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Abstract 

In this thesis, a numerical analysis has been carried out on free convection in a trapezoidal 

enclosure with sinusoidal temperature distributions on both side walls using Buongiorno’s 

model. The model takes into account the Brownian motion and thermophoresis effect on the 

flow, temperature, and concentration fields. Non-uniform temperature and nanoparticle volume 

fraction distributions have been imposed on both inclined surfaces. Top and bottom parallel 

surfaces have been kept as adiabatic. All the walls will be considered no slip and impermeable. 

The governing equations along with above boundary conditions have been initially transformed 

into non-dimensional form using appropriate similarity transformation and then solved 

numerically, employing the finite element method of Galerkin’s weighted residual approach. The 

code validation will be carried out. Nanofluids on the flow structure and heat transfer 

characteristics will be investigated in details. Results will be presented in terms of streamlines, 

isothermal lines and iso-concentration lines for different values of governing parameters such as 

Lewis number (Le), Brownian motion (Nb), Buoyancy ratio (Nr), Prandtl number (Pr), 

thermophoresis (Nt) and Rayleigh number (Ra). The effect of Brownian motion and 

thermophoresis on the fluid flow, temperature, and concentration will be identified and finally 

the flow, heat and concentration controlling parameters for a specific heat and mass transfer 

application in a trapezium shaped cavity will be obtained. Result demonstrates that, the increase 

of Brownian motion leads to increase in average Nusselt number by 34.75% and 34.27% for the 

right and left walls, respectively. 
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Chapter 1: Introduction 

1.1. Introduction 
One of the proficient passive approaches is using nanofluid in heat transport improvement for 

enhancing the efficiency of thermal systems like heat exchangers, thermal storage, solar 

collectors, photovoltaic/thermal system, biomedical devices, nuclear reactors, cooling of 

electronic components etc. Researches on the nanofluids have been increased very rapidly over 

the past decade. 

It is observed that few researches have been done using Buongiorno’s model. In spite of this 

research, more investigations are still needed especially for Brownian motion and 

thermophoresis effect on flow, temperature and concentration fields due to their huge 

applications. The Buongiorno's model is able to consider the effect of nanoparticle volume 

fraction distribution. This model can also explore the heat transfer phenomena caused by 

Brownian motion and thermophoresis by using similarity transformations. 

In spite of some inconsistency in the reported results and insufficient understanding of the 

mechanism of the heat transfer in nanofluids, it has been emerged as a promising heat transfer 

fluid. In the continuation of nanofluids research, the researchers have also tried to use nanofluid 

recently, which is engineered by suspending dissimilar nanoparticles either in mixture or 

composite form. The idea of using nanofluids is to further improvement of heat transfer and 

pressure drop characteristics by trade-off between advantages and disadvantages of individual 

suspension, attributed to good aspect ratio, better thermal network and synergistic effect of 

nanomaterials. 

1.1.1 Buongiorno’s model 

The Buongiorno model assumes that the nanofluid is a mixture of a base fluid and nanoparticles, 

with the relative motion caused by Brownian motion and thermophoretic diffusion. The 

Buongiorno's model is able to consider the effect of nanoparticle volume fraction distribution. 

Buongiorno model is used to explore the heat transfer phenomena caused by Brownian motion 

and thermophoresis. In the recent year convection of nanofluid using Buongiorno’s model has 
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received considerable attention because of its relation to the thermal performance of many 

engineering installations. Buongiorno’s model might be useful for designing the solar collectors, 

room ventilation system, and electronic cooling system. In this paper the flow, heat and 

concentration controlling parameters for a specific heat and mass transfer application in a 

trapezium shaped cavity will be obtained by applying this model. 

1.1.2 Nanofluid 

A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles (1-100 nm). 

These fluids are engineered colloidal suspensions of nanoparticles in a base fluid. Many types of 

nanoparticles such as metals (Cu, Ag, Au), oxide ceramics (Al2O3, CuO), carbon nanotubes and 

carbide ceramics (SiC, TiC) and various liquids such as water, oil, and ethylene glycol are used. 

The fundamental characteristics of the nanofluid are the raise of the thermal conductivity of the 

fount fluid, minimal impeding in flow passing, extensive stability and equity. Nanofluids have 

novel properties that make them potentially useful in many applications in heat transfer including 

microelectronics, fuel cells, pharmaceutical processes, and hybrid-powered engines, engine 

cooling/vehicle thermal management, domestic refrigerator, chiller, heat exchanger, in grinding, 

machining and in boiler flue gas temperature reduction. They exhibit enhanced thermal 

conductivity and the convective heat transfer coefficient compared Nanofluids also have special 

acoustical properties and in ultrasonic fields display additional shear-wave reconversion of an 

incident compressional wave; the effect becomes more pronounced as concentration increases. 

There have been numerous investigations that have revealed the enhancement of thermal 

conductivity and higher heat transfer rate of nanofluids. Significant enhancement in the heat 

transfer rate with the use of various nanofluids in various application compared to conventional 

fluids have been reported by several researchers. Understanding the properties of nanofluids, 

such as thermal conductivity, viscosity and specific heat, is very important for the utilization of 

nanofluids in various applications. Further study of the fundamentals for heat transfer and 

friction factors in the case of nanofluids is considered to be very important in order to extend the 

applications of nanofluids. Figure 1.1 displays the formation of nanofluid. 

https://en.wikipedia.org/wiki/Nanometer
https://en.wikipedia.org/wiki/Nanoparticle
https://en.wikipedia.org/wiki/Colloid
https://en.wikipedia.org/wiki/Heat_transfer
https://en.wikipedia.org/wiki/Fuel_cell
https://en.wikipedia.org/wiki/Hybrid_electric_vehicle
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Heat_transfer_coefficient
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Figure 1.1: Formation of nanofluid 

1.1.3 Sinusoidal temperature 

Graphs of sine and cosine functions are called sinusoids. The temperature in a wavy form is 

called sinusoidal temperature and the way of distribution is known as sinusoidal temperature 

distribution. In many numerical analyses of the convection of nanofluid the temperature is taken 

sinusoidal. Figure 1.2 shows the undulated temperature at inclined walls. 

  

 

Figure 1.2: Undulated temperature at inclined walls 
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1.1.4 Free convection 

Natural convection, known also as free convection is a mechanism, or type of mass and heat 

transport, in which the fluid motion is generated only by density differences in the fluid 

occurring due to temperature gradients, not by any external source (like a pump, fan, suction 

device, etc.). Free-convective flows may be laminar and turbulent. A flow past a solid surface, 

the temperature of which is higher (lower) than that of the surrounding flowing medium, is the 

most widespread type of free convection. Figure 1.3 displays convection. 

 
Figure 1.3: Convection  

1.1.5 Buoyancy ratio 

Buoyancy ratio can be expressed as the ratio of the specific weight of the fluid to the specific 

weight of the object; or, in another manner, by the weight of the fluid displaced minus the weight 

of the object.  

The density of the immersed object relative to the density of the fluid can easily be calculated 

without measuring any volumes. 

              
density

density of the fluid 
=

weight 

 weight of the fluid
 

https://www.nuclear-power.net/nuclear-engineering/heat-transfer/
https://www.nuclear-power.net/nuclear-engineering/heat-transfer/
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Buoyancy ratio shows the effect on   heat and mass transfer on natural convection in a porous 

enclosure between two isothermal concentric cylinders of rhombic cross sections. For negative 

values of the buoyancy ratio, buoyancy forces due to heat and mass transfer are in opposite 

directions (opposing mode), while for positive values they are in the same direction (aiding 

mode). In this case, the flow strength increases as the absolute value of the buoyancy ratio 

increases. Figure 1.4 indicates Buoyancy ratio. 

 

Figure 1.4:  Buoyancy ratio 

1.1.6 Lewis number 

The Lewis number is a dimensionless number defined as the ratio of thermal diffusivity to mass 

diffusivity. It is used to characterize fluid flows where there is simultaneous heat and mass 

transfer.  It is defined as, Le = 𝛼

𝐷
=  

𝜆

𝜌𝐷𝐶𝑝
 

where 𝛼  is the thermal diffusivity and  𝐷 mass diffusivity,  𝜆  thermal conductivity, 

𝜌 the density, 𝐷 mixture-averaged diffusion coefficient and  the specific heat capacity at constant 

pressure. 

 

https://en.wikipedia.org/wiki/Dimensionless_number
https://en.wikipedia.org/wiki/Thermal_diffusivity
https://en.wikipedia.org/wiki/Mass_diffusivity
https://en.wikipedia.org/wiki/Mass_diffusivity
https://en.wikipedia.org/wiki/Thermal_diffusivity
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Density


Introduction 

6 

1.1.7 Prandtl number 

Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German 

physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity. 

That is, the Prandtl number is given as:  

Pr = v/ α = momentum diffusivity/ thermal diffusivity = 
µ/𝜌

𝑘/(𝐶𝑝𝜌)
 

Where, 

v    : momentum diffusivity (kinematic viscosity), 𝑣 =  µ/𝜌, (m2/s) 

𝛼    : thermal diffusivity, 𝛼 =
𝑘

(𝜌𝐶𝑝)
, (m2/s) 

µ     :  dynamic viscosity, (N s/m2) 

𝑘     : thermal conductivity, (W/m·K) 

𝐶𝑝   : specific heat, (J/kg·K)  

 𝜌    : Density, (kg/m3). 

Note that the Prandtl number contains no such length scale in its definition and is dependent only 

on the fluid and the fluid state. The Prandtl number is often found in property tables alongside 

other properties such as viscosity and thermal conductivity.  

For most gases over a wide range of temperature and pressure, Pr is approximately constant. 

Therefore, it can be used to determine the thermal conductivity of gases at high temperatures, 

where it is difficult to measure experimentally due to the formation of convection currents. 

1.1.8 Nusselt number 

The Nusselt number is the ratio of convective to conductive heat transfer across a boundary. The 

convection and conduction heat flows are parallel to each other and to the surface, normal of the 

boundary surface and are all perpendicular to the mean fluid flow in the simple case. 

𝑁𝑢 =
 Convective heat transfer

Conductive heat transfer
 =

ℎ
𝑘

𝐿

=
ℎ𝐿

𝑘
 

Where h is the convective heat transfer coefficient of the flow, L is the characteristics length, k is 

the thermal conductivity. A Nusselt number close to one, namely convection and conduction of 

https://en.wikipedia.org/wiki/Dimensionless_number
https://en.wikipedia.org/wiki/Ludwig_Prandtl
https://en.wikipedia.org/wiki/Viscosity#Kinematic_viscosity
https://en.wikipedia.org/wiki/Thermal_diffusivity
https://en.wikipedia.org/wiki/Viscosity#Kinematic_viscosity
https://en.wikipedia.org/wiki/Thermal_diffusivity
https://en.wikipedia.org/wiki/Dynamic_viscosity
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Specific_heat
https://en.wikipedia.org/wiki/Density
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Parallel_(geometry)
https://en.wikipedia.org/wiki/Perpendicular
https://en.wikipedia.org/wiki/Mean
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similar magnitude, is characteristic of "slug flow" or “laminar flow”. A value from 1 to 10 is 

characteristic of slug flow or laminar flow. A larger Nusselt number corresponds to more active 

convection, with [turbulent flow] typically in the 100 – 1000 range. The Nusselt number is 

named after Wilhelm Nusselt, who made significant contributions to the science of convective 

heat transfer. 

1.1.9 Rayleigh number 

The Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-

driven flow, also known as free or natural convection. It characterizes the fluid's flow regime: a 

value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow. 

Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather 

than convection. 

The Rayleigh number is defined as the product of the Grashof number, which describes the 

relationship between buoyancy and viscosity within a fluid, and the Prandtl number, which 

describes the relationship between momentum diffusivity and thermal diffusivity. Hence it may 

also be viewed as the ratio of buoyancy and viscosity forces multiplied by the ratio of 

momentum and thermal diffusivities. It is closely related to the Nusselt number. For most 

engineering purposes, the Rayleigh number is large, somewhere around 106 to 108. It is named 

after Lord Rayleigh, who described the property's relationship with fluid behavior. The Rayleigh 

number describes the behavior of fluids (such as water or air) when the mass density of the fluid 

is non-uniform. The mass density differences are usually caused by temperature differences. 

Typically, a fluid expands and becomes less dense as it is heated. Gravity causes denser parts of 

the fluid to sink, which is called convection. Lord Rayleigh studied the case of Rayleigh-Benard 

convection. When the Rayleigh number, Ra, is below a critical value for a fluid, there is no flow 

and heat transfer is purely by conduction; when it exceeds that value, heat is transferred by 

natural convection. When the mass density difference is caused by temperature difference, Ra is, 

by definition, the ratio of the time scale for diffusive thermal transport to the time scale for 

convective thermal transport at speed. 

Ra = time scale for thermal transport via diffusion 

time scale for tharmal transport via convection at speed u
 

https://en.wikipedia.org/wiki/Slug_flow
https://en.wikipedia.org/wiki/Laminar_flow
https://en.wikipedia.org/wiki/Wilhelm_Nusselt
https://en.wikipedia.org/wiki/Dimensionless_number
https://en.wikipedia.org/wiki/Free_convection
https://en.wikipedia.org/wiki/Laminar_flow
https://en.wikipedia.org/wiki/Turbulence
https://en.wikipedia.org/wiki/Thermal_conduction
https://en.wikipedia.org/wiki/Grashof_number
https://en.wikipedia.org/wiki/Buoyancy
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Prandtl_number
https://en.wikipedia.org/wiki/Nusselt_number
https://en.wikipedia.org/wiki/John_Strutt,_3rd_Baron_Rayleigh
https://en.wikipedia.org/wiki/Convection
https://en.wikipedia.org/wiki/Rayleigh%E2%80%93B%C3%A9nard_convection
https://en.wikipedia.org/wiki/Rayleigh%E2%80%93B%C3%A9nard_convection
https://en.wikipedia.org/wiki/Thermal_conduction
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1.1.10 Thermophoresis 

Thermophoresis (also thermomigration, thermodiffusion, the Sorret effect, or the Ludwig–Soret 

effect) is a phenomenon of mass transport driven by a temperature gradient. Thermophoresis in 

gas mixtures was first observed and reported by John Tyndall in 1870 and further understood 

by John Strutt (Baron Rayleigh) in 1882. Thermophoresis in liquid mixtures was first observed 

and reported by Carl Ludwig in 1856 and further understood by Charles Soret in 1879. Soret 

developed phenomenological equations describing the thermodiffusion. Thermodiffusion in 

solids can be described by considering the heat of transport for the jump from a neighboring 

lattice position into a vacancy caused by crystal defects. The thermophoretic force has a number 

of practical applications. This phenomenon can be applied in aerosol mixtures. The basis for 

applications is that, because different particle types move differently under the force of the 

temperature gradient, the particle types can be separated by that force after they've been mixed 

together, or prevented from mixing if they're already separated. 

Impurity ions may move from the cold side of a semiconductor wafer towards the hot side, since 

the higher temperature makes the transition structure required for atomic jumps more achievable. 

The diffusive flux may occur in either direction (either up or down the temperature gradient), 

dependent on the materials involved. Thermophoretic force has been used in 

commercial precipitators for applications similar to electrostatic precipitators. It is exploited in 

the manufacturing of optical fiber in vacuum deposition processes. It can be important as a 

transport mechanism in fouling. Thermophoresis has also been shown to have potential in 

facilitating drug discovery by allowing the detection of a patter binding by comparison of the 

bound versus unbound motion of the target molecule. This approach has been termed microscale 

thermophoresis. Furthermore, thermophoresis has been demonstrated as a versatile technique for 

manipulating single biological macromolecules, such as genomic-length deoxyribonucleic acid 

(DNA) and human immunodeficiency virus (HIV) virus in micro- and nano-channels by means 

of light-induced local heating. Thermophoresis is one of the methods used to separate different 

polymer particles in field flow fractionation. Figure 1.5 displays the Simulation of 

thermophoresis in nanofluids. 

https://en.wikipedia.org/wiki/John_Tyndall
https://en.wikipedia.org/wiki/John_Strutt,_3rd_Baron_Rayleigh
https://en.wikipedia.org/wiki/Carl_Ludwig
https://en.wikipedia.org/wiki/Charles_Soret
https://en.wikipedia.org/wiki/Wafer_(electronics)
https://en.wikipedia.org/wiki/Transition_state
https://en.wikipedia.org/wiki/Electrostatic_precipitator
https://en.wikipedia.org/wiki/Electrostatic_precipitators
https://en.wikipedia.org/wiki/Optical_fiber
https://en.wikipedia.org/wiki/Vacuum_deposition
https://en.wikipedia.org/wiki/Fouling
https://en.wikipedia.org/wiki/Drug_discovery
https://en.wikipedia.org/wiki/Aptamer
https://en.wikipedia.org/wiki/Microscale_Thermophoresis
https://en.wikipedia.org/wiki/Microscale_Thermophoresis
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/HIV
https://en.wikipedia.org/wiki/Field_flow_fractionation
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Figure 1.5: Simulation of thermophoresis in nanofluid 

1.1.11 Brownian motion 

Brownian motion refers to the random movement displayed by small particles that are suspended 

in fluids. It is commonly referred to as Brownian movement. Brownian motion is named after 

the Scottish Botanist Robert Brown, who first observed that pollen grains move in random 

directions when placed in water in 1827. 

This motion is a result of the collisions of the particles with other fast-moving particles in the 

fluid. This pattern of motion typically alternates random fluctuations in a particle's position 

inside a fluid sub-domain with relocation to another sub-domain. Each re-location is followed by 

more fluctuations within the new closed volume. This pattern describes a fluid at thermal 

equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential 

direction of flow as in transport phenomena. More specifically, the fluid's overall linear and 

angular momenta remain null over time.   

In 1905, almost eighty years later, theoretical physicist Albert Einstein published a paper where 

he modeled the motion of the pollen as being moved by individual water molecules, making one 

of his first major scientific contributions. This explanation of Brownian motion served as 

convincing evidence that atoms and molecules exist and was further verified experimentally 

by Jean Perrin in 1908. Figure 1.6 displays Brownian motion of the Particles. 

 

https://en.wikipedia.org/wiki/Thermal_equilibrium
https://en.wikipedia.org/wiki/Thermal_equilibrium
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Transport_phenomena
https://en.wikipedia.org/wiki/Linear_momentum
https://en.wikipedia.org/wiki/Angular_momentum
https://en.wikipedia.org/wiki/List_of_theoretical_physicists
https://en.wikipedia.org/wiki/Albert_Einstein
https://en.wikipedia.org/wiki/%C3%9Cber_die_von_der_molekularkinetischen_Theorie_der_W%C3%A4rme_geforderte_Bewegung_von_in_ruhenden_Fl%C3%BCssigkeiten_suspendierten_Teilchen
https://en.wikipedia.org/wiki/Jean_Baptiste_Perrin
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                               Figure 1.6: Brownian motion of the particles 

Causes of Brownian motion 

 The size of the particles is inversely proportional to the speed of the motion, i.e. Small 

particles exhibit faster movements. 

 This is because the transfer of momentum is inversely proportional to the mass of the 

particles. Lighter particles obtain greater speeds from collisions. 

 The speed of the Brownian motion is inversely proportional to the viscosity of the fluid. 

The lower the viscosity of the fluid, the faster the Brownian movement. 

 Viscosity is a quantity that expresses the magnitude of the internal friction in a liquid. It 

is the measure of the fluid’s resistance to flow. 

Effects of Brownian motion 

 Brownian movement causes the particles in a fluid to be in constant motion. 

 This prevents particles from settling down, leading to the stability of colloidal solutions. 

 A true solution can be distinguished from a colloid with the help of this motion. 

 

 

https://byjus.com/chemistry/viscosity-and-surface-tension/
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1.1.12 Viscosity 

The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it 

corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity 

than water. Viscosity can be conceptualized as quantifying the internal frictional force that arises 

between adjacent layers of fluid that are in relative motion. For instance, when a fluid is forced 

through a tube, it flows more quickly near the tube's axis than near its walls. In such a case, 

experiments show that some stress (such as a pressure difference between the two ends of the 

tube) is needed to sustain the flow through the tube. This is because a force is required to 

overcome the friction between the layers of the fluid which are in relative motion: the strength of 

this force is proportional to the viscosity. A fluid that has no resistance to shear stress is known 

as an ideal or inviscid fluid. Zero viscosity is observed only at very low temperatures in super 

fluids. Otherwise, the second law of thermodynamics requires all fluids to have positive 

viscosity;[2][3] such fluids are technically said to be viscous or viscid. A fluid with a high 

viscosity, such as pitch, may appear to be a solid. Figure 1.7 shows viscosity of honey. 

 

 

Figure 1.7: Viscosity of honey 

 

https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Drag_(physics)
https://en.wikipedia.org/wiki/Syrup
https://en.wikipedia.org/wiki/Water
https://en.wikipedia.org/wiki/Friction
https://en.wikipedia.org/wiki/Stress_(physics)
https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Cryogenics
https://en.wikipedia.org/wiki/Superfluidity
https://en.wikipedia.org/wiki/Superfluidity
https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
https://en.wikipedia.org/wiki/Viscosity#cite_note-FOOTNOTEBalescu1975428%E2%80%93429-2
https://en.wikipedia.org/wiki/Viscosity#cite_note-FOOTNOTEBalescu1975428%E2%80%93429-2
https://en.wikipedia.org/wiki/Pitch_(resin)
https://en.wikipedia.org/wiki/Solid
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1.1.13 Thermal conductivity 

Thermal conductivity refers to the amount/speed of heat transmitted through a material.  Heat 

transfer occurs at a higher rate across materials of high thermal conductivity than those of low 

thermal conductivity. Materials of high thermal conductivity are widely used in heat sink 

applications and materials of low thermal conductivity are used in thermal insulation. Thermal 

conductivity of materials is temperature dependent.  The reciprocal of thermal conductivity is 

called thermal resistivity. Metals with high thermal conductivity, e.g. copper exhibits high 

electrical conductivity. The heat generated in high thermal conductivity materials is rapidly 

conducted away from the region of the weld. For metallic materials, the electrical and thermal 

conductivity correlate positively, i.e. materials with high electrical conductivity (low electrical 

resistance) exhibit high thermal conductivity. The proportionality constant k is called thermal 

conductivity of the material. 

1.1.14 Density 

The density (more precisely, the volumetric mass density; also known as specific mass), of a 

substance is its mass per unit volume. The symbol most often used for density is ρ (the lower-

case Greek letter rho), although the Latin letter D can also be used. Mathematically, density is 

defined as mass divided by volume: 

    𝜌 =
𝑚

𝑣
 

Where m is the mass, and v is the volume. In some cases (for instance, in the United States oil 

and gas industry), density is loosely defined as its weight per unit volume, although this is 

scientifically inaccurate – this quantity is more specifically called specific weight. For a pure 

substance the density has the same numerical value as its mass concentration. Different materials 

usually have different densities, and density may be relevant to buoyancy, purity and  packaging.  

Osmium and iridium are the densest known elements at standard conditions for temperature and 

pressure. To simplify comparisons of density across different systems of units, it is sometimes 

replaced by the dimensionless quantity "relative density" or "specific gravity", i.e. the ratio of the 

density of the material to that of a standard material, usually water. Thus, a relative density (less 

than one) means that the substance floats in water. The density of a material varies with 

temperature and pressure. This variation is typically small for solids and liquids but much greater 

https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Rho_(letter)
https://en.wikipedia.org/wiki/Weight
https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Specific_weight
https://en.wikipedia.org/wiki/Mass_concentration_(chemistry)
https://en.wikipedia.org/wiki/Buoyancy
https://en.wikipedia.org/wiki/Packaging
https://en.wikipedia.org/wiki/Osmium
https://en.wikipedia.org/wiki/Iridium
https://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressure
https://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressure
https://en.wikipedia.org/wiki/Dimensionless
https://en.wikipedia.org/wiki/Relative_density
https://en.wikipedia.org/wiki/Specific_gravity
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for gases. Increasing the pressure on an object decreases the volume of the object and thus 

increases its density. Increasing the temperature of a substance (with a few exceptions) decreases 

its density by increasing its volume. In most materials, heating the bottom of a fluid results 

in convection of the heat from the bottom to the top, due to the decrease in the density of the 

heated fluid. This causes it to rise relative to more dense unheated material. 

1.2 Literature Review 

One of the proficient passive approaches is using nanofluid in heat transport improvement for 

enhancing the efficiency of thermal systems like heat exchangers, thermal storage, solar 

collectors, photovoltaic/thermal system, biomedical devices, nuclear reactors, cooling of 

electronic components etc. The Buongiorno model is used to investigate the effects of Brownian 

motion and thermophoresis on the flow, heat, and mass transfer from a flat plate with prescribed 

surface heat flux. 

Elshehabey and Ahmed [1] investigated MHD mixed convection in a lid driven cavity filled by 

nanofluid with sinusoidal temperature using Buongiorno’s model. The effects of Brownian 

motion and thermophoresis are also incorporated into the nanofluids. The obtain result 

demonstrate that, the presence of an inclined magnetic field in the flow region leads to lose the 

fluid movement and also the fluid is dominated by the movement of the upper wall in the case of 

highest value of the buoyancy ratio. Sheikholeslami et al. [2] analyzed natural convection 

considering Brownian motion and thermophoresis effect. Their result indicated that Nusselt 

number is an increasing function of buoyancy ratio number but it is a decreasing function of 

Lewis number and Hartmnn number. Suriyakumar and Devi [3] performed magneto-nanofluid 

flow including the effects of thermophoresis and Brownian motion numerically. Falana et al. [4] 

numerically studied the effect of Brownian motion and thermophoresis on a stretching sheet. 

Revnic et al. [5] showed the impact of border temperature variations on nanofluid free 

convection within a trapezium using Buongiorno’s nanofluid model. They observed that Nusselt 

number is growing function of wave number and Rayleigh number. 

Esfandiary et al. [6] conducted natural convective heat transfer considering Brownian motion 

and thermophoresis effect. The authors [7-8] found more accurate results using the Buongiorno’s 

model compared to other nanofluid models. Behbahan and Pop [9] studied the thermophoresis 

https://en.wikipedia.org/wiki/Convection
https://www.emerald.com/insight/search?q=Amin%20Samimi%20Behbahan
https://www.emerald.com/insight/search?q=I.%20Pop
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and Brownian effects on natural convection of nanofluids in a square enclosure with two pairs of 

heat source/sink. Their study showed an improvement in heat transfer rate for the whole range of 

Rayleigh numbers when Brownian and thermophoresis effects are considered. 

Sheremet et al. [10] studied free convection in a shallow and slender porous cavity filled by a 

nanofluids. Elshehabey and Ahmed [11] numerically investigated MHD mixed convection in a 

lid driven cavity filled a nanofluid with sinusoidal temperature distribution on the vertical walls 

using Buongiorno’s nanofluid model. Haddad et al. [12] studied the natural convection in 

nanofluids due to the effect of thermophoresis and Brownian motion in heat transfer 

enhancement. Matin and Ghanbari [13] studied the effect of Brownian motion and 

thermophoresis on the mixed convection of nanofluid in a porous channel including flow 

reversal. Aminfar and Haghgoo [14] investigated the effects of Brownian motion and 

thermophoresis effects on natural convection heat transfer of alumina-water nanofluid. They 

concluded that the use of single-phase homogeneous method does not seem reasonable for 

modeling this class of natural convection. Alsabery et al. [15] discussed the effect of spatial side-

wall temperature variations on transient natural convection of a nonofluid in a traphezoidal 

cavity. The main object of this paper was to examine the effects of nonuniform border 

temperature variations on time dependent free nanofluid convection within a trapezium: 

Buongiorno’s nanofluid model. Sheremet and pop [16] studied natural convection in square 

porous cavitie with sinusoidal temperature distributions on both side walls filled with a nanofluid 

using Buongiorno’s model. They applied the symmetric sinusoidal temperature with respect to 

the midplane of the enclosure.  

Sivasankaran and Bhuvaneswari [17] studied natural convection in porous cavity with sinusoidal 

heating on both sidewalls. Ho et al. [18] investigated the natural convection of Al2O3-water 

nanofluid in square enclosure experimentally. They explained that the unusual increase or 

decrease of heat transfer cannot be explained on relative changes Malvandi et al. [19] analyzed 

thermophoresis and Brownian motion effect on heat transfer enhancement at film boiling of 

nanofluids. Garoosi et al. [20-22] investigated Numerical simulation of natural convection of the 

nanofluid using a Buongiorno model. Malvandi and Ganji [23] studied Brownian motion and 

thermophoresis effects on slip flow of Alumina water nanofluid inside a circular microchannel in 

the presence of a magnetic.  Kata et al. [24] discussed the effect of thermophoresis and Brownian 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Kata%2C+Sreelakshmi
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motion on the melting heat transfer of a Jeffrey fluid near a stagnation point towards a stretching 

surface using Buongiorno's model. Qasim et al. [25] studied heat and mass transfer in nanofluid 

thin film over an unsteady stretching sheet using Buongiorno’s model. Pop et al. [26-27] studied 

free convection of a nanofluid in non-equilibrium porous cavity considering Buongiorno’s 

model.  

Noghrehabadi et al. [28] studied natural convection of nanofluid over vertical plate embedded in 

porous medium. Onsor Sayyar and Saghafian analyzed [29] numerical simulation of convective 

heat transfer of nonhomogeneous nanofluid using Buongiorno model. Saleh et al. [30] studied 

the natural convection of water-based copper and alumina nanofluids flow in a trapezoidal 

cavity. Their results showed that the effective heat transfer enhancement occurs for a trapezoidal 

cavity having an acute geometry inclined angle with a high concentration of copper 

nanoparticles. Soleimani et al. [31] studied natural convection heat transfer within a copper-

water nanofluid filled a semi-annulus cavity. Their results showed that there is an optimum angle 

of turn for which the rate of heat transfer is the maximum for several thermal Rayleigh numbers. 

Sheremet et al. [32] discussed steady-state free convection in right-angle porous trapezoidal 

cavity filled by a nanofluid: Buongiorno’s mathematical model. Garoosi et al. [33] investigate 

the numerical simulation of natural convection of the nanofluid in heat exchangers using a 

Buongiorno model. Al-Weheibi et al. [34] investigated numerical simulation of natural 

convection heat transfer in a trapezoidal enclosure filled with nanoparticles. Esfe 

et al. [35] studied natural convection in a trapezoidal enclosure filled with carbon nanotube and 

water-ethylene glycol nanofluid.   

Alvario et al. [36] analyzed a numerical investigation of laminar flow of a water/ alumina 

nanofluid. Ramachandra and Suryanarayana [37] analyzed heat and mass transfer of 

Buongiorno's model nanofluid over linear and non-linear stretching surface with thermal 

radiation and chemical reaction. Khan et al. [38] studied numerical study of nanofluid flow and 

heat transfer over a rotating disk using Buongiorno’s model. Demirdzic et al. [39] studied about 

the fluid flow and heat transfer test problems solutions for non- orthogonal grids: Bench mark. 

De Davis et al. [40] studied the natural convection in a square cavity: Venkatadri et al. [41] 

simulated the natural convection heat transfer in a 2D trapezoidal enclosure and found that the 

fluid flow within the enclosure is formed with different shapes for different values of Pr. The 

flow rate is increased by enhancing the Rayleigh number. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531792/#bib11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531792/#bib12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531792/#bib20
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From the above literature review, it is observed that few researches have been done using 

Buongiorno’s model [42] including the effect of Brownian motion and thermophoresis. In spite 

of these researches more investigations are still needed especially for Brownian motion and 

thermophoresis effect on flow, temperature and concentration fields due to their huge 

applications. The Buongiorno's model is able to consider the effect of nanoparticle volume 

fraction distribution. This model can also explore the heat transfer phenomena caused by 

Brownian motion and thermophoresis by using similarity transformations. Using this model, the 

governing equations can be reduced to a set of ordinary differential equations which are easy to 

solve more accurately. Thus, the numerical study of Brownian motion and thermophoresis on 

free convective water based nanofluid flow in a trapezoidal enclosure using Buongiorno’s model 

will be conducted in this thesis. 

1.3 Objectives 

The aim of this research is to investigate the effects of Brownian motion and thermophoresis on 

free convection in a trapezoidal enclosure. The specific objectives are: 

i) To analyze the natural convection in a trapezoidal cavity having sinusoidal wall 

temperature using Buongiorno's mathematical model.  

ii) To find the effects of Brownian motion and thermophoresis on velocity, temperature, 

concentration distributions as well as heat and mass transfer rates. 

The possible outcomes of this research result are as follows: 

 The effect of Brownian motion and thermophoresis on the fluid flow, temperature, and 

concentration will be identified. 

 The flow, heat and concentration controlling parameters for a specific heat and mass 

transfer application in a trapezium shaped cavity will be obtained. 

 The research output can be applied in flow and heat transfer in solar ponds and air 

conditioning in room. 
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1.4 Scope of the Thesis 

A brief description of the present numerical investigation of heat-mass transfer inside a trapezoidal 

enclosure using nanofluids has been presented in this thesis through four chapters as stated below: 

Chapter 1 contains introduction with the aim and objectives of the present work. This chapter 

also includes a literature review of the past studies on heat transfer using nanofluid which is 

relevant to the present work. Objectives of the present study have also been incorporated in this 

chapter.  

Chapter 2 presents a short introduction of numerical method. Then, the Finite Element Method 

and Galerkin's Technique have been discussed in this chapter detail. Physical model of 

Trapezoidal enclosure is described. Creation of geometry, meshing, implementation of physics, 

boundary conditions, mathematical formulation and numerical computation have been included 

in this chapter. 

In Chapter 3, the effects of Buoyancy ratio, thermophoresis, Prandtl number, Brownian motion, 

Rayleigh number and Lewis number have been presented. Results have been shown in the form 

of isothermal lines, stream lines and iso-concentration lines to better understand the heat transfer 

mechanism through trapezoidal enclosure. In addition, the variation of the average Nusselt 

Number at the left and right inclined walls of the enclosure has been shown for above mentioned 

parameters. 

Finally, in chapter 4, the concluding remarks of the whole research and the recommendations for 

the future investigations have been presented systematically. 

 



 

 

 

Chapter 2: Numerical Study of Buongiorno’s 
Nanofluid Model 
 

2.1 Introduction 

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to 

symbolic manipulations) for the problems of mathematical analysis (as distinguished from 

discrete mathematics). Numerical analysis naturally finds application in all fields of engineering 

and the physical sciences, but in the 21st century also the life sciences, social sciences, medicine, 

business and even the arts have adopted the process of scientific computations. 

Fluid flow, heat and mass transfer problems can be analyzed theoretically or experimentally. 

From an economic point of view, the experimental investigation of these problems did not attract 

much attention due to their insufficient flexibility and applications. However, often experimental 

investigations are necessary to validate the numerical method. Any change in geometry requires 

a separate experimental system setup and the boundary conditions of the systems for their 

investigation. The involvement of time is also a reason to make it appealing. On the other hand, 

theoretical analyzes can be performed through analytical methods or numerical methods. 

Analytical solution methods for solving practical problems are not very popular. Numerical 

methods are extremely powerful problem-solving tools capable of handling large systems of 

equations, complex geometry, etc., which are often impossible to solve analytically. General 

closed form solutions are very ideal cases and the results obtained for specific problems can 

usually be found with identical boundary conditions. Numerical methods are an easy way to find 

solutions to problems of practical interest because it reduces superior mathematics to basic 

arithmetic operations. 

2.2 Finite Element Method 

The finite element method (FEM) is a numerical method for solving problems of engineering and 

mathematical physics. Typical problem areas of interest include structural analysis, heat transfer, 
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fluid flow, mass transport, and electromagnetic potential. The analytical solution of these 

problems generally requires the solution to boundary value problems for partial differential 

equations. The finite element method formulation of the problem results in a system of algebraic 

equations. The method approximates the unknown function over the domain. To solve the 

problem, it subdivides a large system into smaller, simpler parts that are called finite elements. 

The simple equations that model these finite elements are then assembled into a larger system of 

equations that models the entire problem. FEM then uses variation methods from the calculus of 

variations to approximate a solution by minimizing an associated error function. Studying or 

analyzing a phenomenon with FEM is often referred to as finite element analysis (FEA).  

A finite element method is characterized by a variation formulation, a discretization strategy, one 

or more solution algorithms and post-processing procedures. Examples of variation formulation 

are the Galerkin method, the discontinuous Galerkin method, mixed methods, etc. A 

discretization strategy is understood to mean a clearly defined set of procedures that cover (a) the 

creation of finite element meshes, (b) the definition of basis function on reference elements (also 

called shape functions) and (c) the mapping of reference elements onto the elements of the mesh. 

Examples of discretization strategies are the h-version, p-version, hp-version, x-FEM, iso-

geometric analysis, etc. Each discretization strategy has certain advantages and disadvantages. A 

reasonable criterion in selecting a discretization strategy is to realize nearly optimal performance 

for the broadest set of mathematical models in a particular model class. There are various 

numerical solution algorithms that can be classified into two broad categories; direct and 

iterative solvers. These algorithms are designed to exploit the sparsity of matrices that depend on 

the choices of variation formulation and discretization strategy.  

Post processing procedures are designed for the extraction of the data of interest from a finite 

element solution. In order to meet the requirements of solution verification, postprocessors need 

to provide for a posteriori error estimation in terms of the quantities of interest. When the errors 

of approximation are larger than what is considered acceptable then the discretization has to be 

changed either by an automated adaptive process or by action of the analyst. There are some very 

efficient postprocessors that provide for the realization of super convergence. 

 

  

https://en.wikipedia.org/wiki/Superconvergence
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2.3 Galerkin's Technique 

In mathematics, in the area of numerical analysis (the study of algorithms that use numerical                                                                                                                                           

approximation), Galerkin’s method is a class of methods for converting a continuous operator 

problem (such as a differential equation) to a discrete problem. In principle, it is the equivalent of 

applying the method of variation of parameters to a function space, by converting the equation to 

a weak formulation. Typically, one then applies some constraints on the function space to 

characterize the space with a finite set of basic functions. In applied mathematics, methods of 

weighted residuals are methods for solving differential equations. The solutions of these 

differential equations are assumed to be well approximated by a finite sum of test functions. In 

such cases, the selected method of weighted residuals is used to find the coefficient value of each 

corresponding test function. The resulting coefficients are made to minimize the error between 

the linear combination of test functions, and actual solution, in a chosen norm. 

Suppose, a linear differential operator D acting on a function u to produce a function p,      

D(u(x)) = p(x).  

We wish to approximate u by a function �̃�, which is a linear combination of basic functions 

chosen from a linearly independent set.  

That is,  𝑢 ≅ �̃� = ∑ 𝑎𝑖 ∅𝑖
𝑛
𝑖=1    

Now, when substituted into the differential operator, D, the result of the operations is not, in 

general, p(x).  

Hence a error or residual will exist: E(x) = R(x) = D(�̃�(𝑥)) − p(x) = 0.  

The notion in the method of weighted residual (MWR) is to force the residual to zero in some 

average sense over the domain. 

A weighted residual is simply the integral over the domain of the residual multiplied by a weight 

function 𝜔(𝑥). A weighted residual is ∫ 𝜔(𝑥) 𝑅(𝑇, 𝑥)𝑑𝑥
𝛺

 

By choosing 𝑁 weight functions, 𝜔𝑖(𝑥) for 𝑖 = 1, … , 𝑁 and setting these 𝑁 weighted residuals to 

zero, we obtain 𝑁 equations which we solve to determine the 𝑁 unknown values of 𝛼𝑗. 

We define the weighted residual for 𝜔𝑖(𝑥)to be 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Approximation
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Variation_of_parameters
https://en.wikipedia.org/wiki/Weak_formulation
https://en.wikipedia.org/wiki/Differential_equation
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𝑅𝑖(𝑇) = ∫ 𝜔𝑖(𝑥) 𝑅(𝑇, 𝑥)𝑑𝑥
𝛺

 

The method of weighted residuals requires 

𝑅𝑖(𝑇) = 0      for   𝑖 = 1,2, … , 𝑁. 

In the method of weighted residuals, the next step is to determine appropriate weight functions. 

A common approach, known as the Galerkin method, is to set the weight functions equal to the 

functions used to approximate the solution. That is, 

𝜔𝑖(𝑥) = ∅𝑖(𝑥) (Galerkin) 

As a special case of the Galerkin process, the FEM is often added. In mathematical terms, the 

procedure is to construct an integral of the residual and weight functions of the internal product 

and set the integral to zero. 

2.4 Physical Model 

The schematic diagram of the studied configuration has been depicted in the Figure 2.1. It 

consists of a two-dimensional trapezoidal enclosure of height 1.3 m. The length of top, bottom, 

and inclined walls are 1, 1.8 and 1.36 m, respectively. Top and bottom parallel surfaces have 

been kept as adiabatic. All the walls have been considered no slip and impermeable. The 

sinusoidal temperature and nanoparticles distributions have been imposed on the left and right 

inclined walls of the enclosure. The top and bottom walls are insulated walls. The inclination 

angle is 17.5 degree. The left and right walls make this angle with vertical lines according to 

clockwise and anticlockwise directions, respectively. The gravity acts in the vertical direction 

and there is no viscous dissipation. Thermophoresis and Brownian motion effects are included in 

our study in the absence of chemical reaction. The base fluid (water) and the solid nanoparticles 

are in thermal equilibrium. Boungiorno’s approximation issued to determine the variation of 

density in the buoyancy term where the other thermo-physical properties of the nanofluid are 

assumed constant. 
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Figure 2.1: Physical model 

2.5 Mathematical Model 

The fluid domain inside the cavity has been considered as a continuum. The flow is assumed to 

be incompressible flow, no chemical reactions, negligible external forces, negligible viscous 

dissipation, negligible radiative heat transfer. The governing partial differential equations of the 

fluid (conservation of mass, momentum, energy and nanoparticles concentration) in dimensional 

form according to [1, 5, 43-46] have been given bellow: 

Continuity equation: 

(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) = 0 (1) 

x-momentum equation: 

𝜌𝑓 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑃

𝜕𝑥
+ 𝜇𝑓 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2)                                                                                       (2) 

y-momentum equation: 

𝜌𝑓 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑃

𝜕𝑦
+ 𝜇𝑓 (

𝜕
2

𝑣

𝜕𝑥2 +
𝜕

2
𝑣

𝜕𝑦2) + {𝐶𝜌𝑝 + (1 − 𝐶)[(𝜌𝑓(1 − 𝛽(𝑇 − 𝑇𝑐))]}𝑔  (3) 

 

 

γ γ 
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Energy conservation equation: 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑓 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2) + 𝐷 𝐵 (
𝜕𝐶

𝜕𝑥

𝜕𝑇

𝜕𝑥
+

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
) + (

𝐷 𝑇

𝑇 𝑐
) [(

𝜕𝑇

𝜕𝑥
)

2
+ (

𝜕𝑇

𝜕𝑦
)

2

]      (4) 

Nanoparticle conservation equation: 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2) +
𝐷𝑇

𝑇𝐶
(

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2)                                                     (5) 

Where  𝑢 and 𝑣 are the velocity components, 𝑝 is the pressure, 𝜌 is the density, 𝜌𝑓 is the density 

of the nanofluid, 𝜇  is the dynamic viscosity, 𝛼  is the thermal diffusivity, 𝛽  is the thermal 

expansion,  𝑇 is the temperature and C is the nanoparticle’s concentration. 

The following dimensional boundary conditions have been assigned: 

On top wall:  𝑢 = 𝑣 = 0,
𝜕𝑇

𝜕𝑦
  = 0 ,

𝜕𝑐

𝜕𝑦
= 0 

On bottom wall: 𝑢 = 𝑣 = 0,
𝜕𝑇

𝜕𝑦
  = 0 ,

𝜕𝑐

𝜕𝑦
= 0  

             On left inclined wall: 𝑢 = 𝑣 = 0,   

                                𝑇 = 𝑇𝑐 + (𝑇ℎ − 𝑇𝑐) 𝐴{𝑠𝑖𝑛(𝑦 − 0.3𝑥) − 𝑥 − 0.3𝑦};                            

                              𝐶 = 𝐶𝑐 + (𝐶ℎ − 𝐶𝑐) 𝐴{𝑠𝑖𝑛(𝑦 − 0.3𝑥) − 𝑥 − 0.3𝑦} 

On right inclined wall:  𝑢 = 𝑣 = 0,        

               𝑇 = 𝑇𝑐 + (𝑇ℎ − 𝑇𝑐)𝐴{𝑠𝑖𝑛(0.3𝑥 + 𝑦 − 0.54) + 0.3𝑦 − 𝑥 + 1.8} 

              𝐶 = 𝐶𝑐 + (𝐶ℎ − 𝐶𝑐)𝐴{𝑠𝑖𝑛(0.3𝑥 + 𝑦 − 0.54) + 0.3𝑦 − 𝑥 + 1.8} 

Also, as the both inclined walls containing heating and cooling regions, we have to calculate the 

Nusselt number on both walls. The rate of heat transfer is computed at the left and right inclined 

walls and is expressed in terms of the local Nusselt number:                         

𝑁𝑢 = −
ℎ𝐻

𝑘
= −

𝜕𝑇

𝜕𝑛
𝐻 

Where, h and n are the local convective heat transfer coefficient and dimensional distances either 

along x or y direction acting normal to the left and right inclined surfaces respectively. 
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The transformation of non-dimensional parameters has been defined as the following 

forms: 𝑋 =
𝑥

𝐻
, 𝑌 =

𝑦

𝐻
, 𝑈 =

𝑢𝐻

𝛼
, 𝑉 =

𝑣𝐻

𝛼
, 𝑃 =

𝑢𝐻2

𝜌𝛼2
, 𝜃 =

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
, 𝜑 =

𝐶−𝐶𝑐

𝐶ℎ−𝐶𝑐
        (6) 

Using these parameters, Equations (1) - (5) can be written in a non-dimensional form: 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0, (7) 

𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+ 𝑃𝑟 (

𝜕2𝑈

𝜕𝑋2
+ 

𝜕2𝑈

𝜕𝑌2)                                                                              (8) 

𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+ 𝑃𝑟 (

𝜕2𝑉

𝜕𝑋2
+

𝜕2𝑉

𝜕𝑌2) − 𝑅𝑎 𝑃𝑟 𝑁𝑟 (𝜑 − 1) + 𝑅𝑎 𝑃𝑟 𝜃,                 (9)    

𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
=

𝜕2𝜃

𝜕𝑋2
+ 𝑁𝑏 (

𝜕𝜑

𝜕𝑋

𝜕𝜃

𝜕𝑋
+

𝜕𝜑

𝜕𝑌

𝜕𝜃

𝜕𝑌
) + 𝑁𝑡 [(

𝜕𝜃

𝜕𝑋
)

2
+ (

𝜕𝜃

𝜕𝑌
)

2

]                             (10) 

𝑈
𝜕𝜑

𝜕𝑋
+ 𝑉

𝜕𝜑

𝜕𝑌
=

1

𝐿𝑒
(

𝜕2𝜑

𝜕𝑋2
+

𝜕2𝜑

𝜕𝑌2) −
𝑁𝑡

𝑁𝑏 𝐿𝑒
(

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2)                                                      (11) 

And the non-dimensional boundary conditions are as follows: 

      On top wall: 𝑈 = 𝑉 = 0,
𝜕𝜃

𝜕𝑌
  = 0 ,

𝜕𝜑

𝜕𝑌
= 0 

      On bottom wall: 𝑈 = 𝑉 = 0,
𝜕𝜃

𝜕𝑌
  = 0 ,

𝜕𝜑

𝜕𝑌
= 0  

      On left inclined wall:      𝑈 = 𝑉 = 0,   

  𝜃 = 𝜀 {𝑠𝑖𝑛(𝑌 − 0.3𝑋) − 𝑋 − 0.3𝑌}, 

𝜑 = 𝜀 {𝑠𝑖𝑛(𝑌 − 0.3𝑋) − 𝑋 − 0.3𝑌} 

On right inclined wall:  𝑈 = 𝑉 = 0, 

                                  𝜃 = 𝜀{𝑠𝑖𝑛(0.3𝑋 + 𝑌 − 0.54) − 𝑋 + 0.3𝑌 + 1.8},     

                                      𝜑 = 𝜀{𝑠𝑖𝑛(0.3𝑋 + 𝑌 − 0.54) − 𝑋 + 0.3𝑌 + 1.8}  
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Here  𝑃𝑟 =
𝑣𝑓

𝛼𝑓
, 𝐿𝑒 =

𝛼𝑓

𝐷𝐵
 , 𝑁𝑡 =

𝐷𝑇(𝜌𝐶)𝑝

𝑇𝑐(𝜌𝑐)𝑓

(𝜃ℎ−𝜃𝑐)

𝛼𝑓
, 𝑁𝑏 = 𝐷𝐵

(𝜌𝑐)𝑝

(𝜌𝑐)𝑓

(𝜑ℎ−𝜑𝑐)

𝛼𝑓
,                  

 𝑁𝑟 =
(𝜑ℎ−𝜑𝑐)(𝜌𝑝−𝜌𝑓)

(1−𝜑𝑐)𝜌𝑓(𝜃ℎ−𝜃𝑐)
  and  𝑅𝑎 =

𝑔𝛽(𝜃ℎ−𝜃𝑐)(1−𝜑𝑐)𝐻3

𝑣𝑓
2  be the Prandtl number, Lewis 

number, thermophoresis, Brownian motion, buouncy ratio and Rayleigh number, respectively. 

The non-dimensional local Nusselt number at the inclined surfaces is  𝑁𝑢 = −
𝜕𝜃

𝜕𝑁
𝑁  

The normal temperature gradient can be written as  
𝜕𝜃

𝜕𝑁
=

1

𝑁
√(

𝜕𝜃

𝜕𝑋
)

2
+ (

𝜕𝜃

𝜕𝑌
)

2
.  

The average Nusselt number (Nu) is obtained by integrating the local Nusselt number along the 

inclined surfaces and is defined by 𝑁𝑢 = −
1

𝑁
∫ 𝑁𝑢𝑑𝑁

𝑁

0 . 

2.6 Computational Procedure 

Using the Galerkin’s weighted residual finite element technique [47-48] the momentum and 

energy balance equations have been solved using COMSOL Multiphysics. In this method, the 

solution domain has been discretized into finite element meshes, which have been composed of 

non-uniform triangular elements. Then the nonlinear and non-dimensional governing partial 

differential equations have been transferred into a system of integral equations by applying 

Galerkin weighted residual method. The basic unknowns for the governing partial differential 

equations (7-11) are the velocity components U, V, the temperature θ, concentration, φ and the 

pressure P. The six nodes with triangular element have been used in this numerical research. All 

six nodes have been associated with velocities as well as temperature while three corner nodes 

with pressure. The nonlinear algebraic equations so obtained have been modified by imposition 

of boundary conditions. These modified nonlinear equations have been transferred into linear 

algebraic equations by using Newton’s method. Finally, these linear equations have been solved 

by using triangular factorization method. The convergence criterion for the solution procedure 

has been defined as |𝜓𝑛+1 − 𝜓𝑛| ≤ 10−6, where n is the number of iteration and 𝜓 is a function 

of U, V, θ and φ. 
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2.6.1 Code validation 

In order to authenticate the exactness of present numerical technique, the obtained graphical 

representation of streamlines and isothermal lines using the present numerical code have been 

compared with the results obtained by Venkatadri et al. [41].  
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Isothermal lines 

Figure 2.2: Code validation of the streamlines and isotherms between Venkatadri et al.                     
[41] and that of present research at Ra = 103 and Pr = 0.025 
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They simulated numerically free convective heat transfer 2D model of trapezoidal cavity. These 

comparisons have been presented obviously in the figure 2.2. The code validation has been 

conducted while employing the dimensionless parameters as Ra = 103 and Pr = 0.025. A very 

good agreement has been found between the present numerical code results and the results of 

Venkatadri et al. [41]. These flattering comparisons provide confidence in the numerical results 

to be reported subsequently. 

2.6.2 Mesh generation 

The discrete locations at which the variables are to be calculated are defined by a mesh which 

covers the geometric domain on which the problem is to be solved. It divides the solution 

domain into a finite number of sub-domains called finite elements. The computational domains 

with irregular geometries by a collection of finite elements make the method a valuable practical 

tool for the solution of boundary value problems arising in various fields of engineering. Figure 

2.3 displays the finite element mesh of the present physical domain. The meshing consists of 

triangular element with six nodes in boundaries.  

         
 

 

 

 

 

              

                            

 

 

Figure 2.3: Mesh generation of the trapezoidal enclosure 
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2.6.3 Grid sensitivity test 

In order to determine the proper grid size for this study, a grid independence test is conducted 

with five types of mesh for Pr = 7, Ra =104, Nt = Nr = Nb = 0.1 and Le = 10 which has been 

shown in Table 2.1. Corresponding grid densities are 4925 nodes, 1602 elements, time 52 s; 7930 

nodes, 2708 elements, 95s; 20320 nodes, 2708 elements, 112s; 49780 nodes, 18008 elements, 

276s; and 75500 nodes, 28296 elements, 403s. The extreme value of Nu is used as the 

monitoring variable for sensitivity measure of the accuracy of the solution.  Taking into account 

both the precision of numerical values and computational time, the present calculations are 

performed with 18082 nodes and 4484 elements grid system. Table 2.1, one can observe that no 

further improvement in accuracy occur using higher number of elements. 

  Table 2.1: Grid sensitivity check at Pr = 7, Ra = 104, Nt = Nr = Nb = 0.1 and Le = 10 

Mesh type Normal Fine Finer Extra Fine Extremely Fine 

Elements 1602 2708 7142 18008 28296 

Nu 0.243 0.564 0.774 0.985 0.9854 

Time (s) 52 95 112 276 403 



 

 

 

Chapter 3: Results and Discussions 
3.1 Introduction 

Free convection of heat transfer in a trapezoidal enclosure with sinusoidal temperature 

distributions on both side walls is examined numerically using Buongiorno’s model. The 

numerical calculation is carried out for various values of Brownian motion (Nb) from 0.1 to 

2, Prandtl number (Pr) from 0.7 to 10, Rayleigh number (Ra) from102 to 105, thermophoresis 

parameter (Nt) from 0.1 to 1.5, Lewis number (Le) from 1 to 10 and buoyancy ratio (Nr) from 

0.1 to 0.7. These relevant parameters have a direct effect on the flow, thermal and 

concentration fields inside the considered cavity. The numerical results have been offered in 

terms of streamlines, isothermal lines, nanoparticle volume fraction contours and average 

Nusselt number (Nu) on both left and right inclined walls. In order to display the results out 

of these six independent parameters, five parameters have been kept as fixed (unless where 

stated) while the remainder single one has been varied as gathered in the following 

categories: 

3.2 Effect of Lewis number 

Figure 3.1 (a-c) illustrate the effect of Lewis number on streamlines, isothermal lines and iso-

concentration lines in the range (Le = 1 - 10).  For this effect the values of another parameter 

have been kept as fixed at Pr = 7, Ra = 104, Nt = Nr = Nb = 0.1. Blue color indicates the 

lowest value and red color represents the highest value in the streamlines, isothermal lines 

and iso-concentration lines. It is noticed from this figure that an increase of Lewis number 

leads to both significant changes in conservation of velocity, temperature and nanofluid 

concentration fields. Regardless of the Lewis number the convective cells are formed inside 

the cavity. The cells at the middle part vortices anti-clockwise direction whereas the cells at 

top and bottom are vortices clockwise direction inside the cavity of the figure 3.1(a). The 

main reason for an appearance of these circulations is an effect of inclined wall with 

sinusoidal temperature distribution. The vortices are separated by virtual horizontal and 

inclined wall which are both impervious and adiabatic. Convective cells are close to the 

vertical wall due to the large temperature difference in this zone. It should be noted that an 

intensity of cells in the middle part of the cavity is greater than an intensity of convective 

cells in the top and bottom part of the cavity.  
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Figure 3.1: Effect of Lewis number on (a) streamlines, (b) isothermal lines and (c) iso-
concentration at Pr = 7, Ra = 104, Nt = Nr = Nb = 0.1 

 
It is seen from the figure 3.1(b) those convective cells cores are close to the vertical walls due 

to large temperature differences in these zones. An increase in the Lewis number does not 

change in all local fields of temperature inside the cavity. It physically means that flow with 
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large Lewis number prevent spreading nanoparticles in the nanofluid. Therefore, we have 

large homogeneous areas in the domain nonconsecutive cells. Only non-homogeneous area 

become more confined at Le = 7. 

At Le ≤ 10 the distribution of nano particle is non -homogeneous. It physically means that 

leads to spreading nanoparticle in the nanofluid. Therefore, we have the large non-

homogeneous are in the domain of convective cells. Figure 3.1(c) shows the main variations 

with the Lewis number related to the iso-concentrations. These fields characterize the 

distributions of the nanoparticles volume fraction inside the trapezoidal cavity. Regardless of 

the Lewis number value, the intensity of non-convective cells close to the inclined wall is 

greater than the intensity of the central part of the cavity. The distribution is considered as 

non-homogeneous. 

An effect of the dimensionless Lewis number on the average Nusselt number at left and right 

inclined walls is presented in the figure: 3.2. From figure it is noticed that an increase in Le 

from 1 to 10 leads to a significant increase in average Nusselt number at left and right vertical 

wall. The increasing rate of average Nusselt number at right and left wall are 0.7108% and 

0.7081%. The increasing rate in average Nusselt number due to Lewis number at right wall is 

greater than the right wall. The increasing rate is 0.3813% higher for right wall than the left 

wall.   

                                                                                                                                                                

Figure 3.2: Average Nusselt number at left and right walls against Lewis number at     
Pr = 7, Ra = 104, Nt = Nr = Nb = 0.1 

6

6.02

6.04

6.06

6.08

6.1

6.12

N
u

Le

Nu (left)

Nu (Right)

1                           4                         7 10



Result and discussion 

32 

3.3 Effect of Thermophoresis 

Figures 3.3 (a-c) illustrate the effect of thermophoresis parameter (Nt) from 0.1 to 1.5 on the 

velocity, temperature and nanoparticle concentration contours with fixed Le = 10, Pr = 7,   

Ra = 104, Nr = Nb = 0.1. Regardless of the thermophoresis parameter four non-convective 

cells are formed in the streamlines along the clockwise direction inside the cavity of the. An 

increase in Nt leads to changes in all characteristics (streamlines, isotherms, and iso-

concentrations) that can be described in the following way. Regardless of the thermophoresis 

there is a small significant change in streamlines. 

From the figure one can find the intensification and increase in size at the bottom part and 

attenuation and decrease in size at upper part of the cavity. It can be seen that the shape of the 

primary cells at middle side has been changed a little bit due to increase in Nt.  It is important 

to notice that there is a significant change in oval shape at the top side. The oval shape core at 

the top has been smaller than the before shape. At the same time, it is observed from the 

figure 3.3 (b) that an increase in thermophoresis parameter leads to more intensive heating of 

the bottom part than the upper part of the enclosure. Such changes characterize decrease in 

temperature differences in the bottom part and increase in temperature difference at upper 

part.  

It should be noted from the figure 3.3 (c) that the main variations with the thermophoresis 

parameter are related to the iso-concentrations. An increase in Nt leads to essential changes of 

the nanoparticles volume fraction both in the upper and bottom parts of the cavity. In general, 

these distributions can be considered as non-homogeneous. 

An effect of the dimensionless time and thermophoresis parameter on the average Nusselt 

number at left and right vertical wall is depicted in Fig. 3.4 It is necessary to note that an 

increase in Nt leads to an increase in the average Nusselt number. From the figure it is 

noticed that the increase in the average Nusselt number at the right wall is 36.37% and at left 

wall is 35.49% for Nt = 0.1 to Nt = 1.5. The increase in the average Nusselt number at the 

right wall is higher compared with the left wall and the increasing rate at right wall is 2.479% 

compared with the left wall. 
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Figure 3.3: Effect of thermophoresis parameter on (a) streamlines, (b) isothermal lines 
and (c) iso-concentration lines at Le = 10, Pr = 7, Ra = 104, Nr = Nb = 0.1 
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Figure 3.4: Average Nusselt number at left and right wall against thermophoresis 
parameter at Le = 10, Pr = 7, Ra = 104, Nr = Nb = 0.1 

3.4 Effect of Prandtl Number 
Figure 3.5(a-c) displays the effect of Prandtl number from 0.7 to 10 on velocity, temperature 

and concentration contours with fixed Ra = 104, Nt = Nr = Nb = 0.1 and Le = 10. From the 

streamlines contours it is found that there is a small change in non-convective cell. For         

Pr = 0.7 it is noticed that the primary elliptic circulation cells and small oval shape core has 

been created. At Pr = 4 it can be seen that shape of the primary cell remains same but the 

oval shape at top side has been changed a little bit and it is important to notice that oval shape 

core at the top has been less than the before shape. On the other hand, when Pr = 7 and       

Pr = 10, there is little distinction in the streamlines that gradually increment of oval shape 

core. There is little change in isotherm.  

One important thing is noticed from the figure 3.5(b) that an increase in Prandtl number (Pr) 

leads increase in intensity of the non-convective cell inside the cavity. The intensity is higher 

at bottom and upper part for the left wall whereas the intensity is higher at middle part for the 

right wall. 

Figure 3.5(c) that the main variations with the Prandtl number (Pr) are related to the iso-

concentrations. An increase in Pr leads to essential changes of the nanoparticles volume 

fraction both in the upper and bottom parts of the cavity and these distributions can be 

considered as non-homogeneous. 
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Figure 3.5: Effect of Prandtl number on (a) streamlines, (b) isothermal lines and (c) iso-
concentration lines at Ra = 104, Nt = Nr = Nb = 0.1 and Le = 10 
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An effect of the Prandtl number (Pr) on the average Nusselt number at left and right inclined 

walls is presented in the figure 3.6. An increase in Prandtl number from 0.7 - 4 leads to 

highly increase in average Nusselt number but from 4-10 leads to a small amount of increase 

in average Nusselt number. The average increase in Nusselt number due to Prandtl number at 

left wall is 0.4104% and right wall 0.893%. From this calculation we see that average 

increase in Nusselt number due to Prandtl number at right inclined wall is greater than left 

inclined wall. 

 

Figure 3.6: Average Nusselt Number at the left and right walls against Prandtl number 
at Le = 10, Ra = 104, Nt = Nr = Nb = 0.1 

3.5 Brownian Motion Effect 

Figure 3.7 (a-c) illustrate the effect of Brownian motion on streamlines, isothermal lines and 

iso-concentration lines in the range (Nb = 0.1-2.0). For this effect the values of another 

parameter have been kept as fixed at Pr = 7, Ra = 104, Nt = Nr = 0.1 and Le = 10. It is 

noticed from this figure that an increase of Brownian motion parameter leads to both 

significant changes in conservation of velocity, temperature and nanofluid concentration 

fields. Regardless of the Brownian motion the non-convective cells are formed in the 

streamlines along the anti-clockwise direction inside the cavity of the figure 3.7(a). The main 

reason for an appearance of these circulations is an effect of the sinusoidal temperature 

distribution at inclined walls of the cavity. The vortices are separated by virtual horizontal 

and inclined wall which are both impervious and adiabatic. Non-convective cells are close to 

the inclined wall due to the large temperature difference in this zone. An increase of 
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Brownian motion parameter there is a small change in intensity and configuration in the cells 

and isotherm.  
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Figure 3.7: Effect of Brownian motion on (a) streamlines, (b) isothermal lines and (c) 
iso-concentration at Pr = 7, Ra = 104, Nt = Nr = 0.1 and Le = 10. 
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According to figure 3.7(b) it is possible to conclude that an increment in Nb leads to 

homogeneity of distribution inside the cavity. It also be noticed that the temperature variation 

is increased both in the top and bottom part with the increase Brownian motion parameter 

A significant variation in iso-concentration with the Brownian motion parameter is found in 

the figure 3.7 (c). An increase in Nb leads to essential changes of the nanoparticles volume 

fraction both in the upper and bottom parts of the cavity and these distributions can be 

considered as non-homogeneous. 

An effect of the Brownian motion parameter (Nb) on the average Nusselt number at left and 

right inclined walls is presented in the figure 3.8. An increase in Nb from 0.1 to 2 leads to an 

increase in average Nusselt number on both left and right wall. The average increase in 

Nusselt number due to Nb parameter at right wall is greater than the left wall. The increasing 

rate of average Nusselt number is approximately 34.75% and 34.27% for the right and left 

walls, respectively for rising values of Brownian motion. After calculation it is found that the 

average Nusselt number 1.40% higher for right wall compared with left wall. 

 
Figure 3.8: Average Nusselt Number at the left and right walls against the Brownian 

motion effect at Pr = 7, Ra = 104, Nt = Nr = 0.1, Le = 10 

3.6 Effect of Buoyancy Ratio 

Figure 3.9(a-c) illustrate the effect of buoyancy ratio on streamlines, isothermal lines and iso-

concentration lines in the range (Nr = 0.1- 0.7).  For this effect the values of another 

parameter have been kept as fixed at Pr = 7, Ra = 104, Nt = Nr = 0.1 and Le = 10.  
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Figure 3.9: Effect of buoyancy ratio on (a) streamlines, (b) isothermal lines and (c) iso-
concentration lines at Pr = 7, Ra = 104, Nt = Nb = 0.1 and Le = 10. 
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It is noticed from this figure that an increase of buoyancy ratio leads to both significant 

changes in conservation of velocity, temperature and nanofluid concentration fields. 

Regardless of the buoyancy ratio the non-convective cells are formed in the streamlines along 

the anti-clockwise direction inside the cavity of the figure 3.9(a). There is significant change 

on both the primary and oval shape. The primary shape at Nr = 0.3 is bent through a little bit 

than the previous cells. Finally, the cells turned into circular shape. The oval contour shape at 

top and bottom part of the cavity gradually decreases with the increase in buoyancy ratio.  

Non-convective cells are close to the inclined wall due to the large temperature difference in 

this zone of the figure 3.9(b). An increase of buoyancy ratio parameter there is a small change 

in intensity and configuration in the isotherm. The enrichment of the thermal conductivity 

produces denser isotherms which is the indication of transfer of temperature. From the figure 

3.9(b), it is evident that with the increase of the value of Nr heat transfer rate increases.  

With the increase in Nr iso-concentration lines characterize a decrease in nanoparticle volume 

fraction in the upper part and increase in the bottom part of the figure 3.9 (c). Cells are close 

to the inclined wall due to the large temperature difference which refers the intensification in 

this zone. 

An effect of the buoyancy ratio (Nr) on the average Nusselt number at left and right inclined 

walls is presented in the figure 3.10. An increase in Nr from 0.1- 0.7 leads to significant 

decrease in average Nusselt number. The average decrease in Nusselt number due to Nr at 

right wall is greater than the left wall. The decreasing rates of left and right wall are 1.101% 

and 1.104%, respectively. Decreasing rate at right wall compared with left wall is 0.272%. 
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Figure 3.10: Average Nusselt Number at the left and right walls against buoyancy ratio 

at Le = 10, Ra = 104, Pr = 7 and Nt = Nb = 0.1 
 

3.7 Effect of Rayleigh number 

Figure 3.11(a-c) illustrate the effect of Rayleigh number on streamlines, isothermal lines and 

iso-concentration lines in the range (Ra = 102- 105) For this effect the values of another 

parameter have been kept as fixed at Pr = 7, Nt = Nr = Nb = 0.1 and Le = 10. Regardless of 

the Rayleigh number the non-convective cells are formed in the streamlines along the 

clockwise direction inside the cavity of the figure 3.11(a). The main reason for an appearance 

of these circulations is an effect of the sinusoidal temperature distribution at vertical walls of 

the cavity. The vortices are separated by virtual horizontal and inclined wall which are both 

impervious and adiabatic. It can be seen from figure that there is a significant change in both 

the primary cells and in oval contour shape at the top side. The intensity of primary cells is 

decreased with the increase of Rayleigh number. The primary cells become compressed with 

the increase of Rayleigh number and finally turned into rectangular shape. On the other hand, 

the oval is large and circular in shape at bottom become thin at top side at Ra = 102. But we 

noticed that with the increase of Rayleigh number the oval at bottom gets smaller and top get 

larger gradually.  

An increase of Rayleigh number there is a small change in intensity and configuration in the 

isotherm.  
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Figure 3.11: The effect of Rayleigh number on (a) streamlines, (b) isothermal lines and 
(c) iso-concentration lines at Pr = 7, Nt = Nr = Nb = 0.1 and Le = 10. 
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We noticed that the curve in the isotherm contour inversely changed between Ra = 102 and 

Ra = 103. At Ra = 105 the isothermal lines become scattered in haphazard and these 

distributions can be considered as non-homogeneous. The variation with the Rayleigh 

number is related to the iso-concentration lines is noteworthy as shown in the figure 3.11(c). 

Curve close to the inclined wall due to the large temperature difference in this zone. At        

Ra = 102 all carves are close to each other and stay in chaplet. This chaplet shape is destroyed 

with increasing Rayleigh number. Finally, the curves are arranged in parallel at Ra = 105. 

An effect of the Rayleigh number (Ra) on the average Nusselt number at left and right 

inclined walls is presented in the figure 3.12. From above figure it is noticed that an increase 

in Rayleigh number (Ra) from Ra = 102 - 104, there is hardly increase in average Nusselt 

number. But from Ra = 104 to Ra = 105 the average Nusselt number increases are highly 

noticed for both left and right wall. Increasing rates of heat transfer are 36.193% and 

35.988% for right and left walls, respectively. In addition, about 0.5696% enhanced rate of 

heat transfer is obtained for right wall than left wall. 

  

Figure 3.12: Average Nusselt Number at the left and right wall against Rayleigh 
number at Le = 10, Ra = 104 and Nt = Nr = Nb = 0.1.  

 

3.8 Comparison 

Three simplified test problems have been chosen for comparison, such as Demirdzic et al. 

[39] of the convective heat transfer within a parallelogram, De Vahl Davis [40] of convective 
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heat transfer inside a square chamber and Revnic et al. [5] of non-uniform border temperature 

variations on time-dependent nanofluid free convection within a trapezium. The present result 

of average Nusselt number for the variation of Prandtl and Raleigh numbers have been 

compared with that of the above-mentioned studies. Table 3.1 presents values of Nu along the 

heating halves of both inclined walls against Pr with fixed Ra = 106 and percentage of error 

between present result and that of Revnic et al. [5]. Thus, a good agreement has been 

observed among the present result and that of Demirdzic et al. [39] and Revnic et al. [5]. To 

perform this comparison the effects of other parameters have been considered as neglected. 

Table 3.1: Comparison of Nu against Pr among present result and that of Demirdzic et 
al. [39] and Revnic et al. [5] 

Pr Nu Error (%) 

Demirdzic et al. [39] Revnic et al. [5] Present result 

0.1 5.9849 5.9829 6.3568 6.25 

10 7.5801 7.5847 8.0932 6.70 

 

Similarly, Table 3.2 presents values of Nu along the heating halves of both inclined walls 

against Ra with fixed Pr = 0.1 and percentage of error between present result and that of 

Revnic et al. [5]. From the Table 3.2 it is seen that a little amount of error is found between 

present result and that of Revnic et al. [5]. Thus, for this case also, a good agreement has 

been observed among the present result and that of Davis and Jones [40] and Revnic et al. 

[5]. 

Table 3.2: Comparison of Nu against Ra among present result and that of Davis and 
Jones [40] and Revnic et al. [5] 

Ra Nu Error (%) 

Davis and Jones [40] Revnic et al. [5] Present result 

103 1.116 1.121 1.189 6.06 

104 2.234 2.306 2.401 4.12 

 
 
 
 
 
 



 

 

 

Chapter 4: Conclusions and Recommendations 

The convective free flow and heat transfer inside a trapezoidal enclosure having sinusoidal 

temperature distributions on both side walls have been numerically investigated using the 

nanofluid model proposed by Buongiorno. Mathematical model has been formulated in 

dimensionless mass, momentum, energy and concentration conservation forms and then 

solved numerically on the basis of a second-order accurate finite element method. The 

algorithm has been validated by direct comparisons with previously published articles. 

Distributions of streamlines, isotherms, and iso-concentrations at a wide range of key 

parameters have been investigated. Based on the findings in this study, we conclude that the 

average Nusselt is increasing functions of the buoyancy-ratio parameter, thermophoresis 

parameter and decreasing functions of the Lewis number, Brownian motion parameter. 

Comparisons of the result from this numerical study have also been performed with other 

numerical/experimental results and the comparisons have been found to be in good 

agreement. The main findings of the present study have been enlisted as follows. 

4.1 Conclusion 

 The rate of heat transfer is obtained about 0.7081% and 0.7108% at the left and right 

walls, respectively for increasing values of Lewis number from 1 to 10. The 

increasing rate 0.3813% higher for the right wall than the left wall. 

 At the right and left wall, the heat transfer rate is increased significantly at 36.37% 

and 35.49%, respectively with the increase of thermophoresis parameter from 0.1 to 

1.5. The increase in the average Nusselt number at the right wall is 2.479% higher 

than the left wall. 

 The increasing rate of heat transfer is obtained as 0.4104% and 0.893% at the left and 

right wall for increasing values of Prandtl number from 0.7 to 10.   

 Variation of Brownian motion parameter from Nb = 0.1 to 2 leads to a significant 

increase in the heat transfer at the rate of 34.75% and 34.27% for the right and left 

walls, respectively. The average Nusselt number getting more higher about 1.40% for 

right wall compared with left wall. 
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 An increase in Nr from 0.1 to 0.7 leads to decrease in average Nusselt number. The                                                             

decreasing rates of left and right wall are about 1.101% and 1.104%, respectively. 

After calculation the decreasing rate at right wall compared with left wall is found as 

0.272%. 

 Variation of Rayleigh number from Ra = 102 to 106 leads to a significant increase in 

the heat transfer rate by 36.193% and 35.988% for the right and left walls, 

respectively. In addition, the heat transfer rate is 0.5696% higher for the right wall 

than the left wall. 

4.2 Future work 

There is a lot of scope for research in this area in future. Since study of nanofluids is under 

initial stages so there is a lot of scope in development of nanofluids. The size, shape, material 

and volume fraction of dispersed nanoparticles play a very important role in the absorption of 

heat. In consideration of the present investigation, the following recommendations for future 

study have been provided: 

 Trapezium shaped cavity has been considered in the present study. So, this 

deliberation may be extended by considering other formations of enclosures to 

investigate the performance of nanofluids. 

 Using nanofluids with single phase flow have been considered as heat transfer 

medium in this thesis work. It can be investigated for multiphase flow also. 

 In this research, Buongiorno’s nanofluid model has been used. Anyone can use other 

nanofluid model to obtain better heat transfer rate. 
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