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Abstract

In this thesis, a numerical analysis has been carried out on free convection in a trapezoidal
enclosure with sinusoidal temperature distributions on both side walls using Buongiorno’s
model. The model takes into account the Brownian motion and thermophoresis effect on the
flow, temperature, and concentration fields. Non-uniform temperature and nanoparticle volume
fraction distributions have been imposed on both inclined surfaces. Top and bottom parallel
surfaces have been kept as adiabatic. All the walls will be considered no slip and impermeable.
The governing equations along with above boundary conditions have been initially transformed
into non-dimensional form wusing appropriate similarity transformation and then solved
numerically, employing the finite element method of Galerkin’s weighted residual approach. The
code validation will be carried out. Nanofluids on the flow structure and heat transfer
characteristics will be investigated in details. Results will be presented in terms of streamlines,
isothermal lines and iso-concentration lines for different values of governing parameters such as
Lewis number (Le), Brownian motion (Nb), Buoyancy ratio (Nr), Prandtl number (Pr),
thermophoresis (Nf) and Rayleigh number (Ra). The effect of Brownian motion and
thermophoresis on the fluid flow, temperature, and concentration will be identified and finally
the flow, heat and concentration controlling parameters for a specific heat and mass transfer
application in a trapezium shaped cavity will be obtained. Result demonstrates that, the increase
of Brownian motion leads to increase in average Nusselt number by 34.75% and 34.27% for the

right and left walls, respectively.
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Chapter 1: Introduction

1.1. Introduction

One of the proficient passive approaches is using nanofluid in heat transport improvement for
enhancing the efficiency of thermal systems like heat exchangers, thermal storage, solar
collectors, photovoltaic/thermal system, biomedical devices, nuclear reactors, cooling of
electronic components etc. Researches on the nanofluids have been increased very rapidly over

the past decade.

It is observed that few researches have been done using Buongiorno’s model. In spite of this
research, more investigations are still needed especially for Brownian motion and
thermophoresis effect on flow, temperature and concentration fields due to their huge
applications. The Buongiorno's model is able to consider the effect of nanoparticle volume
fraction distribution. This model can also explore the heat transfer phenomena caused by

Brownian motion and thermophoresis by using similarity transformations.

In spite of some inconsistency in the reported results and insufficient understanding of the
mechanism of the heat transfer in nanofluids, it has been emerged as a promising heat transfer
fluid. In the continuation of nanofluids research, the researchers have also tried to use nanofluid
recently, which is engineered by suspending dissimilar nanoparticles either in mixture or
composite form. The idea of using nanofluids is to further improvement of heat transfer and
pressure drop characteristics by trade-off between advantages and disadvantages of individual
suspension, attributed to good aspect ratio, better thermal network and synergistic effect of

nanomaterials.
1.1.1 Buongiorno’s model

The Buongiorno model assumes that the nanofluid is a mixture of a base fluid and nanoparticles,
with the relative motion caused by Brownian motion and thermophoretic diffusion. The
Buongiorno's model is able to consider the effect of nanoparticle volume fraction distribution.
Buongiorno model is used to explore the heat transfer phenomena caused by Brownian motion

and thermophoresis. In the recent year convection of nanofluid using Buongiorno’s model has
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received considerable attention because of its relation to the thermal performance of many
engineering installations. Buongiorno’s model might be useful for designing the solar collectors,
room ventilation system, and electronic cooling system. In this paper the flow, heat and
concentration controlling parameters for a specific heat and mass transfer application in a

trapezium shaped cavity will be obtained by applying this model.
1.1.2 Nanofluid

A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles (1-100 nm).
These fluids are engineered colloidal suspensions of nanoparticles in a base fluid. Many types of
nanoparticles such as metals (Cu, Ag, Au), oxide ceramics (Al,O3, CuO), carbon nanotubes and
carbide ceramics (SiC, TiC) and various liquids such as water, oil, and ethylene glycol are used.
The fundamental characteristics of the nanofluid are the raise of the thermal conductivity of the
fount fluid, minimal impeding in flow passing, extensive stability and equity. Nanofluids have
novel properties that make them potentially useful in many applications in heat transfer including
microelectronics, fuel cells, pharmaceutical processes, and hybrid-powered engines, engine
cooling/vehicle thermal management, domestic refrigerator, chiller, heat exchanger, in grinding,
machining and in boiler flue gas temperature reduction. They exhibit enhanced thermal
conductivity and the convective heat transfer coefficient compared Nanofluids also have special
acoustical properties and in ultrasonic fields display additional shear-wave reconversion of an
incident compressional wave; the effect becomes more pronounced as concentration increases.
There have been numerous investigations that have revealed the enhancement of thermal
conductivity and higher heat transfer rate of nanofluids. Significant enhancement in the heat
transfer rate with the use of various nanofluids in various application compared to conventional
fluids have been reported by several researchers. Understanding the properties of nanofluids,
such as thermal conductivity, viscosity and specific heat, is very important for the utilization of
nanofluids in various applications. Further study of the fundamentals for heat transfer and
friction factors in the case of nanofluids is considered to be very important in order to extend the

applications of nanofluids. Figure 1.1 displays the formation of nanofluid.
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Dispersant addition

Base fluid

Ultrasonication
Figure 1.1: Formation of nanofluid
1.1.3 Sinusoidal temperature

Graphs of sine and cosine functions are called sinusoids. The temperature in a wavy form is
called sinusoidal temperature and the way of distribution is known as sinusoidal temperature
distribution. In many numerical analyses of the convection of nanofluid the temperature is taken

sinusoidal. Figure 1.2 shows the undulated temperature at inclined walls.

Figure 1.2: Undulated temperature at inclined walls
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1.1.4 Free convection

Natural convection, known also as free convection is a mechanism, or type of mass and heat
transport, in which the fluid motion is generated only by density differences in the fluid
occurring due to temperature gradients, not by any external source (like a pump, fan, suction
device, etc.). Free-convective flows may be laminar and turbulent. A flow past a solid surface,
the temperature of which is higher (lower) than that of the surrounding flowing medium, is the

most widespread type of free convection. Figure 1.3 displays convection.

Figure 1.3: Convection

1.1.5 Buoyancy ratio

Buoyancy ratio can be expressed as the ratio of the specific weight of the fluid to the specific
weight of the object; or, in another manner, by the weight of the fluid displaced minus the weight

of the object.

The density of the immersed object relative to the density of the fluid can easily be calculated

without measuring any volumes.

density _ weight
density of the fluid ~ weight of the fluid
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Buoyancy ratio shows the effect on heat and mass transfer on natural convection in a porous
enclosure between two isothermal concentric cylinders of rhombic cross sections. For negative
values of the buoyancy ratio, buoyancy forces due to heat and mass transfer are in opposite
directions (opposing mode), while for positive values they are in the same direction (aiding
mode). In this case, the flow strength increases as the absolute value of the buoyancy ratio

increases. Figure 1.4 indicates Buoyancy ratio.

Figure 1.4: Buoyancy ratio

1.1.6 Lewis number

The Lewis number is a dimensionless number defined as the ratio of thermal diffusivity to mass

diffusivity. It is used to characterize fluid flows where there is simultaneous heat and mass

. a A
transfer. It is defined as, Le = — =
D pDCp

where « is thethermal diffusivityand D mass diffusivity, A thermal conductivity,
p the density, D mixture-averaged diffusion coefficient and the specific heat capacity at constant

pressure.
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1.1.7 Prandtl number

Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German
physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity.
That is, the Prandtl number is given as:

H/p
k/(Cpp)

Pr =v/ o = momentum diffusivity/ thermal diffusivity =

Where,

v : momentum diffusivity (kinematic viscosity), v = p/p, (m?/s)

k

2/
(pCp)’ (m°/s)

a :thermal diffusivity, a =

i : dynamic viscosity, (N s/m°)

k  :thermal conductivity, (W/m-K)
Cp : specific heat, (J/kg-K)

p : Density, (kg/m?).

Note that the Prandtl number contains no such length scale in its definition and is dependent only
on the fluid and the fluid state. The Prandtl number is often found in property tables alongside

other properties such as viscosity and thermal conductivity.

For most gases over a wide range of temperature and pressure, Pr is approximately constant.
Therefore, it can be used to determine the thermal conductivity of gases at high temperatures,

where it is difficult to measure experimentally due to the formation of convection currents.

1.1.8 Nusselt number

The Nusselt number is the ratio of convective to conductive heat transfer across a boundary. The
convection and conduction heat flows are parallel to each other and to the surface, normal of the

boundary surface and are all perpendicular to the mean fluid flow in the simple case.

Convective heat transfer h hL

N
u k

" Conductive heat transfer

==

Where 4 is the convective heat transfer coefficient of the flow, L is the characteristics length, & is

the thermal conductivity. A Nusselt number close to one, namely convection and conduction of
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similar magnitude, is characteristic of "slug flow" or “laminar flow”. A value from 1 to 10 is
characteristic of slug flow or laminar flow. A larger Nusselt number corresponds to more active
convection, with [turbulent flow] typically in the 100 — 1000 range. The Nusselt number is
named after Wilhelm Nusselt, who made significant contributions to the science of convective

heat transfer.

1.1.9 Rayleigh number

The Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-
driven flow, also known as free or natural convection. It characterizes the fluid's flow regime: a
value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow.
Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather

than convection.

The Rayleigh number is defined as the product of the Grashof number, which describes the
relationship between buoyancy and viscosity within a fluid, and the Prandtl number, which
describes the relationship between momentum diffusivity and thermal diffusivity. Hence it may
also be viewed as the ratio of buoyancy and viscosity forces multiplied by the ratio of
momentum and thermal diffusivities. It is closely related to the Nusselt number. For most
engineering purposes, the Rayleigh number is large, somewhere around 10° to 10%. It is named
after Lord Rayleigh, who described the property's relationship with fluid behavior. The Rayleigh
number describes the behavior of fluids (such as water or air) when the mass density of the fluid
is non-uniform. The mass density differences are usually caused by temperature differences.
Typically, a fluid expands and becomes less dense as it is heated. Gravity causes denser parts of
the fluid to sink, which is called convection. Lord Rayleigh studied the case of Rayleigh-Benard
convection. When the Rayleigh number, Ra, is below a critical value for a fluid, there is no flow
and heat transfer is purely by conduction; when it exceeds that value, heat is transferred by
natural convection. When the mass density difference is caused by temperature difference, Ra is,
by definition, the ratio of the time scale for diffusive thermal transport to the time scale for

convective thermal transport at speed.

Ra = time scale for thermal transport via diffusion
a=

time scale for tharmal transport via convection at speed u
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1.1.10 Thermophoresis

Thermophoresis (also thermomigration, thermodiffusion, the Sorret effect, or the Ludwig—Soret
effect) is a phenomenon of mass transport driven by a temperature gradient. Thermophoresis in
gas mixtures was first observed and reported by John Tyndall in 1870 and further understood
by John Strutt (Baron Rayleigh) in 1882. Thermophoresis in liquid mixtures was first observed
and reported by Carl Ludwigin 1856 and further understood by Charles Soret in 1879. Soret
developed phenomenological equations describing the thermodiffusion. Thermodiffusion in
solids can be described by considering the heat of transport for the jump from a neighboring
lattice position into a vacancy caused by crystal defects. The thermophoretic force has a number
of practical applications. This phenomenon can be applied in aerosol mixtures. The basis for
applications is that, because different particle types move differently under the force of the
temperature gradient, the particle types can be separated by that force after they've been mixed

together, or prevented from mixing if they're already separated.

Impurity ions may move from the cold side of a semiconductor wafer towards the hot side, since
the higher temperature makes the transition structure required for atomic jumps more achievable.
The diffusive flux may occur in either direction (either up or down the temperature gradient),
dependent on the materials involved. Thermophoretic force has been used in
commercial precipitators for applications similar to electrostatic precipitators. It is exploited in
the manufacturing of optical fiber in vacuum deposition processes. It can be important as a
transport mechanism in fouling. Thermophoresis has also been shown to have potential in
facilitating drug discovery by allowing the detection of a patter binding by comparison of the
bound versus unbound motion of the target molecule. This approach has been termed microscale
thermophoresis. Furthermore, thermophoresis has been demonstrated as a versatile technique for
manipulating single biological macromolecules, such as genomic-length deoxyribonucleic acid
(DNA) and human immunodeficiency virus (HIV) virus in micro- and nano-channels by means
of light-induced local heating. Thermophoresis is one of the methods used to separate different
polymer particles in field flow fractionation. Figure 1.5 displays the Simulation of

thermophoresis in nanofluids.
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Figure 1.5: Simulation of thermophoresis in nanofluid
1.1.11 Brownian motion

Brownian motion refers to the random movement displayed by small particles that are suspended
in fluids. It is commonly referred to as Brownian movement. Brownian motion is named after
the Scottish Botanist Robert Brown, who first observed that pollen grains move in random

directions when placed in water in 1827.

This motion is a result of the collisions of the particles with other fast-moving particles in the
fluid. This pattern of motion typically alternates random fluctuations in a particle's position
inside a fluid sub-domain with relocation to another sub-domain. Each re-location is followed by
more fluctuations within the new closed volume. This pattern describes a fluid at thermal
equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential
direction of flow as in transport phenomena. More specifically, the fluid's overall linear and

angular momenta remain null over time.

In 1905, almost eighty years later, theoretical physicist Albert Einstein published a paper where
he modeled the motion of the pollen as being moved by individual water molecules, making one
of his first major scientific contributions. This explanation of Brownian motion served as
convincing evidence that atoms and molecules exist and was further verified experimentally

by Jean Perrin in 1908. Figure 1.6 displays Brownian motion of the Particles.
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Figure 1.6: Brownian motion of the particles
Causes of Brownian motion

o The size of the particles is inversely proportional to the speed of the motion, i.e. Small

particles exhibit faster movements.

e This is because the transfer of momentum is inversely proportional to the mass of the

particles. Lighter particles obtain greater speeds from collisions.

o The speed of the Brownian motion is inversely proportional to the viscosity of the fluid.

The lower the viscosity of the fluid, the faster the Brownian movement.

e Viscosity is a quantity that expresses the magnitude of the internal friction in a liquid. It

is the measure of the fluid’s resistance to flow.
Effects of Brownian motion
o Brownian movement causes the particles in a fluid to be in constant motion.
o This prevents particles from settling down, leading to the stability of colloidal solutions.

e A true solution can be distinguished from a colloid with the help of this motion.

10
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1.1.12 Viscosity

The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it
corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity
than water. Viscosity can be conceptualized as quantifying the internal frictional force that arises
between adjacent layers of fluid that are in relative motion. For instance, when a fluid is forced
through a tube, it flows more quickly near the tube's axis than near its walls. In such a case,
experiments show that some stress (such as a pressure difference between the two ends of the
tube) is needed to sustain the flow through the tube. This is because a force is required to
overcome the friction between the layers of the fluid which are in relative motion: the strength of
this force is proportional to the viscosity. A fluid that has no resistance to shear stress is known
as an ideal or inviscid fluid. Zero viscosity is observed only at very low temperatures in super
fluids. Otherwise, the second law of thermodynamics requires all fluids to have positive
viscosity;?!3l such fluids are technically said to be viscous or viscid. A fluid with a high

viscosity, such as pitch, may appear to be a solid. Figure 1.7 shows viscosity of honey.

Figure 1.7: Viscosity of honey
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1.1.13 Thermal conductivity

Thermal conductivity refers to the amount/speed of heat transmitted through a material. Heat
transfer occurs at a higher rate across materials of high thermal conductivity than those of low
thermal conductivity. Materials of high thermal conductivity are widely used in heat sink
applications and materials of low thermal conductivity are used in thermal insulation. Thermal
conductivity of materials is temperature dependent. The reciprocal of thermal conductivity is
called thermal resistivity. Metals with high thermal conductivity, e.g. copper exhibits high
electrical conductivity. The heat generated in high thermal conductivity materials is rapidly
conducted away from the region of the weld. For metallic materials, the electrical and thermal
conductivity correlate positively, i.e. materials with high electrical conductivity (low electrical
resistance) exhibit high thermal conductivity. The proportionality constant k is called thermal

conductivity of the material.
1.1.14 Density

The density (more precisely, the volumetric mass density; also known as specific mass), of a
substance is its mass per unit volume. The symbol most often used for density is p (the lower-
case Greek letter rho), although the Latin letter D can also be used. Mathematically, density is

defined as mass divided by volume:

m

P
Where m is the mass, and v is the volume. In some cases (for instance, in the United States oil
and gas industry), density is loosely defined as its weight per unit volume, although this is
scientifically inaccurate — this quantity is more specifically called specific weight. For a pure
substance the density has the same numerical value as its mass concentration. Different materials
usually have different densities, and density may be relevant to buoyancy, purity and packaging.
Osmium and iridium are the densest known elements at standard conditions for temperature and
pressure. To simplify comparisons of density across different systems of units, it is sometimes
replaced by the dimensionless quantity "relative density" or "specific gravity", i.e. the ratio of the
density of the material to that of a standard material, usually water. Thus, a relative density (less
than one) means that the substance floats in water. The density of a material varies with

temperature and pressure. This variation is typically small for solids and liquids but much greater
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for gases. Increasing the pressure on an object decreases the volume of the object and thus
increases its density. Increasing the temperature of a substance (with a few exceptions) decreases
its density by increasing its volume. In most materials, heating the bottom of a fluid results
in convection of the heat from the bottom to the top, due to the decrease in the density of the

heated fluid. This causes it to rise relative to more dense unheated material.

1.2 Literature Review

One of the proficient passive approaches is using nanofluid in heat transport improvement for
enhancing the efficiency of thermal systems like heat exchangers, thermal storage, solar
collectors, photovoltaic/thermal system, biomedical devices, nuclear reactors, cooling of
electronic components etc. The Buongiorno model is used to investigate the effects of Brownian
motion and thermophoresis on the flow, heat, and mass transfer from a flat plate with prescribed

surface heat flux.

Elshehabey and Ahmed [1] investigated MHD mixed convection in a lid driven cavity filled by
nanofluid with sinusoidal temperature using Buongiorno’s model. The effects of Brownian
motion and thermophoresis are also incorporated into the nanofluids. The obtain result
demonstrate that, the presence of an inclined magnetic field in the flow region leads to lose the
fluid movement and also the fluid is dominated by the movement of the upper wall in the case of
highest value of the buoyancy ratio. Sheikholeslami ef al. [2] analyzed natural convection
considering Brownian motion and thermophoresis effect. Their result indicated that Nusselt
number is an increasing function of buoyancy ratio number but it is a decreasing function of
Lewis number and Hartmnn number. Suriyakumar and Devi [3] performed magneto-nanofluid
flow including the effects of thermophoresis and Brownian motion numerically. Falana et al. [4]
numerically studied the effect of Brownian motion and thermophoresis on a stretching sheet.
Revnic et al [5] showed the impact of border temperature variations on nanofluid free
convection within a trapezium using Buongiorno’s nanofluid model. They observed that Nusselt

number is growing function of wave number and Rayleigh number.

Esfandiary et al. [6] conducted natural convective heat transfer considering Brownian motion
and thermophoresis effect. The authors [7-8] found more accurate results using the Buongiorno’s

model compared to other nanofluid models. Behbahan and Pop [9] studied the thermophoresis

13


https://en.wikipedia.org/wiki/Convection
https://www.emerald.com/insight/search?q=Amin%20Samimi%20Behbahan
https://www.emerald.com/insight/search?q=I.%20Pop

Introduction

and Brownian effects on natural convection of nanofluids in a square enclosure with two pairs of

heat source/sink. Their study showed an improvement in heat transfer rate for the whole range of

Rayleigh numbers when Brownian and thermophoresis effects are considered.

Sheremet et al. [10] studied free convection in a shallow and slender porous cavity filled by a
nanofluids. Elshehabey and Ahmed [11] numerically investigated MHD mixed convection in a
lid driven cavity filled a nanofluid with sinusoidal temperature distribution on the vertical walls
using Buongiorno’s nanofluid model. Haddad et al. [12] studied the natural convection in
nanofluids due to the effect of thermophoresis and Brownian motion in heat transfer
enhancement. Matin and Ghanbari [13] studied the effect of Brownian motion and
thermophoresis on the mixed convection of nanofluid in a porous channel including flow
reversal. Aminfar and Haghgoo [14] investigated the effects of Brownian motion and
thermophoresis effects on natural convection heat transfer of alumina-water nanofluid. They
concluded that the use of single-phase homogeneous method does not seem reasonable for
modeling this class of natural convection. Alsabery et al. [15] discussed the effect of spatial side-
wall temperature variations on transient natural convection of a nonofluid in a traphezoidal
cavity. The main object of this paper was to examine the effects of nonuniform border
temperature variations on time dependent free nanofluid convection within a trapezium:
Buongiorno’s nanofluid model. Sheremet and pop [16] studied natural convection in square
porous cavitie with sinusoidal temperature distributions on both side walls filled with a nanofluid
using Buongiorno’s model. They applied the symmetric sinusoidal temperature with respect to

the midplane of the enclosure.

Sivasankaran and Bhuvaneswari [17] studied natural convection in porous cavity with sinusoidal
heating on both sidewalls. Ho ef al. [18] investigated the natural convection of Al.Oz-water
nanofluid in square enclosure experimentally. They explained that the unusual increase or
decrease of heat transfer cannot be explained on relative changes Malvandi et al. [19] analyzed
thermophoresis and Brownian motion effect on heat transfer enhancement at film boiling of
nanofluids. Garoosi et al. [20-22] investigated Numerical simulation of natural convection of the
nanofluid using a Buongiorno model. Malvandi and Ganji [23] studied Brownian motion and
thermophoresis effects on slip flow of Alumina water nanofluid inside a circular microchannel in

the presence of a magnetic. Kata et al. [24] discussed the effect of thermophoresis and Brownian
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motion on the melting heat transfer of a Jeffrey fluid near a stagnation point towards a stretching
surface using Buongiorno's model. Qasim et al. [25] studied heat and mass transfer in nanofluid
thin film over an unsteady stretching sheet using Buongiorno’s model. Pop et al. [26-27] studied
free convection of a nanofluid in non-equilibrium porous cavity considering Buongiorno’s

model.

Noghrehabadi et al. [28] studied natural convection of nanofluid over vertical plate embedded in
porous medium. Onsor Sayyar and Saghafian analyzed [29] numerical simulation of convective
heat transfer of nonhomogeneous nanofluid using Buongiorno model. Saleh et al. [30] studied
the natural convection of water-based copper and alumina nanofluids flow in a trapezoidal
cavity. Their results showed that the effective heat transfer enhancement occurs for a trapezoidal
cavity having an acute geometry inclined angle with a high concentration of copper
nanoparticles. Soleimani et al. [31] studied natural convection heat transfer within a copper-
water nanofluid filled a semi-annulus cavity. Their results showed that there is an optimum angle
of turn for which the rate of heat transfer is the maximum for several thermal Rayleigh numbers.
Sheremet er al. [32] discussed steady-state free convection in right-angle porous trapezoidal
cavity filled by a nanofluid: Buongiorno’s mathematical model. Garoosi et al. [33] investigate
the numerical simulation of natural convection of the nanofluid in heat exchangers using a
Buongiorno model. Al-Weheibi ef al. [34] investigated numerical simulation of natural
convection heat transfer in a trapezoidal enclosure filled with nanoparticles. Esfe
et al. [35] studied natural convection in a trapezoidal enclosure filled with carbon nanotube and

water-ethylene glycol nanofluid.

Alvario et al. [36] analyzed a numerical investigation of laminar flow of a water/ alumina
nanofluid. Ramachandra and Suryanarayana [37] analyzed heat and mass transfer of
Buongiorno's model nanofluid over linear and non-linear stretching surface with thermal
radiation and chemical reaction. Khan et al. [38] studied numerical study of nanofluid flow and
heat transfer over a rotating disk using Buongiorno’s model. Demirdzic et al. [39] studied about
the fluid flow and heat transfer test problems solutions for non- orthogonal grids: Bench mark.
De Davis et al. [40] studied the natural convection in a square cavity: Venkatadri et al. [41]
simulated the natural convection heat transfer in a 2D trapezoidal enclosure and found that the
fluid flow within the enclosure is formed with different shapes for different values of Pr. The

flow rate is increased by enhancing the Rayleigh number.
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From the above literature review, it is observed that few researches have been done using
Buongiorno’s model [42] including the effect of Brownian motion and thermophoresis. In spite
of these researches more investigations are still needed especially for Brownian motion and
thermophoresis effect on flow, temperature and concentration fields due to their huge
applications. The Buongiorno's model is able to consider the effect of nanoparticle volume
fraction distribution. This model can also explore the heat transfer phenomena caused by
Brownian motion and thermophoresis by using similarity transformations. Using this model, the
governing equations can be reduced to a set of ordinary differential equations which are easy to
solve more accurately. Thus, the numerical study of Brownian motion and thermophoresis on
free convective water based nanofluid flow in a trapezoidal enclosure using Buongiorno’s model

will be conducted in this thesis.
1.3 Objectives

The aim of this research is to investigate the effects of Brownian motion and thermophoresis on

free convection in a trapezoidal enclosure. The specific objectives are:

1) To analyze the natural convection in a trapezoidal cavity having sinusoidal wall

temperature using Buongiorno's mathematical model.

i1) To find the effects of Brownian motion and thermophoresis on velocity, temperature,

concentration distributions as well as heat and mass transfer rates.
The possible outcomes of this research result are as follows:

% The effect of Brownian motion and thermophoresis on the fluid flow, temperature, and

concentration will be identified.

¢ The flow, heat and concentration controlling parameters for a specific heat and mass

transfer application in a trapezium shaped cavity will be obtained.

¢ The research output can be applied in flow and heat transfer in solar ponds and air

conditioning in room.
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1.4 Scope of the Thesis

A brief description of the present numerical investigation of heat-mass transfer inside a trapezoidal

enclosure using nanofluids has been presented in this thesis through four chapters as stated below:

Chapter 1 contains introduction with the aim and objectives of the present work. This chapter
also includes a literature review of the past studies on heat transfer using nanofluid which is
relevant to the present work. Objectives of the present study have also been incorporated in this

chapter.

Chapter 2 presents a short introduction of numerical method. Then, the Finite Element Method
and Galerkin's Technique have been discussed in this chapter detail. Physical model of
Trapezoidal enclosure is described. Creation of geometry, meshing, implementation of physics,
boundary conditions, mathematical formulation and numerical computation have been included

in this chapter.

In Chapter 3, the effects of Buoyancy ratio, thermophoresis, Prandtl number, Brownian motion,
Rayleigh number and Lewis number have been presented. Results have been shown in the form
of isothermal lines, stream lines and iso-concentration lines to better understand the heat transfer
mechanism through trapezoidal enclosure. In addition, the variation of the average Nusselt
Number at the left and right inclined walls of the enclosure has been shown for above mentioned

parameters.

Finally, in chapter 4, the concluding remarks of the whole research and the recommendations for

the future investigations have been presented systematically.
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Chapter 2: Numerical Study of Buongiorno’s
Nanofluid Model

2.1 Introduction

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to
symbolic manipulations) for the problems of mathematical analysis (as distinguished from
discrete mathematics). Numerical analysis naturally finds application in all fields of engineering
and the physical sciences, but in the 21st century also the life sciences, social sciences, medicine,

business and even the arts have adopted the process of scientific computations.

Fluid flow, heat and mass transfer problems can be analyzed theoretically or experimentally.
From an economic point of view, the experimental investigation of these problems did not attract
much attention due to their insufficient flexibility and applications. However, often experimental
investigations are necessary to validate the numerical method. Any change in geometry requires
a separate experimental system setup and the boundary conditions of the systems for their
investigation. The involvement of time is also a reason to make it appealing. On the other hand,
theoretical analyzes can be performed through analytical methods or numerical methods.
Analytical solution methods for solving practical problems are not very popular. Numerical
methods are extremely powerful problem-solving tools capable of handling large systems of
equations, complex geometry, etc., which are often impossible to solve analytically. General
closed form solutions are very ideal cases and the results obtained for specific problems can
usually be found with identical boundary conditions. Numerical methods are an easy way to find
solutions to problems of practical interest because it reduces superior mathematics to basic

arithmetic operations.

2.2 Finite Element Method

The finite element method (FEM) is a numerical method for solving problems of engineering and

mathematical physics. Typical problem areas of interest include structural analysis, heat transfer,
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fluid flow, mass transport, and electromagnetic potential. The analytical solution of these
problems generally requires the solution to boundary value problems for partial differential
equations. The finite element method formulation of the problem results in a system of algebraic
equations. The method approximates the unknown function over the domain. To solve the
problem, it subdivides a large system into smaller, simpler parts that are called finite elements.
The simple equations that model these finite elements are then assembled into a larger system of
equations that models the entire problem. FEM then uses variation methods from the calculus of
variations to approximate a solution by minimizing an associated error function. Studying or

analyzing a phenomenon with FEM is often referred to as finite element analysis (FEA).

A finite element method is characterized by a variation formulation, a discretization strategy, one
or more solution algorithms and post-processing procedures. Examples of variation formulation
are the Galerkin method, the discontinuous Galerkin method, mixed methods, etc. A
discretization strategy is understood to mean a clearly defined set of procedures that cover (a) the
creation of finite element meshes, (b) the definition of basis function on reference elements (also
called shape functions) and (c) the mapping of reference elements onto the elements of the mesh.
Examples of discretization strategies are the h-version, p-version, hp-version, x-FEM, iso-
geometric analysis, etc. Each discretization strategy has certain advantages and disadvantages. A
reasonable criterion in selecting a discretization strategy is to realize nearly optimal performance
for the broadest set of mathematical models in a particular model class. There are various
numerical solution algorithms that can be classified into two broad categories; direct and
iterative solvers. These algorithms are designed to exploit the sparsity of matrices that depend on

the choices of variation formulation and discretization strategy.

Post processing procedures are designed for the extraction of the data of interest from a finite
element solution. In order to meet the requirements of solution verification, postprocessors need
to provide for a posteriori error estimation in terms of the quantities of interest. When the errors
of approximation are larger than what is considered acceptable then the discretization has to be
changed either by an automated adaptive process or by action of the analyst. There are some very

efficient postprocessors that provide for the realization of super convergence.
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2.3 Galerkin's Technique

In mathematics, in the area of numerical analysis (the study of algorithms that use numerical
approximation), Galerkin’s method is a class of methods for converting a continuous operator
problem (such as a differential equation) to a discrete problem. In principle, it is the equivalent of
applying the method of variation of parameters to a function space, by converting the equation to
a weak formulation. Typically, one then applies some constraints on the function space to
characterize the space with a finite set of basic functions. In applied mathematics, methods of
weighted residuals are methods for solving differential equations. The solutions of these
differential equations are assumed to be well approximated by a finite sum of test functions. In
such cases, the selected method of weighted residuals is used to find the coefficient value of each
corresponding test function. The resulting coefficients are made to minimize the error between

the linear combination of test functions, and actual solution, in a chosen norm.

Suppose, a linear differential operator D acting on a function u to produce a function p,
D(u(x)) = p(x).

We wish to approximate u by a function @i, which is a linear combination of basic functions

chosen from a linearly independent set.
Thatis, u =i = ?=1 a; Q)i

Now, when substituted into the differential operator, D, the result of the operations is not, in

general, p(x).
Hence a error or residual will exist: E(x) = R(x) = D(ti(x)) — p(x) = 0.

The notion in the method of weighted residual (MWR) is to force the residual to zero in some

average sense over the domain.

A weighted residual is simply the integral over the domain of the residual multiplied by a weight

function w(x). A weighted residual is fﬂ w(x) R(T, x)dx

By choosing N weight functions, w;(x) fori = 1, ..., N and setting these N weighted residuals to

zero, we obtain N equations which we solve to determine the N unknown values of «;.

We define the weighted residual for w;(x)to be
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Ri(T) = f w;(x) R(T, x)dx

0

The method of weighted residuals requires
R(T)=0 for i=12,..,N.

In the method of weighted residuals, the next step is to determine appropriate weight functions.
A common approach, known as the Galerkin method, is to set the weight functions equal to the

functions used to approximate the solution. That is,
w;(x) = @;(x) (Galerkin)

As a special case of the Galerkin process, the FEM is often added. In mathematical terms, the
procedure is to construct an integral of the residual and weight functions of the internal product

and set the integral to zero.

2.4 Physical Model

The schematic diagram of the studied configuration has been depicted in the Figure 2.1. It
consists of a two-dimensional trapezoidal enclosure of height 1.3 m. The length of top, bottom,
and inclined walls are 1, 1.8 and 1.36 m, respectively. Top and bottom parallel surfaces have
been kept as adiabatic. All the walls have been considered no slip and impermeable. The
sinusoidal temperature and nanoparticles distributions have been imposed on the left and right
inclined walls of the enclosure. The top and bottom walls are insulated walls. The inclination
angle is 17.5 degree. The left and right walls make this angle with vertical lines according to
clockwise and anticlockwise directions, respectively. The gravity acts in the vertical direction
and there is no viscous dissipation. Thermophoresis and Brownian motion effects are included in
our study in the absence of chemical reaction. The base fluid (water) and the solid nanoparticles
are in thermal equilibrium. Boungiorno’s approximation issued to determine the variation of
density in the buoyancy term where the other thermo-physical properties of the nanofluid are

assumed constant.
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Sinusoidal temperature and
concentration conditions

Figure 2.1: Physical model

2.5 Mathematical Model

~4

Sinusoidal temperature and
concentration conditions

The fluid domain inside the cavity has been considered as a continuum. The flow is assumed to

be incompressible flow, no chemical reactions, negligible external forces, negligible viscous

dissipation, negligible radiative heat transfer. The governing partial differential equations of the

fluid (conservation of mass, momentum, energy and nanoparticles concentration) in dimensional

form according to [1, 5, 43-46] have been given bellow:

Continuity equation:

oou ov
(a+£)—°

X-momentum equation:

ou ou 9%2u = 9%u
pr(ugstvay) =5+ (GE+55)

y-momentum equation:

ov v\ _ _ oP
pr (w4 v5) = =3+ i

(1

2)

2 2
5+ 552) + (€, + (1= Ol(p, (1= BT = TO)}g @)
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Energy conservation equation:

oT oT _ 92T | 9°T dC aT | 9C AT pr\ [(om\? |, [oT\?
m”a—“f(ﬁJfa—yz)”B(anfaa)+(T—c)[(a) +(@)] ®)

Nanoparticle conservation equation:

ac ac 9%c | 9%c Dr (62T 62T)
uax+vay_DB (6x2+ay2)+Tc ax2+ay2 ®)

Where u and v are the velocity components, p is the pressure, p is the density, p is the density
of the nanofluid, u is the dynamic viscosity, a is the thermal diffusivity, f is the thermal
expansion, T is the temperature and C is the nanoparticle’s concentration.

The following dimensional boundary conditions have been assigned:

6_T dc

3y =0, —=0

Ontopwall: u=v =0, =

oT 0
On bottomwall: u = v =0, — =0,—C=0
oy dy

On left inclined wall: u = v = 0,
T=T,+ (T, —T,) A{sin(y — 0.3x) —x — 0.3y};
C=C,+ (C,—C.) A{sin(y — 0.3x) —x — 0.3y}
On right inclined wall: ©u = v = 0,
T=T.+ (T, —T,)A{sin(0.3x + y — 0.54) + 0.3y — x + 1.8}

C=C,+ (C,—CHA{sin(0.3x +y—0.54) + 0.3y — x + 1.8}

Also, as the both inclined walls containing heating and cooling regions, we have to calculate the
Nusselt number on both walls. The rate of heat transfer is computed at the left and right inclined

walls and is expressed in terms of the local Nusselt number:

Where, & and n are the local convective heat transfer coefficient and dimensional distances either

along x or y direction acting normal to the left and right inclined surfaces respectively.
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Numerical analysis of Buongiorno’s nanofluid model

The transformation of non-dimensional parameters has been defined as the following

x y uH vH uH? T-T, c-C
forms: X ==, Y==, U=—,V=—, P=—,0 = =, = .
H H a a pa’ Tn—T. Cp—C¢

Using these parameters, Equations (1) - (5) can be written in a non-dimensional form:

ou av
— —_— 0
X + oY !

ouU au P 02U 02U
UtV = _&J’PT(WJr m)
ou v opP a%v  9%v
R —a—Y+Pr(a7+a7)—RaPrNr(<p—1)+RaPr9,

36 36 _ 9% 2090 | 29 96) (6_9)2 (6_0)2
U6X+V6Y_6X2+Nb(6X6X+6YaY +Nt[ax oy

90 dp 1 (az¢ az¢) Nt (629 aze)
U6X+V6Y " Le ax2+ay2 Nb Le ax2+ay2

And the non-dimensional boundary conditions are as follows:

—y=02 _o %_
Ontopwall: U =V =0, oy =0, ay—O

a0 d
On bottomwall: U =V =0, — =0,—(p=0
aY aY

On left inclined wall: U=V =0,
0 = e{sin(Y — 0.3X) — X — 0.3Y},
¢ =¢e{sin(Y —0.3X) — X — 0.3Y}
On right inclined wall: U =V = 0,
0 = &{sin(0.3X +Y —0.54) — X + 0.3Y + 1.8},

@ = &{sin(0.3X+Y —0.54) — X + 0.3Y + 1.8}
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Numerical analysis of Buongiorno’s nanofluid model

Dr(pC)p (B1—6) Nb =D (PS)p (Prn—¢c)
] — B

)

v a
Here PT=—f, Le=D—f,Nt=

ar B Te(po)y  ar POy ar
- - On-0c)(1-p)H3
=@ 9)Bp7PP) opg Rg = LBk C)z(l PH b the Prandil number, Lewis
(1=@)pf(6r=06c) V§

number, thermophoresis, Brownian motion, buouncy ratio and Rayleigh number, respectively.

a0

The non-dimensional local Nusselt number at the inclined surfaces is Nu = — o N

: _ 30 1 [(86\% (862
The normal temperature gradient can be writtenas — = — _[|—) + (=) .
ON N\ \ox oy

The average Nusselt number (Nu) is obtained by integrating the local Nusselt number along the

N —
inclined surfaces and is defined by Nu = — % 1) o NudN.

2.6 Computational Procedure

Using the Galerkin’s weighted residual finite element technique [47-48] the momentum and
energy balance equations have been solved using COMSOL Multiphysics. In this method, the
solution domain has been discretized into finite element meshes, which have been composed of
non-uniform triangular elements. Then the nonlinear and non-dimensional governing partial
differential equations have been transferred into a system of integral equations by applying
Galerkin weighted residual method. The basic unknowns for the governing partial differential
equations (7-11) are the velocity components U, V, the temperature 6, concentration, ¢ and the
pressure P. The six nodes with triangular element have been used in this numerical research. All
six nodes have been associated with velocities as well as temperature while three corner nodes
with pressure. The nonlinear algebraic equations so obtained have been modified by imposition
of boundary conditions. These modified nonlinear equations have been transferred into linear
algebraic equations by using Newton’s method. Finally, these linear equations have been solved
by using triangular factorization method. The convergence criterion for the solution procedure
has been defined as ™1 — ™| < 1076, where n is the number of iteration and v is a function

of U, V, 6 and ¢.

25



Numerical analysis of Buongiorno’s nanofluid model

2.6.1 Code validation

In order to authenticate the exactness of present numerical technique, the obtained graphical
representation of streamlines and isothermal lines using the present numerical code have been

compared with the results obtained by Venkatadri et al. [41].

Venkatadri et al. [41]

Present code

Streamlines Isothermal lines

Figure 2.2: Code validation of the streamlines and isotherms between Venkatadri ef al.
[41] and that of present research at Ra = 103 and Pr = 0.025
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Numerical analysis of Buongiorno’s nanofluid model

They simulated numerically free convective heat transfer 2D model of trapezoidal cavity. These
comparisons have been presented obviously in the figure 2.2. The code validation has been
conducted while employing the dimensionless parameters as Ra = 10* and Pr = 0.025. A very
good agreement has been found between the present numerical code results and the results of
Venkatadri ef al. [41]. These flattering comparisons provide confidence in the numerical results

to be reported subsequently.

2.6.2 Mesh generation

The discrete locations at which the variables are to be calculated are defined by a mesh which
covers the geometric domain on which the problem is to be solved. It divides the solution
domain into a finite number of sub-domains called finite elements. The computational domains
with irregular geometries by a collection of finite elements make the method a valuable practical
tool for the solution of boundary value problems arising in various fields of engineering. Figure
2.3 displays the finite element mesh of the present physical domain. The meshing consists of

triangular element with six nodes in boundaries.

Figure 2.3: Mesh generation of the trapezoidal enclosure
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Numerical analysis of Buongiorno’s nanofluid model

2.6.3 Grid sensitivity test

In order to determine the proper grid size for this study, a grid independence test is conducted
with five types of mesh for Pr = 7, Ra =10*, Nt = Nr = Nb = 0.1 and Le = 10 which has been
shown in Table 2.1. Corresponding grid densities are 4925 nodes, 1602 elements, time 52 s; 7930
nodes, 2708 elements, 95s; 20320 nodes, 2708 elements, 112s; 49780 nodes, 18008 elements,
276s; and 75500 nodes, 28296 elements, 403s. The extreme value of Nu is used as the
monitoring variable for sensitivity measure of the accuracy of the solution. Taking into account
both the precision of numerical values and computational time, the present calculations are
performed with 18082 nodes and 4484 elements grid system. Table 2.1, one can observe that no

further improvement in accuracy occur using higher number of elements.

Table 2.1: Grid sensitivity check at Pr =7, Ra = 10°, Nt = Nr = Nb = 0.1 and Le = 10

Mesh type Normal Fine Finer Extra Fine | Extremely Fine
Elements 1602 2708 7142 18008 28296
Nu 0.243 0.564 0.774 0.985 0.9854
Time (s) 52 95 112 276 403
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Chapter 3: Results and Discussions

3.1 Introduction

Free convection of heat transfer in a trapezoidal enclosure with sinusoidal temperature
distributions on both side walls is examined numerically using Buongiorno’s model. The
numerical calculation is carried out for various values of Brownian motion (Nb) from 0.1 to
2, Prandtl number (Pr) from 0.7 to 10, Rayleigh number (Ra) from10*to 103, thermophoresis
parameter (Nt) from 0.1 to 1.5, Lewis number (Le) from 1 to 10 and buoyancy ratio (Nr) from
0.1 to 0.7. These relevant parameters have a direct effect on the flow, thermal and
concentration fields inside the considered cavity. The numerical results have been offered in
terms of streamlines, isothermal lines, nanoparticle volume fraction contours and average
Nusselt number (Nu) on both left and right inclined walls. In order to display the results out
of these six independent parameters, five parameters have been kept as fixed (unless where
stated) while the remainder single one has been varied as gathered in the following

categories:
3.2 Effect of Lewis number

Figure 3.1 (a-c) illustrate the effect of Lewis number on streamlines, isothermal lines and iso-
concentration lines in the range (Le = 1 - 10). For this effect the values of another parameter
have been kept as fixed at Pr = 7, Ra = 10*, Nt = Nr = Nb = 0.1. Blue color indicates the
lowest value and red color represents the highest value in the streamlines, isothermal lines
and iso-concentration lines. It is noticed from this figure that an increase of Lewis number
leads to both significant changes in conservation of velocity, temperature and nanofluid
concentration fields. Regardless of the Lewis number the convective cells are formed inside
the cavity. The cells at the middle part vortices anti-clockwise direction whereas the cells at
top and bottom are vortices clockwise direction inside the cavity of the figure 3.1(a). The
main reason for an appearance of these circulations is an effect of inclined wall with
sinusoidal temperature distribution. The vortices are separated by virtual horizontal and
inclined wall which are both impervious and adiabatic. Convective cells are close to the
vertical wall due to the large temperature difference in this zone. It should be noted that an
intensity of cells in the middle part of the cavity is greater than an intensity of convective

cells in the top and bottom part of the cavity.



Result and discussion

Le=10

Le

Le

Le=1

(a) (b) (c)
Figure 3.1: Effect of Lewis number on (a) streamlines, (b) isothermal lines and (c) iso-
concentration at Pr="7, Ra =10% Nt =Nr=Nb = 0.1

It is seen from the figure 3.1(b) those convective cells cores are close to the vertical walls due

to large temperature differences in these zones. An increase in the Lewis number does not

change in all local fields of temperature inside the cavity. It physically means that flow with
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Result and discussion

large Lewis number prevent spreading nanoparticles in the nanofluid. Therefore, we have
large homogeneous areas in the domain nonconsecutive cells. Only non-homogeneous area

become more confined at Le = 7.

At Le < 10 the distribution of nano particle is non -homogeneous. It physically means that
leads to spreading nanoparticle in the nanofluid. Therefore, we have the large non-
homogeneous are in the domain of convective cells. Figure 3.1(c) shows the main variations
with the Lewis number related to the iso-concentrations. These fields characterize the
distributions of the nanoparticles volume fraction inside the trapezoidal cavity. Regardless of
the Lewis number value, the intensity of non-convective cells close to the inclined wall is
greater than the intensity of the central part of the cavity. The distribution is considered as

non-homogeneous.

An effect of the dimensionless Lewis number on the average Nusselt number at left and right
inclined walls is presented in the figure: 3.2. From figure it is noticed that an increase in Le
from 1 to 10 leads to a significant increase in average Nusselt number at left and right vertical
wall. The increasing rate of average Nusselt number at right and left wall are 0.7108% and
0.7081%. The increasing rate in average Nusselt number due to Lewis number at right wall is

greater than the right wall. The increasing rate is 0.3813% higher for right wall than the left

wall.
6.12
6.1
—
6.08
N
Z.
6.06
6.04 —o—Nu (lef)
602 Nu (Right)
6 | 1 1 |
1 4 7 10
Le

Figure 3.2: Average Nusselt number at left and right walls against Lewis number at
Pr="7, Ra=10* Nt=Nr=Nb=0.1
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3.3 Effect of Thermophoresis

Figures 3.3 (a-c) illustrate the effect of thermophoresis parameter (N¢) from 0.1 to 1.5 on the
velocity, temperature and nanoparticle concentration contours with fixed Le = 10, Pr = 7,
Ra = 10*, Nr = Nb = 0.1. Regardless of the thermophoresis parameter four non-convective
cells are formed in the streamlines along the clockwise direction inside the cavity of the. An
increase in Nt leads to changes in all characteristics (streamlines, isotherms, and iso-
concentrations) that can be described in the following way. Regardless of the thermophoresis

there is a small significant change in streamlines.

From the figure one can find the intensification and increase in size at the bottom part and
attenuation and decrease in size at upper part of the cavity. It can be seen that the shape of the
primary cells at middle side has been changed a little bit due to increase in Nt. It is important
to notice that there is a significant change in oval shape at the top side. The oval shape core at
the top has been smaller than the before shape. At the same time, it is observed from the
figure 3.3 (b) that an increase in thermophoresis parameter leads to more intensive heating of
the bottom part than the upper part of the enclosure. Such changes characterize decrease in
temperature differences in the bottom part and increase in temperature difference at upper

part.

It should be noted from the figure 3.3 (c) that the main variations with the thermophoresis
parameter are related to the iso-concentrations. An increase in Nt leads to essential changes of
the nanoparticles volume fraction both in the upper and bottom parts of the cavity. In general,

these distributions can be considered as non-homogeneous.

An effect of the dimensionless time and thermophoresis parameter on the average Nusselt
number at left and right vertical wall is depicted in Fig. 3.4 It is necessary to note that an
increase in Nt leads to an increase in the average Nusselt number. From the figure it is
noticed that the increase in the average Nusselt number at the right wall is 36.37% and at left
wall is 35.49% for Nt = 0.1 to Nt = 1.5. The increase in the average Nusselt number at the
right wall is higher compared with the left wall and the increasing rate at right wall is 2.479%

compared with the left wall.
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Nt=1.5

Nt=1

Nt=10.5

Nt=0.1

(a) (b) (c)

Figure 3.3: Effect of thermophoresis parameter on (a) streamlines, (b) isothermal lines
and (c) iso-concentration lines at Le =10, Pr =7, Ra =10*, Nr=Nb = 0.1
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85 -
8 |
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6.5 - Nu (right)
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Figure 3.4: Average Nusselt number at left and right wall against thermophoresis
parameter at Le =10, Pr="7, Ra =10% Nr=Nb = 0.1

3.4 Effect of Prandtl Number

Figure 3.5(a-c) displays the effect of Prandtl number from 0.7 to 10 on velocity, temperature
and concentration contours with fixed Ra = 10%, Nt = Nr = Nb = 0.1 and Le = 10. From the
streamlines contours it is found that there is a small change in non-convective cell. For
Pr=0.7 it is noticed that the primary elliptic circulation cells and small oval shape core has
been created. At Pr = 4 it can be seen that shape of the primary cell remains same but the
oval shape at top side has been changed a little bit and it is important to notice that oval shape
core at the top has been less than the before shape. On the other hand, when Pr = 7 and
Pr =10, there is little distinction in the streamlines that gradually increment of oval shape

core. There is little change in isotherm.

One important thing is noticed from the figure 3.5(b) that an increase in Prandtl number (Pr)
leads increase in intensity of the non-convective cell inside the cavity. The intensity is higher
at bottom and upper part for the left wall whereas the intensity is higher at middle part for the
right wall.

Figure 3.5(c) that the main variations with the Prandtl number (Pr) are related to the iso-
concentrations. An increase in Pr leads to essential changes of the nanoparticles volume
fraction both in the upper and bottom parts of the cavity and these distributions can be

considered as non-homogeneous.
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Pr=10

Pr=17

Pr=4

Pr=0.7

(a) (b) (c)

Figure 3.5: Effect of Prandtl number on (a) streamlines, (b) isothermal lines and (c) iso-
concentration lines at Ra =10, Nt=Nr=Nb=0.1 and Le =10
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An effect of the Prandtl number (Pr) on the average Nusselt number at left and right inclined
walls is presented in the figure 3.6. An increase in Prandtl number from 0.7 - 4 leads to
highly increase in average Nusselt number but from 4-10 leads to a small amount of increase
in average Nusselt number. The average increase in Nusselt number due to Prandtl number at
left wall is 0.4104% and right wall 0.893%. From this calculation we see that average
increase in Nusselt number due to Prandtl number at right inclined wall is greater than left

inclined wall.

6.14
6.12
6.1
= -9
6.08 //
2
< 6.06
/ == Nu (left)
6.04 Nu (right) |
6.02
6 1 + 1 1
0.7 4 7 10

Pr

Figure 3.6: Average Nusselt Number at the left and right walls against Prandtl number
at Le =10, Ra =10%, Nt = Nr=Nb = 0.1

3.5 Brownian Motion Effect

Figure 3.7 (a-c) illustrate the effect of Brownian motion on streamlines, isothermal lines and
iso-concentration lines in the range (Nb = 0.1-2.0). For this effect the values of another
parameter have been kept as fixed at Pr = 7, Ra = 10*, Nt = Nr = 0.1 and Le = 10. It is
noticed from this figure that an increase of Brownian motion parameter leads to both
significant changes in conservation of velocity, temperature and nanofluid concentration
fields. Regardless of the Brownian motion the non-convective cells are formed in the
streamlines along the anti-clockwise direction inside the cavity of the figure 3.7(a). The main
reason for an appearance of these circulations is an effect of the sinusoidal temperature
distribution at inclined walls of the cavity. The vortices are separated by virtual horizontal
and inclined wall which are both impervious and adiabatic. Non-convective cells are close to

the inclined wall due to the large temperature difference in this zone. An increase of
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Brownian motion parameter there is a small change in intensity and configuration in the cells

and isotherm.

Nb

Nb=1.5

Nb=0.8

Nb=0.1

(@) (b) (©)

Figure 3.7: Effect of Brownian motion on (a) streamlines, (b) isothermal lines and (c¢)
iso-concentration at Pr =7, Ra =10, N¢t=Nr=0.1 and Le = 10.
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According to figure 3.7(b) it is possible to conclude that an increment in Nb leads to
homogeneity of distribution inside the cavity. It also be noticed that the temperature variation

is increased both in the top and bottom part with the increase Brownian motion parameter

A significant variation in iso-concentration with the Brownian motion parameter is found in
the figure 3.7 (c). An increase in Nb leads to essential changes of the nanoparticles volume
fraction both in the upper and bottom parts of the cavity and these distributions can be

considered as non-homogeneous.

An effect of the Brownian motion parameter (Nb) on the average Nusselt number at left and
right inclined walls is presented in the figure 3.8. An increase in Nb from 0.1 to 2 leads to an
increase in average Nusselt number on both left and right wall. The average increase in
Nusselt number due to Nb parameter at right wall is greater than the left wall. The increasing
rate of average Nusselt number is approximately 34.75% and 34.27% for the right and left
walls, respectively for rising values of Brownian motion. After calculation it is found that the

average Nusselt number 1.40% higher for right wall compared with left wall.

8.59 |

8.09
7.59 /
2 7.09
/ —o—Nu (left)
- / Nu (rvight) N

0 0.5 1 1.5 2
Nb

6.09

Figure 3.8: Average Nusselt Number at the left and right walls against the Brownian
motion effect at Pr="7, Ra=10*, Nt=Nr=0.1,Le =10

3.6 Effect of Buoyancy Ratio

Figure 3.9(a-c) illustrate the effect of buoyancy ratio on streamlines, isothermal lines and iso-
concentration lines in the range (Nr = 0.1- 0.7). For this effect the values of another

parameter have been kept as fixed at Pr =7, Ra = 10*, Nt = Nr = 0.1 and Le = 10.
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Nr=0.7

Nr=0.5

Nr=0.3

Nr=0.1

() (b) (©

Figure 3.9: Effect of buoyancy ratio on (a) streamlines, (b) isothermal lines and (c) iso-
concentration lines at Pr =7, Ra = 10*, N¢t = Nb = 0.1 and Le = 10.
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It is noticed from this figure that an increase of buoyancy ratio leads to both significant
changes in conservation of velocity, temperature and nanofluid concentration fields.
Regardless of the buoyancy ratio the non-convective cells are formed in the streamlines along
the anti-clockwise direction inside the cavity of the figure 3.9(a). There is significant change
on both the primary and oval shape. The primary shape at Nr = 0.3 is bent through a little bit
than the previous cells. Finally, the cells turned into circular shape. The oval contour shape at

top and bottom part of the cavity gradually decreases with the increase in buoyancy ratio.

Non-convective cells are close to the inclined wall due to the large temperature difference in
this zone of the figure 3.9(b). An increase of buoyancy ratio parameter there is a small change
in intensity and configuration in the isotherm. The enrichment of the thermal conductivity
produces denser isotherms which is the indication of transfer of temperature. From the figure

3.9(b), it is evident that with the increase of the value of Nr heat transfer rate increases.

With the increase in Nr iso-concentration lines characterize a decrease in nanoparticle volume
fraction in the upper part and increase in the bottom part of the figure 3.9 (¢). Cells are close
to the inclined wall due to the large temperature difference which refers the intensification in

this zone.

An effect of the buoyancy ratio (Nr) on the average Nusselt number at left and right inclined
walls is presented in the figure 3.10. An increase in Nr from 0.1- 0.7 leads to significant
decrease in average Nusselt number. The average decrease in Nusselt number due to Nr at
right wall is greater than the left wall. The decreasing rates of left and right wall are 1.101%
and 1.104%, respectively. Decreasing rate at right wall compared with left wall is 0.272%.
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Figure 3.10: Average Nusselt Number at the left and right walls against buoyancy ratio
at Le =10, Ra =10% Pr="7 and Nt=Nb= 0.1

3.7 Effect of Rayleigh number

Figure 3.11(a-c) illustrate the effect of Rayleigh number on streamlines, isothermal lines and
iso-concentration lines in the range (Ra = 10°- 10°) For this effect the values of another
parameter have been kept as fixed at Pr="7, Nt = Nr = Nb = 0.1 and Le = 10. Regardless of
the Rayleigh number the non-convective cells are formed in the streamlines along the
clockwise direction inside the cavity of the figure 3.11(a). The main reason for an appearance
of these circulations is an effect of the sinusoidal temperature distribution at vertical walls of
the cavity. The vortices are separated by virtual horizontal and inclined wall which are both
impervious and adiabatic. It can be seen from figure that there is a significant change in both
the primary cells and in oval contour shape at the top side. The intensity of primary cells is
decreased with the increase of Rayleigh number. The primary cells become compressed with
the increase of Rayleigh number and finally turned into rectangular shape. On the other hand,
the oval is large and circular in shape at bottom become thin at top side at Ra = 10%. But we
noticed that with the increase of Rayleigh number the oval at bottom gets smaller and top get

larger gradually.

An increase of Rayleigh number there is a small change in intensity and configuration in the

isotherm.
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Ra =10°
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Figure 3.11: The effect of Rayleigh number on (a) streamlines, (b) isothermal lines and
(¢) iso-concentration lines at Pr =7, Nt = Nr=Nb =0.1 and Le = 10.
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We noticed that the curve in the isotherm contour inversely changed between Ra = 10% and
Ra = 10°. At Ra = 10° the isothermal lines become scattered in haphazard and these
distributions can be considered as non-homogeneous. The variation with the Rayleigh
number is related to the iso-concentration lines is noteworthy as shown in the figure 3.11(c).
Curve close to the inclined wall due to the large temperature difference in this zone. At
Ra =107 all carves are close to each other and stay in chaplet. This chaplet shape is destroyed

with increasing Rayleigh number. Finally, the curves are arranged in parallel at Ra = 10°.

An effect of the Rayleigh number (Ra) on the average Nusselt number at left and right
inclined walls is presented in the figure 3.12. From above figure it is noticed that an increase
in Rayleigh number (Ra) from Ra = 10 - 10%, there is hardly increase in average Nusselt
number. But from Ra = 10* to Ra = 10° the average Nusselt number increases are highly
noticed for both left and right wall. Increasing rates of heat transfer are 36.193% and
35.988% for right and left walls, respectively. In addition, about 0.5696% enhanced rate of

heat transfer is obtained for right wall than left wall.

¢ v == Nu (left)
Nu (right)

102 103 104 10°
Ra

Figure 3.12: Average Nusselt Number at the left and right wall against Rayleigh
number at Le = 10, Ra = 10* and Nt = Nr=Nb =0.1.

3.8 Comparison

Three simplified test problems have been chosen for comparison, such as Demirdzic et al.

[39] of the convective heat transfer within a parallelogram, De Vahl Davis [40] of convective
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heat transfer inside a square chamber and Revnic et al. [5] of non-uniform border temperature
variations on time-dependent nanofluid free convection within a trapezium. The present result
of average Nusselt number for the variation of Prandtl and Raleigh numbers have been
compared with that of the above-mentioned studies. Table 3.1 presents values of Nu along the
heating halves of both inclined walls against Pr with fixed Ra = 10° and percentage of error
between present result and that of Revnic et al. [5]. Thus, a good agreement has been
observed among the present result and that of Demirdzic ef al. [39] and Revnic et al. [5]. To

perform this comparison the effects of other parameters have been considered as neglected.

Table 3.1: Comparison of Nu against Pr among present result and that of Demirdzic ef
al. [39] and Revnic et al. [5]

Pr Nu Error (%)

Demirdzic ef al. [39] | Revnic et al. [5] | Present result

0.1 5.9849 5.9829 6.3568 6.25
10 7.5801 7.5847 8.0932 6.70

Similarly, Table 3.2 presents values of Nu along the heating halves of both inclined walls
against Ra with fixed Pr = 0.1 and percentage of error between present result and that of
Revnic et al. [5]. From the Table 3.2 it is seen that a little amount of error is found between
present result and that of Revnic et al. [5]. Thus, for this case also, a good agreement has

been observed among the present result and that of Davis and Jones [40] and Revnic et al.
[5].

Table 3.2: Comparison of Nu against Ra among present result and that of Davis and
Jones [40] and Revnic et al. [5]

Ra Nu Error (%)
Davis and Jones [40] | Revnic et al. [5] | Present result

103 1.116 1.121 1.189 6.06

10* 2.234 2.306 2.401 4.12
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Chapter 4: Conclusions and Recommendations

The convective free flow and heat transfer inside a trapezoidal enclosure having sinusoidal
temperature distributions on both side walls have been numerically investigated using the
nanofluid model proposed by Buongiorno. Mathematical model has been formulated in
dimensionless mass, momentum, energy and concentration conservation forms and then
solved numerically on the basis of a second-order accurate finite element method. The

algorithm has been validated by direct comparisons with previously published articles.

Distributions of streamlines, isotherms, and iso-concentrations at a wide range of key
parameters have been investigated. Based on the findings in this study, we conclude that the
average Nusselt is increasing functions of the buoyancy-ratio parameter, thermophoresis
parameter and decreasing functions of the Lewis number, Brownian motion parameter.
Comparisons of the result from this numerical study have also been performed with other
numerical/experimental results and the comparisons have been found to be in good

agreement. The main findings of the present study have been enlisted as follows.
4.1 Conclusion

» The rate of heat transfer is obtained about 0.7081% and 0.7108% at the left and right
walls, respectively for increasing values of Lewis number from 1 to 10. The

increasing rate 0.3813% higher for the right wall than the left wall.

» At the right and left wall, the heat transfer rate is increased significantly at 36.37%
and 35.49%, respectively with the increase of thermophoresis parameter from 0.1 to
1.5. The increase in the average Nusselt number at the right wall is 2.479% higher
than the left wall.

» The increasing rate of heat transfer is obtained as 0.4104% and 0.893% at the left and

right wall for increasing values of Prandtl number from 0.7 to 10.

» Variation of Brownian motion parameter from Nb = 0.1 to 2 leads to a significant
increase in the heat transfer at the rate of 34.75% and 34.27% for the right and left
walls, respectively. The average Nusselt number getting more higher about 1.40% for

right wall compared with left wall.



Conclusion and Recommendations

» An increase in Nr from 0.1 to 0.7 leads to decrease in average Nusselt number. The

decreasing rates of left and right wall are about 1.101% and 1.104%, respectively.
After calculation the decreasing rate at right wall compared with left wall is found as

0.272%.

Variation of Rayleigh number from Ra = 10? to 10° leads to a significant increase in
the heat transfer rate by 36.193% and 35.988% for the right and left walls,
respectively. In addition, the heat transfer rate is 0.5696% higher for the right wall
than the left wall.

4.2 Future work

There is a lot of scope for research in this area in future. Since study of nanofluids is under

initial stages so there is a lot of scope in development of nanofluids. The size, shape, material

and volume fraction of dispersed nanoparticles play a very important role in the absorption of

heat. In consideration of the present investigation, the following recommendations for future

study have been provided:

¢

Trapezium shaped cavity has been considered in the present study. So, this
deliberation may be extended by considering other formations of enclosures to

investigate the performance of nanofluids.

Using nanofluids with single phase flow have been considered as heat transfer

medium in this thesis work. It can be investigated for multiphase flow also.

In this research, Buongiorno’s nanofluid model has been used. Anyone can use other

nanofluid model to obtain better heat transfer rate.
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