nusselt number, Nux takes the 

following form: 

 

),(1)1(2/)/( 24
1

oxfxGrC xfx   (2.4.15) 

),(1)/( 24
1

oxxGrNu xx  


(2.4.16)  

Forthe computational purpose the period of oscillations in the waviness of this surface 

has been considered to be π. 
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Chapter Three 
Effects of Viscous Dissipation with Variable Viscosity 
on Natural Convection Flow along a Vertical Wavy 
Surface in presence of Heat Absorption 

Introduction 
 
This chapter describes the effects of viscous dissipation under variable viscosity on 

natural convection flow along a vertical wavy surface in presence of heat absorption. 

The governing boundary layer equations with associated boundary conditions are 

converted to non-dimensional boundary layer equations using the appropriate 

transformation and the resulting non-linear system of partial differential equations are 

reduced to local non-similarity equations which are solved numerically by employing 

the implicit finite difference method, known as Keller-Box Scheme. 

 

The effects of pertinent parameters, such as the heat absorption parameter (Q) where 

the amount of heat absorption constant Q0<0, the Eckert number (Ec), the Prandtl 

number (Pr), the viscosity variation parameter (ε) and the amplitude of the wavy 

surface ranging from (α) on the surface shear stress in terms of the skin friction 

coefficient Cfx , the rate of heat transfer in terms of Nusselt number Nux,the velocity, 

the temperature, the streamlines as well as the isotherms are shown graphically.  

 

Numerical values of local shearing stress and the rate of heat transfer are calculated 

from equations (2.4.15) and (2.4.16) in terms of the skin friction coefficient Cfxand 

Nusselt number Nux respectively for a wide range of the axial distance x. 
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3.1 Result and Discussions on Variation of 
Viscosityparameterε 

 

Figure 3.1:(a) Velocity and (b) temperatureprofiles for 
different values of viscosityvariation parameter ε while 
Pr = 1.0, ε = 0.3, Q = -0.1, Ec = 0.02. 
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Figure 3.2:Variation of (a) skin friction coefficient 
(Cfx) and (b) rate of heat transfer (Nux) for different 
values of viscosity variation parameter ε while Pr = 1.0, 
α = 0.3, Q = -0.1, Ec = 0.02. 
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Figures 3.1 (a) and (b) display results of velocity and temperature, for different values 

of viscosity variation parameter ε = 0.0, 5.0, 20.0, 30.0, 60.0 while the Prandtl 

Number Pr = 1.0, the amplitude of the wavy surface α = 0.3, the heat absorption 

parameter Q = -0.1 and the Eckert number Ec = 0.02. It is noted from Figures 3.1 (a) 

and (b) that as the viscosity variation parameter ε increases, the velocity decreases and 

the temperature increases.  

 

The physical nature of the viscosity depends on shear stress of the fluid, where shear 

stress also depends on velocity gradient. Here, from figure 3.1 (a) the velocity is zero 

at the boundary wall then the velocity increases to the peak value as η increases and 

then decreases, finally the velocity approaches to zero (the asymptotic value). The 

maximum values of the velocities are recorded as 0.49896 and 0.12168 for viscosity 

variation parameter ε = 0.0 and 60.0 respectively which occurs at the position of η = 

1.36929 and η = 5046625. So, the maximum velocity decreases approximately by 

77% when ε increases from 0.0 to 60.0. 

 

When temperature dependent viscosity variation parameter is increasing, temperature 

is also increasing. The changes of temperature in the η direction also shows the 

typical temperature for natural convection boundary layer flow that is the value of 

temperature is 1.0 (one) at the boundary wall the temperature decreases gradually η 

direction to the asymptotic values.  

 

From figures 3.2 (a) and (b), the surface shear stress in terms of the local skin friction 

Cfx and the rate of heat transfer in terms of the local Nusselt number Nux are depicted 

graphically for the different values of viscosity variation parameter ε = 0.0, 20.0, 30.0, 

60.0 when amplitude of wavy surface α = 0.3, the value of Prandtl number Pr = 1.0, 

the heat absorption parameter Q = -0.1 and the Eckert number Ec = 0.02.The skin 

friction coefficient Cfx increases approximately by 63% and the local rate of heat 

transfer Nux decreases approximately by 5% from the different values of viscosity 

variation parameter ε = 0.0 to 60.0. 
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Figure 3.3 and 3.4 illustrate the effect of variation of different values of viscosity 

variation parameter ε = 0.0, 20.0, 30.0, 60.0 on the streamlines and isotherms 

respectively while the Prandtl Number Pr = 1.0, the amplitude of the wavy surface α 

= 0.3, the heat absorption parameter Q = -0.1and the Eckert number Ec = 0.02. 

Figure 3.3 depicts that the maximum values of ψ decreases while the values of ε 

increases that is ψmax are 7.00, 3.56, 3.00, and 1.86 for ε = 0.0, 20.0, 30.0, 60.0 

respectively. It is noted from figure 3.4 the values of ε increases the thermal boundary 

layer becomes thickergradually that the isotherms increase while the values of ε 

increase. 
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Figure 3.3 : Streamlines for (a) ε = 0.0, (b) ε = 20.0, (c) ε = 30.0 and 
(d) ε = 60.0 while Pr = 1.0, α = 0.3, Q= -0.1, Ec = 0.02. 
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Figure 3.4 : Isotherms for (a) ε = 0.0, (b) ε = 20.0, (c) ε = 30.0 and 
(d) ε = 60.0 while Pr = 1.0, α = 0.3, Q = -0.1, Ec = 0.02. 
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3.2 Result and Discussions on Variation of Heat 
Absorption parameterQ 

 

Figure 3.5 : (a) Velocity and (b) temperatureprofiles 
fordifferent values of heat absorption parameter Q while 
Pr = 1.0, α = 0.3, ε = 0.5, Ec = 0.02. 
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Figure 3.6: Variation of(a) skin friction coefficient 
(Cfx) and (b) rate ofheat transfer (Nux) for different 
values of heat absorption parameter Q while Pr =1.0, α = 
0.3, ε = 0.5, Ec = 0.02. 
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Showing results of velocity and temperature in figures 3.5 (a) and (b), for different 

values of heat absorption parameter Q = 0.0, -0.1, -2.0, -3.0, -4.0 while the Prandtl 

Number Pr = 1.0, the amplitude of the wavy surface α = 0.3, the viscosity variation 

parameter ε = 0.5 and the Eckert number Ec = 0.02.  

 

It is displayed from figures 3.5 (a) that the heat absorption parameter Q increases the 

velocity decrease up to the position of η = 5.69294. It is also observed from the figure 

that as the changes of velocity in the η direction reveals the typical velocity for natural 

convection boundary layer flow. i.e. The velocity is zero at the boundary wall then the 

velocity increases to the peak value as η increases and finally the velocity approaches 

to zero (the asymptotic value). But observing from this figure that all the velocity 

meet together at the position of η = 5.69294 and cross the side and increasing with the 

heat absorption parameter Q. 

 

This is because of the velocity having lower peak values for higher values of heat 

absorption parameter Q tends to decrease comparatively slower along η-direction than 

velocity with higher peak values for lower values of heat absorption parameter Q. The 

maximum values of velocities are recoded as 0.47685, 0.33430, 0.25353, 0.20412, 

0.17142 at the position of η = 1.58311, 1.50946, 1.43822, 1.36929, 1.30254 for heat 

absorption parameter Q = 0.0, -0.1, -2.0, -3.0, -4.0 respectively. The velocity 0.47685 

is maximum at η = 1.58311 for Q = 0.0. Here, it is observed that the velocity 

decreases by approximately 64% as the heat absorption parameter Q changes from 0.0 

to -4.0. From figure 3.5 (b), as the heat absorption parameter Q increases, the 

temperature decrease. It observed that the temperature is 1.0 (one) at the boundary 

wall then the temperature decreasing gradually to η direction. 

 

It is found on figures 3.6 (a) and (b) an increase in the heat absorption parameter Q = 

0.0, -1.0, -2.0, -3.0 leads to decrease the local skin friction coefficient Cfx and increase 

the local rate of heat transfer Nux at different position of x. These are happened, since 

the increasing values of Q leads to decrease temperature of the fluid flow. Decreasing 

temperature decrease the viscosity of the fluid. Hence the corresponding shearing 
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stress in terms of local skin friction coefficient decreases. To decrease the local skin 

friction coefficient Cfx and the local rate of heat transfer Nux increases approximately 

66% and 87% respectively. 

 

Explanation of streamlines and Isotherms on figures 3.7 and 3.8,the effect of variation 

of heat absorption parameter Q = 0.0, -0.1, -2.0, -3.0 while the Prandtl Number Pr = 

1.0, the amplitude of the wavy surface α = 0.3, the viscosity variation parameter ε = 

0.5 and the Eckert number Ec = 0.02. Figure 3.7 depicts that the maximum values of 

ψ decreases while the values of Q increase that is max are 8.50, 3.08, 1.92, 1.42 for Q 

= 0.0, -0.1, -2.0, -3.0 respectively. It is noted from figure 3.8 that as the value of Q 

increases the thermal boundary layer becomes thinner gradually. So, the isotherms 

decrease while the values of Q increase. 
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Figure 3.7 :Streamlines for (a) Q = 0.0, (b) Q = -1.0, (c) Q = -2.0 
and (d) Q = - 3.0 while Pr = 1.0, α = 0.3, ε = 0.5, Ec = 0.02. 
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Figure 3.8 : Isotherms for (a) Q = 0.0, (b) Q = -1.0, (c) Q = -2.0 and 
(d) Q = -3.0 while Pr = 1.0, α = 0.3, ε = 0.5, Ec = 0.02. 
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3.3 Result and Discussions on Variation of Eckert 
Number Ec 

 

Figure 3.9 : (a) Velocity and (b) temperature 
profile for different values of Eckert number Ec 
while Pr = 1.0, α = 0.3, Q = -0.5, ε = 0.5. 
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Figure 3.10 : Variation of(a) Skin friction coefficient 
(Cfx) and (b) rate of heat transfer (Nux) for different 
values of Eckert number Ec while Pr = 1.0, α = 0.3, Q = 
-0.5, ε = 0.5. 
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Figures 3.9 (a) and (b), the effects for different values of the Eckert number Ec = 0.0, 

1.0, 4.0, 8.0 on the velocity and temperature with the Prandtl Number Pr = 1.0, the 

amplitude of the wavy surface α = 0.3, the heat absorption parameter Q = -0.5 and the 

viscosity variation parameter ε = 0.5 have been shown graphically. It is shown from 

figure 3.9 (a) that as the Eckert number Ec increases, the velocities rising up to the 

position of η = 1.58311 for Eckert number Ec = 0.0, 1.0, 4.0, 8.0 and from that 

position of η velocities fall down slowly and finally approaches to zero. 

 

It is expected because increasing value of Ec increases thermal energy inside the 

boundary layer due to fluid friction which is obviously increase convection and 

ultimately increases velocity. In the Eckert number process heat is automatically 

generated which increases temperature of the fluid flow. 

 

The maximum values of the velocities are recorded as 0.39525, 0.39807, 0.40658, 

0.41796 for Eckert number Ec = 0.0, 1.0, 4.0, 8.0 respectively which occur at the 

same position of η = 1.58311 and the maximum velocity increases approximately 

91% (Lowest 0.39525; Highest 0.41796 at η = 1.58311). 

 

It is also observed from figure 3.9 (b) that as the Eckert number Ec increases, the 

temperature increase. Temperatures are recorded as 0.42992, 0.43653, 0.45690, 

0.48525 for Eckert number Ec = 0.0, 1.0, 4.0, 8.0 respectively which occur at the 

same position of η = 1.23788 and the temperature increases by approximately 11 %. 

 

The effect of the different values of the Eckert number Ec on the local skin friction 

Cfx and the rate of heat transfer in terms of the local Nusselt number Nux are shown in 

figures 3.10 (a) and (b) respectively while the values of Prandtl Number Pr = 1.0, the 

heat absorption parameter Q = -0.5, the amplitude of the wavy surface α = 0.3 and 

viscosity variation parameter ε = 0.5. It is noted that an increase in the values of the 

Eckert number Ec = 0.0,1.0, 4.0, 8.0 leads to enhance in the results of local skin 

friction Cfx increases along the upstream direction of the surface and to decrease of 
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the heat transfer rates. It is noted that the skin friction coefficient increases by 

approximately 47% for the increasing value of Ec from 0.0 to 8.0. 

 

Shownin figure 3.11 and figure 3.12 the effect of the Eckert number Ec = 0.0, 1.0, 

4.0, 8.0 on the streamlines and isotherms with the Prandtl Number Pr = 1.0, the 

amplitude of the wavy surface α = 0.3, the heat absorption parameter Q = -0.5and the 

viscosity variation parameter ε = 0.5. It is found that for Ec = 0.0 the value of max is 

4.40, for Ec = 1.0 the value of max is 4.65, for Ec = 4.0 the value of max is 4.79 and 

for Ec = 8.0 the value of max is 6.76. From figure 3.12, it is seen that the effect of 

theEckert number Ec, the flow rate in the boundary layer increases. It is also observed 

that due to the effect of Ec, the thermal state of the fluid increases. Finally, the 

thermal boundary layer becomes higher. 
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Figure 3.11 : Streamlines for (a) Ec = 0.0, (b) Ec = 1.0, (c) Ec = 
4.0 and (d) Ec = 8.0 while Pr = 1.0, α = 0.3, Q = -0.5, ε = 0.5. 
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Figure 3.12 : Isotherms for (a) Ec = 0.0, (b) Ec = 1.0, (c) Ec = 
4.0 and (d) Ec = 8.0 while Pr = 1.0, α = 0.3, Q = -0.5, ε = 0.5. 
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3.4  Result and Discussions on Variation of Prandlt 
NumberPr 

 

Figure 3.13 : (a) Velocity and (b) temperature 
profiles for different values of Pr while Q = - 0.1, α = 
0.3, ε = 0.5, Ec = 0.02. 
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Figure 3.14 : Variation of(a) skin friction coefficient 
(Cfx) and (b) rate of heat transfer (Nux) for different 
values of Pr while Q = - 0.1, α = 0.3, ε = 0.5, Ec = 0.02. 
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To noticed the results of velocity and temperature in figures 3.13 (a) and (b), for 

different values of Prandtl Number Pr = 0.73, 3.00, 9.45, 15.5 while the heat 

absorption parameter Q = -0.1, the amplitude of the wavy surface α = 0.3, viscosity 

variation parameter ε = 0.5 and the Eckert number Ec = 0.02. It can be observed from 

figure 3.13 (a) that the velocity of the fluid decreases as well as its position moves 

toward the interface with the increasing values of Prandtl number Pr. 

 

It is known that Prandtl number Pr is the ratio of viscosity force and thermal force. 

So, increasing values of Pr increases viscosity and decreases thermal action of the 

fluid. Because of this fact, figure is seen that velocity of the fluid decreases with the 

increasing values of Prandtl number Pr. It is found that the velocity decreases by 

approximately 78% when Pr increases from 0.73 to 15.5 for different value of η. It is 

noticed from figure 3.13 (b) that the temperature shift downward with the increasing 

values ofPr. 

 

In the figures 3.14 (a) and (b), the surface shear stress in terms of the local skin 

friction Cfx and the rate of heat transfer in terms of the local Nusselt number Nux are 

depicted graphically for the different values of Prandtl Number Pr = 0.73, 3.00, 9.45, 

15.5 while the heat absorption parameter Q =-0.1, the amplitude of the wavy surface α 

=0.3, viscosity variation parameter ε =0.5and the Eckert numberEc =0.02. It is 

observed that the local skin friction coefficient decreases monotonically along the 

downward direction of the surface for increasing value of Prandtl number Pr. 

 

From figures 3.14 (b) it is noted that the effect is more pronounced with the Prandtl 

number Pr. Increasing values of Pr increases viscosity. If viscosity increases, then 

fluid does not move freely. Increasing the values of Prandtl Number Pr, speed up the 

decay of temperature field away from the heat surface with a consequent increase in 

the heat transfer.  
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The maximum values of local skin friction coefficient Cfx are 0.70401 and 0.19809 

and the rate of heat transfer in terms of the local Nusselt number Nux are 1.00538 and 

4.75503 for Pr = 0.73 and 15.5 at the position of x = 8.50 and x = 8.25 respectively. It 

is seen that the local skin friction coefficient Cfx decreases by approximately 72% and 

the local Nusselt number Nux increases by approximately 79% as Pr increases from 

0.73 to 15.5. 

 

The effect of variation of the surface roughness on the streamlines and isotherms for 

the values of Prandtl Number Pr = 0.73, 3.00, 9.45, 15.5 while the heat absorption 

parameter Q = -0.1, the amplitude of the wavy surface α = 0.3, viscosity variation 

parameter ε = 0.5and the Eckert number Ec = 0.02 in figures 3.15 and 3.16. 

 

In figures 3.15 depicts that the maximum values of streamline decrease steadily while 

the values of Pr increases. The maximum values of streamlines are 5.50, 2.36, 0.91 

and 0.55 for Pr = 0.73, 3.00, 9.45 and 15.5. It is observed in figure 3.16 that as the 

values of Pr decreases the thermal boundary layer thickness becomes thinner 

gradually. 
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Figure 3.15 : Streamlines for (a) Pr = 0.73, (b) Pr = 3.00, (c) Pr = 
9.45 and (d) Pr = 15.5 while ε = 0.5, α = 0.3, Q = -0.5, Ec = 0.02. 
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Figure 3.16 : Isotherms for (a) Pr = 0.73, (b) Pr = 3.00, (c) Pr = 
9.45 and (d) Pr = 15.5 while ε = 0.5, α = 0.3, Q = -0.5, Ec = 0.02. 
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3.5 Result and Discussions on Variation of Surface 
Amplitudeα 

 

Figure 3.17: (a) Velocity and (b) temperature profiles 
for different values of α while Pr = 1.0, Q = - 0.1, ε = 
0.5, Ec = 0.02. 
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Figure 3.18 : Variation of(a) skin friction coefficient 
(Cfx) and (b) rate of heat transfer (Nux) for different 
values of α while Pr = 1.0, Q = -0.1, ε = 0.5, Ec = 0.02. 
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Figures 3.17 (a) and (b), the effects for different values of the amplitude of the wavy 

surface α = 0.0, 0.1, 0.2, 0.3, 0.4 on the velocity and temperature with the Prandtl 

Number Pr = 1.0, the heat absorption parameter Q = -0.5, the Eckert number Ec = 

0.02 and the viscosity variation parameter ε = 0.5 have been shown. Figure 3.17 (a) 

shows the small increment on the velocity f ' (x,η) for increasing values of α.It is seen 

that the velocity increases 2% for same values of η when αincreases from 0.0  to 0.4 

(Lowest 0.39525; Highest 0.41796 at η = 2.58959). Figure 3.17 (b) depicts the 

temperature ߠ(x,η), which increases slowly with the increase of the amplitude of wavy 

surface α from 0.0  to 0.4. 

 

In figures 3.18 (a) and (b), the surface shear stress in terms of the local skin friction 

Cfxand the rate of heat transfer in terms of the local Nusselt number Nux are depicted 

graphically for the different values of amplitude of wavy surface α = 0.0, 0.1, 0.2, 0.3, 

0.4 when values of viscosity variation parameter ε = 0.5, the value of Prandtl number 

Pr = 1.0, the heat absorption parameter Q = -0.1 andthe Eckert number Ec= 0.02. 

Since for increasing the surface waviness, the velocity force decreases at local points 

so the figures show that increase in the value of amplitude of wavy surface α from 0.0 

to 0.4 lends to decrease the value of skin friction coefficient Cfx and the rate of heat 

transfer in terms of the local Nusselt number Nux. It is seen that the local skin friction 

coefficient Cfx decreases 5% for different values of x when α increases from 0.0 to 0.4. 

 

The effect of variation of the surface roughness on the streamlines and isotherms for 

the values of amplitude of the wavy surface  = 0.0, 0.1, 0.2 and 0.3 are depicted by 

the figure 3.19 and 3.20 respectively while Prandtl number Pr = 1.0, heat absorption 

parameter Q = -0.1, the viscosity variation parameter ε = 0.5and the Eckert number 

Ec = 0.02.It is observed from the figure 3.19 that, the maximum values of streamline 

are max= 6.28, 6.24, 6.21, 6.14 for the values of  = 0.0, 0.1, 0.2, 0.3 respectively. 

Here it can be concluded that for increasing values of amplitude to the length ratio of 

the wavy surface, the roughness of the wavy surface increases so the velocity 

boundary layer thickness decreases gradually. Similar result is observed for thermal 

boundary layer thickness. So, isotherms increase for increasing values of amplitude to 

the length ratio of the wavy surface . 
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Figure 3.19 : Streamlines for (a) α = 0.0, (b) α = 0.1, (c) α = 0.2 and 
(d) α = 0.3 while Pr = 1.0, Q = - 0.1, Ec = 0.02, ε = 0.5. 
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Figure 3.20 : Isotherms for (a) α = 0.0, (b) α = 0.1, (c) α = 0.2 and 
(d) α = 0.3 while Pr = 1.0, Q = -0.1, Ec = 0.02, ε = 0.5. 
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3.6Comparison of the results 
 

The problem of heat absorption on natural convection flow along a vertical wavy 

surface with viscous dissipation under variable viscosity has been investigated. 

Because of the physical property viscous dissipation and viscosity must have a 

significant change with temperature, it is necessary to take into account of variation of 

viscosity and Eckert number to obtain a better estimation of the flow and heat transfer 

behavior.  

Table 3.6.1:Comparison of the present numerical results of skin friction 

coefficient,f (x,0) and the heat transfer, -(x,0) with Hossain et al. (2002) for the 

variation of Prandtl number Pr while Ec = 0.0, ε= 0.0, Q = 0.0 and = 0.1. 

 

 
Pr 

f (x,0) -(x,0) 
Hossian et al. 

(2002) 
Present Work Hossian et al. 

(2002) 
Present Work 

1.0 0.908 0.90814 0.401 0.39914 
10.0 0.591 0.59269 0.825 0.82663 
25.0 0.485 0.48733 1.066 1.06847 
50.0 0.485 0.41880 1.066 1.28351 

100.0 0.352 0.35640 1.542 1.54198 
 

A comparison of the present numerical results of skin friction coefficient, f (x,0) and 

the heat transfer, -(x,0) with  the result obtained by Hossain et al. (2002) depicted 

the table 3.6.1. Here the viscosity variation parameter ε, the Eckert number Ec and the 

heat absorption parameter Q ignored while different values of prandtl number Pr (= 

1.0, 10.0, 25.0, 50.0, 100.0) are chosen with amplitude-to-length ratio  = 0.1. Form 

table 3.6.1, it is clearly seen that the present results are excellent agreement with the 

solution of Hossain et al. (2002). 
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3.7Tables of Numerical Discussions 
 

Table3.7.1:Skin friction coefficient and rate of heat transfer for different values of 
viscosity variation parameter ε while, Prandtl number Pr = 1.0, heat absorption Q = -
0.1, amplitude of wavy surface α = 0.3 and Eckert number Ec = 0.02. 

x 
 

Skin friction coefficient Rate of heat transfer 
=0.0 =20.0 =60.0 =0.0 =20.0 =60.0 

0.00 0.56194 1.29626 1.53359 0.34186 0.20205 0.16754 
0. 50 0.90154 1.99589 2.41116 0.44491 0.32507 0.29947 
1.00 0.53558 1.11876 1.26186 0.43894 0.34042 0.32028 
1.50 0.86948 1.83825 2.09961 0.47900 0.38545 0.37153 
2.00 0.53397 1.05732 1.16159 0.47300 0.38874 0.37654 
2.50 0.85010 1.74273 1.95470 0.50286 0.42618 0.41444 
3.00 0.53151 1.01468 1.10202 0.49747 0.42256 0.41473 
3.50 0.83652 1.67393 1.85525 0.52175 0.45745 0.44745 
4.00 0.52889 0.98138 1.05837 0.51726 0.44975 0.44446 
4.50 0.82588 1.61967 1.77932 0.53767 0.48329 0.47472 
5.00 0.52632 0.95408 1.02279 0.53413 0.47278 0.46911 
5.50 0.81703 1.57453 1.71819 0.55156 0.50555 0.49805 
6.00 0.52385 0.93095 0.99257 0.54898 0.49293 0.49037 
6.50 0.80941 1.53577 1.66724 0.56395 0.52521 0.51853 
7.00 0.52149 0.91085 0.96635 0.56231 0.51092 0.50916 
7.50 0.80268 1.50179 1.62366 0.57517 0.54289 0.53686 
8.00 0.51923 0.89307 0.94326 0.57446 0.52723 0.52607 
8.50 0.79665 1.47157 1.58566 0.58547 0.55901 0.55350 
9.00 0.51708 0.87711 0.92271 0.58565 0.54219 0.54149 
9.50 0.79116 1.44439 1.55198 0.59500 0.57385 0.56880 
10.0 0.51502 0.86264 0.90426 0.59605 0.55603 0.55569 

 

Table 3.7.1 represents the values of skin-friction and the rate of heat transfer for the 

computational domain. It is to be pointed out that the complete cycle of the wavy 

surface is from x = 0.0 to 2.0. The skin friction and the rate of heat transfer increases 

for the first quarter of the cycle (x  0 to x  0.50) and decreases in the second quarter 

(x   0.50 to x  1.0). From x  1.0 to   1.5 (i.e., third quarter) the skin friction again 

increases, whereas the last quarter (x   1.5 to x  2.0) it decreases. The skin friction 

and the rate of heat transfer shown similar characteristics throughout the domain. But 

the rate of heat transfer for ε = 20.0and ε = 60.0 only increasesfor x = 0 to 10. The 

percentage of changes of skin friction coefficient increases for x = 0.5 by 

approximately 62.6 %. Again,The percentage of changes of rate of heat transfer 

coefficient decreases for x = 1.5 by approximately 22.43 %. 
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Table3.7.2: Skin friction coefficient and rate of heat transfer for different values of 

Eckert number Ec while, Prandtl number Pr = 1.0, heat absorption Q = -0.1, 

amplitude of wavy surfaceα = 0.3 and viscosity variation parameter ε = 0.5. 

x 
 

Skin friction coefficient Rate of heat transfer 
Ec =0.0 Ec =4.0 Ec =8.0 Ec =0.0 Ec =4.0 Ec =8.0 

0.00 0.63663 0.63663 0.63663 0.32374 0.32374 0.32374 
0. 50 0.90323 0.94808 0.99706 0.64635 0.39588 0.10543 
1.00 0.50716 0.53386 0.56527 0.71987 0.61245 0.47690 
1.50 0.81046 0.89671 1.00604 0.81425 0.23045 -0.58016 
2.00 0.47517 0.52021 0.57913 0.84267 0.64271 0.34656 
2.50 0.75968 0.87806 1.04826 0.91562 0.05036 -1.35942 
3.00 0.45370 0.51458 0.60393 0.92781 0.63968 0.14091 
3.50 0.72450 0.86971 1.10435 0.99145 -0.13335 -2.25175 
4.00 0.43735 0.51277 0.63647 0.99463 0.61914 -0.13494 
4.50 0.69758 0.86669 1.17179 1.05309 -0.32078 -3.28448 
5.00 0.42412 0.51319 0.67538 1.05030 0.58682 -0.48408 
5.50 0.67580 0.86708 1.25037 1.10552 -0.51308 -4.48639 
6.00 0.41302 0.51509 0.72027 1.09838 0.54541 -0.91318 
6.50 0.65755 0.86993 1.34014 1.15142 -0.71123 -5.88457 
7.00 0.40346 0.51809 0.77110 1.14091 0.49637 -1.43073 
7.50 0.64186 0.87465 1.44124 1.19243 -0.91623 -7.50465 
8.00 0.39508 0.52197 0.82797 1.17920 0.44039 -2.04593 
8.50 0.62812 0.88089 1.55384 1.22960 -1.12866 -9.37143 
9.00 0.38763 0.52658 0.89098 1.21410 0.37803 -2.76838 
9.50 0.61592 0.88843 1.67810 1.26369 -1.34946 -11.50832 
10.0 0.38092 0.53184 0.96023 1.24625 0.30934 -3.60737 

 

Table 3.7.2 represents the values of skin-friction and the rate of heat transfer for the 

computational domain. It is to be pointed out that the complete cycle of the wavy 

surface is from x = 0.0 to 2.0. The skin friction and the rate of heat transfer increases 

for the first quarter of the cycle (x  0 to x  0.50) and decreases in the second quarter 

(x   0.50 to x  1.0). From x  1.0 to   1.5 (i.e., third quarter) the skin friction again 

increases, whereas the last quarter (x   1.5 to x  2.0) it decreases. The skin friction 

and the rate of heat transfer shown similar characteristics throughout the domain. It is 

Exceptional to Ec = 0.0 from x = 0.0 to 4.5, the rate of heat transfer is increasing. The 

percentage of changes of skin friction coefficient increases for x = 0.5 by 

approximately 10.38 %. Again,the percentage of changes of rate of heat transfer 

coefficient decreases for x = 2.0 by approximately 58.83 %. 
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Table 3.7.3: Skin friction coefficient and rate of heat transfer for different values of 

amplitude of wavy surface α while, Prandtl number Pr = 1.0, heat absorption Q = -

0.1, viscosity variation parameter   ε= 5.0 and Eckert number Ec = 0.02. 

x 
 

Skin friction coefficient Rate of heat transfer 
 =0.00  =0.20  =0.40  =0.00  =0.20  =0.40 

0.00 1.55828 1.21115 0.72446 0.30288 0.27851 0.24135 
0.50 1.47529 1.48730 1.48405 0.37400 0.37137 0.36971 
1.00 1.44411 1.10384 0.66216 0.40176 0.38709 0.36401 
1.50 1.42105 1.42193 1.39711 0.42241 0.42111 0.41926 
2.00 1.40220 1.07272 0.64015 0.43941 0.42635 0.40600 
2.50 1.38602 1.37935 1.34080 0.45409 0.45387 0.45533 
3.00 1.37175 1.04996 0.62523 0.46714 0.45525 0.43639 
3.50 1.35890 1.34705 1.29963 0.47895 0.47956 0.48318 
4.00 1.34718 1.03136 0.61336 0.48978 0.47880 0.46128 
4.50 1.33638 1.32065 1.26660 0.49983 0.50114 0.50635 
5.00 1.32634 1.01543 0.60330 0.50921 0.49897 0.48258 
5.50 1.31694 1.29816 1.23885 0.51804 0.51997 0.52647 
6.00 1.30811 1.00138 0.59443 0.52638 0.51676 0.50132 
6.50 1.29976 1.27849 1.21491 0.53429 0.53678 0.54439 
7.00 1.29184 0.98877 0.58644 0.54184 0.53277 0.51814 
7.50 1.28431 1.26096 1.19385 0.54905 0.55203 0.56063 
8.00 1.27712 0.97731 0.57914 0.55596 0.54738 0.53345 
8.50 1.27024 1.24511 1.17506 0.56261 0.56604 0.57553 
9.00 1.26365 0.96678 0.57241 0.56901 0.56086 0.54755 
9.50 1.25731 1.23062 1.15808 0.57518 0.57903 0.58933 
10.0 1.25120 0.95703 0.56616 0.58115 0.57340 0.56063 

  

Table 3.7.3 represents the values of skin-friction and the rate of heat transfer for the 

computational domain. It is to be pointed out that the complete cycle of the wavy 

surface is from x = 0.0 to 2.0. The skin friction and the rate of heat transfer increases 

for the first quarter of the cycle (x  0 to x  0.50) and decreases in the second quarter 

(x 0.50 to x  1.0). From x   1.0 to   1.5 (i.e., third quarter) the skin friction again 

increases, whereas the last quarter (x  1.5 to x2.0) it decreases. The skin friction 

and the rate of heat transfer shown similar characteristics throughout the domain. The 

percentage of changes of skin friction coefficient increases for x = 0.5 by 

approximately 53.5 %. Again,the percentage of changes of rate of heat transfer 

coefficient decreases for x = 2.0 by approximately 7.60 %. 
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Table3.7.4: Velocity and Temperature for different values of Eckert number Ec 

while, Prandtl number Pr = 1.0, heat absorption Q = -0.1, amplitude of wavy surface 

α= 0.3 and viscosity variation parameter ε = 0.5. 

x 
 

Velocity Temperature 
Ec =0.0 Ec =4.0 Ec =8.0 Ec =0.0 Ec =4.0 Ec =8.0 

0.00 0.00000 0.00000 0.00000 1.00000 1.00000 1.00000 
0.54375 0.24763 0.25639 0.26545 0.70288 0.74710 0.79551 

1.00 0.36376 0.37527 0.38697 0.49184 0.52406 0.55826 
1.50 0.39505 0.40650 0.41803 0.34929 0.37042 0.39241 
2.00 0.37121 0.38871 0.39911 0.21868 0.25308 0.27066 
2.50 0.31858 0.32764 0.34976 0.13992 0.15707 0.18913 
3.00 0.25986 0.26785 0.29196 0.08946 0.10656 0.13616 
3.50 0.21082 0.21775 0.22449 0.06000 0.07580 0.09229 
4.00 0.16181 0.16737 0.17268 0.03774 0.05102 0.06484 

5.03870 0.07839 0.08068 0.08260 0.01189 0.01845 0.02508 
5.69294 0.04859 0.04949 0.05004 0.00585 0.00958 0.01322 
6.17407 0.03355 0.03379 0.03372 0.00344 0.00579 0.00799 

7.00 0.01751 0.01721 0.01671 0.00141 0.01721 0.00329 
8.52867 0.00391 0.00361 0.00329 0.00022 0.00037 0.00047 
9.24368 0.00146 0.00130 0.00115 0.00007 0.00012 0.00015 

10.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
 

In the above table the values of velocity and temperature are recoded to be 0.03355, 

0.03379, 0.03372 and .00344, 0.00579, 0.00799 for Ec = 0.0, 4.0, 8.0 respectively at 

the same point of x = 6.17407. Here, it observed that the velocities and temperature 

almost similar at this point. 
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Table3.7.5: Velocity and Temperature for different values of amplitude of wavy 

surfaceα while, Prandtl number Pr = 1.0, heat absorption Q = -0.1, viscosity variation 

parameterε= 5.0 and Eckert numberEc = 0.02. 

x 
 

Velocity Temperature 
 =0.00  =0.20  =0.40  =0.00  =0.20  =0.40 

0.00 0.00000 0.00000 0.00000 1.00000 1.00000 1.00000 
1.00 0.20777 0.20797 0.20090 0.64478 0.64967 0.65690 

1.50946 0.26433 0.26513 0.25623 0.51427 0.52089 0.53059 
2.00 0.30676 0.30885 0.29420 0.37141 0.37953 0.41177 

2.58959 0.31743 0.32119 0.31174 0.26763 0.27622 0.28854 
3.00 0.30574 0.31145 0.30753 0.18966 0.19792 0.22876 

3.93977 0.24328 0.25227 0.24884 0.09379 0.10011 0.10865 
4.64344 0.17599 0.18585 0.18530 0.04999 0.05436 0.05992 

5.00 0.14000 0.14941 0.14970 0.03448 0.03787 0.04199 
5.69294 0.09028 0.09794 0.09855 0.01825 0.02035 0.02268 
6.17407 0.06287 0.06893 0.06936 0.01128 0.01269 0.01414 

7.00 0.03250 0.04560 0.03616 0.00496 0.00751 0.00627 
7.50 0.01904 0.02135 0.02121 0.00264 0.00304 0.00334 
8.00 0.01001 0.01131 0.01112 0.00128 0.00149 0.00162 
8.50 0.00682 0.00773 0.00756 0.00085 0.00098 0.00106 

9.62308 0.00103 0.00118 0.00113 0.00012 0.00014 0.00015 
10.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

 

In the above table the values of velocity are recoded to be 0.00682, 0.00773, 0.00756 

for α= 0.0,0.2, 0.4 respectively at the point of x = 8.52867. Again, form table the 

values of temperatures 0.00012, 0.00014, 0.00015 for α= 0.0, 0.2, 0.4 respectively at 

the point of x = 9.62308. Here, it observed that the velocities and temperature almost 

similar at this point. 
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Conclusion 
 

The aim of this study is to investigate numerically the effects of temperature 

dependent variable viscosity, viscous dissipation and heat absorption on natural 

convection flow of viscous incompressible fluid along a uniformly heated vertical 

wavy surface. The resulting nonlinear system of partial differential equations are 

mapped into the domain of a vertical flat plate and then solved numerically employing 

the implicit finite difference method. 

 
The effects of different values of the viscosity variation parameter ε, the heat 

absorption parameter Q, the Eckert number Ec, the Prandtl number Pr and the 

amplitude of the wavy surface  on natural convection flow of viscous 

incompressible fluid along a vertical wavy surface has been studied numerically. 

From the present investigations may got the following conclusions: 

 

 The rate of heat transfer and the velocity decreases significantly while the 

skin friction coefficient and the temperature increases for increasing values 

of the viscosity variation parameterε. 

 For increasing values of the heat absorption parameterQ,the rate of heat 

transfer and the velocity increasesbutthe skin friction coefficient and the 

temperature decreases. 

 The skin friction coefficient, the temperature distribution and the velocity 

increase for an increasing values of the Eckert numberEc, over the whole 

boundary layer but the significant decreases the rate of heat transfer.  

 Increased value of the Prandtl number Pr, leads to decrease in the skin 

friction coefficient, the velocity distribution as well as temperature where 

the rate of heat transfer increases. 

 The rate of heat transfer and skin friction coefficient decreases 

significantly while the velocity and temperature increasedwith the 

increasing values of the amplitude of the wavy surface . 

 Streamlines and Isotherms has been changed slightly with the increasing 

value of the amplitude of the wavy surface  but the thermal boundary 

layer becomes thickner when amplitude increases. 
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 Velocity boundary layer becomes thinner for different values of viscosity 

variation parameter ε, heat absorption parameter Q and the Prandtl number 

Pr, while the Eckert number Ec increasing the velocity boundary layer also 

grows up. 

 Thermal boundary layer becomesthicker with the different values of 

viscosity variation parameterε and theEckert numberEc, but the heat 

absorption parameterQ and the Prandtl number Pr has been thinner. 

Major findings can be summarized as per the following conclusions: 

Significant effects of heat absorption parameter Q and viscosity variation 

parameter ε on velocity and temperature profiles as well as on skin friction coefficient 

Cfxand rate of heat transfer Nux have been found in this investigation but the effect of 

heat absorption parameter Q and viscosity variation parameter εon rate of heat transfer 

is more significant. An increase in the values of viscosity variation parameter ε leads 

to the velocity decrease and the temperature increase,the local skin friction coefficient 

Cfx increase and the local rate of heat transfer Nux decreases at different position of η 

for Pr =1.0. 

For increasing fluid temperature, the temperature difference between fluid and 

surface decreases and the corresponds the rate of heat transfer decreases. Besides the 

thermal state of the fluid increases, so the thermal boundary layer becomes thicker. 

It is also shown that the variable viscosity, viscous dissipation and heat 

absorption leads to change the fluid flow and temperature. 
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Extension of this work 
 

The present work can be extended in different ways. Some of these are: 

 Constant viscosity considering to extend the present work. 

 The thermal conductivity as a function of temperature can be considered to 

extend the present work. 

 Including Joule heating with magneto-hydrodynamics (MHD) can be 

considered to extend the present work. 

 Complex wavy surface can be considered as a combination of two sinusoidal 

functions. 

 The problem can be extended considering the radiation effect. 

 The problem can be extended considering the Micro and Nano fluids. 

 The problem can be also extended considering the non-Newtonian fluids. 

 Stress work and pressure work can be considered to extend the present work. 

 Forced convection may be studied with the same geometry. 

 Mixed convection may be studied with the same geometry. 

 Forced and mixed convection may be applied with the same geometry. 
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Appendix 
 

Implicit Finite Difference Method (IFDM) 
To apply the aforementioned method, equations (2.4.10) and (2.4.11) their boundary 

condition (2.4.12) are first converted into the following system of first order 

equations. For this purpose, we introduce new dependent variables ,),(),,(  vu

),( p  and ),( g  so that the transformed momentum and energy equations can be 

written as: 

uf   (A.1) 

vu   (A.2) 

pg   (A.3) 
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FigureA-1 :Net rectangle of difference approximationsfor the 
Box scheme. 

Now consider the net rectangle on the (,) plane shown in the figure A-1 and denote 

the net points by 

Jjh
Nnk

jjj

n
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Here n and j are just sequence of numbers on the (,) plane, kn and hj are the variable 

mesh widths. Approximate the quantities f,u,v andp at the points (n,j) of the net by 
n
j

n
j

n
j

n
j pvuf ,,,  which call net function. It is also employed that the notation n

jP  for 

the quantities midway between net points shown in figure A-1 and for any net 

function as 
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n
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The finite difference approximations according to box method to the three first order 

ordinary differential equations (A.1) – (A.3) are written for the midpoint (n,j-1/2 ) of 

the segment P1P2 shown in the figure (A.1) and the finite difference approximations to 

the two first order differential equations (A.4) and (A.5) are written for the midpoint 

(n-1/2,j-1/2 ) of the rectangle P1P2P3P4. This procedure yields 

hj 
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Now the equation (A.15) can be written as  
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Again, from the equation (A.16) then 
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The boundary condition becomes 
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Similarly, by using the equations (A.51) to (A.55), then the equation (A.49) can be 

written as 
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The coefficients of energy equation are 
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The boundary conditions (A.25) becomes 
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Which just express the requirement for the boundary conditions to remain during the 

iteration process.  

 

 

 


