
M.Sc. Engg. Thesis

FAULT TOLERANT MULTIPLE DOMINATING
SET CONSTRUCTIONS FOR WIRELESS

AD-HOC NETWORKS

By
Khaleda Akther Papry (ID: 1015052041)

Submitted to
Department of Computer Science and Engineering

in partial fulfilment of the requirements for the degree of
Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)

Dhaka-1205

09 November, 2021

Contents

Board of Examiners i

Candidate’s Declaration ii

Acknowledgements viii

Abstract ix

1 Introduction 1

1.1 Connected dominating set (CDS) as virtual backbone 2

1.2 Motivation . 3

1.3 Contribution . 4

1.4 Thesis Organization . 5

2 Related Work 6

2.1 Different broadcasting Algorithms for wireless Adhoc Networks 6

2.2 CDS based broadcasting Algorithms for wireless Adhoc Networks 7

2.3 Fault tolerant broadcasting algorithms . 9

3 Preliminaries 11

3.1 Network Model . 11

3.2 Assumptions and Notations . 12

3.3 Definitions . 13

3.3.1 Minimum Connected Dominating Sets (MCDSs) 14

3.3.2 Multiple MCDS (MMCDS) . 14

3.3.3 Overlapping Boundary (K) . 14

3.3.4 Dominant Pruning . 15

iii

4 Multiple Minimum Connected Dominating Sets (MMCDSs) Algorithm 16

4.1 Centralized Algorithm for MMCDSs . 16

4.1.1 Complexity Analysis of Centralized MMCDS 20

4.2 Distributed Algorithm for MMCDSs . 22

4.2.1 Complexity Analysis of Distributed MMCDS 27

4.3 Network lifetime . 27

4.4 Fault tolerance . 30

5 Experiments 36

5.1 Experimental Setup . 36

5.2 Performance Measurements . 37

5.2.1 Multiple MCDSs evaluation . 37

5.2.2 Network lifetime . 38

5.2.3 Average Forwarding Nodes . 38

5.2.4 Network Fault Tolerance . 39

5.3 Experiment Results . 39

5.3.1 Performance based on Number of MMCDSs 40

5.3.2 Performance based on Network Lifetime 40

5.3.3 Performance based on Network Fault Tolerance 42

5.3.4 Performance based on Average Forwarding Nodes 45

5.3.5 Execution Time of MMCDSs Algorithm 46

6 Conclusion and Future Work 48

iv

List of Figures

1.1 An ad hoc network with uncontrolled flooding 2

1.2 An Ad hoc network topology with 7 nodes . 3

3.1 A randomly deployed Adhoc network with 10 nodes and their transmission

range . 12

3.2 Graph representation of the network with 10 nodes 13

3.3 Some important notations for dominant pruning 15

4.1 Basic Greedy Centralized Construction of MCDS (a)∼ (c) and multiple MCDS

construction (d) ∼ (i) . 19

4.2 Basic Greedy Distributed Forwarding List Construction of MCDS (a)∼ (b) and

multiple MCDS (c) ∼ (e) construction for static scenario 24

4.3 New one-hop and two-hop uncovered sets of node A (a), new forwarding list

generation (b) ∼ (c) for dynamic scenario . 25

4.4 A CDS (Green nodes) for communication over the network 31

4.5 A node (Red node) of the CDS becomes faulty 32

4.6 Another backup CDS (Green nodes) run for communication over the network . 32

4.7 A forwarding node list (CDS) for communication over the network 33

4.8 A node (Red node) of the CDS becomes faulty 33

4.9 Another backup forwarding node list (CDS) run for communication over the

network . 34

5.1 Number of MMCDSs construction for different overlapping boundary varying

network size . 41

5.2 Results for size of MMCDS construction with different values of K 41

5.3 Number of MMCDSs construction for different overlapping boundary 42

v

5.4 Average network lifetime for different overlapping boundary varying network

size . 43

5.5 Results of average network lifetime for different overlapping boundary values

on (a) Sparse graph and (b) Dense graph . 43

5.6 Average Network Fault Tolerance for different overlapping boundary varying

network size . 44

5.7 Results of average Fault Tolerance for different overlapping boundary values on

(a) Sparse graph and (b) Dense graph . 45

5.8 Average Forwarding Nodes of different centralized algorithms along with our

MMCDSs with K=1 . 46

5.9 Average Forwarding Nodes of distributed algorithms along with our MMCDSs

with K=1 and K=2 . 46

5.10 Execution Time of our MMCDSs with K=1 and K=2 47

vi

List of Tables

3.1 Table for the notations used in Centralized MMCDSs algorithms 13

3.2 Table for the notations used in Distributed MMCDSs algorithms 14

4.1 Table for the forwarding List of all nodes . 23

5.1 Table for simulation setup parameters . 37

5.2 Table for the average forwarding nodes of different algorithms 45

vii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Prof. Dr. A.K.M Ashikur Rahman

for the continuous support of my M.Sc. study and research. His guidance, motivation and deep

knowledge in research area helped me all along this research as well as writing and implemen-

tation of the thesis. He has always driven me in the right direction when I was in depression

and confusion while selecting my research topic. I am really grateful to him, his patience and

enthusiasm. I could not have imagined my M.Sc. study without his continuous support.

I am also grateful to all the board members of my M.Sc. thesis defense for their valuable

feedback and deep observations in my thesis work.

viii

Abstract

In wireless network, broadcasting is the most common communication method. To reduce re-

dundancy, traffic and collision induced by broadcasting, different virtual backbones are used

on top of the physical topology and Connected Dominating Set (CDS) is one of those. How-

ever, constructing minimum connected dominating set (MCDS) containing minimum number

of nodes participating in packet forwarding is an NP-complete problem. Although some ap-

proximation algorithms are available, the CDS or its approximation has poor fault tolerance as

in a CDS one vertex not in CDS is exactly connected with one vertex in CDS. In this work,

we present two heuristics, one centralized and the other distributed for constructing multiple

connected dominating sets providing enhanced fault tolerance of the network. Both algorithms

are intended to maximize network lifetime involving minimal nodes. Moreover, both the algo-

rithms also ensure load balancing over the network. Finally, we simulate our result to show the

improvement of network lifetime and system fault tolerance.

ix

Chapter 1

Introduction

Wireless Ad hoc networks consist of some wireless nodes that communicate over the network

without the existence of any fixed infrastructure. They can directly communicate the neighbor

nodes which are within their transmission ranges. The nodes use other intermediate nodes as

relay nodes to communicate with those nodes that are no longer in their transmission range [1].

This communication can be of three types: unicast, multicast and broadcast. In wireless Ad

hoc network, broadcasting is the most common communication method where each node over

the network receives the message from a source node. There are many approaches for such

communication method. Uncontrolled flooding is the easiest approach for broadcasting where

each node unconditionally distributes its incoming packets to each of its neighbors. In this

process no node prevents the re circulation of the same packet. Therefore, it causes too much

traffic, contention and collision resulting into broadcast storm problem [2]. Figure 1.1 shows

a scenario of five nodes where uncontrolled flooding is used. Each node forwards packets to

all of its neighbors. We can see that each node receives the same packets multiple times, for

example node C receives same packets 4 times. The situation is worse in the larger network.

This problem can be minimized by creating a virtual backbone on physical topology and run any

routing protocol over this backbone so that it can minimize the re-circulation of same packets.

The most promising virtual backbone is approximated by Connected Dominating Set (CDS) [3].

1

Figure 1.1: An ad hoc network with uncontrolled flooding

1.1 Connected dominating set (CDS) as virtual backbone

A CDS is the subset of a graph where all nodes within the set are connected and the other nodes

are 1-hop neighbour of at least one of the member of CDS. A CDS in an ad hoc network can

serve as a backbone for packet routing over the network. Figure 1.2 shows a network with

seven nodes where connectivity means their transmission area. Here, some possible CDSs are:

{A,C}, {A,B,F}, {A,B,C}, {C,B,E}, {A,B,G}, {A,C,E}, {B,C,D} , {A,B,C,D}, and so on.

However, a small size CDS is desirable in many applications. The less nodes in a CDS, the

more efficient a network is as along with routing redundancy, the number of forwarding packets

are also decreased. For example, for the previous graph, CDS {A,C} is more desirable than

other CD sets. In this case, only A, B, and C can receive a duplicate message.

A CDS with minimum number of nodes is called minimum connected dominating set (MCDS).

However, finding an MCDS of a graph is an NP-complete problem [4]. Therefore, we need to

apply heuristics to find out most efficient MCDS. A lot of researches have already been per-

formed in this regard. Moreover, nodes are usually battery operated. Therefore, load balancing

among the nodes ensure proper utilisation of energy over the network and increase network

lifetime as well. Another serious issue is fault tolerance ability of a network. There may con-

tain some nodes in a network which may fail to forward packets or communicate due to power

failures or other errors. Moreover, a faulty node may contain in the network misleading the rout-

ing by dropping it’s upcoming packets. This type of failures may interrupt the whole network

to perform properly. Therefore, if there is a backup CDS for routing, the system might work

properly again. Moreover, there may occur some situations when some nodes may become un-

2

trusted and temporarily become unreachable [5]. Therefore, sometimes, the network requires

multi-coverage or multiple times packets receiving. These failure problems and requirements

in broadcasting requires fault-tolerant broadcasting algorithm. In recent years, ensuring system

fault tolerance is another prominent issue in research area.

Figure 1.2: An Ad hoc network topology with 7 nodes

1.2 Motivation

To make broadcasting algorithms more fault tolerant and to increase the network lifetime, we

need to improve the existing CDS based algorithms. One idea is to generate multiple connected

dominating sets (CDS) and use them according to the network requirements. However, it is not

always possible to generate all disjoint CDSs in a network. Hence, we plan to develop a fault

tolerant broadcasting algorithm by generating multiple minimum connected dominating sets

(MMCDSs) allowing overlaps within the sets to some extents [6]. Additionally, While generat-

ing multiple sets allowing overlaps we will try select node with minimum overlaps among the

sets. However, it sometimes might add some redundant nodes in a set and hence we plan to ap-

ply some optimization techniques with proper modifications of the existing algorithms required

to ensure fault-tolerance and network longevity.

Finding minimum connected dominating set (MCDS) is NP-complete problem. Moreover,

constructing multiple minimum connected dominating sets are also NP-complete as they are

harder problem. Finding out all possible CDSs are not useful in real environment as any node

might be used in several sets. On the other hand, only disjoint CDSs might not be feasible for all

the network. Therefore, we can consider generating multiple CDSs allowing some overlapping

within the nodes which is similar to the work in wireless directional sensor networks proposed

3

in [6]. Hence, we introduce a variable K which limits the overlapping boundary of CDSs. The

value of K indicates the possible presence of a node over K number of CD sets. In this work,

we target to construct all possible minimum connected dominating sets but limiting the use of

a single node K times. Therefore, one node can only be present up to K sets which will save

energy ensuring fault tolerance at the same time.

1.3 Contribution

The main idea of this work is to find out multiple minimum connected dominating sets (MM-

CDS) using minimal nodes. The construction of a MCDS can be divided into two categories

based on the network topology they use. These are centralized and distributed algorithm. Cen-

tralised algorithm relies on entire or global topology and one node works as the main node that

processes the entire network centrally. However, in wireless ad hoc networks the global topol-

ogy is not always known. Most of the cases, we can not derive the global topology. In that

case, distributed algorithms are applied where the routing are taken by the participating nodes

and the decision process is decentralised. Here, we implement both types of algorithms for

multiple MCDS construction: centralized and distributed. In our centralized algorithm, we use

the basic greedy construction of MCDS [7] every time and consider minimum overlapping (up

to a certain value K) among the sets. On the other hand, we use the concept of distributed mul-

tiple MCDS algorithm based on dominant pruning algorithm [8] allowing the same overlapping

criteria as the centralized one.

Moreover, the wireless ad hoc network is not always static, the scenario might change

abruptly due to the change of node’s position. In the static scenario, the nodes do not change and

if the packet forwarding request comes from the same previous node, it can choose another set

from the already created multiple CD sets, instead of creating all sets once again. The node can

keep on selecting dominating sets in a round robin fashion thus ensuring load balancing among

the neighbor nodes. The static scenario is more prevalent in Wireless Sensor networks which

is a subclass of Wireless Ad hoc Networks. Moreover, fault tolerance, load balancing, network

longivity etc, makes much more sense in those networks. For example, suppose a node is using

one dominating set and suddenly a node within the set starts malfunctioning, it can immediately

replace the dominating set with another one from an already built CDSs list. On the other hand,

4

in mobile scenario, the situation is not that simple. Every time the topology can be changed.

However, we can still apply the same strategy but in a little conservative way. For example,

the node can keep track of which dominating sets were used last several times for forwarding.

Then it can create new dominating set and choose the one which has minimal overlaps with the

previous sets, no matter which node was its predecessor. Therefore, in distributed system we

can apply our algorithm in both ways, just making some little changes.

The main objectives of our work are enumerated below:

i. To develop a centralized algorithm that will find out multiple MCDS allowing overlapping

of nodes at most K times.

ii. To develop a distributed approach for MMCDS using 2-hop neighbor information and over-

lapping boundary K both for static and mobile scenarios.

iii. Finally, to validate the algorithm using simulation results, compare the performance of the

two algorithms with existing algorithms based on the performance criteria like network

lifetime, fault tolerance etc.

The possible outcomes of the proposed research work are as follows:

i. An approach that enhance the fault tolerance of the system by ensuring multiple CDS.

ii. Make the network more energy efficient and enhance the network lifetime by balancing

load among the nodes.

iii. Make multi path routing for system fault tolerance.

iv. A comprehensive comparison of the proposed two algorithms through extensive simula-

tions.

1.4 Thesis Organization

The remainder of the thesis after introduction is organized as follows: chapter 2 discusses on

related works on connected dominating set (CDS) and fault-tolerance in CDS. Two proposed

multiple MCDS algorithms with example scenarios are described to understand their functions

thoroughly are discussed in chapter 4. Simulation results are shown in chapter 5. Finally chapter

6 concludes the thesis with some possible future works.

5

Chapter 2

Related Work

In this chapter, we discuss broadcasting algorithms that focus on reducing broadcast storm prob-

lem. Several works have been done to reduce the problem.In section 2.1 we discuss some broad-

casting algorithm regarding the problem. Section 2.2 presents connected dominating based dif-

ferent broadcasting algorithms.Works related to fault-tolerant optimized algorithm are presented

in Section 2.3.

2.1 Different broadcasting Algorithms for wireless Adhoc Net-

works

Many broadcasting algorithms have been proposed over the decades to overcome the broad-

cast storm problem. H. Lim and C. Kim studied efficient routing mechanisms for multicast

and broadcast in ad hoc wireless networks in paper [9]. If a packet is broadcast to all neigh-

boring nodes, the optimality of the wireless network interrupts. Hence, the authors provided

two new flooding methods for broadcasting, self pruning and dominant pruning in paper [8].

In self pruning algorithm, each node uses its one-hop neighbors information and prunes itself

from rebroadcasting if all its neighbors have already received the packet. In dominant pruning

algorithm, each node uses its 2-hop neighbor information to reduce redundant transmissions.

Therefore, both methods utilize neighbor information to reduce redundant transmissions and

especially, dominant pruning performs significantly better than blind flooding. W. Peng and X.

lu provided a self pruning based mechanism in paper [10], where local topology and statistical

6

information are gathered to reduce duplicate broadcasts. When a node receives a message, it

delays the rebroadcast for a random time and within this time all duplicates are discarded.

To reduce broadcast redundancy in wireless ad-hoc networks, W. Lou and J. Wu [11] pro-

posed two improved algorithms based on dominant pruning: Total Dominant Pruning and Par-

tial Dominant Pruning. In Total Dominant pruning, the rebroadcasting is reduced more, how-

ever, it requires 3-hop neighbor information which increases message redundancy and overhead

in the network. On the other hand, Partial Dominant Pruning requires only 2-hop neighbor

information as generic Dominant Pruning. Therefore, it requires less overhead than the first

one. G. Calinescu et al. proposed location aware pruning methods [12] for reducing re broad-

casting with minimum forwarding nodes based on the the two proposed heuristics presented

in [8]. A. Rahman et al. proposed enhanced dominant pruning-based broadcasting in untrusted

ad-hoc wireless networks in paper [13]. Moreover, the authors also provided enhanced partial

dominant pruning (EPDP) based broadcasting in Ad hoc Wireless Networks [14]. Both of their

methods provides more efficiency in reducing rebroadcasting than the generic ones.

Y. Kim and E.C. Park proposed relay-based broadcasting mechanism in wireless ad hoc net-

works for various emerging applications in the Internet of Things (IoT) in paper [15]. To handle

the broadcast storm problem, the authors proposed a reasonable criterion called duplication ra-

tio based on the number of adjacent nodes. Based on this ratio duplicate frames are discarded

in a probabilistic manner to decrease the redundancy. However, there is a re-queuing scheme

which provides a re-transmission opportunity for the delivery failure as well. Moreover, pa-

per [16] is proposed by M.K. Goyal et al., where the number of forwarding nodes is derived

from 1-hop neighbors to cover entire 2-hop neighbors by utilizing 2-hop region information.

For this purpose, network coding is used to minimize repetitive communications.

2.2 CDS based broadcasting Algorithms for wireless Adhoc

Networks

Ephremides et al. [17] first proposed the idea of using a CDS as virtual backbone for broadcast-

ing. Das and Bharghavan [18] proposed a simple centralized algorithm for constructing CDS,

7

however, the size of the CDS was very large. Therefore, the idea of constructing a CDS with

minimum nodes (MCDS) emerged. Constructing minimum connected dominating set (MCDS)

is NP-complete problem. Several researches have been performed for approximating the solu-

tion. A lot of algorithms have already been proposed for constructing MCDS which can be of

two types: centralized and distributed. In actual environment, distributed algorithms are more

suitable than centralized one. Guha and Khullar [19] used first greedy approach to construct

centralized MCDS. An approximation of distributed algorithms for constructing MCDS have

been proposed in [7] by the authors as well.

In paper [20], Y.P. Chen et al. proposed an approximation algorithm for weakly connected

dominating set (WCDS). L. Ruan et al. [21] proposed a new one-step greedy approximation to

construct a Minimum Connected Dominating Set (MCDS). In paper [22], Stojmenovic et al.

proposed a connected dominating set and neighbor elimination based broadcasting algorithm

to reduce the communication overhead and to ensure reliable broadcasting. Paper [23] presents

a new energy efficient distributed Connected Dominating Set (CDS) algorithm for mobile ad-

hoc networks where a node is replaced with another one with activity scheduling when it lacks

energy power.

In [24], the authors proposed a greedy algorithm for MCDS in unit-disk graphs based on

Maximal Independent Set (MIS). Another work by Al-Nabhan et al. [25], proposed three cen-

tralized algorithms to construct CDS to minimize the size of the CDS.

Paper [26] proposed distributed greedy approximation algorithm for CDS construction which

reduces the CDS size effectively in wireless sensor networks using two-hop information with

lower construction cost.

T.N. Trant et al. [27] proposed an efficient Connected Dominating Set clustering based

routing protocol in cognitive mobile ad-hoc Networks utilizing the dynamic channel alloca-

tion. Moreover, G. Omer et al. in paper [28] proposed distributed CDS algorithm for wireless

sensor networks with solar energy harvester nodes for smart agriculture applications namely

CDSSEHA. In this method, environmental features are gathered to optimize production param-

eters with lower battery power consumption. Additionally, two meta heuristic algorithms in

paper [29] are proposed to construct minimum connected dominating set in wireless networks.

The first algorithm is Memetic Algorithm for the MCDS (MA-MCDS) based on genetic algo-

rithm and local search strategies. In the second one, simulated annealing and stochastic local

8

search is used for MCDS construction. Most of the algorithms are based on homogeneous

networks and 2D networks. For 3D heterogeneous network where nodes sensing ranges are

different, B. Xin et al. proposed the construction of minimum connected dominating set using

Maximal Independent Set (MIS) [30].

2.3 Fault tolerant broadcasting algorithms

Fault tolerant is one of the major issues in broadcasting algorithm. A lot of researches have

already been performed for fault tolerant mechanism for broadcasting in ad-hoc networks. In

paper [31], the authors studied approximation algorithms for fault-tolerant clustering using k-

fold dominating set of a graph where S is the subset of G (V, E) such that every node v ∈ V −S

has at least k neighbors in S. In paper [32], J. R. Diaz et al., proposed a fault tolerant method for

multimedia flows based on Fast Switching Paths. In the work, the authors showed how a node

might fall while in routing and it recovers the routing mechanism using instant path switching

instead of sending the fault message to the source. Paper [33, 34] provides an approximation

algorithm to build a fault tolerant CDS model named as k-connected m- dominating set where

the CDS is k-connected, and each node not in CDS is dominated (adjacent) by at least m nodes

in CDS. However, to achieve this mechanism, each node must be connected with at least m

nodes where m ≥ k and for larger values of m the number of rebroadcasting increases.

Paper [35,36] proposed both centralized and distributed approach for contention aware con-

nected dominating sets to minimize transmission over a shared channel. P. Johnson and C.

Jones [37] first introduced the idea of secure dominating sets of graphs. A subset X of the ver-

tex set of a graph G is a secure dominating set S of a graph G if for each vertex u not in S, there

is a vertex v in S which is neighbour of u such that if we swap u and v from S is again a dom-

inating set of G. A. P. Burger et al. [38] proposed minimum secure dominating sets of graphs.

However, all those works were based on graphs and the dominating sets were not connected.

The idea of connected minimum secure dominating sets in grids was first proposed by J. Barnett

et al. in paper [39]. However, this secure connected dominated sets can be generated in such

cases when G is a grid, and in the majority of cases when G is a cylindrical or toroidal grid.

In case of ad-hoc wireless network the idea of using secure-CDS is not feasible. Additionally,

although, this work ensures system fault tolerance by ensuring replacement of a failed node,

9

this may not work when a node and its replacement node fails (two node failures) at a time.

Moreover, any graph of at least minimum degree 2 may possess a minimum secure dominating

set which always might not be achieved in real scenarios.

J. Zhou et al. in paper [40] proposed first fault tolerant connected dominating set (CDS)

construction for heterogeneous wireless sensor networks (WSNs). This is modeled as an ap-

proximation algorithm for (3, m)-CDS in a heterogeneous WSN which is a special case of

k-connected m-fold dominating sets. In paper [41], S. Farzana et al. derived multiple disjoint

set covers for directional sensor networks. Here, each set cover is capable of monitoring all

the targets using minimal number of sensors. The authors utilized set covers successively in

a round robin fashion to increase the lifetime of the network as well as fault tolerance at the

same time. Additionally, S. Saha et al. in paper [6], addressed the problem of fully disjoint set

covers of the previous paper and proposed overlapping multiple set covers with minimum sen-

sors for prolonging network lifetime and providing fault tolerance. However, both the methods

are for wireless directional sensor networks which is a special case of wireless ad-hoc network.

Moreover, as the structure of directional senors are different than generic ad-hoc network and

there are vast differences in the working principles between the directional sensors and ad-hoc

networks, it requires different procedures for ad-hoc networks.

None of all the above algorithms considered fault tolerance and network longevity by con-

structing multiple connected dominating sets. In this paper, we are proposing a new approach to

construct multiple connected dominating sets by round robin scheduling of the sets to commu-

nicate throughout the network. Additionally, using multiple CDSs one after another increases

fault tolerance as well as the longevity of the network. In our work, we propose both centralized

and distributed algorithm in this purpose.

10

Chapter 3

Preliminaries

In this chapter we discuss some basic terms, assumptions and notations used throughout the

thesis. In Section 3.1, we present the network model we assume for the development and

simulation of our algorithm. Section 3.2 presents some basic assumptions and notations that

we assume for the scenario. Finally Section 3.3 describes the essential definitions used in our

thesis.

3.1 Network Model

A wireless ad-hoc network can be represented as a graph like a wired network. We represent

the connectivity between two nodes of a network if they are within transmission range. We

represent the ad-hoc network with a graph G(V, E) using the idea of unit disk graphs [42].

Here, V represents the set of nodes in the network and E represents the set of edges. An edge

between two nodes represents connectivity between them. Moreover, it means they are within

their transmission range. Figure 3.1 represents a wireless adhoc network with ten nodes with

similar transmission range. Additionally, the circle around a node represents the transmission

range of a node and all the nodes within this circle represents the neighbors of the node. On the

other hand, Figure 3.2 is the graph representation of the network.

In this thesis, we consider two scenarios: one is that the global topology of the network is

known. In this case, we apply centralized algorithm. On the other hand, we consider, no global

topology is known. Here, we apply distributed algorithm. Moreover, we consider both static

11

Figure 3.1: A randomly deployed Adhoc network with 10 nodes and their transmission range

and dynamic situation for the distributed system. We apply our distributed algorithm for both

cases but with some little changes.

3.2 Assumptions and Notations

For simulation, we made some assumptions on our network model. We assume a 2-dimensional

ad-hoc network where nodes are randomly deployed into a 100 × 100 units area. We consider

the network is not much dense. Therefore, we keep network size with 20 to 200 nodes. We

assume battery power of each node same and fixed initially. The battery power of a node de-

creases linearly with time. Transmission range of each node is also assumed same and kept

fixed throughout the whole simulation process. We assume no power loss of the nodes when

the nodes of a CDS set are inactive.

We implement our algorithm both for centralized and distributed system. The centralized algo-

rithm is based on basic centralized MCDS algorithm [3]. The notations used in our centralized

algorithm is represented in Table 3.1. On the other hand, for distributed approach, each node

creates its own forwarding list based on basic CDS. Therefore, based on the choice of CDS it

creates its own forwarding list. Here, we apply the MCDS to create the forwarding list followed

by the procedure of multiple dominant pruning [43]. The notations used in this algorithm along

12

Figure 3.2: Graph representation of the network with 10 nodes

with the dominant pruning is presented in Table 3.2.

Notation Description
V Set of nodes
K Overlapping boundary

(A node can be present at maximum K CDSs)
BlackSet Set of nodes that are selected for CDS
GraySet Set of nodes that are one-hop neighbors of BlackSet nodes
WhiteSet Set of uncovered or not explored nodes

(Initially all nodes are in WhiteSet)
Degree(i) Adjacent nodes of ith node

Ci Cardinality of node i
(If Cardinality of a node is k, it means a node is present in k different CDSs)

Min(C) A function which returns the minimum cardinality value among the
nodes with at least one adjacent white neighbor

Wi Adjacent white neighbors count of i
N(i) Adjacent Neighbors set of node i

Table 3.1: Table for the notations used in Centralized MMCDSs algorithms

3.3 Definitions

In this section, we briefly describe some important terms used throughout our thesis. At first we

describe some common terms that we consider for our both algorithms and finally some specific

terms used for specific algorithms (centralized or distributed).

13

Notation Description
u Source node
v Receiver node

N(u) Set of one-hop neighbors of node u
N(N(u)) Set of two-hop neighbors of u

Bv Set of one-hop neighbors that will be used for creating forwarding list of v
Uv Set of one-hop neighbors that will be used for creating forwarding list of v
Fv Forwarding list of v
Fvp Previously created forwarding list of v
Fvn New created forwarding list of v
K Overlapping boundary of a node
Ci Cardinality of node i in Bv

Table 3.2: Table for the notations used in Distributed MMCDSs algorithms

3.3.1 Minimum Connected Dominating Sets (MCDSs)

A MCDS is a CDS which consctructs using possible minimum number of Nodes. The MCDS

of graph represented in Figure 1.2 is {A, C} which uses only two nodes rather than other sets.

However, constructing minimum connected dominating sets (MCDSs) is NP-complete prob-

lem. Therefore, we can use different heuristics to construct MCDS of a network. The most

common approach is greedy method. In this approach, we select the node that covers maximum

neighbors of the network. In the second iteration, it selects a neighbor of the previous node with

maximum uncovered node. The process continues until there is no new node to cover.

3.3.2 Multiple MCDS (MMCDS)

Multiple MCDS refers to generating different possible MCDSs from a network. However,

generating all possible CDSs are not necessary for a network. Moreover, there might exist a lot

of overlapping among the CDSs. Therefore, in this thesis, we try to generate some CDSs with

possible minimum nodes minimizing overlaps among the sets. As fully disjoint sets might not

be achieved always, here we consider overlapping up to a certain amount. We denote this value

as K which refers to the boundary value of a node’s presence in multiple sets.

3.3.3 Overlapping Boundary (K)

For creating multiple MCDSs (MMCDSs), we consider some overlapping among sets. How-

ever, we only consider overlapping among sets when there is no disjoint set possible to create.

14

Figure 3.3: Some important notations for dominant pruning

Moreover, we try to create sets with minimum overlaps and allow up to a certain value. Hence,

we introduce a user given upper bound K on overlapping among sets. The parameter denotes

that no node can participate in CDS construction more than this given upper bound value. There-

fore, we can say that no more than K sets from the MMCDSs can contain a single node. For

example, if the value of K is 1 then a node can only be present in only one CDS, thus generating

only disjoint MMCDSs. Additionally, if K is 2, then a node can be present up to two MCDSs

among all MMCDSs. Therefore, with the increase of K, the number of overlaps among sets

will increase.

3.3.4 Dominant Pruning

For distributed system, we use the procedure of creating the forwarding list followed by domi-

nant pruning [8]. Let us presume that, u sends a message to v. A forwarding list (Fu) is attached

with the packet header. For a node v in forwarding list, it will create next forwarding list before

rebroadcasting the packet. For constructing the new forwarding list, node u will need all the

two-hop neighbours Uv that are not listed. Node v selects a neighbour p ∈ Bv to cover the

highest number of nodes in Uv, in other words, a node p is selected if the neighbor of p in Uv

is maximum among all the nodes in Bv and added to Fv. The Uv is updated by subtracting

the neighbors of p. The process terminates when there is no node in Uv. Figure 3.3 shows the

notations for dominant pruning where u is the source and s is the receiver node who will create

its forwarding list next.

15

Chapter 4

Multiple Minimum Connected Dominating

Sets (MMCDSs) Algorithm

We represent the ad-hoc network with a graph G (V, E). Here, V is the set of nodes in the

network and E is the set of edges that indicate connectivity between two nodes. The method

proposed in this thesis is multiple connected dominating set constructions for improved fault

tolerance and increased network lifetime which will be presented in the following sections.

Firstly, Section 4.1 presents our centralized algorithm along with its time complexity analysis

and set optimization procedure. Section 4.2 describes our distributed algorithms both for static

and dynamic environment along with its time complexity analysis. Finally, a brief discussion

about network lifetime and fault tolerance mechanisms for our both algorithms are presented in

Section 4.3 and 4.4 respectively.

4.1 Centralized Algorithm for MMCDSs

The basic idea of the centralized algorithm is to generate multiple CDSs with minimal number

of nodes avoiding node overlaps over sets as much as possible. The overlapping is controlled

using a tunable parameter K which means one node can only participate in constructing (at

most) K CDSs. In this approach, we run a centralized greedy algorithm to generate a new

CDS with minimum nodes and minimum overlaps. This algorithm follows the basic MCDS

construction algorithm [19] at each iteration. In MCDS, each node of the graph is given color

16

white at the beginning of this algorithm. Among all the white node, a node is selected which is

connected to most of the white colored nodes and is coloured black. The adjacent nodes of that

selected node is coloured gray. The next node of this process is selected from the gray ones.

The selection is done on the basis of the highest quantity of white adjacent nodes. The selected

one is added in the black node list. This selection procedure continues to run as long as any

white node exists. The MCDS consists of all the black nodes. After this iteration, all the nodes

again colored white and the cardinality of the black nodes in the previous iteration is increased

by one. In the next iteration, the algorithm tries to select nodes from minimum cardinality

(unused nodes of the previous iterations). If there is no new node, it can select a previously

used node up to K times which is its maximum cardinality. The process continues until no new

set can be generated. After the generation of each CDS set, another optimization algorithm is

run to remove redundant nodes from the set. This step requires as while choosing a node we

first consider candidates with minimum cardinality. Among the candidates we select the nodes

with maximum white neighbors. Therefore, there might be a chance to select inefficient nodes

first for coverage and then select another node with better coverage. Hence, to make overall

efficient set we remove those redundant nodes without which nodes we can still reach all the

nodes of the network. Figure 4.1 represents how our algorithm works. We keep the overlapping

boundary value K=2. In Figure 4.1 (a) all the nodes are kept in white (In algorithm, all nodes

are in WhiteSEt). The cardinality of each node is set to 0 and number of white neighbors (W)

(initially one-hop neighbor count) are counted. 4.1 (b) illustrates how a node with minimum

cardinality and maximum white count is selected for connected dominating set construction.

The neighbors of node A are colored Gray (In algorithm the neighbors are added to GraySet)

and the cardinality value of A is incremented by 1. The white count neighbor values (Wi) of

each node i is updated as well. In the next iteration (Figure 4.1 (c)), node C is selected as it

covers maximum white neighbors as well. After this step a minimum CDS is generated. For

next set generation all the values are configured as initital values except the cardinality values

of the nodes (4.1 (e)). Therefore, for constructing the next CDS set, we try to choose candidate

from minimum cardinality nodes. Hence, we select node B from the candidates (B and F) with

maximum white count neighbors. After that, there is no node in GraySet with cardinality 0.

Therefore, we select candidates which has the minimum cardinality with at least one white

neighbors. From the candidates set we can see that node A is selected again as there is no node

17

with 0 cardinality that covers the remained white neighbors. Finally, node F is selected to cover

the remaing white neighbors and another CDS is constructed. (4.1 (f)). Finally, another another

CDS set generated by selecting the nodes D, C, E and F (Figure 4.1 (h)). In this iteration,

node D is selected first as it has minimum cardinality. After that nodes C, E and F are selected

sequentially. If we see closely, we can see that there is a redundant node D, as if we discard

the node, there will be no effect on the CDS and all the nodes of the network will be covered

properly. This type of redundancy is eliminated by our CDS Optimization function (similar

to paper [6]). Therefore, another MCDS is constructed by the remaining nodes (Figure 4.1 (i)).

This step is necessary, because it not only reduces the size of the CDS but also makes chance to

use those redundant nodes to construct another new CDS as well. The process continues until

no new set can be generated.

The centralized algorithm of MMCDSs is shown in Algorithm 1. Initially, we provide a

graph representation of the network G(V, E) and overlap limit K. The target is to generate

multiple sets of MCDS. Initially, each node’s cardinality is initialized to 0 (line 2 ∼ 4). Then,

we initialize a variable n which counts the number of MCDSs. The outer loop (line 6 ∼ 44)

generates the desired MCDS set and runs until no new set is found. It generates a set of MCDSs

named {CDS1, CDS2, . . . CDSn} where each value of n represents a new set of CDS. Within

the while loop, we take three sets BlackSet, WhiteSet and GraySet (lines 7 ∼ 9 of the algo-

rithm) and all of them are initialized to empty sets except WhiteSet. All nodes of the graph are

in the WhiteSet first and the inner loop (lines 10 ∼ 37) runs until there is no remaining nodes

in the WhiteSet. In the first iteration of the inner while loop, a node s from V with minimum

cardinality and with maximum white neighbors(Ws) is selected (lines 14 ∼ 15). This node is

then added to Blackset and its cardinality is increased by 1. In GraySet, the neighbors of the

selected node is added but those already in the BlackSet are discarded. Finally, WhiteSet is

updated as well (lines 26 ∼ 29). From the second iteration, a CandidateSet is generated from

GraySet nodes with minimum cardinality. Among the nodes of CandidateSet, a node s with

maximum white neighbor count us selected like before (lines 17 ∼ 24). If it has at least one

white neighbor, then the three sets are updated as before. This procedure runs until WhiteSet is

empty or no new node can be selected with cardinality less than K. After a complete iteration,

if WhiteSet is empty then a new set is generated. However, as we consider minimum cardinal-

ity for primary selection of candidates, there might be some irrelevant nodes in the generated

18

(a) All nodes are initially white (b) Node A selected and col-
ored black, all neighbors of A
are colored grey

(c) Finally Node C selected and
colored black, all neighbors are
colored grey, hence A,C con-
structs a MCDs

(d) All nodes are colored white
again but with previous Ci

(e) Node B is chosen for next set
generation, all neighbors of B
are colored gray, cardinality of
B is updated and values of white
count neighbors of all nodes are
updated

(f) Another MCDS is con-
structed by nodes F, A, B

(g) All nodes are colored white
again but with previous Ci

(h) Another MCDS is con-
structed by nodes D, C, E and
F

(i) After removing redundant
node D, another MCDS with
C,E,F nodes remains

Figure 4.1: Basic Greedy Centralized Construction of MCDS (a) ∼ (c) and multiple MCDS
construction (d) ∼ (i)

19

CDS set. Therefore, a function named CDS Optimization (similar to optimization function

of paper [6]) is invoked to optimize the generated set and add it to CDSn set (line 39). If there

is any redundant nodes in BlackSet that is not in CDSn, then its cardinality is decremented

by 1, as the node is not really used in the set. The value of n is incremented after a successful

creation of CDS.

Dominating Sets Optimization

For optimizing a newly generated CDS, C, we use CDS Optimization function which is rep-

resented in Algorithm 2. In this function, we remove the redundant nodes within the CDS. In

spite of adding optimal nodes as we consider minimum cardinality first, some nodes with high-

est white neighbors might be added later. Therefore, some redundant nodes might be present

in the set. Hence, we use the function for optimization. Initially, it creates two empty set Copt,

GraySet and another set WhiteSet is initialized to V . The while loop runs until each white

node is not covered. Initially, it selects a node from the constructed CDS C with maximum

white neighbors. It is then added to Copt and discarded from C. The WhiteSet and GraySet

are updated as before. In the while loop, it selects node from (C ∩GraySet) set as the selected

node must be a neighbor of previously selected nodes and also must contain in C. The other

procedures are same as before. After, completing the iteration, if there is any redundant node

in C it will not be added to Copt. Therefore, we can minimize number of nodes also from this

function.

4.1.1 Complexity Analysis of Centralized MMCDS

In this algorithm we have two while loops. The outer while loop generates multiple sets which

is O(V) times in the worst case. The inner while loop generates a single CDS in each loop.

This loop runs in O(V) times as the size of the Whiteset is V inititally. There are some loops

within the inner while loop which can run at most V-1 times in worst case. Hence, O(V 2) is

the total run time of the while loop. There is an optimization function after the inner while loop

and within the outer while loop which also costs O(V 2) as the function has an outer while loop

and a for loop within the while loop each of which costs O(V) times. Therefore, the total time

complexity of our Centralized MMCDS is O(V 3) times.

20

Algorithm 1 Centralized Multiple Dominating Sets construction Algorithm

Require: G(V, E), K
Ensure: A Set of MCDSs CDS

1: CDS = ∅, GraySet = ∅, n← 0
2: for i← 1 to V do
3: Ci← 0
4: Wi← Degree(i)
5: end for
6: while no new set generated do
7: BlackSet = ∅
8: GraySet = ∅
9: WhiteSet = V

10: while WhiteSet 6= Null do
11: CandidateSet← ∅
12: Minc←Min(C)
13: if Minc < K then
14: if ‖WhiteSet‖ == ‖V ‖ then
15: Select a node s from V with maximum Ws and Cs = Minc
16: else
17: for k ∈ Grayset do
18: if Ck == Minc then
19: CandidateSet← CandidateSet ∪ {k}
20: end if
21: end for
22: if CandidateSet 6= ∅ then
23: Find the node s ∈ CandidateSet with maximum Ws;
24: end if
25: if Ws > 0 then
26: BlackSet = BlackSet ∪ s
27: Cs = Cs + 1
28: Grayset = Grayset ∪ (N(s)−BlackSet)
29: WhiteSet = WhiteSet−N(s)− {s}
30: else
31: break;
32: end if
33: end if
34: else
35: break;
36: end if
37: end while
38: if WhiteSet == Null then
39: n = n + 1
40: CDSn = CDS Optimization(BlackSet, G)
41: for k ∈ (BlackSet− CDSn) do
42: Ck = Ck − 1
43: end for
44: else
45: break;
46: end if
47: end while

21

Algorithm 2 Dominating Sets Optimization Algorithm

Require: G(V, E), C
Ensure: An optimized set Copt

1: function CDS Optimization(C, G)
2: Copt = ∅
3: WhiteSet = V
4: Find the node s ∈ C with maximum Ws

5: Copt = Copt ∪ {s}
6: GraySet = GraySet ∪N(s)− {s}
7: Whiteset = Whiteset−N(s)− {s}
8: C = C − {s}
9: while WhiteSet 6= Null do

10: Find the node s ∈ (C ∩GraySet) with maximum Ws

11: Copt = Copt ∪ {s}
12: C = C − {s}
13: GraySet = GraySet ∪N(s)− {s}
14: Whiteset = Whiteset−N(s)− {s}
15: end while
16: return Copt

4.2 Distributed Algorithm for MMCDSs

In distributed algorithm, for creating multiple MCDSs, we use the dominant prunning based

MCDS construction multiple times. Each node tries to contribute to multiple CDS with min-

imum overlapping over sets assuming that, every node is provided with its 2-hop neighbour

information. As mentioned before, we consider both static and dynamic scenarios for the sys-

tem. Here, we describe both types of algorithms.

Firstly, we consider a static ad-hoc network. Therefore, we need to generate only multiple

MCDSs and use all these sets according to the system criteria. In this algorithm, each node

has an additional count of cardinality. If a node is selected for a CDS, its cardinality is in-

creased by one. A node can be used up to K as like the centralized algorithm. When a node

receives a packet, it creates its own forwarding list. To create the forward list, it discovers all

of its undiscovered two-hop neighbours by using its one-hop neighbours. For this algorithm,

a node from its one-hop neighbor list is selected for forwarding that has minimum cardinality

and maximum number of nodes coverage of its uncovered two-hop neighbors. The process is

repeated until all uncovered two-hop neighbors are covered. The outer process is repeated until

there is no new set generated. Figure 4.2 represents how our distributed algorithm for static

system works. Suppose, A receives a packet forwarding from a source node. Now, A needs

22

to generate its own forwarding list. Figure (4.2 (a)) illustrates its one-hop (BA) neighbors for

creating forwarding list and two-hop uncovered neighbors (UA) which should be covered by the

created list. From BA, node C is selected first as it covers maximum white nodes (all nodes in

this case) from UA. Therefore, only C constructs the first forwarding list (4.2 (b)). As, we aim

to create multiple forwarding lists, after first iteration, the values of cardinality (C) of each node

is updated. For next iteration, configuration are initialized as initial values except the cardinality

values (4.2 (c)). Again, another new forwarding list is created using the same procedure and

each time of node selection it checks if the node has less cardinality than K. Finally, node B

and F from BA constructs the second CDS list (4.2(d) ∼ (e)). The procedure stops as no new

set can be generated further. The whole process is run each time on each node when it receives

packets for forwarding. Table 4.1 shows forwarding list creation for other nodes of the scenario.

Previous Node Current Node Bv Uv Fv

— A {B,C,F,G} {D,E} {C}, {B, F}
A B {C,D} {E} {C}
A F {G,E} × ×
A C {D, E} × ×

Table 4.1: Table for the forwarding List of all nodes

For dynamic scenario, as the environment changes, initially generating all multiple nodes

might not give any benefit. In that case, we generate only a set for first time and store the set

with cardinality of the used nodes. Suppose the overlapping boundary is K. Therefore, we store

last K−1 sets. For the next time, if the forwarding list comes from same node it creates its new

forwarding list with minimal overlap with before K − 1 sets allowing only overlapping criteria

up to K. This is how, for dynamic scenario, we try to load balance among the network. We

can consider the same scenario as Figure 4.2 and consider that K=2. Here, we only construct

the first forwarding list {C} and store it. Suppose that, a node G has changed its position and

got out of the transmission range of A. Figure 4.3 represents the new alignment of the network.

However, C node is still in the forwarding list of A. Its cardinality has been initialized to 1 as

it is in the previous list. When the node receives packets from same source, it tries to select

nodes that are not in the previous list that means it tries to select from minimum cardinality

values. From the new figure 4.3 (a), we can see both C and F covers maximum nodes from

UA. It selects F instead of C as it has minimum cardinality values than C. Finally, node B is

23

(a) Connection of node A with BA

and UA

(b) Node C is chosen for forwarding
with highest W

(c) After first iteration all nodes are in
initial condition except C

(d) Node B is chosen for second for-
warding list

(e) Finally, node F is chosen for sec-
ond forwarding

Figure 4.2: Basic Greedy Distributed Forwarding List Construction of MCDS (a) ∼ (b) and
multiple MCDS (c) ∼ (e) construction for static scenario

24

(a) Connection of node A with BA

and UA after changing the position of
node G

(b) Node F is chosen for forwarding
with highest W

(c) Node B is chosen finally for for-
warding list

Figure 4.3: New one-hop and two-hop uncovered sets of node A (a), new forwarding list gen-
eration (b) ∼ (c) for dynamic scenario

selected for forwarding list (4.3 (b) ∼ (c)) . One important issue is that, for dynamic scenario,

the number of stored forward lists depend on the boundary value. If we use K=2, we have only

one set in the previous list. Hence, for the above scenario we will discard the list {C} and add

{ B, F } to the previous list.

As before stated that the algorithm is designed using 2-hop neighbours information of each

node. If node v receives a packet from node u and if it is already in the forwarding list of u, it

creates its own forwarding list. To create the forward list (Fv), it discovers all of its undiscovered

two-hop neighbours (Uv) by using its one-hop neighbours (Bv). We calculate Uv and Bv from

the following formulas [8]:

Uv = N(N(v)) - N(v) - N(u)

Bv = N(v) - N(u)

25

Hence, we create a set of n forward lists (Fvn) for static network. If node v receives packets

from same source then it selects a forward list from the sets of lists in round robin fashion.

Algorithm 3 represents the multiple forwarding lists creation algorithm for static scenario. The

selection procedure of a node for forwarding list is same as our centralized algorithm. Here,

initialize the cardinality value of all nodes in Bv to 0 (line 3 ∼ 4). A new forwarding set Fv1

is taken initially to null and a new set U is initialized to Uv. The outer while loop generates

multiple forwarding lists (line 7 ∼ 39). In each iteration it selects candidate sets from Bv with

minimum cardinality (line 9∼ 14). Then it selects the most efficient node that covers maximum

uncovered nodes from U (line 15-20). If we can select a node , then it is added to the current

forwarding list Fvn and all neighbors of the selected node are discarded from U (line 21 ∼ 32).

The cardinality of the selected node is incremented by 1 and if it’s cardinality reaches to K then

it is discarded from Bv set (line 26 ∼ 29). This procedure runs until there is no node remaining

in the list of U . Whenever, U becomes null, it is again initialized to Uv to create next forwarding

list along with necessary changes. In this process, we generate as much lists as possible and use

them according to the criteria of the network.

However, if the scenario is dynamic, we generate only one suitable forwarding list and

store the nodes cardinality of used sensors. For, next iteration, even if the node v receives

packets from same source, it needs to generate its own forwarding list again. In that case, while

generating new set it considers minimum overlapping with the previous used forwarding list.

Suppose that FvK−1 is the previously created K − 1 forward lists. As we consider up to K

overlapping among sets, hence we store last K − 1 sets to check overlapping. Now, if we want

to generate a new updated forwarding list Fvu, it tries to select a node from Bv which does

not contain in the previous set of lists FvK−1. If there is no node to select from Bv that does

not contain in FvK−1, then it selects node with minimum cardinality nodes from the previous

lists. The algorithm for new set generation is presented in algorithm 4. Initially, it counts the

cardinality values of nodes containing in Bv that were in the previous forwarding lists FvK−1

whereas other nodes get cardinality value 0 in the Bv (line 3∼ 11). The other procedure is same

as the algorithm 3. However, in this case we generate only one set avoiding the nodes of higher

cardinality (line 12 ∼ 34). Finally, we delete the earliest (that is created first) forward list from

the FvK−1 list and add the new list to it. Therefore, the overall stored forward lists remain same

as K − 1 always and hence we reduce the redundancy of multiple calculation of forward lists

26

for dynamic situation.

4.2.1 Complexity Analysis of Distributed MMCDS

In a graph representation of a network, each node or vertex is connected with another multiple

nodes or vertices. The number of vertices that is associated with a vertex is called the degree of

the vertex. Suppose that ∆ is the maximum degree of the graph. In distributed algorithm, the

forwarding list is created from the one-hop neighbor set Bv that contains all the adjacent nodes

of v. The size of Bv can be at most ∆. The two-hop neighbor set Uv contains all the adjacent

nodes of Bv which can be at most ∆2. Therefore, the run time complexity of creating a single

forwarding list of a node is ∆3. In our distributed algorithm, for static network we generate

multiple forwarding lists using the outer while loop which could be at most ∆. Hence, total

time complexity for constructing multiple forwarding lists is ∆4. On the other hand, instead

of generating all lists we generate a single set just minimizing the overlaps with previous K

lists. Hence, the time complexity does not increase and remains same as constructing a single

forwarding list which is K∆3.

4.3 Network lifetime

The network lifetime of a system means how long the network remains operative. The longer

lifetime is required for any system. Generally, the network lifetime for an ad hoc network indi-

cates battery power of the nodes. As we consider here all the nodes have similar battery power,

after a certain time (full power consumption) all nodes will go out of power and the system

will die. However, if we load balance among the nodes and only consider power consumption

while these nodes are active, we can increase the lifetime. As we propose multiple minimum

connected dominating set covers, if we schedule them in a round robin fashion for commu-

nication and control power consumption of the whole system, the lifetime can be increased

tremendously. Generally, we consider network lifetime without considering any fault or errors.

Therefore, for a longer lifetime creating multiple sets would be sufficient for the network.

Algorithm 5 shows the algorithm for calculation of total network lifetime for our algorithm. We

can apply this algorithm both for centralized and distributed algorithm. The key difference is

27

Algorithm 3 Forward Lists Creation of a node v for Distributed Algorithm
Require: Bv, Uv

Ensure: A Set of forwarding lists
1: Fv1 = ∅, U = Uv

2: Size Fv1 = 0
3: for all node i ∈ Bv do
4: Ci ← 0
5: end for
6: n = 1
7: while no new set generated or Bv remains unchanged do
8: minimum← ||V ||, Candidate Set = ∅, max = 0
9: Minc←Min(C)

10: for all node r ∈ Bv do
11: if Cr == Minc then
12: Candidate Set = Candidate Set ∪ r
13: end if
14: end for
15: for all node s ∈ Candidate Set do
16: if (N(s) ∩ U) > max then
17: max = N(s) ∩ U
18: selected = s
19: end if
20: end for
21: if max > 0 then
22: Fvn[size + +] = selected
23: for all node y ∈ N(selected) do
24: U = U − y
25: end for
26: Cselected + +
27: if Cselected == K then
28: Bv = Bv − selected
29: end if
30: else
31: break
32: end if
33: if U is NULL then
34: U = Uv

35: n + +
36: Fvn = ∅
37: Size Fvn = 0
38: end if
39: end while

28

Algorithm 4 New forward List Creation for dynamic network of a node v for Distributed Al-
gorithm
Require: Bv, Uv, FvK−1, K
Ensure: A new forwarding List, Fvu

1: Fv = 0, U = Uv

2: Fvu = ∅, Z = ∅, size = 0
3: for each node i ∈ Bv do
4: for each value j ∈ K − 1 do
5: for each node s ∈ Fj do
6: if i == s then
7: Ci + +
8: else
9: Ci ← 0

10: end if
11: end for
12: end for
13: end for
14: while U 6= NULL or Bv remains unchanged do
15: minimum← ||V ||, Candidate Set = ∅,max = 0
16: Minc←Min(C)
17: if Minc < K then
18: for each node r ∈ Bv do
19: if Cr == Minc then
20: Candidate Set = Candidate Set ∪ r
21: end if
22: end for
23: for each node s ∈ Candidate Set do
24: if (N(s) ∩ U) > max then
25: max = N(s) ∩ U
26: selected = s
27: end if
28: end for
29: if max > 0 then
30: Fvu[size + +] = selected
31: for each node y ∈ N(selected) do
32: U = U − y
33: Cselected + +
34: Bv = Bv − selected
35: end for
36: else
37: break
38: end if
39: end if
40: end while
41: if U == NULL then
42: Delete the earliest forward list from FvK−1
43: Add the new forward list Fvu to FvK−1
44: end if

29

that for centralized algorithm the whole network lifetime can be calculated centrally or globally.

On the other hand, for distributed system, each node will calculate its lifetime on the basis of

its number of forwarding lists. The algorithm is very simple. It basically calculates the network

lifetime or activation time (t) of each CDS (line 4 ∼ 13). To calculate each individual sets acti-

vation time, we find out the node with maximum cardinality value within the set (line 6 ∼ 10).

Then, we divide the activation time of a single node T by this maximum cardinality value and

find out t. This is because a set can survive up to t times as the set will die as soon as its one

of the nodes with highest cardinality will die. A node with highest cardinality will contribute to

more sets rather than other nodes of the set and it will die out first due to lack of power than the

others one. Finally, the value t of each set is added with the total network life (NL) (line 14)

which gives total network lifetime after the final execution of the outer for loop.

Algorithm 5 Network Lifetime Calculation Algorithm

Require: CDS(set of CDSs), C(Cardinality set), T (activation time of a single node)
Ensure: Total Network Lifetime, NL

1: function Lifetime Calculation (CDS, C, T)
2: NL = 0
3: for each set S ∈ CDS do
4: t← 0
5: max← 0
6: for each node i ∈ S do
7: if Ci > max then
8: max← Ci

9: end if
10: end for
11: if max > 0 then
12: t← T

max

13: end if
14: NL← NL + t
15: end for
16: return NL

4.4 Fault tolerance

A system or a network is called fault tolerant if any node of the system fails but the system or

network still remains operative. Our system is fault tolerant also. When any node of the CDS

fails to operate another CDS is run alternatively for communication. We have two topology:

centralized and distributed. In order to explain how our algorithm works, we show examples

30

Figure 4.4: A CDS (Green nodes) for communication over the network

for both topology. Firstly, we show the fault tolerant mechanism of our centralized algorithm.

For better understanding we consider the graph of figure 3.2. The possible MCDSs for K=2 are

: { 2, 3, 4, 10 } and { 1, 2, 5, 6 }. Suppose, the messaging starts from node 2 and we choose

the route { 2, 3, 4, 10 } for communication. Message forwarding will be as like figure 4.4.

However, the node 3 becomes faulty and could not continue message passing. Therefore, an

error message is sent to its corresponding source node and finally when node 2 knows about the

fault, it selects another route for routing which does not contain the error node 3 without any

extra overhead of path calculation. Therefore, the network recover from its failure ultimately.

Though it requires more time than [32], it requires no extra overhead.

For distributed algorithm, the case is more simple. When a node, forwards message, it se-

lects one of its forwarding list. If any node of its forwarding list becomes faulty, it immediately

switches to its another forwarding list. Figure 4.7 ∼ 4.9 show how it changes forwarding node

list when a node of previous forwarded list fails.

For calculating system fault tolerance we provide an algorithm 6. It is easy to calculate fault

tolerance when a system generates n disjoint sets. The value of fault tolerance of that system

is n-1 as it can tolerate up to n-1 node failures [44]. When we choose a set from n disjoint

MCDSs, if any node fails, it instantly provide another set for active service. Hence, up to n-1

node failures, it can provide a backup CDS. However, when we consider overlapping boundary

31

Figure 4.5: A node (Red node) of the CDS becomes faulty

Figure 4.6: Another backup CDS (Green nodes) run for communication over the network

32

Figure 4.7: A forwarding node list (CDS) for communication over the network

Figure 4.8: A node (Red node) of the CDS becomes faulty

33

Figure 4.9: Another backup forwarding node list (CDS) run for communication over the net-
work

up to K, the fault tolerance might not be so straight forward.

To calculate fault tolerance for overlapping system we use the formula that, we count total

number of MMCDSs and consider the node with maximum cardinality fails first and subtract

those sets which contain the faulty nodes. We do the same process until there is no set remaining

in the MMCDSs. From the procedure, we count how much node failures it can tolerate (it has at

least one remaining sets for backup). It should be noted that, this is the minimum fault tolerance

value of the network as we always consider that the node with highest cardinality value fails.

However, this could be improved if we consider all possible node failures and so on.

Algorithm 6 presents the algorithm for calculating fault tolerance of our algorithm. Initially,

we introduce fault tolerance F by 0. In each iteration we find out the node with maximum

cardinality (line 5 ∼ 10). Hence, we subtract those sets which contains the selected node and

update the cardinality of each node from those subtracted sets by decreasing 1 (line 13 ∼ 20).

Finally, if there still remains any set we update the fault tolerance value by increasing 1. The

loop continues until there remains any set in the CDS sets, otherwise breaks (line 21 ∼ 25).

34

Algorithm 6 Fault Tolerance Calculation Algorithm

Require: CDS(set ofCDSs), n(total number ofCDSs), C(Cardinality set), V (set of nodes)
Ensure: Fault Tolerance, FT

1: function FaultTolerance Calculation (CDS, n, C, V)
2: F = 0
3: max = 0, index = −1, Total = n
4: while true do
5: for each node i ∈ V do
6: if Ci > max then
7: max← Ci

8: index← i
9: end if

10: end for
11: if index > −1 then
12: Total← Total −max
13: for each set S ∈ CDS do
14: if index ∈ S then
15: for each node j ∈ S do
16: Cj −−
17: end for
18: Delete set S from CDS
19: end if
20: end for
21: if Total > 0 then
22: F + +
23: else
24: break
25: end if
26: end if
27: end while
28: return F

35

Chapter 5

Experiments

Finally, in this chapter, simulation results of the algorithms and the improvement of system fault

tolerance will be shown in performance metrics.

We describe the experimental setup and results in different sections of this chapter. Section

5.1 discusses about the experimental setup that has been used to carry out the experiments.

Section 5.2 describes the performance metrics to evaluate the performance of our proposed

algorithms. Finally, the simulation results are presented in Section 5.3 of our fault tolerant

MMCDSs algorithms along with other algorithms.

5.1 Experimental Setup

We simulate our fault tolerant MMCDS algorithms along with basic MCDS and other algo-

rithms. The parameters considered here are summarized in Table 5.1. To simulate our algo-

rithms along with other algorithms, we consider a scenario of a network over an area of 100 ×

100 units followed by N number of wireless nodes. Initial battery power of each node is kept

fixed at 100 time unit. Transmission range of a node is kept fixed at 25 units. Overlapping

boundary K is set 1 to 20 for different simulations. Additionally, to observe the impact of K on

different performance we vary K 1 to 20 values. In our simulations, we vary N from 20 to 200

with an increment of 20 to simulate the network performance. We simulate all the algorithms

in Java programming language in Netbeans IDE.

36

Parameters values
Network area 100× 100 units

Number of Nodes, (N) 20 - 200
Battery power, (T) 100 units

Transmission range (fixed) 25 units
Overlapping boundary (K) 1 - 20

Node distribution Random
Number of simulations 100

Table 5.1: Table for simulation setup parameters

5.2 Performance Measurements

In this section, we present the performance measurements of our algorithms. For centralized

algorithm, we consider number of MMCDSs evaluation, size of MMCDSs with and without

optimization function, average packet passing, network life time and fault tolerance of the net-

work. On the other hand, for distributed algorithm, average packet passing are considered.

Finally, we compare average required time to calculate forwarding nodes for both algorithms.

5.2.1 Multiple MCDSs evaluation

An individual CDS is capable of communicating whole network or keep the network active.

However, generating Multiple MCDS indicates that the network gets more options to choose

for communication. The network might be faulty or error prone. If there is only one CDS and

any node of the CDS fails, the whole system will fail to com.municate properly. Therefore,

for longer activity of the network constructing multiple CDSs might be a prominent way. If

we run multiple CDSs in round robin way for a centralized network, lifetime of the network

will increase with respect to a single CDS. Moreover, we can also provide a CDS as backup of

another CDS, if it fails to work. Therefore, fault tolerance of the network will also increase.

However, generating multiple disjoint CDSs always might not be feasible. As a result, we

allow some overlapping among the CDSs while generating them. We introduce a overlapping

boundary K which is a tenable parameter of our algorithm. If K = 1, only disjoint CDSs are

generated.When K = 2, we allow any node to be present at maximum two CDSs. Therefore,

with the increase of K, the number of MCDSs increase also. However, it reaches to a saturated

value or does not increase any set numbers after a certain value of K. For simulation, we use

K = 1 to 20 with a increment of 1 whereas we vary N from 20 to 200 with an increment of 20.

37

In this paper, we find out a suitable value of K for upper boundary of overlaps with the value

of N . We evaluate 100 random scenarios to calculate the MMCDSs and take average values of

the results.

5.2.2 Network lifetime

The network lifetime of a system means how long the network remains active. The long net-

work lifetime indicates the system is long operative. Generating multiple CDSs, would increase

network longevity. Consequently the lifetime of a network depends on the lifetime of the in-

dividual CDS set. We consider that all nodes have initially same battery power. Additionally,

we assume that available power runs a node T time unit. If only a CDS is generated and all the

nodes are activated for whole time to communicate over the network, then the lifetime of the

network will become NL = T . Therefore, maximizing the number of CDSs will also maxi-

mizes the network lifetime as each CDS is scheduled in different time periods. If there are n

CDSs in the network and we keep active each CDS for T time unit for communication, then the

network lifetime of the system can be defined as, NL = nT [6]. However, if there exists some

overlapping CDSs up to K boundary overlap, then network lifetime becomes as follows [6]:

NL =
n∑

i=1
ti (5.1)

Here, ti is the activation time for ith CDS which can be defined as :

ti = T

max(Cij : j = 1, 2, ..., ‖CDSi‖)
(5.2)

Here, Cij is the cardinality of node j in i-th CDS.

5.2.3 Average Forwarding Nodes

The number of forwarding nodes can be defined as the total number of nodes (forward nodes)

who forward or rebroadcast the broadcast packet by adding 1 (for source node). The equation

of number of nodes forwarding can be defined as [5]:

NFN = Number of nodes forwarding + 1 (source node)

38

As, for our algorithm, we run multiple CDSs, here, we consider average packet forwarding up

to a certain time, for example T . Suppose, our algorithm runs n CDSs in round robin fashion

for total T times. Hence, The equation can be defined as :

Total Forwarding Nodes(TFN) =
∑n

i=1 NFNi

Average Forwarding Nodes (AFN) = T F N
n

5.2.4 Network Fault Tolerance

Fault tolerance of a network can be calculated as up to how many node failures it can tolerate

or handle. The more number of node failures it can tolerate, the more value of the network

fault tolerance gains. For example, if any node of the system fails but the network still remains

operative , then it has fault tolerance of 1. Moreover, if any two nodes of the system fails

and the system still works, it has fault tolerance value of 2. Therefore, it is a very important

factor of any network system. For our system, fault tolerance is very high than a single MCDS

network or secure-CDS. If our system generates n disjoint sets, then it can tolerate up to n-

1 node failures. Therefore, the fault tolerance value is n-1. However, as we consider some

overlapping up to K, the fault tolerance value decreases. Although, the value of fault tolerance

for overlapping system depend on total number of sets creation and the overlapping boundary

K, with the increase of K, number of sets also increases. Hence, fault tolerance of the system

increases. To calculate fault tolerance for overlapping system we use the formula that, we count

total number of MMCDSs and consider the most used sensors fails first and subtract those sets

which contain the faulty nodes. We do the same process until there is no set remaining in the

CDS set. From the procedure, we count up to how much node failures it can survive (it has at

least one remaining sets). It should be noted that, this is the minimum fault tolerance value of

the network as we always consider that the node with highest cardinality value fails. However,

this could be improved if we consider all possible node failures and so on.

5.3 Experiment Results

In this section, we present the results of our algorithms based on the performance measurement

parameters along with other algorithms.

39

5.3.1 Performance based on Number of MMCDSs

We evaluate total number of CDSs varying network size with N=20 to N=200 with an increment

of 20. Figure 5.1 illustrates the results of CDSs construction. Here, we apply optimization step

for set optimizations and find that total numbers of MMCDSs with minimum nodes by applying

optimization. The result shows that with the increase of density of nodes the total number of

MCDSs increase. Moreover, with the increment of overlapping boundary it also increases, as

each node contributes to more new sets. For our MMCDSs construction, we use a step to

minimize redundant nodes, hence the size of the CDSs also decrease. Figure 5.2 illustrates how

the sizes of MCDSs construction decreases for different network size with optimization than

without optimization respectively. Figure shows that if we apply optimization step number of

nodes used to construct MMCDSs decrease for each scenario. This happens because when we

apply optimization some unnecessary nodes are removed from a set which basically reduces the

sizes of MCDSs. Furthermore, when optimization are used the number of MCDSs also might

increase. As those removed redundant nodes might be used for further set constructions. Figure

5.3 shows how total number of MCDSs change with the increase of overlapping boundary K.

It is clear that with the increase of overlapping boundary number of MMCDSs will increase.

However, it will move to a saturated point when there is no new node to generate a new MCDS.

For example, when we consider network size N=20, for k= 4 the set construction is almost in

saturated condition, whereas, for N=30, the point moves to K=18. Hence, we can conclude

that number of MMCDSs will increase up to a certain point. The point also changes with the

increase of network size.

5.3.2 Performance based on Network Lifetime

Here, we present how network lifetime increases if we apply our algorithms in a ad hoc network.

We calculate life time of a network varying network size (number of nodes n). As we already

have seen that with the increase of network size number of MCDSs increase also. Therefore,

the network lifetime increase also. Figure 5.4 illustrates the network lifetime varying network

size 20 to 200 with an increment of 5 for overlapping boundary K=1 to 5 with an increment

of 1 and keeping other parameters fixed. From figure, we can see that network lifetime in-

creases for K ≥ 2 than K=1. That is the average network life time increases when we consider

40

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140 160 180 200

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

M
M

C
D

S
s

Network Size(N)

K=1
K=2
K=3

Figure 5.1: Number of MMCDSs construction for different overlapping boundary varying net-
work size

 6.9

 7

 7.1

 7.2

 7.3

 7.4

 7.5

 7.6

 7.7

 20 40 60 80 100 120 140 160 180 200

A
v

e
ra

g
e

 s
iz

e
 o

f
M

M
C

D
S

s

Network Size(N)

MMCDS without optimization
MMCDS with optimization

(a) K=2

 7

 7.1

 7.2

 7.3

 7.4

 7.5

 7.6

 7.7

 7.8

 7.9

 8

 8.1

 20 40 60 80 100 120 140 160 180 200

A
v

e
ra

g
e

 s
iz

e
 o

f
M

M
C

D
S

s

Network Size(N)

MMCDS without optimization
MMCDS with optimization

(b) K=3

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 20 40 60 80 100 120 140 160 180 200

A
v

e
ra

g
e

 s
iz

e
 o

f
M

M
C

D
S

s

Network Size(N)

MMCDS without optimization
MMCDS with optimization

(c) K=4

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 20 40 60 80 100 120 140 160 180 200

A
v

e
ra

g
e

 s
iz

e
 o

f
M

M
C

D
S

s

Network Size(N)

MMCDS without optimization
MMCDS with optimization

(d) K=5

Figure 5.2: Results for size of MMCDS construction with different values of K

41

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

M
M

C
D

S
s

Overlapping Boundary (K)

Network size, N = 20
Network size, N = 30
Network size, N = 40

Figure 5.3: Number of MMCDSs construction for different overlapping boundary

some overlapping. However, the lifetime remains almost same for higher values of K. There-

fore, if we use overlapping boundary K=2, then we can achieve almost saturated network life.

Additionally, we represent here in Figure 5.5, the relation of network lifetime with K more

elaborately from two types of graph: sparse (number of nodes are minimum) and dense graph

(number of nodes are maximum). Here, we represent the values of average network lifetime

for overlapping boundary K= 1 to 20. From figure, we can see that for both types of graph

network lifetime increases for K=2 than K=1. However, for upper boundary values it is not

stable. Sometimes, it falls and sometimes increases although the values are always higher than

disjoint CDSs (K=1). Therefore, we can conclude that for overlapping cases network lifetime

increases, but gives higher values for all types of network for K=2 or near values of 2.

5.3.3 Performance based on Network Fault Tolerance

Here, we present how network fault tolerance changes if we apply our algorithms in an ad

hoc network varying the overlapping boundary K. We calculate network fault tolerance for

different K varying the network size (number of nodes) from 20 to 200 with an increment of

20. We simulate the algorithm for 100 different random networks. As we have seen that with the

increase of network size along with the number of MCDSs, the network fault tolerance increases

also. Figure 5.6 illustrates the network fault tolerance for overlapping boundary K=1 to 5 with

an increment of 1. Other parameters remain fixed here also. From figure, we can see that

network fault tolerance for K=1 increases with the increase of network side. For, network size

42

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20 40 60 80 100 120 140 160 180 200

A
v
e
ra

g
e
 N

e
tw

o
rk

 L
if

e
ti

m
e
 (

L
T

)

Network Size(N)

K = 1
K = 2
K = 3
K = 4
K = 5

Figure 5.4: Average network lifetime for different overlapping boundary varying network size

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 0 2 4 6 8 10 12 14 16 18 20

A
v

e
ra

g
e

 N
e

tw
o

rk
 L

if
e

ti
m

e
 (

N
L

)

Overlapping Boundary (K)

Network Size, N=40

(a) Sparse graph (N=40)

 14000

 14500

 15000

 15500

 16000

 16500

 17000

 17500

 18000

 0 2 4 6 8 10 12 14 16 18 20

A
v

e
ra

g
e

 N
e

tw
o

rk
 L

if
e

ti
m

e
 (

L
T

)

Overlapping Boundary (K)

Network size, N = 200

(b) Dense graph (N=200)

Figure 5.5: Results of average network lifetime for different overlapping boundary values on
(a) Sparse graph and (b) Dense graph

43

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120 140 160 180 200

A
v
e
ra

g
e
 N

e
tw

o
rk

 F
a
u

lt
 T

o
le

ra
n

c
e
 (

F
)

Network Size(N)

K = 1
K = 2
K = 3
K = 4
K = 5

Figure 5.6: Average Network Fault Tolerance for different overlapping boundary varying net-
work size

of 200, it can tolerate approximately 20 faults on average. However, this is basically the value of

total numbers of disjoint MMCDS subtracting by 1. Although the number of MMCDSs increase

gradually for other values of K ≥ 1 (Figure 5.1), the fault tolerance values don’t increase with

that similar proportion. For example, for network size 200, when K=2, the network can handle

almost 24 node failures. However, for same network size, the network can handle nearly 27

node failures for K=5. Therefore, we can say that in spite of having overlapping boundaries and

more MCDSs, the fault tolerance doesn’t improve that much. This is because when we consider

more overlapping, the network tends to be more faulty. When any node with k′ cardinality value

fails it will fail k′ sets from total n sets of MMCDSs. Therefore, with the increase of K, the

fault tolerance doesn’t increase comparing with the number of MMCDSs. Moreover, from the

figure we can also notice that the fault tolerance increases more for K=2 than K=1. However,

the values don’t change that much for overlapping boundary K >2. Hence, we can conclude

that to get a better fault tolerance system the overlapping boundary K=2 is more desirable.

To clarify the impact of K on fault tolerance we represent Figure 5.7 also. We show the impact

of K for sparse graph (N=40) and dense graph (N=200) separately. Here, we vary K from 1 to

20. From these both graph it is clearly visible that the fault tolerance increase abruptly when K

value increase 1 to 2. Although, the fault tolerance increases to some point for K > 2, however

it is not always true. Sometimes, it might fall (In Figure 5.7 (a) when K=6) , when there is

more overlapping among the sets. Therefore, we can conclude that when K=2 or nearly 2, we

can get overall better results.

44

 2.25

 2.3

 2.35

 2.4

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

 2.75

 2.8

 0 2 4 6 8 10 12 14 16 18 20

A
v

e
ra

g
e

 N
e
tw

o
rk

 F
a

u
lt

 T
o

le
ra

n
c

e
 (

F
)

Overlapping Boundary (K)

Network size, N = 40

(a) Sparse graph (N = 40)

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 0 2 4 6 8 10 12 14 16 18 20

A
v

e
ra

g
e

 N
e
tw

o
rk

 F
a

u
lt

 T
o

le
ra

n
c

e
 (

F
)

Overlapping Boundary (K)

Network size, N = 200

(b) Dense graph (N = 200)

Figure 5.7: Results of average Fault Tolerance for different overlapping boundary values on (a)
Sparse graph and (b) Dense graph

5.3.4 Performance based on Average Forwarding Nodes

Initially, we simulate our algorithms along with other algorithms for the network shown in

Figure 1.2. The results of using average forwarding nodes of different algorithms is represented

in Table 5.2. From the table we can see our centralized algorithm performs better than 1-2

CDS (a general case of k-connected-m-dominating sets where, k=1 and m=2) [33] in spite of

having multiple sets. For our distributed algorithm, the number of forwarding nodes are not

much higher than single Dominant Pruning (DP).

Algorithm MCDS MMCDS 1-2 CDS DP Distributed MMCDS
Avg forwarding nodes 2 2.667 4 3 3.5

Table 5.2: Table for the average forwarding nodes of different algorithms

Figure 5.8 represents average forwarding nodes for different network sizes for different

algorithms. Here, we compare our centralized MMCDSs algorithm with K=1. From, figure we

can see that, average forwarding nodes increase almost linearly for each algorithm. It is obvious

that a single MCDS will perform better than any other algorithms. However, our algorithm also

has better result than 1-2 CDS. This is because we always use MCDS to choose a new set and

doesn’t active more than one set at a single time. On the other hand, 1-2 CDS ensures at least

two CDS nodes will be connected with other nodes which are not in CDS. Therefore, it needs

more nodes to be active at a time and thus requires extra forwarding nodes. Additionally, Figure

5.9 shows the average node forwarding values of our algorithm along with the basic dominant

pruning algorithm for packet forwarding. Although we consider here multiple sets construction

our algorithm performs nearly the other one. However, if we consider any improved pruning

45

 3

 4

 5

 6

 7

 8

 9

 10

 11

 20 40 60 80 100 120 140 160 180 200

A
v
e
ra

g
e
 F

o
rw

a
rd

in
g

 N
o

d
e
s
 (

F
N

)

Network Size(N)

MCDS
1-2-CDS

MMCDS (K=1)
MMCDS (K=2)

Figure 5.8: Average Forwarding Nodes of different centralized algorithms along with our MM-
CDSs with K=1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 20 40 60 80 100 120 140 160 180 200

A
v
e
ra

g
e
 F

o
rw

a
rd

in
g

 N
o

d
e
s
 (

F
N

)

Network Size(N)

Dominant Pruning
MMCDS (K=1)
MMCDS (K=2)

Figure 5.9: Average Forwarding Nodes of distributed algorithms along with our MMCDSs with
K=1 and K=2

like total dominant or partial dominant pruning, our algorithm would give less values than the

current one. To avoid extra data overhead and calculation overhead, we use here basic dominant

pruning here.

5.3.5 Execution Time of MMCDSs Algorithm

In this subsection, we finally compare the execution time our algorithms. As stated earlier, in

centralized algorithm it takes O(V 3), where V is the number of nodes of the network. On the

other hand, distributed algorithm takes O(∆4), where ∆ is the maximum neighborhood size of

a node. Therefore, the time need to execute the algorithm requires more time when the network

46

(a) K=1 (b) K=2

Figure 5.10: Execution Time of our MMCDSs with K=1 and K=2

size increases and when it is a dense graph as well. Figure 5.10 the execution time of our derived

algorithms. To experiment the execution time we run the algorithms with CPU of 4GB RAM,

Intel Core i3 processor, 1.7 GHz, and 64 bit processor. From figure, we see that the overall

performances are similar for both values of K, however, it requires some extra time when K=2.

For both algorithms, it requires approximately similar time when the network size is smaller

than 140. After that, it requires more time for distributed algorithm than the centralized one.

This is because of their time complexity mentioned earlier.

47

Chapter 6

Conclusion and Future Work

In this paper, we concern about network lifetime and fault tolerance of wireless ad hoc networks.

Therefore, for efficient communication among nodes over the network, we construct multiple

connected dominating sets using possible minimum nodes. We can use those sets in round

robin fashion to enhance network lifetime or keep as back up of active sets to handle system

fault tolerance. However, always disjoint sets constructions might not be possible. Therefore,

we introduce a user defined overlapping boundary which indicates in how much sets a node

can be present. Moreover, we find out through simulation an appropriate boundary value for

overlapping in multiple sets. We apply the strategy both in centralized and distributed version

of our algorithm. A comprehensive simulation results is presented to analyse the behaviour of

the developed algorithms. However, when we consider overlapping boundary K ≥2, we only

consider the worst case for calculating average fault tolerance. If we could consider all possible

cases of node failures, the values of fault tolerance would improve more than our calculated

values. Therefore, our future challenge is to provide a mathematical probabilistic model for

analyzing system fault tolerance for all possible node failures. Our future work also includes to

develop analytical model for finding out overlapping boundary based on network pattern.

48

Bibliography

[1] A. K. Yadav, R. S. Yadav, R. Singh, and A. K. Singh, “Connected dominating set for wire-

less ad hoc networks: a survey,” International Journal of Engineering Systems Modelling

and Simulation, vol. 7, no. 1, pp. 22–34, 2015.

[2] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a

mobile ad hoc network,” Wireless networks, vol. 8, no. 2, pp. 153–167, 2002.

[3] S. Butenko, X. Cheng, D.-Z. Du, and P. M. Pardalos, “On the construction of virtual

backbone for ad hoc wireless network,” in Cooperative control: Models, applications and

algorithms, pp. 43–54, Springer, 2003.

[4] J. Blum, M. Ding, A. Thaeler, and X. Cheng, “Connected dominating set in sensor net-

works and manets,” in Handbook of combinatorial optimization, pp. 329–369, Springer,

2004.

[5] M. Akter, A. Islam, and A. Rahman, “Fault tolerant optimized broadcast for wireless ad-

hoc networks,” in 2016 International Conference on Networking Systems and Security

(NSysS), pp. 1–9, IEEE, 2016.

[6] S. Saha, A. A. Zishan, and A. Rahman, “On target monitoring in directional sensor net-

works by jointly considering network lifetime and fault tolerance,” in Proceedings of the

6th International Conference on Networking, Systems and Security, pp. 68–76, 2019.

[7] S. Butenko, X. Cheng, C. A. Oliveira, and P. M. Pardalos, “A new heuristic for the mini-

mum connected dominating set problem on ad hoc wireless networks,” in Recent develop-

ments in cooperative control and optimization, pp. 61–73, Springer, 2004.

49

[8] H. Lim and C. Kim, “Flooding in wireless ad hoc networks,” Computer Communications,

vol. 24, no. 3, pp. 353–363, 2001.

[9] H. Lim and C. Kim, “Multicast tree construction and flooding in wireless ad hoc net-

works,” in International workshop on Modeling, analysis and simulation of wireless and

mobile systems (MSWiM) Boston, MA, USA August 20-22, 2000.

[10] W. Peng and X.-C. Lu, “On the reduction of broadcast redundancy in mobile ad hoc net-

works,” in Proceedings of the 1st ACM international symposium on Mobile ad hoc net-

working & computing, pp. 129–130, IEEE Press, 2000.

[11] W. Lou and J. Wu, “On reducing broadcast redundancy in ad hoc wireless networks,” IEEE

Trans. Mobile Computing, vol. 1, no. 2, 2002.

[12] G. Călinescu, I. I. Măndoiu, P.-J. Wan, and A. Z. Zelikovsky, “Selecting forwarding neigh-

bors in wireless ad hoc networks,” Mobile Networks and Applications, vol. 9, no. 2,

pp. 101–111, 2004.

[13] A. Rahman, P. Gburzynski, and B. Kaminska, “Enhanced dominant pruning-based broad-

casting in untrusted ad-hoc wireless networks,” in 2007 IEEE International Conference

on Communications, pp. 3389–3394, IEEE, 2007.

[14] A. Rahman, M. E. Hoque, F. Rahman, S. K. Kundu, and P. Gburzynski, “Enhanced partial

dominant pruning (epdp) based broadcasting in ad hoc wireless networks.,” Journal of

Networks, vol. 4, no. 9, pp. 895–904, 2009.

[15] Y. Kim and E.-C. Park, “An efficient relayed broadcasting based on the duplication esti-

mation model for iot applications,” Sensors, vol. 19, no. 9, p. 2038, 2019.

[16] M. K. Goyal, S. P. Ghrera, and J. P. Gupta, “Reducing the number of forward nodes from

1-hop nodes to cover 2-hop nodes with network coding,” Journal of Telecommunication,

Electronic and Computer Engineering (JTEC), vol. 9, no. 3-6, pp. 13–17, 2017.

[17] A. Ephremides, J. E. Wieselthier, and D. J. Baker, “A design concept for reliable mobile

radio networks with frequency hopping signaling,” Proceedings of the IEEE, vol. 75, no. 1,

pp. 56–73, 1987.

50

[18] B. Das and V. Bharghavan, “Routing in ad-hoc networks using minimum connected dom-

inating sets,” in Proceedings of ICC’97-International Conference on Communications,

vol. 1, pp. 376–380, IEEE, 1997.

[19] S. Guha and S. Khuller, “Approximation algorithms for connected dominating sets,” Al-

gorithmica, vol. 20, no. 4, pp. 374–387, 1998.

[20] Y. P. Chen and A. L. Liestman, “Approximating minimum size weakly-connected domi-

nating sets for clustering mobile ad hoc networks,” in Proceedings of the 3rd ACM inter-

national symposium on Mobile ad hoc networking & computing, pp. 165–172, 2002.

[21] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K.-I. Ko, “A greedy approximation for minimum

connected dominating sets,” Theoretical Computer Science, vol. 329, no. 1-3, pp. 325–

330, 2004.

[22] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating sets and neighbor elimination-

based broadcasting algorithms in wireless networks,” IEEE Transactions on parallel and

distributed systems, vol. 13, no. 1, pp. 14–25, 2002.

[23] C. Penumalli and Y. Palanichamy, “An optimal cds construction algorithm with activity

scheduling in ad hoc networks,” The Scientific World Journal, vol. 2015, 2015.

[24] X. Cheng, M. Ding, and D. Chen, “An approximation algorithm for connected dominating

set in ad hoc networks,” in Proc. of International Workshop on Theoretical Aspects of

Wireless Ad Hoc, Sensor, and Peer-to-Peer Networks (TAWN), vol. 2, 2004.

[25] N. Al-Nabhan, B. Zhang, X. Cheng, M. Al-Rodhaan, and A. Al-Dhelaan, “Three con-

nected dominating set algorithms for wireless sensor networks,” International Journal of

Sensor Networks, vol. 21, no. 1, pp. 53–66, 2016.

[26] J. P. Mohanty, C. Mandal, and C. Reade, “Distributed construction of minimum connected

dominating set in wireless sensor network using two-hop information,” Computer Net-

works, vol. 123, pp. 137–152, 2017.

[27] T. N. Tran, T.-V. Nguyen, and B. An, “An efficient connected dominating set clustering

based routing protocol with dynamic channel selection in cognitive mobile ad hoc net-

works,” Electronics, vol. 8, no. 11, p. 1332, 2019.

51

[28] O. Gulec, E. Haytaoglu, and S. Tokat, “A novel distributed cds algorithm for extending

lifetime of wsns with solar energy harvester nodes for smart agriculture applications,”

IEEE Access, vol. 8, pp. 58859–58873, 2020.

[29] A.-R. Hedar, R. Ismail, G. A. El-Sayed, and K. M. J. Khayyat, “Two meta-heuristics

designed to solve the minimum connected dominating set problem for wireless networks

design and management,” Journal of Network and Systems Management, vol. 27, no. 3,

pp. 647–687, 2019.

[30] X. Bai, D. Zhao, S. Bai, Q. Wang, W. Li, and D. Mu, “Minimum connected dominating

sets in heterogeneous 3d wireless ad hoc networks,” Ad Hoc Networks, vol. 97, p. 102023,

2020.

[31] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Fault-tolerant clustering in ad hoc and sen-

sor networks,” in 26th IEEE International Conference on Distributed Computing Systems

(ICDCS’06), pp. 68–68, IEEE, 2006.

[32] J. R. Diaz, J. Lloret, J. M. Jimenez, S. Sendra, and J. J. Rodrigues, “Fault tolerant mech-

anism for multimedia flows in wireless ad hoc networks based on fast switching paths,”

Mathematical Problems in Engineering, vol. 2014, 2014.

[33] Y. Shi, Y. Zhang, Z. Zhang, and W. Wu, “A greedy algorithm for the minimum k-connected

m-fold dominating set problem,” Journal of Combinatorial Optimization, vol. 31, no. 1,

pp. 136–151, 2016.

[34] M. T. Thai, N. Zhang, R. Tiwari, and X. Xu, “On approximation algorithms of k-connected

m-dominating sets in disk graphs,” Theoretical Computer Science, vol. 385, no. 1-3,

pp. 49–59, 2007.

[35] M. S. R. Sohel, C. N. Ferdous, A. Rahman, A. J. Nafis, S. A. Shushmi, and R. Rab, “On

constructing contention aware connected dominating sets for inter-connectivity among

internet of things devices,” International Journal of Multimedia Intelligence and Security,

vol. 3, no. 3, pp. 244–270, 2019.

[36] C. N. Ferdous and A. Rahman, “A contention aware connected dominating set construction

algorithm for wireless ad-hoc networks,” in 2018 14th International Conference on Wire-

52

less and Mobile Computing, Networking and Communications (WiMob), pp. 1–8, IEEE,

2018.

[37] P. Johnson and C. Jones, “Secure dominating sets in graphs,” Advances in Domination

Theory II, pp. 1–9, 2013.

[38] A. Burger, A. De Villiers, and J. Van Vuuren, “On minimum secure dominating sets of

graphs,” Quaestiones Mathematicae, vol. 39, no. 2, pp. 189–202, 2016.

[39] J. Barnett, A. Blumenthal, P. Johnson, C. Jones, R. Matzke, and E. Mujuni, “Connected

minimum secure-dominating sets in grids,” AKCE International Journal of Graphs and

Combinatorics, vol. 14, no. 3, pp. 216–223, 2017.

[40] J. Zhou, Z. Zhang, S. Tang, X. Huang, Y. Mo, and D.-Z. Du, “Fault-tolerant virtual back-

bone in heterogeneous wireless sensor network,” IEEE/Acm Transactions on Networking,

vol. 25, no. 6, pp. 3487–3499, 2017.

[41] S. Farzana, K. A. Papry, A. Rahman, and R. Rab, “Maximally pair-wise disjoint set covers

for directional sensors in visual sensor networks,” in 2016 Wireless Days (WD), pp. 1–7,

IEEE, 2016.

[42] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,” Discrete mathematics,

vol. 86, no. 1-3, pp. 165–177, 1990.

[43] M. Akter, A. Islam, and A. Rahman, “Fault tolerant optimized broadcast for wireless ad-

hoc networks,” in 2016 International Conference on Networking Systems and Security

(NSysS), pp. 1–9, 2016.

[44] M. B. K. Dhir, “A survey on fault tolerant multipath routing protocols in wireless sensor

networks,” Global Journal of Computer Science and Technology, 2016.

53

