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ABSTRACT 

In this thesis, the fundamental concepts of nanofluids and literature survey have been discussed, 

and two-dimensional time-dependent natural convection flow and heat transfer inside the semi-

circular enclosure charged by nanofluid with the presence of the vertically periodic magnetic field 

has been investigated numerically. Copper-water nanofluid has been taken as default nanofluid. 

Different types of nanoparticles and base fluids have been considered to examine the better 

performance of heat transfer. The top circular wall is heated at low-temperature Tc while the 

bottom diameter is heated at high-temperature Th (Tc < Th). Moreover, different types of thermal 

boundary conditions are employed along the bottom diameter. The non-linear governing equations 

with boundary conditions have been transformed into dimensionless forms using a set of non-

dimensional variables. The highly powerful partial differential equations solver finite element 

technique (FEM) of Galerkin weighted residual type has been employed for the numerical 

simulations in the present problem. The outcomes illustrate an excellent agreement with previously 

published research. The different physical model parameters such as Hartmann number, Rayleigh 

number, nanoparticles diameter, nanoparticles volume, size and shape, and Brownian motion of 

nano-sized particles have been investigated using streamline contours, isothermal lines, and heat 

transfer rate in terms of average Nusselt number. 

 
The outcomes show that the parameters mentioned above strongly affect the heat transport and 

flow field within the cavity. It is seen that heat transport rate enhances with the increase of the 

buoyancy driven parameter Rayleigh number and volume fraction of nanoparticles, decreasing 

with the higher magnetic effect. The different types of nanofluids have an influential role in heat 

transport and fluid flow. The heat transport rate increases 22.1% in water-based whereas 5.4% in 

engine oil-based nanofluid for 1% copper nanoparticles volume. The different thermal boundary 

conditions have an important impact in heat transport and fluid flow. The uniform thermal 

condition (case I) gives a better heat transfer rate than others (case II, III, IV, and V). The blade 

shape nanoparticles provide a higher heat transport rate than spherical, cylindrical, bricks, and 

platelets. The small size of nanoparticles conforms better heat transfer rate in the resent analysis. 

The non-uniform magnetic field and its period have a vital role in fluid flow and heat transport. 

The non-uniform periodic magnetic field provides a higher temperature transport rate than the 

uniform magnetic field. It is also seen that the average Nusselt number for kerosene-based 
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nanofluid is higher than water-based, ethylene glycol-based, and engine oil-based nanofluids. The 

heat transport rate is observed at 67.86% for Cobalt (Co)-kerosene whereas 23.78% for Co-water, 

and 5.68% for Co-engine oil nanofluid with 1% nano-particles volume. In addition, The Brownian 

motion of nano-sized particles has a significant contribution on heat transfer. The rate of heat 

transfer increases 28.88% with the Brownian effect, whereas it increases only 3.01% without the 

Brownian effect. Therefore, the small size of nanoparticles with blade shape and Brownian motion 

at low Rayleigh number (Ra = 104) provides the best heat transport rate in the case of uniform 

thermal boundary conditions.     
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  NOMENCLATURE 

a : Amplitude of the wave [m] 

B0 : Magnitude of magnetic field [kgs-2A-1] 

cp : Specific heat at constant pressure [Jkg-1K-1]  

g : Gravitational acceleration [ms-2] 

Ha : Hartmann number 

H : Height of the cavity 

k : Thermal conductivity [Wm-1K-1]  

K : Wave number 

L : Length of bottom diameter of the enclosure 

NuL : Local Nusselt number 

Nuav : Average Nusselt number 

p : Dimensional pressure [kgm-1s-2]  

P : Dimensionless pressure 

Pr : Prandtl number 

Ra : Rayleigh number 

T : Fluid temperature [K]  

t : Dimensional time [s]  

u : Dimensional horizontal velocity component [ms-1]  

v : Dimensional vertical velocity component [ms-1]  

U : Dimensionless horizontal velocity component 

V : Dimensionless vertical velocity component 

x : Dimensional horizontal coordinate [m]  

y : Dimensional vertical coordinate [m] 

X : Dimensionless horizontal coordinate 

Y : Dimensionless vertical coordinate 

 
Greek symbols 

α : Thermal diffusivity [m2s-1] 

β : Thermal expansion coefficient [K-1] 
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δ : Dependent dimensionless variable 

ϕ : Solid volume fraction of nanoparticles 

μ : Dynamic viscosity [kgm-1s-1] 

υ : Kinematic viscosity [m2s-1] 

τ : Dimensionless time 

θ : Non-dimensional temperature 

ρ : Density [kgm-3]  

σ : Electric conductivity 

ψ : Stream function 

λ0 : Dimensional period of the magnetic field 

λ : Dimensionless period of the magnetic field 

 

Subscript 

h : Hot surface 

c : Cold surface 

nf : Nanofluid 

bf : Base fluid 

sp : Solid particle 

L : Local 
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CHAPTER ONE 

Fundamental of Nanofluids and Literature Review 
  

1.1 Introduction  
Fluid dynamics is a vital science used to solve many aeronautical, chemical, mechanical, civil 

engineering, and many other engineering applications. A subject discipline, fluid dynamics that 

deals with fluids in motion and aerodynamics study air and other gases in motion. In temperature 

transport science that inquires, the temperature is transferred due to the difference of temperature 

from one system to another, not only in thermal energy but also in predicting the rate of heat 

exchanges that occur under particular conditions. In any industrial process, the temperature must 

be moved, removed, or added from one system to another. The significant issues in industrial 

processes are the saving of energy,  enhancement of thermal rating, minimization of process time, 

the performance of the equipment with the extension of working life that may be created by the 

augmentation of cooling or heating in any industrial process. Consequently, heat transfer turns into 

a leading task in industrial essentiality. A considerable amount of research has been done on 

thermal performance to understand the thermal performance in many engineering applications, 

which is one of the most elementary concerns to researchers.  

   
The investigation of heat transport has an extensive significance to engineers due to its almost 

universal occurrence in various branches of engineering. The primary limitation of increasing 

temperature transport performance is the low thermal conductivity of base fluids. Nanofluids are 

a novel class of liquid that can be employed to augment the heat transport rate. On account of the 

tiny sizes and very specific surface areas of the nanoparticles, there are some superior 

characteristics of nanofluids, such as higher thermal conductivity. Furthermore, metallic 

nanoparticles have more significant thermal conductivity than base fluids. Free convection within 

different cavities has recently obtained great attention due to its direct application in various 

engineering fields such as solar engineering applications, thermal insulation systems, geophysical 

fluid mechanics, etc. Understanding natural convection within the semi-circular enclosure is also 

helpful for the design and operation of heat exchangers or solar collectors. The main advantages 

of natural convection cooling systems are their simplicity, low noise, and minimum cost. 
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1.2 Natural Convection Heat Transfer 
Convection is a mode of temperature transport in the form of thermal energy from a solid surface 

to neighboring moving fluids or gas. The motion of fluid that occurs by natural like buoyancy force 

is known as natural convection. The most common examples of free convection are the phenomena 

of the land and sea breeze. The key driving mechanism of natural convection is the difference in 

density due to the temperature difference. Natural convection is such a mode of flow or motion of 

a liquid (air, gas, water, etc.) in which the movement of the fluid is not generated by an external 

source such as a suction device or fan or pump, etc. In natural convection, the driven force is 

gravity. Natural Convection has attracted a great deal of attention from researchers due to its wide 

engineering applications.   

 

Figure 1.1: Mechanism of natural convection heat transport from a hot body. 
 
Suppose a heated substance is revealed in cold air (see Figure 1.1). The temperature of adjoining 

air will increase due to the heat drop outside of the heated substance. Consequently, a thin layer of 

heated air surrounding the substance is formed, and heat will be transformed to the adjacent outer 

comparatively cold layer from this heated layer. The density of the adjoining air of the heated 

substance is lower because of the higher heat of the adjacent of the heated substances. As a result, 

the heated air moves upwards. This type of movement of air/fluid is known as natural convection. 

Natural convection is used in various engineering applications such as heat loss from steam 

pipelines in power plants, heating of houses by electrical baseboard heaters, cooling of commercial 

high voltage electrical power transformers, cooling of nuclear power plants, household ventilation, 

solar ponds, cooling of electronic apparatus named transistors, chips using temperature sink fin, 

and fluid flows around shrouded heat dissipation fins. 

Cool air 

Warm air 
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1.3 Magnetohydrodynamics (MHD)  
Magnetohydrodynamics (MHD) is derived from the words magneto, hydro, and dynamics, where 

the phrase magneto means magnetic field, hydro indicates liquid or fluid, and dynamics implies 

movement. It is a branch of magneto fluid dynamics that deals with the flow of electrically 

conducting fluids, whether liquid or gaseous, in electric and magnetic fields. For example, 

plasmas, liquid metals, salt water, liquid air, electrolytes, etc. It discusses the dynamics of the 

substance in moving in an electromagnetic field where currents are established in the substance by 

induction modified field so that the flow field and dynamics equations are coupled. Hannes Alfven 

received Nobel Prize for introducing MHD in 1971. MHD creates currents in moving conducting 

fluids and propagates forces into the liquid, changing the magnetic fields themselves. An essential 

new process named magnetohydrodynamics power generation that receives attention worldwide. 

  
The electrical currents are generated with the effect of the magnetic field by the movement of the 

conducting fluid that modifies the magnetic field as well as magnetic field action. The action of 

the magnetic field assists in rising the mechanical forces, which modify the flow of the fluid. For 

the poor conductor of electricity, whether it is gases or liquids, electromagnetic forces will be 

generated, which may be the same order of magnitude as the hydro-dynamical and inertia forces. 

Thus, the equation of motions or other forces will have to take these electromagnetic forces into 

account. Various engineering problems and naturalistic real-life phenomena are susceptible to the 

analysis of MHD. Geophysicists employ MHD in the interactions of magnetic fields and 

conducting fluids present in the around heavenly bodies. The principle of the characteristics of 

MHD phenomenon is widely applied by engineers in space vehicle propulsion, cooling of a nuclear 

reactor by liquid sodium, heat exchangers, pumps, and flow meters, fusion technology, and 

creating novel power generating systems,. 

 
In summary, the equations that describe MHD combine the Navier-Stokes equations of fluid 

dynamics and Maxwell’s equations of electromagnetism. These partial differential equations can 

be solved simultaneously, either analytical or numerical. The phenomenon of MHD is the outcome 

of the mutual effect of a magnetic field and conducting fluid flowing across it. In this way, an 

electromagnetic force is created in a fluid flowing across a transverse magnetic field, and the 

resulting current and magnetic field combine to create a workforce that resists the motion of the 

fluids. The current also generates its own magnetic field, which distorts the original magnetic field. 
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Magnetohydrodynamics wave and downstream and upstream wave phenomenon can be produced 

by the disturbance of the effect of magnetic field or the movement of liquids by the MHD. This 

phenomenon is very common in various engineering applications and occurs in nature. The science 

of MHD is able to describe this engineering processes and natural phenomenon.   

 
1.4 Steady and Unsteady Flow 
The properties of the fluid (i.e., pressure, velocity, temperature, density, and other properties) can 

be functions of time or space. If the flow characteristics of liquids at every point in the flow field 

do not depend on time, it is known as steady flow. Mathematically, steady flow can be written as: 

0
P
t





          (1.1) 

where P  represents the properties such as density, velocity, or pressure, etc. Thus, P = P (x, y, z). 

 
 

 
Figure 1.2: Steady and unsteady flow 

 
Non-steady or unsteady flow is such flow in which the flow characteristics of the fluid (i.e., 

pressure, velocity, temperature, density, and other properties) depend on time. At the beginning of 

any process, the flow is unsteady, and it may become steady or zero flow in time. For Instance, the 

flow of water in a tap that has just been opened is unsteady to start with and becomes steady after 

a few times. The analysis of unsteady flows is undoubtedly more complex to calculate than steady 

flows because irregular flow conditions vary concerning both space and time, i.e., they function 

both space and time. The unsteadiness can be due to natural processes, human actions, or accidents 

and incidents. In the processes of the unsteady flow, energy, and mass within the control volume 
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vary continuously. It is a transient phenomenon. Flood-wave movement is a real-life example of 

unsteady flow. Mathematically, the unsteady flow can be written as: 

0
P
t





          (1.2) 

where P  represents the properties such as density, velocity, or pressure, etc. Thus, P = P (x, y, z). 

 
1.5 Prandtl Number  
The Prandtl number (Pr) is a non-dimensional number which approximates the ratio of momentum 

diffusivity (kinematic viscosity) and thermal diffusivity. It is named after German physicist 

Ludwig Prandtl, who initiated the concept of the boundary layer in 1904 and made a significant 

contributions on the theory of the boundary layer. Small Prandtl number (Pr << 1) represents the 

dominant thermal diffusivity, i.e., heat diffuses very quickly throughout the liquids. In contrast, a 

large Prandtl number (Pr >>1) represents the momentum diffusivity that dominates the behavior, 

i.e., heat diffuse very slowly in liquid relative to momentum. Pr = 1 (approximately) indicates the 

rate of diffusion of heat and momentum throughout the fluid are approximately the same. It can be 

expressed as follows: 

Momentum diffusivity /
Pr

Thermal diffusivity /
p

p

c
k c k

  

 
         (1.3) 

where, υ represents kinematic viscosity [m2s-1], α indicaes thermal diffusivity [m2s-1], cp represents 

specific heat at constant pressure [Jkg-1k-1], and k represents thermal conductivity [Wm-1k-1] 

 
1.6 Hartmann Number  
The Hartmann number (Ha) is a non-dimensional number which indicates the ratio of 

electromagnetic force and viscous force. This non-dimensional number measures the importance 

of drag forces resulting from viscous forces and induction of magnetic effects. In addition, it 

characterizes the flow of conducting fluid in a transverse magnetic field. Because it is a product of 

the magnetic flux density, a characteristics length, and square root of the ratio of electrical 

conductivity to viscosity. It is defined as: 

0
Electromagnetic force

Viscous force
Ha B L




        (1.4) 

where, B0 represents magnetic field [Nm-1A-1], L represents characteristics length [m], σ indicates    
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electrical conductivity [Ω-m], and μ represents dynamical viscosity [kgm-1s-1]. 

  
1.7 Rayleigh Number  
The Rayleigh number (Ra) is a non-dimensional number connected with the flow of fluids by 

buoyancy force. It is involved with free convection or natural convection. The value of Rayleigh 

number indicates wheater the fluid is convection or conduction. It is the property of a fluid that 

determines how heat is transferred through the liquid. It represents the product of the Grashof 

number and Prandtl number. The ratio of buoyancy forces and viscous forces multiplied by the 

percentage of momentum diffusion and thermal diffusion. The values of the Rayleigh number is 

below a critical value indicates the primary heat transfer mood is conduction, whereas it exceeds 

the critical value indicates that temperature transport is mainly by convection. The most significant 

use of the Rayleigh number is that it characterizes the laminar to turbulence transition of a natural 

convection boundary layer flow. It can be expressed as: 

3 3

2

( ) ( )
.Pr .h c h cg T T L g T T L

Ra Gr
 

  

 
        (1.5) 

where, Gr represents Grashof number, Pr represents Prandtl number, g represents gravitational 

acceleration [ms-2], β represents the coefficient of thermal expansion [K-1], α represents thermal 

diffusivity [m2s-1], Th represents surface temperature [K], Tc represents bulk temperature [K], L 

represents characteristics length [m] and υ is kinematic viscosity [m2s-1]. 

 

1.8 Nusselt Number 
The Nusselt number (Nu) is a non-dimensional number that illustrates augmentation of 

temperature transport througout the fluid layer because of convection comparative to conduction 

across the same layer of the fluid. It represents how much heat is transferred due to fluid motion 

compared to the heat transfer by fluid by the process of conduction. It is defined as follows: 

hL
Nu

k
           (1.6) 

where k represents the thermal conductivity of the fluid, h represents the heat transfer coefficient,  

and L  represents characteristics length. At the beginning of twenty century, Wilhelm Nusselt first 

introduced this non-dimensional number, which made significant contributions to convection 

temperature transport. It is viewed as the non-dimensional convection heat transfer coefficient. 
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The more significant Nusselt number indicates a large temperature gradient at the surface and high-

temperature transport by convection. The Nusselt number Nu = 1, indicates that all temperature is 

transported through conduction and fluid is stationary. The higher the Nusselt number (Nu > 1), 

the motion of the fluid augments the temperature transport through advection.  

 
1.9 Definition of Nanofluids 
For industrial, engineering, and energy system, the augmentation of heat transfer within enclosures 

is a burning issue. Generally, to transfer the temperature from one system to another, water, 

ethylene glycol, mineral oils are used as a fluid. But these fluids are not enough to fulfill the 

demand for higher heat exchangers in modern technology, for instance, microelectronics, power 

stations, production of chemicals, etc. The fluid, as mentioned above, is not more effective in the 

case of the heat exchanger. To fulfill the demand, it is essential for such fluid that has an efficiency 

of containing higher temperature. Nanofluids are used to satisfy the need for modern technology. 

The important class of fluids such as nanofluids which helps to advance nanotechnology in various 

ways. Generally, it is a dilute liquid suspension of conventional fluid and nano-shaped particles 

where nanoparticle size is smaller than 100nm. Nanofluid is a new class of nanotechnology-based 

temperature transport fluid. 

 
 

 

 

 

 

 

 
 
 
 

 
Figure 1.3: Making of Nanofluid 

 
The thermal conductivity of water containing three different nanoparticle suspensions such as Cu, 

TiO2, Al2O3, and SiO2 is more remarkable than pure water, where the size of the nanoparticles has 
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been maintained between 1nm to 100nm. Nanofluids are a novel that contains nanoparticle fluid 

suspensions, which was first introduced by Choi in 1995 at Argonne national laboratory, USA to 

denominate a novel class of nanotechnology-based temperature transport liquids. The destination 

of this novel fluid consisting of conventional fluid and nano sized particles is that achieving the 

maximum feasible heated characteristics at the most negligible possible concentrations (preferably 

< 1% by volume) by stable suspension of nanoparticles (preferably < 10nm) and uniform 

dispersion of it into the base fluid. Much research on nanofluids has been done to understand 

nanofluids' behavior to utilize them as temperature transport augmentation in various industrial 

processes such as transportation, heat exchanger, biomedicine, electronics, and nuclear reactors.  

 
The heat transfer performance of nanofluids is significantly increased by suspending nanophase 

particles in heating or cooling fluids. The principle causes are listed follow as: 

 The suspension of nano-sized particles into base fluid enhance the area of the surface as 

well as the capacity of the temperature of the liquid.  

 The suspending nano sized particles augment the effectiveness of the thermal conductivity 

of the fluids. 

 The mixing fluctuation and turbulence of the fluids are intensified. 

 The dispersed nano shaped particles fatten the gradient of the transverse temperature of the 

liquids. 

 

1.10 Nanoparticles 
Nanoparticles are widely engaged in many industrial and engineering processes to fulfill the higher 

heat transfer rate demand. Nanoparticles that are employed to produced nanofluid is made from 

different material like oxide ceramics, for examples,  CuO, Al2O3, and ZnO; chemically stable 

metals, for examples, aluminum, gold, silver, copper; nitride ceramics, for examples,  AIN, and 

SiN;  metal carbides, for examples, SiC, carbide ceramics, for examples, SiC, and TiC); 

semiconductors, for examples, TiO2, and SiC; metals, for examples, Cu, Au, and Ag; metal oxides, 

for examples,  alumina, titanium, silica, zirconia, and copper oxide; carbon in different forms, for 

examples, carbon nanotubes, graphite, and diamond. The principal factors of nanoparticles that are 

taken into account are ease of availability, costs, thermal conductivity, the tendency of the particles 
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to hold them into the base fluid with negligible agglomeration, etc. There are two methods of 

production of nanoparticles such as (i) physical methods, including inert-gas condensation (IGC): 

mechanical grinding, and (ii) chemical methods, including chemical vapor deposition (CVD): 

spray pyrolysis, thermal spray, microemulsions, and chemical precipitation, etc. Most of the 

nanoparticle shows better heat transfer characteristics which are widely engaged in practical 

applications. Some of them also less costly and environmentally friendly.  Most of the 

nanoparticles are made up of a few hundred of atoms. The diameter of the small molecules and the 

atoms is 0.1nm, but the diameter of the nanoparticles and the atom is 1-100nm.  

 

 
 

Figure 1.4: Copper oxide nanoparticles 

 
1.11 Nanoparticles Size 
A nanoparticle is a tiny particle that is undetectable by the human eye, ranging between 1 to 100 

nanometers. The physical and chemical properties of nanoparticles can exhibit significantly 

different from their larger material counterparts. The particle size is significant for preparing a 

practical nanofluid. The reasons for fixing up the size of the nanoparticles are listed below: 

(i) The size of the particles is important in making nanofluids stable. Dense nanoparticles can 

be suspended in liquids because the particles have an extremely high ratio of surface area 

to volume so that the interaction of the particle surface with the fluids is strong enough to 

overcome differences in density. 



   

10 
 

(ii) The size of the particles is essential in making nanofluids with novel properties. The tiny 

size of the particles is affected by transport mechanisms at the nanoscale. 

(iii) The size of the particles is significant in making nanofluids useful. For instance, the nano-

sized particles are similar to bio-molecules employed successfully in various biomedical 

applications such as drug delivery. 

 

1.12 Base Fluids 
The Base fluid is conventional fluid. Many types of liquids with low thermal conductivity can be 

used successfully, and effectively as base fluid, such as engine oil (EO), water (H2O), ethylene 

glycol (EG), glycerol, pump oil, oil, kerosene, and other lubricants, polymer solutions, bio-fluids, 

glycerine and so on. Many of them are widely engaged in different industrial processes and 

engineering applications. 
 
1.13 Solid Volume Fraction of Nanoparticles 
The characteristics of nanofluid are changed by nanoparticles volumetric fraction, nanoparticles 

size, and nanoparticles shape. The nanoparticle volume fraction (ϕ) is divided by the volume of all 

constituents of the nanofluids. In an ideal solution, volume fraction coincides with the volume 

concentration, where the volumes of the constituents are additive. That is, the volume of the 

solution is equal to the sum of the volumes of the nanoparticles. The sum of volume fractions of 

the solution is equal to 1. i.e.  

1

1
N

i
i




           (1.7) 

 
1.14 Background of the Study 
Natural convection temperature transport is a widespread phenomenon in many engineering 

applications. Various researchers have given it abundant importance. Different researchers have 

performed various experimental and numerical studies to understand the free convection 

temperature transport phenomenon properly. Velocity distribution and temperature distributions 

in natural convection have a vital role in controlling components of various industries. For 

instance, nuclear reactor cooling, electrical systems, fire engineering, enhancing cooling systems 

in the vehicle, heat exchangers, petroleum reservoirs, and so on are real-life examples. The benefits 
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of the use of natural convection are its simplicity. The fundamental problem of free convection in 

enclosures has been accepted significant consideration to researchers. Many investigations on the 

natural convection mechanism of nanofluids within different chambers were investigated very 

recently. Most of these enclosures commonly used effectively in industries are triangular, 

trapezoidal, cylindrical and rectangular, semi-circular etc.  

  
During the last two decades, the investigation of nanofluids' apparent thermal conductivity, which 

contains different solid nanoparticles, has been applied effectively to produce improvements in 

heat transfer procedures. A novel generation of fluids called nanofluids is replaced instead of 

conventional thermal fluids. To investigate the impacts of nanofluids, much research is carried out 

by different researchers [1-2]. They investigated augmentation of thermal conductivity of the fluids 

that contain nano-sized particles is more significant. By suspending metallic nanoparticles into 

base liquid, a new class of fluid introduced by them has higher thermal conductivity compared to 

conventional liquids and can be employed as temperature transport fluids. Das et al. [3] 

theoretically performed the effects of nanofluids on convective temperature transport modeling of 

thermal conductivity of nanofluid and the application of nanofluids in science and engineering. 

Ma et al. [4] also performed about the temperature transport capability of a nanofluid in an 

oscillating heated pipe. This investigation tried to develop highly efficient cooling devices.  

  
Nowadays, Nanofluids are commonly engaged in the enhancement of temperature transport. 

Different types of nanoparticles such as Al2O3, Cu, TiO2, Fe3O4, CuO, Co, Fe2O3, silver, silicon, 

carbon nanotubes are available commercially. Water, kerosene, engine oil, pump oil, kerosene, 

and so on are used widely as conventional fluids. The very common nanofluids such as TiO2-

water, Cu-water, Al2O3- ethylene glycol, CuO-water, Al2O3-water are used successfully for the 

augmentation of heat transfer. Buongiorno [5] performed convective temperature transports of 

nanofluids. The results narrated that nanofluids have higher heated conductivity compared to the 

base fluid. Murshed et al. [6] also investigated the thermal conductivity enhancement of titanium 

dioxide and water-based nanofluids. The outcomes illustrated that the shape and size of 

nanoparticles significantly affect the enhancement of thermal conductivity. Ece and Buyuk [7] 

performed about time-independent free convective laminar flowing within an inclined rectangle 

shape enclosure, including the influence of the magnetic field.  
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Extensive attention to the field of nanofluids has been obtained because of their enriched thermo-

physical properties. Nanofluids are used effectively as heat exchangers in industries to harvest 

solar energy to produce renewable energy. The application of nanofluids in various heat transfer 

devices is widely engaged, such as solar collectors, heat exchangers, electronic cooling, thermal 

storage system, radiators, and refrigeration systems. Nanoparticles can improve the thermal 

characteristics of conventional fluid. Hwang et al. [8] performed the characteristics of buoyancy-

driven temperature transport of Al2O3–water nanofluids within a rectangle shape enclosure. The 

results indicate that Al2O3–water nanofluid is more stable for enhancing nanoparticles volume 

fraction and smaller size of nanoparticles. Jou and Tzeng [9] investigated numerically two-

dimensional free convection temperature transfer within a rectangular cavity which contains 

nanofluids. The numerical outcomes displayed that the mean rate of temperature transport 

augments with the increase of the buoyancy parameter and the addition of nanoparticles. 

 
The heat transport and fluid flow introduced by the buoyancy-driven parameter in a heated cavity 

is an important topic due to wide applications in the cooling of electronic heaters. Oztop and Nada 

[10] investigated the characteristics of free convective fluid flow and temperature transport of 

nanofluids inside a rectangle enclosure numerically. Different types of nanoparticles were used for 

this numerical investigation. The output of this investigation showed that the average Nusselt 

number increases for the increase of nanoparticles volume fraction and Rayleigh number. The 

outcomes also showed that the highest heat transfer was also observed for copper nanoparticles. 

Ghasemi and Aminossadati [11] investigated free convective heat transfer within an inclined 

cavity which contains CuO-water nanofluids. The results indicate that the addition of nanoparticles 

enhances the heat transfer rate and the Rayleigh number significantly increases the performance 

of heat transfer and fluid flow.  

  
Aminossadati and Ghasemi [12] also studied the enhancement of the natural convective flow of 

nanofluids within an isosceles triangle shape enclosure. They found that thermal performance 

increases with the increase in the Rayleigh number and solid volume fraction of nanofluids within 

the chamber. Saleh et al. [13] performed free convective temperature transport within the 

trapezoidal cavity containing copper-water and Al2O3-water nanofluids. They showed that the rate 

of heat transfer enhances more with the increase of copper nanoparticles. Rashmi et al. [14] 

performed about the study of computational fluid dynamics on free convective temperature 
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transport using Al2O3-water nanofluids. The simulated numerical values of effective thermal 

conductivity show that heat transfer decrease with the increase of volume fraction of nanoparticles. 

Sheikhzadeh et al. [15] investigated numerically the heat transfer and buoyancy-driven fluid flow 

within a rectangle shape enclosure that contains TiO2–water nanofluid. This study predicts that the 

mean Nusselt number augments with the increment of nanoparticle volume fraction. 

 
Buoyancy initiated natural convective fluid flow, and temperature transport is a significant 

phenomenon in science and engineering for its numerous potential applications such as electronic 

cooling, electronics, heat exchangers, automotive, etc. Buoyancy forces and temperature 

differences are the leading causes of natural convective heat transfer. Arani et al. [16] studied the 

numerically free convective flow of laminar and incompressible Ag-water nanofluids inside a 

square enclosure. The outcomes predict that heat transfer rate along heated walls enhances with 

the increase of nanoparticle volume fraction. Solemani et al. [17] investigated finite element 

analysis of natural convective heat transport of Cu–water nanofluid within a semi-annulus cavity. 

Nasrin and Parvin [18] analyzed the heat transfer mechanism of free convection within a 

trapezoidal cavity, which contains copper-water nanofluid, by using the finite element technique. 

The numerical results showed that the physical parameters named Rayleigh number, Prandtl 

number, and nanoparticles volume friction significantly impact heat transfer. 

  
The science which conducts the reciprocal interaction of the conducting liquid and magnetic field 

is known as MHD. Various investigations have been done on MHD regarding different geometry 

and various boundary conditions. MHD has many applications like crystal process, solar 

technologies, boiler, manufacturing technology, chemical and food processing, etc. MHD 

convection plays a vital role in materials engineering. Sheikholeslami et al. [19] researched MHD 

free convection using Cu-water nanofluid within an inclined half annulus based on the finite 

element method. The parameters such as Rayleigh number and Hartmann number significantly 

control the convection flow and the rate of heat transfer. Nasrin and Alim [20] performed natural 

convective flow and heat transport of nanofluids inside a cavity using two different nanoparticles. 

Hussain and Hussain [21] investigated heat transfer enhancement on free convective within a 

parallel shape cavity using Cu-water nanofluid. The results show that the addition of copper-water 

nanofluid remarkably increases the rate of heat transfer.  
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Malvandi et al. [22] performed the impact of magnetic fields on convection temperature transport 

within an annulus using Al2O2-water nanofluid. Rahman and Al-Hatmi [23] investigated a 

comprehensive study about the characteristics of magneto-hydrodynamics temperature flow. The 

results show that the velocity of the nanofluids enhances for buoyancy parameter and volume 

fraction of nanoparticles whereas decreases with the increase of Hartmann number. In addition, 

the heat transfer rate is higher in TiO2-water nanofluid compared to the heat transfer rate in Al2O3 

-water and Cu-water nanofluids. Koopaee and Jelodari [24] investigated the impact of the 

inclination angle of magnetic field on time-dependent free convective temperature transport of 

nanofluids within an enclosure where Al2O3 was used as nanoparticles. Mejri et al. [25] 

investigated the effect of magnetic field on laminar natural convection of Al2O3 nanofluid within 

the cavity heated sinusoidally. The heat transfer rate enhances with the increase of Hartmann 

number and Rayleigh number, whereas it decreases with the addition of nanoparticles.  

  
Sheikholeslami et al. [26] performed MHD effects on CuO–water nanofluid flow and heat transfer 

with Brownian motion. This study predicts that the Rayleigh number enhances heat transfer 

whereas decreases with a higher Hartmann number. Rahman et al. [27] investigated time-

dependent MHD convection using Cobalt–kerosene ferrofluid within a semi-circular cavity 

employing finite element analysis. This study predicts that the rate of heat transfer decreases for 

the intensity of the magnetic field. Rahman et al. [28] performed about time-dependent fee 

convective temperature flow of CNT-water nanofluid within an enclosure. The results predict that 

the volume fraction of nanoparticles can control the flow field, temperature distribution, and heat 

transfer. Alsabery et al. [29] performed the free convection flow of nanofluids within a square 

cavity, including sinusoidal temperature variations. The results show that sinusoidal temperature 

variations significantly enhance the convection heat transfer rate. 

 
Ouyahia et al. [30] investigated the MHD thermal conductivity of titanium dioxide nanofluids 

within a triangle cavity. They found that the thermal performance within the enclosure was 

significantly changed by the solid volume fraction of nanoparticles and Rayleigh number. 

Mojumder et al. [31] investigated the effects of the magnetic field upon the free convective of 

ferrofluid within a half-moon-shaped enclosure. The results indicate the rate of heat transfer 

reduces significantly with the increment of the magnetic field. Kalbani et al. [32] performed about 

the time-dependent MHD free convectional fluid flow and temperature transfer of nanofluids 
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within a square cavity, taking into account the Brownian motion of the nanoparticles. The results 

indicated that the enhancement of heat transfer strongly depends on nanoparticles diameter and 

nanoparticles Brownian motion. In addition, the rate of heat transfer increases for the increment of 

nanoparticle volume fraction and Rayleigh number, whereas it decreases for higher Hartmann 

numbers. The highest heat transfer rate is observed for Kerosene-based nanofluids than for engine 

oil or water-based nanofluids.  

 
Uddin et al. [33] performed a comprehensive study of the fundamental and development biosphere 

of the nanofluids. This study narrated widely the properties and fundamental concepts of 

nanofluids and the potential application and advantages of nonofluids in various sectors. Parvin et 

al. [34] investigated the performance of natural convective heat transfer in nanofluid within an 

enclosure considering non-isothermal boundary conditions. They stated that heat transfer increases 

with the increase of the volume fraction of nanoparticles. Rahman et al. [35] investigated time-

dependent free convective heat transfer of nanofluid within a cavity. They studied that heat transfer 

rate increases with the increase of nanoparticle volume fraction. Sheikha et al. [36] analyzed the 

free convective temperature flow of nine different nanofluids, including various shapes of the 

nanoparticles within a trapezoidal enclosure. This research shows the solution becomes the steady-

state with a strong buoyancy force, and the highest heat transfer rate is observed for cobalt-engine 

oil nanofluid and blade shape nanoparticles.  

 
In thermal engineering, the enhancement of heat transfer is essential. Heat transfer is a science 

which deals with the transfer of thermal energy. Energy is such a necessary quantity that must be 

transferred before performing work on any system. The energy transformation is created by heat 

or work. Heat transfer occurred from one system to another for the temperature difference between 

two systems. Heat transfer is necessary for our daily life for drying, refrigeration, cooking, etc. 

Qi et al. [37] investigated about free convective temperature flow of Cu/diamond–gallium 

nanofluids within a rectangle cavity. The results show that the enhancement of heat transfer can 

be improved 73.0% by Cu–Ga nanofluid compared to liquid metal gallium at the low-temperature 

difference (ΔT = 1K). Parvin and Akter [38] performed the impact of MHD on the natural 

convective flow of nanofluids within a prismatic enclosure. The results indicated that the rate of 

heat transfer changed significantly for the increment of Hartmann number. Uddin and Rahman 

[39] also investigated finite element analysis of free convective flow nanofluids within an annulus. 

https://www.sciencedirect.com/topics/engineering/nanoparticle
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In everyday life, temperature interchanges are the principal components of many devices. For 

example, domestic water heating, air-conditioning, oil refineries, marine gas turbines, power 

plants, and land vehicles. These devices' mechanism depends on providing a flow of thermal 

energy of two or more systems of heat differences. Kalbani et al. [40] also investigated MHD 

buoyancy introduced heat transfer of nanofluids within a square enclosure. This investigation 

predicts that heat transfer rate increases significantly with the increment of nanoparticle volume 

fraction and Rayleigh number, whereas it decreases for Hartmann number. The maximum rate of 

heat transfer was observed for blade shape nanoparticles than other shapes of nanoparticles. Uddin 

and Rasel [41] investigated unsteady free convection heat transfer of copper oxide-water nanofluid 

within a cavity. Uddin [42] investigated the unsteady MHD natural convective temperature flow 

of copper-water nanofluid within a semi-circular enclosure. The results show that the heat transport 

rate significantly depends on the magnetic field. 

 
Mehryan et al. [43] investigated the effects of horizontal magnetic field on the free convection 

flow of ferrofluid within a square enclosure. This investigation predicts that the magnetic field 

period enhances the intensity of convective flow circulation and heat transfer rate. Mahian et 

al. [44] performed a comprehensive study of nanofluids and mathematical modeling and its 

numerical simulation, challenges of nanofluids, improvement of the nanofluid flow, and heat 

transfer modeling. Kalbani and Rahman [45] also investigated the effects of MHD on the 

convective flow of nanofluids within an inclined square cavity. They studied that heat transfer rate 

within the cavity significantly depends on nanoparticles volume fraction, Hartmann number, and 

Rayleigh number. Balushi et al. [46] performed unsteady free convection flow of magnetic 

nanoparticles within a square cavity. They investigated that the highest heat transfer rate is 

observed for Kerosene-based nanofluids. Also, the mean heat transfer rate increase for the volume 

fraction of nanoparticles and Rayleigh number, and it becomes highest for the blade shape of 

nanoparticles.  

  
The performance of heat transfer in many engineering systems is an essential topic from an energy-

saving perspective. The elementary limitation of the conventional fluids named water, oils, and 

kerosene is low thermal conductivity. Generally, thermal conductivity is higher of solid particles 

than liquids. For instance, the thermal conductivity of copper is 700 times greater than water and 

3000 times greater than engine oil. Izadi et al. [47] performed the effects of periodic magnetic field 
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on the free convective flow of hybrid nanofluids within a permeable chamber. They conclude that 

the periodic magnetic field has a non-monotonic influence on convective heat transfer 

performance. Marzougui et al. [48] performed MHD convective flow of copper-water nanofluids 

within an enclosure. They showed that heat transmission and flow field affects significantly by 

nanoparticle volume fraction and Hartmann number. Giwa et al. [49] investigated the heat transfer 

performance of nanofluids in a magnetic field in a square enclosure. They studied that heat transfer 

rate significantly depends on the types of nanofluids and the Brownian motion of nanoparticles. 

They conclude that magnetic field strength enhances heat transport rate.  

 
From the above literature survey, it is obvious the convective heat transfer under the influence of 

magnetic field depends in a cavity with nanofluids depends on several mode parameters such as 

Rayleigh number, Hartmann number, the solid volume fraction of nanoparticles, Brownian motion 

of the nanoparticles, shape of the nanoparticle and size of the nanoparticles, etc. The characteristics 

of heat transfer and fluid flow depend on types of nanoparticles and base fluid and cavity geometry 

with the variation of the above-mentioned parameters. This numerical study aims to examine the 

unsteady natural convection flow and heat transfer of a copper-water nanofluid in a semi-circular 

enclosure under the influence of a periodic magnetic field. Different types of nanofluids, for 

instance, Cu, Co, Fe3O4, Al2O3, Ag, Zn, CuO, and TiO2, and different types of base fluid such as 

water, kerosene, engine oil, and ethylene glycol are used to investigate the best heat transfer 

performance where Cu-H2O nanofluids have been employed as the default nanofluids. Different 

types of thermal boundary conditions are also used to analyze the best heat transport performance. 

This study has much specific importance because this phenomenon is a widespread practice in 

many industrial and engineering applications. 

 
1.15 Motivation of Research 
The literature review shows that the MHD natural convection heat transfer and fluid flow in 

cavities have received considerable attention due to its application in several thermal engineering 

problems. It is also mentioned that several authors considered natural convection, different types 

of nanofluids, and different types of enclosures, with or without uniform MHD and time-

independent cases individually. But no study was investigated about the unsteady natural 

convection fluid flow and heat transfer within a semi-circular cavity filled with nanofluids under 

the influence of the periodic magnetic field, including Brownian motion of nanoparticles. This 
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study has many engineering applications and real-life applications such as heat exchangers, 

cooling or heating electrical equipment, biomedical engineering, etc. Therefore, extensive 

numerical studies are essential to ensure efficient performance of fluid flow and heat transfer, to 

observe characteristics of vertically periodic magnetic field on natural convection, to understand 

the variation of fluid flow and heat transfer of nanofluids under the influence of non-uniform 

magnetic effect and Brownian motion of nanoparticles for different physical changes such as 

Rayleigh number, Hartmann number, nanoparticles volume fraction, and so on with different 

boundary conditions that form the basis of the motivation of behind the selection of the present 

study.   

 
1.16 Main Objectives of the Study 
The present study investigates numerically time-dependent natural convective heat transfer inside 

a semi-circular cavity filled with nanofluids (copper-water) with Brownian motion of nanoparticles 

via the periodic magnetic field. The outcomes of different model parameters such as Hartmann 

number, nanoparticles volume fraction, and Rayleigh number will be presented in terms of 

streamlines, isotherms, and heat transfer rate, local and average Nusselt number. The main 

objectives of the proposed study are as follows: 

 To formulate the mathematical model for the physical problem regarding natural 

convection heat transfer and fluid flow and transfer the governing equations into the non-

dimensional form using appropriate transformations. 

 To solve the governing equations numerically using finite element method (FEM) of 

Galerkin weighted residual type. 

 To validate the computational procedure and results found from this study with existing 

literature or other published works. 

 To investigate the effects of various physical parameters such as Hartmann number, Period 

of the non-uniform magnetic field, Rayleigh number, the solid volume fraction of 

nanoparticles, and nanoparticles diameter, Brownian motion of the nanoparticles on the 

streamlines and isotherms inside the cavity. 

 To illustrate the numerical results of the heat transfer rate concerning the average Nusselt 

number graphically for the parameters mentioned earlier. 
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1.17 Outline of the Thesis 
This investigation is concerned with the effects of unsteady natural convective heat transfer and 

fluid flow of copper-water nanofluid within a semi-circular enclosure under the influence of 

periodic magnetic field considering the Brownian motion of the nanoparticles. In chapter one, 

some basic concepts related to this study and the fundamentals of nanofluids have been presented 

and discussed, and relevant discussion on dimensionless parameters. A brief discussion of the 

literature review of the past studies on fluid flow and heat transfer in various cavities or channels 

under different boundary conditions is presented. Also, a brief introduction is given with the main 

objectives and inspiration behind selecting the present study. In chapter two, the computational 

techniques of the current problem have been discussed. The finite element method has been carried 

out elaborately. The solution domain has been discretized into finite element meshes of non-

uniform triangular elements. In chapter three, the nonlinear governing partial equations with 

boundary conditions have been transferred into a non-dimensional form using a set of 

transformation variables. The finite element formulation of the non-dimensional partial differential 

equations is also performed. In chapter four, numerical analysis and comparison with other 

previously published work have been discussed. In chapter five, the outcomes of different physical 

parameters, for example, Rayleigh number, Hartmann number, nanoparticles volume fraction, size 

of the nanoparticles, the diameter of the nanoparticles, are presented in terms of streamlines, 

isotherms, and average Nusselt number and discussed them from a physical point of views. 

Different types of nanoparticles are also considered to calculate the heat transfer performance 

regarding the average Nusselt number. Different types of thermal boundary conditions are also 

taken into consideration to examine the best heat transfer performance. In chapter six, finally, the 

main achievements and some ideas of further work have been summarized. 
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CHAPTER TWO 

Computational Procedure 
 

2.1 Computational Fluid Dynamics 
The computational Fluid Dynamics (CFD) method is becoming very popular for technological and 

scientific interests without doing any experiments because it is time-consuming and economical 

for solving fluid flow problems. Experimental investigation of temperature transport and fluid flow 

could not be adequately achieved in fluid dynamics due to their limited flexibility. The analytical 

methods of solution are not also more helpful due to the engagement of complex geometric bodies, 

a large number of variables, different boundary shapes, and conditions. Consequently, numerical 

methods are the best alternative for performing the solution of practical problems of partial 

differential equations. For complicated geometry or some vital feature that cannot be solved with 

a standard method, CFD is used to solve such engineering problems by computer-based simulation. 

CFD involves the information of a set of algebraic equations, which constitutes a practical 

approximation of a natural living system. The outcomes of the computational procedure can 

understand the performance of a system. Thereby, researchers apply CFD simulation codes with 

finite grids to make realistic solutions physically with reasonable accuracy. The exact and 

dependable prophecy of complex geometry greatly fulfills the intense demand for more excellent 

reliability and economic challenges. These behaviors frequently occur in CFD. CFD is applied for 

numerical calculation of fluid dynamics over the years. Now it is also used successfully for large-

scale applications of industrial problems, including turbulent flows. 

 
2.2 Discretization Approaches  
To solve a mathematical model of the physical phenomenon numerically, the first step of the 

solving procedure is numerical discretization. This means that each differential equation 

component is transferred into a numerical analog, represented in the computer, and then processed 

by a computer program built on some algorithm. There are several discretization methods available 

for the high-performance numerical computation in CFD, such as finite difference method (FDM), 

finite volume method (FVM), finite element method (FEM), boundary element method (BEM), 

and boundary volume method (BVM). 
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2.3 Finite Element Method 
All the numerical methods have their strength and some weakness for solving the partial 

differential equations. FDM relies on the philosophy that the body is in one single piece. Still, the 

parameters are evaluated only at some selected points within the body, satisfying the governing 

differential equations. In contrast, the FVM relies on the philosophy that the body is divided into 

a finite number of control volumes. On the other hand, in the FEM, the body is divided into several 

elements. FEM works when all other methods fail, and it’s managing complex geometrical bodies 

and boundaries. The advantage of this method, it considers the body is not in one piece. Still, it is 

an assemblage of elements connected only at nodes, and the finite element solution is highly 

dependent on the element type. Another advantage of FEM is that of the specific model to deduce 

the equations for each element that are then assembled. FEM is comparatively simple to analyze 

mathematical problems. 

  
In current numerical computation, Galerkin weighted residual finite element technique has been 

used. It is a most powerful numerical computational technique for finding the approximate 

solutions of a system of PDEs. For saving fluid dynamics problems, the popularity of FEM 

increases over time. This technique is adequately global for dealing with time-dependent and non-

linear flow problems in irregular domains. By clipping together the local approximations of the 

phenomena under consideration, the mathematical model generation is formed, which is a 

fundamental characteristic of FEM. The significant advantage of FEM is the ability to deal with 

arbitrary complex geometries. 

 
Furthermore, every element can subdivide easily, and the grid can simply redefine. FEM produces 

equations for each component independently of all other elements. Only when the equations are 

collected together and assembled into a global matrix are the interactions between elements taken 

into account. FEM dominates most of the computational procedures for these ideal characteristics. 

For FEM, there are no restrictions on the connection of the elements when the sides of the elements 

are correctly aligned and have the same nodes for the neighboring elements. This flexibility allows 

us to model very complex geometry. 

 
In FEM, the domain is subdivided into a set of discrete volumes of finite elements, which are 

usually unstructured. For two-dimensional geometry, finite elements are generally formed by 
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triangles or quadrilaterals. In three-dimensional geometry, the finite elements are traditionally 

created tetrahedral or hexahedra. The distinctive feature of the weighted residual finite element 

method is that the equations are multiplied by a weight function before they are integrated over 

the entire domain. A linear shape function approximates the solution within each element to 

guarantee continuity of a solution across element boundaries. The weight function is generally of 

the same form of shape function. Then the approximation is substituted into the weighted integral 

of the conservation equations. In the natural study, potential flow problems are elaborately 

discussed using FEM by Kalbani et al. [32]. Finite element models of unsteady compressible and 

incompressible flow problems were obtained by Uddin et al. [39]. The implementations of FEM 

problems in fluid mechanics have been discussed by Zienkiewicz and Taylor [51].  

  
The primary idea of FEM is to view a given domain as an assemblage of simple geometric shapes 

called finite elements, for which it is possible to systemically generate the approximation functions 

needed in the solution of PDEs by the variation or weighted residual method. The computational 

domains with irregular geometries by a collection of finite elements make the method a valuable 

practical tool for the solution of initial, boundary, and eigenvalue problems arising in various 

engineering fields. The approximation functions, which satisfy the governing equations and 

boundary conditions, are often constructed using ideas from interpolation theory. Approximating 

functions in finite elements and determined in terms of nodal values of a physical field is sought. 

A persistent physical problem is transferred into a discretized limited element problem with 

unknown nodal values. For a linear problem, a system of linear algebraic equations should be 

solved. Values inside finite elements can be recovered using nodal values. The significant steps 

involved in FEM of a typical problem are: 

 Discretization of the domain into a set of finite elements (mesh generation). 

 Weighted integral or weak formulation of the differential equation to be analyzed. 

 Development of the FEM of the problem using its weighted integral or weak form. 

 Development of an element shape function. 

 Assembly of the finite element to obtain the global system of algebraic equations. 

 Imposition of boundary conditions. 

 Solution of equations. 
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 Post-computation of solution and quantities of interest.   
 
2.4 Mesh Generation 
In FEM, the mesh generation or grid generation is the technique to subdivide a domain into a set 

of subdomains, called finite elements. To discretize a local approximation from a large domain, 

mesh cells are used. The goal is to create a mesh that accurately captures the input domain 

geometry, with high-quality (well-shaped) cells, and without so many cells as to make subsequent 

calculations intractable. The mesh should also be fine (small elements) in areas that are important 

for the subsequent calculations. Meshes are used for rendering to a computer screen and 

for physical simulation such as FEM or CFD. Fig. 3.1 represents a domain is subdivided into a set 

of subdomains with boundary. Three-dimensional meshes created for finite element analysis need 

to consist of tetrahedra, pyramids, prisms, or hexahedra. Those used for the finite volume 

method can consist of arbitrary polyhedra. Those used for finite difference methods consist of 

piecewise structured arrays of hexahedra known as multi-block structured meshes. The present 

numerical technique will discretize the computational domain into unstructured triangles by 

Delaunay triangular method. The Delaunay triangulation is a geometric structure that has enjoyed 

great popularity in mesh generation science the mesh generation was in its infancy. In two-

dimensions, the Delaunay triangulation of a vertex set maximizes the minimum angle among all 

possible triangulations of that vertex set.   

 
Figure 2.1: Finite element discretization of a domain 

2.5 Algorithm  
The iterative Newton-Raphson algorithm originally put forward the algorithm; the discrete forms 

of the continuity, momentum, and energy equations are solved to determine the value of the 

velocity and the temperature. It is essential to guess the initial values of the variables. Then the 

numerical solutions of the variables are obtained while the convergent criterion is fulfilled. The 

simple algorithm is shown in the flow chart below.  

https://en.wikipedia.org/wiki/Rendering_(computer_graphics)
https://en.wikipedia.org/wiki/Physical_simulation
https://en.wikipedia.org/wiki/Finite_element_analysis
https://en.wikipedia.org/wiki/Tetrahedron
https://en.wikipedia.org/wiki/Pyramid_(geometry)
https://en.wikipedia.org/wiki/Prism_(geometry)
https://en.wikipedia.org/wiki/Hexahedron
https://en.wikipedia.org/wiki/Finite_volume_method
https://en.wikipedia.org/wiki/Finite_volume_method
https://en.wikipedia.org/wiki/Polyhedron
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Hexahedra


   

24 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2.2: Flow chart of the computational procedure. 
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CHAPTER THREE 

Mathematical Model of the Problem 
 

3.1 Introduction 
The mathematical model of any real-life physical problem consisting of a set of linear or nonlinear 

ordinary and partial differential equations including appropriate boundary conditions is the initial 

stage of any numerical procedure. The generalized governing ordinary or partial differential 

equations are based on mass, momentum, and energy conservation. The advancement of heat 

transfer rate in any thermal system or industry is a primary concern of researchers and scientists. 

Natural convective fluid flow and heat transfer are essential in engineering systems for numerous 

applications in cooling electronic appliances, air-conditioning systems, building insulation, heat 

exchangers and solar collectors, etc. In these systems, augmentation of heat transfer performance 

is an essential topic from an energy-saving perspective. Compared with generally used base fluid, 

improved characteristics fluids named nanofluids have many benefits in many engineering and 

industrial applications such as solar thermal collectors to maximize the solar energy absorption 

with the change of the size, shape, material, and volume fraction of nanoparticles. 

 
Several geometric shapes of heat exchangers or solar thermal collectors, for example, triangular 

shape, square shape, rectangular shape, and circular shape, have been studied in literature review 

for different nanofluids. However, to the best of my knowledge, the literature review related to 

semi-circular shape solar thermal collectors filled with different nanofluids and varying the shape 

of nanoparticles under the influence of periodic magnetic field has not been investigated yet. 

Therefore, in this investigation, a numerical study of convection flow and heat transfer for semi-

circular shape solar collectors filled with different nanofluids, including various shapes of 

nanoparticles under the influence of the periodic magnetic field, has been performed. A higher 

temperature transfer rate is required in solar thermal collectors, which can be possible by 

introducing nanofluids. The present numerical simulations provide a prediction that may be helpful 

for design optimization and the augmentation of thermal performance of energy systems such as 

solar thermal collectors, heat exchangers, cooling of electronic appliances, air conditioning 

systems, building insulations, biomedical engineering, boiler, and so on.   
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3.2 Physical Modeling 
A time-dependent, laminar, incompressible, two-dimensional natural convection flow and heat 

transfer of nanofluids within a semi-circular enclosure under a periodic magnetic field influence. 

The dimensional coordinates x-axis measures along the bottom wall and y-axis normal to it. The 

cavity walls are considered fixed, and natural convection has been induced by making temperature 

differences between bottom hot and top circular cold walls. The circular wall is cooled at low-

temperature Tc, whereas the bottom wall is heated uniformly at the temperature Th (Tc < Th) (case 

I). In addition, the bottom border is also heated at linearly temperature: 𝑇 = 𝑇𝐶 + (𝑇ℎ −

𝑇𝑐) (1 −
𝑥

𝐿
) (case II), or non-uniform temperature: 𝑇 = 𝑇𝐶 + (𝑇ℎ − 𝑇𝑐) (

𝑥

𝐿
) (1 −

𝑥

𝐿
) (case III), or 

sinusoidal temperature: 𝑇 = 𝑇𝐶 + (𝑇ℎ − 𝑇𝑐) (
𝑎

𝐿
) 𝑠𝑖𝑛(𝐾𝑥) (case IV), or 𝑇 = 𝑇𝐶 + (𝑇ℎ −

𝑇𝑐) (
𝑎

𝐿
) 𝑠𝑖𝑛2(𝐾𝑥) (case V). Here, a is the amplitude of the wave, and K is the wave number such 

that K = 2π/L. The non-uniform magnetic field has been employed as a sinusoidal function of the x-

coordinate. The relation of the vertical periodic magnetic field is denoted as 𝐵 = 𝐵0𝑠𝑖𝑛 (
2𝜋𝑥

𝜆0
) 

where λ0 represents the magnetic field period and represents the amplitude of the non uniform 

periodic magnetic field.   

 
In the present study, water (H2O) is taken as base fluid, and copper (Cu) is taken for nanoparticles, 

and copper-water nanofluid is used as default nanofluid. The nanoparticles are dispersed into the 

base fluid homogenously. It is also assumed that thermal equilibrium exists between the base fluids 

and nanoparticles, and no dynamical and thermal slip occurs between nanoparticles and base fluid. 

It is mentioned that the physical property density in the buoyancy term varies among the thermo-

physical properties of nanofluid while other properties remain constant during convection. Since 

the temperature difference is limited between cold and hot walls, this condition is reasonable. The 

gravitational acceleration acts in the negative direction along the y-axis. All the solid boundaries 

are assumed to be rigid no-slip walls. The geometry and coordinate systems are schematically 

shown in Figure 3.1. Generally, this type of enclosure filled with nanofluids has been modeled as 

a solar thermal collector or heat exchanger. The nanofluids' physical properties are considered 

constant except the density variation in the body force term of the momentum equation estimated 

by Boussinesq approximation. 32-types of different nanofluids are considered to calculate the 

average Nusselt number on heated bottom walls for different physical nanoparticles. The reason  
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Figure 3.1: Schematic view of the semi-circular enclosure with boundary conditions 
 
for selecting these nanoparticles and base fluid is that they are applied effectively in different 

industrial processes and various fields. For instance, conventional fluid water is used heavily in 

many engineering processes such as cooling systems, nuclear reactors, and solar thermal collectors 

etc. The thermo-physical properties of various nanoparticles and base fluids are listed in Table 3.1. 
 
Table 3.1: Thermo-physical properties of the different base fluid and solid nanoparticles. 

Base Fluid / 

Nanoparticles 
cp 

[Jkg-1K-1] 

ρ 

[kgm-3] 

k 
[Wm-1K-1] 

μ 
[kgm-1s-1] 

β×10-5 

[K-1] 

σ 

[Sm-1] 

Pr 

Water (H2O) 4179 997.1 0.613 0.001003 21 5.50×10-6 6.8377 

Kerosene 2090 780 0.149 0.00164 99 6.0×10-10 23.004 

Ethylene Glycol 2382.1 1117.48 0.2492 0.022 57 1.07×10-8 210.3 

Engine oil (EO) 1880.3 888.23 0.145 0.8451 70 23.004 10958.9 

Copper (Cu) 385 8933 400 - 1.67 5.96×107 - 

Alumina (Al2O3) 765 3970 40 - 0.85 3.50×107 - 

Co 420 8900 100 - 1.3 1.602×107 - 

Fe3O4 670 5180 80.4 - 20.6 1.12×105 - 

TiO2 686.2 4250 8.9538 - 0.90 2.60×106 - 

Ag 233 10500 429 - 1.8 6.30×107 - 

Zn 387 7135 116 - 3.02 1.69×107 - 

CuO 531.8 6320 76.5 - 1.8 51.28×107 - 

x 

u = v = 0, 
T = Tc 

u = v = 0, T = Th  
 

Nanofluids H 

L 

B0 

y 

λ0 

g 
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3.3 Mathematical Modeling 
To drive the governing equations in dimensional form for the present study, applying the afore-

mentioned considerations as follows: 

Continuity equation: 

0
u v
x y
 

 
 

           (3.1) 

Momentum equation in x-direction: 
2 2

2 2
02 2

0

1 1 2
sinnf

nf
nf nf nf

u u u p u u x
u v B u

t x y x x y
 


   

       
         

        

   (3.2) 

 
Momentum equation in y-direction: 

 
 

2 2

2 2

1 nf nf
c

nf nf nf

v v v p v v
u v g T T

t x y y x y



  

      
        

      
     (3.3)  

Energy equation: 
2 2

2 2nf
T T T T T

u v
t x y x y


     

    
     

       (3.4) 

 
where u, v are the velocity component along x, y coordinates, respectively, p is the pressure, g is 

the gravity, T is the temperature, Tc is the reference temperature, μnf is the dynamic viscosity of 

nanofluid, ρnf is the density of nanofluid, αnf = knf / (ρcp)nf  is the thermal diffusivity of nanofluid, 

knf  is the thermal conductivity of nanofluid, (ρcp)nf is the heat capacity of nanofluid, (ρβ)nf  is the 

volumetric thermal expansion of nanofluid. 

 
3.4 Initial and Boundary Conditions 
The initial and boundary conditions of the above-narrated model are as follows: 

For 0t  ; entire domain:   0, 0, , 0cu v T T p         (3.5a) 

For 0t  ;  

At the circular wall:  0, 0, cu v T T          (3.5b) 

At the horizontal base wall:  

Case I:   0, 0, hu v T T            (3.5c) 
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Case II:  0, 0, ( ) 1c h c
x

u v T T T T
L

 
      

 
      (3.5d) 

Case III:  0, 0, ( ) 1c h c
x x

u v T T T T
L L

   
        

   
      (3.5e) 

Case IV: 0, 0, ( ) sin( )c h c
a

u v T T T T Kx
L

 
      

 
      (3.5f) 

Case V:  20, 0, ( ) sin ( )c h c
a

u v T T T T Kx
L

 
      

 
     (3.5g) 

 
3.5 Physical and Thermal Properties of Nanofluids 
To enhance the thermal performance of nanofluids, the physical and thermal properties of 

nanofluids are essential. Nanofluids' material and thermal characteristics are listed as viscosity, 

density, thermal diffusivity, heat capacitance, thermal conductivity, and thermal expansion 

coefficient. The thermal performance of a solar collector predominantly depends on how thermal 

properties treat in varied operating conditions. Variation in temperature, ambient conditions, type 

of base fluid, size of particles, nanoparticles shape, and volume concentration is the main 

operational parameters. Therefore, the nomination of appropriate nanofluids considering all these 

parameters is necessary for optimum performance. To compute the physical and thermal properties 

of the nanofluids under considerations, the following formulas are used (see Kalbani et al. [32], 

Al-Weheibi et al. [36], and Uddin et al. [54]): 

 
The effective viscosity of the nanofluids is expressed as follows: 

2.5

1
(1 )nf bf 





         (3.6) 

where ϕ represents volume fraction of  nanoparticles. 
 
The effective density of the nanofluid is expressed as follows 

(1 )nf bf sp               (3.7) 

The thermal diffusivity of the nanofluid is expressed as follows 

 
nf

nf
p nf

k

c



           (3.8) 

The heat capacitance of the nanofluid is given by 

( ) (1 ) ( ) ( )p nf p bf p spc c c              (3.9) 
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The electrical conductivity of a nanofluid is determined by the formula  

2 2( )
2 ( )

sp bf bf sp
nf bf

sp bf bf sp

    
 

    

  


  
       (3.10) 

 
Thermal conductivity characterizes the ability of the material to conduct heat. The thermal 

conductivity of nanofluids is usually higher compared to conventional fluids.  The ratio of the 

thermal conductivity of the nanofluids restricted to nanoparticles is expressed as follows: 

2 2( )
2 ( )

nf sp bf bf sp

bf sp bf bf sp

k k k k k
k k k k k





  


  
       (3.11) 

where knf  represents thermal conductivity of nanofluids, kbf represents thermal conductivity of 

base fluids. This method is valid for spherical particles with a small concentration (ϕ<<1).  

 
The Maxwell model of thermal conductivity is extended by including a shape factor by Hamilton 

and crosser [50] as follows: 

( 1) ( 1)( )
( 1) ( )

sp bf bf sp
nf bf

sp bf bf sp

k n k n k k
k k

k n k k k




    


   
      (3.12) 

where n is the nanoparticles shape factor. The values of nanoparticles shape factor n = 8.6, 5.7, 

4.9, 3.7, 3 represents blade, platelet, brick, cylinder, and sphere shape nanoparticles, respectively. 

The shape of the nanoparticle is defined as n = 3/ψ, where ψ represents sphericity and is defined 

by the ratio of sphere surface area and real particle surface area with the same volumes. The values 

of ψ for the blade, platelet, cylinder, brick shape of nanoparticles are evaluated as 0.36, 0.52, 0.62, 

and 0.81, respectively (Al-Balushi et al. [46], Timofeeva et al. [51]). For different values of n, the 

different shape of nanoparticles is shown in Table 3.2:  

 
The Brownian motion of nanoparticles has not been considered in the above Maxwell model in 

equation (3.10). But experimentally, it has been proved that the Brownian movement of 

nanoparticles plays an essential role in the heat transfer enhancement of nanofluids. Therefore, an 

appropriate model is considered for calculating thermal conductivity, including a convectional 

static and Brownian motion parts. Furthermore, the model of thermal conductivity of nanofluids, 

including this two-component thermal conductivity, takes into account the effects of particles size, 
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particle volume fraction, and temperature dependence as well as types of particle and base fluid 

combinations: 

nf static Browniank k k          (3.13) 

where kstatic represents the static thermal conductivity based on Maxwell classical correlation that      

is given in equation (3.11). But, kBrownian represents the dynamical part of nanofluids thermal 

conductivity model for the effect of Brownian motion on nanoparticles which is calculated as: 

, 2
2 3

sp p sp B ref
Brownian

p nf

c K T
k

d


 
        (3.14) 

where KB  represents the Boltzmann constant and dp represents the diameter of nanoparticles.  

 
Therefore, nanofluids' thermal conductivity depends on nanoparticles volume fraction, the thermal 

conductivity of nanoparticles, temperature of the mixture, nanoparticles size, and base fluid 

properties considering viscosity and specific heat capacity. For the present mathematical model, 

the both Maxwell static part and Brownian part are considered for the thermal conductivity model 

of nanofluids as follows (see Uddin and Rahman [52]): 

 
Table 3.2: Different shapes of nanoparticles with geometry. 

Values of n Shape of nanoparticles Geometry 

n = 3 Spherical 
 

n = 4.9 Cylindrical 
 

n = 3.7 Brick 
 

n = 5.7 Platelet 
 

n = 8.6 Blade 
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,( 1) ( 1)( ) 2
( 1) ( ) 2 3

sp bf bf sp sp p sp B ref
nf bf

sp bf bf sp p nf

k n k n k k c K T
k k

k n k k k d
 

  

    
 

   
   (3.15) 

The thermal expansion coefficient is expressed as follows 

( ) (1 ) ( ) ( )nf bf sp              (3.16) 

3.6 Dimensional Analysis 
In the study of fluid dynamics, one of the most important mathematical tools is dimensional 

analysis. Dimensional analysis has some advantages. Non-dimensionalization gives freedom to 

explore any system irrespective of its material properties. It reduces the number of variables and 

complexity of experimental variables which affect a given physical phenomenon. Non-

dimensional equations also give a clear-sightedness of parameters that control the whole system. 

The results don’t depend on the size of the geometry. One can get insight into physical problems 

before experimenting. The following dimensionless variables are introduced for the present study 

to convert the governing equations (3.1)-(3.4), including initial and boundary conditions (3.5a)-

(3.5c) into non-dimensional form.   

2
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   


        


     (3.17) 

 
Employing the equation (3.17) into (3.1)-(3.4) including initial and boundary conditions (3.5a)-

(3.5c) as follows 

0  
U V
X Y
 

 
 

                           (3.18) 

2 2
2 2 2

- Pr sin U
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            (3.19) 
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The non-dimensional boundary condition becomes 

For 0  , whole domain: U = 0, V = 0, θ = 0, P = 0      (3.22a) 

For 0  , the dimensionless boundary conditions:  

At the circular wall:   U = 0, V = 0, θ = 0       (3.22b)  

At the bottom wall:                     

Case I:    u = 0, v = 0, θ = 1         (3.22c) 

Case II:   u = 0, v = 0, θ = 1-X         (3.22d) 

Case III:  u = 0, v = 0, θ = X (1-X)        (3.22e) 

Case IV:  u = 0, v = 0, θ = A sin (2πX)       (3.22f) 

Case V:   u = 0, v = 0, θ = A sin2 (2πX)       (3.22g) 

 
where, the parameters which is introduced in the above non-dimensional equation are as follows: 

A = a/L represents non-dimensional amplitude, the Rayleigh number is represented as 

  3
bf h c

bf bf

g T T L
Ra



 


 , Hartmann number is represented as /o bf bfHa B L   , and Prandtl 

number is represented as Pr = υnf /αbf. 

 
3.7 Calculation of Nusselt Number 
For this model, the important physical parameter quantities are local Nusselt number (NuL) and 

average Nusselt number (Nuav) along the heated bottom wall of the cavity. The local Nusselt 

number is defined as 

 
w

L
bf h c

Lq
Nu

k T T



         (3.23) 

where the heat transfer from the heated bottom wall qw is given by  

0
w nf
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q k
Y




 
   
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         (3.24) 

The average Nusselt number on the bottom heated wall of the cavity is expressed as 

1
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bf
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k Y
  

  
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In the present problem, the flow field or fluid motion has been visualized through a streamline that 

can be obtained from the mathematical trick stream function. The stream function can be derived 

from velocity components U and V. The relation of the stream function and velocity components 

in two dimensional flow is given as: U
Y





,  V
X


 


. 

 
3.8 Finite Element Formulation 
Conservation of mass or continuity equation (3.1), conservation of momentum equations (3.2) & 

(3.3), and conservation of energy equation (3.4) are fundamental laws that form a set of coupled 

nonlinear partial differential equations that are used for solving the convective heat transfer. To 

solve both ordinary and partial differential equations which arise in science and engineering 

problems, the finite element method (FEM) is a powerful numerical method for solving them. In 

this method, the whole domain is divided into smaller elements of finite dimensions called finite 

elements. To analysis, the science and engineering problems finite element method is a wonderful 

numerical method. FEM is applied to solve the integral equations, including fluid mechanics, heat 

transfer, electrical systems, the process of chemical, and many other fields. Therefore, the 

governing dimensionless equations (3.18)-(3.21) along with the initial and boundary conditions 

(3.22a)-(3.22g) have been solved numerically by employing Galerkin weighted residual-based 

finite element technique. 

 
An approximate solution of the governing equations over each finite element is tremendous 

advances in the finite element method. The approximate solutions are replaced into the governing 

equations to obtain an expression that will not be equal on both sides of the equations. The 

difference between the two sides of the equations is known as residual. The residual must be zero, 

in some sense, to find out the parameters of approximate solutions over the element. The residual 

may be zero in the weighted-integral sense. Let us consider Nη and Hλ as weight function or linear 

shape function, equating with the finite element method. The weighted-integral equations try to 

make a set of algebraic relations among the parameters of the approximate solutions. The algebraic 

equations are linearly independent and invertible because the weight functions are linearly 

independent. The weighted residual method is described by Zienkiewicz and Taylor [51]. The 

weighted-integral technique of the governing equations (3.18)-(3.21) is applied for deriving finite 

element equations as follows: 
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Where A represents the element area, Hλ represents the element shape functions for the pressure, 

and Nη (η = 1, 2, …, 6) represents the element shape functions or interpolation functions for the 

velocity components and temperature. 

 
The equation of continuity (3.26) remains unaffected because integration by parts doesn’t assist in 

shrinking differentiability on (U, V). Moreover, the boundary terms will be in a struggle with 

physical stipulations. Therefore, to keep the boundary stresses intact, then physical problems must 

be integrated. The integration by parts also allows the pressure variable to have a lower-order 

approximation. To deal the second order derivatives as well as integration by parts, the Gauss 

theorem for two-dimensions and vector identity is applied. (Gauss’s theorem in 2D: Gauss’s 

theorem in 2D states that the flow F across the boundary Гe dotted with a normal vector n times a 

little chunk of the boundary and summing up to over the entire boundary is equal to summing up 

to over the whole region of the small chunk of the region times the divergence of F. i.e. 

eA

F dA F n dA


              (3.30) 

 Applying Gauss’s divergence theorem to the second order derivative terms of the equations 

(3.27)-(3.29) for generating the boundary integral terms associated with the surface tractions and 

heat flux. The equations (3.27)-(3.29) becomes,  
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where the surface tractions (Sx , Sy) along the outflow boundary S0 and the velocity components 

and fluid temperature or heat flux (qw) that flows into or out from the domain along wall 

boundary Sw. (U, V), θ, and P are the fundamental unknowns representing velocity components, 

temperature, and pressure, respectively of the differential equations (3.31)-(3.33). For the 

development of the finite element equations, six node triangular elements are used in this study. 

All six nodes are connected with both velocities and temperature. The corner nodes are also 

associated with pressure. This means that a lower order polynomial is chosen for pressure and 

which is satisfied through the continuity equation. The velocity component and the temperature 

distributions and the linear interpolation for the pressure distribution according to their height 

derivative orders in the differential equations (3.18)-(3.21) as: 

(X, )U Y N U            (3.34) 

(X, )V Y N V            (3.35) 

(X, )Y N             (3.36) 

(X, )P Y H P            (3.37) 
 
where  δ = 1, 2, …, 6;  λ = 1, 2, 3  
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Now putting the element velocity component distributions, the temperature distribution, and 

pressure distribution from equations (3.34)-(3.37) into equations (3.26) and (3.31)-(3.33), the finite  

element equations can be written as follows: 
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where partial differentiation with respect to τ is represented by superposed dot. The coefficients in 

the element matrices are in the form of the integral over the element area and along the element 

edges S0 and SW as: 
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These element matrices are evaluated in closed form ready for numerical simulation. Details of the 

derivation for these element matrices are omitted here. 

 
The derived finite element equations (3.38)-(3.41) are nonlinear. These nonlinear algebraic 

equations are solved by applying the Newton-Raphson iteration technique by first writing the 

unbalanced values from the set of the finite element equations (3.38)-(3.41) as follows, 
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This leads to a set of algebraic equations with the incremental unknowns of the element nodal 

velocity components, temperatures, and pressures in the form, 
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    

       

       (3.59) 

 
where,   2Pr Prx x y xx yyuuK K U K U K V K K Ha K       

         (3.60) 

yuvK K U
           (3.61) 

0uK              (3.62) 

xupK M


            (3.63) 

xvuK K U
           (3.64) 

 Prx y y xx yyvvK K U K V K V K K      
          (3.65) 

PrvK Ra K             (3.66) 

yvpK R


            (3.67) 

xuK K 
           (3.68) 

yvK K 
           (3.69) 

( )x y xx yyK K U K V K K     
           (3.70) 

0pK             (3.71) 

xpuK K


            (3.72) 

ypvK K


            (3.73) 

0p ppK K             (3.74) 
 
The iteration process is terminated if the percentage of the overall change compared to the previous 

iteration is less than the specified value.  

 
To solve the sets of the global nonlinear algebraic equations in the form of matrix, the Newton-

Raphson iteration technique has been adapted through PDE solver. The convergent criterion of the 

numerical solution along with error estimation has been set to |Г𝑛+1 − Г𝑛| ≤ 10−5, where Г is the 

general dependent variable (U, V, θ) and n is the number of iteration.  
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CHAPTER FOUR 

Numerical Simulation and Comparison 
 

4.1 Computational Procedure 
The semi-circular enclosure has been discretized into numerous triangle shape elements in which 

the dimensionless governing equations (3.18)-(3.21) including boundary conditions (3.22a)-

(3.22g) are employed for the numerical calculations. The finite element technique of the Galerkin 

weighted residual form has been employed for solving these problems. This numerical method has 

been narrated well in the book by Zienkiewicz and Taylor [53]. Uddin and Rahman [39] have also 

described the finite element computational procedure step by step on the non-linear governing 

partial differential equations in an annulus. In this thesis work, to understand the finite element 

technique, all necessary calculations are performed over the dimensionless governing equations 

(3.18)-(3.21) and the non-dimensional boundary conditions (3.22a)-(3.22g). The domain of the 

solution is discretized within a limited number of grids firstly that is determined from non-uniform 

three-cornered elements in this method. 

 
In this numerical method, the triangular elements of non-uniform type are constructed for the 

present geometric domain. The domain of the solution space is discretized into finite element 

meshes that are compressed of triangular elements of non-uniform style. In the current 

investigation, triangle shape components of six nodes are employed for improving finite element 

equations where all six nodes are connected with velocity and temperature. The nodes at the corner 

are merely associated with pressure. The matching of the pressure gradient has happened between 

momentum equations for continuity requirement and a shape function of lower-order selected for 

the pressure that is satisfied through the equation of continuity. The identical pressure is considered 

with linear elements, whereas it is non-continuous among the elements. After that, the technique 

of Galerkin weighted residual is appointed in the governing non-linear partial differential 

equations, which transfer the non-linear partial differential governing equations into a system of 

integral equations. Integral parts of these equations are accomplished employing Gauss’s 

quadrature technique. After that, boundary conditions are also used to modify the non-linear 

algebraic equations. To solve these non-linear algebraic equations using matrix form, Newton-
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Raphson iteration is devoted. The convergent criteria of the procedure of the numerical solution 

has been estimated as  |Г𝑛+1 − Г𝑛| ≤ 10−5, where Г represents subordinate variables (U, V, θ) 

and n is the number of iteration. 

 
4.2 Grid Independency Test 
For the grid-independent test, a comprehensive non-uniform grid sensitivity study is performed 

for the current problem when Ra = 105, Ha = 20, λ = 0.5, Pr = 6.8377, n = 3, ϕ = 0.04, d = 10 nm, 

and τ = 1 in a semi-circular cavity. Five different non-uniform grid systems containing elements 

number such as 2486, 4050, 10306, 25130, and 40806 are examined for the present semi-circular 

enclosure. For the number as mentioned earlier of elements, the design of the numerical calculation 

of mean Nusselt number (Nuav) has been examined for checking the development of grid fineness 

which is shown in Figure 4.1 and Table 4.1. The value of the mean Nusselt number for elements 

size 25130 depicts an ordinary difference with elements size 40806. Therefore, to get accurate 

results, the size of the elements 25130 and 40806 can be used. In this study, the size of the elements 

25130 is employed for getting grid-independent solution and computational time limits. 

 

Figure 4.1:  Convergence of average Nusselt number for various elements number for Cu-
H2O nanofluid with uniform thermal boundary condition (case I) when Ra = 105, Ha = 20,     
λ = 0.5, Pr = 6.8377, n = 3, ϕ = 0.04, d = 10nm, and τ = 1. 
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Table 4.1:  Grid sensitivity using average Nusselt number for Cu-H2O nanofluid for case I when 
Ra = 105, Ha = 20, λ = 0.5, Pr = 6.8377, n = 3, ϕ = 0.04, d = 10nm, and τ = 1. 

Elements 2486 4050 10306 25130 40806 

Nodes 1318 2118 5352 12951 20789 

Nuav 8.46282 8.73730 9.70890 10.55846 10.55895 

 

4.3 Code Validation through Streamlines and Isotherms 
To access the correctness of our current numerical scheme, the results generated by the present 

numerical scheme has been compared with the outcomes of Mehryan et al. [43] using streamlines 

and isothermal lines when Ra = 106, Ha = 25, ϕ = 0.04, and λ = 1. Figure 4.2 represents the 

comparison of present results (bottom row) generated from current numerical code with regard to 

streamlines (left column) and isotherms (right column) with previously published work by 

Mehryan et al. [43] (top row). The results show a strong permission and boost the confidence for 

employing the current numerical code. 
    

  

  
Figure 4.2: Comparison of the present results (bottom row) with the previously published 
paper of Mehryan et al. [43] (top row) concerning streamline contours and isothermal lines 
for Ra = 106, Ha = 25, ϕ = 0.04, n = 3, λ = 1.  
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4.4 Code Validation through Data 
After studying the grid independence, the validation of the numerical code is also imperative to 

practice in the computational procedure. Therefore, the present numerical code is also compared 

with respect to data of average Nusselt number with previously published work. Furthermore, to 

examine the accuracy of the current numerical code through numerical data with references to 

mean Nusselt number, the numerical outcomes of the parameters nanoparticles volume fraction 

and Rayleigh number generated by current code are compared with Ghasemi et al. [54] for the 

steady-state case. 

 
Table 4.2: Comparison of the present data regading average Nusselt number (Nuav) with 
previously published paper of Ghasemi et al. [54] for the volume fraction of nanoparticles (ϕ) and 
Rayleigh number (Ra) when Ha = 30. 

Ra 
ϕ = 0 ϕ = 0.02 ϕ = 0.04 

Ghasemi 
et al. [54] 

Present 
Study 

Ghasemi et 
al. [54] 

Present 
Study 

Ghasemi et 
al. [54] 

Present 
Study 

103 1.002 1.002 1.060 1.060 1.121 1.121 

104 1.183 1.182 1.212 1.208 1.249 1.242 

105 3.150 3.138 3.138 3.097 3.124 3.057 

106 7.907 7.820 7.979 7.796 8.042 7.773 

107 16.929 16.317 17.197 16.992 17.449 16.865 

 
The two-dimensional physical problem about the natural convective two-dimensional flow of 

Al2O3-water nanofluid within a square cavity with the existence of a horizontally magnetic effect 

was investigated by Ghasemi et al. [54]. The range of the numerical values of the Hartmann 

number and Rayleigh number are 0 ≤ Ha ≤ 60 and 103 ≤ Ra ≤ 107, respectively, to predict the 

present numerical code. The numerical data of mean Nusselt number generated by current 

numerical code and previously published work of Ghasemi et al. [54] are presented in Table 4.2, 

Table 4.3, Weheibi et al. [36] in Table 4.4, and Akgün et al. [55] in Table 4.5. The analogy of 

numerical data of the current code with Ghasemi et al. [54], Weheibi et al. [36], and Akgün et al. 

[55] represent worthy compliance. The numerical outcomes of the existing code make us confident 

to use the current code for the numerical simulation for the present physical problem. 
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Table 4.3:  Comparison of the present data of average Nusselt number (Nuav) with previously 
published paper of Ghasemi et al. [54] in steady state case for different values of Hartmann number 
(Ha) and nanoparticles volume fraction (ϕ) when Ra = 105. 

Ha 
ϕ = 0 ϕ = 0.02 ϕ = 0.04 

Ghasemi et 
al. [54] 

Present 
Study 

Ghasemi 
et al. [54] 

Present 
Study 

Ghasemi 
et al. [54] 

Present 
Study 

0 4.738 4.721 4.820 4.717 4.896 4.814 
15 4.143 4.127 4.179 4.105 4.211 4.083 
30 3.150 3.138 3.138 3.097 3.124 3.057 
45 2.369 2.359 2.342 2.318 2.317 2.281 
60 1.851 1.843 1.831 1.815 1.815 1.794 

 
Table 4.4: Comparison of the present results of average Nusselt number (Nuav) with previously 
published paper of Weheibi et al. [36] for different Rayleigh numbers (Ra) and nanoparticles 
volume fraction (ϕ) when n = 3  and τ = 2. 

Ra Average Nusselt number (Nuav) 

Weheibi et al. [36] Present Study  ϕ Weheibi et al. [36] Present Study 

103 1.61201 1.61345 0 4.79048 4.79048 

104 2.23350 2.24213 0.02 4.90759 4.91454 

105 5.07824 5.10549 0.05 5.07824 5.10549 

106 9.82489 9.83726 0.1 5.35063 5.38245 

 
Table 4.5: Comparison of the present data of average Nusselt number (Nuav) with previously 
published paper of Akgün et al. [55] for various Hartmann numbers and volume fraction of 
nanoparticles when Ra = 105. 

Ha 

Average Nusselt number (Nuav) 

ϕ  = 0  ϕ  = 0.04 

Akgün et al. 
[55] 

Present 
results 

Error 
(%) 

 Akgün et al. 
[55] 

Present 
results 

Error 
(%) 

0 4.998 4.721 5.54  5.309 4.814 9.32 
15 4.276 4.127 3.48  4.491 4.083 9.08 
30 3.139 3.138 0.03  3.238 3.057 5.59 
60 1.774 1.843 3.89  1.808 1.794 0.77 
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CHAPTER FIVE 

Results and Discussion 
 

In this section, a two-dimensional numerical study is performed using the finite element method 

to analyze the laminar, incompressible, unsteady, natural convection flow and heat transfer within 

the semi-circular enclosure under the influence of a non-uniform periodic magnetic field. This 

problem is analyzed for copper-water nanofluid as default, with the spherical shape of 

nanoparticles varying the other physical model parameters. The simulated numerical results are 

analyzed to investigate the effects of Rayleigh number (103 ≤ Ra ≤ 106), Hartman number (0 ≤ Ha ≤ 

80), the solid volume fraction of nanoparticles (0 ≤ ϕ ≤ 0.1), period of the magnetic field (0.1 ≤ λ ≤ 

1), and different diameters of nanoparticles (1nm ≤ d ≤ 100nm). The numerical calculations are 

expressed in terms of streamlines, isotherms, and average Nusselt number. In the numerical 

simulations, four different types of base fluid such as water (H2O), kerosene, Ethylene Glycol 

(EG), and Engine Oil (EO) with eight different types of nanoparticles such as Cu, Co, Fe3O4, 

Al2O3, TiO2, Ag, Zn, and CuO also considered to check the augmentation of heat transfer. The 

thermos-physical properties of the nanoparticles as mentioned above and base fluids, which are 

used for controlling the flow and heat transport in the present problem, are listed in Table 3.1. 

 
Firstly, the numerical outcomes focus on the time evolution of the solution using average Nuesselt 

number with dimensionless time (τ), and evolution of streamlines and isotherms with non-

dimensional time (τ) are calculated for those as mentioned earlier different physical model 

parameters. Secondly, the outcomes focus on identifying the flow and temperature transport 

characterstics using streamline contours and isothermal lines for above mentioned parameters. 

Then, it is focused on heat transfer rate through the average Nusselt number along the heated 

bottom diameter of the enclosure to investigate heat transport performance for various physical 

parameters. The results are taken for Cu-H2O nanofluid and then compare the average Nusselt 

number using different nanofluids for different nanoparticles volume fractions, nanoparticle 

diameters, Rayleigh number, Hartmann number, period of the magnetic field, and Brownian 

effects of nanoparticles. In addition, the five different shapes of nanoparticles like spherical, brick, 

cylinder, blade, and platelet are examined regarding the average Nusselt number to understand the 
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effects of shape and size factor of nanoparticles on heat transfer rate. The outcomes are presented 

using the line graph and tabulated form. Moreover, the most significant features of nanofluids are 

the impact of nanoparticles are also investigated and displayed graphically in terms of amount, 

shape, and size of nanoparticles. Finally, different types of thermal boundary conditions such as 

uniformly (case I), linearly (case II), parabolically (case III), sinusoidally (case IV or case V) are 

also examined regarding the average Nusselt number along the heated bottom wall for copper-

water nanofluid to calculate the augmentation of heat transfer performance.   

 
5.1 Time Evolution of Solution 
Figure 5.1 displays the variation of the average Nusselt number (Nuav) on heated wall against non-

dimensional time (τ) for different Rayleigh number (104 ≤ Ra ≤ 106) for Cu-H2O for uniform 

thermal boundary condition (case I) when Ha = 20, ϕ = 0.04, n = 3, and d = 10nm. This figure 

clearly shows the time evolution of the average Nusselt number on the heated bottom wall from 

unsteady to steady-state. The temperature increases suddenly at the bottom diameter; 

consequently, the average Nusselt number is higher at the bottom wall for the increment of the 

Rayleigh number. The average Nusselt number diminishes with the increment of time and 

approaches the steady-state after a certain period of time. In the steady-state part, for Ra = 104, the 

transport of heat is lowest and as Ra enhances, the heat transfer enhances due to increment of 

buoyancy effect.  

 
Figure 5.2 represents the effects of different nanoparticles volume fraction on average Nusselt 

number on bottom heated wall for (a) Ra = 105, and (b) Ra = 106 with different dimensionless time 

for Cu-H2O nanofluid for uniform thermal boundary condition (case I) when Pr = 6.8377, Ha = 

20, d = 10nm, and n = 3. These figures show the average Nusselt number decreases initially and 

then reaches a steady state after a certain amount of time. The steady-state time is calculated 

approximately at τ = 0.4, and τ = 0.65 from these figures with respect to different values of 

nanoparticle volume fraction. These figures clearly depict that the solution takes more time to 

reaches an unsteady state to state for the absence of nanoparticles in the base fluid. Therefore, the 

additional nanoparticles into the base fluid assist the unsteady solution to reach a steady state. 

These figures show that the addition of nanoparticles into the base fluid significantly enhances the 

rate of heat transfer. Also, the Rayleigh number (Ra) has a positive impact on the average Nusselt 

number rate. At the unstable flow, when the process is beginning, the average Nusselt number 
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(Nuav) is quite higher, and it becomes constant after passing dimensionless time. In addition, the 

higher nanoparticles into the base fluid create a particle tapping; consequently, the characteristics 

of nanofluid may change from Newtonian to non-Newtonian. In the present numerical 

calculations, the volume fraction of nanoparticles has been varied from 0 to 10%. To check the 

qualitative change in the solution, we have used an extreme case of 10%. Furthermore, the flow 

takes less time to reaches a steady state from an unsteady state for a higher Rayleigh number (Ra) 

because a strong buoyancy force assists the flow in reaching a steady state faster. 

 
Figure 5.3 represents the average Nusselt number (Nuav) with non-dimensional time (τ) for 

different diameter of nanoparticles (d) for Cu-H2O nanofluid for uniform thermal boundary 

condition (case I) when Pr = 6.8377, Ra = 105, Ha = 20, n = 3, and ϕ = 0.04. The figure shows that 

the average Nusselt number oscillates significantly for a certain initial period of time for different 

diameters of nanoparticles. After a certain period of time, the distributions of the average Nusselt 

number is the almost straight line which means that the solution reaches a steady state for the 

diameter of nanoparticles. It is also observed that the average Nusselt number oscillates more for  

 
Figure 5.1: Average Nusselt number (Nuav) along bottom heated diameter for 
different Rayleigh number (Ra) and different dimensionless time (τ) for Cu-H2O 
nanofluid for uniform thermal boundary condition (case I) when Pr = 6.8377,       
Ha = 20, d = 10nm, n = 3, and ϕ = 0.04.  
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(b) 

 

 

 

  
(a)  

Figure 5.2: Average Nusselt number (Nuav) along bottom heated diameter for 
different nanoparticles volume fraction (ϕ) and different dimensionless time (τ) at (a) 
Ra = 105, and (b) Ra = 106 for Cu-H2O nanofluid for uniform thermal boundary 
condition (case I) when Pr = 6.8377, Ha = 20, d = 10nm, n = 3, and ϕ = 0.04.  
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the small size of nanoparticles compared to the large size of nanoparticles. Therefore, the small 

size of nanoparticles helps the solution to attain in steady than large nanoparticles because the 

settling velocity is negligible for the small size of nanoparticles. For getting a steady-state solution 

quickly, it can be assisted by the possible smaller size of nanoparticles.  

 
Figure 5.4 displays the evolution of streamline contours with non-dimensional time (τ) for uniform 

thermal boundary condition (case I) for Cu-H2O nanofluids when Ra = 105, Ha = 20, ϕ = 0.04, 

and d = 10nm taking into account the time step Δτ = 0.01. In a shorter time, it is seen that there are 

two symmetrical circulating vortices within the enclosure are formed where the eyes of the rotating 

cells of the streamlines near the heated wall. The rotating zone changed and intensify at the heated 

wall and cooled wall. The eyes of the symmetrical circulation move to central circulation with the 

increase of non-dimensional time (τ), which indicates a higher velocity of the flow. For the 

increases of dimensionless time (τ), the streamlines pattern shows no significant changes until it 

reaches to steady state. It is further mentioned that there are no streamlines that do not change 

when approximately τ = 0.65 for the solution of Cu-H2O nanofluid. 

 
Figure 5.3: Variation of average Nusselt number (Nuav) along bottom heated 
diameter for different diameter of nanoparticles (d) and dimensionless time (τ) 
for Cu-H2O nanofluid for uniform thermal boundary condition (case I) when 
n = 3, Pr = 6.8377, Ra = 105, Ha = 20, λ = 0.5, and ϕ = 0.04.  
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  τ = 0.01 τ = 0.05 

  
τ = 0.1 τ = 0.15 

  
τ = 0.2 τ = 0.25 

  
τ = 0.3 τ = 0.4 

  
τ = 0.5 τ = 1 

  
 

Figure 5.4: Streamlines evolutions at different dimensionless time (τ) for Cu-H2O 
nanofluid for uniform thermal boundary condition (case I) when Pr = 6.8377, Ra = 105, 
Ha = 20, d = 10nm, n = 3, λ = 0.5, and ϕ = 0.04. 
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Figure 5.5: Isothermal lines evolution at different dimensionless time (τ) for Cu-H2O 
nanofluid for uniform thermal boundary condition (case I) when Pr = 6.8377, Ra = 105, 
Ha = 20, d = 10nm, n = 3, λ = 0.5, and ϕ = 0.04.     
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 Ha = 0 Ha = 30 Ha = 60 
    
 Figure 5.6: Effect of Hartmann number (Ha) on streamlines for (a) uniform magnetic field 

(umf), and non-uniform magnetic field with different periods (b) λ = 0.1, (c) λ = 0.25, (d) 
λ = 0.5 and (e) λ = 1 for Cu-H2O nanofluid for uniform thermal boundary condition (case 
I) when Ra = 105, ϕ = 0.04, d = 10nm, n = 3, Pr = 6.8377, and τ = 0.1. 
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Figure 5.7: Effect of Hartmann number (Ha) on streamlines for (a) uniform magnetic field 
(umf),  and non-uniform magnetic field with different periods (b) λ = 0.1, (c) λ = 0.25, (d) 
λ = 0.5 and (e) λ = 1, for Cu-H2O nanofluid for uniform thermal boundary condition (case 
I) when Ra = 105, ϕ = 0.04, d = 10nm, Pr = 6.8377, n = 3 and τ = 1. 
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Figure 5.8: Effect of Hartmann number (Ha) on isothermal lines for (a) uniform magnetic 
field (umf), and non-uniform magnetic field with different periods (b) λ = 0.1, (c) λ = 
0.25, (d) λ = 0.5 and (e) λ = 1, for Cu-H2O nanofluid with uniform thermal boundary 
condition (case I) when Ra = 105, ϕ = 0.04, d = 10nm, Pr = 6.8377, n = 3 and τ = 0.1. 
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Figure 5.9: Effect of Hartmann number (Ha) on isotherms for (a) uniform magnetic field 
(umf), and non-uniform magnetic field with different periods (b) λ = 0.1, (c) λ = 0.25, (d) 
λ = 0.5, and (e) λ = 1, for Cu-H2O nanofluid for uniform thermal boundary condition 
(case I) when Ra = 105, ϕ = 0.04, d = 10nm, Pr = 6.8377, n = 3 and τ = 1. 
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Figure 5.10: Variation of average Nusselt number (Nuav) for uniform magnetic filed 
(umf) and non-uniform magnetic field with different periods (λ), and Hartmann 
number (Ha) for Cu-H2O nanofluid for uniform thermal boundary condition (case 
I) when ϕ = 0.04, Pr = 6.8377, Ra = 105, d = 10nm, n = 3, and τ = 1. 

 
Figure 5.5 shows the distribution of isothermal lines within the semi-circular enclosure for 

different non-dimensional time (τ) for Rayleigh number, Ra = 105 for Cu-H2O nanofluids 

when Ha = 20, ϕ = 0.04, and d = 10nm for uniform thermal boundary condition (case I). At τ = 

0.01, the flow is unsteady, and the isothermal lines are concentrated near the hot bottom wall that 

represents a higher temperature gradient due to buoyancy effects. As dimensionless time (τ) 

increases, the isothermal lines move upward at the middle of the bottom wall, representing the 

flow of temperature higher in that region. The intensity of the isothermal line increases with the 

increase of non-dimensional time until it reaches a steady-state. In addition, the isothermal lines 

change over few time and show a marginal variation until it reaches the steady-state.  

 
5.2 Effects of magnetic field and it’s period 
Figures 5.6-5.7, respectively, represent the influence of streamlines for different Hartmann number 

(Ha) or both unsteady case (τ = 0.1) and steady case (τ = 1) for Cu-H2O nanofluid for uniform 

thermal boundary condition (case I) when Pr = 6.8377, Ra = 105, d = 10nm and, n = 3. These 

figures actually represent the evaluation of streamlines under the strong magnetic field. Two-  
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Figure 5.11: Effect of Rayleigh number (Ra) on streamlines for (a) uniform magnetic 
field (umf), and non-uniform magnetic field with different periods (b) λ = 0.1, (c)                  
λ = 0.25, (d) λ = 0.5, and (e) λ = 1, for Cu-H2O nanofluid for uniform thermal boundary 
condition (case I) when Ha = 20, ϕ = 0.04, d = 10nm, Pr = 6.8377, n = 3, and τ = 0.1. 
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Figure 5.12: Effect of Rayleigh number (Ra) on streamlines for (a) uniform magnetic 
field (umf), and non-uniform magnetic field with different periods (b) λ = 0.1, (c) λ = 0.25, 
(d) λ = 0.5, and (e) λ = 1, for Cu-H2O nanofluid for uniform thermal boundary condition 
(case I) when Ha = 20, ϕ = 0.04, d = 10nm, Pr = 6.8377, n = 3, and τ = 1. 
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Figure 5.13: Effect of Rayleigh number (Ra) on isotherms for (a) uniform magnetic field 
(umf), and non-uniform magnetic field with different periods (b) λ = 0.1, (c) λ = 0.25, (d) 
λ = 0.5, and (e) λ = 1, for Cu-H2O nanofluid for uniform thermal boundary condition 
(case I) when Ha = 20, ϕ = 0.04, d = 10nm, Pr = 6.8377, n = 3, and τ = 0.1. 
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Figure 5.14: Effect of Rayleigh number (Ra) on isotherms for (a) uniform magnetic field 
(umf), and non-uniform magnetic field with different periods (b) λ = 0.1, (c) λ = 0.25, (d) 
λ = 0.5, and (e) λ = 1, for Cu-H2O nanofluid for uniform thermal boundary condition (case 
I) when Ha = 20, ϕ = 0.04, Pr = 6.8377, d = 10nm, n = 3, and τ = 1. 
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Figure 5.15: Variation of average Nusselt number (Nuav) along bottom heated 
diameter with uniform thermal boundary condition (case I) for different volume 
fraction of nanoparticles (ϕ) and differnt Rayleigh number (Ra) for Cu-H2O 
nanofluid when Pr = 6.8377, Ha = 20, d = 10nm, n = 3, and τ = 1. 

 
symmetrical vortices are observed for both uniform magnetic field and non-uniform magnetic field 

except for the period of the magnetic field λ = 0.5. The strength of the flow diminishes with a 

stronger applied magnetic field, i.e., increase of Hartmann number. A strong field is imposed over 

the moving fluid by imposing an external applied magnetic field that has magnetic 

impressionability. The Lorentz force generated by applied magnetic field has a nature to oppose 

the varying its generation in fluid movement. This force field weakens the streams within the 

enclosure. Figure 5.7 shows the pattern of the streamlines after the system has reached a steady 

state. There is a little change in the strength of the streamlines with time within the cavity. In 

addition, at λ = 0.5, the intensity of the pattern of the streamlines increase inside the enclosure. 

 
Figures 5.8-5.9 exhibit the effect of isothermal lines for different values of Hartmann number (Ha) 

and different period of the non-uniform magnetic field when Pr = 6.8377, Ra = 105, d = 10nm, n = 

3 and τ = 0.1 and τ = 1, respectively for Cu-H2O nanofluid for uniform thermal boundary condition  
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Figure 5.16: Effect of nanoparticles volume fraction (ϕ) on streamlines for (a) uniform 
magnetic field (umf), and non-uniform magnetic field with different periods (b) λ = 0.1, 
(c) λ = 0.25, (d) λ = 0.5, and (e) λ = 1, for Cu-H2O nanofluid for uniform thermal boundary 
condition (case I) when Ha = 20, Ra = 105, d = 10nm, n = 3, Pr = 6.8377, and τ = 0.1. 
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Figure 5.17: Effect of nanoparticles volume fraction (ϕ) on streamlines for (a) uniform 
magnetic field (umf), and non-uniform magnetic field with different periods (b) λ = 0.1, 
(c) λ = 0.25, (d) λ = 0.5, and (e) λ = 1, for Cu-H2O nanofluid for uniform thermal boundary 
condition (case I) when Ha = 20, Ra = 105, d = 10nm, n = 3, Pr = 6.8377, and τ = 1. 
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Figure 5.18: Effect of nanoparticles volume fraction (ϕ) on isotherms for (a) uniform 
magnetic field (umf), and non-uniform magnetic field with different period (b) λ = 0.1, 
(c) λ = 0.25, (d) λ = 0.5, and (e) λ = 1, for Cu-H2O nanofluid for uniform thermal boundary 
condition (case I) when Ha = 20, Ra = 105, d = 10nm, n = 3, Pr = 6.8377 and τ = 0.1. 
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Figure 5.19: Effect of nanoparticles volume fraction (ϕ) on isotherms for (a) uniform 
magnetic field (umf), and non-uniform magnetic field with different periods (b) λ = 0.1, 
(c) λ = 0.25, (d) λ = 0.5, and (e) λ = 1, for Cu-H2O nanofluid for uniform thermal boundary 
condition (case I) when Ha = 20, Ra = 105, d = 10nm, n = 3, Pr = 6.8377, and τ = 1. 
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Figure 5.20: Variation of average Nusselt number (Nuav) along bottom heated 
diameter with uniform thermal boundary conditions (case I) for different 
volume fraction of nanoparticles (ϕ) and Rayleigh number (Ra) for Cu-H2O 
nanofluid when Pr = 6.8377, Ha = 20, d = 10nm, n = 3, and τ = 1. 

 
(case I). These figures show that the pattern of the isothermal lines is almost similar to the uniform 

magnetic field and low period of the non-uniform magnetic field (τ = 0.1, and λ = 0.25). These 

figures also show that isothermal lines are distorted near the heated wall for the absence of the 

Hartmann number. But, for a higher magnetic field (Ha = 60), the isothermal lines become almost 

parallel to the hot bottom wall, which indicates the dominance of conduction near the hot wall. 

This pattern of streamlines also indicates Hartmann number (Ha) doesn’t influence the flow field 

greatly but also retards the thermal field within the cavity. The same results is seen for both τ = 0.1 

and τ = 1. In addition, the upper Hartmann number (Ha) is acting against convection within the 

enclosure. Moreover, the period of the magnetic field has a significant impact on fluid flow. The 

pattern of the isothermal lines changes with the changes of the period of the magnetic field.  

 
The magnetic field can create an encountered physical environment that can affect many processes 

such as biomedical and physical and chemical processes. The utilization of magnetic fields is 

useful in various applications such as heat exchangers, nuclear fusion, and material processes and  
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Figure 5.21: Streamlines of Hartmann number (Ha) for different thermal boundary 
conditions (a) θ = 1 (case I), (b) θ = 1 - X (case II), (c) θ = X (1 - X) (case III), (d) θ = A 
sin(2πX) (case IV) and (e) θ = A sin2 (2πX) (case V) for Cu-H2O nanofluid when Ra = 105, 
ϕ = 0.04, d = 10nm,  λ = 0.5, n = 3, and τ = 1. 
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Figure 5.22: Isotherms of Hartmann number (Ha) for different thermal boundary 
conditions (a) θ = 1 (case I), (b) θ = 1 - X (case II), (c) θ = X (1 - X) (case III), (d) θ = A 
sin(2πX) (case IV) and (e) θ = A sin2 (2πX) (case V) for Cu-H2O nanofluid when               
Ra = 105, ϕ = 0.04, d = 10nm,  λ = 0.5, n = 3, and τ = 1. 
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Figure 5.23: Streamlines of Rayleigh number (Ra) for different thermal boundary 
conditions (a) θ = 1 (case I), (b) θ = 1 - X (case II), (c) θ = X (1 - X) (case III), (d) θ = A 
sin(2πX) (case IV) and (e) θ = A sin2 (2πX) (case V) for Cu-H2O nanofluid when               
Ha = 20, ϕ = 0.04, d = 10nm,  λ = 0.5, n = 3, and τ = 1. 
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Figure 5.24: Isothermal lines of Rayleigh number (Ra) for different thermal boundary 
conditions (a) θ = 1 (case I), (b) θ = 1 - X (case II), (c) θ = X (1 - X) (case III), (d) θ = A 
sin(2πX) (case IV) and (e) θ = A sin2 (2πX) (case V) for Cu-H2O nanofluid when               
Ha = 20, ϕ = 0.04, d = 10nm,  λ = 0.5, n = 3, and τ = 1. 
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Figure 5.25: Streamlines of volume fraction of nanoparticles (ϕ) for different thermal 
boundary conditions (a) θ = 1 (case I), (b) θ = 1 - X (case II), (c) θ = X (1 - X) (case III), 
(d) θ = A sin(2πX) (case IV) and (e) θ = A sin2 (2πX) (case V) for Cu-H2O nanofluid 
when Ha = 20, Ra = 105, d = 10nm,  λ = 0.5, n = 3, and τ = 1. 
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Figure 5.26: Isothermal lines of nanoparticles volume fraction (ϕ) for different thermal 
boundary conditions (a) θ = 1 (case I), (b) θ = 1- X (case II), (c) θ = X (1 - X) (case III), 
(d) θ = A sin(2πX) (case IV), and (e) θ = A sin2 (2πX) (case V) for Cu-H2O nanofluid 
when Ha = 20, Ra = 105, d = 10nm,  λ = 0.5, n = 3, and τ = 1. 
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Table 5.1: Variation of average Nusselt number (Nuav) along the bottom heated wall for Cu-H2O 
nanofluid for different Hartmann number (Ha), nanoparticles diameter (d), Rayleigh number (Ra) 
and various thermal boundary conditions (TBC) when Pr = 6.8377, n = 3, ϕ = 0.04, λ = 0.5, τ = 1. 

d (nm) Ra  TBC 
Nuav 

Ha = 0 Ha = 20 Ha = 80 

1 

104 

Case I 26.735620 26.533969 26.321813 
Case II 26.316998 26.038055 25.995851 
Case III 12.445351 12.444106 12.442448 
Case IV 26.458461 26.450799 26.444934 
Case V 24.843669 24.844373 24.848833 

105 

Case I 27.569811 27.031434 26.602989 
Case II 27.497849 26.820867 25.195980 
Case III 12.500378 12.475436 12.449568 
Case IV 27.573583 27.015809 26.480938 
Case V 24.805832 24.797458 24.810186 

106 

Case I 41.341946 39.948276 31.461278 
Case II 40.948269 39.542278 30.864262 
Case III 13.558934 13.196353 12.560202 
Case IV 36.963122 35.545491 29.342248 
Case V 28.444317 28.246075 26.078284 

100 

104 

Case I 8.9956430 8.9896616 8.9829505 
Case II 8.4080995 8.1927510 8.0746080 
Case III 4.1899856 4.1884376 4.1865657 
Case IV 8.9374947 8.9153160 8.8979401 
Case V 8.3525719 8.3530166 8.3568939 

105 

Case I 11.227772 10.687181 8.9432328 
Case II 10.481393 10.034730 8.1978385 
Case III 4.2769227 4.2364848 4.1946683 
Case IV 10.455805 9.9613924 9.0028997 
Case V 8.6897666 8.4827650 8.3329648 

106 

Case I 16.841502 16.332445 13.281637 
Case II 14.620243 13.930468 12.680369 
Case III 5.0697260 4.9168818 4.3567629 
Case IV 14.810344 14.423448 12.270400 
Case V 11.803568 11.649541 10.549503 

 
scientific research in various disciplines. The period of the magnetic field is essential in protein 

crystallization, silver deposition and water evaporation, and so on. A periodic force field can be 

generated by the periodic magnetic field that is available in the above applications (see Liu et 

al. [56]]). Therefore the present study has a real-life application and great importance in industrial 

and engineering processes. Figure 5.10 shows the average Nusselt number for uniform magnetic 

field (umf), different periods of the magnetic field (λ), and different Hartmann numbers (Ha) for  
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Table 5.2: Variation of average Nusselt number (Nuav) along bottom heated wall with uniform 
thermal boundary condition (case I) for different types of nanofluids and various nanoparticles 
volume fractions (ϕ) when Ra = 105, Ha = 20, d = 10nm, n = 3, Pr = 6.8377, λ = 0.5, and τ = 1. 

Nanofluids 
  

I II II-I
I

100

 
 

 
 

III III-I
I

100

 
 

 
 

IV IV-I
I

100

 
 

 
 

0 0.01 0.05 0.1 
Cu-water 8.402384 10.263187 22.15 16.069668 91.25 23.050162 174.33 

Co-water 8.402384 10.400057 23.78 17.094337 103.45 24.412083 190.54 

Fe3O4-water 8.402384 10.344816 23.12 17.119632 103.75 34.305417 308.28 

Ag-water 8.402384 9.7957100 16.58 14.577452 73.49 19.514939 132.25 

Zn-water 8.402384 9.9306699 18.19 15.129334 80.06 20.611965 145.31 

CuO-water 8.402384 10.203048 21.43 16.902929 89.27 22.816969 171.55 

Al2O3-water 8.402384 10.021290 19.27 15.403518 83.32 21.326972 153.82 

TiO2-water 8.402384 9.9392978 18.29 15.051253 79.13 20.571352 144.84 

Cu-kerosene 8.455359 13.770578 62.86 32.387029 283.04 54.620733 545.99 

Co-kerosene 8.455359 14.192830 67.86 34.469768 307.67 58.615475 593.23 

Fe3O4-kerosene 8.455359 13.807837 63.30 32.608736 285.66 55.038774 550.93 

Ag-kerosene 8.455359 12.351421 46.08 25.610078 202.89 41.365016 389.22 

Zn-kerosene 8.455359 12.779320 51.14 27.656223 227.07 45.529568 438.47 

CuO-kerosene 8.455359 13.626599 61.16 31.766445 275.69 53.518254 532.95 

Al2O3-kerosene 8.455359 13.135148 55.35 29.443429 248.22 49.161689 481.43 

TiO2-kerosene 8.455359 12.958484 53.26 28.575965 237.96 47.463114 461.34 

Cu-EO 8.4066401 8.8606325 5.400 10.548415 25.48 12.404102 47.55 

Co-EO 8.4066401 8.8837036 5.680 10.654252 26.74 12.593793 49.81 

Fe3O4-EO 8.4066401 8.8692171 5.500 10.628576 26.43 12.649463 50.46 

Ag-EO 8.4066401 8.7905904 4.570 10.221352 21.59 11.811605 40.50 

Zn-EO 8.4066401 8.7963227 4.640 10.255262 21.99 11.879283 41.31 

CuO-EO 8.4066401 8.8385385 5.140 10.447394 24.28 12.221756 45.38 

Al2O3-EO 8.4066401 8.7954644 4.630 10.238918 21.79 11.826526 40.68 

TiO2-EO 8.4066401 8.7798311 4.440 10.164708 20.93 11.683716 38.98 

Cu-EG 8.5305867 11.677559 36.89 21.899593 156.72 33.637918 294.32 

Co-EG 8.5305867 11.924073 39.78 22.946893 168.99 35.758524 319.18 

Fe3O4-EG 8.5305867 11.717981 37.36 22.146809 159.62 33.962013 298.12 

Ag-EG 8.5305867 10.846328 27.15 18.446205 116.24 26.642682 212.32 

Zn-EG 8.5305867 11.099846 30.12 19.469056 128.23 28.792146 237.52 

CuO-EG 8.5305867 11.596755 35.94 21.531137 152.40 33.019156 287.07 

Al2O3-EG 8.5305867 11.309295 32.57 20.278709 137.72 30.630816 259.07 

TiO2-EG 8.5305867 11.197402 31.26 19.807656 132.20 29.640146 247.46 
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Table 5.3: Variation of average Nusselt number (Nuav) along heated bottom wall with uniform 
thermal boundary condition (case I) for different types of nanofluids and different Rayleigh 
numbers (Ra) when ϕ = 0.04, Ha = 20, d = 10nm, n = 3, λ = 0.5, Pr = 6.8377, and τ = 1. 

Nanofluids 
Ra 

104 105 106 

Cu-water 14.9104135 16.5296085 25.8359240 

Co-water 15.5645575 17.0943371 26.7371876 

Fe3O4-water 14.9596750 17.1196325 26.7535232 

Ag-water 12.6912367 14.5774518 22.6628323 

Zn-water 13.3825949 15.1293339 23.6313926 

CuO-water 14.7154622 16.2329297 25.4391526 

Al2O3-water 13.9693041 15.4035365 24.2005334 

TiO2-water 13.5598410 15.0512530 23.6256620 

Cu-kerosene 31.7154622 32.2329297 50.4391526 

Co-kerosene 33.1183157 34.4697680 54.3365800 

Fe3O4-kerosene 32.1914530 32.6087360 51.7909820 

Ag-kerosene 24.8273820 25.6100781 39.4423434 

Zn-kerosene 27.0892509 27.6562239 42.2730677 

CuO-kerosene 31.3935577 31.7664459 47.7013210 

Al2O3-kerosene 29.0665476 29.4434294 44.5025943 

TiO2-kerosene 28.1593782 28.5759653 43.3677162 

Cu-EO 8.34670334 10.5484155 16.2250263 

Co-EO 8.44053160 10.6542520 16.3909001 

Fe3O4-EO 8.35170214 10.6285765 16.3889366 

Ag-EO 8.02434577 10.2213522 15.6870139 

Zn-EO 8.12281991 10.2552620 15.8006460 

CuO-EO 8.31565160 10.4473940 16.1202371 

Al2O3-EO 8.20409472 10.2389182 15.8544392 

TiO2-EO 8.12743570 10.1647083 15.7293393 

Cu-EG 17.8770205 19.5295651 30.1697084 

Co-EG 18.8159922 20.3701252 31.4754410 

Fe3O4-EG 17.9692443 19.7281023 30.5170322 

Ag- EG 14.7429474 16.7214212 25.7295481 

Zn-EG 15.7325082 17.5570993 27.1005514 

CuO-EG 17.6234431 19.2259332 29.7357075 

Al2O3-EG 16.5933401 18.2110114 28.1901951 

TiO2-EG 16.1631393 17.8319963 27.5900572 
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Table 5.4: Variation of average Nusselt number (Nuav) along heated bottom wall with uniform 
thermal boundary condition (case I) for different types of nanofluids and different Hartmann 
number (Ha) when Ra = 105, ϕ = 0.04, d = 10nm, λ = 0.5, n = 3, Pr = 6.8377, and τ = 1. 

Nanofluids 
Ha 

0 20 50 80 
Cu-water 17.693123 16.529600 14.936598 14.793671 
Co-water 18.296096 17.094327 15.574041 15.443921 
Fe3O4-water 18.455686 17.119632 15.029785 14.829507 
Ag-water 15.536950 14.577451 12.809825 12.597344 
Zn-water 16.248933 15.129333 13.432741 13.272168 
CuO-water 17.476592 16.232929 14.716061 14.593912 
Al2O3-water 16.686158 15.403518 13.955531 13.847116 
TiO2-water 16.291406 15.051253 13.557010 13.440994 
Cu-kerosene 33.266666 32.297697 31.769252 31.717056 
Co-kerosene 35.351002 34.469760 34.000371 33.952072 
Fe3O4-kerosene 33.818808 32.608730 32.063871 32.015211 
Ag-kerosene 26.779776 25.610078 24.757675 24.681131 
Zn-kerosene 28.862959 27.656223 26.990049 26.932365 
CuO-kerosene 32.805350 31.766445 31.274587 31.228569 
Al2O3-kerosene 30.627878 29.443429 28.946077 28.903089 
TiO2-kerosene 29.794087 28.575965 28.043098 27.997792 
Cu-EO 11.149469 10.548415 8.9776040 8.3407736 
Co-EO 11.263561 10.654252 9.0669918 8.4326658 
Fe3O4-EO 11.307574 10.628576 8.8213253 8.3348023 
Ag-EO 10.766204 10.221352 8.7206203 8.0392124 
Zn- EO 10.877029 10.255262 8.7057789 8.1064897 
CuO-EO 11.105957 10.447394 8.8580616 8.2889464 
Al2O3-EO 10.952889 10.238918 8.6513402 8.1601264 
TiO2-EO 10.862812 10.164708 8.5930784 8.0870213 
Cu-EG 20.598116 19.529565 17.948428 17.742257 
Co-EG 21.471119 20.370101 18.863343 18.676018 
Fe3O4-EG 20.924648 19.728076 18.026468 17.820832 
Ag- EG 17.606820 16.721421 14.951914 14.637620 
Zn-EG 18.572573 17.557078 15.849179 15.606386 
CuO-EG 20.350352 19.225908 17.670533 17.483153 
Al2O3-EG 19.353733 18.210990 16.635867 16.452624 
TiO2-EG 18.944988 17.831975 16.220664 16.025650 
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Figure 5.27: Variation of average Nusselt number (Nuav) along bottom heated 
diameter for different nanoparticles volume fraction (ϕ) and different nanoparticles 
diameter (d) for Cu-H2O nanofluid and uniform thermal boundary condition (case I) 
when Pr = 6.8377, Ra = 105, Ha = 20, n = 3, λ = 0.5 and τ = 1. 

 
Cu-H2O nanofluid when Pr = 6.8377, Ra = 105, and d = 10 nm of uniform thermal boundary 

condition (case I). This figure shows average Nusselt number decreases with the increase of 

Hartmann (Ha). This is because the Lorentz forces are increased by the higher Hartmann number 

(Ha = 60), which produces a stronger resistance against the movement of the fluid. This reduces 

the thermal efficiency of the nanofluid on fluid flow and heat transfer rate. In addition, the period 

of the magnetic field plays a significant role in heat transport. It is noticed that a higher average 

rate of heat transfer is observed for the non-uniform magnetic effect when λ = 0.75. Moreover, it 

is interesting to observe that a higherrate of heat transfer is noticed for non-uniform magnetic than 

uniform magnetic effect. It also observed that non-uniform magnetic field conform better heat 

transfer rate. 

 
5.3 Effects of Rayleigh number 
Figures 5.11-5.12 respresent the effects of Rayleigh number (104 ≤ Ra ≤ 106) on stramline contours  
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Table 5.5: Variation of average Nusselt number (Nuav) along bottom heated diameter for uniform 
thermal boundary condition (case I) for different types of nanofluids and different diameter of the 
nanoparticles (d) when Ra = 105, Ha = 20, ϕ = 0.04, n = 3, λ = 0.5, and τ = 1. 

Nanofluids 

d 
I II II-I

I
100

 
 

 
 III III-I

I
100

 
 

 
 IV IV-I

I
100

 
 

 
 

100 nm 50 nm 10 nm 1 nm 

Cu-water 11.374081 12.293785 8.09 16.067946 41.27 31.700810 178.71 

Co-water 11.892822 12.923205 8.66 17.094337 43.74 33.913170 185.16 

Fe3O4-water 12.124072 13.120787 8.22 17.119632 41.20 32.340930 166.75 

Ag-water 11.064490 11.759104 6.28 14.577451 31.75 25.226838 127.99 

Zn-water 11.219880 11.993539 6.89 15.129333 34.84 27.247795 142.85 

CuO-water 11.555746 12.480817 8.01 16.232929 40.47 31.269894 170.60 

Al2O3-water 11.192075 12.022886 7.42 15.403518 37.63 28.957446 158.73 

TiO2-water 10.987155 11.789976 7.31 15.051233 36.99 28.003602 154.87 

Cu-kerosene 16.829764 19.698041 17.04 32.297697 91.91 85.138798 405.88 

Co-kerosene 17.482286 20.608585 17.88 34.469768 97.17 92.213498 427.47 

Fe3O4-kerosene 16.959534 19.860681 17.11 32.608736 92.27 86.126672 407.84 

Ag-kerosene 14.783386 16.863877 14.07 25.610078 73.24 62.899239 325.47 

Zn-kerosene 15.139935 17.671560 16.72 27.656223 82.67 70.021696 362.50 

CuO-kerosene 16.561243 19.369649 16.95 31.766445 91.81 83.626453 404.95 

Al2O3-kerosene 15.744905 18.279662 16.09 29.443429 87.00 76.261717 384.36 

TiO2-kerosene 15.470431 17.906611 15.74 28.575965 84.71 73.482936 374.99 

Cu-EO 9.771048 9.9213682 1.54 10.548415 7.96 12.903850 32.06 

Co-EO 9.809805 9.9732187 1.67 10.654252 8.61 13.205494 34.61 

Fe3O4-EO 9.839912 9.9924364 1.55 10.628576 8.015 13.016555 32.28 

Ag-EO 9.664331 9.7717662 1.11 10.221352 5.76 11.926964 23.41 

Zn-EO 9.633943 9.7538855 1.24 10.255262 6.45 12.151068 26.13 

CuO-EO 9.694547 9.8401058 1.50 10.447394 7.77 12.730484 31.32 

Al2O3-EO 9.565905 9.6959265 1.36 10.238918 7.04 12.287067 28.45 

TiO2-EO 9.516902 9.6420182 1.31 10.164708 6.81 12.138114 27.54 

Cu-EG 12.734776 14.092028 10.65 19.529565 53.36 41.595134 226.63 

Co-EG 13.023973 14.489321 11.25 20.370101 56.40 44.526973 241.88 

Fe3O4-EG 12.846311 14.224145 10.73 19.728076 53.57 41.923369 226.35 

Ag- EG 11.755328 12.746742 8.43 16.721406 42.25 31.969885 171.96 

Zn-EG 12.028086 13.132563 9.18 17.557078 45.97 34.960677 190.66 

CuO-EG 12.600263 13.922171 10.49 19.225908 52.58 40.797270 223.78 

Al2O3-EG 12.211485 13.407593 9.79 18.210990 49.13 37.587770 207.81 

TiO2-EG 12.048968 13.202729 9.58 17.831975 47.99 36.363911 201.80 
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Figure 5.28: Variation of average Nusselt number (Nuav) along bottom heated 
diameter for uniform thermal boundary condition (case I) for different shape of 
nanoparticles (n) and different volume fraction of nanoparticles (ϕ) for Cu-H2O 
nanofluid when Pr = 6.8377, Ra = 105, Ha = 20, d = 10 nm, n = 3, λ = 0.5, and τ = 1. 

 
for (a) uniform magnetic field, (b) λ = 0.1, (c) λ = 0.25, (d) λ = 0.5, and (e) λ = 1 for Cu-H2O 

nanofluid for uniform thermal boundary condition (case I) for both unsteady state  (τ = 0.1) and 

steady-state (τ = 1), respectively when ϕ = 0.04, Pr = 6.8377, Ha = 20, d = 10 nm, and n = 3. This 

result indicate that for all Rayleigh number (Ra), the buoyancy driven rotating flows in the cavity 

are evident. At non-dimensional time τ = 0.1, for almost all values of Ra, there are two symmetrical 

rotating cells are observed within the enclosure. The thermal boundary condition (case I) is the 

result of this particular pattern. The physical meaning of that the fluid adjacent to the bottom heated 

diameter tries to upward due to the influence of the buoyancy force after getting heated by the 

bottom heated wall while relatively cold water near circular wall goes towards bottom wall. 

Consequently, a pattern of symmetric type flow is created.  For small Rayleigh numbers, Ra = 104, 

two symmetrical circulation cells of low strength are seen inside the cavity for dominant 

characteristics of the flow field. As the Rayleigh number increases (Ra > 104), the streamlines 

pattern changes, and streamlines intensify, which indicates a higher velocity gradient and strength  
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Table 5.6: Variation of average Nusselt number (Nuav) along bottom heated wall with uniform 
thermal boundary condition (case I) for different types of nanofluids and the different shape of the 
nanoparticles (n) when Ra = 105, Ha = 20, d = 10 nm, ϕ = 0.04, λ = 0.5, and τ = 1. 

Nanofluids n Nuav  Nanofluids n Nuav  Nanofluids n Nuav 

Cu-water 3.0 15.6587679  Fe3O4-
kerosene 
 

3.0 32.6087368  Zn-EO 3.0 10.2552624 
3.7 15.8626473  3.7 32.8274118  3.7 10.4828489 
4.9 16.2123474  4.9 33.2013429  4.9 10.8686052 
5.7 16.4456403  5.7 33.4499621  5.7 11.1228225 
8.6 17.2925376  8.6 34.3466335  8.6 12.0260305 

           
Co-water 
 
 

3.0 17.0943371  Ag-kerosene 
 

3.0 25.6100781  CuO-EO 3.0 10.4473942 
3.7 17.2897478  3.7 25.8227712  3.7 10.6725311 
4.9 17.6205761  4.9 26.1879836  4.9 11.0537461 
5.7 17.8383168  5.7 26.4318673  5.7 11.3047028 
8.6 18.6099691  8.6 27.3185554  8.6 12.1946035 

           
Fe3O4-water 3.0 17.1196325  Zn- kerosene 3.0 27.6562239  Al2O3-EO 

 
3.0 10.2389188 

3.7 17.3165693  3.7 27.8718440  3.7 10.4591691 
4.9 17.6482358  4.9 28.2412268  4.9 10.8308573 
5.7 17.8653298  5.7 28.4872900  5.7 11.0746934 
8.6 18.6270471  8.6 29.3778019  8.6 11.9340212 

           
Ag-water 
 

3.0 14.5774518  CuO- 
kerosene 

3.0 31.7664459  TiO2-EO 3.0 10.1647086 
3.7 14.7841775  3.7 31.9807668  3.7 10.3671364 
4.9 15.1362467  4.9 32.3448739  4.9 10.7010030 
5.7 15.3694240  5.7 32.5853157  5.7 10.9148970 
8.6 16.2054526  8.6 33.4417648  8.6 11.6378645 

           
Zn-water 
 

3.0 15.1293339  Al2O3- 
kerosene 
 

3.0 29.4434294  Cu-EG 
 

3.0 19.5295651 
3.7 15.3280606  3.7 29.6591921  3.7 19.6905431 
4.9 15.6643412  4.9 30.0268301  4.9 19.9661242 
5.7 15.8855703  5.7 30.2703506  5.7 20.1496048 
8.6 16.6690970  8.6 31.1425999  8.6 20.8134273 

           
CuO-water 3.0 16.2329297  TiO2- 

kerosene 
3.0 28.5759653  Co-EG 

 
3.0 20.3701017 

3.7 16.4257718  3.7 28.7723486  3.7 20.5290171 
4.9 16.7509750  4.9 29.0989551  4.9 20.8002102 
5.7 16.9641468  5.7 29.3099257  5.7 20.9801680 
8.6 17.7141652  8.6 30.0325270  8.6 21.6272073 

           
Al2O3-water 3.0 15.4035182  Cu-EO 

 
3.0 10.5484155  Fe3O4-EG 

 
3.0 19.7280763 

3.7 15.5866186  3.7 10.7780180  3.7 19.8862791 
4.9 15.8912363  4.9 11.1679505  4.9 20.1557298 
5.7 16.0881365  5.7 11.4254386  5.7 20.3341689 
8.6 16.7639699  8.6 12.3435653  8.6 20.9734100 

           
TiO2-water 3.0 15.0512339  Co-EO 

 
3.0 10.6542525  Ag-EG 

 
3.0 16.7214068 

3.7 15.1800793  3.7 10.8817923  3.7 16.8850889 
4.9 15.3772423  4.9 11.2674530  4.9 17.1647271 
5.7 15.4944854  5.7 11.5215887  5.7 17.3505151 
8.6 15.8461468  8.6 12.4243068  8.6 18.0201508 

           
Cu-kerosene 
 

3.0 32.3870295  Fe3O4-EO 
 

3.0 10.6285765  Zn-EG 3.0 17.5570786 
3.7 32.6081395  3.7 10.8570452  3.7 17.7173019 
4.9 32.9873480  4.9 11.2439600  4.9 17.9904341 
5.7 33.2402567  5.7 11.4987002  5.7 18.1714839 
8.6 34.1576150  8.6 12.4021104  8.6 18.8212840 

           
Co-kerosene 
 

3.0 34.4697680  Ag-EO 
 

3.0 10.2213522  Al2O3-EG 
 

3.0 18.2109904 
3.7 34.6906080  3.7 10.4533527  3.7 18.3657367 
4.9 35.0684144  4.9 10.8472467  4.9 18.6277210 
5.7 35.3197336  5.7 11.1072737  5.7 18.8001321 
8.6 36.2269896  8.6 12.0339458  8.6 19.4108226 
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Table 5.7: Average Nusselt number (Nuav) along heated bottom diameter with uniform thermal 
boundary condition (case I) for different values of nanoparticles volume fraction (ϕ) and various 
Rayleigh number (Ra) for “without Brownian motion” and “with Brownian motion” effects for 
Cu-H2O nanofluid when Ha = 20, d = 10nm, Pr = 6.8377, n = 3, λ = 0.5, and τ = 1. 

Ra Brownian motion ϕ Nuav Increases ( % ) 

104 

with Brownian effect 

0.0 6.24446694 - 
0.01 8.04799441 28.88 
0.02 9.81717724 21.98 
0.03 11.55077724 17.66 
0.04 13.24851224 14.70 
0.05 14.91041358 12.54 
0.1 22.68984437 52.17 

without Brownian effect 

0.0 6.244466939 - 
0.01 6.432585544 3.01 
0.02 6.624485635 2.98 
0.03 6.820315721 2.96 
0.04 7.020220648 2.93 
0.05 7.224343783 2.91 
0.1 8.313354169 15.07 

105 

with Brownian effect 

0.0 8.402384526 - 
0.01 10.26318709 22.17 
0.02 11.98018405 16.73 
0.03 13.58141107 13.37 
0.04 15.09063038 11.11 
0.05 16.52960849 9.54 
0.1 23.28572849 40.87 

without Brownian effect 

0.0 8.40238452 - 
0.01 8.58660888 2.19 
0.02 8.76915197 2.13 
0.03 8.95033200 2.07 
0.04 9.13038558 2.01 
0.05 9.30949129 1.96 
0.1 10.1949592 9.51 

106 

with Brownian effect 

0.0 12.82182771 - 
0.01 15.77739612 23.05 
0.02 18.53156787 17.46 
0.03 21.11366101 13.93 
0.04 23.54348518 11.51 
0.05 25.83592437 9.74 
0.1 35.59362548 37.77 

without Brownian effect 

0.0 12.82182770 - 
0.01 13.09967538 2.17 
0.02 13.37793643 2.12 
0.03 13.65669173 2.08 
0.04 13.93598379 2.05 
0.05 14.21583432 2.01 
0.1 15.62411402 9.91 
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in the natural convection. The isothermal lines condense near the heated bottom wall and circular 

cooled wall representing a higher temperature gradient. At a higher Rayleigh number (Ra = 106), 

the streamlines circulation is more pronounced. At higher Rayleigh number, Ra = 106, and λ = 0.5, 

more vortices are observed inside the enclosure which indicates more heat transport. Furthermore, 

the streamlines pattern changes with the changes of the period of the non-uniform magnetic field. 

The pattern of the flow remains almost the same for both τ = 0.1, and τ = 1, which indicates the 

nanofluid within the enclosure stabilizes rapidly and reaches the steady state within a shorter time. 

 
Figures 5.13-5.14 respresent the effects of Rayleigh number (104 ≤ Ra ≤ 106) on isothermal lines 

for (a) uniform magnetic field, (b) λ = 0.1, (c) λ = 0.25, (d) λ = 0.5, and (e) λ = 1 for Cu-H2O 

nanofluid with uniform thermal boundary condition (case I) for both unsteady state (τ = 0.1) and 

steady state (τ = 1), respectively when Pr = 6.8377, Ha = 20, ϕ = 0.04, d = 10nm, and n = 3. At the 

low Rayleigh number (Ra = 104), the pattern of the isothermal lines is almost parallel to each other 

to the heat source wall due to the weaker convection inside the cavity. The isothermal lines form 

a cavity-like arc near the top circular cold wall, and isotherms are almost parallel to each other 

neighbor warmed diameter. Therefore, conduction is the significant mood of heat transfer for the 

lower buoyancy-driven parameter. The strength of the fluid currents enhances with the increases 

of Rayleigh number (Ra) due to the influence of buoyant forces, which increase the convective 

force. For the increases of the buoyancy driven parameter named Rayleigh number (Ra), the 

isothermal lines are more and more distorted at the middle of the heated wall, indicating convection 

is beginning to take over and become a dominant mode of heat transport within the enclosure. At 

the higher Rayleigh number (Ra = 106), the streamlines form a particular pattern like a mushroom. 

This particular pattern of the streamlines indicates that the heat energy flows into the nanofluid 

within the enclosure from the heated bottom wall. For the case τ = 1, the isothermal lines are more 

dispersed within the enclosure than τ = 0.1, which represents the diffusion of heat is slower 

compared to matter within nanofluid. 

 
Figure 5.15 illustrates the average Nusselt number along warmed bottom diameter with uniform 

thermal boundary condition (case I) for the different volume fractions of nanoparticles (ϕ) and 

Rayleigh number (Ra) for Cu-H2O nanofluid when Pr = 6.8377, Ha = 20, d = 10 nm, n = 3, and τ 

= 1. This figure depicts that average Nusselt number is significantly higher for a higher value of 

nanoparticles volume fraction and upper value of Rayleigh number (Ra). The heat transfer rate 
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increases monotonically with the increase of nanoparticle volume fraction. The heat transfer rate 

is more pronounced and increases rapidly for a higher Rayleigh number. In addition, the 

augmentation heat transport rate is more significant with addional amount of nanoparticles than 

base fluid. This is due to the fact that additional nanoparticles enhances thermal conductivity of 

nanofluid.  

 

5.4 Effects of nanoparticles volume fraction 
Figures 5.16-5.17 represent the impact of streamlines for different nanoparticles volume fraction 

for Cu-H2O nanofluid for uniform thermal boundary condition (case I) when Pr = 6.8377, Ha = 

20, d = 10 nm, Ra = 105, and n = 3 for both non-dimensional time τ = 0.1 and τ = 1, respectively. 

At the non-dimensional time, τ = 0.1, it is observed that there are two opposite circulation cells 

within the cavity for both uniform magnetic field and non-uniform magnetic field with different 

periods. Thermal boundary heating condition is the causes for the pattern of this streamlines. The 

nanofluids near the bottom wall become warmed by the heated bottom wall and move upwards 

while the bottom relatively cold nanofluid near-circular wall approaches the bottom wall, which 

helps to create a symmetrical flow pattern. This pattern remains the same for the categorical of 

nanoparticles volume fraction (ϕ). For base fluid (ϕ = 0), it is observed from the figure (left column 

of 5.16 and 5.17) that two rotating cells are not stronger enough except period λ = 0.5 because 

streamline contours are not greatly influenced with water molecules inside the enclosure.  

 
An interesting observation is that the addition of nanoparticles into the base fluid decreases the 

value of stream function for a particular period of the magnetic field. The cause behind this 

phenomenon is that the addition of nanoparticles enhances the total mass of the fluid within the 

cavity, which increases the inertia force of the fluid. The flow of the fluid becomes to slow down 

slightly for this higher inertia. Another point is that additional nanoparticles increase viscosity and 

particle-particle interactions are not significant in this solution inside the enclosure. Moreover, the 

streamlines pattern changes a little bit by the increases in the volume of nanoparticles. The pattern 

of streamlines is almost similar for both uniform magnetic fields (case (a)) and low periods (λ = 

0.1) of the magnetic field (case (b)). The flow pattern changes with the increases of the magnetic 

field period, while an interesting pattern of the streamlines is seen for the period of the magnetic 

field, λ = 0.5. At λ = 0.5 (row (d) of figures 5.16 and 5.17), the small vortices are expanded and 



   

84 
 

become stronger within the cavity with the increase of the volume of nanoparticles.  The flow 

becomes stabilized very soon and reaches a steady state quickly because the flow pattern remains 

almost the same for both τ = 0.1 and τ = 1. In addition, an expanded and slightly stable distribution 

of streamlines are observed near the cold circular wall with the increases of nanoparticles volume. 

 
The effects of isothermal lines for different volume fraction of the nanoparticles (ϕ) is presented 

in figures 5.18-5.19, respectively with τ = 0.1, and τ = 1 for Cu-H2O nanofluid for uniform thermal 

boundary condition (case I) when Pr = 6.8377, Ha = 20, d = 10 nm, Ra = 105, λ = 0.5 and n = 3. 

This figure shows that the isothermal lines are more compressed near the near the end corner of 

the bottom warmed diameter. The closely packing of the isotherms indicate that conduction is the 

major type of heat transport. The density of the isothermal lines is lower in the middle of the 

bottom warmed diameter, which indicates a higher heat transport region. The fluid particles 

adjacent to the middle of the heated wall move upward after getting warmed indicating convective 

heat transport in that region. The isothermal lines pattern changes and is more noticeable at the 

middle of the enclosure with the addition of the nanoparticles. In addition, the addition of 

nanoparticles into the base fluid has a stimulating effect on heat diffusion. The pattern of the 

isothermal lines changes with the changes of the period of the magnetic field. An interesting pattern 

of the isothermal lines is observed with the period of the magnetic field with the period, λ = 0.5. 

  
Figure 5.20 shows average Nusselt number for different volume fraction of nanoparticles (ϕ) and 

Rayleigh number (Ra) for Cu-H2O nanofluid for uniform thermal boundary condition (case I) 

when Pr = 6.8377, Ha = 20, d = 10 nm, λ = 0.5, n = 3, and τ = 1. This figure shows that the average 

Nusselt number decreases with the increase of nanoparticle volume fractions and the Rayleigh 

number. The physical meaning of that as nanoparticles volume fraction increases, the thermal 

conductivity of the nanofluid increases. This figure also depicts that the rate of heat transfer is 

strongly affected by the addition of nanoparticles. Table 5.2 shows that the rate of heat transport 

increases for all types of mentioned nanofluids. The rate of heat transport increases by almost 

22.15% for Cu-H2O nanofluid, 16.58% for Ag-water nanofluid with 1% volume of nanoparticles, 

whereas it increases only 5.4% for Cu-engine oil nanofluid for uniform thermal boundary 

condition (case I). Therefore, it can be declared that convection is dominant for higher 

nanoparticles volume fraction and Rayleigh number. 
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5.5 Effects of different thermal boundary conditions 
Figures 5.21-5.26 show the numerical outcomes of natural convective temperature transport inside 

the semi-circular shaped enclosure with various thermal boundary conditions (case I: θ = 1 

(uniformly heated), case II: θ = 1 – X  (linearly heated), case III: θ = X (1 – X) (parabolically 

heated), case IV: θ = A sin (2πX) (sinusoidally heated), and case V: θ = A sin2 (2πX) (sinusoidally 

heated)). The characteristics of controlling parameters such as Rayleigh number (Ra), Hartmann 

number (Ha), and nanoparticles volume fraction (ϕ), and nanoparticles diameter (d) are 

investigated on the physical phenomenon of the flow field and heat transport. For numerical 

simulation regarding streamlines and isothermal lines, Cu-H2O nanofluid is considered as default 

nanofluid and different nanoparticles, and base fluid are also engaged to investigate heat transport 

performance. Figure 5.21-5.22 displays the effects of streamlines and isothermal lines respectively 

for different Hartmann numbers (Ha) for Cu-H2O nanofluid with Ra = 105, ϕ = 0.04, d = 10nm, λ 

= 0.5, n = 3, and τ = 1 when the bottom diameter is heated uniformly (case I), linearly (case II) and 

non-uniformly (case III, IV, V). The fluid near the bottom diameter is hotter compared to the 

circular wall. So, the fluid near the bottom wall has a lower density compared to the fluid near-

circular wall. Consequently, the fluid near the middle of the bottom wall moves upward while 

relatively heavy fluid near the circular wall moves downward along the circular wall. As a result, 

the fluid loss energy moves downward and eventually forces the separation of the thermal 

boundary layer along the circular wall.  

 
In Figure 5.21, for uniformly thermal boundary condition (case I), two counter-clockwise central 

circulation cells are observed within the enclosure. The eye of rotations is situated near the center 

of each half of the cross-section of the enclosure. But for non-uniform thermal boundary conditions 

(case V), four counter-clockwise rotating vortices are observed. Also, two symmetrical rotating 

circulation cells are also observed for the absence of magnetic force (Ha = 0). But, for applying 

magnetic force introduced by Hartmann number (Ha = 60), it is seen that the movement of the 

fluid become slower within the enclosure compared to the case of Hartmann number (Ha = 0) 

because the magnetic field has a trend to make slowdown the motion of the fluid. The symmetry 

also changes for the increase of Hartmann number for case III and case V because the magnetic 

field suppresses the circulation of the flow within the enclosure. A large rotating cell is seen for a 

higher magnetic field in case II and case IV. 
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The isothermal contours of Hartmann number (Ha) for various thermal boundary conditions are 

presented in Fig. 5.22 for Cu-H2O nanofluid when Ra = 105, ϕ = 0.04, d = 10nm, λ = 0.5, n = 3, 

and τ = 1. These figures show that the isothermal lines are clustered with the heated bottom 

diameter, indicating the existence of a temperature gradient along the vertical direction of this 

region. It is also observed that the temperature gradient is weak at the center of the cavity. At 

higher Hartmann numbers (Ha = 60), the isothermal lines are almost parallel to each other in case 

I, case IV, and case V. The isothermal lines are densely distributed at the left corner inside the 

cavity in case II. In contrast, isotherms are densely distributed at both the bottom corner of the 

enclosure for case I and case III. In case I, the isothermal lines are formed a mushroom shape at 

the middle of the cavity for low Hartmann Number. For the consideration of Lorentz forces, i.e., 

an increase of Hartmann number, the isothermal lines start to move away from the hot bottom wall, 

indicating temperature gradient decreases within the enclosure. 

 
Figures 5.23-5.24 represent the impact of streamlines and isothermal lines, respectively for 

different Rayleigh number (Ra) with various thermal boundary conditions for Cu-H2O nanofluid 

when Ha = 20, ϕ = 0.04, d = 10nm, λ = 0.5, n = 3, and τ = 1. For uniform thermal boundary 

conditions (case I) and non-uniform thermal boundary conditions (case III), two counter 

symmetrical circulation cells are observed inside the cavity, and the eye of the rotation is located 

near the center of each cross-section of the cavity. But the symmetry is distorted with the increase 

of Rayleigh number. As the Rayleigh number increases (Ra = 106), the convection is more 

pronounced than conduction. A large central circulation cell with two small tubes at the corner of 

the bottom wall is observed at the center of the cavity for the sinusoidal thermal boundary condition 

(case IV). The density of the streamlines enhances within the enclosure with the increase of 

Rayleigh number (Ra) due to the convection mode of heat transfer dominates in those regions. 

There are four symmetric circulating cells for non-uniform thermal boundary conditions (case V). 

Two larger cells at the middle of the enclosure are observed for a higher Rayleigh number (Ra = 

106) in case V. Besides these two primary cells, two secondary cells are formed at the corner of 

the heated bottom wall.  

 
To detect the effectiveness of temperature transfer, isothermal lines are useful. The isothermal 

lines also help us to detect the mode of temperature transport, whether it is conduction or 

convection. Figure 5.24 shows that isothermal lines are more compressed near the heated bottom 
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diameter. These compressed isothermal lines tell us that the principal mode of heat transport is 

conduction at those regions. At the middle of the cavity, the density of the isothermal lines is less, 

which represents relatively weaker convective heat transfer. Figure 5.24(a) represents uniform 

heating at the bottom wall causes a finite discontinuity in Dirichlet type of boundary conditions 

for the distribution of the temperature at both edges of the bottom wall. For non-uniform heating 

(case IV and case V), the singularity is removed at the edges of the bottom wall. The isothermal 

lines are quite dispersed throughout the cavity for a relatively higher Rayleigh number. For 

sinusoidal thermal boundary conditions, the dispersion of isothermal lines increases within the 

enclosure. Figure 5.24(a) shows that isothermal lines are distributed uniformly, representing 

conduction as the principal mode of heat transport. For the higher Rayleigh number (Ra), the 

isothermal lines are more distorted due to the more substantial effects of convection. At Ra = 106, 

case I and case III, the isothermal lines form like a mushroom shape at the middle of the cavity, 

indicating convection is dominant at that region. Therefore, a higher value of Rayleigh number 

(Ra) improves the convection heat transfer characteristics. 

  
Figures 5.25-5.26 depict the impact of streamline contours and isotherms, respectively for different 

nanoparticles volume fraction (ϕ) with various thermal boundary conditions for Cu-H2O nanofluid 

when Ha = 20, Ra = 105, d = 10nm, λ = 0.5, n = 3, and τ = 1. These figures show that both of the 

streamline contours and isothermal lines are affected significantly with the increases of 

nanoparticles volume fraction in all thermal boundary conditions (case I, II, III, IV and V). The 

pattern of the streamline contours is almost similar for the thermal system cases I and III. A central 

large rotating vortex with two small eddies is observed for sinusoidal thermal boundary conditions 

(case IV). The streamline contours are expanded, and the little eddies become stronger within the 

cavity with the increase of the volume of nanoparticles. This figure shows that three symmetrical 

parallel distributions of the family of curves of isothermal lines from bottom diameter for the entire 

range of nanoparticles volume in case V. The thickness of the isothermal lines increases with the 

increment of nanoparticles volume fraction.  

 
To determine the rate of heat transfer along the bottom heated wall, the average Nusselt number is 

calculated varying diameter of nanoparticles (d), Rayleigh number (Ra), and Hartmann number 

(Ha) regarding uniform thermal boundary condition (case I), linear thermal boundary condition 

(case II), non-uniform thermal boundary condition (case III, IV, and V). Table 5.1 represents the 
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average Nusselt number on the heated bottom wall with various thermal boundary conditions (case 

I, II, III, IV, and V) for Cu-H2O nanofluid when Pr = 6.8377, n = 3, ϕ = 0.04, and τ = 1. This table 

shows that the average Nusselt number decreases with the increase of the Hartmann number (Ha). 

It is seen that heat transport rate decreases 23.90%  for uniform thermal boundary conditions when 

Ha varies 0 to 80 with Ra = 106, ϕ = 0.04, n = 3, d = 1nm in steady state case. Therefore, the rate 

of heat transfer is reduced by the stronger magnetic field. It is also seen that heat transport rate 

increase 54.63% without magnetic effect when Ra varies 104 to 106 whereas it increases 19.53% 

with magnetic effect (Ha = 80) for uniform thermal condition (case I). This Table also shows that 

the heat transport is intensified for copper-water nanofluid by decreasing the size of nanoparticles. 

The rate of heat transport decreases 23.90% with d = 1nm, whereas it decreases 21.14% with d = 

100nm when Ha varies 0 to 80 for uniform thermal boundary condition (case I) and Cu-H2O 

nanofluid. Another important point is that the heat transport is more pronounced in higher 

buoyancy driven parameter Rayleigh number (Ra). This table shows that heat transport rate 

decrease 1.55% with Ra = 104, whereas it decreases 21.14% with Ra = 106 when Ha varies 0 to 80 

with d = 1nm and uniform thermal system (case I). In addition, it is interesting to observe that 

height heat transmission is achieved when the bottom wall is heated uniformly. The temperature 

transport rate increases 19.53% for case I, 18.73% for case II, 0.95% for case III, 10.56% for case 

IV and 4.95% for case V when Ra varies 104 to 106 when Ha = 80, and d = 1nm. 

 
5.6 Average heat transfer rate for different nanofluids 
The current study has been investigated the effects of governing physical parameters like as 

diameter of the nanoparticles (d), the volume fraction of nanoparticles (ϕ), Hartmann number (Ha), 

the different shape factor of nanoparticles (n), Brownian motion of the nanoparticles, and Rayleigh 

number (Ra) of different nanofluids on the temperature transport rate regarding Nusselt number 

along the heated bottom wall of the cavity. This goal is satisfied by Table 5.2-5.4. The results of 

the present problem are discussed for copper-water nanofluid. Also, various types of nanoparticles 

such as Cu, Co, Fe3O4, Al2O3, TiO2, Ag, Zn, and CuO and base fluid such as water (H2O), 

kerosene, ethylene glycol (EG), and engine oil (EO) are considered in this investigation to observe 

how the temperature transport rate and fluid flow depend on parameters as mentioned earlier.  

 
Table 5.2 illustrates the average Nusselt number at the heated wall of the cavity for different types 

of nanofluids and various nanoparticles volume fractions for uniform thermal boundary condition 
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(case I) for steady state case (τ = 1) when Ra = 105, Ha = 20, λ = 0.5, d = 10nm. It is seen that the 

temperature changes are significant despite nanoparticles providing 1% into the base fluid. The 

heat transfer rate increase 5.4% for engine oil-based nanofluid and 36.89% for ethylene glycol-

based nanofluid with the increases of 1% nanoparticles volume fraction. For all thirty-two different 

types of nanofluids, the average Nusselt number increases with the increase of nanoparticle volume 

fraction. This is due to the higher thermal conductivity of nanoparticles. This is also a cause of the 

considering the effect of Brownian motion in the thermal conductivity equation. The table shows 

that highest heat transfer for kerosene-based nanofluids compared to water-based, ethylene-based, 

and engine oil-based nanofluids. It is observed that Co-kerosene and Fe3O4-kerosene nanofluids 

show a higher rate of heat transfer, although copper (Cu) nanoparticles have higher thermal 

conductivity compare to cobalt (Co) nanoparticles and magnetite (Fe3O4) nanoparticles. This is 

due to the Brownian motion effect of the nano-sized particles of nanofluids that is considered in 

the thermal conductivity equation. The temperature transport rate increases 67.86% for Cobalt-

kerosene nanofluid and 63.30% for magnetite-kerosene nanofluid, whereas it increases 62.86% for 

Copper-kerosene nanofluid. On the other hand, the lowest heat transfer is observed for engine oil-

based nanofluids due to the lower thermal conductivity and higher dynamical viscosity of the based 

fluid. In addition, copper oxide nanoparticles based nanofluids show the most insufficient heat 

transfer than copper nanoparticles based nanofluids. The heat transfer rate increases 22.15% for 

Cu-H2O nanofluid whereas it increases 21.43% for CuO-H2O nanofluid for 1% nanoparticles 

volume.   

 
Table 5.3 depicts the heat transport rate regarding mean Nusselt number along the heated bottom 

diameter of the enclosure for different types of nanofluids and different Rayleigh numbers for 

uniform thermal boundary condition (case I) when Pr = 6.8377, Ha = 20, d = 10 nm, Ra = 105, λ 

= 0.5, n = 3, and τ = 1. This table shows that the average Nusselt number increases significantly 

with the increase of buoyancy-driven parameter Rayleigh number for all types of nanofluids. The 

rate of temperature transport increases 10.86% and 73.27% when the Rayleigh number increases 

104 to 105 and 104 to 106, respectively, for copper-water nanofluids. The Kerosene-based nanofluid 

shows a more significant impact on the augmentation of heat transfer rate. The rate of heat 

transport increases 59.04% for copper-kerosene nanofluids, 64.07% for cobalt-kerosene 

nanofluids, 60.88% for magnetite-kerosene nanofluids, 58.87% for Ag-kerosene nanofluids, 
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51.94% for CuO-kerosene nanofluids, and 54.01% for TiO2-kerosene nanofluids when Rayleigh 

number (Ra) varies 104 to 106. 

 
Table 5.4 illustrates the average Nusselt number along the heated bottom diameter of the enclosure 

for different types of nanofluids and different values of Hartmann number for uniform thermal 

boundary conditions (case I) when Pr = 6.8377, Ha = 20, d = 10 nm, Ra = 105, λ = 0.5, n = 3 and 

τ = 1. In a steady-state case (τ = 1.0), the average Nusselt number decreases with the increase of 

the Hartmann number. This is because the magnetic field suppresses the convective flows with 

increases in the magnetic field's intensity that slow down the heat transfer rate. The heat transfer 

rate decreases 16.38% for Cu-water nanofluid, 4.66% for Cu-kerosene nanofluid, 25.19% for Cu-

engine oil nanofluid, and 13.86% for Cu-ethylene glycol nanofluid when Hartmann number varies 

0 to 80. In addition, this table shows that the heat flux is higher at the heated bottom diameter when 

no magnetic field affects the flow. Therefore, the applied magnetic field can be used in controlling 

the flow as well as heat transfer. 

 
5.7 Effects of nanoparticles diameter 
Figure 5.27 shows the average Nusselt number for different nanoparticles volume fractions (ϕ) and 

different diameters of nanoparticles (d) for Cu-H2O nanofluid with uniform thermal system (case 

I) when Pr = 6.8377, Ra = 105, λ = 0.5, Ha = 20, and τ = 1. This figure shows that the average 

Nusselt number is decreased with the increase in the diameter of the nanoparticles. The significant 

changes of the average Nusselt number happen for about 1-50nm size of nanoparticles. After that, 

it remains almost the same for 51-100nm size of nanoparticles within the solution. In addition, the 

average Nusselt number is significantly higher for the 1-10nm size of nanoparticles. It is noticed 

that the average Nusselt number is more pronounced and intensified for a higher volume fraction 

of nanoparticles. Moreover, an increasing trend of temperature transport rate is seen for the 

increases of the nanoparticles volume. Furthermore, the nanoparticles move the cold upper wall 

because of the temperature gradient between heated and cooled walls. These outcomes indicate 

that as the temperature gradient enhances, the diffusion of the nanoparticles also increases, which 

increases the heat transfer rate. 

 
Table 5.5 depicts the average Nusselt number on the heated bottom wall of the enclosure for 

different types of nanofluids and different diameters of nanoparticles for uniform thermal 
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boundary condition (case I) for four different types of base fluids such as water (H2O), kerosene, 

ethylene glycol (EG) and engine oil (EO) with eight different types of nanoparticles such as Cu, 

Co, Fe3O4, Al2O3, TiO2, Ag, Zn, and CuO when  Ra = 105, Ha = 20, d = 10 nm, λ = 0.5 and τ = 1. 

This Table shows that the average rate of heat transfer decreases with the increase of the diameter 

of nanoparticles. Kerosene-based nanoparticles show significant augmentation in heat transfer 

rate. Engine oil-based nanofluids show a lower rate of heat transfer. This is because engine oil has 

higher dynamical viscosity, which suppresses the nanoparticle's Brownian motion. Therefore, 

kerosene-based nanofluids show a higher heat transfer rate compared to water-based nanofluids. 

In addition, by decreasing nanoparticles diameter, the specific area increases, which helps to 

enhances nanofluid thermal conductivity and consequently increases the average Nusselt number. 

This Table shows that the rate of heat transfer rate increases 97.17% in a kerosene-cobalt nanofluid 

when the nanoparticles diameter decreases from 100nm to 10nm. In contrast, it increases 8.61% 

for engine oil-based cobalt nanoparticles when the nanoparticles diameter decreases from 100nm 

to 10nm.    

 
5.8 Effects of nanoparticles shape factor  
The shape of the nanoparticles has an effective influence on temperature transport. It has been 

mentioned before that the different values of n indicate different shapes of the nanoparticles. The 

numerical values of n = 8.6, 5.7, 4.9, 3.7, and 3.0 represent the blade, platelet, cylinder, brick and 

sphere shape of nanoparticles. The spherical shape of nanoparticles is considered for the numerical 

outcomes of the present problem. Different shape of nanoparticles are also used in the current 

investigation for analyzing the shape effects on the heat transfer of nanofluid. Figure 5.28 

represents the impact of average Nusselt number for different nanoparticle volume fractions and 

different shapes of nanoparticles such as spherical, brick, cylinder, platelet, and blade shape for 

copper-water nanofluid with uniform thermal boundary condition (case I). This figure depicts that 

the rate of heat transfer is significantly higher for the blade shape of nanoparticles than all other 

shapes of nanoparticles. This is because of the less sphericity of the blade shape of nanoparticles. 

The physical meaning of the higher total surface area of the blade-shaped solid-liquid crossing 

point is associated with the whole external area of the other-shaped nanoparticle-liquid edge for 

the same amount of volume of nanoparticles. In addition, the average Nusselt number is more 

apparent for the higher value of nanoparticle volume fraction. It is also mentioned that temperature  
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transport is more significant for the addition of nanoparticles in the base fluid. 

 
Moreover, the average Nusselt number is higher for the blade shape of nanoparticles compared to 

all other shapes of nanoparticles such as spherical, brick, cylinder, and platelet. It is also clear from 

this figure that a classification of the performance of heat transport from higher performance to 

lesser performance with respect to the shape of nanoparticles is the blade, platelet, cylinder, brick, 

and spherical shape, respectively. Table 5.6 shows the impact of the shape of the nanoparticles for 

different types of nanofluid for uniform thermal boundary conditions (case I). For all types of 

nanofluids, the blade shape of nanoparticles shows a higher heat transfer rate than other shapes of 

nanoparticles. The cause of that blade shape of nanoparticles has higher surface factor 3.29 (1/nm) 

than bricks (0.19 (1/nm)), cylinders (0.58 (1/nm)), and platelets (2.22 (1/nm)) (see Timofeeva et 

al. [55]). The highest surface factor indicates the highest area of the surface that cab be defined as 

the ratio of the surface and volume of the particle of a certain size and shape. It is further mentioned 

that the highest heat transfer rate can be obtained for the blade shape of nanoparticles irrespective 

of the materials of nanoparticles and base fluids. The rate of heat transport increases 10.43% blade 

shape of nanoparticles instead of the spherical shape of nanoparticles for Cu-H2O nanofluid with 

uniform thermal boundary conditions. 

 
5.9 Effects of Brownian motion 
The random movement of nano-sized particles in the fluid significantly influences nanofluid flow 

and heat transport. The effect of Brownian motion of nanoparticles has been considered in the 

thermal conductivity equation (3.15) for calculating all results concerning streamlines, isothermal 

lines and average heat transport rate. To examine the influence of Brownian motion on the 

temperature transport rate, the average Nusselt number along the heated bottom diameter is 

calculated for both including Brownian effects and neglecting Brownian effects of nanoparticles 

with various Rayleigh numbers (104 ≤ Ra ≤ 106), and nanoparticles volume fraction (0 ≤ ϕ ≤ 0.1). 

A comparison study of the increment of the average Nusselt number is presented in Table 5.7 for 

different nanoparticles and Rayleigh numbers when Hartmann number, Ha = 20, the diameter of 

nanoparticles d = 10nm, and τ = 1 for the copper-water nanofluids. The outcome indicates 

Brownian effects of nanoparticles play an influential role in the augmentation of temperature 

transport rate. Due to the random movement of the nano-sized particles into the base fluid, the 

Brownian motion nanoparticles contribute to the transfer of more heat in the nanofluids, and it 
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enhances the micro-convection of the fluid around individual particles. The result shows that at 

low Rayleigh number, the impact of nanoparticles volume fraction on average Nusselt number is 

more effective for both cases without and with Brownian motion of the nanoparticles. In addition, 

for higher nanoparticles volume fraction (ϕ = 0.01), the average Nusselt number at the heated wall 

is increased by 28.88% 1% nanoparticles volume at low Rayleigh number (Ra = 104) when 

Brownian motion of the nanoparticles is considered into account and by 3.01% when Brownian 

motion of the nanoparticles is neglected. It is also mentioned that the Brownian motion of 

nanoparticles is more effective in enhancing temperature transport rate (heat transport rate 

increases 28.88% with 1% nanoparticles volume for Ra = 104 and 23.05% for Ra = 106) in lower 

Rayleigh number compared to higher Rayleigh number. .  
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CHAPTER SIX 

Conclusions and Recommendations 
 

6.1 Summery of the Major Outcomes  
In this thesis, the primary purpose of the numerical investigation is to perform the influence of 

non-uniform vertically periodic magnetic field on time-dependent, two-dimensional, laminar, 

viscous, incompressible convection flow and heat transport enhancement considering 

nanoparticles Brownian motion for various nanofluids inside a semi-circular cavity. Natural 

convection has been considered due to the difference of the density resulting from the difference 

of temperature between the heated bottom diameter and cold circular wall. The upper circular wall 

has been cooled at low temperature, while the horizontal diameter is heated at high temperature. 

The function of the non-uniform magnetic fields has been considered as the sine function 

of x. However, both uniform magnetic fields and non-uniform magnetic fields have also been 

considered for comparison in this thesis work. The average Nusselt number along horizontal 

heated diameter is calculated for various types of nanofluids. Different types of thermal boundary 

conditions have also been examined to investigate the natural convection heat transport 

mechanism. The nonlinear governing partial differential equations have been transformed into the 

non-dimensional form using a set of similarity variables.  

  
The robust partial differential equations solver computer software COMSOL Multiphysics that 

employs the finite element technique of Galerkin weighted residual form has been employed to 

simulate the dimensionless governing equations for the present problem. An excellent agreement 

has been found with the numerical and experimental data presented in the literature review. The 

flow pattern and the structure of temperature transfer mechanisms have been shown in terms of 

streamline contours and isothermal lines, respectively. The outcomes for different physical model 

parameters such as Hartmann number (Ha), Rayleigh number (Ra) diameter of nanoparticles (d), 

the volume fraction of nanoparticles (ϕ), period of the magnetic field (λ), and Brownian motion of 

the nanoparticles have been displayed using streamlines, isotherms as well as the average rate of 

heat transfer. A comprehensive discussion of these physical parameters has been done from the 

physical point of view. The enhancement of temperature transport of thirty-two different 
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nanofluids has also been obtained and examined for the above-mentioned different model physical 

parameters. The important findings are listed as follows: 

 The flow is needed time to reaches the study state, which can be controlled by various 

model parameters such as Hartmann number (Ha), Rayleigh number (Ra), the diameter of 

nanoparticles (d), nanoparticles volume fraction (ϕ), and size and shape of the 

nanoparticles.  

 The heat transfer mechanisms of the solution for Cu-H2O nanofluid reach a steady state 

from the unsteady state within a very short time for uniform thermal boundary conditions. 

It has been calculated after τ = 0.65. 

 The non-uniform magnetic field has a significant impact in controlling the flow and heat 

transport of nanofluid. It shows a higher heat transfer rate along the heated wall than the 

uniform magnetic field. The intensity of flow as well as heat transfer change with different 

periods of the magnetic field. The period λ = 0.75 shows the highest heat transport rate 

along the heated bottom wall.  

 The strength of the flow enhances significantly, and the pattern of the flow vortices changes 

with a higher Rayleigh number. Lower Rayleigh number shows heat transfer through 

conduction which is observed from isotherms. In contrast, the higher value of the Rayleigh 

number conform better temperature transport through convection, and natural convection 

heat transport is intensified for higher Rayleigh number. Heat transfer rate increases 

56.30% when Ra varies from 105 to 106.  

 The thermal fields vary, and heat transport changes significantly with the increment of 

Hartmann number. Higher Hartmann number diminishes heat transport rate. A stronger 

magnetic field can decrease natural convection compared to the lower Rayleigh number.  

 For the addition of nanoparticles, the flow and the thermal fields are modified slightly. 

However, the rate of heat transport enhances remarkably. The amounts of nanoparticles 

significantly improve heat transport rate (approximately 22.14% for Cu-H2O nanofluid) 

even the addition is 1% of the volume fraction of nanoparticles. 

 As the nanoparticles diameter decreases, the thermal field changes remarkably. The small 

size of nanoparticles enhances more heat transfer rate. The heat transport rate enhances  
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quickly due to the increases in the specific surface area of the nanoparticles. The rate of 

heat transfer increases 30.70% when the diameter of the nanoparticles decreases from 

50nm to 10nm.  

 The size of the nanoparticles have significant effects for making the solution of the 

nanofluid stable. The small size of nanoparticles assists in augmenting the thermal 

conductivity of nanofluids. The rate of heat transport increases 41.27% when the size of 

particles decreases 100nm to 10nm for copper-water nanofluid, and it increases 91.91% for 

Cu-kerosene nanofluid and 53.36% for Cu-ethylene glycol nanofluid. 

 The nanoparticle's Brownian motion performs a vital role in enhancing heat transport rate 

due to the random movement of the nanoparticles. Therefore, the principal mechanism in 

the thermal conductivity equation is the addition of the random movements of 

nanoparticles to enhance nanofluid's thermal conductivity. The heat transfer increase about 

22.17% with the Brownian effect, whereas it enhances about 2.19% without the Brownian 

effect for 4% nanoparticles volume fraction when Ha = 20 and Ra = 105. 

 The heat transport rate remarkably enhances kerosene-based nanofluid compared to water 

or ethylene glycol or engine oil-based nanofluid. The heat transport rate is observed at 

67.86% for Cobalt (Co)-kerosene based nanofluids, whereas 23.78% for Co-water, 5.67% 

for Co-engine oil, and 39.78% for Co-ethylene glycol-based nanofluid with the increase of 

1% nanoparticles volume. 

 The shape of the nanoparticles has a significant impact on heat transport. The blade shape 

of nanoparticles shows the highest temperature transport rate than other shapes of 

nanoparticles. The heat transfer rate increases about 5.10% for the blade shape of particles 

instead of the spherical shape for Co-kerosene nanofluid.  

 The thermal boundary conditions have an effective role in fluid flow and temperature 

transport. The uniform thermal condition (case I) provides highest the heat transport rate 

than other thermal conditions (case II, III, IV, V) for the copper-water nanofluid steady-

state case. The rate of heat transport increases 47.78% for case I, 47.43% for case II, 5.77% 

for case III, 31.57% for case IV, and 13.90% for case V  when Rayleigh number varies 105 

to 106 with d = 1nm, ϕ = 0.04, Ha = 20, n = 3, λ = 0.5.  
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6.2 Further works  

In the future, there are a lot of scopes for research in this area. For requesnt and wide occurrence 

of nanofluids in a diverse range of application both in nature and in technology. Many more 

mathematical models are available for representing such nanofluids. Therefore, there are many 

possibilities to extend this investigation in many directions. The following recommendations can 

be put forward for the further work on the present study.  

 The study can be extended by including the effect of heat generation/absorption 

parameters.  

 Investigation can be performed by using lid-driven mixed convection heat transport. 

 Investigation can be performed using the porous media at the cavity’s walls.  

 This study can be extended using a partial heater at the cavity wall and changing the 

geometry, boundary conditions, and nanofluid.  
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