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ABSTRACT

The usage of mathematical models of physical systems are increasing day by day in various

disciplines of science and engineering for simulation, optimization, or control. Descriptor systems

is a special kind of formation of physical systems arisen in many practical oriented fields whose

dynamics maintain Differential- Algebraic Equations. Such type of systems are originated by

finite elements or difference methods which becomes huge and complex to analyze along with the

increment of the fineness of the grid resolution. As a result, the necessity of model order reduction

comes up in order to minimize the complexity of the models during controlling by preserving the

input-output relation of the original large-scale models. However, although reducing the dimension

of large-scale models on infinite time and frequency domains has a great theoretical significance,

the reduced order models of original large-scale models on restricted time and frequency intervals

are more demandable to the analyzers and engineers for practical investigation.

This dissertation elaborately discusses the model generations for data extraction to form the

large-scale state-space systems and the projection based techniques to calculate the approximate

low-rank solutions of the original state-space systems on definite time and frequency intervals.

We impose relevant governing equations to create physical as well as data models. Balanced

truncation is one of the most notable methods for the reduction of the model dimensions of

linear time-invariant systems which requires computing the numerical solutions of two Lyapunov

equations, commonly known as Gramians. Among some widely used approaches, Rational Krylov

Subspace Method is one of the most effective procedures for finding the Gramians of the Lyapunov

equations of the large-scale sparse dynamical systems which has already been developed to

compute the low-rank time and frequency indefinite solutions. Besides, it has been also reformed

to compute the low-rank approximation of the standard Lyapunov equations on limited time and

frequency intervals for small-dense state-space systems.

However, in this thesis, we establish algorithms intending to obtain the low-rank solutions of

the Lyapunov equations on restricted time and frequency intervals constructed centering around

large-scale sparse index-I and index-II descriptor systems by creating no explicit projection.

Moreover, we develop algorithm to compute the matrix exponential through power series expansion

avoiding typical Schur decomposition in order to retain the sparsity for less memory consumption

and analyze the existing algorithms of matrix logarithm computation. For gaining the fastest

convergent solutions, we do a comparative analysis of the existing shift parameters essential

for solving the linear time-invariant systems. We also develop algorithms for getting low-rank

solutions on finite time interval with non-homogeneous initial condition, i.e., non-zero initial

value. Although balanced truncation gives the guarantee to preserve the stability of the reduced

order models deduced from the stable full models on infinite time and frequency domains, it fails

to give the stable time and frequency restricted reduced order models of stable original systems.
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Hence, an algorithm is proposed here as a remedy to this problem.

At the final stage, the numerical outcomes by applying our proposed algorithms on various types

of existing data models including our generated models are exhibited to demonstrate the efficiency

and exactness by minimizing the errors on the restricted time and frequency intervals. in addition,

the comparative analysis between the domain restricted and unrestricted reduced order models

are performed to show that on limited time and frequency intervals, our proposed algorithms give

better approximations of the original large-scale sparse systems.
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C H A P T E R 1

INTRODUCTION

1.1 Motivation

Mathematical simulation is a very powerful and popular approach in the field of scientific

experiments to investigate scientific concepts what is required mathematical data models for

analysis converted from physical models. Often, these types of practically oriented mathematical

models are designated by Linear Time-Invariant (LTI) continuous-time systems which are subject

to supplementary algebraic constraints, constructed as descriptor systems [2] represented by

Differential-Algebraic Equations (DAEs). There are several well-established discretization meth-

ods to obtain this type of data system among which Finite Element Method (FEM) is widely used

in the model designing sector. Such kind of discretizational procedure generates a satisfactory

number of grid points for resolving the geometrical details as accurately as possible what is the

reason behind the dimension of the mathematical data models becoming extremely huge and

sparse [1, 3–5]. As a result, these types of memory-hungry large-scale systems demand numerous

computational efforts which is a major hindrance for smooth simulation due to the memory as

well as time limitation. Therefore, it is inevitable to substitute the higher dimensional models

with the equivalent lower dimensional data models what is possible by imposing the methods,

ordinarily known as Model Order Reduction (MOR) [6–9].

The primary goal of MOR is to construct lower-dimensional systems in the replacement of higher

dimensional systems for reducing the time and space complexities during simulation whose input-

output responses are approximately as same as the responses of the original large models [10].

During the conversion of mathematical data models from physical models solving a large number

of Ordinary or Partial Differential Equations (ODEs or PDEs), there is an immense amount of

spare data included in the models which are unessential to characterize the input-output of any

physical device [11]. With a view to eliminating those redundant data from the original data

models, MOR is imposed what decreases the entire sizes of the systems suitable for scientific

analysis. However, at the time of dealing with real-life related problems, the requirement of model

simulation on small time and frequency intervals arises instead of analysing on entire domains

[12]. Therefore, although the MOR on infinite domains has great theoretical significance, it is less

practically important comparing with the MOR of the data models on limited time and frequency

domains.

Generally, two well-established techniques [3, 4, 6], namely, Gramian based methods and moment

based methods are very popular to the analyzers for MOR what are sub-divided into several
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CHAPTER 1. INTRODUCTION

Figure 1.1: Work flow of this thesis

theoretically proven methods such as singular perturbation approximation [13], optimal Hankel

norm approximation [14], rational Krylov method [15, 16], Balanced Truncation (BT) [17, 18].

Among them, the usage of BT is increasing day by day for the MOR of large-scale sparse dynamical

systems because it gives the guarantee of stability preservation of the reduced order models on

infinite domains and also has a global error bound [2, 11, 17].

However, BT requires the solutions of two continuous-time Lyapunov equations, commonly known

as Controllability Gramian (CG) and Observability Gramian (OG) [9, 10]. There are diverse

iterative methods like Low-Rank Cholesky Factor Alternating Direction Implicit (LRCF-ADI)

[19, 20], cyclic low-rank Smith method [21, 22], projection methods [23–26], matrix sign function

2



CHAPTER 1. INTRODUCTION

[27, 28] besides direct solver methods such as Bartels-Stewart method [29, 30] and Hammarling

method [31, 32] developed over the last few decades as the remedy to find out the solution of

Lyapunov equation on infinite domains. Among all of these, Rational Krylov Subspace Method

(RKSM) [33] is one of the most popular projection-based iterative methods modified as the solver

of the Lyapunov equations in [25, 34] that computes the low-rank factors of the approximate

solutions of the Lyapunov equations. RKSM has already been developed in [11, 35, 36] with a view

to solving the Lyapunov equations on infinite domains constructed centering around large-scale

sparse descriptor systems.

Nevertheless, to cope with solving the realistic problems, it is more important to find out the

solutions of the Lyapunov equations of large-scale descriptor systems on restricted time and

frequency intervals rather than solving them on finite intervals. Therefore, it is a contemporary

need to solve the Lyapunov equations of large-scale descriptor systems on restricted time and

frequency intervals. The structures of Lyapunov equations on finite time and frequency intervals

based on dense standard systems were introduced in [12]. The authors of [37, 38] investigated the

methods for solving them for large standard case only. However, in [39, 40], it was extended to the

generalized case also. But none of them discussed how to find out the solutions by keeping the

system matrices sparse because all of them created explicit projectors for projecting the system

matrices converting the matrices to dense. As a result, it increases the computational time to

compute the low-rank approximations of the solutions of the time and frequency limited Lyapunov

equations.

On the other hand, we propose algorithms to solve the Lyapunov equations centering on two

special kinds of descriptor systems, known as index-I and index-II descriptor systems, on re-

stricted time and frequency intervals using RKSM without constructing any explicit projector,

i.e., projecting the system matrices implicitly. We also develop algorithms for computing matrix

exponential by modifying the existing typical computational procedures [41] and analyze the

existing algorithms of matrix logarithm [42], necessary for solving time and frequency limited

Lyapunov equations in order to get faster solution. As a result, our proposed algorithms, which

also work for both stable and unstable systems, successfully decrease the entire computational

periods. Moreover, we also conduct a competitive analysis among the existing shift parameters,

the essential ingredient for solving Lyapunov equations by RKSM, to seek out the better shift

parameter for fast convergence. After that, we apply BT using our computed low-rank solution

factors for MOR on restricted time and frequency intervals.

Although reduced order models of stable original models on infinite domains imposing BT become

stable, there is no guarantee to get stable reduced models on finite time or frequency domains [12]

from stable full models. Therefore, there are several techniques developed to make the reduced

unstable systems stable [37, 43]. But, unfortunately, none of them gives the reduced order models

stable and more accurate than the infinite reduced models simultaneously. From that necessity,

we develop an algorithm for stability preservation of unstable reduced models that gives more

accurate approximations of full original models on nominated time and frequency intervals at

the same time. In addition, we also develop an algorithm for solving the Lyapunov equations

on restricted time interval having non-homogeneous initial values, i.e., non-zero starting points

by modifying our proposed algorithm working for homogeneous time intervals, i.e., consisting of

zero initial values. Finally, we conduct a detail numerical experiment to show the efficiency of

3
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our proposed algorithms on restricted time and frequency intervals while the intervals outside

the particular time and frequency boundaries are out of our prime concern. The flow chart 1.1

systematically summarizes our entire workflow throughout this thesis.

1.2 Thesis outline

The thesis is organized as follows:

In Chapter 2, the backgrounds of our research work are discussed. A vast description of the

basics of control theory and descriptor systems alongside the model order reduction techniques is

included in this chapter. A short review and derivation of the existing methods for generalised

systems are given and some essential matrix computational processes are discussed in it.

Chapter 3 provides the way of the generation of data models from physical models and convert

them to the state-space systems for analytical purposes. It also discusses the existing data models

available on different control theory platforms used in this thesis for numerical analysis.

Chapter 4 gives a broad description of the solution of Lyapunov equations centering around two

types of descriptor systems; index-I and index-II, on restricted time intervals using RKSM meth-

ods. It also deals with the solutions of Lyapunov equations on non-homogeneous time intervals.

At here, an efficient procedure of the computation of matrix exponential is proposed.

Chapter 5 is the consequence of Chapter 4 which mainly discusses the solution of Lyapunov

equations on nominated frequency intervals. For finding efficient solutions, a new approach of the

selection of shift parameters by the genetic algorithm is described in this chapter. Moreover, an

elaborate discussion on the matrix logarithm computation is also be included here for finding fast

convergent solutions.

One of the main parts of this thesis is provided in Chapter 6 where the topics on model order

reduction are discussed using the solutions of time and frequency restricted Lyapunov equations.

To remove the instability difficulties of time and frequency restricted reduced-order models, a

projection-based computational remedy is proposed what fixes both instability and error mini-

mization problems. Chapter 7 consists of the conclusion and a brief discussion on the futuristic

possibilities and the sectors of improvement of this research work.
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C H A P T E R 2

BACKGROUND

Introduction

This chapter aims to introduce major concepts from the literature. We start our discussion

with some essential properties of Linear Time-Invariant (LTI) continuous-time systems as well

as their classes what is followed by the introduction of some basic computational procedures of

matrix relevant to our thesis contexts. After that, a brief introduction of the existing methods for

the solutions of Lyapunov equations on infinite time domains is given alongside the discussion on

available model order reduction techniques. The derivations of Lyapunov equations on restricted

time and frequency domains are also shown in this chapter. It is noted that the background

theories are only discussed for non-descriptor generalized systems since we develop the model

reduction approach for large-scale descriptor systems on time and frequency intervals in the rest

of the chapters of this thesis. We avoid attaching some of the proofs of the theorems, lemmas,

propositions, etc. by referring to the related literature.

2.1 Theory of systems and control

This section describes the fundamental concepts of the systems and their realizations from

the points of view of the system theory and linear algebra. All the discussion are centered on

generalized state-space dynamical systems what are extended to the descriptor forms, a special

form of the generalized systems, in a subsequent manner.

B
∫

C

A

D

x0

u(t) + ẋ(t) x(t) + y(t)

+

Figure 2.1: Diagram of state-space representation of linear system
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2.1.1 State-space representation of dynamical system

The great mathematician Henri Poincaré is the pioneer of the representation of any physical

dynamic system linearly as a compact combination of variable, known as the state variable x,

with the output response to any given set of input u written as:

ẋ(t)= g(x,u, t)

where, ẋ(t) represents the ordinary derivation of x with respect to time t. Any system having n

states can be expressed as the form of n state equations as:

ẋ1(t)= g1(x,u, t),

ẋ2(t)= g2(x,u, t),
...= ...

ẋn(t)= gn(x,u, t)

what easily describes as the linear differential equations with constant coefficients [10] written as

the following matrix form:


ẋ1(t)

ẋ2(t)
...

ẋn(t)

=


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...

An1 An2 . . . Ann




x1(t)

x2(t)
...

xn(t)

+


B11 B12 . . . B1k

B21 B22 . . . B2k
...

...
. . .

...

Bn1 Bn2 . . . Bnk




u1(t)

u2(t)
...

uk(t)


or, simply as:

ẋ(t)=A x(t)+Bu(t)

Meanwhile, the corresponding output of n states of the particular system can be written as

following: 
y1(t)

y2(t)
...

yn(t)

=


C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
. . .

...

C l1 C l2 . . . C ln




x1(t)

x2(t)
...

xn(t)

+


D11 D12 . . . D1k

D21 D22 . . . D2k
...

...
. . .

...

Dl1 Dl2 . . . Dlk




u1(t)

u2(t)
...

uk(t)


Or,

y(t)=C x(t)+Du(t)

Therefore, the entire Linear Time-Invariant (LTI) system having n states can be written in the

form of
ẋ(t)=A x(t)+Bu(t); x(t0)= x0, t ≥ t0,

y(t)=C x(t)+Du(t)
(2.1)

6
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Figure 2.1 illustrates the entire Working strategy of any dynamical systems. However, the system

(2.1) is known as standard dynamical LTI system which can be generalized as:

E ẋ(t)=A x(t)+Bu(t); x(t0)= x0, t ≥ t0,

y(t)=C x(t)+Du(t)
(2.2)

where, x(t) ∈Rn×n, u(t) ∈Rn×k, y(t) ∈Rl×n are the states, inputs, and outputs of the system with

initial condition x(t0)= x0. It is noted that E ∈Rn×n is invertible matrix and D ∈Rl×k is the direct

transmission map what remains a null matrix in most of the real data models. However, the

first and second equations of (2.2) are widely known as state and output equations respectively.

The system (2.2) becomes Single-Input, Single-Output (SISO), if k = l = 1. Otherwise, it is called

Multi-Input, Multi-Output (MIMO) systems.

Generally, the LTI system randomly appears physical modeling whose system matrices A , B, C , D

are independent of time. If the system matrices change with respect of time as well as state n or

input u, it becomes non-linear. In this thesis, we only focus on LTI system.

2.1.2 Duhamel’s principle and Solution of the Generalized LTI system

The state equation of the general LTI system (2.2) can be reformed as the standard state

equation like the system (2.1) as:

ẋ(t)=Asx(t)+Bsu(t); x(t0)= x0 (2.3)

where, As = E−1A and Bs = E−1B. Now integrating (2.3) with respect to τ after multiplying both

sides by integrating factor e−At, we can get the solution applying the initial condition as:

x(t)= eAs(t−t0)x0 +
∫ t

t0

eAs(t−τ)Bsu(τ)dτ (2.4)

which is known as Duhamel’s principle for ordinary differential equation. The derivation of this

solution can be found in [11]. Now, plugging in this derived solution in the output equation of

(2.2), we reform the output y(t) as:

y(t)=C eAs(t−t0)x0 +
∫ t

t0

C eAs(t−τ)Bsu(τ)dτ+Du(t), (2.5)

where, eAs(t−τ) is known as state transition matrix.

2.1.3 Input-output relation, Step response, and Transfer function of LTI
system

The response of the system having initial value x0 and input u(t) can be characterized from

(2.4) and (2.5). The common responses of generalized LTI system on time domain are step-response

and impulse response.

Definition 2.1 (Unit step function [9]). The unit step function is defined as

ustep(t)=

0, i f t < 0

1, i f t ≥ 0

7
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Algorithm 1: Step response.
Input: E ,A ,B,C ,D, T0 (initial point of plotting domain), T f (final point of plotting

domain), N (Total no. of points).
Output: stp.

1 Compute h = T f −T0
N

2 Compute LU decomposition as

[L,U ,P,Q]= lu(E −hA )

3 for i=1:N do
4 x =Q(U\(L\(P(E x+hB))))

5 stp =C x+D

When subjected to the step input, the system will initially have an undesirable output known

as transient response occurred for the approaching of the system to its final output value. If the

time goes to infinity, system response is called steady-state response what will be occurred if the

transient response has end. The computational process of step responses known as implicit Euler

method is summarized in Algorithm (1).

The response of the generalized system on frequency domain is popularly known as frequency

response derived by applying the Laplace transformation [2, 44] as:

L(ẋ(t))=
∫ ∞

0
ẋ(t)e−stdt

= e−st
[
x(t)

]∞
0
+ s

∫ ∞

0
x(t)e−stdt

= sL(x(t))− x(0)= sX (s)− x0

Now combining this finding with (2.2), it can be written as:

sE X (s)− x0 =A X (s)+BU(s), (2.6a)

Y (s)=C X (s)+DU(s) (2.6b)

Considering the initial value x0 = 0 and inserting the value of X (s) from (2.6a) to (2.6b), we can

rewrite

Y (s)=G (s)U(s), where, G (s) :=C (sE −A )−1B+D (2.7)

G (s) is known as the transfer function of the SISO dynamical system. For the MIMO system, it

becomes

G (s)=


G11 G12 . . . G1k

G21 G22 . . . G2k
...

...
. . .

...

Gl1 Gl2 . . . Glk

 (2.8)

where Gi j =C (i, :)(sE −A )−1B(:, j)+D(i, j) with i = 1,2, ..., l and j = 1,2, ...,k. Transfer function

is one of the key factors of the control theory since the input-output relation of the dynamical

system. However, on complex frequency domain, the transfer function (2.7) can be written as

G (iω) :=C (iωE −A )−1B+D (2.9)

8
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where, ω ∈R is the frequency and i is the value on imaginary axis.

Definition 2.2 (Proper and Improper transfer function [2, 9]). The transfer function (2.7) is

called proper, or strictly proper respectively if lim
s→∞<∞, or lim

s→∞= 0. Otherwise, it is recognized as

improper.

2.1.4 Descriptor system

Currently, there are many data models derived from the real-world physical models where

E is found as singular form, i.e., det(E ) = 0 [4, 7, 45]. Such type of special dynamical system is

known as descriptor or singular system what consists of both differential and algebric part [9]

having regular matrix pencil

(λE −A ) 6= 0

Assuming two invertible matrices κ and η, the above matrix pencil can be reformed as following

Weierstress canonical form:

E = κ
I 0

0 n

η, A = κ
Ai 0

0 In

η
where, n is nilpotent matrix of nilpotency index p such that np = 0. In [46], the properties of the

descriptor systems containing differential-algebraic part, represented by Differential-Algebraic

Equations (DAEs), with their derivative procedure are broadly discussed. Depending on the

sparsity pattern of E , the system matrices of large-scale descriptor systems can be divided into

sub-blocks. In this thesis, we mainly focus on such kinds of special structured descriptor system of

the form E i E ii

0 0


︸ ︷︷ ︸

E

 ġ(t)

ṙ(t)


︸ ︷︷ ︸

ẋ(t)

=
 Ai Aii

Aiii Aiv


︸ ︷︷ ︸

A

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+
Bi

Bii


︸ ︷︷ ︸

B

u(t) (2.10a)

y(t)=
[
C i C ii

]
︸ ︷︷ ︸

C

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+Du(t) (2.10b)

and E i 0

0 0


︸ ︷︷ ︸

E

 ġ(t)

ṙ(t)


︸ ︷︷ ︸

ẋ(t)

=
 Ai Aii

Aiii 0


︸ ︷︷ ︸

A

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+
Bi

Bii


︸ ︷︷ ︸

B

u(t) (2.11a)

y(t)=
[
C i C ii

]
︸ ︷︷ ︸

C

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+Du(t) (2.11b)

where, g(t) ∈Rni represents the differential part, r(t) ∈Rnii represents the algebraic part,the full

dimension of the system is n = ni +nii, Ai ∈ Rni×ni , Aii ∈ Rni×nii ,Aiii ∈ Rnii×ni ,Aiv ∈ Rnii×nii are

the sub-blocks of A , Bi ∈Rni×k, Bii ∈Rnii×k are the sub-blocks of B, and C i ∈Rl×ni , C ii ∈Rl×nii

9
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are the sub-blocks of C .

The descriptor system (2.10) is well-known as index-I system having det(Aiv) 6= 0, whereas the

system (2.11) is called index-II system containing Aiv block as zero including det(AiiiAii) 6= 0.

Any descriptor system having Aiv as zero and det(AiiiAii)= 0 is known as index-III system which

is practically rare.

2.1.5 Controllability and Observability Gramians on infinite time domain

Controllability and observability are two prime topics in control theory what plays an impor-

tant roles in the MOR technique, especially Gramian-based Mor technique [10, 47].

Definition 2.3 (Controllable system [2, 6, 11]). The LTI dynamical system (2.2) is said to be

controllable system on time domain (t0 = 0) ≤ t < (t f =∞), if for any initial state x(0) = x0 and

final state x f , there exists a input u(t) such that the solution (2.4) satisfies x(t f )= x f . Otherwise,

it becomes uncontrollable.

However, a system is fully controllable if X f ull = Rn [48], where X f ull indicates the set of

all controllable states. Centering on the concept of the controllability of a system, the following

theorems are established:

Theorem 2.1. The below axioms are equivalents for the system matrix pair (As,Bs) of the system

(2.2):

• (As,Bs) is controllable.

• The controllability matrix C(As,Bs)=
[
Bs,AsBs,A 2

s Bs, . . . ,A n−1
s Bs

]
has full rank.

• The controllability Gramian on infinite time domain

P∞ =
∫ ∞

0
eAs tBsB

T
s eA T

s tdt (2.12)

is positive semi-definite,i.e., no eigenvalue is on the negative x-half plane for any t > 0.

• The matrix
[
A − sE ,B

]
has full rank n for all s ∈C.

• The reduced order pair ( ˜As,B̃s) is controllable, where ˜As =T AsT
−1 and B̃s =T Bs for any

non-singular T ∈Rn×n.

Proof. All of the proofs of above axioms are available in [6, 10]. �

On the other hand, observability is the dual concept of the controllability what is defined as

follow:

Definition 2.4 (Observable system [2, 6, 11]). The dynamical system (2.2) becomes an observable

system on time domain (t0 = 0)≤ t < (t f =∞), if for a given input u(t) initial state x(0)= x0 can be

uniquely determined from the system’s output (2.5).

If Y f ull = Rn, where Y f ull is the set of all observable states, then a system is completely

observable [48]. The following theorems are constructed based on the concept of the observability

of a system :

10
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Theorem 2.2. The below axioms are equivalents for the system matrix pair (As,C ) of the system

(2.2):

• (As,C ) is observable.

• The observability matrix O(As,C )=



C

C As

C A 2
s

...

C A n−1
s


has full rank.

• The observability Gramian on infinite time domain

Q∞ =
∫ ∞

0
eA T

s tC TC eAs tdt (2.13)

is positive semi-definite,i.e., no eigenvalue is on the negative x-half plane for any t > 0.

• The matrix

A − sE

C

 has full rank n for all s ∈C.

• The reduced order pair ( ˜As,C̃ ) is observable, where ˜As =T AsT
−1 and C̃ =C T −1 for any

non-singular T ∈Rn×n.

Proof. All of the proofs of above axioms are available in [6, 10]. �

It has been shown in [49, 50] that the controllability Gramian (2.12) is the solution of the

Continuous-time Algebraic Lyapunov Equation (CALE):

EP∞A T +A P∞E T =−BBT︸ ︷︷ ︸
αc

(2.14)

which is well-known as the controllability Lyapunov equation. Likewise, the observability Gramian

(2.13) is the solution of continuous-time algebraic observability Lyapunov equation:

E TQ∞A +A TQ∞E =−C TC︸ ︷︷ ︸
αo

(2.15)

2.1.6 System stability

Stability is a very vital characteristic property of any dynamical system since an unstable

system can never be controlled. Therefore, stability analysis is a must-needed topic in control

theory.

Definition 2.5 (Stable system [2, 6, 11]). The dynamical system (2.2) is called stable or Hurwitz-

stable if all of the members of the eigenvalue set λ of its system matrix pair (A ,E ) are on the open

left half of the complex plane, i.e., λ ∈C−. In other word, if both of the Lyapunov equations (2.14)

and (2.15) have unique solution, the dynamic system (2.2) is said to be asymptotically stable.

The LTI system (2.2) can be stabilizable if there exits a matrix K ∈Rk×n such that (As−BsK )

is stable [11].

11
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Theorem 2.3 (Lyapunov Stability Theorem [6, 10]). The system (2.2) is asymptotically stable on

infinite time domain if and only if for any symmetric positive semi-definite matrix αc indicated in

(2.14), there exists a unique symmetric positive definite matrix P∞ indicated in (2.12) satisfying

the Lyapunov equation (2.14).

Proof. The proof is found in [6, 10]. �

However, if αo in (2.13) is symmetric positive semi-definite, the observability Lyapunov equation

(2.13) also satisfies the theorem (2.3).

For the stable dynamical system, both of the Gramians P∞, Q∞ can be explained physically in

the following ways [14]:

• The minimum energy of the input for the controllability Gramian is

Jc =
∫ 0

−∞
uT (t)u(t)dt, x(0)= x0, t ≤ 0,

is equivalent to Jc = xT
0 P −1∞ x0, what indicates any state x0 = x(t) required more energy to

control lying in an eigenspace of P −1∞ corresponding to large eigenvalues.

• The obtained energy from output for the observability Gramian under the zero input is

Jo =
∫ ∞

0
yT (t)y(t)dt, x(0)= x0, t ≥ 0,

is equivalent to Jo = xT
0 Q∞x0, what indicates the difficulty of observing any state x0 = x(t)

lying in an eigenspace of Q∞ corresponding to small eigenvalues.

2.1.7 Controllability and Observability Gramians on restricted time interval

It is important to construct Controllability Gramian (CG) and Observability Gramian (OG) on

restricted time interval for dealing with real data problems. Time-restricted Gramian is defined

as follows:

Definition 2.6 (Time-restricted Gramian [12]). The time-restricted CG (P ) and OG (Q) with

respect to time t ⊂R+ on time interval [t0, t f ] for the system (2.2) are defined as:

P = E

∫ t f

t0

eE −1A tE−1B(E−1B)T e(E −1A )T tdtE T (2.16a)

Q =
∫ t f

t0

e(E −1A )T tC TC eE −1A tdt (2.16b)

Theorem 2.4. The time-restricted CG (2.16a) is the solution of the time-restricted Continuous-time

Algebraic Controllability Lyapunov Equation (CACLE) on time interval [t0, t f ]:

A P E T +EP A T +E eE −1A t0E−1B(E−1B)T e(E −1A )T t0E T −E eE −1A t f E−1B(E−1B)T e(E −1A )T t f E T = 0

(2.17)

12
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Proof. Plugging in the value of P , we get

A
[
E

∫ t f
t0

eE −1A tE−1B(E−1B)T e(E −1A )T tdtE T
]
E T +E

[
E

∫ t f
t0

eE −1A tE−1B(E−1B)T e(E −1A )T tdtE T
]
A T+

E eE −1A t0E−1B(E−1B)T e(E −1A )T t0E T −E eE −1A t f E−1B(E−1B)T e(E −1A )T t f E T

= E

∫ t f

t0

d
dt

[
eE −1A tE−1B(E−1B)T e(E −1A )T tdt

]
E T+

E eE −1A t0E−1B(E−1B)T e(E −1A )T t0E T −E eE −1A t f E−1B(E−1B)T e(E −1A )T t f E T

= E
[
eE −1A tE−1B(E−1B)T e(E −1A )T t

]t f

t0
E T+

E eE −1A t0E−1B(E−1B)T e(E −1A )T t0E T −E eE −1A t f E−1B(E−1B)T e(E −1A )T t f E T

= E eE −1A t0E−1B(E−1B)T e(E −1A )T t0E T −E eE −1A t f E−1B(E−1B)T e(E −1A )T t f E T−
E eE −1A t0E−1B(E−1B)T e(E −1A )T t0E T +E eE −1A t f E−1B(E−1B)T e(E −1A )T t f E T = 0

�

Similarly, it can be shown that the OG (2.16b) is the solution of the time-restricted Continuous-

time Algebraic Observability Lyapunov Equation (CAOLE):

A TQE +E TQA + e(E −1A )T t0C TC eE −1A t0 − e(E −1A )T t f C TC eE −1A t f = 0 (2.18)

However, if the initial value of the time interval is zero, i.e., [t0 = 0, t f ], then 2.17 and 2.18 are

reformed as:

A P E T +EP A T +BBT −E eE −1A t f E−1B(E−1B)T e(E −1A )T t f E T = 0 (2.19a)

A TQE +E TQA +C TC − e(E −1A )T t f C TC eE −1A t f = 0 (2.19b)

2.1.8 Controllability and Observability Gramians on restricted frequency
interval

For frequency response analysis on restricted frequency interval [−Ω,Ω], we need construct

frequency-restricted CG and OG what are defined as follows:

Definition 2.7 (Frequency-restricted Gramian [12]). The frequency-restricted CG (M ) and OG

(N ) with respect to frequency Ω⊂R on frequency interval [−Ω,Ω] for the system (2.2) are defined

as:

M = E

2π

∫ Ω

−Ω
Φ(iΩ)BBTΦ∗(iΩ)dΩE T (2.20a)

N = 1
2π

∫ Ω

−Ω
Θ∗(iΩ)E TC TC EΘ(iΩ)dΩ (2.20b)

where, Φ(iΩ)= (iΩE −A )−1, Θ(iΩ)= (E iΩ−A )−1 and Φ∗(iΩ), Θ∗(iΩ) are the complex conjugate

transposes of the respective Φ(iΩ), Θ(iΩ).

Theorem 2.5 (Parseval’s Theorem). If Φ(Ω) and Φ(Ω) are the Fourier transformations of F(t) and

F(t) respectively, then ∫ ∞

0
F(t)F(t)dt = 1

2π

∫ ∞

−∞
Φ(Ω)Φ(Ω)dΩ

13
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Proof. Taking inverse Fourier transformation from time interval [0,∞) to frequency interval

(−∞,∞) ∫ ∞

0
F(t)dt = 1

2π

∫ ∞

−∞
eiΩtΦ(Ω)dΩ

whose complex conjugate is: ∫ ∞

0
F(t)dt = 1

2π

∫ ∞

−∞
e−iΩtΦ(Ω)dΩ

Now, we can get- ∫ ∞

0
F(t)F(t)dt = 1

2π

∫ ∞

0
F(t)

∫ ∞

−∞
e−iΩtΦ(Ω)dΩdt

= 1
2π

∫ ∞

−∞

∫ ∞

0
F(t)e−iΩtdtΦ(Ω)dΩ

= 1
2π

∫ ∞

−∞
Φ(Ω)Φ(Ω)dΩ

�

Using Fourier transformation from frequency interval (−∞,∞) to time interval [0,∞)∫ Ω

−Ω
F(iΩ)dΩ=

∫ ∞

0
e−iΩteE −1A tdt

=
∫ ∞

0
e−(iΩ−E −1A )tdt

=−
[

e(−iΩ−E−1A )t

iΩ−E −1A

]∞
0

=⇒
∫ Ω

−Ω
F(iΩ)dΩ= (iΩE −A )−1E

Now imposing the above Theorem (2.5) and the Fourier transformation of eE −1A on CG (2.12),

we can get CG on infinite frequency domain for the generalized system (2.2) as:

M∞ = E

2π

[∫ ∞
−∞Φ(iΩ)BBTΦ∗(iΩ)dΩ

]
E T (2.21)

where, Φ(iΩ)= (iΩE −A )−1 and Φ∗(iΩ) is the complex conjugate transpose. Likewise, the infinite

OG can be written as:

N∞ = 1
2π

[∫ ∞
−∞Θ

∗(iΩ)E TC TC EΘ(iΩ)dΩ
]

(2.22)

where, Θ(iΩ)= (E iΩ−A )−1 and Θ∗(iΩ) is the complex conjugate transpose. Therefore, on finite

frequency interval [−Ω,Ω], the frequency-restricted CG and OG are written as (2.20a) and (2.20b).

However, it is shown in [51] that (2.20a) and (2.20b) can be partially decomposed as:

M = 1
2π

∫ Ω

−Ω
(EΦ(iΩ)M∞+M∞Φ∗(iΩ)E T )dΩ (2.23)

N = 1
2π

∫ Ω

−Ω
(Θ∗(iΩ)E TN∞+N∞EΘ(iΩ)E )dΩ (2.24)

We can rewrite (2.23) and (2.24) after integration as:

M = Eφ(iΩ)M∞+M∞φ∗(iΩ)E T (2.25)

N = ξ∗(iΩ)E TN∞+N∞E ξ(iΩ)E (2.26)

14
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where [39],

φ(iΩ)= 1
2π

∫ Ω

−Ω
(Φ(iΩ)dΩ

= 1
2π

∫ Ω

−Ω
1

iΩE −A
dΩ

= 1
2πi

[
ln(iΩE −A )

]Ω
−ΩE−1

=⇒ φ(iΩ)= i
2π

[ln(−iΩE −A )− ln(iΩE −A )]E−1.

(2.27)

∴φ∗(iΩ)= i
2π

E−T [ln(−iΩE −A )− ln(iΩE −A )]T (2.28)

and,

ξ(iΩ)= 1
2π

∫ Ω

−Ω
(Θ(iΩ)dΩ= i

2π
E−1[ln(−E iΩ−A )− ln(E iΩ−A )] (2.29)

ξ∗(iΩ)= i
2π

[ln(−E iΩ−A )− ln(E iΩ−A )]TE−T (2.30)

Theorem 2.6. The frequency-restricted CG (2.25) is the solution of the frequency-restricted

Continuous-time Algebraic Controllability Lyapunov Equation (CACLE) on frequency interval

[−Ω,Ω]:

A ME T +EMA T +Eφ(iΩ)BBT +BBTφ∗(iΩ)E T = 0 (2.31)

Proof. Plugging in the value of M , we get-

A
[
Eφ(iΩ)M∞+M∞φ∗(iΩ)E T

]
E T +E

[
Eφ(iΩ)M∞+M∞φ∗(iΩ)E T

]
A T+

Eφ(iΩ)BBT +BBTφ∗(iΩ)E T

= Eφ(iΩ)
[
A M∞E T +EM∞A T

]
+

[
A M∞E T +EM∞A T

]
φ∗(iΩ)E T+

Eφ(iΩ)BBT +BBTφ∗(iΩ)E T

=−Eφ(iΩ)BBT −BBTφ∗(iΩ)E T +Eφ(iΩ)BBT +BBTφ∗(iΩ)E T = 0

�

Similarly, it can be shown that the OG (2.26) is the solution of the frequency-restricted Continuous-

time Algebraic Observability Lyapunov Equation (CAOLE):

A TN E +E TN A +ξ∗(iΩ)E TC TC +C TC E ξ(iΩ)= 0 (2.32)

Moreover, for any frequency interval [Ω0,Ω f ] the frequency-restricted CG (2.31) and OG (2.32)

can be reformed as according to [12, 37]:

A ME T +EMA T +Eφ(iω)BBT +BBTφ∗(iω)E T = 0 (2.33a)

A TN E +E TN A +ξ∗(iω)E TC TC +C TC E ξ(iω)= 0 (2.33b)

where, φ(iω)= (φ(iΩ f )−φ(iΩ0)) and ξ(iω)= (ξ(iΩ f )−ξ(iΩ0)).
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2.1.9 Difficulties in system’s stability on restricted time and frequency
intervals

Reconstructing the CACLE (2.17) on restricted time interval as Equation (2.14), we can get-

A P E T +EP A T =
[
E eE −1A t f E−1B E eE −1A t0E−1B

]
︸ ︷︷ ︸

B

1 0

0 −1


︸ ︷︷ ︸

α

[
E eE −1A t f E−1B E eE −1A t0E−1B

]T︸ ︷︷ ︸
BT

(2.34)

According to Theorem (2.3), the system (2.2) on finite time interval represented by (2.34) will

be stable, if the right side is strictly positive semi-definite. But, unfortunately, the one of the

eigenvalues of α is on the negative x-half plane what makes the right side negative definite.

Therefore, the system on limited time interval is not stable despite it may be stable on infinite

time domain.

Similarly, the CACLE (2.33a) on restricted frequency interval can be reformed as Equation (2.14):

A P E T +EP A T =
[
Eφ(iω)B B

]
︸ ︷︷ ︸

B

 0 −1

−1 0


︸ ︷︷ ︸

β

[
Eφ(iω)B B

]T︸ ︷︷ ︸
BT

(2.35)

what also represents the entire system unstable on limited frequency interval as one of the

eigenvalues of β is on the negative x-half plane.

2.1.10 System Hankel’s singular values

The system Hankel’s singular values or simply Hankel’s Singular Values (HSVs) is very

important topic in the balancing based model reduction what are considered as the measurement

of energy at every state in a dynamic system. The HSVs are the basis of balancing based model

reduction, in which low energy states are discarded and high energy states are preserved. The

Hankel’s operator maps can be expressed as:

H : u(t)→
∫ 0

−∞
C eE −1A (t−τ)E−1Bu(τ)dτ

which has a finite number of singular values essential for model reduction of large-scale system.

It has been shown in [14] that HSVs are the positive square roots of the eigenvalues of the product

of the CG and OG :

σi =
√
λi(P Q) or,

√
λi(MN ) , i = 1,2, . . . ,n, (2.36)

where, λi denotes the eigenvalues. However, as the time-restricted CG (P ) and OG (Q) as

well as frequency-restricted CG (M ) and OG (N ) are not positive semi-definite, their Cholesky

decomposition is never possible what is the reason HSVs (σ) cannot be expressed in the way

shown in [2, 11, 52].
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2.1.11 System’s realizations

Any dynamic system has realization if the system matrices E ,A ,B,C ,D satisfy the transfer

function (2.7). The transfer function (2.7) is invariant under state-space or coordinate transfor-

mations x̃(t) = T x(t), where T is non-singular matrix. After the transformation, we obtain a

transformed system where

(E ,A ,B,C ,D)⇔ (T ET −1,T A T −1,T B,C T −1,D)

Therefore, the transformed invariant transfer function under the transformation T is

G̃ (s)= (C T −1)(sT ET −1 −T A T −1)−1T B+D

=C (sE −A )−1B+D =G (s)

Therefore, the transfer function of the transformed system is as same as the transfer function

of the original system. Since the input-output (I/O) relations is unchanged under coordinate

transformations, a system may have infinitely many realizations.

Definition 2.8 (Minimal transfer function [9–11]). A state space realization of a transfer function

(2.7) is minimal if and only if the system is fully controllable and observable.

Definition 2.9 (Balanced realization [10, 11]). The realization of a system (2.2) is said to be

balanced if its CG (P )or (M ) and OG (Q), (N ) is equal to each other and diagonal such that

P =Q = diag{σi}, or M =N = diag{σi},where i = 1,2, . . . ,n,

Among many realizations, there exist a realizations where the dimension (r) of the system is

minimum, i.e., consisting of minimum number of degree of freedoms (DoFs) what is known as

McMillan degree of the system.

2.2 Concept of matrix computation

This section briefly describes some basic concepts of matrix computation relevant to this thesis

subject.

2.2.1 Eigenvalue Problem

The finding of eigenvalues λ ∈R, orC including x ∈RnorCn satisfying

A x =λE x, x 6= 0,

where A ∈Rn×norCn×n, E ∈Rn×norCn×n is known as eigenvalue problem. The scalar λ is called

eigenvalues, i.e., det(λE −A )x = 0, whereas x is called the eigenvectors of corresponding eigenval-

ues.

Definition 2.10 (Spectrum and trace of a matrix). The set of all eigenvalues of A associated with

E is called the spectrum of A denoted by Λ(A ,E ).

On the other hand, the sum of all the diagonal elements of the matrix A is known as its trace.

The maximum modulus of the eigenvalues is called spectral radius denoted by ρ(A)= max
λ∈ρ(A)

∣∣λ∣∣.
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Any system’s stability depends on the positive definiteness of the matrix α (see 2.1.6) what

can be defined as follows:

Definition 2.11 (Positive semi-definite). A square matrix α is said to be positive semi-definite

if xTαx ≥ 0 for every non-zero column vector x of real numbers. Similarly, if α is Hermitian, i.e.,

α=α∗, then it will be positive semi-definite if x∗αx ≥ 0 for everhy non-zero column vector X of

complex numbers.

However, any linear transformation T : Rn → Rn, or T : Cn → Cn on a subspace S ⊂ Rn, or

S ⊂Cn is said to be invariant if A x ∈ S for every x ∈ S.

2.2.2 Sparsity Pattern and projection

When we talk about large-scale matrix, there is a term ’sparse’ included because of most of

the entities of practical large-scale matrix being zero. The sparsity of any matrix depends on the

ratio of the zero-valued entities against the total number of elements of a matrix. For instance, a

matrix a100×100 has a sparsity ratio 9000 : 10000. That means, it contains 9000 non-zero elements

and 1000 zero elements whereas the total entities is 10000.

a b

Figure 2.2: (a) Sparse Pattern (b) Dense Pattern

Practically, when a system is developed, most of the entities of the system matrices are zero,

that means, the system becomes sparse. Figure (2.2) shows the sparse and dense forms of a system

matrix having 2866249 entities in total. When it is sparse, the number of non-zero elements is

only 49044. But after converting to dense form, the number of non-zero entities becomes 291508.

Projection is a very important topic in the control theory which is often required for converting

any large-scale sparse matrix to equivalent small-scale matrix.

Definition 2.12 (Projection [6, 9, 10]). Projection is a linear transformation V on a vector space

S ⊂R or S ⊂C written as V : S → S such that V 2 = V

A square matrix Γ is said to be an orthogonal projector if Γ2 = Γ = ΓT for real and Γ2 = Γ = ΓH

for complex matrix. H denotes the complex conjugate transpose. Otherwise, the projector is

recognized as oblique.
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If a subspace S with dimension r can be written as S = Range(Γ) and V = [V1, . . . ,Vr] is the set of

basis of subspace S, then Γ is a projector onto S expressed as Γ= V (V TV )V T .

• The square matrix I −Γ is called complementary projector.

• Let S
′

be another r dimensional subspace and S
′ = range(W ) then Γ = V (W TV )−1W T is

called an oblique projector.

2.2.3 Important matrix decomposition

Matrix decomposition is a vital tool in the field of matrix computation what is a factorization

process to factorize a matrix into a product of two or more matrices. Some of the important matrix

decompositions are briefly introduced below:

2.2.3.1 Eigenvalue decomposition

Eigenvalue decomposition [53–55] factorizes a matrix into a canonical form to represent the

matrix in terms of its eigenvalues and eigenvectors. A square matrix A ∈Rn, or A ∈Cn can be

factorized through eigenvalue decompostion as:

A =VΛV−1,

where, Λ ∈ Rn, or Λ ∈ Cn is an diagonal matrix containing the eigenvalues of A and V ∈ Rn, or

V ∈Cn is the eigenvectors of A .

2.2.3.2 Schur decomposition

The Schur decomposition of a square matrix A ∈Rn, or A ∈Cn is defined as [53, 55]:

A =UTUT ,

where, U ∈Rn, or U ∈Cn is unitary matrix, T is upper triangular matrix containing the eigenvalues

of A at its diagonal.

2.2.3.3 QR decomposition

The QR decomposition of a matrix A ∈Rn×m, or A ∈Cn×m is defined as [53, 55]:

A =QR,

where Q is an orthogonal matrix and R is an upper triangular matrix. There are several methods

existed for computing QR decomposition such as Gram-Schmidt orthogonal process, household

transformation. Generally, QR decomposition is used to solve the eigenvalue problem and least

square problem.
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2.2.3.4 Singular value decomposition

The most widely used matrix decomposition in linear control systems is Singular Value

Decomposition (SVD) [55–57], what can be written mathematically for a rectangular matrix

A ∈Rn×m, or A ∈Cn×m

A =UΣVT ,

where, U ∈Rn×n, or U ∈Cn×n and V ∈Rm×m, or V ∈Cm×m are unitary matrices and the diagonal

entries σi of Σ ∈Rn×m, or Σ ∈Cn×m are called singular values of A arranged in chronological way,

i.e., σ1 ≥σ2 ≥σ3 ≥ . . .σk,k = min(m,n).

The thin SVD of A is obtained by taking only the first n singular values. SVD holds the following

properties:

• If the A TA is symmetric positive semi-definite, the singular values σi are the square roots

of the eigenvalues of A TA .

• If l be the number of singular values, then rank(A )= l.

• For symmetric A , σi =
∥∥λ(A )

∥∥.

•
∥∥A

∥∥
2 =σ1 and

∥∥A
∥∥

F =
√

(σ2
1 +σ2

2 +·· ·+σ2
k)

2.2.3.5 Arnoldi decomposition

Arnoldi decomposition is a typical large sparse matrix algorithm [58, 59] which makes the

matrix map vectors instead of accessing the elements of the matrix directly. The prime tool of this

method is Krylov susbspace which is defined as:

Definition 2.13 (Krylov subspace [9, 11, 25]). The Krylov subspace Km associated with A ∈Rn×n,

or A ∈Cn×n and V ∈Rn×k, or V ∈Cn×k can be written as:

Km(A ,V )=
[
V ,A V , . . . ,A m−1V

]

Lemma 2.1. Let, the column of Vm+1=
[
Vm vm+1

]
form an orthogonal basis,then there exists an

upper Hessenberg matrix Hm ∈Rm+1×m, defined as,

Ĥm =



h11 h12 . . . h1m

h21 h22 . . . h2m

0 h32 . . . h3m
...

. . . . . .
...

0 0 . . . hm+1,m


such that

A Vm = Vm+1Ĥm (2.37)

Conversely, if a matrix Vm+1 of orthogonal columns satisfies Equation (2.37), then the columns of

Vm+1 form a basis for the Krylov subspace Km.
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Algorithm 2: Arnoldi algorithm
Input: A , initial matrix B

Output: Hm ∈Rn×m, or Hm ∈Cn×m such that Xm =HmH T
m

1 set initial basis vector v1 = B
‖B‖ , V1 = v1

2 for k = 2, . . . ,m do
3 Set vk =A vk−1
4 for j = 1 to k−1 do
5 compute inner product h j,k−1 = vT

j vk

6 subtract projection vk = vk − (h j,k−1v j)

7 compute hk+1,k =
∥∥vk

∥∥ and new basis vector vk+1 = vk
hk+1,k

8 Hk=

[
Hk−1 hk

0 hk+1,k

]
9 Vk+1=

[
Vk vk+1

]
10 Partition Hm=

[
Ĥm

hm+1,meT
m

]

From Equation (2.37), for Hessenberg matrix it can be elaborated as:

A Vm =
[
Vm vm+1

] Hm

hm+1,meT
m

= VmHm +hm+1,mvm+1eT
m︸ ︷︷ ︸

em

, (2.38)

where, Hm is found removing the last row from Ĥm and em is a matrix of the last k columns of

the mk identity matrix.

After m steps, hm+1,m will be vanished and after some iteration,em term of (2.38) converges to

zero. Therefore, Equation (2.38) can rewrite as:

Hm = V T
m A Vm (2.39)

Hence, Hm represents the projection onto the Krylov subspace Km(A ,V ).

Definition 2.14 (Ritz value and Ritz vector [58]). The eigenvalues λm of Hm are called Ritz

values and if ṽ is eigenvectors of Hm associated with λm, then Vm ṽ is called Ritz vectors belong to

λm.

2.2.4 Matrix exponential

Matrix exponential is an essential part of the system on definite time interval (see (2.1.7))

and also a challenging part of computation for the large scale sparse system matrices. There are

several techniques available for the matrix computation what are briefly described below:

2.2.4.1 Eigenvalue decomposition method

If a square matrix A ∈Rn, or A ∈Cn is diagonalizable, its exponent can be easily computed

through eigenvalue decomposition (see (2.2.3.1)) as:

eA =VeΛV−1,
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where, Λ contains the eigenvalues of A at its diagonal.

However, converting A to Jorden canonical form J, matrix exponent is computed as:

eA =PeJP−1,

The main problem of the decomposition method is that it consumes more memory during dealing

with large-sparse matrix and convert the sparse matrix dense before computing.

2.2.4.2 Power series expansion

Power series is the ideal process to computing matrix exponent as it retains the sparsity

pattern at the time of computation. As a result, it consumes less memory during computation. For

any square matrix A ∈Rn, or A ∈Cn, the Taylor series expansion of A at convergence point 0 is:

eA =I +A + A 2

2!
+ A 3

3!
+·· ·+ A n

n!
=

∞∑
k=0

A k

k!
, (2.40)

where, In×n is an identity matrix. However, Taylor series is very slowly convergent to zero.

Therefore, Padé approximation is a better remedy of matrix exponent what gives surprisingly fast

convergent approximation of the matrix exponent written as:

(1+
i∑

k=1
bkA k) f (A )=

j∑
k=0

akA k, (2.41)

where, f (A ) indicates the Taylor series of matrix exponent of A . ak,bk are the coefficients

numerators and denominators respectively of the rational polynomial P = akA k

bkA k .

2.2.5 Matrix square root

The computation of matrix square root is related to finding matrix logarithm. Some well-known

square root computational procedures are given below:

2.2.5.1 Schur decomposition method

If any matrix A is diagonalizable, then its square-root can be computed by Schur decomposi-

tion (see (2.2.3.2)) as:

A
1
2 =UT

1
2 UT ,

where, the eigenvalues of A is the diagonal entities of the upper triangular matrix U.

2.2.5.2 Power series expansion

The power series of the square root of a matrix A can be written as:

A
1
2 =

∞∑
k=0

(−1)k 2k!
(1−2k)(k!)24k (A −I )k

It gives a convergent approximation if it satisfies the Gelfand’s condition lim
k→∞

∥∥∥A k
∥∥∥ 1

k < 1, that

means, the spectrum of A is within the disk D(1,1) ⊂ C. It works perfectly well if matrix A is

positive semi-definite.
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2.2.5.3 Denman-Beaver method

Denman-Beaver method [60] is an iterative method for finding square root of a square matrix

A starting with Y0 =A , Z0 =I as:

Yk+1 =
1
2

(Yk +Z−1
k )

Zk+1 =
1
2

(Zk +Y−1
k )

The main problem of this method is that it gives no guarantee to give convergent approximation.

But if it gives convergent approximation, then Yk converges quadratically to A
1
2 and Zk con-

verges to A − 1
2 . However, recently in [42], the authors implied inverse scaling method for finding

convergent approximation through this method what works well practically.

However, another problem is that it needs to perform matrix inversion which is inefficient while

working with large-scale matrix.

2.2.6 Matrix logarithm

Matrix logarithm is an inevitable part for defining any system on finite frequency interval

(see (2.1.8)) and still there is no efficient method for computing logarithm of large-sparse matrix,

especially matrix of complex entities. However, in this thesis we mainly focus on complex matrix

logarithm. The logarithm of a square matrix A ∈Cn can be written as:

ln(A )= ln(x+ i y)= ln(reiθ)

= 1
2

ln(x2 + y2)+ iarctan(
y
x

),

where, r = (x2+ y2)
1
2 and θ = arctan( y

x ). This is known as principle value of logarithm which is only

possible if the real part of all of the eigenvalues are on the positive x-half plane. Otherwise, we

get general value of logarithm written as:

ln(A )= 1
2

ln(x2 + y2)+ i(2kπ+arctan(
y
x

)), k = 1,2, . . . ,n.

Some established methods of finding finding logarithm are given as following:

2.2.6.1 Eigenvalue decomposition method

If A ∈Cn is diagonalizable, its logarithm can be calculated by eigenvalue decomposition (see

(2.2.3.1)) as:

ln(A )=Vln(Λ)V−1,

where, Λ contains the eigenvalues of A at its diagonal. The main problem of the decomposition

method is that it consumes more memory during dealing with large-sparse matrix and convert

the sparse matrix dense before computing.
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2.2.6.2 Power series expansion

If a matrix A is sufficiently close to the identity matrix I of same dimension, i.e.,
∥∥A −I

∥∥< 1,

then its Taylor series can be written as:

ln(A )= (A −I )− (A −I )2

2
+ (A −I )3

3
+·· ·+ (−1)n−1 (A −I )n

n
=

n∑
k=1

(−1)k−1 (A −I )k

k
(2.42)

However, for faster convergence, we can apply Padé approximation (2.41) here also where f (A )

denotes the Taylor series of matrix logarithm of A .

2.3 Available methods for solving Lyapunov equation

The solution of Lyapunov equation (2.14) is a key element in control theory for analysing

system’s stability,finding equivalent low-rank approximation [6, 9, 10]. There are several method

established over the decades among which some directly solve the Lyapunov equation constructed

centering on small dense systems and some give approximate solution by iteration during dealing

with large-scale sparse systems. However, it this section, we only describe the methods appropriate

for finding the solution on limited time and frequency intervals. We convert the general case to

standard as As = E−1A and Bs = E−1B for describing in a convenient way. For the description of

the methods available for the solution of infinite domains, one may see [2, 9, 11].

2.3.1 Methods for dense system

These solvers are appropriate for small dense systems. If the system becomes large, they need

more computational time and increase the computational cost what is quite inefficient in the field

of matrix computation.

2.3.1.1 Bartels-Stewart’s method

The Bartels-Stewart method [29, 30] provided the first numerically standard technique to

solve the dense small Lyapunov equations. Bartels-Stewart algorithm transformed a matrix

As into H by imposing Schur decomposution H = UTAsU, where U is orthogonal and H is

quasi upper-triangular, while in the Hessenberg-Schur algorithm, As is reduced only to upper

Hessenberg form. Therfore, the controllable Lyapunov equation (2.17) on definite time interval

[t f , t0]can be written as:

H P̃ + P̃ H T =UT eH t f BsB
T
s eH T t f U−UT eH t0BsB

T
s eH T t0U

Similarly, on limited frequency [Ω f ,Ω0], the controllable Lyapunov equation (2.33a) can be

expressed as:

H M̃ +M̃H T +UTφ(iω)BsB
T
s U+UTBsB

T
s φ

∗(iω)U= 0

These equations can be solved through backward substitutions so that P̃ = UTP U and M̃ =
UTMU.
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In this method, the system matrix As is transformed to real Schur form and then solves

backward for the solution of the transformed Lyapunov equations. The solutions P̃ and M̃ are

obtained by a congruence transformation.

2.3.1.2 Hammarling’s method

Another exact method is Hammarling method [31, 32] which is only applicable if the right side

BαBT of (2.34) and BβBT of (2.35) is symmetric positive semi-definite which is not naturally

possible for the Lyapunov equation on definite time and frequency interval (see (2.1.9)). However,

recently few works have been done for converting a negative definite matrix to positive semi-

definite [37, 39, 43]. After applying one of those methods, we may convert BαBT and BβBT to

positive semi-definite which is mandatory to impose Hammarling method for solving Lyapunov

equations on limited time and frequency intervals.

This algorithm first transforms As to lower triangular form for calculating the lower triangular

matrix Cholesky factor R,S of the solution P and M such that P = RRT and M = SST in the re-

cursive manner. Like the previous exact method, this method is also required Schur decomposition

of As or Hessenberg decomposition of Bs.

2.3.1.3 Matrix sign function method

Matrix sign function is the most popular approach to solve dense Lyapunov equations what

can be written for a matrix As as following:

sign(As)= V DV −1

where, D= diag(d1,d2, . . . ,dn) and

d =

1 Re(λn)> 0

−1 Re(λn)< 0

where, λ is the eigenvalues of As. The Lyapunov equations (2.17) and (2.33a) on restricted time

and frequency intervals can be decomposed as :As P
0 −A T

s

=
I P

0 I

As 0

0 −A T
s

I −P

0 I


and As M

0 −A T
s

=
I M

0 I

As 0

0 −A T
s

I −M

0 I


where, P= eAs t0BsB

T
s eA T

s t0 − eAs t f BsB
T
s eA T

s t f and M=−φ(iω)BsB
T
s −BsB

T
s φ

∗(iω).

Hence, if As is asymptotically stable, then [28, 61]

sign(As)= V sign(

As 0

0 −A T
s

)V −1
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The matrix sign function is computed by the following formula:

X0 =As =
As P

0 −A T
s

 , Xk+1 =
(Xk + X−1

k )

2
, k = 0,1,2, . . .

It is shown in [61, 62] that Xk → sign(As) as k →∞. Although this method requires approximately

the same amount of work space as the reqirement of Bartels-Stewrat method [63], the matrix sign

function method is more appropriate for parallelization as well as application than generalized

Bartels-Stewart method [62].

However, the disadvantage of the matrix sign function method is that an explicit matrix inversion

is required in every iteration which may lead to significant round-off error for ill-conditioned Xk if

the eigenvalues of the matrix pencil λ−As lie close to the imaginary axis. As a result, it cannot be

directly utilized for projected generalized Lyapunov equation.

2.3.2 Methods for sparse systems

These method are appropriate for large-scale sparse systems. In these types of methods, the

low-rank approximations of the original solution of the Lyapunov equations are calculated what

are comparatively more cost efficient than the direct methods previously described.

2.3.2.1 Low Rank LDLT factor- Alternating Direction Implicit method

The Alternating Direction Implicit (ADI) method is a powerful method arisen from the solution

methods for parabolic and elliptic partial differential equations what was first applied for solving

Lyapunov equation in [64]. However, at here we reform ADI method for the Lyapunov equation

(2.34) on definite time interval [t0, t f ] as:

(As +µ jI )P j− 1
2
=BsαBT

s −P j−1(As −µ jI )T

(As +µ jI )P j =BsαBT
s −P T

j− 1
2
(As −µ jI )T

with P0 = 0 and the shift parameters µ1,µ2, . . . ,µ j ∈ C− computed following the procedure de-

scribed in [65].

In [66], the authors simplified the typical ADI method by converting it for finding low-rank

Cholesky factors of the solution (P ) of Lyapunov equation. But the problem is that we cannot

perform Cholesky factorization on the solution of the Lyapunov equation as it is positive indefinite

(see (2.1.9)). Therefore, a better remedy is to perform LDLT factorization instead of Cholesky

decomposition [67].

Therefore, the solution P can be written as :

P ≈ L jD jLT
j =−2Re(µ j)(As +µ jI )−1GsSGT

s (As +µ jI )−T+
{(As +µ jI )−1(As −µ jI )L j−1D j−1LT

j−1(As −µ jI )T (As +µ jI )−T },
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Algorithm 3: Low rank LDLT factorization ADI method
Input: As, ADI shift µ j ∈C,Gs,S, tolerance ε
Output: L j, D j such that P ≈ L jD jLT

j
1 Initiate X0 =Gs, j = 1

2 while
∥∥∥X j−1SX T

j−1

∥∥∥≥ ε
∥∥∥GsSGT

s

∥∥∥ do
3 Solve V j = (As +µ jI )−1X j−1
4 if µ j is real then
5 X j = X j−1 −2µ jV j
6 L j = [L j−1,V j]
7 else
8 n j =

p
2 , δ j = Re(µ j)

Im(µ j)

9 X j+1 = X j−1 −4Re(µ j)(Re(V j)+δ j Im(V j))

10 L j+1 = [L j−1,n j(Re(V j)+δIm(V j)),n j

√
δ2

j +1 Im(V j)]

11 j = j+1

12 D j =−2diag(Re(µ1), . . . ,Re(µ j))⊗S

where,

L j =
[
(As +µ jI )−1Gs, (As +µ jI )−1(As −µ jI )L j−1

]

D j =


−2Re(µ j)S 0

. . .

0 D j−1


GsSGT

s =BsαBT
s .

Algorithm (3) shows the step by step procedures of LDLT factorization-ADI method for finding

the solution P where the technique to compute real low-rank Gramian factor LD
1
2 is imposed by

smartly picking the complex shift parameters described in [68].

Same algorithm can be applied for finding the low rank solution of Lyapunov equation (2.35) on

definite frequency interval [Ω0,Ω f ] by performing the factorization as GsSGT
s =BsβBs.

2.3.2.2 Krylov subspace method

Projection based low-rank iterative methods are one of the most efficient methods for solving

Large scale Lyapunov equations by reducing the problem dimensions. Krylov subspace method

[23, 24] is frequently used developed based on Krylov subspace techniques via block Arnoldi

algorithm (2) or Lanczos process introduced in [26] for smaller system what was extended for

larger system in [23]. However, at here we talk about the solution of time and frequency restricted

Lyapunov equations (2.17,2.33a).

In Krylov subspace methods, an approximate solution of the Lyapunov equation (2.17) is deter-

mined in the form P ≈ V P̃ V T . First, we need to determine the columns of Vm ∈Rn×k, which span

an orthonormal basis for the mk-dimensional Krylov subspace defined by

Km(As,Bs)= span(Bs,AsBs,A 2
s Bs, . . . ,A m−1

s Bs)

27



CHAPTER 2. BACKGROUND

Using Algorithm (2), the basis Vm of the Krylov subspace Km can be computed. Ensuring the

unique solution Pm at each iteration of the each reduced order equation

HmPm +PmH T
m +V T

m eAs t0BsB
T
s eA T

s t0Vm −V T
m eAs t f BsB

T
s eA T

s t f Vm = 0

is the key problem which is ensured for real Hm if and only if λi +λ j 6= 0 for every pair of

eigenvalues λi and λ j of Hm.

There are several method available for constructing the basis of Krylov subspace. In [24], Galerkin

type method was imposed relying on their global Arnoldi process whereas the convergence of

Arnoldi-Lyapunov methods has been studied in [69] computing the residual of corresponding Pm

as

Rm =AsVmPmV T
m +VmPmV T

m A T
s + eAs t0BsB

T
s eA T

s t0 − eAs t f BsB
T
s eA T

s t f

satisfying the Galerkin condition

V T
m RmVm = 0

In [70], the author used two pass version of the Lanczos algorithm for the reduction of memory

consumption whose convergence tendency has been studied in [69].

Similarly, using projection based Krylov subspace the reduced order frequency restricted Lyapunov

equation can be expressed as

HmMm +MmH T
m +V T

m φ(iω)BsB
T
s Vm +V T

m BsB
T
s φ

T (iω)Vm = 0

2.4 Model order reduction techniques

In control theory, the linear time invariant continuous-time system (2.2) arises during solv-

ing many real-life applications what becomes more challenging to compute for the large-scale

mathematical model. As a result, reducing the size of the system from higher order to lower order

is indispensable to circumvent the computational complexity which is known as model order

reduction (MOR).

The aim of the model reduction is to substitute the higher dimensional system (2.2) by a

substantially lower dimensional system

Ẽ ˙̃x(t)= ˜A x̃(t)+B̃u(t),

ỹ(t)= C̃ x̃(t)+ D̃u(t),
(2.43)

where, Ẽ , ˜A ∈Rr×r, B̃ ∈Rr×k, C̃ ∈Rl×r, and D̃ ∈Rl×k. Noted that, r (reduced dimension) ¿ n (full

dimension). The approximation is more accurate if the matrix norm∥∥y− ỹ
∥∥

is sufficiently small. The transfer function of full system (2.7) is replaced by the transfer function

of reduced system written as

Ỹ (s)= G̃ (s)U(s), G̃ (s)= C̃ (sẼ − ˜A )−1B̃+ D̃ (2.44)
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Figure 2.3: Model reduction (image source [1])

Therefore, the error between the original and reduced systems can be measured from

∥∥∥Y − Ỹ
∥∥∥

2
=

∥∥∥(G − G̃ )U
∥∥∥

2
≤

∥∥∥G − G̃
∥∥∥∞∥∥U

∥∥
2 . (2.45)

Hence, in the frequency domain, for he same input, the difference between two output responses

can be bounded by ∥∥∥G − G̃
∥∥∥∞ .

Therefore, by minimizing
∥∥∥G − G̃

∥∥∥∞, we can guarantee that
∥∥∥Y − Ỹ

∥∥∥
2

is minimized. Hence in model

reduction, the approximation error between the original and reduced models can be obtained by

computing the
∥∥∥G − G̃

∥∥∥∞ in certain range of the frequency domain.

Along with minimizing the approximated error, the other features like stability, passivity, symme-

try, definiteness of the original system must be preserved in the reduced systems if the original

system contains all of these properties.

The techniques to reduce the state space dimension are mainly classified into two classes: the

Gramian-based methods and the moment matching-based methods [6, 9]. The first class includes

optimal Hankel norm approximation [14], singular perturbation approximation [13], dominant

subspaces projection [71], balanced truncation [17] whereas the second implements rational

Krylov methods efficiently [15, 16, 43].

However, among those some of the efficient MOR methods implemented on limited time and

frequency domains are discussed below:

2.4.1 Square root balanced truncation

Balanced truncation is a Gramian-based model reduction technique what basically reduces

the dimensions by truncating the less important states from the systems. These states correspond

to the smallest Hankel’s Singular Values (HSVs) which is difficult to control but easy to observe

or vice-versa [9]. This issue can be fixed by transforming the system into a balanced form (2.9),

that means, the degree of controllability and observability of each state are the same.
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Now if we eliminate those states of the balanced system through balancing transformation that

are hard to control, we have eliminated the states that are hard to observe at the same time.

Definition 2.15 (Balancing transformation [9, 10]). A state space transformation T defined in

(2.1.11) is called a balancing transformation if

T −TP T −1 =T QT T =Σ=
Σi

Σii

 ,

where, P and Q are the controllability and observability Gramians on restricted time interval

respectively, Σi = diag(σ1, . . . ,σr), Σii = diag(σr+1, . . . ,σn) are the system’s HSVs.

Similarly, it is applicable for controllability and observability Gramians on restricted frequency

interval M and N .

Since balanced truncation is a Gramian-based technique, the low-rank factors of P , Q found

by solving Lyapunov equations (2.17) and (2.18) are required what can be constructed as:

P =RP RT
P and Q =LQL T

Q , (2.46)

where, RP = V VΛ
1
2 and LQ = V VΛ

1
2 . V and Λ are found from the eigenvalue decomposition of

low-rank approximation P̃ , Q̃ of P and Q respectively instead of Cholesky factorization as they

are positive indefinite.

Algorithm 4: Square root balanced truncation
Input: Low rank factors RP and LQ of P and Q respectively
Output: Reduced order system matrices Ẽ , ˜A , B̃, C̃ , D̃

1 Compute and partition a (thin) Singular Value Decomposition (SVD)

L T
QRP =

[
Ui Uii

][
Σi

Σii

][
Vi Vii

]T
, (2.47)

where Σi = diag(σ1, . . . ,σr) contains the largest r HSVs.
2 Construct the left and right balancing transformation matrices

TL :=RP ViΣ
− 1

2
i , TR :=LQUiΣ

− 1
2

i , (2.48)

3 Generate reduced order system matrices as

Ẽ :=T T
R ETL, ˜A :=T T

R A TL,

B̃ :=T T
R B, C̃ :=C TL, D̃ :=D

After computing the SVD of L T
Q

RP as (2.47), two transformation matrices TL and TR can be

constructed as (2.48) for performing balanced truncation reduction technique which satisfy the

properties

T T
R TL =Σ− 1

2
i UT

i (L T
QRP )ViΣ

− 1
2

i =Σ− 1
2

i UT
i (UiΣiVT

i )ViΣ
− 1

2
i =I

TLT T
R =RP ViΣ

− 1
2

i Σ
− 1

2
i UT

i L T
Q =RP (ViΣ

−1
i UT

i )L T
Q =RP (UiΣ

−1
i VT

i )−1L T
Q =RP (L T

QRP )−1L T
Q =I
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As a result, TL and TR are oblique projector to one another (see (2.12)). Now approximating x(t)

by TLT T
R x(t) in (2.2), we obtain

ETLT T
R ẋ(t)≈A TLT T

R x(t)+Bu(t),

y(t)≈C TLT T
R x(t)+Du(t)

By considering x̃(t) =T T
R x(t), an error is defined as err = ETL ˙̃x(t)−A TL x̃(t)−Bu(t) known as

residual from what can be written as T T
R err = 0, i.e., each column of T T

R is perpendicular to err.

Putting all these value together after pre-multiplication with T T
R , we can get the reduced order

system (2.43) whose reduced system matrices can be generated from the Algorithm (4).

The corresponding time-restricted Lyapunov equations converted from (2.19a and 2.19b) centering

around the reduced system matrices can be written as:

˜A P̃ Ẽ T + Ẽ P̃ ˜A T +B̃B̃T − Ẽ eẼ −1 ˜A t f Ẽ−1B̃(Ẽ−1B̃)T e ˜(E −1 ˜A )T t f Ẽ T = 0 (2.49a)

˜A TQ̃Ẽ + Ẽ TQ̃ ˜A + C̃ TC̃ − e ˜(E −1 ˜A )T t f C̃ TC̃ Ẽ eẼ −1 ˜A t f = 0 (2.49b)

where, P̃ =T T
R P TR and Q̃ =T T

L QTL. It is easily shown that

P̃ =T T
R P TR

=Σ− 1
2

i UT
i (L T

QRP )(RT
P LQ)UiΣ

− 1
2

i

=Σ− 1
2

i UT
i (UiΣiVT

i )(ViΣ
− 1

2
i UT

i )UiΣ
− 1

2
i

=Σ− 1
2

i Σ2
iΣ

− 1
2

i =Σi

Similarly, Q̃ =T T
L QTL =Σi. Therefore, by definition (2.9), the transferred system (2.43) is fully

balanced.

Following the same procedure, the reduced frequency-restricted Lyapunov equations can be

written as from (2.33a and 2.33b):

˜A M̃Ẽ T + Ẽ M̃ ˜A T + Ẽ φ̃(iω)B̃B̃T +B̃B̃T φ̃∗(iω)Ẽ T = 0 (2.50a)

˜A TÑ Ẽ + Ẽ TÑ ˜A + Ẽ T ξ̃∗(iω)C̃ TC̃ + C̃ TC̃ ξ̃(iω)Ẽ = 0 (2.50b)

where M̃ and Ñ are frequency-limited reduced Controllability and observability Gramians.

2.4.2 Interpolatory projection method

Rational tangential interpolation is another well-developed technique for model order reduc-

tion on infinite domain introduced in [72]. In this procedure, two oblique projectors W and V have

to be computed in such a way that the reduced transfer function G̃ (s) tangentially interpolates the

original transfer function G (s) at a predefined set of interpolation points and some fixed tangential

direction expressed as

G (θi)bi = G̃ (θi)bi, cT
i G (θi)= cT

i G̃ (θi), and

cT
i G (θi)bi = cT

i G̃ (θi)bi f ori = 1, . . . , r
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Algorithm 5: Time-restricted IRKA

Input: E ,A ,B,C ,t f , initial reduced matrices Ẽ , ˜A

Output: Reduced order system matrices Ẽ , ˜A , B̃, C̃

1 Compute low-rank observability factors LQ such that Q =LQL T
Q

by solving time-limited

observability Lyapunov equation (2.19b).

2 Make an initial selection of the interpolation points {θi}r
i=1 and the tangential directions

{bi}r
i=1.

3 Construct the right projector

V = [(θ1E −A )−1(Bb1 −E eE −1A t f Bb1eẼ −1 ˜A t f Ẽ T ), . . . , (θrE −A )−1(Bbr −E eE −1A t f Bbr eẼ −1 ˜A t f Ẽ T )]4

5 And left projector W =LQ(L T
Q

V )(V TLQL T
Q

V )−1

6 while not converged do
7 Construct

Ẽ =W TEV , ˜A =W TA V ,B̃ =W TB,C̃ =C V

8 Compute y∗i ˜A = λ̃i y∗i Ẽ

9 θi ←−λi, b∗
i ←−y∗i B̃ for i = 1, . . . , r

10 Compute V and W as above.

11 i=i+1

12 Ẽ =W TEV , ˜A =W TA V , B̃ =W TB, C̃ =C V .

where bi ∈Ck and Ci ∈Cl are respectively right and left tangential direction and correspond

to interpolation points θi. The rational tangential interpolation is performed using these quanti-

ties. In [73], the Iterative Rational Krylov Algorithm (IRKA)-based projection methods has been

discussed for model order reduction on infinite domains, where at each iteration both interpola-

tion points and tangential directions have been updated until the reduced system satisfies the

necessary condition for H2-optimality.

However, in this thesis we update the algorithms with a view to reducing the model order on

restricted time and frequency intervals. We modify the typical IRKA algorithm by combining the

procedure discussed in [74] for preserving system’s stability.

Algorithm (5) shows the step by step procedures to reduce the models on finite time intervals. The

same algorithm can be applicable to find out the reduced order models on limited frequency inter-

vals where the low-ranks observability factors LN can be computed by solving frequency-limited

observability Lyapunov equation (2.33b) and the right projector can be computed as

V == [(θ1E −A )−1(Eφ(iω)Bb1 +Bb1φ̃(iω)Ẽ T , . . . , (θrE −A )−1(Eφ(iω)Bbr +Bbrφ̃(iω)Ẽ T ]
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C H A P T E R 3

GENERATION OF DATA MODELS

Introduction

Analytical control theory largely depends on linear time-invariant state-space equation con-

structed based on mathematical data models. In this chapter, our discussion goes on the generation

of mathematical data models from physical models. We develop two data models among which the

physical model of one data model is based on fluid dynamics focusing on acoustic wave equation

and another is developed considering electrical power system as its physical model. We also take

some existing data models for our analysis purposes.

3.1 Piezoelectric Tonpilz Transducer

Piezoelectric Tonpilz (acoustic mushroom) Transducer has a great importance in naval science

which is a certain type of underwater electro-acoustic transducer. It can effectively operate as

either a sound projector or a hydrophone on or under the sea surface by high power sound emission

[75]. Tonpilz transducers are used in sonar technique working based on sound propagation to

navigate, communicate or detect objects on or under the surface of water. The transducer consists

of piezoceramic rings stacked between massive ends and pre-stressed by a central bolt. The tail

and head mass lower the resonance frequency of the device.

Figure 3.1: Mesh of Piezoelectric Tonpilz Transducer
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CHAPTER 3. GENERATION OF DATA MODELS

We have constructed this physical model from the motivation of [76]. In this model, time

domain interface of the acoustics module is used for the study. The model determines the radiated

pressure field and sound pressure level. The model is developed considering the total circumstance

as adiabatic, that means, it is not affected by the external temperature and it only transfers

energy to the surrounding only at the time of working. The governing equations are derived from

the acoustic wave equation.

The linear Euler’s equation valid for acoustic processes of the small amplitude can be written as

[77]

ρ0
∂u
∂t

=−∇p,

where, p is pressure, ρ0 is initial density and u is fluid velocity. Taking divergence on the both

side, we get

∇(ρ0
∂u
∂t

)=−∇2 p, (3.1)

From the equation of continuity of fluid, it can be written as:

∂ρ

∂t
+∇(ρu)= 0, (3.2)

If ρ0 is sufficiently weak function of time and assume the condensation s is very small, we can

write ρ = ρ0s and (3.2) becomes

ρ0
∂s
∂t

+∇(ρ0u)= 0,

Taking time derivative, we get-

ρ0
∂2s
∂t2 +∇(ρ0

∂u
∂t

)= 0, (3.3)

Combining, (3.1) and (3.3)

∇2 p = ρ0
∂2s
∂t2 , (3.4)

For adiabatic process*, the condensation s can be written with the help of the thermodynamic

speed of sound c as s = ρ0 p
c2 . Then from (3.4), we get-

∇2 p = 1
c2
∂2 p
∂t2 (3.5)

For convicting the sound field, a uniform constant volumetric force Fd needed to be added and for

causing of pressure variations, a heat source Fh is also included which has the uniform strenght

in all directions. Then (3.5) becomes

1
ρc2

∂2 p
∂t2 − 1

ρ
∇2 p+ 1

ρ
∇Fd −Fh = 0 (3.6)

*Adiabatic process is a type of thermodynamic process which occurs without transferring heat or mass between
the system and its surroundings.
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Since we consider the incompressible fluid domain like water, with unit outward normal n̂, from

the equation of continuity, we get-

n̂
ρ
∇p− n̂

ρ
Fd = 0. (3.7)

Equations (3.6) and (3.7) are the two main governing equations of tonpilz transducer with initial

condition p(t0, x0)= 0 and ∂p
∂t (t0, x0)= 0, where t0 is the initial time with initial position x0.

We have already known that the the relation between strain-stress of dielectric materials from

Hook’s law can be written as-

ε= sσ

where, ε is strain, s is compliance under short circuit conditions and σ is stress what can be

rewritten for elastic displacement u as-

ε= ∇u+u∇
2

(3.8)

The electric flux f can be written as-

f =Ξ∇Φ (3.9)

where, Ξ is permitivity and Φ is electric potential. Combining (3.8) and (3.9), we can write the

Piezoelectric coupled equations as strain-charge form as [78]-

σ= C
2

(∇u+u∇)+ eT∇Φ (3.10)

f = e
2

(∇u+u∇)−Td∇Φ (3.11)

where, C is elastic moduli , e is Piezoelectric tensor, Td is dielectric tensor.

Equations (3.6), (3.7), (3.10), and (3.11) are four governing equations of Piezoelectric Tonpilz

Transducer. Now considering all of the independent variables of these equations as a function of

k(t, x) and after similarity transformation†, we can modify these equations as-

(
1
ρc2 kt − 1

ρ
ki)p̈+ (

1
ρc2 ktt − 1

ρ
kii)ṗ+ 1

ρ
kiḞd + 1

ρc2 p = Fh (3.12)

n̂
ρ

ki ṗ− n̂
ρ

Fd = 0 (3.13)

C
2

ki u̇+ C
2

u∂i + eT kiΦ̇+ eTΦ=σ (3.14)

e
2

ki u̇+ e
2

u∂i −TdkiΦ̇−TdΦ= f (3.15)

†Similarity transformation is a mapping of a set by which each element in the set is mapped into a positive
constant multiple of itself, the same constant being used for all elements.
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Figure 3.2: Acoustic field pressure on output Probe points Vs. Time [0-10 sec]

The above equations can be represented as state-space forms as
1
ρc2 kt − 1

ρ
ki 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




p̈

F̈d

ü

Φ̈

+


1
ρc2 ktt − 1

ρ
kii

1
ρ

ki 0 0
n̂
ρ

ki 0 0 0

0 0 C
2 ki eT ki

0 0 e
2 ki −Tdki




ṗ

Ḟd

u̇

Φ̇

+


1
ρc2 0 0 0

0 − n̂
ρ

0 0

0 0 C
2 ∂i eT

0 0 e
2∂i −Td




p

Fd

u

Φ



=


1

0

1

1

u

(3.16)

where u :=
[
Fh 0 σ f

]T
is the input matrix of the system. Therefore, the output of this system

can be written as-

y=
[
1 0 1 1

]


p

Fd

u

Φ

 (3.17)

Equations (3.16) and (3.17) are the state-space representation of the Piezoelectric Tonpilz trans-

ducer. Using simulation software, we have created the physical model of Piezoelectric Tonpilz

transducer Five output probe points have been taken for measuring the output response on the

against of nine inputs.

Considering,


p

Fd

u

Φ

= x,


1
ρc2 kt − 1

ρ
ki 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

=G,


1
ρc2 0 0 0

0 − n̂
ρ

0 0

0 0 C
2 ∂i eT

0 0 e
2∂i −Td

= T,
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Figure 3.3: External field pressure


1
ρc2 ktt − 1

ρ
kii

1
ρ

ki 0 0
n̂
ρ

ki 0 0 0

0 0 C
2 ki eT ki

0 0 e
2 ki −Tdki

=O,


1

0

1

1

= Z, we can rearrange Equation (3.16) as:

Gẍ+Oẋ+Tx = Zu. (3.18)

Assuming, x2 = ẋ and x1 = x, we can reform the above Equation (3.18) as0 I

G O


︸ ︷︷ ︸

E

ẋ2

ẋ1

=
I 0

0 −T


︸ ︷︷ ︸

A

x2

x1

+
0

Z


︸ ︷︷ ︸

B

u
(3.19)

which is the first order form of the second order State equation (3.16). Considering,
[
1 0 1 1

]
=

L, we can rewrite the Output equation (3.17) as follwing:

y=
[
0 L

]
︸ ︷︷ ︸

C

x2

x1

 (3.20)

Equations (3.19) and (3.20) are the first order generalised state-space representation of the second

order Piezoelectric Tonpilz Transducer model.

The line graph (3.2) illustrates the acoustic field pressure on the selected output points on the

certain segment of time. We have considered around 9200 degree of freedoms (DoFs) for giving a

meshing structure of the model.
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Figure 3.5: Sound pressure

Figure 3.4: External fluid pressure

Table 3.1: Dimension of Piezoelectric Tonpilz transducer

Full Differential Algebraic Input Output
9140 3065 6075 9 5
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Figure 3.6: Transfer function of Piezoelectric Tonpilz transducer

After the compilation of the model and with the help of state-space equations (3.16) and (3.17),

we can get a differential-algebraic state-space system having 9140 dimensional state matrix

whose differential part is 3065 dimensional and algebraic part consists of 6075 dimension. The

system is developed as a form of special kind of descriptor system which is known as second

order index-I system. After conversion according to [2, 9], it can be formed as first order index-I

descriptor system (2.10). The transfer function of the system using (2.9) is plotted as shown in the

Figure (3.6).

3.2 Power system model

Electric power system model is one of the popular models in the field of model reduction

what is widely used for analysis. However, we have also generated a power system model for

our analytical purpose consisting of 84 buses. The data, used for generating the model, has been

collected from [79]. The system is operated by 4.8 kV (kilo Volt), what is the actual operating

voltage of California, USA [79]. The entire system is characterized by overhead and underground

electric line. The voltage and current of this power grid is measured in Phasor Measurement Unit

(PMU) whose base frequency is 60 Hz. The power load is generated with the help of constant

current, impedance, on-load tap changer (OLTC) used for voltage regulation through the buses.

We know from the Ohm’s law that the relation among the impedance Z, voltage V and current I is

Z = V
I
= iωLI

I
= iωL, (3.21)
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where, L is inductance and ω is frequency. The voltage through the inductor with initial phase

angle φ can be expressed as [80]

VL = (iωL)I

=ωLe
iπ
2 Iφ

=ωLIcos(ωt+φ)

= L
d
dt

(Isin(ωt+φ))

∴VL = L
dIL

dt

(3.22)

Similarly, the current flow through the capacitor with capacitance C can be written as

V
IC

= 1
iωC

IC =V iωC

=ωCe
iπ
2 Vφ

=ωCV cos(ωt+φ)

= C
d
dt

(V sin(ωt+φ))

= C
dVC

dt

∴ V̇C = 1
C

IC

(3.23)

From Kirchhoff ’s law, the entire voltage generations through the power system can be expressed

as
V =VZ +VL +VC

= ILZ+L
dIL

dt
+VC

∴ İL =− 1
L

VC − Z
L

I + 1
L

V

(3.24)

Combining (3.23) and (3.24), we get the state space equation asV̇C

İL

=
 0 1

C

− 1
L −Z

L

VC

IL

+
0

1
L

u, (3.25)

where, u =
[
V

]T
is the input matrix of the system. The output of the power system can be written

as

y=
y1

y2

=
I 0

0 Z

VC

IL

 (3.26)

Equations (3.25) and (3.26) are the state-space representation of the electric power system.

The system is interconnected through three-phase four wire arrangement what is used star

connected phase winding. The turning ratio of the voltage frequency is adjusted by On Load Tap

Changer (OLTP) during operation while the frequent changing in the return ratio of transformer

is utilized by Off Circuit Tap Changer (OCTC). Figure (3.9) represents the control diagram of the
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Table 3.2: Dimension of Electric power system

Full Differential Algebraic Input Output
634 435 199 10 10

Figure 3.7: Distributed Line

Figure 3.8: Capacitor

tap changer and Figure (3.10) illustrates the connection of the tap changers.

After the simulation of the power model and with the help of state-space equations (3.25) and

(3.26), we can get a differential-algebraic state-space system having 634 dimensional state matrix

whose differential part is 435 dimensional and algebraic part consists of 199 dimension. It is also

structured as first order index-I descriptor system (2.10). The transfer function of the system

using (2.9) is plotted as shown in the Figure (3.13).
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Figure 3.9: Control diagram of Tap Changer

Figure 3.10: Connection of tap changer
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Figure 3.11: Current and Voltage Profile through single wire transmission line
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Figure 3.12: Current and Voltage Profile through triple wires transmission line
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Figure 3.13: Transfer function of electric power system

3.3 Existing data models

We have also considered several existing data models for our analytical purpose besides the

data models we have generated. All of the models are highly sparse and are structured as special

kinds of descriptor systems.

3.3.1 Brazilian Interconnected Power Systems

The Brazilian Interconnected Power System (BIPS) models provides a number of differential-

algebraic systems which have special kind of descriptor structures represented by (2.10).
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Table 3.3: Dimension of Brazilian Interconnected Power System

Model Full Differential Algebraic Input Output
BIPS-606 7135 606 6529 4 4
BIPS-1142 9735 1142 8593 4 4
BIPS-1693 13275 1693 11582 4 4

We have collected the data of three variants of BIPS models from [81] and Table (3.3) represents

the dimensions of each model.

3.3.2 Oseen Model

Oseen model is a special type of data model governed by the stokes equation [82] written for

incompressible fluid flow as

∂v
∂t

=∆v−∇p+ f

∇v = 0
(3.27)

with initial and boundary conditions

v(x,0)= v0(x), x ∈Ω
v(x, t)= g(x, t), (x, t) ∈ ∂Ω× (0, t f ),

where, v is the velocity vector, p is fluid pressure, f is external force, Ω is a bounded open domain

with boundary ∂Ω and t f is the final time of time interval.

Table 3.4: Dimension of Oseen model

Full Differential Algebraic Input Output
7399 4900 2499 4 4

Figure 3.14: Mesh structure of simple channel flow
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Figure 3.15: Velocity profile of simple channel flow

Figure 3.16: Pressure profile of simple channel flow

This model is similar with simple channel flow of incompressible fluid like water whose

meshing structure can be represented by Figure (3.14). Figures (3.15) and (3.16) respectively

represent velocity and pressure profiles of simple channel flow having initial velocity and pressure

as zero with no slip boundary condition.

After the extraction of data model of oseen equation from physical model, we get a special type of

descriptor system of the form (2.11) which is known as index-II descriptor system.

The analytical results of this thesis have been found after conducting thorough analysis using

the above described data models.
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C H A P T E R 4

SOLUTION OF LYAPUNOV EQUATIONS ON RESTRICTED TIME

INTERVALS BY ITERATIVE METHOD

Introduction

One of the key operations for model order reduction is to compute the solution of the Lyapunov

equation. Several works have been done through last few decades on the efficient computation

of Lyapunov equation on infinite time domain [1, 2, 6, 7, 9, 11, 43]. But to cope with finding

the solution of real-life oriented problems, it is more important to solve Lyapunov equation on

restricted time interval rather than on infinite domain. Very few researches have been conducted

on searching the solution of Lyapunov equation on finite time interval centering around dense

small standard or generalised state-space systems [12, 38, 40] what are the previous topics of

our discussion (see Section 2.3). But none of them discussed on the solution of the Lyapunov

equations constructed on large-sparse dynamic system. In this chapter, we elaborately describe

the efficient computation procedure of the low-rank solution of large-scale Lyapunov equations

constructed around two special types of large-scale sparse descriptor systems of the form (2.10)

and (2.11) known as index-I and index-II descriptor system respectively. For this purpose, we

concentrate our attention on Rational Krylov Subspace Method (RKSM) [33, 34] because this

method is computationally cheap and the convergence solution is quickly found. We rebuild the

typical method for finding the Gramian of large-scale index-I and index-II descriptor systems on

finite time interval. Since we deal with large-scale system, to increase the computational efficiency

we compute low-rank solution factors instead of finding full-rank solution. We not only focus on

the solution of Lyapunov equation on the time interval having initial point zero but our research

is extended to the quest of the solution on time interval having non-homogeneous initial condition.

We also inspect the procedure of computing matrix exponential inevitable part for solving time

restricted Lyapunov equation by occupying less device’s memory and requiring less computational

time what increases the efficiency of the computational algorithms.

4.1 Rational Krylov Subspace Method

Rational Krylov Subspace Method (RKSM) was first proposed in [33] after the modification of

Krylov subspace method (see Subsection 2.3.2.2). There, the author modified the Krylov subspace

Km(A ,B)= span(B,A B,A 2B, . . . ,A m−1B)
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by replacing with the rational function of A written as

Km(A ,B,µ)= span((A −µ1I )−1B, (A −µ2I )−1B, . . . , (A −µm−1I )−1B),

where, {µ j} ∈C is the set of shift parameters required for spectral transformation. If E exists, the

rational Krylov subspace will be reformed as

Km(E ,A ,B,µ)= span((A −µ1E )−1B, (A −µ2E )−1B, . . . , (A −µm−1E )−1B)

= span(
m∏

j=1
(A −µ jE )−1B).

We can compute the orthogonal basis Vm of this subspace using Algorithm (2) in such a way that

Range(Vm)= span(
m∏

j=1
(A −µ jE )−1B)

Recalling the time restricted Lyapunov equation pairs on time interval [0, t f ] (2.19)

A P E T +EP A T +BBT −E eE −1A t f E−1B(E−1B)T e(E −1A )T t f E T = 0

A TQE +E TQA +C TC − e(E −1A )T t f C TC eE −1A t f = 0

centering around generalized state-space system (2.2)

E ẋ(t)=A x(t)+Bu(t); x(t0)= x0, t ≥ t0,

y(t)=C x(t)+Du(t)

and applying the Galerkin condition on time restricted Controllability Lyapunov equation (2.19a),

we can write

V T (A P E T +EP A T +BBT −E eE −1A t f E−1B(E−1B)T e(E −1A )T t f E T )V = 0

(V TA V )(V TP V )(V TEV )T + (V TEV )(V TP V )(V TA V )T + (V TB)(V TB)T

−(V TEV )(V T eE −1A t f V )(V TE−1V V TB)(V TE−1V V TB)T (V T eE −1A t f V )T (V TEV )T = 0

Considering P̃ = V TP V , Ẽ = V TEV , ˜A = V TA V , B̃ = V TB, the projected controllability Lya-

punov equation from Equation (2.19a) can be written as

˜A P̃ Ẽ T + Ẽ P̃ ˜A T +B̃B̃T − Ẽ eẼ −1 ˜A t f Ẽ−1B̃(Ẽ−1B̃)T e(Ẽ −1 ˜A )T t f Ẽ T = 0 (4.1)

Similarly, considering C̃ = C V , the projected obsevability Lyapunov equation from Equation

(2.19b) can expressed as

˜A TQ̃Ẽ + Ẽ TQ̃ ˜A + C̃ TC̃ − Ẽ e(Ẽ −1 ˜A )T t f C̃ TC̃ T eẼ −1 ˜A t f = 0 (4.2)

Since Equation (4.1) is projected small-scale equation, it can be solved by any direct solver

method described in section (2.3.1). Due to the instability difficulty, the controllability Gramian

becomes negative definite and we do not perform Cholesky factorization of P̃ . Instead of that, we

perform eigenvalue decomposition (4.3) so that

P̃ = (VΛ
1
2 )(VΛ

1
2 )T
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Algorithm 6: RKSM for solving time-restricted controllability Gramian (2.19a) of gener-
alised system (2.2) on time interval [0, t f ].

Input: E ,A ,B, mit (no.of iteration), t f (endpoint of time interval), 0< tol ¿ 1 (tolerance
value), µ1 (initial shift parameter).

Output: RP ∈Rn×z such that RP RT
P

≈P , where z ¿ n.
1 set initial basis vector v1 = (A −µ1E )−1B, V1 = v

‖v‖
2 while j ≤ mit do
3 Find the next basis matrix by solving linear system

(
A −µ jE

)
v j+1 = V j.

4 Construct orthonormal vector set V j+1 = [V j,v j+1] by QR decomposition (see Subsection
(2.2.3.3)) using Algorithm (2).

5 Solve the projected controllability Lyapunov equation (4.1)

˜A j+1P̃ Ẽ T
j+1 + Ẽ j+1P̃ ˜A T

j+1 +B̃ j+1B̃T
j+1 − Ẽ j+1eẼ −1

j+1
˜A j+1 t f Ẽ−1

j+1B̃ j+1(Ẽ−1
j+1B̃ j+1)T e(Ẽ −1

j+1
˜A j+1)T t f Ẽ T

j+1 = 06

for finding small-scale CG P̃ Where, Ẽ j+1 = V T
j+1EV j+1, ˜A j+1 = V T

j+1A V j+1,
B̃ j+1 = V T

j+1B

7 Compute next shift parameter µ (see Section (4.2))
8 Compute residual norm (see Section (4.4))
9 if residual norm≤ tol then

10 Stop Rational Krylov iteration.

11 Operate eigenvalue decomposition

P̃ =
[
V1 V2

][
Λ1

Λ2

][
V1 V2

]T
(4.3)

12 Establish low-rank controllability Gramian factor

RP = V j+1V1Λ
1
2
1 (4.4)

after truncating less effective eigenvalues Λ2.

Conducting Gaussian back substitution, the original controllability Gramian can be retrieved as

P = V P̃ V T

Combining the above two expression, we can write as

P = (V VΛ
1
2 )(VΛ

1
2 V )T

=RP RT
P ,

where, RP = V VΛ
1
2 , is low-rank controllability Gramian factor. For increasing the more efficiency

of the computation, we can eliminate the negligible eigenvalues and their corresponding eigenvec-

tors. Algorithm (6) summarises the entire procedure of computing the low-rank solution factor of

the controllability Lyapunov equation centering around generalised system.

Similarly, by taking the transpose of the system matrices, we can compute the low-rank observ-

ability Gramian factor LQ by solving projected observability Lyapunov equation (4.2) such that

Q =LQL T
Q

using the same Algorithm (6).
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4.2 Selection of Shift Parameter

Shift parameter selection is one of the vital parts in RKSM method. Without proper selection

of shift parameter, it is impossible to find out convergent solution on nominated time interval. So

a vast research has been conducted on this topic. However, which procedure we have followed

partially in this thesis for finding shift parameter has been proposed in [83] known as optimized

RKSM shift parameter. The shift parameter sequences have been calculated by rational function

[34, 83]

B− (A −µE )Vm(Cp −µE )−1V T
m B = fm(E ,A )B

fm(µ)
,

fm(z)=
m∏

j=1

z−λ j

z+µ j
,

where, λ j and µ j are the interpolating points. It has been observed in [34] that the characteristic

polynomial of Cp minimizes
∥∥p(E ,A )V

∥∥ among all monic polynomial of degree m, so that the

numerator of fm(z) satisfies

∥∥ fm(E ,A )B
∥∥= min

λ1,...,λm

∥∥∥∥∥∥
m∏

j=1
(A −λ jE )(A −µ jE )−1B

∥∥∥∥∥∥ .

With this result, it was proposed in [84] that the next shift µm+1 can be selected for symmetric

matrix as

µm+1 = arg

(
max

µ∈[−λmax,−λmin]

1
| fm(µ)|

)
,

where, [λmin,λmax] is an estimated of (E ,A )’s spectral interval. During working with non-

symmetric matrix, the interpolating points λ j and µ j are nominated on complex plane and

the next shift can be selected as

µm+1 = arg

(
max
µ∈∂Λm

1
| fm(µ)|

)
,

where, Λm ⊂C is the mirrored spectral region of (E ,A ) and ∂Λm is its border. It has been narrated

in [6] that Krylov based method like RKSM may be accurate at local level only. As a result, with a

view to finding global convergences, in [83], Equi-Distributed Sequences (EDS) of shift parameters

were computed by the classical Zolotaryov solution what were generated with some probability

densities corresponding to the equilibrium charge distribution of the condenser with positive and

negative plates [−λmax,−λmin] and [λmin,λmax] respectively.

For dealing with both symmetric and non-symmetric cases, according to [34] we calculate the shift

parameters in an iterative manner by maximizing 1
| fm(µ)| over certain spectral interval, where the

zeros of fm are rational Ritz values while the poles of fm are the previously computed shifts.

4.3 Computation of Matrix Exponential

Computation of matrix exponential is one of the key operations and most probably the main

challenging part in computing the solution of time restricted Lyapunov equation. Although
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Algorithm 7: Computation of Matrix Exponential.

Input: As = (E−1A )t f (t f endpoint of time interval), 0< nztol ¿ 1 (Non-zero tolerance
value), 0< stol ¿ 1 (sparsity tolerance value), 0< Ctol ¿ 1 (Convergence value),
I (Identity matrix having size of (As)).

Output: ExpM=eAs .
1 Cc = 1 (Flag for Convergence check)
2 s f = 2ceil(log2(‖As‖)) (Scaling factor)
3 As = s f As

4 As = nztol(round(( 1
nztol ))As)

5 ExpM=I ; nT=I

6 Rn = No. of Non−Zero Element
No. of total element

7 if Rn > stol then
8 ExpM = VeJVT by eigenvalue decomposition
9 else

10 i = 1
11 while Cc > Ctol do
12 nT=1

i AsnT
13 nT=nztol(round( 1

nztol )nT)
14 Cc =∥∥nT

∥∥
15 ExpM= ExpM+ nT
16 i = i+1

17 ExpM=nztol(round( 1
nztol )ExpM)

18 ExpM=(ExpM)2

by eigenvalue decomposition, the exponent of small dense matrix can easily be computed (see

Subsubsection (2.2.4.1)), it is impossible to calculate matrix exponential of large sparse matrix

by eigenvalue decomposition due to time and memory limitation. As a result, there are different

kinds of algorithm been developed around last decades for finding the convergence result of matrix

computation. In [85, 86] Krylov subspace based algorithm have been developed for computing

matrix exponential. On the other hand, the scaling and squaring method, what is vastly used in

computing exponential, is described elaborately in [87]. There, the author established an explicit

relation of exponential of matrix As as

eAs = e
As
σ
σ,

where, eAs was approximated near the origin by Padé approximation rkm(x) and σ was chosen as

integral power of 2, i.e. σ= 2i. rkm(x) can be calculated as rkm(x)= Pkm(x)
Qkm(x) , where,

Pkm(x)=
k∑

j=0

(k+m− j)!k!
(k+m)!(k− j)!

x j

j!
, Qkm(x)=

m∑
j=0

(k+m− j)!m!
(k+m)!(m− j)!

(−x) j

j!

Then, the author showed that rmk(2−iAs)2
i = eAs and the scaling factor can be determined by

i = log2
‖As‖
θm

if
∥∥As

∥∥≥ θm and zero otherwise, where θm :=
∥∥∥2−irm

∥∥∥.

On the contrary, in [41], the traditional Taylor series expansion (see Subsubsection (2.2.4.2)) at

origin was considered for calculating the matrix exponential by scaling and squaring method.

There, the authors reduced the calculation of the scaling factor by ceiling the operation by

taking the maximum values of 2log2(‖As‖) and neglected the higher-order Taylor polynomial. In

50



CHAPTER 4. SOLUTION OF LYAPUNOV EQUATIONS ON RESTRICTED TIME INTERVALS
BY ITERATIVE METHOD

Table 4.1: Computational time of Matrix Exponential

Model nztol T1 T2 Norm
1×10−10 5.799 0.867 5.215
1×10−16 6.50 1.028 5.04×10−6

BIPS-606 1×10−20 8.78 1.062 5.74×10−8

1×10−25 9.27 1.85 8.35×10−8

1×10−30 10.25 2.05 1.27×10−10

1×10−10 35.35 3.098 2935.28
1×10−16 36.50 3.7801 0.0044

BIPS-1142 1×10−20 38.28 3.895 3.69×10−5

1×10−25 39.27 4.09 3.00×10−7

1×10−30 40.95 4.27 4.07×10−9

1×10−10 89.54 8.9299 2807.60
1×10−16 90.20 11.33 0.0015

BIPS-1693 1×10−20 91.05 12.01 3.45×10−5

1×10−25 91.95 12.97 2.71×10−6

1×10−30 92.75 13.10 3.27×10−8

1×10−10 76.299 5.15 1596.28
1×10−16 77.50 6.86 1.1×10−2

Piezo Tonpilz 1×10−20 78.28 6.94 8.52×10−10

1×10−25 79.001 8.71 7.96×10−14

1×10−30 79.80 9.125 7.82×10−15

this thesis, we modify their proposed algorithm. In order to speed up the calculation, we use

three types of tolerance values and combine eigenvalue decomposition for the dense matrix

exponential computation. As a result, this algorithm easily switches to any mode of operation

based on the nature of matrix and may reduce the unnecessary computational time. Another

good reason to choice this algorithm is that this algorithm is highly customizable and users can

increase the computational speed based on size and sparsity ratio of the given matrix. Algorithm

(7) shows the entire computational procedure of matrix exponential. In line (6), we compute

sparsity ratio to classify the input matrix by its nature and will calculate the matrix exponent

by eigenvalue decomposition if the matrix is dense without going through Taylor series iterative

process. Therefore, it may reduce time if the matrix is dense. We set the sparsity ratio as 3 : 1 for

mode switching to get good result what can be changed in accordance of the sparsity pattern of the

system matrices. In addition, we do rounding up the non-zero entities of the input matrix to their

nearer mantissa values plugging in the tolerance values what increases the calculation speed

by rounding the negligible parts. We generally consider the standard machine precision (10−16)

as common tolerance value with a view to getting desirable result what may vary based on the

sparsity of the input matrices. However, it is noted that with the increment of the tolerance values,

the requirement of the computational time is also increased. Table (4.1) illustrates the comparison

between the traditional methods what are basically used by typical simulation software and our

proposed algorithm. The tolerance values, we considered, for testing purposes are included in

column nztol. T1 column shows the required time by the traditional methods and T2 column

represents the time required by our proposed algorithm for calculating matrix exponential what

clearly indicates that the algorithm, we proposed, successfully boosts up the entire computation.
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It is also observed from the Norm column that the computational accuracy of our proposed

algorithm is gradually upgraded with the minimal increment of time requirement. As a result,

the proposed algorithm becomes more efficient comparing with the existing algorithm.

4.4 Calculating Residual Norm

Calculating residual norm is the prime analytical step of any iterative algorithm like (6) for

checking the convergence rate of the iterative solution at every stage compared with the original

solution as
∥∥∥P − P̃

∥∥∥. Among different types of norm calculation methods, it has been observed in

[25, 34] that Frobenius norm measurement is appropriate in RKSM method. In this section, we

modify that norm calculation for the computation on finite time interval [0, t f ] written as∥∥∥R(P̃ )
∥∥∥

F∥∥∥BtB
T
t

∥∥∥
F
+∥∥A

∥∥
F

∥∥P
∥∥

F

∥∥E
∥∥

F

,

where, ‖.‖F denotes Frobenius norm, the residual at mitth iteration step is

R(P̃ )=A RP RT
P E T +ERP RT

P A T +BtB
T
t ,

where,

BtB
T
t =BBT −E e(E −1A )t f (E−1B)(E−1B)T e(E −1A )T t f E T .

However, the computation of the norm of approximate solution P̃ is expensive if the system

matrices are large in dimension. Hence, in order to compute the residual norm cheaply, we follow

the below observation enclosed in [34].

Theorem 4.1. Let, Vm be the orthogonal basis of the Rational Krylov Subspace Km and P =
VmP̃ V T

m be the solution of the time restricted Lyapunov equation (2.19a). Then the residual Rm

can be computed as

∥∥Rm
∥∥

F =
∥∥∥SJST

∥∥∥
F

, J =


0 1 0

1 0 1

0 1 0

 ,

where, S is the upper triangular matrix in the QR factorization of

U=
[
vm+1µm+1,EV P H −T

m emhm+1,m − (I −VmV T
m )A vm+1

]
,

where, Hm is a block upper Hessenberg matrix and em be the matrix formed by the last p columns

of mp×mp identity matrix.

Proof. The proof can be found in [11, 34]. �
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4.5 Formulation and Solution of Time Restricted Index-I
Descriptor System

Descriptor system (see Subsection (2.1.4)) is special type of dynamic system having the

determinant of E as zero. This section elaborately describes how to formulate one class of descriptor

system known as index-I system and find the low-rank solution of Lyapunov equation constructing

around index-I system on definite time interval by RKSM method.

Recalling the index-I descriptor system (2.10) represented as

E i E ii

0 0


︸ ︷︷ ︸

E

 ġ(t)

ṙ(t)


︸ ︷︷ ︸

ẋ(t)

=
 Ai Aii

Aiii Aiv


︸ ︷︷ ︸

A

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+
Bi

Bii


︸ ︷︷ ︸

B

u(t)

y(t)=
[
C i C ii

]
︸ ︷︷ ︸

C

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+Du(t)

These equations are equivalent to the differential-algebraic equations written as:

E i ġ(t)+E ii ṙ(t)=Ai g(t)+Aiir(t)+Biu(t), (4.5a)

0=Aiii g(t)+Aivr(t)+Biiu(t), (4.5b)

y(t)=C i g(t)+C iir(t)+Du(t). (4.5c)

Since Aiv is non-singular block matrix, the system (2.10) is claimed as index-I descriptor system

what is also represented as semi-explicit system in [88]. Since Equation (4.5b) contains no

differential term, it is totally an algebraic equation and from there, we obtain the algebraic part

as

r(t)=−A −1
iv Aiii g(t)−A −1

iv Biiu(t) (4.6)

Substituting the value of r(t) in (4.5a), we obtain new state-space equation eliminating algebraic

part as

(E i −E iiA
−1
iv Aiii)︸ ︷︷ ︸

E

ġ(t)= (Ai −AiiA
−1
iv Aiii)︸ ︷︷ ︸

A

g(t)+
Bi −AiiA

−1
iv Bii

E iiA
−1
iv Bii


︸ ︷︷ ︸

B

[
uT (t) u̇T (t)

]
︸ ︷︷ ︸

u(t)

(4.7a)

y(t)= (C i −C iiA
−1
iv Aiii)︸ ︷︷ ︸

C

g(t)+
D−C iiA

−1
iv Bii

0


︸ ︷︷ ︸

D

[
uT (t) u̇T (t)

]
︸ ︷︷ ︸

u(t)

. (4.7b)

which has relations with generalised state-space equation (2.2) as

E := E i −E iiA
−1
iv Aiii, A :=Ai −AiiA

−1
iv Aiii, B :=

Bi −AiiA
−1
iv Bii

E iiA
−1
iv Bii


C :=C i −C iiA

−1
iv Aiii, D :=

D−C iiA
−1
iv Bii

0

 , u(t) :=
[
uT (t) u̇T (t)

]
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Algorithm 8: RKSM for solving time-restricted controllability Gramian (2.19a) of index-I
system (2.10) on time interval [0, t f ].

Input: E i,E ii,Ai,Aii,Aiii,Aiv,Bi,Bii, mit (no.of iteration), t f (endpoint of time interval),
0< tol ¿ 1 (tolerance value), µ1 (initial shift parameter).

Output: RP ∈Rn×z such that RP RT
P

≈P , where z ¿ n.

1 set initial basis vector v1 =
[
Ai −µ1E i Aii −µ1E ii

Aiii Aiv

]−1 [
Bi
Bii

]
, V1 = v

‖v‖

2 while j ≤ mit do
3 Find the next basis matrix by solving linear system[

Ai −µ jE i Aii −µ jE ii
Aiii Aiv

][
v j+1
∗

]
=

[
V j
0

]
. (4.8)

4 Construct orthonormal vector set V j+1 = [V j,v j+1] by QR decomposition (see Subsection
(2.2.3.3)) using Algorithm (2).

5 Solve the projected controllability Lyapunov equation (4.1)

˜A j+1P̃ Ẽ T
j+1 + Ẽ j+1P̃ ˜A T

j+1 +B̃ j+1B̃T
j+1 − Ẽ j+1eẼ −1

j+1
˜A j+1 t f Ẽ−1

j+1B̃ j+1(Ẽ−1
j+1B̃ j+1)T e(Ẽ −1

j+1
˜A j+1)T t f Ẽ T

j+1 = 06

for finding small-scale CG P̃ Where, Ẽ j+1 = V T
j+1E iV j+1 − (V T

j+1E ii)A −1
iv (AiiiV j+1),

˜A j+1 = V T
j+1AiV j+1 − (V T

j+1Aii)A −1
iv (AiiiV j+1), B̃ j+1 =

[
V T

j+1Bi − (V T
j+1Aii)A −1

iv Bii

(V T
j+1E ii)A −1

iv Bii

]
.

7 Compute next shift parameter µ (see Section (4.2))
8 Compute residual norm (see Section (4.4))
9 if residual norm≤ tol then

10 Stop Rational Krylov iteration.

11 Operate eigenvalue decomposition as (4.3).
12 Establish low-rank controllability Gramian factor RP as (4.4).

Therefore, the index-I descriptor system (2.10) can be converted to the generalised system (2.2)

through the above connection. However, it is matter of concern that the explicit conversion of

system matrices of (4.7) makes the entire system dense. As a result, it increases the computational

cost during finding the solution of Lyapunov equation on finite time interval. To overcome this

complexity, we take two major steps like [89]. First, we retain the sparsity patterns of the system

matrices at the time of solving linear system (4.8) instead of doing explicit conversion of the

system matrices likewise the system matrices of (4.7) which is essential to construct the basis

matrix of rational Krylov subspace. Secondly, We solve the projected Lyapunov equation after

projecting the system matrices implicitly without forming explicit structure highlighted in line (6)

inside the Algorithm (8) representing the entire process of solving time-restricted controllability

Lyapunov equation (2.19a) established based on index-I descriptor system (2.10).

Similarly, by taking the transpose of the system matrices and replacing E i, E ii, Ai, Aii, Aiii,

Aiv, Bi, and Bii by E T
i , E T

ii , A T
i , A T

iii, A T
ii , A T

iv , C T
i , and C T

ii in Algorithm (8), we can find the

observability Gramian factor LQ by solving projected Lyapunov equation (4.2) whose projector is
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constructed from the basis matrix found by solving the linear systemA T
i −µ jE

T
i A T

iii

A T
ii −µ jE

T
ii A T

iv

v j+1

∗

=
V j

0

 (4.9)

Special Case 1 : When E ii = 0 in the system (2.10), the index-I system can be represented byE i 0

0 0


︸ ︷︷ ︸

E

 ġ(t)

ṙ(t)


︸ ︷︷ ︸

ẋ(t)

=
 Ai Aii

Aiii Aiv


︸ ︷︷ ︸

A

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+
Bi

Bii


︸ ︷︷ ︸

B

u(t)

y(t)=
[
C i C ii

]
︸ ︷︷ ︸

C

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+Du(t),

what is equivalent to the following differential-algebraic equation of the system

E i ġ(t)=Ai g(t)+Aiir(t)+Biu(t),

0=Aiii g(t)+Aivr(t)+Biiu(t),

y(t)=C i g(t)+C iir(t)+Du(t).

After conversion from descriptor system to generalised system, we get the following relation

E := E i, A :=Ai −AiiA
−1
iv Aiii, B :=Bi −AiiA

−1
iv Bii

C :=C i −C iiA
−1
iv Aiii, D :=D−C iiA

−1
iv Bii

Therefore, the basis of the rational Krylov subspace can be generated for finding CG by solving

the linear system Ai −µ jE i Aii

Aiii Aiv

v j+1

∗

=
V j

0

 .

In the similar way, we can construct the basis matrix with a view to finding OG by solving the

linear system A T
i −µ jE

T
i A T

iii

A T
ii A T

iv

v j+1

∗

=
V j

0


Special Case 2 : When E ii and Aii both are zero, the system (2.10) becomesE i 0

0 0


︸ ︷︷ ︸

E

 ġ(t)

ṙ(t)


︸ ︷︷ ︸

ẋ(t)

=
 Ai 0

Aiii Aiv


︸ ︷︷ ︸

A

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+
Bi

Bii


︸ ︷︷ ︸

B

u(t)

y(t)=
[
C i C ii

]
︸ ︷︷ ︸

C

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+Du(t),
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Then, the system matrices of the new converted system become

E := E i, A :=Ai, B :=Bi

C :=C i −C iiA
−1
iv Aiii, D :=D−C iiA

−1
iv Bii,

and the basis of the rational Krylov subspace can be generated for finding CG and OG by solving

the linear system Ai −µ jE i 0

Aiii Aiv

v j+1

∗

=
V j

0

 .

and A T
i −µ jE

T
i A T

iii

0 A T
iv

v j+1

∗

=
V j

0


respectively.

Special Case 3 : When E ii, Aii, and Aiii are zero, the system (2.10) becomesE i 0

0 0


︸ ︷︷ ︸

E

 ġ(t)

ṙ(t)


︸ ︷︷ ︸

ẋ(t)

=
Ai 0

0 Aiv


︸ ︷︷ ︸

A

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+
Bi

Bii


︸ ︷︷ ︸

B

u(t)

y(t)=
[
C i C ii

]
︸ ︷︷ ︸

C

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+Du(t),

Then, the system matrices of the new converted system become

E := E i, A :=Ai, B :=Bi

C :=C i, D :=D−C iiA
−1
iv Bii,

and the basis of the rational Krylov subspace can be generated for finding CG and OG by solving

the linear system Ai −µ jE i 0

0 Aiv

v j+1

∗

=
V j

0

 .

and A T
i −µ jE

T
i 0

0 A T
iv

v j+1

∗

=
V j

0


respectively.
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4.5.1 Investigation on Solving Time Restricted Index-I Descriptor System
with Non-homogeneous Initial Condition

Till now, we have talked about solving the Lyapunov equations (2.19) on limited time interval

having initial value as zero. Now, we extend our idea to solve the Lyapunov equations on finite

time interval [t0, t f ] stapled with non-homogeneous initial condition, i.e., t0 6= 0. Recalling the

Lyapunov equations (2.17) and (2.18) on time interval [t0, t f ]

A P E T +EP A T +E eE −1A t0E−1B(E−1B)T e(E −1A )T t0E T −E eE −1A t f E−1B(E−1B)T e(E −1A )T t f E T = 0,

A TQE +E TQA + e(E −1A )T t0C TC eE −1A t0 − e(E −1A )T t f C TC eE −1A t f = 0,

and the output equation (2.5) from the Duhamel’s principle (see Subsection 2.1.2)

y(t)=C eE −1A tx0 +
∫ t f

0
C eE −1A (t−τ)(E−1B)u(τ)dτ+Du(t),

where x0 is the initial condition, i.e., x(t0)= x0. Unfortunately, we do not find convergent solution

by directly solving time restricted Lyapunov equations (2.17) and (2.18). Hence, it needs to be

modified. In [90], the authors extended the input matrix B by creating an augmented form

[B B0] ∈ Rk+q where the non-zero initial value x0 ∈ Im(B0) contained the subspace of K0

spanned by B0 ∈Rq. As a result, the general state-space equation 2.2 were modified as

E ẋ(t)=A x(t)+
[
B B0

]
︸ ︷︷ ︸

B

[
uT (t) uT

0 (t)
]

︸ ︷︷ ︸
u(t)

; x(t0)= x0, t ≥ t0,

y(t)=C x(t)+Du(t).

(4.10)

On the other hand, the authors in [91] reformed the non-homogeneous initial condition x(t0)= x0

as x0 = B0K0 where K0 was spanned by B0, and evaluated the output y(t) using Duhamel

formula as

y(t)=C eE −1A tx0︸ ︷︷ ︸
y(0)

+
∫ t f

0
C eE −1A (t−τ)(E−1B)u(τ)dτ︸ ︷︷ ︸

y(t)

+Du(t), (4.11)

It is closely observed that y(0) term of (4.11) is the response of the system to the initial condition

x0 with u(t)= 0 and y(t) term is the response of the system to the u(t) with homogeneous initial

condition, i.e. x(t0) = 0. On the based of the output relation, the authors of [91] splitted the

state-space (4.10) into two state-space equation written as

E ẋ0(t)=A x0(t)+B0u0(t); x0(t0)= 0,

y(t)=C x0(t)+Du0(t),
(4.12)

and
E ẋ(t)=A x(t)+Bu(t); x(t0)= 0,

y(t)=C x(t)+Du0(t),
(4.13)

where, u0(t)=K0δ(t) and δ(t) is the Dirac delta distribution function.

As opposed to efficiently deal with the non-homogeneous initial condition, we build an orthogonal
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basis matrix B0 like [92] in such as way that B0K0 = 0. As a result, term y(0) of (4.11) is

diminished and the only term y(t) remains responding to input u(t) as the form of

y(t)=
∫ t f

0
C eE −1A (t−τ)(E−1B)u(τ)dτ+Du(t),

Hence, the output relation is developed on shifted homogeneous time interval and it is enough to

compute the system matrices of the state-space equation (4.13) only. Here, we directly evaluate

our idea for index-I descriptor system (2.10). For spanning the null space, we assume two basis

sub-matrices Bx1 and Bx2 as

Bxi := eBi t0 , Bxii := eBii t0

and extract orthonormal basis conducting QR decomposition (see Subsubseaction 2.2.3.3) of Bx1

and Bx2 through forming two augmented sub-matrices as follows

Baug i :=
[
Bi Bxi

]
, Baug ii :=

[
Bii Bxii

]
Therefore, the index-I system (2.10) can be reformed asE i E ii

0 0


︸ ︷︷ ︸

E

 ġ(t)

ṙ(t)


︸ ︷︷ ︸

ẋ(t)

=
 Ai Aii

Aiii Aiv


︸ ︷︷ ︸

A

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+
Baug i

Baug ii


︸ ︷︷ ︸

B

u(t)

y(t)=
[
C i C ii

]
︸ ︷︷ ︸

C

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+Du(t).

(4.14)

Hence, the relation can be grown up with generalised system (2.2) as

E := E i −E iiA
−1
iv Aiii, A :=Ai −AiiA

−1
iv Aiii, Baug :=

Baug i −AiiA
−1
iv Baug ii

E iiA
−1
iv Baug ii


C :=C i −C iiA

−1
iv Aiii, D :=

D−C iiA
−1
iv Baug ii

0


and the controllable Lyapunov equation of the above system is written as

A P E T +EP A T +BaugBT
aug −E eE −1A t f E−1Baug(E−1Baug)T e(E −1A )T t f E T = 0. (4.15)

Since the matrix extension is only occupied in B what relates with the corresponding output

of the system (2.10) on the time interval [0, t f ], there is no modification needed in observability

Lyapunov equation (2.19b). For solving the above equations through RKSM, we need to form

projected controllable Lyapunov equation as

˜A P̃ Ẽ T + Ẽ P̃ ˜A T +B̃augB̃T
aug − Ẽ eẼ −1 ˜A t f Ẽ−1B̃aug(Ẽ−1B̃aug)T e(Ẽ −1 ˜A )T t f Ẽ T = 0 (4.16)

and observable Lyapunov equation as (4.2).

The controllability Gramian can be found by solving (4.15) using Algorithm (8) after slight

modification what are highlighted in Algorithm (9). As there is no change occurred in observable

Lyapunov equation (2.19b), we can directly solve it using Algorithm (8) by taking transpose of the

system sub-blocks and solving the linear system (4.9).
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Algorithm 9: Change in Algorithm (8) for solving time-restricted controllability Gramian
(4.15) of index-I system (2.10) on time interval [t0, t f ].

Input: E i,E ii,Ai,Aii,Aiii,Aiv,Bi,Bii, mit (no.of iteration), t f (endpoint of time interval),
0< tol ¿ 1 (tolerance value), µ1 (initial shift parameter).

Output: RP ∈Rn×z such that RP RT
P

≈P , where z ¿ n.

1 set initial basis vector v1 =
[
Ai −µ1E i Aii −µ1E ii

Aiii Aiv

]−1 [
Baug i

Baug ii

]
, V1 = v

‖v‖

2 while j ≤ mit do
3 Solve the projected controllability Lyapunov equation (4.16)

˜A j+1P̃ Ẽ T
j+1 + Ẽ j+1P̃ ˜A T

j+1 +B̃aug j+1B̃
T
aug j+1

−Ẽ j+1eẼ −1
j+1

˜A j+1 t f Ẽ−1
j+1B̃aug j+1(Ẽ−1

j+1B̃aug j+1)T e(Ẽ −1
j+1

˜A j+1)T t f Ẽ T
j+1 = 0

for finding small-scale CG P̃ Where, B̃aug j+1 =
[
V T

j+1Baug i − (V T
j+1Aii)A −1

iv Baug ii

(V T
j+1E ii)A −1

iv Baug ii

]
.

4.6 Formulation and Solution of Time Restricted Index-II
Descriptor System

Index-II (2.11) is another special type of descriptor system (see Subsection 2.1.4) arisen in

various practical sector written in the formE i 0

0 0


︸ ︷︷ ︸

E

 ġ(t)

ṙ(t)


︸ ︷︷ ︸

ẋ(t)

=
 Ai Aii

Aiii 0


︸ ︷︷ ︸

A

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+
Bi

Bii


︸ ︷︷ ︸

B

u(t),

y(t)=
[
C i C ii

]
︸ ︷︷ ︸

C

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+Du(t),

what is equivalent to the differential-algebraic equation of the form

E i ġ(t)=Ai g(t)+Aiir(t)+Biu(t), (4.17a)

0=Aiii g(t)+Biiu(t), (4.17b)

y(t)=C i g(t)+C iir(t)+Du(t). (4.17c)

In order to convert to the generalised presentation like (2.2), the authors in [93] enforced the

algebraic part r(t) of the above equations by expressing the differential part g(t) as the combination

of its complimentary and particular solution written as

g(t)= gc(t)+ gp(t) (4.18)

It has been observed in [93] that the particular solution can be written as

gp(t)=−E−1
i AiiΞBiiu(t),
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where, Ξ= (AiiiE
−1
i Aii)−1. Putting all together in (4.17) and eliminating algebraic part r(t) by

taking as

r(t)=−Ξ(AiiiE
−1
i Ai)gc(t)−ΞAiiiE

−1
i (Bi −AiE

−1
i AiiΞBii)u(t)

−ΞBii u̇(t),

we get
E i︸︷︷︸
E

ġc(t)=
[
Ai −AiiΞ(AiiiE

−1
i Ai)

]
︸ ︷︷ ︸

A

gc(t)+

Bi −AiE
−1
i AiiΞBii −AiiΞAiiiE

−1
i (Bi −AiE

−1
i AiiΞBii)

AiiΞBii −AiiΞBii


︸ ︷︷ ︸

B

[
uT (t)u̇T (t)

]
︸ ︷︷ ︸

ū(t)

,
(4.19)

and
y=

[
C i −C iiΞ(AiiiE

−1
i Ai)

]
︸ ︷︷ ︸

C

gc(t)+

D−C iE
−1
i AiiΞBii −C iiΞAiiiE

−1
i (Bi −AiE

−1
i AiiΞBii)

−C iiΞBii


︸ ︷︷ ︸

D

[
uT (t)u̇T (t)

]
︸ ︷︷ ︸

ū(t)

.
(4.20)

Equations (4.19) and (4.20) are the equivalent representations of the general state-space equation

(2.2). Now, the setup is completed to solve the time-restricted Lyapunov equation by RKSM. Like

index-I, the sparsity of the system matrices are highly preserved during solving the linear system

(4.21) mandatory to construct the basis matrix of rational subspace and no explicit structure

has been formed of the system matrices at the time of solving projected Lyapunov equation (4.1).

Algorithm (10) summarizes the total procedure of solving time-restricted controllable Lyapunov

equation centered into index-II descriptor system (2.11) and of formulating low-rank controllability

Gramian factor RP . However, same algorithm can be applicable during solving index-II observable

Lyapunov equation to find observability Gramian factor LQ after taking transposes of the system

sub-matrices. At that time, the basis matrix of the Krylov subspace can be generated by solving

linear system A T
i −µ jE

T
i A T

iii

A T
ii 0

v j+1

∗

=
V j

0

 (4.22)

Special Case 1 : When Bii = 0 in the system (2.11), the index-II system is expressed asE i 0

0 0


︸ ︷︷ ︸

E

 ġ(t)

ṙ(t)


︸ ︷︷ ︸

ẋ(t)

=
 Ai Aii

Aiii 0


︸ ︷︷ ︸

A

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+
Bi

0


︸ ︷︷ ︸

B

u(t),

y(t)=
[
C i C ii

]
︸ ︷︷ ︸

C

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+Du(t),
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Algorithm 10: RKSM for solving time-restricted controllability Gramian (2.19a) of
index-II system (2.11) on time interval [0, t f ].

Input: E i,Ai,Aii,Aiii,Bi,Bii, mit (no.of iteration), t f (endpoint of time interval),
0< tol ¿ 1 (tolerance value), µ1 (initial shift parameter).

Output: RP ∈Rn×z such that RP RT
P

≈P , where z ¿ n.

1 set initial basis vector v1 =
[
Ai −µ1E i Aii

Aiii 0

]−1 [
Bi
Bii

]
, V1 = v

‖v‖

2 while j ≤ mit do
3 Find the next basis matrix by solving linear system[

Ai −µ jE i Aii
Aiii 0

][
v j+1
∗

]
=

[
V j
0

]
. (4.21)

4 Construct orthonormal vector set V j+1 = [V j,v j+1] by QR decomposition (see Subsection
(2.2.3.3)) using Algorithm (2).

5 Solve the projected controllability Lyapunov equation (4.1)

˜A j+1P̃ Ẽ T
j+1 + Ẽ j+1P̃ ˜A T

j+1 +B̃ j+1B̃T
j+1 − Ẽ j+1eẼ −1

j+1
˜A j+1 t f Ẽ−1

j+1B̃ j+1(Ẽ−1
j+1B̃ j+1)T e(Ẽ −1

j+1
˜A j+1)T t f Ẽ T

j+1 = 06

for finding small-scale CG P̃ Where, Ẽ j+1 = V T
j+1E iV j+1,

˜A j+1 = V T
j+1AiV j+1 − (V T

j+1Aii)Ξ(AiiiE
−1
i (AiV j+1)),

B̃ j+1 =
[

(V T
j+1Bi)− (V T

j+1Ai)E−1
i AiiΞBii − (V T

j+1Aii)ΞAiiiE
−1
i (Bi −AiE

−1
i AiiΞBii)

(V T
j+1Aii)ΞBii − (V T

j+1Aii)ΞBii

]
.

7 Compute next shift parameter µ (see Section (4.2))
8 Compute residual norm (see Section (4.4))
9 if residual norm≤ tol then

10 Stop Rational Krylov iteration.

11 Operate eigenvalue decomposition as (4.3).
12 Establish low-rank controllability Gramian factor RP as (4.4).

what is equivalent to the differential-algebraic equation of the form

E i ġ(t)=Ai g(t)+Aiir(t)+Biu(t),

0=Aiii g(t),

y(t)=C i g(t)+C iir(t)+Du(t).

After conversion from descriptor system to generalised system, the following relations are estab-

lished

E := E i, A :=Ai −AiiΞAiiiE
−1
i Ai, B :=Bi −AiiΞAiiiE

−1
i Bi,

C :=C i −C iiΞAiiiE
−1
i Ai, D :=D−C iiΞAiiiE

−1
i Bi.
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Special Case 2 : When Bii and C ii both are zero in the system (2.11), the index-II system is

expressed as E i 0

0 0


︸ ︷︷ ︸

E

 ġ(t)

ṙ(t)


︸ ︷︷ ︸

ẋ(t)

=
 Ai Aii

Aiii 0


︸ ︷︷ ︸

A

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+
Bi

0


︸ ︷︷ ︸

B

u(t),

y(t)=
[
C i 0

]
︸ ︷︷ ︸

C

g(t)

r(t)


︸ ︷︷ ︸

x(t)

+Du(t),

what is equivalent to the differential-algebraic equation of the form

E i ġ(t)=Ai g(t)+Aiir(t)+Biu(t),

0=Aiii g(t),

y(t)=C i g(t)+Du(t).

After conversion from descriptor system to generalised system, the following relations are estab-

lished

E := E i, A :=Ai −AiiΞAiiiE
−1
i Ai,

B :=Bi −AiiΞAiiiE
−1
i Bi, C :=C i, D :=D.

4.7 Numerical Outcomes

In this section, we assess our proposed methods on different finite time intervals applying on

both index-I and index-II descriptor data models and analysis how efficient our algorithms are by

calculating the required time. We also observe the convergence tendency of the iterative solution

of the time-restricted Lyapunov equations by computing residual norms at each iteration and

numerical error of time-restricted and unrestricted solutions of the Lyapunov equations on our

nominated time segments.

All of the following results are carried out on the computational machine comprised of In-

tel ® CoreTM i5 1.80 GHz base clock speed with RAM 8 GB.

4.7.1 Numerical Results from Index-I Descriptor System

In this subsection, we attach the numerical outcomes found after solving the time-restricted

Lyapunov equations of index-I systems by proposed Algorithm (8) on time interval [0, t f ]. The

dimensions of our generated and selected data models have already are enlisted in Tables (3.1),

(3.2), and (3.3).

The sparsity and dense patterns of the state matrix A of some of our nominated data models

are illustrated in Figures (4.1), (4.2), and (4.3). If we closely look into the figures, it will be visible

that number of non-zero quantities, indicated by nz in figures, of dense matrices is greater than

that of the sparse matrices. As a result, the computational time is increased during dealing

with dense matrix. However, we develop the Algorithm (8) for not only minimizing the error on
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a b

Figure 4.1: (a) Dense Pattern and (b) Sparse Pattern of Power system model

a b

Figure 4.2: (a) Dense Pattern and (b) Sparse Pattern of Piezoelectric Tonpilz Transducer model

a b

Figure 4.3: (a) Dense Pattern and (b) Sparse Pattern of BIPS-1693 model
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restricted time interval but reducing the calculation period also.

To minimize the calculating period, our proposed algorithm solves the linear system as (4.8)

strongly retaining the sparsity of the system matrices. Looking attentively at Table (4.2), it is

Table 4.2: Required Time for the computation of linear systems of sparse and dense system

Model Required Time (Sec) Saving time (%)

CG OG CG OG

Sparse Dense Sparse Dense

BIPS-606 0.1618 0.8213 0.105 0.586 19.7 17.91
BIPS-1142 0.1325 1.25 0.126 .95 10.6 13.26
BIPS-1693 0.45 1.95 0.56 1.98 23.07 28.28
Power System 0.24 0.87 0.35 0.97 27.58 36.08
Piezo Tonpilz Transducer 0.72 0.92 0.611 0.75 78.26 81.4

easily observed that the linear system of sparse system calculating by our proposed algorithm

reduces the computational time at every case and thus the entire calculation process boosts up.
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Figure 4.4: Convergence tendency of (a) CG and (b) OG of BIPS-606

Figures (4.4), (4.5), (4.6), and (4.7) demonstrate the convergence tendency of controllability

and observability Gramians on restricted time intervals found by imposing our Algorithm (8).

Since the total process largely depends on proper selection of shift parameters, we try to apply the

best shift selection method ( see Section 4.2) for finding fast convergence solution within minimal

iterations. If we see the convergence figures, it will be noticed that in most of the cases averagely

we can get better low-rank solution within 30 iterations. It is also visible that averagely after

10−15 iterations, the residual norms become so closed to zero that the line graph fluctuates little.

As a result, it is also proposed that one can choose less number of iteration than ours by setting up

the tolerance value high. But the sparsity patterns of the system matrices may vary the number

of iterations.
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Figure 4.5: Convergence tendency of (a) CG and (b) OG of BIPS-1142
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Figure 4.6: Convergence tendency of (a) CG and (b) OG of BIPS-1693

Moreover, we calculate the residual norms of the time-restricted CG and OG following the process

described in Section (4.4) on finite time intervals and compare them with the time infinite low-

rank CG and OG. Table (4.3) includes the comparison between the residual norms what clearly

reflects that on finite time intervals time-restricted solutions of Lyapunov equations minimize

more residual norm, i.e., more convergence than the solutions of time infinite Lyapunov equations.

Therefore, our proposed algorithm gives more accurate approximated solutions of the original

solutions of Lyapunov equations on nominated time intervals.

65



CHAPTER 4. SOLUTION OF LYAPUNOV EQUATIONS ON RESTRICTED TIME INTERVALS
BY ITERATIVE METHOD

a

0 10 20 30
0

2

4

6

8

·10−3

Number of iteration

R
es

id
u

al
N

or
m

b

0 10 20 30
0

1

2

3

·10−5

Number of iteration

R
es

id
u

al
N

or
m

Figure 4.7: Convergence tendency of (a) CG and (b) OG of Piezo Tonpilz Transducer

Table 4.3: Residual norms of time restricted and unrestricted CG and OG on nominated time
intervals

Model Time Interval Residual Norm

CG OG

t ∞ t ∞
BIPS-606 [0,4] 2.1×10−2 2.10 1.23×10−4 3.5×10−2

BIPS-1142 [0,5] 1.5×10−5 2.22×10−4 2.01×10−6 5.6×10−3

BIPS-1693 [0,7] 3.7×10−4 1×10−2 2.9×10−4 1×10−3

Piezo Tonpilz Transducer [0,5] 8.5×10−3 1.063×10−1 1.23×10−4 5.37×10−2

4.7.2 Numerical Results from Index-I Descriptor System on
Non-homogeneous Time intervals

This subsection consists of the numerical outcomes of the solutions of the time-restricted

Lyapunov equations on non-homogeneous time intervals [t0, t f ] for testing the efficiency of our

proposed Algorithm (9).

Figures (4.8) and (4.9) illustrate the convergence tendency of CG and OG on non-homogeneous

time interval applying our proposed Algorithm (9). Unlike the convergence histories of the time-

restricted CG and OG on homogeneous time intervals, it is seen from the figures that the solutions

are not fast converged. Therefore, we need to run more iterative loops to find convergent solu-

tions what makes the entire procedures slightly slow. While the controllability Gramians have

strong tendency to converge to zero gradually by by declining the line graph to the zero with the

increment of iterations, the observability Gramians have less tendency to become convergent.

Hence, computing OG needs more iterative loops rather than CG computation. However, look-

ing at the Table (4.4), it is undoubtedly said that like the solutions of Lyapunov equations on

homogeneous time intervals, the time-restricted low-rank CG and OG also minimize the norms
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on non-homogeneous time segments. Therefore, our proposed algorithm for the treatment of the

solutions of Lyapunov equations on time intervals having non-zero initial conditions also gives

satisfactory low-rank approximated solutions of the original solutions of the Lyapunov equations.
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Figure 4.8: Convergence tendency of (a) CG and (b) OG of BIPS-606 on non-homogeneous time
interval
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Figure 4.9: Convergence tendency of (a) CG and (b) OG of BIPS-606 on non-homogeneous time
interval

4.7.3 Numerical Results from Index-II Descriptor System

The numerical outcomes on finite time segments of another important class of descriptor

system known as index-II system are included in this subsection whose dimensions are described
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Table 4.4: Residual norms of time restricted and unrestricted CG and OG on nominated time
intervals

Model Time Interval Residual Norm

CG OG

t ∞ t ∞
BIPS-606 [2,4] 0.00647 0.0648 0.00084 0.0073
BIPS-1693 [1,3] 1.07×10−5 3.46×10−4 8.6×10−6 7.04×10−5

in Table (3.4).

a b

Figure 4.10: (a) Dense Pattern and (b) Sparse Pattern of Ossen model

To retain the sparsity without making the linear system denser with a view to dealing with

less amount of non-zero elements, we propose another Algorithm (10) what successfully reduces

the entire computational time along with minimizing the residual norms. Table (4.5) upholds the

same image in front of us indicating around 97% of total computational time is reduced by our

algorithm.

Table 4.5: Required Time for the computation of linear systems of sparse and dense index-II
system

Model Required Time (Sec) Saving time (%)

CG OG CG OG

Sparse Dense Sparse Dense

Ossen model 0.0801 2.9025 0.125 4.503 97.24 97.22
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Table 4.6: Residual norms of time restricted and unrestricted CG and OG on nominated time
intervals

Model Time Interval Residual Norm

CG OG

t ∞ t ∞
Ossen [0,5] 0.00038 0.0053 0.00881 0.0925
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Figure 4.11: Convergence tendency of (a) CG and (b) OG of Ossen model

In addition, after convergence analysis and observing the Figure (4.11) like index-I system,

our proposed algorithm also find convergent solution of Lyapunov equations of index-II data model

on limited time intervals within shortest possible iteration what may change based on the nature

of the system matrices and may speed up more by taking tolerance value higher.

Finally, Table (4.6) enlists the comparison between the residual norms of the time-restricted and

time-unrestricted CG and OG what visualizes that like, index-I, our Algorithm (10) successfully

minimizes the norms of the solutions of Lyapunov equations of index-II system on limited time

intervals than the infinite Gramians of Lyapunov equations. Hence, the solutions got from our

algorithm surely gives more accurate low-rank solutions of the original full-rank solution.
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C H A P T E R 5

SOLUTION OF LYAPUNOV EQUATIONS ON RESTRICTED FREQUENCY

INTERVALS BY ITERATIVE METHOD

Introduction

Like the solution of time-restricted Lyapunov equations, it is also important to solve Lya-

punov equation on restricted frequency interval to deal with practical problems, especially signal

processing analysis. Although few works have been taken place to find the solution of Lyapunov

equation of dense small standard or generalised state-space systems on finite frequency interval

[12, 37, 39] what are the previous topics of our discussion (see Section 2.3), no work has till

done on the solution of the Lyapunov equations constructed on large-sparse dynamic system. In

this chapter, we mainly focus on the efficient computation procedure of the low-rank solution

of large-scale Lyapunov equations on finite frequency intervals constructed around two special

types of large-scale sparse descriptor systems of the form (2.10) and (2.11) known as index-I and

index-II descriptor system respectively. Like previous chapter, at here we also pay our attention on

RKSM for its efficiency during solving large-scale systems. We propose algorithms for finding the

Gramian of large-scale index-I and index-II descriptor systems on finite frequency interval. Since

we deal with large-scale system, to increase the computational efficiency we compute low-rank

solution factors instead of finding full-rank solution. Proper selection of shift parameters is a

vital operation in RKSM method. For that reason, we introduce a new approach of finding shift

parameters using renowned genetic algorithm with a view to finding best approximation and less

faulty solutions on restricted frequency intervals. We also inspect the procedure of computing

matrix logarithm inevitable part for solving frequency restricted Lyapunov equation in order to

increase the efficiency of the computational algorithms.

5.1 Rational Krylov Subspace Method for Generalised
Frequency-restricted Lyapunov Equation

Since we have already discussed the basic properties of RKSM method (see Section 4.1),

at here we start with recalling the frequency restricted Lyapunov equation pairs on frequency
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interval [Ω0,Ω f ] (2.33a) and (2.33b)

A ME T +EMA T +Eφ(iω)BBT +BBTφ∗(iω)E T = 0

A TN E +E TN A +ξ∗(iω)E TC TC +C TC E ξ(iω)= 0

where, φ(iω) = (φ(iΩ f )−φ(iΩ0)), ξ(iω) = (ξ(iΩ f )− ξ(iΩ0)), φ(iΩ) = i
2π [ln(−iΩE −A )− ln(iΩE −

A )]E−1, and ξ(iΩ)= i
2πE−1[ln(−E iΩ−A )− ln(E iΩ−A )].

Applying the Galerkin condition on frequency-restricted Controllability Lyapunov equation (2.33a),

we can write the projected frequency-restricted controllability equation as

˜A M̃Ẽ T + Ẽ M̃ ˜A T + Ẽ φ̃(iω)B̃B̃T +B̃B̃T φ̃∗(iω)Ẽ T = 0, (5.1)

where, M̃ = V TMV , Ẽ = V TEV , ˜A = V TA V , B̃ = V TB, φ̃(iω) = (φ̃(iΩ f )− φ̃(iΩ0)), and φ̃(iΩ) =
i

2π [ln(iΩẼ − ˜A )− ln(−iΩẼ − ˜A )]Ẽ−1. Here, V is the orthogonal basis of rational Krylov subspace.

Similarly, the projected observability Lyapunov equation can be reformed from (2.33b) as

˜A TÑ Ẽ + Ẽ TÑ ˜A + ξ̃∗(iω)Ẽ TC̃ TC̃ + C̃ TC̃ Ẽ ξ̃(iω)= 0, (5.2)

where, C̃ =C V , ξ̃(iω)= (ξ̃(iΩ f )−ξ̃(iΩ0)), and ξ̃(iΩ)= i
2π Ẽ−1[ln(−Ẽ iΩ− ˜A )−ln(Ẽ iΩ− ˜A )]. Likewise,

time-limited Lyapunov equations, due to the small-scale conversion of the projected equation

(5.1), it can be solved directly. As it is low-rank solution, we can retrieve the original solution by

Gaussian back substitution as

M = V M̃V T

where, M̃ is the low-rank solution of frequency-restricted controllable Lyapunov equation found

by RKSM method and conducting eigenvalue decomposition as

M̃ = (VΛ
1
2 )(VΛ

1
2 )T

Combining altogether, we can get the low-rank controllable Gramian factor RM as

M = (V VΛ
1
2 )(VΛ

1
2 V )T

=RM RT
M ,

Since the observable Lyapunov equation is dual of the controllable equation, we just take the

transposes of the system matrices during solving the projected observable Lyapunov equation

(5.2) on restricted frequency interval using the same Algorithm (11) and then get the low-rank

observability Gramian factor LN written as N =LN L T
N

.

5.2 Selection of Shift Parameters Using Genetic Algorithm

Error minimization and fast convergence solutions of system’s equations by RKSM method

are largely depended on the proper selection of shift parameters. But unfortunately, there is no

definite exact method introduced for shift parameter computations. Many works have been done

[22, 34, 65] in search of shift parameters. We have already discussed one of the shift parameter

selection processes (see Section 4.2) what we have partially applied in this thesis. However, with
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Algorithm 11: RKSM for solving frequency-restricted controllability Gramian (2.33a) of
generalised system (2.2) on frequency interval [Ω0,Ω f ].

Input: E ,A ,B, mit (no.of iteration), Ω0 (initial point of frequency interval), Ω f (endpoint
of frequency interval), 0< tol ¿ 1 (tolerance value), µ1 (initial shift parameter).

Output: RM ∈Rn×z such that RM RT
M

≈M , where z ¿ n.
1 set initial basis vector v1 = (A −µ1E )−1B, V1 = v

‖v‖
2 while j ≤ mit do
3 Find the next basis matrix by solving linear system

(
A −µ jE

)
v j+1 = V j.

4 Construct orthonormal vector set V j+1 = [V j,v j+1] by QR decomposition (see Subsection
(2.2.3.3)) using Algorithm (2).

5 Solve the projected controllability Lyapunov equation (5.1)

˜A j+1M̃ Ẽ T
j+1 + Ẽ j+1M̃ ˜A T

j+1 + Ẽ j+1φ̃ j+1(iω)B̃ j+1B̃T
j+1 +B̃ j+1B̃T

j+1φ̃
∗
j+1(iω)Ẽ T

j+1 = 0

for finding small-scale CG M̃ Where, Ẽ j+1 = V T
j+1EV j+1, ˜A j+1 = V T

j+1A V j+1,
B̃ j+1 = V T

j+1B.
6 Compute next shift parameter µ (see Section (5.2))
7 Compute residual norm (see Section (5.4))
8 if residual norm≤ tol then
9 Stop Rational Krylov iteration.

10 Operate eigenvalue decomposition

M̃ =
[
V1 V2

][
Λ1

Λ2

][
V1 V2

]T
(5.3)

11 Establish low-rank controllability Gramian factor

RM = V j+1V1Λ
1
2
1 (5.4)

after truncating less effective eigenvalues Λ2.

a view to minimizing error more by maximizing the efficiency of the computation, we introduce

a new shift parameter selection approach here using the evolutionary algorithm what is more

specifically known as genetic algorithm.

Genetic algorithm is commonly used to generate solutions to optimization and search problems

what is developed inspired from the biological doctrine ’Theory of Evolution’ relying on biological

operators selection, crossover, and mutation [94–96]. It is a metaheuristic algorithm what is

largely functioned using various probabilistic parameters to find the convergent solutions through

gradually updating and analysing the patterns of inserting data. The algorithm is primarily

initiated with generating random search space (called population) whose properties (called

chromosome) are evaluated through fitness function. The unsatisfactory population go through

the selection process to find the best fit couples (known as parents) for crossover operation with

a view to generating new candidate solution (known as Off-springs) what are participated to

mutation process for maintaining the genetic diversity from one generation to another. Then they

merge to the previous population for upgrading the search space and take part into evolution

process. In these steps, the iterative loop (called generation) is run until a satisfactory fitness
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Figure 5.1: Flow chart of genetic algorithm

level has been reached. Flow chart (5.1) illustrates the whole procedure of genetic algorithm.

However, we apply this total idea in search of generating proper shift parameters during solving

linear system (4.8, 4.9, 4.21, 4.22) in order to minimize error more on finite frequency interval.

We have taken classical min-max problem describing in [65] written as

min
α1,...,αm

∥∥∥∥∥∥ max
1≤l≤n

m∏
j=1

α j −λl

α j +λl

∥∥∥∥∥∥ . (5.5)

as our fitness function to evaluate the population of the search space, where λ is the Ritz values of

the projected small-scale system matrices (Λ( ˜A , Ẽ )). But computing Ritz values at each iteration

makes the entire computational process costly. As a result, we have taken the total numbers of

Ritz values, we required, at the initial stage computing by Algorithm (2). As it is a probabilistic

algorithm, the effectiveness largely depends on the population size, the distribution density

function, the mean and variance of the crossover and mutation processes. We follow uniform

distribution function here during crossover for creating off-springs and normal distribution having

σ variance and 0 mean for mutation. The reason behind choosing these functions is for ensuring

each and every possible candidate solution inside our predefined Ritz value intervals so that

nothing exceeds the Ritz value domain. However, one can change the parameters and take other

types of distribution function for analytical purpose. Algorithm (12) summarizes the step by step

procedure of the calculating shift parameter by genetic algorithm. One of the key operations of

73



CHAPTER 5. SOLUTION OF LYAPUNOV EQUATIONS ON RESTRICTED FREQUENCY
INTERVALS BY ITERATIVE METHOD

Algorithm 12: Selection of Shift Parameters using Genetic Algorithm
Input: nP (No. of Population), σ (Variance of distribution), nC (No. of off-springs), gc

(Mutation Parameter), β (permutation rate), ub (Ritz Value of largest Magnitude),
lb (Ritz Value of smallest Magnitude), λ (Predefined Ritz values)

Output: µ
1 Initiate search space nP no. of rows and 1 column containing candidate solutions.
2 for i = 1 : nP do
3 Choose random interpolate points α in the intervals lb ≤α≤ ub as candidate solutions.
4 Evaluate each α by min-max problem (5.5) and calculate Cost .
5 Set best solution bs = inf .
6 if Cost < bs then
7 Update best solution as bs = Cost.
8 µi =α.
9 else

10 Initiate matrix of off-spring having nC rows and 2 columns.
11 for k = 1 : nC do
12 Select best couples P1 and P2 from search space for crossover.
13 Generate random matrix p of size P1 or P2 having permutation rate β.
14 Produce off-spring as

pC(k,1)= pP1+ (1− p)P2,

pC(k,2)= pP2+ (1− p)P1.

for l = 1 : 2 do
15 Create random matrix of logical values L of size pC less than gc.
16 Perform mutation as

M pC(:, l)= pC(L)+σrand(size(L))

17 Update Search space merging new mutants, sorting and truncating unfit
population.

18 Again, choose random interpolate points α in the intervals lb ≤α≤ ub from
updating search space.

19 repeat the process of line (4).
20 if Cost < bs then
21 Update best solution as bs = Cost.
22 µi =α.

this algorithm is to select best couples P1 and P2 in line (12). One can pick them randomly in

each iteration. However, it is not a good way of selection. At here, we pick the two best candidate

solutions P1 and P2 as best parents and cross them over each other using uniform distribution

functions as line (14) to produce two off-springs pC1 and pC2.

We assign uniform distribution function to perform crossover. Then we conduct mutation

process to modify the off-springs through Gaussian distribution function. To keep the off-spring

into our nominated range, we take zero mean with σ variance what may be varied according to

the nature of the system data. Finally, we combine our newly produced off-spring to the existing

population and update them by truncating less fit candidate solution. This process is repeated
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until finding our desired number of shift parameters.

5.3 Computation of Matrix Logarithm

One of the most critical part in computing the solution of frequency restricted Lyapunov

equation is the computation of matrix logarithm. There are several works been done during

last few decades for finding the efficient computation of matrix logarithm. Although all of them

are appropriate for computing the logarithm of dense matrix, unfortunately none of them is

perfectly applicable on large-scale sparse matrix. In this thesis, we inspect two existing logarithmic

algorithms and apply them during finding the solution of Lyapunov equations on limited frequency

intervals. Firstly, we impose the algorithm described in [42, 97]. There, the authors applied inverse

scaling and squaring method written as

log(A )= 2slog(A
1

2s ),

what is just opposite to the the scaling and squaring method, we applied during the computation

of matrix exponential. Then they applied Padé approximation of matrix logarithm [98] written as

partial fraction form

rm(x)= Pm(x)
Qm(x)

=
m∑

j=1

α(m)
j x

β(m)
j x−1

,

where, α(m)
j are the weights and the β(m)

j are the nodes of the mid-point found using Gauss-

Legendre quadrature rule [99, 100]. They used Denman-Beavers [60] method (see Subsubsection

2.2.5.3) to compute the square root of the matrices. However, their proposed method works well for

dense matrices but is not efficient for computing the logarithm of sparse matrices since the square

root method, they followed, needs explicit inversion of the inserted matrix. As a result, the entire

process becomes costly. In addition, although the algorithm proposed in [98] is appropriate of the

real matrices, it approximates poorly the logarithm of complex matrix having the real part of the

eigenvalues are on the negative x-half plane. Nevertheless, we apply their algorithm for few of our

data models having eigenvalues of positive real part during finding the solution of the Lyapunov

equation on frequency intervals with a view to minimizing error more on finite frequency interval

since Padé approach gives better approximation of the matrix logarithm than typical algorithm.

Since we need to find out the logarithm of complex matrices (iΩE −A ) and (−iΩE −A ) and

there is no guarantee of the system matrices having eigenvalues of positive real part, we need to

compute general value logarithm (see Subsection 2.2.6) most of the time rather than computing

principle value logarithm. As a result, we follow eigenvalue decomposition (see Subsubsection

2.2.6.1) as an alternative way to deal with matrix logarithm having no eigenvalue restriction. The

main problem of this method is that it makes the entire system matrices dense before computing

logarithm. Therefore, it increases the cost of the algorithm with respect of memory. However, this

process of computation requires less time comparing with the Padé approximation process stapled

in [42, 98]. The reason is that it is a direct decomposition method while Padé approximation is an

iterative searching method. We, basically, impose both of these processes in this thesis based on

the nature and sparsity patterns of the data models.
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Algorithm 13: RKSM for solving frequency-restricted controllability Gramian (2.33a) of
index-I system (2.10) on frequency interval [Ω0,Ω f ].

Input: E i,E ii,Ai,Aii,Aiii,Aiv,Bi,Bii, mit (no.of iteration), Ω0 (initial point of frequency
interval), Ω f (endpoint of frequency interval), 0< tol ¿ 1 (tolerance value), µ1
(initial shift parameter).

Output: RM ∈Rn×z such that RM RT
M

≈M , where z ¿ n.

1 set initial basis vector v1 =
[
Ai −µ1E i Aii −µ1E ii

Aiii Aiv

]−1 [
Bi
Bii

]
, V1 = v

‖v‖

2 while j ≤ mit do
3 Find the next basis matrix by solving linear system[

Ai −µ jE i Aii −µ jE ii
Aiii Aiv

][
v j+1
∗

]
=

[
V j
0

]
.

4 Construct orthonormal vector set V j+1 = [V j,v j+1] by QR decomposition (see Subsection
(2.2.3.3)) using Algorithm (2).

5 Solve the projected controllability Lyapunov equation (5.1)

˜A j+1M̃ Ẽ T
j+1 + Ẽ j+1M̃ ˜A T

j+1 + Ẽ j+1φ̃ j+1(iω)B̃ j+1B̃T
j+1 +B̃ j+1B̃T

j+1φ̃
∗
j+1(iω)Ẽ T

j+1 = 0

for finding small-scale CG M̃ Where, Ẽ j+1 = V T
j+1E iV j+1 − (V T

j+1E ii)A −1
iv (AiiiV j+1),

˜A j+1 = V T
j+1AiV j+1 − (V T

j+1Aii)A −1
iv (AiiiV j+1), B̃ j+1 =

[
V T

j+1Bi − (V T
j+1Aii)A −1

iv Bii

(V T
j+1E ii)A −1

iv Bii

]
,

φ̃(iω)= (φ̃(iΩ f )− φ̃(iΩ0)), and φ̃(iΩ)= i
2π [ln(iΩẼ − ˜A )− ln(−iΩẼ − ˜A )]Ẽ−1.

6 Compute next shift parameter µ (see Section (5.2))
7 Compute residual norm (see Section (5.4))
8 if residual norm≤ tol then
9 Stop Rational Krylov iteration.

10 Operate eigenvalue decomposition as (5.3).
11 Establish low-rank controllability Gramian factor RM as (5.4).

5.4 Calculating Residual Norm

The detailed description of residual norm of time limited low-rank Gramian has been given

in Section (4.4) of Chapter (4). We just modify that norm formation in order to compute on finite

frequency interval [Ω0,Ω f ] written as ∥∥∥R(M̃ )
∥∥∥

F∥∥∥BΩBT
Ω

∥∥∥
F
+∥∥A

∥∥
F

∥∥M
∥∥

F

∥∥E
∥∥

F

,

where, ‖.‖F denotes Frobenius norm, the residual at mitth iteration step is

R(M̃ )=A RM RT
M E T +ERM RT

M A T +BΩBT
Ω,

and

BΩBT
Ω = Eφ(iω)BBT +BBTφ∗(iω)E T .
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5.5 Solution of Frequency Restricted Index-I Descriptor System

The formulation of index-I descriptor system has already been described in Chapter (4) Section

(4.5). At here, we consider only the solution of frequency restricted Lyapunov equations constructed

on index-I descriptor system. The RKSM procedure, we applied during solving time restricted

Lyapunov equation, is almost same. The difference is that we need to compute matrix logarithm

by the processes described in Section (5.3). Then we need to find the low-rank solution of the

projected frequency-restricted Lyapunov equations (5.1) and (5.2). Algorithm (13) summarizes the

step by step procedures of finding low-rank controllability Gramian factor RM on finite frequency

interval by solving frequency-restricted projected controllable Lyapunov equation (5.1).

In the mean time, we can find the low-rank observability Gramian factor LN on finite frequency

interval using same Algorithm (13) after solving projected observable Lyapunov equation (5.2)

and taking transpose of the matrices of the system (2.10). At that time, the basis matrices of the

RKSM subspace are computed by solving the linear system (4.9).

5.6 Solution of Frequency Restricted Index-II Descriptor
System

Like index-I descriptor system, the index-II descriptor system has also been formulated in

Chapter (4) Section (4.6). In this section, we only discuss the solution of Lyapunov equation of

index-II system on nominated frequency intervals. After converting index-II system (2.11) to the

generalised system (2.2) through the procedure described in Section (4.6), we solve the frequency

restricted projected Lyapunov equation (5.1) by the Algorithm (14) creating projector on rational

Krylov subspace. At final stage, we form the low-rank controllable Gramian factors RM instead

of full rank solution with a view to saving the machine’s memory.

Likewise, the frequency-restricted low-rank observability Gramian factor LN can also be calcu-

lated by taking transposes of the system matrices and solving observable Lyapunov equation (5.2)

using the same Algorithm (14) when the basis of the rational Krylov subspace are computed by

solving Linear system (4.22).

5.7 Numerical Outcomes

In this section, our proposed methods on different finite frequency intervals are evaluated

applying on both index-I and index-II descriptor data models and are also analyzed the efficiency

of our proposed algorithms by calculating the required time. The convergence tendency of the

iterative solution of the frequency-restricted Lyapunov equations are also observed by computing

residual norms at each iteration and numerical error of frequency-restricted and unrestricted

solutions of the Lyapunov equations on finite frequency segments.
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Algorithm 14: RKSM for solving frequency-restricted controllability Gramian (2.33a) of
index-II system (2.11) on frequency interval [Ω0,Ω f ].

Input: E i,Ai,Aii,Aiii,Bi,Bii, mit (no.of iteration), Ω0 (initial point of frequency
interval), Ω f (endpoint of frequency interval), 0< tol ¿ 1 (tolerance value), µ1
(initial shift parameter).

Output: RM ∈Rn×z such that RM RT
M

≈M , where z ¿ n.

1 set initial basis vector v1 =
[
Ai −µ1E i Aii

Aiii 0

]−1 [
Bi
Bii

]
, V1 = v

‖v‖

2 while j ≤ mit do
3 Find the next basis matrix by solving linear system[

Ai −µ jE i Aii
Aiii 0

][
v j+1
∗

]
=

[
V j
0

]
.

4 Construct orthonormal vector set V j+1 = [V j,v j+1] by QR decomposition (see Subsection
(2.2.3.3)) using Algorithm (2).

5 Solve the projected controllability Lyapunov equation (5.1)

˜A j+1M̃ Ẽ T
j+1 + Ẽ j+1M̃ ˜A T

j+1 + Ẽ j+1φ̃ j+1(iω)B̃ j+1B̃T
j+1 +B̃ j+1B̃T

j+1φ̃
∗
j+1(iω)Ẽ T

j+1 = 0

for finding small-scale CG M̃ Where, Ẽ j+1 = V T
j+1E iV j+1,

˜A j+1 = V T
j+1AiV j+1 − (V T

j+1Aii)Ξ(AiiiE
−1
i (AiV j+1)),

B̃ j+1 =
[

(V T
j+1Bi)− (V T

j+1Ai)E−1
i AiiΞBii − (V T

j+1Aii)ΞAiiiE
−1
i (Bi −AiE

−1
i AiiΞBii)

(V T
j+1Aii)ΞBii − (V T

j+1Aii)ΞBii

]
,

Ξ= (AiiiE
−1
i Aii)−1, φ̃(iω)= (φ̃(iΩ f )− φ̃(iΩ0)), and

φ̃(iΩ)= i
2π [ln(iΩẼ − ˜A )− ln(−iΩẼ − ˜A )]Ẽ−1.

6 Compute next shift parameter µ (see Section (5.2))
7 Compute residual norm (see Section (5.4))
8 if residual norm≤ tol then
9 Stop Rational Krylov iteration.

10 Operate eigenvalue decomposition as (5.3).
11 Establish low-rank controllability Gramian factor RM as (5.4).

5.7.1 Numerical Results from Index-I Descriptor System

At here, we highlight the numerical outcomes found after solving frequency-restricted Lya-

punov equations of index-I systems by proposed Algorithm (13) on frequency interval [Ω0,Ω f ].

Tables (3.1), (3.2), and (3.3) includes the dimension of our generated and selected data models.

Figures (5.2), (5.3), (5.4), and (5.5) illustrate the convergence pattern of controllability and ob-

servability Gramians on restricted frequency intervals found by applying our Algorithm (13).

Each of the figures shows that with respect of time and iteration, our proposed algorithm grad-

ually find the convergence solution of the controllable and observable Lyapunov equations on

finite frequency intervals. It will be be more accurate by taking more iteration. Averagely, we

get better result taking taking 25 iterations. Moreover, we calculate the residual norms of the

frequency-restricted CG and OG following the process described in Section (5.4) on finite fre-

quency intervals and compare them with the frequency infinite low-rank CG and OG. Table (5.1)
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Table 5.1: Residual norms of frequency restricted and unrestricted CG and OG on nominated
frequency intervals

Model Frequency Interval Residual Norm

CG OG

Ω ∞ Ω ∞
BIPS-606 [10,13] 1×10−5 2.35×10−4 1.05×10−6 2.9×10−5

BIPS-1142 [-2,2] 3.5×10−2 7.5×10−1 2.75×10−4 1.25×10−3

BIPS-1693 [4,7] 1.07×10−6 9.7×10−4 1.5×10−5 2.39×10−4

Piezo Tonpilz Transducer [-1,4] 2.08×10−4 1.11×10−3 3.05×10−4 1.17×10−2

a

0 5 10 1510−6

10−5

10−4

10−3

10−2

10−1

100

Number of iteration

R
es

id
u

al
N

or
m

b

0 5 10 1510−7

10−6

10−5

10−4

10−3

Number of iteration

R
es

id
u

al
N

or
m

Figure 5.2: Convergence tendency of (a) CG and (b) OG of BIPS-606

highlights the comparison between the residual norms what clearly shows that on nominated

frequency intervals, frequency-restricted solutions of Lyapunov equations minimize residual more

than infinite Gramians, that means, frequency-restricted Gramians is more convergent than

infinite Gramians on finite frequency intervals. Hence, it is clearly declared that our proposed

algorithm for the treatment of the solutions of Lyapunov equations on frequency intervals gives

satisfactory low-rank approximation of the original solutions of the Lyapunov equations.
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Figure 5.3: Convergence tendency of (a) CG and (b) OG of BIPS-1142
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Figure 5.4: Convergence tendency of (a) CG and (b) OG of BIPS-1693
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Figure 5.5: Convergence tendency of (a) CG and (b) OG of Piezo Tonpilz Transducer

5.7.2 Numerical Results from Index-II Descriptor System

In this subsection, the numerical outcomes on finite frequency intervals of index-II system

are included whose dimension are added in Table (3.4). Like index-I system, we also analysis the

convergence tendency of the solution of the controllability and observability Lyapunov equations

constructing around index-II system by imposing our proposed Algorithm (14). Figure (5.6) shows

the convergence tendency of the controllable and observable Gramians where it is observed that

with respect of iteration, the CG becomes gradually convergent. But OG fluctuates little bit

upwards after a certain interval with the increment of time what may need more iteration to

find convergent observable Gramian. But since we find our satisfactory outcomes with minimum

residual norm, we keep our iteration size limited with a view to minimizing the error. Table (5.2)

highlights the comparison between the residual norm of the frequency-restricted and unrestricted

CG and OG what visualizes that our Algorithm (14) minimizes the norms of the solutions of the

Lyapunov equations of index-II system on limited frequency intervals than the infinite Gramians

of Lyapunov equations. As a result, the solution, got from our algorithm, surely gives more

accurate low-rank solutions of the original solutions.

Table 5.2: Residual norms of frequency restricted and unrestricted CG and OG on nominated
frequency intervals

Model Frequency Interval Residual Norm

CG OG

Ω ∞ Ω ∞
Ossen [-2,2] 1.69×10−3 8.12×10−1 0.023 0.15
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Figure 5.6: Convergence tendency of (a) CG and (b) OG of Ossen model

5.7.3 Numerical Results after Plugging in Gene Shift Parameters

It has already been described that the convergence tendencies of the solutions largely depend

on the proper selection of the shift parameter, especially during solving the linear system (4.8),

(4.9), (4.21), and (4.22). By the way, there is no definite procedure of selecting shift parameter.

However, we have proposed a shift parameter selection procedure using genetic algorithm (See

Section 5.2) with a view to minimizing error on nominated frequency interval whose outcomes are

attached in this subsection.

Table 5.3: Residual norms of frequency restricted and unrestricted CG and OG on nominated
frequency intervals

Model Frequency Interval Residual Norm

CG OG

Gene Shift RKSM Shift Gene Shift RKSM Shift

BIPS-606 [-1,3] 2.25×10−10 1.25×10−4 4.02×10−5 3.19×10−5

Piezo Tonpilz Transducer [-3,0] 3.53×10−5 2.01×10−4 7.39×10−5 4.87×10−5

If we look at the Table (5.3), it will be clearly visible that the solutions, we found by plugging in

the shift parameters by our proposed Algorithm (12) minimize the norms on nominated frequency

interval. Especially, the solution of the controllable frequency-restricted Lyapunov equation

minimizes the residual norm more than observability gramian. Since the entire process is based

on various kinds of probabilistic parameters, we make a thorough analysis on this to find the

better convergence solution. It has been observed from the Table (5.4) that with the development

of population size nP and mutation rate gc, we can get better convergence solution whereas we

maintain a minimum improvement of the permutation rate β during picking up off-spring for a

balanced convergence rate. However, we have to concern about calculation time requirement also
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Table 5.4: Effect of various key parameters on selecting shift parameters

nP gc β Residual Norm

CG OG

15 0.15 1 1×10−4 5.01×10−3

15 0.20 1 2.01×10−4 7.05×10−4

15 0.25 1 5.26×10−6 8.01×10−4

15 0.30 1 1.57×10−8 1.39×10−5

15 0.35 1 2.25×10−10 4.02×10−5

15 0.30 1.05 1.02×10−7 1.17×10−5

15 0.30 1.15 3.11×10−4 2.22×10−4

15 0.30 1.25 5.07×10−4 4.45×10−3

15 0.30 1.30 5.95×10−3 1.806×10−3

15 0.30 1.35 9.12×10−3 3.34×10−1

20 0.30 1 2×10−8 3.01×10−5

25 0.30 1 3.95×10−8 2.24×10−6

30 0.30 1 5.07×10−9 3.33×10−6

35 0.30 1 7.77×10−9 8.78×10−6

40 0.30 1 8.81×10−9 1.25×10−8

what may increase with the increment of the population size. As result, for finding better solution

with the minimum time requirement, we take the population size as 15, mutation rate as 0.35,

and permutation rate as 1. However, these parametric values will be changed according to the

nature, sparsity pattern of data models and convergence tendency of the solutions.

a

0 5 10 15

10−11

10−9

10−7

10−5

10−3

10−1

Number of iteration

R
es

id
u

al
N

or
m

Gene Shift
RKSM Shift

b

0 5 10 1510−8

10−7

10−6

10−5

10−4

10−3

Number of iteration

R
es

id
u

al
N

or
m

Gene Shift
RKSM Shift

Figure 5.7: Convergence tendency of (a) CG and (b) OG of BIPS-606 by Gene Shift

Figures (5.7) and (5.8) show the comparison of the convergence tendency of the solutions using

existing shift parameter and our proposed shift parameter. In both of the cases, we get convergent

controllability Gramian within minimum possible time whereas we need to take population size

little bit larger to get convergent observability Gramian as they are slowly conversed.
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Figure 5.8: Convergence tendency of (a) CG and (b) OG of Piezo Tonpilz Transducer by Gene Shift
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C H A P T E R 6

ERROR MINIMIZATION OF REDUCED ORDER MODEL USING THE

SOLUTIONS OF LYAPUNOV EQUATIONS

Introduction

The application of the solutions of the Lyapunov equations is huge in the field of control theory

and optimization. In this chapter, we use the low-rank solutions of the Lyapunov equations, we

previously found by our proposed algorithms, in order to eliminate the dimensions of the original

data models to form the equivalent reduced order models (2.43) written as

Ẽ ˙̃x(t)= ˜A x̃(t)+B̃u(t),

ỹ(t)= C̃ x̃(t)+ D̃u(t).

Among various types of well-established model order reduction techniques, we use square-root

balanced truncation (see Chapter 2 Subsection 2.4.1) what needs the solution of the Lyapunov

equations, we have already discussed in the previous Chapters 4 and 5. As we deal with two

special types of descriptor systems, we modify the generalised square root BT technique for index-I

and index-II systems. Since we solve the Lyapunov equations on restricted time and frequency

intervals, we mainly focus on the error minimization on the finite time and frequency intervals

whereas the domains out the nominated time and frequency intervals are not our prior concern.

Since there is no guarantee to preserve the stability of the reduced order models due to the

negative definiteness of the solutions of the Lyapunov equations, at here we propose an algorithm

as the remedy of this problem so that our reduced order models not only minimize error on the

finite time and frequency segments but also preserve stability.

However, the concept of model order reduction has already been discussed in Chapter 2 Section

2.4. Hence, we start our discussion here from the Balanced Truncation (BT) of the descriptor

systems.

6.1 Square Root Balanced Truncation of Index-I System

We have known that BT is a Gramian-based model reduction technique. As a result, we

need to solve Lyapunov equations to find out Gramians. Since we mainly focus on model order

reduction on limited time intervals, so we need to solve time-restricted controllable and observable

Lyapunov equations (2.19a) and (2.19b) to find out low-rank CG and OG RP and LQ respectively

to apply BT technique for MOR. We modify the generalised BT Algorithm (4) for reducing the
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Algorithm 15: Square root balanced truncation for index-I system (2.10)
Input: Low rank factors RP and LQ of P and Q respectively, E i, E ii, Ai, Aii, Aiii, Aiv,

Bi, Bii, C i, C ii, D

Output: Reduced order system matrices Ẽ , ˜A , B̃, C̃ , D̃

1 Compute and partition a (thin) Singular Value Decomposition (SVD) (2.47) as

L T
QRP =

[
Ui Uii

][
Σi

Σii

][
Vi Vii

]T
,

where Σi = diag(σ1, . . . ,σr) contains the largest r HSVs.
2 Construct the left and right balancing transformation matrices as (2.48)

TL :=RP ViΣ
− 1

2
i , TR :=LQUiΣ

− 1
2

i ,

3 Generate reduced order system matrices as

Ẽ :=T T
R E iTL −T T

R E iiA
−1
iv AiiiTL,

˜A :=T T
R AiTL −T T

R AiiA
−1
iv AiiiTL,

B̃ :=
[
T T

R Bi −T T
R AiiA

−1
iv Bii

T T
R E iiA

−1
iv Bii

]
,

C̃ :=C iTL −C iiA
−1
iv AiiiTL, D̃ :=

[
D−C iiA

−1
iv Bii

0

] (6.1)

dimensions of the system matrices of index-I descriptor system. Algorithm (15) summarizes the

total procedures of BT for index-I system. The main modification, we did, is that the generation of

the reduced order sub-blocks of the system matrices (6.1) by balancing transformation matrices

TL and TR .

From the reduced order system matrices Ẽ , ˜A , B̃, C̃ , and D̃, we can reform the reduced order

descriptor systems having index-I structure asẼ i Ẽ ii

0 0

 ˙̃g(t)

ṙ(t)

=
 ˜Ai ˜Aii

˜Aiii Aiv

 g̃(t)

r(t)

+
 B̃i

Bii

u(t)

ỹ(t)=
[
C̃ i C ii

] g̃(t)

r(t)

+Du(t)

(6.2)

where Ẽ i := T T
R E iTL, Ẽ ii := T T

R E ii, ˜Ai := T T
R AiTL, ˜Aii := T T

R Aii, ˜Aiii := AiiiTL, B̃i := T T
R Bi,

C̃ i := C iTL. The dimension of the sub-blocks become (TL,TR) ∈ Rni×r, Ẽ i ∈ Rr×r, Ẽ ii ∈ Rr×nii ,
˜Ai ∈Rr×r, ˜Aii ∈Rr×nii , ˜Aiii ∈Rnii×r, B̃i ∈Rr×k, C̃ i ∈Rl×r, where r ¿ n = (ni +nii) is the dimension

of reduced matrices.

Same Algorithm (15) is applicable for MOR on limited frequency intervals where the left and

right transformation matrices TL and TR are constructed from the SVD of L T
N

RM as like as

(2.47). It is noted that RM and LN are the low-rank controllability and observability Gramian

factors of the frequency-restricted controllable and observable Lyapunov equations (2.33a) and

(2.33b) what are formed by applying our proposed Algorithm (13).
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6.2 Square Root Balanced Truncation of Index-II System

For the reduction of the system matrices of index-II system (2.11) on finite time and frequency

intervals through BT, we also need to solve time and frequency restricted Lyapunov equations.

Likewise index-I, for reducing the order of index-II we modify the generalised BT algorithm

suitable for index-II system.
Algorithm 16: Square root balanced truncation for index-II system (2.11)

Input: Low rank factors RP and LQ of P and Q respectively, E i, Ai, Aii, Aiii, Bi, Bii,

C i, C ii, D

Output: Reduced order system matrices Ẽ , ˜A , B̃, C̃ , D̃

1 Compute and partition a (thin) Singular Value Decomposition (SVD) (2.47) as

L T
QRP =

[
Ui Uii

]Σi

Σii

[
Vi Vii

]T
,

where Σi = diag(σ1, . . . ,σr) contains the largest r HSVs.

2 Construct the left and right balancing transformation matrices as (2.48)

TL :=RP ViΣ
− 1

2
i , TR :=LQUiΣ

− 1
2

i ,

3 Generate reduced order system matrices as

Ẽ :=T T
R E iTL,

˜A :=T T
R AiTL −T T

R AiiΞAiiiE
−1
i AiTL,

B̃ :=
T T

R Bi −T T
R AiE

−1
i AiiΞBii −T T

R AiiΞAiiiE
−1
i (Bi −AiE

−1
i AiiΞBii)

T T
R AiiΞBii −T T

R AiiΞBii

 ,

C̃ :=C iTL −C iiΞAiiiE
−1AiTL,

D̃ :=
D−C iE

−1
i AiiΞBii −C iiΞAiiiE

−1
i (Bi −AiE

−1
i AiiΞBii)

−C iiΞBii


(6.3)

where, Ξ= (AiiiE
−1
i Aii)−1.

Algorithm (16) summarizes the step by step procedures of BT technique for index-II system

where only the change is occurred during the generation of the reduced order system matrices

(6.3) of the index-II system.

After plugging in the frequency-restricted low-rank controllability and observability Gramians

RM and LN solving controllable and observable Lyapunov equations (2.33a) and (2.33b) respec-

tively by our proposed Algorithm (14) in the replacement of RP and LQ , we can use the same

Algorithm (16) for the model order reduction of the index-II system on finite frequency intervals.

6.3 Retrieve of the Stability of the Reduced Order Models

We have already discussed on the instability difficulties of the time and frequency-restricted

Lyapunov equations in the Chapter 2 Subsection 2.1.9. As a result, the reduced order models in

87



CHAPTER 6. ERROR MINIMIZATION OF REDUCED ORDER MODEL USING THE
SOLUTIONS OF LYAPUNOV EQUATIONS

Algorithm 17: Stability preservation of reduced order index-I and index-II system
matrices (6.1) and (6.3)

Input: Unstable balanced reduced matrices Ẽ , ˜A ,B̃,C̃ ,D̃.
Output: Stable balanced reduced matrices Ê , ˆA ,B̂,Ĉ ,D̂.

1 Operate eigenvalue decomposition of ( ˜A ,Ẽ ), and ( ˜A T , Ẽ T ) to find out (K , M), and (KT , MT )
respectively.

2 Construct left, and right projector SL, SR from the eigenvectors of the corresponding
eigenvalues containing negative real parts as

SL := KT (:, real(MT < 0)), SR := K(:, real(M < 0))

3 Establish stable balanced reduced matrices as

Ê := SLẼ SR , ˆA := SL ˜A SR ,

B̂ := SLB̃,Ĉ := C̃ SR , D̂ := D̃

limited time and frequency intervals fail to preserve the stability due to the positive indefiniteness

of the system matrices, that means, some of the eigenvalues of the system matrices are on the

positive x-half plane after order reduction. Therefore, it causes serious issue on system’s stability

and total reduced system becomes unstable in spite of the full system being stable. In order to

overcome that difficulty, we propose an stability retrieving algorithm like [101] where we create

two projectors SL and SR used for truncating the unstable less-important eigenvalues in order

to make the system stable concerning about the minimization of error on nominated time and

frequency intervals. Algorithm (17) shows the process how to create projectors and make the

unstable reduced order system matrices Ẽ , ˜A ,B̃,C̃ ,D̃ to stable system matrices Ê , ˆA ,B̂,Ĉ ,D̂.

This reduced order system matrices not only make the reduced system stable but minimize error

also comparing with infinite Gramians on finite time and frequency intervals what will be shown

in the numerical section.

6.4 Error Calculation of Reduced Order Systems

In this section, we describe the error computational process, we followed in this thesis. There

are several techniques to compute the norm (2.45) of the system of the reduce order systems

comparing with full order models.

6.4.1 Error Calculation of Index-I Reduced Order Model

In [17], the author introduced H∞-approximation error calculation process. However, at here

we apply H2-norm calculation processes. The time-restricted H2-norm error calculation process

was described in [102] by partitioning the balanced realization
(
T ET −1,T A T −1,T B,C T −1

)
as follows:

T ET −1 =
Ẽ i Ẽ ii

0 0

 ˙̃g(t)

ṙ(t)

 , T A T −1 =
 ˜Ai ˜Aii

˜Aiii Aiv

 , T B =
 B̃i

Bii

 , C T −1 =
[
C̃ i C ii

]
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and by partitioning the time-restricted controllability Lyapunov equations of reduced order

systems as  ˜Ai ˜Aii
˜Aiii Aiv

Σi

Σii

Ẽ T
i 0

Ẽ T
ii 0

+
Ẽ i Ẽ ii

0 0

Σi

Σii

 ˜A T
i

˜A T
iii

˜A T
ii A T

iv

=
eẼ −1

i
˜Ai t f B̃iB̃

T
i (eẼ −1

i
˜Ai t f )T eẼ −1

i
˜Ai t f B̃iB

T
ii e

A T
iv t f

eAiv t f BiiB̃
T
i (eẼ −1

i
˜Ai t f )T eAiv t f BiiB

T
ii e

A T
iv t f

−
 B̃iB̃

T
i B̃iB

T
ii

BiiB̃
T
i BiiB

T
ii

 .

Then, applying Cauchy-Schwarz inequality on Frobenius norm ‖.‖F and linearity of the Duhamel’s

integral, the
∥∥H

∥∥
H2

-norm error was calculated as follows:

∥∥H
∥∥
H2

=
√

tr(C P C T )+ tr(C̃ iP̂ C̃ T
i )−2tr(C P t̃C̃

T
i ) , (6.4)

where, tr is the trace of the system matrices, P = E
∫ t f

0 eE −1A τBBT e(E −1A )TτE T dτ,

P̂ = Ẽ
∫ t f

0 eẼ −1
i

˜AiτB̃iB̃i
T e(Ẽ −1

i
˜Ai)TτẼ T dτ, and P t̃ = E

∫ t f
0 eE −1A τBB̃i

T e(Ẽ −1
i

˜Ai)TτẼ T dτ.

Similarly, partitioning the time-restricted observability Lyapunov equations of reduced order

systems as  ˜A T
i

˜A T
iii

˜A T
ii A T

iv

Σi

Σii

Ẽ i Ẽ ii

0 0

+
Ẽ T

i 0

Ẽ T
ii 0

Σi

Σii

 ˜Ai ˜Aii
˜Aiii Aiv

=
(eẼ −1

i
˜Ai t f )TC̃ T

i C̃ i eẼ −1
i

˜Ai t f (eẼ −1
i

˜Ai t f )TC̃ T
i C ii eAiv t f

(eAiv t f )TC T
ii C̃ i eẼ −1

i
˜Ai t f (eAiv t f )TC T

ii C ii eAiv t f

−
C̃ T

i C̃ i C̃ T
i C ii

C T
ii C̃ i C T

ii C ii

 .

it can be shown that the
∥∥H

∥∥
H2

-norm error can be calculated as follows:

∥∥H
∥∥
H2

=
√

tr(BTQB)+ tr(B̃T
i Q̂B̃i)+2tr(BTQt̃B̃i) .

Q, Q̂, and Qt̃ can be calculated by taking transposes of P , P̂ , and P t̃. However, in [6, 73], the

authors have been observed that the
∥∥H

∥∥
H2

-norm on frequency interval was given by

∥∥H
∥∥2
H2

= 1
2π

∫ ω

−ω
tr(G (−iω)G (iω)T )dω (6.5)

and proved in [73] that on frequency domain,∫ ω

−ω
tr(G (−iω)G (iω)T )dω= 2πC MC T

where, M is the solution of the controllability Lyapunov equation. Imposing balanced realization

and partitioning the frequency-restricted controllability and observability Lyapunov equations

(2.50a) and (2.50b) of reduced order models, the
∥∥H

∥∥
H2

-norm error can be calculated for controlla-

bility Gramian as ∥∥H
∥∥
H2

=
√

tr(C MC T )+ tr(C̃ iM̂C̃ T
i )−2tr(C Mt̃C̃

T
i ) , (6.6)

and for observability Gramian as∥∥H
∥∥
H2

=
√

tr(BTN B)+ tr(B̃T
i N̂ B̃i)+2tr(BTN t̃B̃i) ,
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where, tr is the trace of the system matrices, M = E
2π

∫ Ω
−ΩΦ(iΩ)BBTΦ∗(iΩ)dΩE T ,

M̂ = Ẽ
2π

∫ Ω
−Ω Φ̃(iΩ)BBTΦ̃∗(iΩ)dΩẼ T , and Mt̃ = E

2π
∫ Ω
−ΩΦ(iΩ)BB̃TΦ̃∗(iΩ)dΩẼ T , Φ(iΩ) = (iΩE −

A )−1, and Φ̃(iΩ)= (iΩẼ − ˜A )−1. N , N̂ , and N t̃ can also be estimated by taking transposes of M ,

M̂ , and Mt̃.

However, the absolute error of the reduced order system can be computed as

AbsoluteError =
∥∥∥H− Ĥ

∥∥∥
and, the relative error can be calculated by

RelativeError =

∥∥∥H− Ĥ
∥∥∥∥∥H

∥∥
6.4.2 Error Calculation of Index-II Reduced Order Model

It has been closely observed in [82, 90] that for index-II system, a relation can be built up with

the balancing left and right projection matrices as:

TR :=ΠTTR , TL :=ΠTTL

where, Π= I −Aii(AiiiE
−1
i Aii)−1AiiiE

−1
i . Therefore, it can be easily shown that the state and

output equations of index-II system (2.11a) and (2.11b) can be reformed as:

T T
R E iTL ˙̃x(t)=T T

R AiTL x̃(t)+T T
R Bu(t),

ỹ(t)=C TL x̃(t)

where, B =Bi −AiE
−1
i AiiΞBii, C :=C i −C iiΞAiiiE

−1Ai. The above relation can be expressed

as same as the reduced order system (2.43), and hence, the absolute error between the original

and the reduced order systems can be measured by calculating
∥∥H

∥∥
H∞ as:∥∥∥H− Ĥ

∥∥∥
H∞

=
∥∥∥C (sE −A )−1B− C̃ (sẼ − ˜A )−1B̃

∥∥∥
where, Ẽ =T T

R E iTL, ˜A =T T
R AiTL, B̃ =T T

R Bi−T T
R AiE

−1
i AiiΞBii, and C̃ =C iTL−C iiΞAiiiE

−1AiTL.

6.5 Numerical Outcomes

The error comparisons of the reduced order models on finite time and frequency intervals

with full order models and infinite reduced order models are illustrated in this section. The

efficiency of our proposed algorithms have been evaluated by constructing better reduced order

approximation of the full order models on the nominated time and frequency intervals than the

time and frequency infinite reduced order models. Since our main concern is to reduce the models

on small time and frequency segments, therefore the numerical outcomes out of the restricted time

and frequency intervals is not included in our investigation. For time domain analysis, we compute

step responses of the input and output of the system using implicit Euler’s method summarized in

Algorithm (1) whereas for frequency domain analysis, we establish the transfer functions (2.9)

from the input-output relation of the dynamical system. However, we compute the error on the
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Table 6.1: Competitive numerical analysis on absolute & relative errors of the time-restricted (t)
and time-unrestricted (∞) Gramians under nominated time intervals

Model Interval Dimension Error
Reduced DP Reduced TP Absolute Relative

t ∞ t ∞
BIPS-606 [0,2] 50 6579 4×10−7 1.2×10−5 2.3×10−5 1×10−4

BIPS-1142 [0,5] 70 8663 5.01×10−3 0.123 1.83×10−3 0.550
BIPS-1693 [0,7] 60 11642 7.23×10−5 2.3×10−2 2.55×10−6 8×10−4

Piezo Tonpilz [0,10] 90 6165 7.95×10−5 2.03×10−2 1.16×10−3 0.23

Table 6.2: Competitive numerical analysis on absolute & relative errors of the time-restricted (t)
and time-unrestricted (∞) Gramians under non-homogeneous time intervals

Model Interval Dimension Error
Reduced DP Reduced TP Absolute Relative

t ∞ t ∞
BIPS-606 [2,5] 70 6599 6.2×10−4 1.10×10−1 2.32×10−5 8.75×10−1

BIPS-1693 [1,3] 70 11652 9.95×10−7 8.23×10−3 2.52×10−5 6.66×10−2

nominated time and frequency intervals using the procedures describing in the immediate above

section. In each of the error analysis data table, we indicate the reduced differential dimensions

of the system matrices using the column Reduced DP and entire reduced dimensions by the

column Reduced TP.

6.5.1 Error of Index-I system on Restricted Time Intervals

For model order reduction of index-I descriptor system on time domains, at first we compute

the controllability and observability solutions of the time-restricted Lyapunov equations using our

proposed Algorithm (8) solving shifted linear systems in sparse forms. Then we apply balanced

truncation MOR technique to reduce the dimensions of the original models. We truncate the less

impacted singular values of the system. Normally, we ignore the singular values having numerical

value 10−3. After model order reduction, we plot step responses of the full and reduced order

systems on time domain using the Algorithm (1) to illustrate the comparisons of the errors of the

reduced order on nominated time intervals. Tables (6.1) and (6.2) show the errors of reduced order

models using time-restricted and time-unrestricted Gramians on finite time intervals having

homogeneous and non-homogeneous initial conditions respectively.

t column enlists the error of the time-restricted reduced order models whereas ∞ is error

of time-infinite reduced order models. It has been observed that on both homogeneous and non-

homogeneous time intervals, the models reduced by our proposed Algorithm (15) what use low-

rank Gramians factors computed by our Algorithms (8) and (9), minimize errors more comparing

with the time-unrestricted reduced models. We have taken several time intervals to examine the

adaptability of our proposed algorithms with different time intervals and it has been successfully

shown that on different time intervals, the reduced order models by our algorithms approximate
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Figure 6.1: Mesh of reduced order Piezoelectric Tonpilz Transducer

Figure 6.2: Acoustic field pressure on output Probe points Vs. Time [0-10 sec] of reduced order
Piezo Tonpilz Transducer

the original full models better than time unrestricted reduced order models. Closely looking at

the Figures (6.3), (6.6), (6.8), it is clearly visible that on nominated time intervals time-restricted

reduced order models minimize error more by approximating more accurate full order models.

Figure (6.1) is the reduced order meshing structure of our generated Piezo Tonpilz Transducer

after reducing it to 6165 dimensions from 9140 dimensions. The physical outcomes of the reduced

order Piezo Tonpilz Transducer model have been shown by Figures (6.2), (6.4), (6.7), and (6.5).

6.5.2 Error of Index-II system on Restricted Time Intervals

We extend our error analysis of reduced order models on time domain for index-II descriptor

systems what are reduced by Algorithm (16). The low-rank time-restricted Gramian factors, what

are required here, are computed by Algorithm (10). For index-II system, we simply ignore the

singular values less than 10−4 of the reduced order model. The below Table (6.3) shows the error

of the ossen model on finite time interval where it is clearly shown that on nominated time

intervals time-restricted reduced order model minimizes both absolute and relative error and

give better approximation of original model illustrated in Figure (6.9 (a)). Figures (6.9 (b)) and

(6.9 (c)) illustrate the absolute and relative errors respectively on finite time intervals by which it

is visibly proven that the time-restricted ossen model gives more accurate approximation of full

model by minimizing both absolute and relative errors comparing with time-unrestricted reduced

order model.
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Figure 6.3: (a) Approximation of full models and (b) Absolute (c) Relative errors of reduced order
BIPS-1142 Model on time interval [0,5]

Table 6.3: Competitive numerical analysis on absolute & relative errors of the time-restricted (t)
and time-unrestricted (∞) Gramians under nominated time intervals

Model Interval Dimension Error
Reduced DP Reduced TP Absolute Relative

t ∞ t ∞
Ossen [0,6] 60 2559 7.1×10−3 5×10−1 2.96×10−2 4.45×10−1
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Figure 6.4: External field pressure of reduced order Piezo Tonpilz Transducer

Figure 6.5: Sound pressure of reduced order Piezo Tonpilz Transducer

6.5.3 Error of Index-I system on Restricted Frequency Intervals

We also analysis the MOR on limited frequency intervals using balanced truncation technique.

Hence, it is mandatory to compute low-rank controllability and observability Gramian factors

what we are computed by our proposed Algorithm (13). We reduce the order of the index-I models

on frequency intervals by eliminating the singular values less than 10−3. For frequency domain

analysis, we plot the transfer function (2.7) of the full and reduced order systems. Table (6.4)

includes the errors of the reduced order systems using frequency-restricted and unrestricted

Gramians on finite frequency intervals. Ω column indicates the error of the frequency-restricted

reduced order models whereas ∞ is error of frequency-infinite reduced order models. The reduced

order models found by our proposed algorithm are examined on different frequency segments and

on every intervals the frequency restricted reduced order models give more accurate approximation

of the original systems and minimize error more than frequency unrestricted reduced order models.

Figures (6.10) and (6.11) are the visual proof of our numerical outcomes what clearly show on

restricted frequency intervals our reduced order models work better.
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Figure 6.6: (a) Approximation of full models and (b) Absolute (c) Relative errors of reduced order
Piezo Tonpilz Transducer Model on time interval [0,10]

Table 6.4: Competitive numerical analysis on absolute & relative errors of the frequency-restricted
(Ω) and frequency-unrestricted (∞) Gramians under nominated frequency intervals

Model Interval Dimension Error
Reduced DP Reduced TP Absolute Relative

Ω ∞ Ω ∞
BIPS-606 [10,14] 40 6569 3.31×10−5 4×10−2 3.78×10−4 2.91×10−2

BIPS-1142 [-2,2] 60 8653 2.55×10−8 3.69×10−5 2.29×10−6 1.45×10−4

BIPS-1693 [3,7] 80 11662 4.54×10−2 .054 8.89×10−3 1.15×10−2

Piezo Tonpilz [-1,4] 70 6145 2.23×10−6 7.53×10−4 1.21×10−5 5.2×10−4

Power system [0,5] 30 229 2.32×10−1 0.61 1.23×10−5 1.98×10−3
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Figure 6.7: External fluid pressure of reduced order Piezo Tonpilz Transducer

Table 6.5: Competitive numerical analysis on absolute & relative errors of the frequency-restricted
(Ω) Gramians between Gene shift and RKSM shift under nominated frequency intervals

Model Interval Error
Absolute Relative

Gene Shift RKSM Shift Gene Shift RKSM Shift
BIPS-606 [-2,2] 9.10×10−2 0.78 2.22×10−4 1.1×10−1

Piezo Tonpilz [-5,0] 1.52×10−4 4.2×10−2 3.96×10−4 5.01×10−3

In addition, Table (6.5) give the comparative numerical results of the two shift parameters, we

have used. One of them is computed by our proposed Algorithm (12) whose numerical outcomes

are indicated by the column Gene Shift. Another is computed by existing method describing

in Chapter 4 Section 4.2 whose numerical errors are highlighted by the column RKSM Shift.

Attentively looking at the numerical values of error analysis, we can come to an end that the

reduced order models which are generated from the low-rank Gramians solving linear system (see

Chapter 5 Section 5.5) plugged in the Gene shift parameters minimize both absolute and relative

errors more than the reduced order models found form the low-rank Gramians computed by the

linear system inserting existing RKSM shift.

However, since the procedure, we followed to compute the shift parameters, is based on

different kinds of parametric values of governing parameters, sometimes based on the nature

of the data models, error minimization largely depends on the proper choice of the values of the

parameters. We get better result by taking population size as 15, mutation rate as 0.35 and the

permutation rate of the off-spring generation as 1. Figures (6.12) demonstrates that efficiency of

the shift parameters selected by our proposed Algorithm (12). The reduced order models found by

inserting our shift parameters minimizes errors more and give far better approximation of the

full model on nominated frequency intervals.

6.5.4 Error of Index-II system on Restricted Frequency Intervals

Like index-I system, we extend our research for index-II data model also and reduce the

model by Algorithm (16) where we need to find out the frequency-restricted low-rank Gramian

factors by our Algorithm (14). Singular value less than 10−4 are simply truncated with a view

to reducing dimensions of the model. Table (6.6) show the error of the ossen model on finite
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Table 6.6: Competitive numerical analysis on absolute & relative errors of the frequency-restricted
(Ω) and frequency-unrestricted (∞) Gramians under nominated frequency intervals

Model Interval Dimension Error
Reduced DP Reduced TP Absolute Relative

Ω ∞ Ω ∞
Ossen [-3,3] 50 2549 3.63×10−13 1.12×10−10 7.78×10−12 5.63×10−9

frequency interval by which it is shown that on finite frequency intervals frequency-restricted

reduced order models minimize both absolute and relative error by giving more accuracy during

the approximation of the full model. Looking at the FIgure (6.13), we can say that like time-

limited reduced order model, frequency restricted ROM give more accurate approximation by

minimizing errors on nominated frequency intervals. As a result, alongside numerical data, more

accurate approximation of original index-II models by frequency-restricted reduced order models

on selected frequency intervals are also be visually proven.

6.5.5 Error of Stable system

Since there is no guarantee to ensure the preservation of stability of the time and frequency

restricted reduced order models due to the positive indefiniteness of the system matrices, we

propose a stability retrieving Algorithm (17) what successfully ensures the stability of the reduced

order model as well as minimizes the error more on restricted intervals. It has alreday been

known to us that the eigenvalues of the state matrices (A ,E ) of a stable dynamic systems are on

the negative x-half plane.

Unfortunately, some of the eigenvalues of the system matrices of the time and frequency

restricted reduced order models are on the positive x-half plane despite the original systems are

stable. Due to this unexpected situation, the entire reduced order systems become unstable.

If we look at the Figure (6.15), it will be visible to us some of the eigenvalues of the unstable

reduced order models indicated by blue * are on the right x-half plane. However, after applying

our Algorithm (17), we observe from the Figure (6.15) that all of the eigenvalues of our stable

reduced order models symbolized as green ¦ are on the negative x-half plane, that means, our

proposed algorithm successfully retrieve the stability of the reduced order system. Figure (6.14)

shows the time domain analysis of the stable reduced order system where it is clearly visible

that the stable reduced system indicated by green curve is marginally stable with respect of

time whereas the unstable reduced system indicated by blue curve becomes diverse after a

certain period of time. However, the stable reduced order models by our proposed algorithm also

minimizes the error on restricted intervals more than the unrestricted reduced order models.

Looking at the Figure (6.16), we can come to the end saying that the stable reduced order model

on restricted intervals indicated by green curve minimizes error more than unrestricted reduced

order models indicated by red curve. Therefore, our stability retrieving Algorithm (17) not only

retrieves system stability but also minimizes error on finite intervals.
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Figure 6.8: (a) Approximation of full models and (b) Absolute (c) Relative errors of reduced order
BIPS-606 Model on time interval [2,5]
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Figure 6.9: (a) Approximation of full models and (b) Absolute (c) Relative errors of reduced order
Ossen Model on time interval [0,6]
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Figure 6.10: (a) Approximation of full models and (b) Absolute (c) Relative errors of reduced order
BIPS-1693 Model on frequency interval [3,7]
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Figure 6.11: (a) Approximation of full models and (b) Absolute (c) Relative errors of reduced order
Power System Model on frequency interval [0,5]
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Figure 6.12: Comparative error analysis between full and reduced order models using existing
RKSM shift and proposed Gene shift on frequency interval [-2,2]
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Figure 6.13: (a) Approximation of full models and (b) Absolute (c) Relative errors of reduced order
Ossen Model on frequency interval [-3,3]
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Figure 6.14: Time domain analysis of stable and unstable reduced order system

Figure 6.15: Eigenvalues observation of stable and unstable reduced order models
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Figure 6.16: Comparison between unstable and stable model on frequency intervals [1,3]
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C H A P T E R 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In all over this thesis, basically four important issues have been elaborately presented. First

of all, the generation of the data models from the physical models has discussed in Chapter 3

arisen in two major practical oriented topics: Electrodynamics and Fluid dynamics because data

models are recognised as the life-blood of the control and optimization analyses. Since this thesis

is based on the model order reduction optimization techniques for efficient data modelling and it

is an important necessity in the field of engineering during data modelling and optimization to

reduce the dimensions of the models on finite time and frequency intervals for time and frequency

domain analyses, we have mainly focused on the model order reduction of the dynamic models

on restricted time and frequency intervals. For that reasons, we have discussed on the efficient

solution of the controllable and observable Lyapunov equations on restricted time intervals in

Chapter 4 and on restricted frequency intervals in Chapter 5 using Rational Krylov Subspace

Method (RKSM). Finally, we have reduced the order of the models analysing the equivalency of

the original full order models using square-root Balanced Truncation (BT) technique describing in

Chapter 6.

Firstly, we have generated data models from the physical models arisen in two different types of

real-life related problems. We have applied proper governing equations and initial and boundary

conditions to create physical models and then, extracted data from those physical models after

simulation. We have rearranged the extracted data to form the state-space equations and used

those data as system matrices of those formulated equations.

Since our prime concern is to deal with large-scale sparse descriptor data models, we have

proposed algorithms for solving Lyapunov equations on time and frequency intervals constructing

around sparse large-scale descriptor models of two classes known as index-I and index-II systems

after modifying the existing RKSM methods for generalised system. For increasing the efficiency

of our proposed algorithms, we have solved the linear systems necessary for creating projections

of the Krylov subspaces keeping the sparsity patterns of the system matrices as same as original.

We have proposed an algorithm for solving matrix exponential keeping the state matrices sparse

what is one of the major computational hindrance during solving the time-restricted Lyapunov

equations. However, we have conducted an analytical discussion on the computational methods

of the matrix logarithm for imposing the best procedure during logarithm computation what is

mandatory for solving Lyapunov equations on nominated frequency intervals. Since selection of
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shift parameters is a vital steps during computation of the solution of the Lyapunov equations

and there is no definite process of the selection of shift parameters, we have also proposed a

process of shift parameter selection using evolutionary algorithm commonly known as genetic

algorithm. Since it is a probabilistic algorithm, we have done a thorough analysis on the impact of

the different key parameters used for the selection of shift parameters by genetic algorithm. As

RKSM is an iterative method, so we have applied a normalized residual technique to break the

iterative loop after beyond the satisfactory residual norm.

Finally, we have imposed balancing based projection technique known as Balanced Truncation

(BT) for model order reduction of descriptor system after modifying the existing procedure suitable

for descriptor systems. Since the reduced order models on restricted time and frequency intervals

give no guarantee of the system’s stability, we have proposed stability retrieving technique what

not only retains the system’s stability but also minimizes error on finite time and frequency

intervals. In concluding stage, the accuracy of our proposed methods has been discussed by a vast

numerical analysis on reduced system’s errors, frequency responses and time domain responses

for several test systems. The final analytical observations give a conclusion that on restricted

time and frequency intervals our proposed methods produce more accurate approximation of the

original system comparing with time and frequency unrestricted reduced order models.

7.2 Future Work

A wide range of futuristic research possibilities on system and control optimization may be

extended from this presented research work. Some of them are theoretical whereas some others

relate to the computational scientific aspects. The techniques, we have proposed here, can be

efficiently used to solve many practical oriented problems as well as for dynamic systems of

large-scale system. Since we have discussed two special types of indexing systems, what are

frequently available in our daily life, our techniques can be easily adaptable in various field of

engineering problems. However, there are few topics in this thesis what may be extended directly

in future research.

• Although we have proposed an efficient process to solve matrix exponential, we do not give a

proper remedy to calculate complex matrix logarithm having negative real parts, i.e. general

value logarithm due to the abnormal behaviour of the matrix logarithm on complex plane.

So in future, we may do a thorough analysis on it and try to find better process based on

iterative or general residual process.

• We have proposed an algorithm, what deals with time intervals having non-homogeneous

initial conditions. However, we have proposed it only for one special class of descriptor

system known as index-I system. We did not do any analysis on no-homogeneous time

domain for index-II data models. So it is our another plan to do a analysis on this topic in

future.

• We have proposed a shift parameter selection process by genetic algorithm what is affected

by the change of different types of probabilistic parameters. However, at here we have done

our analysis by inserting some static values of the parameters. So we have to change the
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value of the parameters manually during analysis. In future, we may try to modify our

algorithm in the sense of adapting with the nature of the data so that the value of the

parameters can be automatically upgraded. Hopefully, it will be more efficient then.

• Despite index-III descriptor system is rarely found in practical life, to some extent the

physical systems are turned into this special kind of data structure. This thesis does not

concern with the index-III system. However, in the future, our study will be extended for

this system.

• We want to extend our idea to solve the algebraic Riccati equations on finite time and

frequency intervals so that it can be efficient to design Linear Quadratic Regulator (LQR) to

regulate any dynamic system on finite time and frequency intervals.
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