
TRAPPING AND SORTING OF CIRCULATING

TUMOR CELLS IN A MICROFLUIDIC FILTER ARRAY

by

Saeedur Rahman

(1015102072)

Submitted in partial fulfilment of the requirements for the degree of Master of

Science in Mechanical Engineering

Under the supervision of

Dr. A.B.M. Toufique Hasan

Professor

Department of Mechanical Engineering

Bangladesh University of Engineering and Technology (BUET)

DEPARTMENT OF MECHANICAL ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY (BUET)

DHAKA-1000, BANGLADESH

September, 2021







Dedication

To my family

iii



Acknowledgements

Praise be to the Almighty Allah for all the blessings He has bestowed upon us.

I want to express heartfelt gratitude to my supervisor Dr. A.B.M. Toufique Hasan,

for his unwavering patience and support throughout this study. This work would

not have come to fruition without his guidance.

I would like to thank the Head of the Department of Mechanical Engineering, BUET,

for the approval to carry out this research work. I would also like to extend my

gratitude to the Head of the Department of Biomedical Engineering, BUET, for the

access to the computational facilities. Furthermore, I would like to thank my col-

leagues at the Department of Biomedical Engineering, BUET, for their continuous

support, inspiration, and cooperation.

Last but not least, I would like to acknowledge the love and the sacrifices of my

family members throughout my life.

iv



Abstract

The presence and enumeration of Circulating Tumor Cells (CTCs) in peripheral

blood has been identified as an indicator for early detection and treatment efficacy

of various forms of cancer. Physical property-based isolation techniques of CTCs

by microfluidic filters have emerged as a method capable of providing viable cells

suitable for further study. Numerical simulations of a cell passing through microfil-

ters provide insight into cell deformation and filter device operating characteristics.

In this study, a microfluidic filter array device is proposed to sort the CTCs ac-

cording to their physical properties along with isolation. The array device consists

of three conical filter funnels having decreasing pore size connected in series. Cell

passage through the filter funnels was computationally simulated by two-phase fluid

flow with the cell modeled as a Newtonian droplet having constant cortical tension

and viscosity. The CTCs were considered to be suspended in the blood plasma

medium. Cell trapping and sorting phenomena in the filter array device based on

cell size and cortical tension were investigated for different filter inlet driving pres-

sures. The properties were selected to reflect the physical properties of RT4 bladder

cancer cell, nontumorigenic breast cell MCF-10A and breast cancer cells MDA-MB-

231 and MDA-MB-468. CTCs were found to be trapped and sorted in the filter

funnels according to their physical properties. Stiffer and larger cells were trapped

early in funnels within a larger pore radius. Whereas softer and smaller cells can

travel forward to be trapped in funnels with smaller pore sizes. An increase in the

driving pressure resulted in a different sorting pattern, with all the cells being able

to move further towards smaller funnels. Some of the cells passed through all the

funnels to the exit chamber. Cell deformation in funnels was also quantified to show

larger deformation in funnels with smaller pore radius. To characterize the filter

array device, the threshold pressure required for passing through filters of different

pore sizes was also investigated. The threshold pressure showed variation with filter

pore size and cell physical properties. Smaller-sized filter funnels were found to

require higher pressure to pass. The threshold pressure was also high for cells with

large size and cortical tension. Based on the threshold passing pressures, filter char-

acteristics were established to show that for a given filter geometry, different inlet

driving pressure can be used to sort CTCs by different ranges of physical properties.

The results provide a framework to customize microfluidic filter array device design

and operation for selective detection and physical property-based sorting of CTCs,

which have significant clinical importance in cancer diagnosis and treatment.
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Chapter 1

Introduction

1.1 Background

Cancer is a large group of diseases that involves uncontrollable cell growth. It is

one of the leading causes of death around the world, with nearly 10 million deaths

in 2020 [1]. There are many different types of cancer, with breast, lung, colon

and rectum amongst the most common ones [2]. Cancer can originate in many

different sites of the body. However, the primary tumor site is rarely the cause of

death. Cancer spreads from the initial primary site to different parts of the body

by emitting tumor cells, called circulating tumor cells (CTCs) [3, 4]. These tumor

cells can travel by the circulatory or the lymphatic system. Traveling to a new site,

they extravasate and form secondary tumor sites. This process is called metastasis

[5, 6].

Cancer cannot be accurately diagnosed with a single test. Diagnostic testing is

complemented by history and physical examination. Sometimes, other conditions

like an infection may present similar symptoms of cancer. The diagnostic methods

involve lab tests, imaging, endoscopic examination, genetic tests, and tumor biop-

sies. Blood tests, urinalysis, and the detection of biomarkers indicating cancer are

the types of lab tests that are performed. Biomarkers are substances produced by

cancer or other cells in response to cancer.

1



1.1 Background 2

Medical imaging can detect tumors or any other abnormality in the body noninva-

sively. The types of imaging used for cancer detection are X-rays, CT scan, bone

scan, mammogram, which is used for breast tumor detection, ultrasound imaging,

and magnetic resonance imaging (MRI). In nuclear medicine, radioactive nuclear

particles are introduced in the body, which can accumulate in the cancerous site.

The presence of cancerous tissue is detected through their emission. The bone scan

is a type of nuclear scan that looks for abnormal areas in bone through the emission

of accumulated nuclear materials. Positron Emission Tomography (PET) scan is

another imaging technique where radioactive glucose injected into a vein is taken

up by cancer cells. Detailed 3-D images of high uptake areas inside the body can

be produced from emission.

Examples of endoscopic examinations include colonoscopy for detecting colorectal

cancer and bronchoscopy for the examination of the trachea, bronchi, and lungs.

In genetic testing, cancer susceptible genes are tested for mutations. On the other

hand, biopsy involves the removal of tissue from the body that is further examined

under a microscope to determine the presence of malignancy. The removal is per-

formed by surgery or through a needle. After the diagnosis, generally, more tests

are performed for the planning of treatments. It is essential to know the extent of

cancer (stage) and the grade of abnormality of cancer cells in the body for effective

treatment planning.

Many different treatment options are available for cancer like chemotherapy [7],

radiotherapy [8], immunotherapy [9] and surgery. Chemotherapy involves the use

of cytotoxic antineoplastic drugs. These drug agents kill cells that show rapid cell

division. Many different types of drugs or their combinations are used. Targeted

therapy is used for many common types of cancer where such a drug is used that

targets specific molecular differences between cancer and normal cells. Radiation

therapies use ionizing radiation to damage cancer cells. X-ray beams are normally

used. In contrast, In nuclear medicine, radioisotopes are used, which are specifically

absorbed in tumors and damage cancer cells by radiation emission. Focused ultra-

sound has also been proposed to destroy tumors within the body noninvasively. On

the other hand, cancer immunotherapy works by artificially stimulating the body’s
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own immune system to recognize cancer cells having tumor antigens. Success rates

of the treatments vary depending on the cancer type and cancer stage. Early de-

tection and treatment can enhance survival rate for some types of cancer [10–12].

CTCs can share the characteristics of the primary tumor [4] and have important

prognostic relevance [13, 14]. CTCs are heterogeneous in their morphology and

physical properties. Their properties vary depending on cancer types [15]. They

are typically larger than erythrocytes but have a size overlap with leukocytes [14].

Physical properties of CTCs will be reviewed in Section 2.1.1. They are typically

stiffer than blood cells. However, metastatic cancer cells have been found to be

softer [16, 17]. CTCs have been detected to form multi-cell clusters with variations

in shape [18]. They were found to have both high and low nuclear to cytoplasmic

ratios [19]. They have the potential to detect colorectal [20] and lung [21] cancer at

early stages. CTCs have been shown to predict survival in breast cancer patients

with the detection of CTC after chemotherapy, signifying increased risk of relapse

[22]. Survival in colorectal cancer [23] and metastatic neuroendocrine tumor [24]

have been linked with CTC count. CTCs have been detected in breast cancer

patients a long time after surgery, indicating a dormant state of the cancer [25].

For many types of cancer like bladder, liver, and esophageal cancer, CTC count has

been correlated with metastatic relapse [13]. For breast, prostate, and colorectal

cancer, CTC enumeration has been shown to predict response to therapy [26, 27].

All these point to the fact that detection and subsequent analysis of CTCs play

a very important role in cancer detection, determining disease progression, and

treatment management.

Many of the cells used in cancer research are cultured cells that retain most of

the properties of their origin [28]. They work as a model system in the study of

the properties of the cells and drug discovery. Over the years, many different cell

culture lines have been established. The relevant cell lines for this study are MCF-7,

MDA-MB-231, MDA-MB-468, MCF-10 A, RT4, and HL60. MCF-7, MDA-MB-231,

and MDA-MB-468 are all breast cancer cell lines. The acronym MCF stands for

Michigan Cancer Foundation. MCF-10A is a nontumorigenic breast cell line. The

HL-60 is a human leukemia cell line, while RT4 is a bladder cancer cell line. Cultured
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Figure 1.1: Size distribution of blood cells and comparison with CTCs [14].

cells are homogeneous with stable properties [29]. However, tumor cells derived from

patients show significant variation in properties depending on the cancer type, and

patient [15, 30]. Meng et al. [25] found CTCs from metastatic breast cancer patients

to have a similar size and nuclear to cytoplasmic ratio. However, separate studies

have found CTCs from breast cancer patients to have a larger size compared to

cultured cells [31].

1.2 CTC detection: literature review

CTC detection from blood samples is challenging because of their extremely low

concentration [18]. Table 1.1 shows the comparison of the concentration of CTCs

with normal blood cells. Different approaches have been employed for isolating

tumor cells from blood samples. The techniques can be broadly divided into two:

biochemical and biophysical approach [29]. Biochemical approaches use the bind-

ing of target cells and biochemical labels. Current technologies use epithelial cell

adhesion molecule (EpCAM) antibodies to separate CTCs. FDA-approved commer-

cial system CellSearch uses this technique where anti-EpCAM antibody-conjugated

magnetic beads are used for CTC capture [32]. However, biochemical methods can
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Table 1.1: Comparison of concentration of CTCs with different cells normally
found in human blood [14].

Cell type Concentration of cells/ml
Red blood cells 4.2- 6.2 ×109

Platelets 1.5- 4 ×108

Neutrophils 3- 5.8 ×106

Eosinophils 5- 25 ×104

Basophils 1.5- 5 ×104

Lymphocytes 1- 3 ×106

Monocytes 3- 5 ×105

CTCs 1-10

be unreliable due to several reasons [33]. Some metastatic cancer cells undergo ep-

ithelial to mesenchymal transition (EMT), which results in the loss of the epithelial

marker expression.

In contrast, physical CTC separation techniques exploit the difference in physical

properties like size, shape, density, deformability, and electrical polarizability [34].

Density gradient centrifugation has been employed to separate CTCs from blood

cells [35, 36]. However, heterogeneity in normal blood cells and CTCs mean other

large benign cells may be identified as cancer cells [37]. Cell dielectric properties

depend on cell morphology, and membrane surface area [38]. When subjected to an

electric field, cells move towards or away from a strong field region [29]. Thus cells

having different dielectric properties can be separated in this process. Alazzam

et al. [39] separated breast cancer cell MDA-MB-231 after mixing with normal

blood cells using dielectrophoresis. Acoustophoresis is another technique that uses

acoustic forces to separate cells based on their density and deformability [40, 41].

Li et al. [42] used an acoustic-based microfluidic device to separate cancer cells

from cell culture lines with a very high recovery rate. They also used their device

to separate cancer cells from blood samples collected from breast cancer patients.

Hydrodynamic separation techniques use the difference in hydrodynamic forces on

a particle to separate it from other particles [43]. Hydrodynamic forces depend on

particle size. One of the most used designs is the Deterministic Lateral Displacement

(DLD) device, where particles/cells face obstructions in flow. The principle is shown

in Figure 1.2. Small cells follow the streamline of the flow, whereas large cells may
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shift to a different streamline while encountering the obstruction and get separated

from other cells [44].

When a cell flows through a curved microchannel, it is subjected to drag force

along with wall effect lift and shear gradient lift force [29]. Balance of these forces

causes different-sized cells to occupy different equilibrium trajectories. Hou et al.

[45] isolated CTCs from lung cancer patients using spiral microchannel. Sollier et

al. [46] used a vortex-based chip that separated larger cells that deviated from the

initial streamline to a trap containing vortices. The design and principle of the

device are shown in Figure 1.3.

Figure 1.2: Principle of deterministic lateral displacement where small particles
can follow the streamline around obstacles but large particles get shifted to dif-
ferent streamlines and are separated [29].

Microfiltration devices isolate tumor cells by using the flow of blood samples through

microstructures like micropores [47], micropillars [48] or microfilters on a microflu-

idic chip. Filtration of cells depend both on their size[46] and deformability [49].

Figure 1.4 shows a membrane filter device containing micropores to trap LNCaP

cells. Mohamed et al. [50, 51] developed a filter device consisting of columns with
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Figure 1.3: Design and principle of vortex based chip from [46]. Larger cells are
trapped in the camber. The bottom row shows separation of cancer cells.

varying gaps in the range of 20 to 5 µm (Figure 1.5). They filtered human blood

mixed with neuroblastoma cells based on cell size.

Deformability-based separation techniques make use of the fact that CTCs are usu-

ally stiffer than normal blood cells [25, 52]. The force required to deform a cell

in order to pass through the microstructures depends on its deformability. These

devices can not only sort cells according to their stiffness, but they can also be used

to measure the deformability of cell samples. Beech et al. [53] used a DLD device

to sort cells by deformability in addition to shape and size. They incorporated

deformability by considering shear stress on a cell by the carrier fluid, which makes

them elongated. Ahmmed et al. [54] used flow-induced deformability to separate

strongly metastatic breast and prostate cancer cells from weakly metastatic ones.

They found that strongly metastatic breast cancer cells are more deformable than

weakly metastatic breast cancer cells. However, they found the opposite to be true

for prostate cancer cells. Pang et al. [55] used a microfluidic device that used

staggered microstructures to separate MCF-7, MDA-MB-231, and MDA231-LM2
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Figure 1.4: Membrane filters showing micropores with the bottom row showing
captured human prostate adenocarcinoma LNCaP cells [47].

cancer cells based on their size and deformability. Their device can also isolate

cancer cells from blood samples.

Cancer cells have been characterized by Byun et al. [56] by their deformability and

surface friction according to the cells’ transit time through microconstrictions. They

found that cells with higher metastatic potential show faster velocities. They also

found that reduced surface friction may be important for invasive cancer cells to

squeeze through confined spaces. Hou et al. [57] used a simple microfluidic channel

device to differentiate malignant cells from non-malignant cells using their entry

time and transit velocity through the microchannel.

Guo et al. [58] constructed a microfluidic ratchet device consisting of a chain of

microscale funnel constrictions. Individual rectangular funnels were tapered, which

led to pressure asymmetry for driving cells along and against the direction of the

taper. They also discovered rectified motion under unbiased oscillatory flow for cells

passing through the chain of funnel constrictions. Using similar devices, they also

measured deformability of normal blood and cancer cells [59, 60].
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A practical filtration device consisting of multiple rows of filter funnels with pro-

gressively decreasing pore size in a single row was constructed by McFaul et al.

[61] Under forward flow, the cells get trapped in funnels based on their size and

stiffness. One of the drawbacks of microfilter devices is clogging by cells. They

used reverse flow to unclog the cells from funnels, and a simultaneous cross-flow is

used to drive the cells towards a reservoir from where the cells can be collected for

further analysis. L1210 mouse lymphoma cells (MLCs) and human peripheral blood

mononuclear cells (PBMCs) were used to represent two types of cells with different

mechanical properties. They showed their device to achieve very high separation

efficiency. Lin et al. [62] used a similar device to separate UM-UC13 bladder cancer

cells from the blood. They added a hydrodynamic concentrator to get rid of the

fluid in the blood and a portion of leukocytes using their size. The schematic of

their ratchet cell sorting device and the capture and separation of UC13 cells from

leukocytes are shown in Figure 1.7. Cell viability after sorting through filters is

important for subsequent analysis or culture of cells. Contact with the filter wall

and hydrodynamic forces can render cells damaged, or even dead [63, 64].

Experimental techniques to separate CTC from blood samples focus on device de-

sign, fabrication, and operation. Numerical methods offer an alternative way to

simulate the filtration process in filter devices. Insight into the underlying physics of

filtration can help to establish filter characteristics and operating conditions for iso-

lating cells of particular physical property. Numerical methods also offer a pathway

to device optimization without costly experimental setups. For deformability-based

filters, it can lead to the understanding of the fundamentals of cell deformation and

filtration through filter funnels and the effect of physical properties like cell stiffness

and filter funnel geometric parameters.

Various numerical studies have been conducted for optimizing cell filtering devices

[65]. Kabacaouglu et al. [66] used numerical simulation to optimize a DLD cell

filtering device. Li et al. [67] performed a numerical optimization of a microflu-

idic CTC filtering chip. They considered cell damage by membrane area strain

and investigated pore shape for damage limitation. Aghaamoo et al. [68] proposed

deterministic dielectrophoresis that combines DLD and traditional insulator-based
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dielectrophoresis. Using numerical simulation, they investigated different opera-

tional and geometrical parameters of their design.

Computational methods have been used to understand cell deformation and sepa-

ration in microfluidic devices. Wu et al. [69] determined threshold pressure for the

passage of an RBC through a contracting microfluidic channel similar to [58]. They

modeled the RBC membrane as a triangular particle- spring meshwork with bend-

ing elasticity between neighboring triangles. Aljaghtham et al. [70] used combined

solid and fluid mechanical simulation to probe the possibility of using cell stiffness

difference for isolating rare cells.

CTC squeezing process through a narrow channel of different geometry was studied

by Zhang et al. [71]. They considered the cell as a Newtonian droplet with cortical

tension and obtained pressure signature and threshold pressure for CTC passing.

In a separate study, passing pressure dependence on the thin film between CTC

and the filter wall was studied [72]. Aghaamoo et al. [73] conducted a numerical

study of a cell passing through single and short conical funnel arrays having the

same pore size. They also kept the physical property of the tumor cell constant.

Effect of pore half angle on pressure asymmetry and effect of oscillating pressure

frequency and duty cycle on system performance was reported.

Different experimental studies have demonstrated the capabilities of microfluidic

filter array devices in separating cancer cells. These experiments mostly use two or

more types of cells as surrogates of cell types having distinct physical properties. On

the other hand, computational studies so far have mostly focused on cell deformation

and pressure characteristics in single filter funnels. But the effect of CTC physical

properties in determining cell trapping in specific funnels of a filter array device

is still unknown. The in-depth study of the cell trapping characteristics in a filter

array device under different operating conditions is also elusive. The present study

investigates cell trapping in a microfluidic filter array device based on physical

properties. Trapping in specific funnels can lead to the sorting of the captured

cells. Moreover, a method is established from single filter pressure characteristics

to predict trapping and sorting under different operating conditions.
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(a)

(b)

Figure 1.5: (a) Schematic of the microfluidic filter device used by [51] showing
varying channel gaps, (b) Capturing of MDA-MB-231, SW620 and HEK293 cells
which have different physical properties.
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(a)

(b)

Figure 1.6: (a) Schematic and design principle of the device used by [45] that
separates CTCs using Dean Flow Fractionation (DFF), (b) MCF-7 cells in their
focusing position in the microchannel.
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(a)

(b)

Figure 1.7: (a) Schematic of the ratchet cell sorting device used by [62], (b)
separation of larger and stiff UC13 cancer cells from smaller and deformable
leukocytes. Leukocytes traelled to the top while UC13 cells are trapped at the
bottom.
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1.3 Objectives

The objectives of this study are:

1. To develop a computer model to identify the deformation and threshold pres-

sure characteristics of CTCs while passing through a microfluidic filter device

and validate the model.

2. To investigate the microfluidic filter funnel array with varying pore size to

achieve physical property-based cell trapping and sorting under pressure-

driven flow.

3. Establishing filter operating characteristics from threshold passing pressure of

CTCs with a range of cell physical properties (cortical tension and diameter).

1.4 Organization of the thesis

This thesis consists of five chapters. Chapter 1 presents the clinical significance of

circulating tumor cells (CTCs) in cancer and a review of the existing CTC detection

methods and complementary numerical studies. In chapter 2, relevant CTC physical

properties are listed along with the physical model of the CTC and an outline of the

numerical method used in this study. Chapter 3 presents the results of numerical

simulations demonstrating both CTC isolation and sorting under pressure-driven

flow. Filter operating characteristic is established in chapter 4 from the results of

threshold CTC passing pressure for a range of cell physical properties. Finally,

the outcomes of this work are summarized in chapter 5, along with suggestions for

future work based on the findings of this study.



Chapter 2

Physical Model and Numerical

Method

2.1 Problem description

2.1.1 Physical properties of tumor cells

Many different experimental techniques have been employed to measure the mechan-

ical properties of biological cells. Currently used techniques include atomic force

microscopy (AFM), magnetic twisting cytometry, micropipette aspiration, optical

tweezers, shear flow, substrate stretching, etc. [74, 75] Amongst typical blood cells,

Evans et al. [76] measured cortical tension of blood granulocytes by micropipette

aspiration. Red blood cell cortical tension was measured by Guo et al. [60] with

a microfluidic funnel device. Cross et al. [16] reported stiffness by AFM of the

lung, breast, and pancreatic carcinoma cells. Stiffness of non-tumorigenic epithelial

breast cell line MCF-10A, breast cancer cell lines MCF-7 and MDA-MB-231 were

reported in many different studies using AFM [77, 78]. Li et al. [79] studied effect

of loading rate in AFM on breast cancer cells MCF-7 and MCF-10A. They found

that the apparent Young’s modulus increases with the loading rate. Hosseini et

al. [80] used AFM cell confinement to measure mechanical properties of the actin

15
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Table 2.1: Cortical tension of blood cells and relevant cancer cells.

Cell Cortical Tension (mN/m)
Red blood cell 0.011-0.012 [60]
Neutrophil 0.035 [76]
Lymphocyte 0.075 [59]
HL-60 0.155 [81]
RT4 bladder cancer cell 0.185 [59]
MCF-7 0.28 [80]
MCF-10A 0.4 [80]
MDA-MB-231 1.1 [83]
MDA-MB-468 2 [83]

cortex of cancer cells MCF-7 and MCF-10A during interphase and mitosis. They

reported cell cortical tension of the cancer cells based on their studies. Using AFM,

Rosenbluth et al. [81] measured cell stiffness of human leukemia cell line HL60,

Jurkat, and neutrophils. They also evaluated equivalent cortical tension of the cells

using a liquid drop model of the cell. Lekka et al. [82] reported Young’s modulus

of cancerous human bladder cells using scanning force microscopy. Guo et al. [59]

also reported cortical tension of RT4 bladder cancer cells using a microfluidic fun-

nel device similar to [60]. Using micropipette aspiration, Mohammadalipour [83]

experimentally determined cortical tension of breast cancer cell lines MDA-MB-231

and MDA-MB-468. The current study considers cortical tension in the range of 0.2

to 2 mN/m. Relevant tumor cell cortical tensions are reported in Table 2.1. It is

evident that tumor cells are stiffer than normal blood cells.

There is a considerable variation in tumor cell size. Even cells from the same family

can vary over a large range. Relevant tumor cell diameters are enlisted in Table 2.2.

Although tumor cells are larger than red blood cells and many white blood cells,

there is some overlap between larger white blood cells and tumor cells [84]. For this

reason, tumor cell isolation methods based on only cell size may not purely capture

CTCs. The cancer cell diameter values show variation over a range of 10- 24 µm.

There are differences in reported values for the same type of cell. The current study

considers cell diameter in the range of 12 to 20 µm.

Cancer cells have been filtered by centrifuging, which takes advantage of the fact

that some cancer cells are less dense (specific gravity 1.056) than normal blood cells

[35]. Healthy erythrocytes have a density in the range of 1.1- 1.12 g/mL [88]. HL-60
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Table 2.2: Size of blood cells and relevant cancer cells.

Cell Diameter (µm)

Red blood cell 5.6 ± 0.2 [85]
Neutrophil 12- 14
Monocyte upto 20
HL-60 16.84 ± 6.40 [15]

MCF-7

18.5 ± 2.3 [55]
18.16 ± 7.42 [15]
16.25- 24.38 [86]

22.5 [87]
MCF-10A 15.63- 22.50 [86]

MDA-MB-231

17.74- 18.18 [83]
17.9 ± 2.5 [55]

12.40 ± 1.16 [15]
12.4 ± 1.16 [85]

MDA-MB-468 16.76- 19.04 [83]

leukemia cells were measured to have a density in the range 1.05- 1.09 g/mL [89].

The blood plasma density is dependent upon temperature. At 37◦C plasma was

found to have density of 1.02 g/mL [90]. For the present study, tumor cell density

was set at 1.06 g/mL, and plasma density was set at 1.02 g/mL.

Biological cells are highly viscous. Plasma viscosity is 0.0012- 0.0013 Pas at 37◦C

[91]. Whereas neutrophil cytoplasm has a viscosity of 183 Pas, and its nucleus has

a viscosity of 232.3 Pas [92]. Cancer cells can be more viscous than normal blood

cells. Coumans et al. [93] measured the apparent viscosity of MDA-MB-231 cells

to be 1600±200 Pas using passage time of cells passing through 5 µm pores. In

contrast, they found red blood cell and white blood cell apparent viscosity to be

0.035±0.010 and 3.2±2.5 Pas respectively.

2.1.2 Modeling of cell behavior

Cell behavior under external forces can be modeled in many different ways consid-

ering many different levels of complexity [94]. These models can be broadly divided

into two approaches: micro/nanostructural approach and continuum approach [95].

The first approach treats the cytoskeleton as the main structural component and

considers cell behavior at the subcellular level. On the other hand, the continuum

approach considers the cell to be made of a material having continuum properties.
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Even within the continuum approach, there are many different models of cell behav-

ior stemming from many different types of experiments. Experimental techniques

like micropipette aspiration are described by cortical shell liquid core model [76, 96],

or the solid model [97, 98]. On the other hand, AFM indentation is described by the

solid model [99] or the power-law structural damping model [100]. Solid models are

applicable for small deformations, but for large deformations, liquid drop models

are more suitable [101].

CTCs in this study are modeled as Newtonian liquid droplets with constant vis-

cosity. Cell cortical stiffness is simulated by the surface tension effect. Although

this approach neglects internal cell structure, molecular deformation, or sub-cellular

response, it provides a description of large deformations at the cellular level [95].

Previous experimental studies have shown the adequacy of the liquid drop model

for the prediction of threshold pressure required for cell passing through micro-

constrictions [58]. Numerical studies have also been performed adopting the model

for prediction of pressure signature for cancer cells passing through microfluidic

channels [71, 73, 102].

2.1.3 CTC filter construction

Different filtration techniques based on CTC physical properties have been previ-

ously discussed in Section 1.2. Guo et al. [58] fabricated a microfluidic ratchet

device for selective transport of cells based on their internal mechanics. The device

consisted of a chain of funnel constrictions with pore sizes ranging from 11 µm to 3

µm. The funnel length was 30 µm with 35 µm long intermediate chambers. The half

angle of the funnels were 10◦, 5◦ and 0◦. The funnel shape of the filters creates an

asymmetry in the threshold pressure for forward and backward motion. Backward

threshold pressures are larger for a particular filter funnel. A similar device was

also used to measure the deformability of single cells [59, 60]. Based on this ratchet

device, McFaul et al. [61] constructed a device that combined parallel arrays of

funnel constrictions. This increased throughput enabling larger blood samples to

be filtered. They used funnel pore sizes ranging from 15 µm to 1 µm. Aghaamoo



2.1 Problem description 19

et al. [73] performed a computational study of conical filters where they studied

the effect of filter pore half angles in the range of 2◦ to 20◦. They only considered

a filter pore radius of 3 µm with the filter length set at 25 µm. They also studied

cell motion in a conical filter array under a flow having a square wave profile.

For this study, conical filters are considered similar to Aghaamoo et al. [73] Filter

geometric properties are selected based on the previous works discussed above.

2.1.4 Filter geometry

The physical model of a single conical filter is shown in Figure 2.1 with a sketch

detailing the geometric parameters of the filter funnel. Taking advantage of the

rotational symmetry about the axis, only a 2D section was considered as the com-

putational domain. The total length of a single filter is 85 µm.

(a)

(b)

Figure 2.1: (a) 3D physical model of single filter, (b) 2D sketch showing geometric
parameters.

The dimension of the geometric parameters are listed in Table 2.3. All the geometric

parameters except filter pore radius, rf were kept constant. Three different values
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Table 2.3: Geometric parameters of single filter.

Geometric parameter Dimension
Entrance chamber length, len 30 µm
Filter length, lf 25 µm
Exit chamber length, lex 30 µm
Entrance chamber radius, ren 15 µm
Exit chamber radius, rex 15 µm
Filter pore half angle, θ 10◦

Filter pore radius, rf 2, 4 and 6 µm

of rf were taken: 2, 4 and 6 µm. The values were selected based on previous

experimental [58, 61] and computational [73] studies.

The filter array was constructed by connecting three different filter funnels in series.

The geometric parameters were kept the same, but the pore radius was varied from

6 µm for funnel 1, 4 µm for funnel 2 to 2 µm for funnel 3. The total length of the

funnel array was 195 µm. Figure 2.2 shows the 3D model and 2D sketch of the filter

array detailing the dimensions.

2.1.5 Computational parameters

Cell physical properties for the computation were selected based on the discussion

in Section 2.1.1. Four different cell cortical stiffness values were selected mirroring

the cell cortical tension of RT4 bladder cancer cell, MCF-10A, MDA-MB-231, and

MDA-MB-468 breast cancer cells (Table 2.1). Cancer cell diameter was found to

vary over a range of 10- 24 µm (Table 2.2). Three different values of cell diameter

were selected, representing the range of 12- 20 µm. The densities of plasma and

the CTC were set at 1.02 and 1.06 g/mL, respectively, based on values reported by

experimental studies (Section 2.1.1).

The effect of cancer cell viscosity on cancer cell passing phenomena through a mi-

crochannel and passing pressure has been computationally studied by Zhang et al.

[72] They observed the formation of thin plasma films between the cell and the chan-

nel wall during the cell occupation phase within the channel. The film thickness

was found to increase with cell viscosity. On the other hand, the maximum pres-

sure drop was found to initially decrease and then increase again with an increase
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(a)

(b)

Figure 2.2: (a) 3D physical model of filter array, (b) 2D sketch showing dimensions
in µm.

in cell viscosity. Cell passage through a channel was divided into five phases: entry,

squeezing in, cell occupation, squeezing out, and exit. Only the occupation phase

was identified to behave differently under a high viscosity ratio. The cell to plasma

viscosity ratio was reported only up to the value of 64. Hence, it is unknown how

maximum pressure might behave at higher viscosity ratios. In a separate study,

Zhang et al. [103] studied the effect of Non-Newtonian behavior of cancer cells.

They modeled CTCs as shear-thinning liquid. They obtained threshold pressure at

high flow rates and found that the highest pressure occurs at different states of cell

occupation in a microfluidic channel for Newtonian and non- Newtonian cell models.

At low flow rates, the results from the two models are similar. Cell viscosity affects

inlet pressure when there is a cell passing incident through a funnel. The trapped

state is a static condition with the cell position getting fixed and the flow rate drop-

ping to zero. In this case, only pressure difference due to cortical tension effects
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Table 2.4: Computational parameters.

Parameter Value
Cell cortical Tension, σ 0.2, 0.4, 1.1 and 2 mN/m
Cell diameter, D 12, 16 and 20 µm
Cell density, ρc 1.06 g/mL
Plasma density, ρp 1.02 g/mL
Cell viscosity, µc 0.0012 Pas
Plasma viscosity, µp 0.0012 Pas

is present. In this study, the cancer cell viscosity effect was not considered. Cell

viscosity was set to be the same as blood plasma, 0.0012 Pas. All the computational

parameters are listed in Table 2.4.

2.2 Governing equations

The Cell passage through the conical filter is modeled by a two-phase flow where

the phases CTC and plasma are immiscible. Cell cortical tension is modeled by

surface tension between the phases. Any heat transfer effect is neglected. Because

of the very small Reynolds number associated (Re = 0.025 − 0.075), the flow is

considered to be laminar. Due to symmetry, the physical domain is considered to

be axisymmetric. A single set of mass and momentum equation describes the flow,

with a separate transport equation for capturing cell phase volume fraction within

the continuous plasma media. The conservation of mass or the continuity equation

can be generally written as:

∂ρ

∂t
+∇ · (ρv) = Sm, (2.1)

where ρ is the density, v is the velocity vector, and Sm is the source term which can

represent mass added to the continuous phase from the second phase as found in

problems involving vaporization of droplets. For 2D axisymmetric geometries, the

continuity equation takes the following form:

∂ρ

∂t
+

∂

∂x
(ρvx) +

∂

∂r
(ρvr) +

ρvr
r

= Sm, (2.2)
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where vx and vr are the axial and radial components of velocity. The source term

Sm is taken to be zero in this study as no mass transfer is considered between the

cell and the plasma phase. The general form of the conservation of momentum is

written as:
∂

∂t
(ρv) +∇ · (ρvv + pI−T) = ρg + F, (2.3)

where p is the pressure, I is the unit tensor, g is the gravitational acceleration

vector, F is the source term and T is the viscous stress tensor. The viscous stress

tensor is given by

T = 2µ

(
D− 1

3
(∇ · v) I

)
, (2.4)

where µ is shear viscosity and

D =
1

2

(
∇v + (∇v)T

)
(2.5)

is the deformation rate tensor. Non-Newtonian effects for the cell can be added to

the model by expressing cell viscosity, µc as a function of D,

µc = µc(D). (2.6)

µc can be determined by relating it to the second invariant of D by defining,

γ̇ =
√

2D : D (2.7)

and expressing µc as,

µc = µc(γ̇). (2.8)

One such model is the power law expression which can be written as,

µc = kγ̇n−1 (2.9)

where k is the consistency index and n is the power law index expressing deviations

from Newtonian behavior. n = 1 indicates Newtonian fluid, n > 1 indicates shear

thickening fluid, and n < 1 gives shear thinning properties to the fluid. No gravity
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effect was considered in this study. The source term F is used to include surface

tension effects. For 2D axisymmetric geometries, the axial and radial components

of the momentum conservation equation can be written as,

∂

∂t
(ρvx) +

1

r

∂

∂x
(rρvxvx) +

1

r

∂

∂r
(rρvrvx) =− ∂p

∂x
+

1

r

∂

∂x

[
rµ

(
2
∂vx
∂x
− 2

3
(∇ · v)

)]
+

1

r

∂

∂r

[
rµ

(
∂vx
∂r

+
∂vr
∂x

)]
+ Fx

(2.10)

and

∂

∂t
(ρvr) +

1

r

∂

∂x
(rρvxvr) +

1

r

∂

∂r
(rρvrvr) =− ∂p

∂r
+

1

r

∂

∂x

[
rµ

(
∂vr
∂x

+
∂vx
∂r

)]
+

1

r

∂

∂r

[
rµ

(
2
∂vr
∂r
− 2

3
(∇ · v)

)]
− 2µ

vr
r2

+
2

3

µ

r
(∇ · v) + Fr,

(2.11)

where

∇ · v =
∂vx
∂x

+
∂vr
∂r

+
vr
r
. (2.12)

2.3 Boundary conditions

The unique solution of the governing partial differential equations requires the ap-

plication of boundary conditions. Figure 2.3 shows the physical domain and its

boundaries. The boundary conditions used in this study are described below.

2.3.1 Inlet boundary conditions

There are two steps in this study: CTC trapping in the filter funnel array and

threshold pressure determination for CTCs of different cortical tension and size.

For filter array simulations, the flow is pressure-driven. So, pressure inlet boundary
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(a)

(b)

Figure 2.3: Boundary conditions.

condition was used where the total pressure is applied at the inlet. Mathematically,

P0(t, r, 0) = P1 (2.13)

where P0 is the total pressure and P1 is the value of total pressure at the inlet. Two

different values of P1 were used: 100 Pa and 300 Pa. This leads to an adjustment

of the flow rate when the CTC is deformed within a filter funnel. The values of P1

were selected based on the experimental threshold values obtained by Guo et al.

[58]. They reported threshold pressure values in the range of 40- 250 Pa for Mouse

Lymphoma Cells (MLC). The reported cell diameter was 15.6 µm, and cell cortical

tension was 0.75 mN/m, which is in the range of the values used in the present

study.

For the second case, plasma is driven at a fixed flow rate, and the pressure required

for a CTC to pass a filter funnel is recorded to determine the threshold pressure.

For this case, the velocity inlet boundary condition was used where uniform plasma

velocity was applied at the inlet. The flow direction was set to be normal to the

inlet boundary. Mathematically,

vn(t, r, 0) = v1 (2.14)
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where vn is the normal velocity and v1 is the value of boundary normal velocity at

inlet. The flow rate was fixed at 0.27 nL/s, which gives a uniform plasma velocity

of v1 =0.38 mm/s at the inlet. For this boundary condition, the total pressure at

the inlet is not fixed and will adjust to any value necessary to provide the required

flow. For CTC passing, this leads to an adjustment of the pressure when the CTC

is deformed within a filter funnel. For both velocity and pressure inlet boundary

conditions, the volume fraction of the cell at the inlet was set to zero. This leads

to only the flow of plasma through the inlet.

2.3.2 Wall boundary condition

The filter walls were modeled as stationary with no slip shear condition. No slip

shear condition sets all the velocity components to be zero at the wall boundary,

vwall = 0. (2.15)

In addition, a non-wetting wall contact angle, θw = 180◦ was set between the CTC

and the filter wall.

2.3.3 Outlet boundary condition

The outlets were modeled with pressure outlet boundary condition where a static

gauge pressure of 0 Pa is set at the outlet. Mathematically,

P (t, r, xexit) = 0 (2.16)

where P is the static pressure and xexit is the value of axial coordinate x at the exit.

xexit= 85 µm for single filters xexit= 195 µm for the filter array. With the static

pressure at the outlet set to zero, pressure or velocity at the inlet is calculated

according to the applied inlet boundary condition. Flow reversals can occur at the

pressure outlet, and the backflow CTC volume fraction was set to zero at the outlet.
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Table 2.5: Summary of boundary conditions.

Boundary name Boundary condition v (mm/s) P (Pa) P0 (Pa)

Inlet
Pressure inlet - - 100, 300
Velocity inlet (0,0.38) - -

Outlet Pressure Outlet - 0 -

Wall
No slip condition
with θw = 180◦ (0,0) - -

Axis
Zero normal gradient
of flow variables

(0,vx) - -

2.3.4 Axis boundary condition

Axis boundary condition was set at the center line of the two-dimensional axisym-

metric domain. Symmetry is enforced by setting the radial gradient of flow variables

to zero on the axis,

∂vx
∂r

(t, 0, x) = 0, (2.17)

∂vr
∂r

(t, 0, x) = 0, (2.18)

∂P

∂r
(t, 0, x) = 0. (2.19)

In addition, the radial velocity is also taken to be zero on the axis,

vr(t, 0, x) = 0. (2.20)

Any value for a particular variable on the axis is taken from the nearest computa-

tional cell.

The boundary conditions used in this study are summarized in Table 2.5.

2.4 Cortical tension modeling

CTC cortical tension is modeled by the surface tension effect. For a tumor cell

of given deformability, the cell cortical tension, σ is considered to be constant.

The surface tension effects are modeled by the Continuum Surface Stress (CSS)
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model. The CSS model treats the surface tension effects in a conservative manner.

The force due to cell cortical tension depends on the curvature of the CTC phase

boundary. In computing threshold pressure for CTC passing through a filter, the

pressure signature depends on the accurate prediction of CTC deformation. CSS

avoids the explicit calculation of curvature. In this method, the surface stress tensor

due to cell cortical tension effects is written as:

T = σ
(
I− n̂

⊗
n̂
)
|~n| (2.21)

~n = ∇α (2.22)

n̂ =
~n

|~n|
(2.23)

where I is the unit tensor, σ is the cell cortical tension,
⊗

is the tensor product

of the two vectors, α is the CTC volume fraction, and ~n is the volume fraction

gradient. Plugging in the expression of ~n, Equation (2.21) can be written as

T = σ

(
|∇α| I− ∇α

⊗
∇α

|∇α|

)
(2.24)

The force due to cell cortical tension, FCSS is written as

FCSS = ∇ ·T (2.25)

which gives

FCSS = ∇ ·
[
σ

(
|∇α| I− ∇α

⊗
∇α

|∇α|

)]
(2.26)

The CSS method, thus, does not require any explicit computation of curvature and

behaves physically around sharp corners in the flow domain.
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2.4.1 Wall adhesion

During the passage through the filters, the CTC comes in contact with the filter

walls. Due to this, the adjustment of CTC curvature near the wall is necessary. The

cell is considered to be non-wetting with the filter wall. Thus the contact angle, θw

between the filter wall and a CTC is taken to be 180◦. Using work done by Brackbill

et al. [104], this contact angle is used to adjust the surface normal in cells near the

wall. This leads to the adjustment of the phase boundary surface curvature near

the filter wall. The surface normal at the computational cell next to the wall can

be written as:

n̂ = n̂w cos θw + t̂w sin θw (2.27)

where n̂w and t̂w are the unit vectors normal and tangential to the wall, respectively.

This surface normal determines the local curvature of the surface near a wall. The

curvature then is used to calculate the source term that arises due to cortical tension

effects.

2.5 Numerical simulation

The Numerical simulations were carried out using the commercial software ANSYS

Fluent [105]. The numerical solution of the governing equations requires discretiza-

tion of the governing equations. The discretization was done through the Finite

Volume Method (FVM) where the integral form of the governing partial differential

equations is cast into divisions of the computational domain, called control volumes.

The divergence terms are converted into surface integrals using the divergence the-

orem. These surface integrals are then evaluated as fluxes through the surfaces of

the control volumes. The steps followed are enlisted below:

• Division of the computational domain into discrete control volumes using a

computational grid.
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• Integration of the governing equations on the individual control volumes,

which results in algebraic equations for the discrete dependent variables like

velocity, pressure, etc.

• Linearization of the discretized equations solution of the linear system of equa-

tions to find values of the dependent variables.

2.5.1 Pressure-based segregated algorithm

The governing equations were solved using the pressure-based segregated algorithm.

The momentum conservation does not provide an equation for pressure evolution.

Rather the constraint of mass conservation (the continuity equation) of the velocity

field is satisfied by solving a pressure correction equation. This equation is derived

from the continuity and the momentum equation in such a way that the velocity field

corrected by pressure satisfies the continuity equation. In the segregated algorithm,

the governing equations are solved sequentially for the solution variables vr,vx, etc.

Since the equations are nonlinear and coupled, an iterative solution loop is carried

out to obtain a converged solution. The iteration steps are illustrated in Figure 2.4.

The steps can be enlisted as:

1. Update fluid properties (e.g., density, viscosity, etc.) based on the current

solution.

2. Solve the momentum equations sequentially with recently updated pressure

and face mass flux values.

3. Solve the pressure correction equation using the recently obtained velocity

field and mass flux.

4. Correct face mass flux, pressure, and the velocity field using the corrected

pressure obtained in step 3.

5. Solve for additional scalars, if any.
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Figure 2.4: Overview of the pressure based segregated algorithm.

6. Update the source terms arising from the interactions among different phases.

7. Check for the convergence of the equations.

The iterative loop is continued until the convergence criteria are satisfied.

2.5.2 Spatial discretization

The momentum conservation equation (2.3) can be written in the integral form as:

∫
V

∂ρv

∂t
dV +

∮
ρvv · dA = −

∮
pI · dA +

∮
T · dA +

∫
V

FdV, (2.28)
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where the gravity term is neglected. This equation is applied to each control volume

in the computational domain. The semi discretized form is expressed as:

∂ρv

∂t
V +

Nfaces∑
f

ρfvfvf ·Af = −
Nfaces∑
f

pfAf +

Nfaces∑
f

Tf ·Af + FV, (2.29)

where, Nfaces is the number of faces enclosing a cell, subscript f denotes values of

the variables on the faces, Af is the area of a face and V is the cell volume. A

representative 2D triangular control volume is shown in Figure 2.5 as example.

Figure 2.5: Control volume for illustrating spatial discretization of the momentum
equation.

∂ρv

∂t
V is defined in Section 2.5.4. The discretized equation contains unknown vari-

ables at the cell center along with values at the call faces which can be calculated

from the surrounding cells. A linearized form of the equation can be written as:

aPφ =
∑
nb

anbφnb + b (2.30)

where φ can take the value of any of the velocity components, the subscript nb

refers to neighboring cells, and ap and anb are linearized coefficients of φnb. Similar

equations can be written for each cell in the computational domain. This results

in a set of algebraic equations, which is solved by point implicit Gauss-Seidel linear

equation solver in conjunction with the Algebraic Multigrid method.

The Equation (2.29) requires face values of flow variables for the convective terms.

These values are interpolated from the cell center values using an upwinding scheme.
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In this scheme, the face value φf is obtained from the cell upstream relative to the

normal velocity, vn. The second order upwind scheme is used for the momentum

equation, where quantities at the cell face are calculated through a Taylor series

expansion of the cell-centered solution about the cell centroid. The face value is

computed using the following expression:

φf,SOU = φ+∇φ · ~r (2.31)

where, φ and ∇φ are the cell centered value and its gradient in the upstream cell

respectively and ~r is the displacement vector from the upstream cell centroid to the

face centroid. This requires the determination of gradients, which is calculated by

the least squares cell based method.

The Equation (2.30) can be solved to obtain the velocity field if the pressure field and

the mass fluxes are known. However, pressure and mass fluxes are not known prior

to the solution. To obtain the pressure at the face PRESTO! (PREssure STaggering

Option) an interpolation scheme is used, which uses the discrete continuity balance

for a control volume about the face to compute pressure.

The continuity equation (2.2) can be written in the conservative form as:

∫
V

∂ρ

∂t
dV +

∮
ρv · dA = 0 (2.32)

Integrating over a control volume, the semi discretized form can be written as:

∫
V

∂ρ

∂t
dV +

Nfaces∑
f

JfAf = 0 (2.33)

where Jf is the mass flux through face f , ρvn. To find the face values of velocities

vn from the velocity at the cell centers, a momentum weighted averaging using

weighted factors is performed. The factors can be taken by writing equations for

the velocity components similar to the Equation (2.30).
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2.5.3 Pressure velocity coupling

As discussed in Section 2.5.1, the conservation equations 2.2 and 2.3 does not con-

tain an equation for pressure evolution. The Semi-Implicit Method for Pressure

Linked Equations (SIMPLE) algorithm obtains pressure field through a pressure

correction scheme by enforcing mass conservation. In this process, both the cell

pressure and face flux are corrected. The corrected flux satisfies the discretized

conservation equation during each iteration. For the current study, however, the

Pressure-Implicit with Splitting of Operators (PISO) algorithm was used for pres-

sure velocity coupling. PISO is a part of the SIMPLE family of algorithms. One

of the limitations of the SIMPLE algorithm is that the new velocities and fluxes do

not satisfy the momentum equation after solving the pressure correction equation.

As a result, calculations are repeated until a balance is obtained. PISO algorithm

improves the efficiency of this calculation by performing additional momentum and

skewness corrections.

2.5.4 Temporal Discretization

Temporal discretization involves the time integration of the terms of a differential

equation to obtain the solution at different time steps. First order accurate implicit

method was used for temporal discretization. The generic form of an equation for

the time evolution of a variable φ can be written as:

∂φ

∂t
= F (φ) (2.34)

The first order accurate implicit temporal discretization is then given by:

φp+1 − φp

∆t
= F

(
φp+1

)
, (2.35)

where the superscript p indicates value at the current time level and the superscript

p + 1 indicates value at the next time level. The value of φp+1 in a given compu-

tational cell is related to φp+1 in the neighboring cells through F (φp+1). Equation
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(2.35) can be rearranged as:

φp+1 = φp + ∆tF
(
φp+1

)
(2.36)

This is an implicit equation and can be solved iteratively at each time step before

moving to the next step. The fully implicit scheme is unconditionally stable. Cancer

cell passing events through the microfilters required variable time stepping. The

time step size was in the range of 10 µs- 0.1 µs.

2.6 Interface capturing

The current study considers a two-phase flow between a tumor cell and blood

plasma. The cell membrane is represented by the interface of the two phases. Nu-

merical schemes to resolve material interfaces can be classified into two categories:

interface tracking and interface capturing methods. Interface tracking methods

[106, 107] track the evolution of the interface as a sharp discontinuity. Any in-

terfacial physics like surface tension effects can be very easily incorporated. But

these methods are not discretely conservative at the interface. On the other hand,

interface capturing methods [108, 109] can achieve discrete conservation by solving

the governing equations in the conservative form. But these methods smear the

material interface over a small region. In this study, the Volume of Fluid (VOF)

method [110] is employed for interface capturing. The sharp interface is ensured by

using the Geometric reconstruction scheme.

2.6.1 The VOF model

The VOF model solves a single set of momentum equations for two or more immis-

cible phases. The volume fraction of each of the phase is tracked throughout the

computational domain. The sum of the volume fraction of all the phases is unity.

n∑
i=1

αi = 1, (2.37)
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where αi is the volume fraction. Thus, three different scenarios are possible for a

cell:

1. αi = 0: the cell is empty of the ith phase.

2. 0 < αi < 1: the cell has an interface between the ith and one or more other

phases.

3. αi = 1: the cell is full of the ith phase.

All the fluid properties in a cell are averaged by volume fraction values. The fol-

lowing rules are applied respectively for density and viscosity:

ρ =
n∑
i=1

αiρi, (2.38)

µ =
n∑
i=1

αiµi. (2.39)

The interface is confined to thin regions in space. In these regions, fluid properties

are thus representative of a mixture of the phases. A volume fraction cutoff of 10−6

is used. For two phases, this represents that a cell is purely comprised of one of the

phases if the other phase volume fraction is below the cutoff.

2.6.1.1 The volume fraction equation

To capture and evolve the interface between the phases, a transport equation is

solved for the volume fraction of one or more of the phases. The equation takes the

following form:

1

ρi

[
∂

∂t
(αiρi) +∇ · (αiρivi) = Sαi

+
n∑
j=1

(ṁji − ṁij)

]
, (2.40)

where Sαi
is the source term, ṁij is the mass transfer from phase i to phase j

and ṁji is the mass transfer from phase j to phase i. For this study, there is no

production or transfer of mass between the phases. Hence, all these terms are set
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to zero. Since volume fractions sum to unity, one of the methods is to solve n − 1

equations for n − 1 phases. The primary phase volume fraction can be computed

from the constraint.

The transport equation for volume fraction is solved with the explicit scheme. The

conservative form of Equation (2.40) can be written as:

∫
V

∂αiρi
∂t

dV +

∮
αiρivi · dA =

∫
V

[
Sαi

+
n∑
j=1

(ṁji − ṁij)

]
dV, (2.41)

which can then be written in the discretized form as:

αp+1
i ρp+1

i − αpi ρ
p
i

∆t
V +

∑
f

(
ρiU

p
fα

p
i,f

)
=

[
Sαi

+
n∑
j=1

(ṁji − ṁij)

]
V, (2.42)

where p+ 1 is the index for the new time step, p is the index for the previous time

step, αi,f is the value of the ith volume fraction on the faces of the cell, V = is the

volume of the cell and Uf = is the volume flux through the face, based on normal

velocity.

2.6.2 The geometric reconstruction scheme

Standard interpolation schemes outlined in Section 2.5.2 are used to obtain face

fluxes whenever a cell is fully occupied by one phase. But when a cell is near the

interface between two phases, the geometric reconstruction scheme is used. This

scheme represents the interface between two phases assuming that the interface

has a linear slope (Figure 2.6) within each cell and uses this linear slope for the

computation of fluid advection through the faces.

The steps followed in this scheme are:

• Calculating the position of the linear interface relative to the centroid of each

partially filled cell based on the information about the volume fraction and

its derivatives.
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Figure 2.6: Interface calculation by the geometric reconstruction scheme.

• Calculating the advecting amount of fluid through each face using the com-

puted linear interface representation and velocity distribution on the face.

• Calculating the volume fraction in each cell by using the balance of mass

fluxes.

2.7 Discretization of the computational domain

The computational domain has to be discretized to form control volumes to which

the discretized form of the governing equations are applied. Discretization is per-

formed by using structured multi-block mesh. Mesh for filter array simulation is

shown in Figure 2.7, with the enlarged view showing computational cells at the

funnel constriction. The total number of cells for the single filter mesh is about

40000. While in the filter array mesh, the number of cells is about 2.5 times that

of a single filter.
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Figure 2.7: Mesh of the filter array computational domain.

2.8 Validation and verification

Results from numerical simulation need to be validated against experimental data.

The physical model and its solution procedure adopted in this study have been

validated against micropipette aspiration experimental data from Evans et al. [76].

They obtained the threshold pressure required to form initial hemispherical projec-

tions of blood granulocytes inside pipets. Based on a theoretical correlation, they

measured a cortical tension, σ= 0.035 mN/m in the cell cortex. The average cell

diameter was measured as 8.5 µm. They used pipettes with a diameter ranging from

2- 8 µm. 2D axisymmetric geometry was chosen to replicate the experimental con-

ditions. The cell was driven to the micropipette by setting a fixed flow rate at the

inlet. Threshold pressure was calculated by the procedure outlined in Section 4.2.

Threshold pressure, Pthreshold values for different pipet diameter is presented in Fig-

ure 2.8. The simulation results are found to be in agreement with the experimental

data. A slight discrepancy is found for the pipet with the smallest diameter.

To quantify the independence of the solution upon grid resolution, systematic testing

has been performed according to the method presented by Roach et al. [111, 112]

The procedure is also described by Khan et al. [113]. Three different grids were
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Figure 2.8: Comparison of threshold pressure required to deform a blood granu-
locyte.

Table 2.6: Number of cells for the grids used for grid convergence test.

Grid Number of cells
Grid 1 (fine) 73,396
Grid 2 (medium) 37,125
Grid 3 (coarse) 18,752

selected, having three different resolutions with a non-integer grid refinement ratio,

rg of 1.41. Table 2.6 gives the number of cells in each grid. The value of rg was

kept the same in both the r and x directions. The single filter case selected for the

test has rf = 4 µm, σ = 1.1 mN/m and D = 16 µm. The boundary conditions were

kept the same as described in Section 2.3. Inlet pressure history shown in Figure

2.9 (a) was compared between the three grids.

The solution order of accuracy is calculated from the pressure history using the

following equation:

p =
ln
(
f3−f2
f2−f1

)
ln (rg)

, (2.43)

where f3, f2 and f1 are inlet total pressure magnitude for grid 1, grid 2 and grid 3 at

different times, t. A grid convergence index, GCI is calculated based on generalized

Richardson extrapolation index for comparing discrete solution from two different
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(a)

(b)

Figure 2.9: (a) Inlet pressure history for grids of three different resolution, (b)
Calculated range of convergence.

grids. GCI is defined as,

GCIi,i+1 =
Fs|ε|
rpg − 1

(2.44)

where ε indicates the change in solution between two grids. ε is given by,

ε =
fi+1 − fi

fi
. (2.45)

Index i takes the values 1 or 2 for the three grids. Fs is a safety factor recommended

by Roach et al. [111, 112] Fs is set to be 1.25. GCI2,3 is calculated from the pressure

histories of grid 2 and grid 3. Similarly, GCI1,2 is calculated from grid 1 and grid

2. The values are used to calculate range of convergence (RC) which is defined by
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GCI2,3
rpgGCI1,2

. The range of convergence values at different times, t are shown in the

Figure 2.9 (b). Despite having some noises, the values are mostly close to the value

of the asymptotic range of convergence, unity. It is concluded that the solution is

independent of grid resolution, and grid 2 is used for all single filter calculations.

Grids for array simulations are also generated based on this single filter grid.



Chapter 3

CTC Isolation and Sorting by

Pressure Driven Flow

3.1 CTC passing phenomena in a filter funnel:

deformability analysis

To design a microfilter device for trapping circulating tumor cells (CTCs), it is

important to understand the fundamentals of cell deformation in a single filter. As

a cancer cell deforms during its passage through the filter, fluid dynamic variables

like pressure or flow rate change according to the deformed state of the cell. In this

section, CTC passing through a single conical filter under constant flow rate and

constant total pressure are described in detail. Similar descriptions are provided in

previous works [71, 73].

3.1.1 CTC deformation under constant flow rate

The pressure-deformability behavior for a CTC under constant flow rate is shown

in Figure 3.1. Before approaching the filter funnel the total inlet pressure, Pin is

constant. But as the cell approaches the filter funnel, it gets deformed, and Pin

starts to increase. This is because, before the cell gets deformed in the funnel,

43
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Pin is equal to the viscous pressure drop required to drive the flow through the

funnel. But as the cell starts to deform, more pressure is required in addition to

the viscous pressure drop. For constant inlet flow rate, Pin can be decomposed into

two components:

Pin = Pviscous + Pcortical-tension (3.1)

Initially, Pin is equal to Pviscous, which remains constant. But as the cell starts

deforming in the funnel from an undeformed state, Pcortical-tension changes from its

zero initial value. At the instant when Pin is maximum, cell frontal curvature is at

the minimum (inset (b) in Figure 3.1) and Pcortical-tension is also at the maximum.

As the cell continues to move through the funnel, Pin starts decreasing and drops

to a value below the initial value of Pin. This is because as the cell comes out of the

funnel, curvature at the back of the cell decreases to a minimum and Pcortical-tension

becomes negative (inset (c) in Figure 3.1). The cell rapidly draws its tail from the

funnel and after coming out of the filter funnel, it starts recovering to its undeformed

state. At this instant Pcortical-tension increases again towards zero. But a second

pressure peak can be seen just after the cell comes out of the funnel (inset (d) in

Figure 3.1). This happens because after rapidly drawing its tail out of the funnel

there is a recoil of the cell and the back portion of the cell flattens out. After this,

the cell recovers its undeformed state and Pcortical-tension becomes zero again. This

means Pin becomes equal to Pviscous (inset (e) in Figure 3.1).

3.1.2 CTC deformation in pressure driven flow

In contrast to Section 3.1.1, CTC passing under constant pressure is discussed here.

The ideas presented in the previous section are equally applicable here. In response

to a constant inlet total pressure Pin, the flow rate, Q varies as the cell deforms

through a funnel. The pressure deformability behavior is shown in Figure 3.2. In

the undeformed state, the flow rate is constant (inset (a) in Figure 3.2). We can

use Equation 3.1 here. But in this case Pin is constant. When Pcortical-tension changes
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Figure 3.1: Pressure-deformabilty behavior of a CTC passing through a single
conical microfilter. Insets a- e shows cell deformation states at various instants.

at different deformed state, Pviscous also has to change. This leads to a change in

flow rate. When Pcortical-tension increases, Pviscous decreases along with flow rate and

vice-versa. As the cell starts deforming in the filter funnel, Pcortical-tension increases,

and the flow rate, Q starts to decrease. Insets (b-d) in Figure 3.2 can be directly

contrasted with insets (b-d) in Figure 3.1. Here flow rate increases again to a peak

when the cell draws its tail from the filter funnel (inset (c)). The same recoiling

phenomenon can be seen here, which leads to a depression in flow rate (inset (d)).

For the constant flow rate case, the cell must pass through the funnel, and Pin

adjusts accordingly. Bu for pressure-driven flow, the applied inlet pressure may be

insufficient to deform the cell enough that it can pass through the funnel (insets

(e) and (f) in Figure 3.2). In such scenario, the cell reaches a maximum deformed

state under the given inlet pressure and Pin equals Pcortical-tension. This means Pviscous

becomes zero along with flow rate, Q. Without an increase in inlet pressure, the

cell is trapped in the funnel. This leads to the cell trapping phenomena in filter

funnels under pressure-driven flow.
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Figure 3.2: Flow rate-deformabilty behavior of a CTC passing through a single
conical microfilter. Insets a- f shows cell deformation states at various instants.

3.2 CTC trapping in a microfluidic filter array

A filter array is formed by connecting single filters in series with decreasing filter

pore radius, rf . Similar filter arrays were used by Aghaamoo et al. [73], but all the

filter funnels in their design had the same filter pore radius, rf . Pressure driven

flow is considered for two different values of inlet driving pressure, Pin, 100 Pa

and 300 Pa. The computational parameters are given in Section 2.1.5. For four

different combinations of cortical tension, σ and three different combinations of cell

diameter, D, 24 different cases were simulated. The 100 Pa cases were all simulated

for a physical time of 0.4 s, whereas the 300 Pa cases for 0.15 s. The flow rate and cell

position history for the case Pin = 100 Pa, σ = 0.2 mN/m and D = 16 µm is shown

in Figure 3.3(a). In contrast to [73], only forward driving pressure was considered.

Cell position is calculated by the axial position of the center of mass of the cell.

Due to symmetry, the radial position of the center of mass is zero. Cell volume

fractions at different instants are also presented to show cell physical position and

deformation. For the case shown in Figure 3.3, the cell passes through filters 1 and

2. The flow rate history and cell volume fraction show the typical characteristics

discussed in Section 3.1.2. But the 100 Pa inlet pressure is insufficient for the cell

to pass through filter 3. As a result, the cell gets trapped in the funnel as indicated
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by its constant position from just before t= 0.3 s. The flow rate, Q, also drops to

zero. The cell in its trapped position can be viewed in Figure 3.3(h).

In contrast to the previous case, the cell passes through all the filters for the case

shown in Figure 3.4. For this case, the inlet driving pressure is 300 Pa while the

other parameters are kept the same. This pressure is sufficient to deform the cell

enough so that it can pass through filter 3. Cell position keeps increasing as the

cell traverses the funnels. The same cell thus can be either trapped in a funnel or

can pass through the filter device depending upon the inlet pressure. Under 300

Pa cell deformation, cell recoil is quite significant (Figure 3.4(h)). The cell has a

higher velocity through the filter funnels under 300 Pa pressure and draws its tail

out of the funnel much more rapidly. This leads to significant deformation under

recoil. Filter 3 has much less volume within the funnel in comparison to filter 1 and

2. As a result, when passing through filter 3, the cell is highly deformed (Figure

3.4(h)). Also, comparing the similar states between 3.3 and 3.4, by the time there

is a trough in flow rate, Q, the cell has advanced further forward in the 300 Pa case.

Figures 3.5 and 3.6 show the cases for σ= 0.4 mN/m and D = 20 µm. This cell is

stiffer and larger than the previous two cases. Under 100 Pa inlet pressure, the cell

gets trapped in filter 2. But under 300 Pa pressure, it passes through all the filter

funnels. The difference with the previous case is that under 100 Pa pressure, the

cell gets trapped in filter2. Whereas the previous cell being softer and smaller, got

trapped in filter 3. Again, the cell is highly deformed in filter 3.

Figures 3.7 and 3.8 show the cases for σ= 1.1 mN/m and D = 16 µm. Thus the

cell is stiffer than the previous two cells. Under 100 Pa inlet pressure, the cell

gets trapped in filter 2 while under 300 Pa pressure, it gets trapped in filter 3. In

comparison to the previous cases, a higher value of cortical tension has resulted in

the cell being trapped earlier in funnels with larger values of rf . In the previous

cases, the cell did not get trapped under 300 Pa pressure. But in this case, the cell

gets trapped even at the higher of the two driving pressures. The stiffest cell so far

(σ= 2 mN/m) is showcased in Figures 3.9 and 3.10. But the cell is the smallest

one with D= 12 µm. Despite being the stiffest, the cell is trapped in filter 2 for
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100 Pa inlet pressure. As the filter pore radius, rf is 6 µm, the 12 µm diameter

cell can easily pass through filter 1 with very small changes in flow rate. For 300

Pa pressure, the cell gets trapped in filter 3. Despite being stiffer than the previous

two cases, this cell is also much smaller. Thus cell trapping pattern in funnels is the

same. This indicates cell size-dependent trapping along with cell cortical tension.

The rest of the Figures from 3.11 to 3.2 show cell position and flow rate history for

the remaining cases. For a few of the cases, the cell gets through all the funnels.

This occurs for softer cells. In other cases, cell trapping is achieved in different

funnels depending upon Pin, σ and D. A few of the largest or stiffest cells even get

trapped in filter 1.

Guo et al. [58] did an experimental study of Mouse Lymphoma Cell (MLC) motion

under oscillatory pressure in a funnel chain. The funnels had the same geometric

parameters with the pore size set at 6 µm. They observed cell displacement with

different pressure amplitude at a fixed frequency and different frequencies at a fixed

amplitude. Ratcheting motion was observed when the applied pressure surpassed

threshold pressure. When the applied pressure was not sufficient, cells were found

to be oscillating in the same confinement. On the other hand, in frequency studies,

the cells were confined when the frequency was too high. Higher frequencies did

not provide sufficient time to traverse a funnel. But higher frequencies enabled

cell movement through funnel constrictions. Aghaamoo et al. [73] computationally

studied cell motion and deformation through filter funnel array with same filter

pore size. Their study was similar to [58]. They reported rectified ratcheting in the

funnel array. But no cell trapping phenomena was reported. Confinement for cells

of different physical properties was also not reported.
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(a)

(b)

(c)

(d)

Figure 3.3: (a) flow rate and cell position history for the case: Pin = 100 Pa, σ =
0.2 mN/m and D = 16 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter. (cont.)
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(e)

(f)

(g)

(h)

Figure 3.3: (a) flow rate and cell position history for the case: Pin = 100 Pa, σ =
0.2 mN/m and D = 16 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter.
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(a)

(b)

(c)

(d)

Figure 3.4: (a) flow rate and cell position history for the case: Pin = 300 Pa, σ =
0.2 mN/m and D = 16 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter. (cont.)
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(e)

(f)

(g)

(h)

Figure 3.4: (a) flow rate and cell position history for the case: Pin = 300 Pa, σ =
0.2 mN/m and D = 16 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter.
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(a)

(b)

(c)

(d)

Figure 3.5: (a) flow rate and cell position history for the case: Pin = 100 Pa, σ =
0.4 mN/m and D = 20 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter. (cont.)
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(e)

(f)

(g)

(h)

Figure 3.5: (a) flow rate and cell position history for the case: Pin = 100 Pa, σ =
0.4 mN/m and D = 20 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter.
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(a)

(b)

(c)

(d)

Figure 3.6: (a) flow rate and cell position history for the case: Pin = 300 Pa, σ =
0.4 mN/m and D = 20 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter. (cont.)
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(e)

(f)

(g)

(h)

(i)

Figure 3.6: (a) flow rate and cell position history for the case: Pin = 300 Pa, σ =
0.4 mN/m and D = 20 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter.
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(a)

(b)

(c)

(d)

Figure 3.7: (a) flow rate and cell position history for the case: Pin = 100 Pa, σ =
1.1 mN/m and D = 16 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter. (cont.)
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(e)

(f)

(g)

(h)

Figure 3.7: (a) flow rate and cell position history for the case: Pin = 100 Pa, σ =
1.1 mN/m and D = 16 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter.
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(a)

(b)

(c)

(d)

Figure 3.8: (a) flow rate and cell position history for the case: Pin = 300 Pa, σ =
1.1 mN/m and D = 16 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter. (cont.)
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(e)

(f)

(g)

(h)

Figure 3.8: (a) flow rate and cell position history for the case: Pin = 300 Pa, σ =
1.1 mN/m and D = 16 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter.
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(a)

(b)

(c)

(d)

Figure 3.9: (a) flow rate and cell position history for the case: Pin = 100 Pa, σ =
2 mN/m and D = 12 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter. (cont.)



3.2 CTC trapping in a microfluidic filter array 62

(e)

(f)

(g)

(h)

Figure 3.9: (a) flow rate and cell position history for the case: Pin = 100 Pa, σ =
2 mN/m and D = 12 µm, (b)-(h) cell volume fraction showing cell position and
deformation at different times during passage through the filter.
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(a)

(b)

(c)

(d)

Figure 3.10: (a) flow rate and cell position history for the case: Pin = 300 Pa,
σ = 2 mN/m and D = 12 µm, (b)-(h) cell volume fraction showing cell position
and deformation at different times during passage through the filter. (cont.)
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(e)

(f)

(g)

(h)

Figure 3.10: (a) flow rate and cell position history for the case: Pin = 300 Pa,
σ = 2 mN/m and D = 12 µm, (b)-(h) cell volume fraction showing cell position
and deformation at different times during passage through the filter.
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(a)

(b)

(c)

Figure 3.11: (a) flow rate and cell position history for the case: Pin = 100 Pa,
σ = 0.2 mN/m and D = 12 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.12: (a) flow rate and cell position history for the case: Pin = 300 Pa,
σ = 0.2 mN/m and D = 12 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.13: (a) flow rate and cell position history for the case: Pin = 100 Pa,
σ = 0.2 mN/m and D = 20 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.14: (a) flow rate and cell position history for the case: Pin = 300 Pa,
σ = 0.2 mN/m and D = 20 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.15: (a) flow rate and cell position history for the case: Pin = 100 Pa,
σ = 0.4 mN/m and D = 12 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.16: (a) flow rate and cell position history for the case: Pin = 300 Pa,
σ = 0.4 mN/m and D = 12 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.17: (a) flow rate and cell position history for the case: Pin = 100 Pa,
σ = 0.4 mN/m and D = 16 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.18: (a) flow rate and cell position history for the case: Pin = 300 Pa,
σ = 0.4 mN/m and D = 16 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.



3.2 CTC trapping in a microfluidic filter array 73

(a)

(b)

(c)

Figure 3.19: (a) flow rate and cell position history for the case: Pin = 100 Pa,
σ = 1.1 mN/m and D = 12 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.20: (a) flow rate and cell position history for the case: Pin = 300 Pa,
σ = 1.1 mN/m and D = 12 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.21: (a) flow rate and cell position history for the case: Pin = 100 Pa,
σ = 1.1 mN/m and D = 20 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.22: (a) flow rate and cell position history for the case: Pin = 300 Pa,
σ = 1.1 mN/m and D = 20 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.23: (a) flow rate and cell position history for the case: Pin = 100 Pa,
σ = 2 mN/m and D = 16 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.24: (a) flow rate and cell position history for the case: Pin = 300 Pa,
σ = 2 mN/m and D = 16 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.25: (a) flow rate and cell position history for the case: Pin = 100 Pa,
σ = 2 mN/m and D = 20 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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(a)

(b)

(c)

Figure 3.26: (a) flow rate and cell position history for the case: Pin = 300 Pa,
σ = 2 mN/m and D = 20 µm, (b)-(c) cell volume fraction showing cell position
and deformation at the initial and final time.
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3.3 Quantification of cell deformation

To quantify cell deformation through the filters, the axial deformability index, ε is

defined as

ε =
ld
D
, (3.2)

where ld is the axial length of the cell under deformation and D is the cell diameter

(Figure 3.27). ε was calculated for the cases shown in Figures 3.3 to 3.10. Cell

entry and exit from the filter funnels and the intermediate points were considered

for calculating ε.

Figure 3.27: Deformed length,ld for quantifying cell deformation.

The results are summarized in Figure 3.28 which shows ε separately for the 100 Pa

and the 300 Pa cases. ε is 1 in the undeformed state. Cell deformation primarily

depends on the pore radius, rf of the filter funnel that a cell is passing through.

The filter with the lowest rf will produce the largest deformation. As a result, ε

increases as a cell passes through a funnel. After that, the cell recovers its shape,

and ε falls back to 1. Any residual value of ε greater than 1 at the end of the

simulation indicates cell trapping. And the higher values of ε indicate the cell being

trapped in a filter with a smaller rf . Trapped cells are not always in the maximum

deformed state. This is because, depending upon the cell property and the applied

pressure, the front of the trapped cell can be at the entrance of the filter funnel to

the exit. The more a cell enters into a funnel up to the exit, the more deformed it

gets. The final deformation and ε will, thus, depend on the final position within a

funnel. If a cell passes through all the funnels without getting trapped, it recovers

its shape, and ε goes back to 1.

From Figure 3.28 (a), the σ =0.2 case shows the most amount of deformation

(ε ≈ 2). This is because this cell gets trapped in filter 3, while the other cells
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get trapped in filter 2. Even amongst these two cases, a different amount of final

deformation is seen according to their final trapped position. The stiffer the cell, the

lower the final value of ε, indicating that stiffer cells get trapped early in a particular

funnel. For the 100 Pa case, cells with the same diameter, D = 16µm, show similar

amount of deformation in filter 1 (ε ≈ 1.25). But the largest cell, D = 20µm, shows

more deformation in the same filter (ε ≈ 1.5), indicating the larger cells have to go

through more deformation as they pass a filter funnel.

Under 300 Pa pressure, as shown in Figure 3.28 (b), filter 1 produces the same

amount of deformation for the two cases having the same value of D= 16 µm. But

for filter 2, which both cells passed through, the softer cell σ = 0.2 mN/m shows

more deformation (ε ≈ 1.8). The largest cell, D= 20 µm, shows more deformation

in this case too. Interestingly, a few cases show ε falling below 1. These are the

instants when there is cell recoil after passing through a funnel. The softest cell

σ = 0.2 mN/m has more deformation due to recoil than the other cases. The

deformation is also more pronounced compared to the 100 Pa case. For the same

cell physical properties, the maximum value of ε for the 300 Pa case is larger due

to the cell passing event, which deforms a cell more than a case where it is simply

trapped in a funnel. ε exceeds 2 for the cases where the cell traverses through filter

3, indicating the highly deformed nature of the cell during passage through the filter

funnels. The softest cells (σ= 0.2 and 0.4 mN/m) both pass through filter 3 and ε

reaches about 2.5. After full passage through the filter funnel, ε recovers to 1.
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(a)

(b)

Figure 3.28: (a) Axial deformation, ε history for different cases: (a) Pin = 100
Pa and (b) Pin = 300 Pa.

3.4 Cell sorting and trapping in filter array

The summary of the results of all the filter array simulation cases under pressure-

driven flow is shown in Figure 3.29. The results are shown separately for 100 and 300

Pa inlet pressure. Every point in the graphs indicates a cell with distinct physical

properties. A separate symbol is used to identify in which filter funnel the cell

has been trapped into or whether the cell passes all the filter funnels into the exit

chamber. For the 100 Pa case, none of the cells pass through to the exit chamber.

This means under 100 Pa driving pressure, all the cells under consideration will be

trapped. But how the cells are sorted in the filter funnels is strongly dependent



3.4 Cell sorting and trapping in filter array 84

upon cell cortical tension, σ. Stiffer cells get trapped in funnels with a higher value

of rf . While the softer cells can make it further forward towards the funnels with

smaller rf . There is also variation due to cell diameter, D where a softer but larger

cell (σ= 0.4 and 1.1 mN/m, D= 20 µm.) gets trapped. On the other hand, the 300

Pa cases also show sorting dependent on σ and D. But there is a clear distinction

with the previous case. The difference of 200 Pa between the two groups of pressure

is enough to make every cell jump to at least the next filter or the exit chamber.

Some of the cells can even jump 2 filter funnels.

(a)

(b)

Figure 3.29: Trapping and sorting of CTCs under (a) 100 Pa and (b) 300 Pa
driving pressure.
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The summary indicates that the cells can pass through to the exit chamber if the

applied pressure is sufficient. If not, then cells get trapped in a filter funnel. The cells

are sorted in the funnels according to their physical properties under consideration,

cortical tension, σ and cell size, D. The sorting pattern depends upon the applied

pressure. Different applied pressure results in a different collection of cells in the

filter funnels. This result provides proof that in addition to trapping, circulating

tumor cells can also be sorted in microfluidic filter arrays. And for a given geometry

of cells, the sorting range can be adjusted by changing the value of the applied

pressure. It is to be noted that higher resolution in sorted cell property can be

achieved in long filter arrays with gradual changes in the value of rf .

In the experimental work by McFaul et al. [61], two different types of cells (mouse

lymphoma cells (MLCs) and human peripheral blood mononuclear cells (PBMCs))

representing stiff and soft cells, were filtered through a microfluidic array device.

The cells had some variation in their respective diameter and cortical tension val-

ues. The objective of the experiment was to separate the two populations of cells.

This was achieved with a clear distinction between the average trapping funnel sizes

of the cells. But there was spreading in the trapping funnel size due to variation

in properties. This study considers variation in physical properties by a larger

magnitude. Thus physical property-based trapping and sorting can easily be distin-

guished. They also studied the effect of driving pressure. Higher driving pressure

resulted in the decrease of trapping funnel size, which is similar to the findings of

this study that at higher driving pressure, cells move to smaller filter funnels.



Chapter 4

Establishment of Filter

Characteristics from Threshold

CTC Passing Pressure

4.1 Pressure signatures for CTC passing through

a filter funnel

As discussed in Section 3.1.1, when a cancer cell passes through a filter funnel at a

constant flow rate, the inlet total pressure first increases as the cell gets deformed in

the filter. This increase in pressure is due to an increase in Pcortical-tension described in

equation 3.1. Thus, the threshold pressure required to ensure CTC passage through

a filter funnel can be calculated from the equation 3.1 by subtracting Pviscous from

the maximum value of total inlet pressure. As demonstrated in Section 3.2, if the

applied inlet pressure is not sufficient, the cell comes to rest in the deformed state,

unable to fully pass through the filter funnel. For this study, four different values of

cell cortical tension, σ, three different values of cell diameter, D and filter funnels

of three different pore radius, rf are considered. This constitutes 36 cases. For all

these cases, threshold passing pressure was determined through simulations at a

constant inlet flow rate. The flow rate, Q was set to 0.27 nL/s.

86
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Figure 4.1 shows the inlet total pressure signature for the case rf = 6 µm, σ =

0.2 mN/m and D = 16 µm. Cell deformation is shown by cell volume fraction

at different important instants. The pressure signature follows the trends shown in

Figure 3.1, where two pressure peaks are observed. The first peak is generated when

the cell front has passed the exit of the filter funnel with minimum curvature (Figure

4.1(d)). The second peak is generated when there is a recoil motion of the cell after

coming out of the funnel. The second peak, however, is after the cell has already

passed the filter funnel and thus has no significance in terms of the pressure required

to pass the filter. The value of the second pressure peak can, however, be larger

than the first, as shown in Figures 4.1(g). There is an oscillation in the pressure

signature after the cell passes the filter funnel (Figures 4.1(h-i)). This happens

because of the cell oscillation after the recoil motion. Three more cases have been

shown in details, in Figures 4.2 to 4.4. These cases encompasses all of the values

of σ, D and rf . Although the pressure signatures have the same general trend,

the exact shape varies from case to case depending upon cell physical properties

and filter pore radius rf . The initial value of Pviscous is dependent upon filter pore

radius, rf . Filters with smaller openings create larger hydraulic resistances, which

result in a larger pressure drop. The change in inlet total pressure, Pin due to cell

deformation is dependent upon the parameters considered, namely σ, D and rf .

Cell transit time through a funnel depends on rf and D. Since the inlet flow rate

was kept constant in all the cases, filter funnels with smaller rf have smaller cross-

sectional areas and thus produce higher velocities within the funnel. Higher velocity

leads to a faster passing of the cell through the filter, as can be inferred from Figures

4.1 and 4.3. However, larger cells take longer to complete the passage as they have

to traverse a longer distance from entry to complete exit from a filter funnel. This

can be observed from Figures 4.2 and 4.4.

There is a formation of a thin lubrication layer when the cell passes through the filter

funnel. Previous studies [72, 114] have shown that the film thickness is dependent

upon the viscosity ratio of the two phases and the capillary number, Ca by the

following relation:
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e

R
= F (λ,Ca) · Ca2/3, (4.1)

where e is the film thickness, R is the radius of the cylindrical channel considered

in the studies, F is a coefficient determined by the viscosity ratio, λ. The viscosity

ratio is one in all the cases considered in this study. The capillary number is defined

by,

Ca =
µU

σ
, (4.2)

where µ is the cell viscosity and U is the local velocity of the cell in the filter funnel.

µ was kept constant for all the cases. The inlet flow rate was also kept constant,

which means funnels with smaller rf have higher velocity U during cell passage. In

addition, softer cells have a smaller value of σ. This means that cases, where σ and

rf are small are the cases where the film thickness is going to be higher. Figures

4.1(e) and 4.2(e) show formation of the lubrication film along the funnel wall at

the exit. This two cases consider soft cells (σ= 0.2 and 0.4 mN/m) and for 4.2(a)

smallest value of rf . Figure 4.3 however, does not show any discernible formation

of lubrication layer. This case has a higher value of σ and thus a small value of

Ca. The next case is shown in Figure 4.4 however shows the formation of a thin

lubrication layer. Although this case considers the cell with the highest stiffness

(σ= 2 mN/m), pore radius rf is the smallest (rf= 2 µm). This results in higher

velocity at the filter funnel exit leading to a high value of Ca, which leads to the

formation of the thin layer.

The threshold pressure point in Figures 4.1- 4.4 (e) show variation in cell positions

within the funnel. Similar results were found by Zhang et al. [72]. They found

that a change in viscosity ratio, λ, not only brings a change in the thickness in the

lubrication layer but also a change in the cell position at the maximum pressure.

The pressure signatures for the rest of the cases considered are shown in Figures

4.5 to 4.12. Threshold pressure, Pthreshold have been calculated for all the cases, the

results of which are presented in the next section.
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(a)

(b)

(c)

(d)

Figure 4.1: (a) Inlet pressure signature for the case: rf = 6 µm, σ = 0.2 mN/m
and D = 16 µm, (b)-(i) cell volume fraction showing cell position and deformation
at different times during passage through the filter. (cont.)
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(e)

(f)

(g)

(h)

(i)

Figure 4.1: (a) Inlet pressure signature for the case: rf = 6 µm, σ = 0.2 mN/m
and D = 16 µm, (b)-(i) cell volume fraction showing cell position and deformation
at different times during passage through the filter.
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(a)

(b)

(c)

(d)

Figure 4.2: (a) Inlet pressure signature for the case: rf = 2 µm, σ = 0.4 mN/m
and D = 20 µm, (b)-(i) cell volume fraction showing cell position and deformation
at different times during passage through the filter. (cont.)



4.1 Pressure signatures for CTC passing through a filter funnel 92

(e)

(f)

(g)

(h)

(i)

Figure 4.2: (a) Inlet pressure signature for the case: rf = 2 µm, σ = 0.4 mN/m
and D = 20 µm, (b)-(i) cell volume fraction showing cell position and deformation
at different times during passage through the filter.



4.1 Pressure signatures for CTC passing through a filter funnel 93

(a)

(b)

(c)

(d)

Figure 4.3: (a) Inlet pressure signature for the case: rf = 4 µm, σ = 1.1 mN/m
and D = 16 µm, (b)-(i) cell volume fraction showing cell position and deformation
at different times during passage through the filter. (cont.)



4.1 Pressure signatures for CTC passing through a filter funnel 94

(e)

(f)

(g)

(h)

(i)

Figure 4.3: (a) Inlet pressure signature for the case: rf = 4 µm, σ = 1.1 mN/m
and D = 16 µm, (b)-(i) cell volume fraction showing cell position and deformation
at different times during passage through the filter.
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(a)

(b)

(c)

(d)

Figure 4.4: (a) Inlet pressure signature for the case: rf = 2 µm, σ = 2 mN/m and
D = 12 µm, (b)-(i) cell volume fraction showing cell position and deformation at
different times during passage through the filter. (cont.)
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(e)

(f)

(g)

(h)

(i)

Figure 4.4: (a) Inlet pressure signature for the case: rf = 2 µm, σ = 2 mN/m and
D = 12 µm, (b)-(i) cell volume fraction showing cell position and deformation at
different times during passage through the filter.
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(f) (g)

(h)

Figure 4.5: Inlet Pressure signature for the cases: rf = 2 µm and D = 12 µm,
(a) σ = 0.2 mN/m, (b) σ = 0.4 mN/m and (c) σ = 1.1 mN/m.
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(a) (b)

(c) (d)

Figure 4.6: Inlet Pressure signature for the cases: rf = 2 µm and D = 16 µm,
(a) σ = 0.2 mN/m, (b) σ = 0.4 mN/m, (c) σ = 1.1 mN/m and (d) σ = 2 mN/m.
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(a) (b)

(c)

Figure 4.7: Inlet Pressure signature for the cases: rf = 2 µm and D = 20 µm,
(a) σ = 0.2 mN/m, (b) σ = 1.1 mN/m and (c) σ = 2 mN/m.
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(a) (b)

(c) (d)

Figure 4.8: Inlet Pressure signature for the cases: rf = 4 µm and D = 12 µm,
(a) σ = 0.2 mN/m, (b) σ = 0.4 mN/m, (c) σ = 1.1 mN/m and (d) σ = 2 mN/m.
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(a) (b)

(c)

Figure 4.9: Inlet Pressure signature for the cases: rf = 4 µm and D = 16 µm,
(a) σ = 0.2 mN/m, (b) σ = 0.4 mN/m and (c) σ = 2 mN/m.
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(a) (b)

(c) (d)

Figure 4.10: Inlet Pressure signature for the cases: rf = 4 µm and D = 20 µm,
(a) σ = 0.2 mN/m, (b) σ = 0.4 mN/m, (c) σ = 1.1 mN/m and (d) σ = 2 mN/m.
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(a) (b)

(c)

Figure 4.11: Inlet Pressure signature for the cases: rf = 6 µm and D = 16 µm,
(a) σ = 0.4 mN/m, (b) σ = 1.1 mN/m and (c) σ = 2 mN/m.
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(a) (b)

(c) (d)

Figure 4.12: Inlet Pressure signature for the cases: rf = 6 µm and D = 20 µm,
(a) σ = 0.2 mN/m, (b) σ = 0.4 mN/m, (c) σ = 1.1 mN/m and (d) σ = 2 mN/m.
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4.2 Threshold pressure dependence on filter ge-

ometry and cell physical property

Total pressure signatures presented in the previous section have been used to cal-

culate threshold passing pressure Pthreshold using the equation 3.1:

Pthreshold = Pin − Pviscous (4.3)

Pin was taken from the first peak of the pressure signature and Pviscous was calculated

from the initial value of Pin when Pcortical-tension is zero. The results are summarized

in Figure 4.13. Pthreshold values are plotted against filter pore radius rf with each

group of bars showing variation of Pthreshold with σ for a fixed value of rf . The results

for cell diameter, D are shown in separate plots. Pthreshold has a strong dependence

on rf . Filter funnels with smaller pore radius force the CTCs to deform more.

This was also evident in deformation quantification presented in Section 3.3. As a

result of this deformation, the threshold pressure required to pass a smaller-sized

filter funnel is higher. The values of rf are linearly spaced. But the variation in

threshold pressure moving from a large funnel to a small funnel shows a big jump

for the smallest value of rf . This means smaller funnels produce a very large value

of threshold pressure. This is true for all the cell sizes. The case with rf = 6µm and

D = 12µm shows negligible amount of threshold pressure. This is because, D = 2rf ,

and thus, the cells should pass without any resistance. But the cells deform axially

as they pass through the filter exit. This causes them to slightly touch the filter

wall, resulting in a small value of threshold pressure.

Pthreshold also depends strongly on cell cortical tension, σ. For the same amount

of deformation, it requires more pressure for a stiffer cell to pass through a filter

pore of a given dimension. This is reflected in Figure 4.13. For a given value of rf ,

Pthreshold is higher for stiffer cells. Finally, cell diameter, D has a somewhat weaker

influence on Pthreshold, with larger cells of constant σ requiring more pressure to

pass a filter funnel of given pore radius, rf . But the change in threshold pressure

is much small compared to the other parameters. It is to be noted that the range



4.2 Threshold pressure dependence on filter geometry and cell physical property106

of σ considered in this study is much higher than the range of D. The stiffest cell

(σ= 2 mN/m) is 10 times stiffer than the softest cell (σ=0.2 mN/m). On the other

hand, the largest cell (D= 20 µm) is just about 1.5 times larger than the smallest

cell (D= 12 µm).

The method to obtain threshold pressure from pressure signature has been used in

many other previous studies. Zhang et al. [71] studied the effect of 3D constriction

geometry on CTC passing pressure. They considered two types of cells, differing

in cortical tension. Aghaamoo et al. [73] reported threshold forward and backward

passing pressure in a conical funnel for different funnel pore half angles. θ. They

set a fixed value for σ. Zhang et al. [72] studied the effect of viscosity ratio, λ on

CTC passing pressure at different inlet velocities. They found threshold pressure

to vary with viscosity ratio and flow rate. The flow rate was also shown to affect

CTC passing pressure in another study by Zhang et al. [102] At high flow rates, the

formation of lubrication layer, which depends on Ca and the change in the leading

edge curvature can lead to variation in maximum pressure. But the cortical tension,

σ values simulated in these studies are quite high (30- 50 mN/m). In comparison,

the highest value of σ used in this study is only 2 mN/m. The inlet flow rate, thus,

was selected to be low enough such that it resulted in a variation of Ca within the

range of 0.0014- 0.13. In contrast Zhang et al. [102] considered CTCs with Ca in

the range of 0.008- 2.
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(a)

(b)

(c)

Figure 4.13: Threshold pressure dependence on filter pore radius and cell cortical
tension for (a) D= 12 µm, (b) D= 16 µm and (c) D= 20 µm.
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4.3 Establishment of filter characteristics

The results presented in Figure 4.13 can be reorganized to show cortical tension, σ

against threshold pressure, Pthreshold. This is showcased in Figure 4.14. Each line

indicates a cell of a given diameter, D passing through a filter funnel of a given

pore radius, rf . Lines for smaller rf are shifted towards the right indicating higher

values of Pthreshold required to pass the filter funnel. Similarly, there are shifts in the

lines due to increases in D, with the shift being higher at the higher values of σ.

The objective of rearranging the threshold pressure data is to show that the σ-

Pthreshold graph is divided into regions by the lines indicating the same value of rf .

It will be easier to understand if only a cell for a given value of D is considered. For

example, D= 16 µm gives three lines (as does any other value of D) for funnels 1, 2,

and 3. The values on a given line give Pthreshold for a given value of σ. If the applied

pressure is larger than this value of Pthreshold, the cell will pass through the filter

funnel. If the value is less, then the cell will get trapped. Thus, for a given line,

the region at the right indicates cells passing through that filter funnel, whereas

the region at the left indicates cells getting trapped. Now, for a filter funnel array,

there will be as many lines as the number of filter funnels. Funnels with smaller

rf will have lines shifted right as they require higher pressure. If the funnels are

arranged such that the rf gradually decreases, a cell that passes a given funnel can

be trapped in the next funnel that has a smaller value of rf and thus a larger value

of Pthreshold. For each funnel, its characteristic line divides the σ-Pthreshold graph

into two regions: pass and no-pass. For the next funnel in the funnel array with a

smaller rf , the characteristic line sits at the pass zone of the previous funnel. The

region in between thus indicates cells getting trapped between the two funnels.

The entire σ-Pthreshold graph can be divided into multiple regions depending upon

the number of funnels. For this study, three filter funnels were considered for the

array. This means there are four regions: cells getting trapped in filter 1, between

filter 1 and 2 (indicated as filter 2), between filter 2 and 3 (indicated as filter 3),

and cells passing all the filter funnels to the exit chamber. The regions are shown

in Figure 4.15 for all the values of cell diameter, D. The red region indicates cells
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Figure 4.14: Threshold pressure dependence on cell cortical tension for different
pore radius and cell size.

getting trapped in filter 1, the blue in filter 2, and the green in filter 3. The white

region at the right indicates the exit chamber. The regions are shifted for an increase

in D. The array simulation cases are shown with symbols. It is apparent that the

cases are separated and thus sorted into different regions based on the applied inlet

pressure, Papplied, cell cortical tension, σ, and cell diameter, D.

The utility of the charts in 4.15 is in both operation and design of a filter device

for capturing cancer cells in a specific range of physical properties. It was shown in

the chapter 3 that CTC trapping and sorting in different filter funnels depend on

the applied pressure. This can be readily seen from Figure 4.15. A vertical line at

any pressure value intersects the region boundaries at different values of σ. These

values will give the ranges of cell cortical tension, which will get trapped in different

filter funnels. Taking another vertical line for a different applied pressure leads to

a different range of σ. It is to be remembered that this range will be shifted by a

change in cell diameter, D.

This study only considered three filter funnels. More funnels can be incorporated

in the device with a more gradual change in rf , giving a higher resolution of the

ranges of σ and D. For a given filter design, the chart gives ranges of CTC physical
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(a)

(b)

(c)

Figure 4.15: Filter characteristic chart for (a) D= 12 µm, (b) D= 16 µm, (c) D=
20 µm.
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properties for a given applied pressure. Cell viability after sorting [29] is important

for subsequent analysis and characterization of CTCs. Cells experiencing higher

pressure during deformation or trapping can lead to cell damage. This brings con-

straints on the applied pressure range that can be used. For such cases, for a given

range of applied pressure, filters can be designed based on the charts given in Figure

4.15, so that CTCs of particular ranges of physical properties can be trapped and

sorted.



Chapter 5

Conclusions

5.1 Summary

In the present work, motion and deformation of circulating tumor cells (CTCs)

in conical microfluidic filters were studied in order to demonstrate isolation and

sorting in a filter array device according to cell physical properties. Filter operating

characteristics were established from the threshold pressure required for a CTC to

pass a single filter funnel. Cell passing through the filters was modeled as a two-

phase flow while cell mechanical behavior was simulated by a Newtonian droplet

with constant cortical tension and viscosity. Numerical simulations were conducted

for different values of filter pore size and CTCs having a range of cortical tension

and diameter.

Trapping and isolation of CTCs were simulated by pressure-driven flow in a filter

array device consisting of funnels with progressively smaller pore radius. Two dif-

ferent inlet pressures were used to investigate the effect of driving pressure. The

cells were found to be trapped in different filter funnels. Cell trapping was demon-

strated by inlet flow rate and cell center of mass position history. In the trapped

phase, cell position became fixed, with the inlet flow rate decreasing to zero. The

specific funnel in which a cell got trapped depended on both cell size and cortical

tension. Smaller and softer cells were found to be trapped further forward in the

112
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funnel array device in progressively smaller-sized filter funnels. Whereas larger and

stiffer cells were trapped earlier in funnels with larger filter pore radius. This indi-

cates that these cells require more pressure to be able to deform and pass through

funnels. Thus, the cells were sorted in the filter funnels according to their physical

properties under study. The specific sorting pattern changed when the applied inlet

pressure was increased. The increased driving pressure enabled the cells to move

further forward towards smaller funnels. This means the ranges of physical proper-

ties of the sorted cells in specific filter funnels are dependent upon the inlet driving

pressure. Some softer cells were found to escape the funnel array device, indicating

that lower pressure is required to trap them in a funnel.

Cell deformation in filter funnels was quantified by using the cell axial deformation

index. The index is an indicator of cell elongation in the axial direction compared

to their original size. Axial deformation index history for several cases showed that

deformation depends primarily on the filter funnel a cell gets trapped in. Cells

traveling to smaller funnels undergo more deformation. For 300 Pa driving pres-

sure, the axial length of the deformed cells was found to be up to 2.5 times the

original diameter. The maximum value was about 2 for 100 Pa driving pressure.

As mentioned above, under higher driving pressure, cells can travel towards smaller

funnels and thus produce more deformation. For some cases, especially for 300 Pa

driving pressure, axial deformation was also found to be less than 1. This indicates

axial squeezing of the cells. The squeezing occurs when the cells recoil after coming

out of filter funnels.

Simulations at a constant inlet flow rate of 0.27 nL/s were performed to calculate

threshold passing pressure from inlet total pressure signatures. The threshold pres-

sure values were shown to be highly dependent on filter funnel pore radius and cell

cortical tension. Cell diameter also had an effect on the threshold passing pressure.

Threshold pressure was higher for smaller funnels indicating more deformation of

a CTC in a funnel. The jump in pressure between funnels of smaller pore size is

also higher. Similarly, threshold pressure was found to increase with cortical ten-

sion, indicating stiffer cells requiring more pressure to pass through a funnel. On

the other hand, larger cells also produced an increase in threshold pressure. But
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the difference was smaller compared to funnel pore radius and cortical tension for

the range of cell diameter studied. Based on the calculated threshold pressure val-

ues, the filter array device was characterized for operation at different inlet driving

pressures. The specific driving pressure was shown to sort cells in different funnels

according to a range in cell cortical tension. The range shifts a little for a cell of

different diameters. The physical property ranges for cell sorting were shown to

be dependent upon the inlet total pressure, which corroborates findings from filter

array simulations.

5.2 Contributions

The current study had the objective to explicate the dependence of circulating

tumor cell trapping patterns on physical properties in a microfluidic filter array

device. In addition, a method was to be established to predict how this trapping

pattern changes under different filter operating conditions.

The first part of this study revealed that CTCs could not only be detected but also

be sorted in a filter array device according to their size and cortical tension. CTC de-

tection and enumeration have great value in the early detection and treatment man-

agement of cancer. In addition, changes in deformability have also been reported to

indicate the metastatic potential of CTCs in some forms of cancer. Together, the

filter array device can facilitate detection and biomechanical characterization before

a further biological study is undertaken. Changes in sorting patterns under different

driving pressure gave clues to customization of device operational parameters for

targeted detection and sorting of CTCs within a predetermined physical property

range.

In the second part of this study, the filter array device was characterized by finding

the threshold pressure required for CTCs of different physical properties and filter

pore size. The device characterization confirmed the change in CTC sorting pattern

under different driving pressure. The characterization works as a predictive tool

that can lead to optimization in use by the selection of driving pressure for a filter
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of a given geometry. Driving pressure can be adjusted so that CTCs of a specific

physical property range can be trapped. A similar characterization process can

be performed for different filter geometric parameters before the construction of a

practical device. This will lead to optimization in design for detection of CTCs of a

particular physical property range. The physical property range can also be finely

resolved by using of more pores in the filter array. In addition, cell viability for

subsequent analysis can also be ensured in the design phase by the limitation of

pressure felt by a cell while passing through the filter pores.

In conclusion, The present work provides a method for both operation and design

of microfluidic filter array devices for trapping and sorting of CTCs having a range

of cortical tension and size.

5.3 Possible application of the filter array device

As discussed previously, practical microfluidic filter devices [51, 61, 62] with arrays

of funnels have been constructed to demonstrate the isolation of cancer cells from

peripheral blood. Guo et al. [59] measured cell physical properties using microfluidic

funnel constrictions. The present work combines these two types of studies to show

that a filter array device can both isolate and sort circulating tumor cells based on

their physical properties. For funnel geometry, conical funnels were selected for this

study. Patient blood samples can be collected and driven through the device under

pressure to trap CTCs (if any) in peripheral blood. Detection and enumeration of

CTCs in blood have been shown to have importance in early cancer detection and

treatment management. The trapped cells can be unclogged under reverse pressure

and collected for further study. In addition, the sorted cells in specific funnels reveal

information about their physical properties. Properties like deformability have been

shown to be an indicator of metastatic potential in some forms of cancer.
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5.4 Limitations and scope of future work

The CTC was modeled as a Newtonian droplet having a constant viscosity equal

to that of plasma. But there is experimental evidence that cancer cells are highly

viscous [93]. The effect of cell viscosity on CTC passing pressure has been studied

before [72]. This study only focuses on cell size and stiffness. Studies can be

performed by including cell viscosity as another physical property. The cell behavior

model in this study used surface tension to emulate cell cortical tension. This

model neglects any internal structure of the cell. But CTCs can have large nuclear

to cytoplasmic ratio [25] and the nucleus affects CTC deformation through micro-

constrictions [115]. Numerical studies incorporating cell nuclei in the cell behavior

model can be performed to predict the effect of the nucleus on cell deformability

in microfilters. The Newtonian droplet model is adequate for predicting pressure

and large cell deformation in microfilters [58]. For transient deformation behavior

of cells, viscoelastic or solid models can be used [95].

For the filter array device, only three filters were considered. Although three filters

were enough to demonstrate cell trapping and sorting in an array device, adding

more filters with a gradual change in filter pore diameter, rf will give better resolu-

tion in physical properties of the captured cells. The current work only considered

2D axisymmetric conical filters. A conclusion similar to this study can also be made

for three-dimensional filters. As discussed previously, cell viability after filtration

is important for further analysis and characterization of the captured cells, which

has been considered by a few previous studies [65, 67]. The stresses felt by a cell

during its passage through a micro-constriction can be used to study cell viability

by incorporating cell damage models. Adjustment to the applied inlet pressure or

filter geometry can be made based on cell viability studies.
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