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Abstract

Internet of things (IoT) with a cloud server has become popular nowadays
and it’s going to be used in almost every aspect of human life. All devices will
be connected to the internet and can communicate with each other where cloud
plays an import role in the IoT environment. However, often cloud-enabled IoT
environments have potential security risks and do not have multi-user support. In
this research, we discuss an IoT push messaging framework named CloudPush
framework consisting of a client application, IoT devices, and a cloud system.
In this framework, IoT devices can work on an ad hoc network and send event
notifications to the client applications through the cloud. We show that CloudPush
framework has vulnerabilities while maintaining multiple user accounts between a
client application and IoT device in the cloud. The client application can receive
unintended and unauthorized notification messages due to the lack of managing
multiple accounts properly in the cloud server. To ensure stability in this framework
while sending push notifications through the cloud by IoT devices, we discuss
potential vulnerabilities and their solutions in this research. We demonstrate that
the aggregated throughput of CloudPush framework is 12-15% better than IoTivity
framework even though IoTivity does not support multi-user for an IoT resource and
a client application. If IoT device’s events are sent to multiple client applications i.e.
events are distributed among client applications, then the throughput of CloudPush
framework increases to 12-25% compared with the IoTivity framework because
the CloudPush framework runs optimized searching algorithm in cloud and scales
event notifications in both cloud server and cloud push service layer. For a secured
multi-user support, notification message data is encrypted that makes the CloudPush
system 3-5% slower but still, it performs 9-12% better than the IoTivity framework.
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Chapter 1

Introduction

Many IoT platforms are being developed by giant companies like Apple, Intel, Cisco, Amazon,
Samsung, etc. One of the IoT platforms is IoTivity framework [1], an open source project
hosted by the Linux Foundation [2]. The IoTivity framework creates a standard by which IoT
resources and different client devices connect to each other through the internet. IoTivity server
updates resource state as an event and IoTivity client works as an observer to get notification
of a resource change through IoTivity cloud. However, cloud enabled IoTivity framework has
potential security risks and does not have multi-user support. Not only the IoTivity framework but
also Google Cloud platform [3], AWS IoT [4], Microsoft Azure IoT [5], Watson IoT platform [6]
etc. do not support multi-user feature. An IoTivity client cannot register a resource N times with
N number of accounts in IoTivity cloud.

1.1 Significance

In this thesis, we discuss an IoT push messaging framework with multi-user support and measure
its vulnerabilities and solutions. We name our system as CloudPush which delivers push
notifications to IoT devices smartly and reliably. CloudPush framework consists of a client
application, IoT devices and a cloud system. In a multi-user system, a client application can
have multiple user accounts and register with an IoT device with those accounts in cloud and
vice-versa.

A typical use case in an IoT environment is to notify a human user about an event or a certain
condition that occur. The user can receive the notification on an end device that we call
client application. It includes a user interface and the user can dismiss or acknowledge the
notification. It receives notification messages sent by IoT resources through cloud. Cloud sends
push notification using its push messaging service.

We have implemented client application in Android. Client application runs as a service in
the background of a device. Firstly, it registers firebase messaging service to receive remote

1
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messages sent by IoT devices. Client app service also updates refreshed token by extending
FirebaseInstanceIdService class. This token is used by FCM server to identify the client app
device for sending push messages. Client app sends account id and password to Amazon cloud
to verify given account id. Amazon cloud verifies account through account authentication server.
After completing account id verification, Amazon cloud sends success notification to the client
application device. Now client app is ready for easy setup with IoT devices. Client app starts easy
setup process with an IoT device. After successful wifi-provisioning and cloud-provisioning,
IoT device is successfully registered into the cloud and a new row is inserted in the DynamoDB
table that contains client device id, account id, authentication code, IoT device id, server-key
and token columns. Now the easy setup process is done. When IoT device generates an event
according to IoTivity specification, it notifies Amazon cloud that an event has been generated
from the IoT device. Then Amazon cloud sends push message to the client application through
FCM. If multiple client devices register or perform easy setup with the same IoT device then all
registered client devices will get push notification message.

In this research, we discuss some vulnerabilities that arise in the deployment of the CloudPush
framework while supporting multi-user feature. Client application receives unintended and
unauthorized notification messages through cloud from IoT device where user sensitive data can
get exposed. We solve these issues by tracking the current user information in the cloud server
and applying encryption in push notification message where the encryption key is generated
based on client device id and current user information. In a multi-user system, a notification
message triggered by an IoT device can be sent to client application multiple times if the same
IoT device registers with the same client account multiple times. We also solve this issue by
maintaining unique client application device ID in the cloud. Our solutions will work for all
event-triggered multi-user push messaging system like Bluetooth Low Energy (BLE) many to
many topology [7, 8], push messaging services, payment solutions, medical services etc.

1.2 Motivation

Usage of IoT devices is increasing day by day. As this system works with IoTivity and
security and privacy of accounts, it will resolve a novel security problem of controlling of
multiple accounts management for IoT devices using cloud server. Additionally, this system
will prevent user sensitive data to get exposed that can be used for hacking. IoT devices are
mainly working on ad hoc network. If it is connected to the internet and easily accessible
by service makers or other resource clients, more rich scenarios will be possible. Moreover,
Constrained Application Protocol (CoAP) is bi-directional RESTful protocol which is used for
controlling or being controlled by IoT based devices and easy to convert between CoAP and
HTTP [9, 10]. Lightweight CoAP based device can directly connect to public internet using
CoAP over TCP protocol. If CoAP over TCP protocol based cloud is available, many Open
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Figure 1.1: Multi-user Interaction with a Single Smartphone

Connectivity Foundation (OCF) based devices can connect to the internet.

1.2.1 Unavailability of simultaneous multi-user support in existing IoT
frameworks

Existing IoTivity, Google Cloud platform, AWS IoT, Microsoft Azure IoT, Watson IoT platform
etc. do not support simultaneous multi-user feature. In a multi-user system, an IoT device can be
controlled by multiple users.

Multi-user support

• A single client application: A client application can support multiple user accounts.
Many user accounts can be registered for a single IoT device in the mobile, client
application device. In Fig: 1.1, it shows that two user (user1 and user2) with a same smart
phone, are controlling an IoT device Robot vacuum cleaner (RVC). In the underdeveloped
or developing countries, many families can’t afford to buy more than one smart phone. In
this scenario, this feature will be really exciting.

• Multiple client applications: This system comprises of multiple smart phones (multiple
clients) with a single IoT device. In Fig: 1.2, it shows that one smart phone, client app1
maintains two user accounts(user1 and user2) and client app2 has one user account(user3).
All the users (user1, user2 and user3) are able to control a single IoT device. In this
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Figure 1.2: Multi-Device Multi-user Interaction with a Single IoT Device

scenario, all registered users including multiple smart phones can control the IoT device
(RVC).

Benefits

• A single IoT device can be operated with different combination of settings by multiple
user accounts.

• Multi-user support in the IoT platform is cost effective as a single IoT device can be
handled with so many options. In the underdeveloped or developing countries, this feature
is a perfect fit.

• Productive feature if it is possible to maintain the same or better performance than single
user and single IoT device environment.

1.2.2 Slow cloud response time of IoTivity Framework

IoTivity is an open source framework implementing OCF standards for the IoT software
developments. The framework operates as middleware across all operating systems and
connectivity platforms. It consists of four key components shown in figure: 1.3.
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Figure 1.3: IoTivity common object model.

1. Device and resource discovery.

2. Data transmission.

3. Device management.

4. Data management.

The IoTivity discovery component supports multiple discovery mechanisms for devices and
resources in proximately and remotely. IoTivity adopts the Constrained Application Protocol
(CoAP) defined by the Internet Engineering Task Force (IETF) as a data transmission protocol.
As CoAP is a lightweight alternative to Hypertext Transfer Protocol (HTTP), it can work with
HTTP by using intermediaries to translate between two protocols. While the data management
component supports the collection, storage and analytics of data from various devices, the
device management component aims to provide a one-stopshop that supports the configuration,
provisioning and diagnostics of devices in an IoT network.

IoTivity Cloud is an open-source platform that aims to extend accessibility of IoTivity devices.
The IoTivity Cloud supports techniques such as HTTP to CoAP proxy and OAuth2 over CoAP to
enable users to access their devices under their preference accounts over the cloud. Architecture
of the IoTivity Cloud is depicted in Fig. 1.4. The platform includes IoT controllers who own IoT
devices. To be widely used over the cloud, both controllers and devices must be registered to
the cloud first. The devices read sensory data of the physical world, and then send the data to
IoTivity cloud servers. Once the data have been published, IoT controllers can access them even
they are not co-located.



1.2. MOTIVATION 6

Figure 1.4: IoTivity Cloud architecture.

Most of IoTivity framework core components are developed in C and C++, but the IoTivity
Cloud is developed in Java. In the platform, servers are separated into two levels: IoTivity
Region Cloud (IRC) and IoTivity Global Cloud (IGC). IRC includes regional Cloud Interface
servers that accept connections from both IoT devices and IoT controllers, receive sensory data
and sends RESTful messages through connected pipelines to IGC. The IGC is the global cloud
that includes Message Queue, Resource Directory, and Account servers. The functionality of
each component is explained as follows:

Cloud Interface (CI):

A server acts as an interface of IGC. It is basically a proxy of Message Queue, Resource Directory,
and Account servers. Additionally, CI handles the server side OAuth2.0 handshake protocol and
the keep-alive messages from IoT devices to ensure the connectivity between the devices and



1.2. MOTIVATION 7

the cloud. Last but not least, CI relays handler such that IoT devices and IoT controllers can
communicate when they are connected to different regional clouds.

Resource Directory (RD):

A server supports device registration, discovery, updating, or deleting to IoTivity Cloud. It
deploys MongoDB to manage the database of IoT device information.

Account server:

A server supports third party OAuth2.0 enabled authentication providers like Google, Facebook,
and Github extending their users identity to IoTivity Cloud. After a user signs up to the Account
server, his/her information and a corresponding access token will be stored in a database.
Consequently, the user can register his/her devices to IoTivity Cloud for future use.

Message Queue (MQ):

A broker exposes an interface for clients to initiate a publish/subscribe interaction. The server
is built on the top of Apache Zookeeper [17] and Apache Kafka [18]. Apache Zookeeper is an
open source providing high performance coordination service for distributed applications. It is
mainly used to track status of nodes, content topics, and messages, stored in an Apache Kafka
cluster. Apache Kafka is a distributed publish/subscribe messaging system. It is written in Scala
programming language and designed for processing of real time activity stream data, e.g. logs
and metrics collections.

IoTivity client:

IoTivity client consists of IoT devices and IoT controllers. An IoTivity client handles the client
side OAuth2.0 handshake protocol and sends keep-alive messages to CI periodically. The client
is also able to send resource registration/discovery requests to the cloud.

Performance of IoTivity Framework

The testing results of IoTivity framework show that the CI can handle a load of 1000 IoT devices
simultaneously and the maximum throughput reaches 595406.2 (msg/sec). The maximum
throughput of the MQ is 4926.8 (msg/sec) which is much smaller than the throughput of the CI.
What can be learned from this is the overall throughput of the architecture is mainly depended
on the performance of the MQ. In addition, the throughput of the MQ drops significantly when
we introduce a large number of IoT controllers into the system.
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1.3 Contribution

1.3.1 Introduction of a smart new Cloud Push Notification Framework

We propose a smart new Cloud Push Notification Framework named CloudPush. This push
messaging framework supports communication among “multiple users (client devices) or multiple
accounts of a single user” with an IoT device. It consists of a client application, IoT devices
and cloud server. Multiple accounts support in a single client application user device for an IoT
device(s) feature is not available in the existing IoT platforms. That means an IoT device can be
controlled by creating multiple accounts in a single client device (for example a mobile phone)
in the CloudPush framework.

The purpose of CloudPush framework is to maintain a communication between IoT resources
and a user (client application device) where IoT resources inform a user if an event occurs at its
end through cloud servers. The user can also control an IoT device by sending proper instructions
like on, off, move left, move right etc. operations from a client application. IoT device operates
on both local networks (wifi, wifi-direct, bluetooth etc.) and remote network (through internet).

1.3.2 Cost effective solutions for controlling IoT devices

Multi-user support in the IoT platform is cost effective as a single IoT device can be handled
with so many options. CloudPush framework supports multi-user feature that is a perfect fit in
the underdeveloped or developing countries. User do not have to buy multiple smart devices
rather one single device is able to control several IoT devices with different attributes. Details of
multi-user feature is described in subsection 1.2.1.

1.3.3 An efficient and improved searching algorithm into the cloud
database

We apply optimized runtime searching algorithm in cloud that find any component from cloud
database in O(search key length) time complexity. In Cloudpush framework, search items can
be:

• Client DeviceID.

• Account ID.

• IoT DeviceID.

These three items are indexed in a search tree. A search tree structure is formed based on these
three search items. Leaf of the tree contains a object associated with the cloud table row. When
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an item is searched from the tree, it can easily retrieve the corresponding row of the cloud table.
It saves a significant amount of time while querying and improves throughput of CloudPush
framework.

1.3.4 Issues and Security measures of the CloudPush framework

IoT presents a variety of potential security risks that could be exploited to harm consumers by:

• Enabling unauthorized access and misuse of personal information.

• Facilitating attacks on other systems.

• Creating risks to personal safety.

While supporting multi-user feature in CloudPush, we observe some vulnerabilities that can leak
information to outsiders. Client application receives unintended and unauthorized notification
messages through cloud from IoT device. As a result, user sensitive data can be exposed by
others.

Vulnerability-1: Client device receives unauthorized message As CloudPush framework
supports multi-user feature, a single client application can use multiple accounts in its device.
For a client, only one account id is active at a time. Client application should receive only the
notification from IoT devices that are registered with this current account id. Other registered
accounts than current should not get notification message triggered by IoT devices. The issue is,
client app’s current log-in account id is not related to IoT devices but client app can still receive
messages from those IoT devices.

Vulnerability-2: Client application receives multiple notification messages instead of a
single message When a single client application device with multiple accounts register with a
single IoT device then corresponding multiple rows are inserted in cloud table. For multiple
accounts (multiple rows in cloud table) with single IoT device, a client application may get
multiple messages wrongly.

Vulnerability-3: Same client device ID exists in multiple rows in cloud table If Client app
and same IoT device register for multiple times in cloud somehow, then multiple cloud table’s
rows can be inserted. In this case, if an IoT device produces an error event then the client
application will be notified multiples time. It causes performance issue of the CloudPush
framework.

Solutions: The following solutions can also be effectively applied for other frameworks like
many-to-many topology, Bluetooth Mesh Network etc.

• We solve CloudPush framework vulnerabilities by encrypting notification message data
and implementing in cloud database layer by checking with currently active client account
id.
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• To prevent creating similar row multiple times, we have used unique ID instead of random
device ID. Every device has a unique id. In case of Android devices, “TelephonyManager”
class has an API “getDeviceId()” that provide unique device id.

• To prevent receiving multiple or unauthorized messages in client app for a single event
generated by IoT device, we have kept another column into the cloud table that will
maintain which one is current account. User can choose the current account in cloud table
or last login account will be the current account. Only current account related client device
will get message if relevant IoT device generates event.

• Another solution to prevent receiving multiple or unauthorized messages, we have removed
all other records related to client app device in cloud table except currently logged in
information row. Every time, client device login into cloud, it will create a new row
and remove other row with client device id if row with that client device id exists. This
approach will provide consistency. But each time sign-in into cloud, a new row will be
added and removed old row with client device id. Every time row insertion and deletion is
costly and time consuming operation.

1.3.5 Performance of the Cloudpush Framework compared to IoTivity

We validate our solution by setting up experimentation testbed consisting of a client application,
Amazon cloud, IoT devices and Firebase Cloud Messaging (FCM) [11], [12] system. We also
setup IoTivity framework from open source GitHub codes [13], [14] to produce same scenario
like our CloudPush framework source code of CloudPush is available at GitHub:
https://github.com/devSpala/CloudPush 1.

We compare the performance of CloudPush framework with IoTivity framework [1]. We
experiment with a different number of clients and IoT devices in our CloudPush framework
and IoTivity framework. We observe in the experiments that aggregated throughput is 12-15%
better in CloudPush framework than IoTivity framework for a single client application working
as a notification message receiver. The CloudPush framework performs even better 12-25%
than IoTivity framework if notification events are distributed among different number of client
application devices as we use separate cloud server and cloud push service layer that are scaled
up depending on number of events requested by IoT devices and number of client application
devices involved with the events during execution time and run optimized searching algorithm in
cloud server. Notification message is encrypted for a secured multi-user support but it makes
existing CloudPush framework with raw message 3-5% slower but performs 9-12% better than
IoTivity framework for a single client. If events are distributed among multiple clients than
performance improves about 9-23% than the IoTivity framework.

1source code of CloudPush is available at gitHub: https://github.com/devSpala/CloudPush

https://github.com/devSpala/CloudPush
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1.4 Organization

The organization of the rest of the thesis is as follows.

Chapter 2: Related Works This chapter includes a brief discussion of the previously proposed
push notification framework. Finally we also analyze the existing subset-coding technique
and its limitations for real world applications.

Chapter 3: The CloudPush Framework This chapter briefly describes the CloudPush
framework and its related terminologies.

Chapter 4: Implementation This chapter includes a brief discussion of the implementation of
the proposed model and workflow of the framework.

Chapter 5: Vulnerabilities of the Proposed Framework Vulnerabilities of the Proposed
Framework are described in this chapter.

Chapter 6: Solutions Solutions of the vulnerabilities of the Proposed Framework are described
in this chapter.

Chapter 7: Experimental Results and Discussion For evaluating the performance of our
proposed framework, we have conducted experiment on synthesized data and also made an
Android prototype for evaluating its feasibility in real world. This chapter briefly describes
the experimental setups and their results.

Chapter 8: Conclusion and Future Works This chapter concludes the thesis and presents
some future research direction.



Chapter 2

Related Works

We discuss performance evaluation of CloudPush framework, its vulnerabilities and their
solutions in this research. In this chapter, we describe CloudPush framework with existing
IoTivity platform, state-of-the-art with other IoT architectures, IoT security issues, Google Cloud
Messaging (GCM) [15] security problems etc.

2.1 IoTivity cloud performance

A number of significant technology changes have come together to enable the rise of the Internet
of Things. IoT is envisioned to contain billions of devices, including RFID devices, sensors,
smartphones, cars and so on, in the near future. To make variety of smart systems such as
smart city, smart health care, smart transportation and smart manufacture feasible in the IoT
environment, such devices are required to generate a large amount of data and communicate
together. There emerges the development of software frameworks to allow the heterogeneous
IoT devices to communicate and leverage common software applications.

IoTivity Cloud open-source platform has been developed based on the IoTivity framework. The
platform brings an opportunity to collect, analyze, and interpret a huge amount of data available
in the IoT environment. The processed data is then required to be available for a provision of
smart services to human beings. All these data should be acquired in real-time, stored for a
long period and analyzed in a proper way. To this end, they develop a high scalability and low
overhead monitoring platform. The monitoring platform will be designed in a way of collecting
any type of data into a cloud database by utilizing IoTivity Cloud. This feature opens many
opportunities for network operators to customize the monitoring system based on their demands
in target deployment area.

Most of IoTivity framework core components are developed in C and C++, but the IoTivity
Cloud is developed in Java. In the platform, servers are separated into two levels: IoTivity
Region Cloud (IRC) and IoTivity Global Cloud (IGC). IRC includes regional Cloud Interface

12
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servers that accept connections from both IoT devices and IoT controllers, receive sensory data
and sends RESTful messages through connected pipelines to IGC. The IGC is the global cloud
that includes Message Queue, Resource Directory, and Account servers.

In paper [16], evaluates the performance of IoTivity platform. The work in the paper is our
inspiration to evaluate the performance of the CloudPush framework and compare output with
IoTivity platform. In the experiment, it has used same cloud server for processing and delivering
push messages.

The testing results of IoTivity framework show that the CI can handle a load of 1000 IoT devices
simultaneously and the maximum throughput reaches 595406.2 (msg/sec). The maximum
throughput of the message queue (MQ) is 4926.8 (msg/sec) which is much smaller than the
throughput of the cloud interface (CI). What can be learned from this is the overall throughput of
the architecture is mainly depended on the performance of the MQ. In addition, the throughput of
the MQ drops significantly when it introduced a large number of IoT controllers into the system.

2.2 Security Hazards in Mobile Push-Messaging Services

Push messaging is a type of cloud services that help developers of mobile applications deliver
data to their apps running on their customers mobile devices. Such services are offered by almost
all major cloud providers. Prominent examples include Google Cloud Messaging (GCM), Apple
Push Notification Service and Amazon Device Messaging (ADM). Subscribers of the services
are popular apps (Android Device Manager, Facebook, Skype, Netflix, Oracle, ABC news, etc.)
on billions of mobile devices. Through those services, the developer can conveniently push
notification messages and even commands through apps, avoiding continuous probes initiated
from the app side, which are more resource-consuming. With the pervasiveness of the services
and the increasingly important information exchanged through them, which includes not only
private notifications but also security-critical commands.

In paper [17] found out push messaging security hazards:

• Hackers can steal sensitive messages from a target device by using push-messaging services
GCM and Amazon Device Messaging (ADM) and fully take control of the device.

• Cloud in between client device and push-messaging services make the whole system
security vulnerable.

• Weak cloud-side access control and extensive use of PendingIntent (Android) cause some
applications and system services like PayPal, Facebook, Skype, Google+, Android Device
Manager etc. vulnerable and leak out user sensitive data while communicating with those
apps.
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The problems were found to affect many popular apps, such as Facebook, Google Plus,
Skype and PayPal/Chase apps, bringing in serious security threats to billions of Android users.
Fundamentally, they come from questionable practices in developing those services, including
weak server-side authentication and access control, and the insecure use of the IPC channels and
PendingIntent. To mitigate those threats and help app developers protect their communication
over those services, they designed and implemented a new technique that establishes an end-to-
end secure channel on top of existing push-messaging services.

We also use cloud push service to send push message to client application. They have revealed
significant security flaws in push-messaging services that affect billions of mobile users. Hackers
can steal sensitive messages from a target device by using push-messaging services GCM and
Amazon Device Messaging (ADM) and fully take control of the device. Cloud in between
client device and push-messaging services make the whole system security vulnerable. They
figure out that weak cloud-side access control and extensive use of PendingIntent (Android)
cause some applications and system services like PayPal, Facebook, Skype, Google+, Android
Device Manager etc. vulnerable and leak out user sensitive data while communicating with
those apps. They solve the problem by restricted use of PendingIntent in Android application
and creation of refreshed GCM token in client side. We solve our system’s vulnerabilities by
encrypting notification message and handling cloud data properly so that other third party’s
injected malicious data in cloud cannot make our system vulnerable. Checking in database layer
makes our IoT system more secure. Security flows of GCM and traces of GCM flow in Android
applications help to prevent malicious activities as described in paper [18].

2.3 Existing network security protocols is not enough!

Many IoT projects are being developed nowadays and this technology is very affordable to
the general people. Researchers are involved in the activity of IoT development platforms and
researching on solving security issues of these platforms. Many domain-specific cloud-based
IoT systems relying on heterogeneous environment like hardware, network communication
protocols etc. are being proposed to develop here [19–25]. In papers [26, 27], applications
of the IoT technologies and cloud computing platforms are investigated and developed. They
propose IoT-based cloud manufacturing service system and its architecture. We also propose a
cloud-based IoT push notification messaging system in this paper. CloudPush framework is also
designed for working in heterogeneous environment with multi-user support.

There are many challenges facing the implementation of IoT. IoT security is not just device
security, as all elements need to be considered, including the device, cloud, mobile application,
network interfaces, software, use of encryption, use of the authentication and physical security.
The scale of IoT application services is large, covers different domains and involves multiple
ownership entities. There is a need for a trust framework to enable users of the system to
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have confidence that the information and services are being exchanged in a secure environment.
Moreover, IoT application security and end point security are the biggest concerns. Poorly
secured IoT devices and applications make IoT a potential target of cyber attacks. Application
developers or manufacturers that create IoT products are not mature from a security standpoint.
However, security is a critical dimension of every IoT design. Integrating security in IoT impacts
both hardware and software design from the beginning. The technologies to secure devices
and connectivity are changing very quickly. It is challenging; security is not just an add-on to
existing systems, but an integral part of them. The scope of security should be end-to-end to
support the device from the very beginning. Because many IoT devices are small with limited
processing, memory, and power capabilities and resources, most current security methods,
such as authentication, encryption, access control and auditing, are too complex to run on IoT
devices [28].

There are many security solutions available for a hybrid network of the Internet. Although IoT
is a hybrid network of the Internet, these security solutions cannot be directly used in the IoT
system. Hence new security solutions are described in these papers [29–33]. Deploying in
network layer security protocol named Datagram Transport Layer Security (DTLS) protocol is
very challenging in an IoT environment [34]. An IoT–Cloud collaboration system is proposed
where DTLS handshake delegation needs to apply. We authenticate account id while log-in to
the cloud and check unique client device id and unique IoT device id field while inserting or
searching into the cloud table and encrypt notification with a key. We solve our security issues
from application layer rather than network layer. There is no redundant checking of network
layer side in our IoT system. As network layer provides a generic security solution and data
communication is checked in every step of a system, so overall process slows down. Comparing
to network layer IoT solution, application layer solution in our system is faster.

2.4 Many-to-many topology: Bluetooth low energy mesh
networks

The Bluetooth mesh specification was released in July of 2017 with the goal of increasing the
range of Bluetooth networks and adding support for more industrial applications that utilize BLE.
With Bluetooth mesh [7], a new topology is introduced for BLE. Devices can now operate in
a many-to-many topology, or what’s called mesh, where devices can set up connections with
multiple other devices within the network [35].

Here’s an example of a mesh network in a home, fig: 2.1 that’s comprised of 6 light switches
and 9 light bulbs. The network utilizes the publish-subscribe method to allow nodes to send
messages to each other.

Nodes may subscribe to multiple addresses. An example of this is light #3 in the above figure,
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Figure 2.1: Publish-subscribe in Bluetooth mesh lighting control system

which is subscribed to both the kitchen and the dining room group addresses. Also, multiple
nodes may publish to the same address, such as switches #5 and #6 in this example. These two
switches control the same group of lights, located in the garden.

This is the power of our research where a switch and a light can have multiple attributes. It
is more than many-to-many topology. Different users can use the same switch with different
variants of the same light using our proposed multi-user supported system. For example, if user
A presses the switch #1 then light #1 will give blue color. If other users press the switch #1 then
light #1 will give red light. So our proposed system will work in any many-to-many topology
regardless of hardware or software layer.



Chapter 3

The CloudPush Framework

The purpose of our IoT push messaging framework is to maintain a communication between
IoT resources and a user (client application device) where IoT resources inform a user if an
event occurs at its end through cloud servers. The IoT push messaging framework supports
communication among “multiple users (client devices) or multiple accounts of a single user” with
an IoT device. It consists of a client application, IoT devices and cloud server. Multiple accounts
support in a single client application user device for an IoT device(s) feature is not available in
the existing IoT platforms. That means an IoT device can be controlled by creating multiple
accounts in a single client device (for example a mobile phone) in the CloudPush framework.
The overall process of our CloudPush IoT framework is shown in Fig. 3.1.

Firstly client application performs the following tasks:

• Log-in into the cloud with account id and password.

• Registers IoT devices in cloud.

• Receive notification message sent by IoT devices through cloud.

Cloud supports notification messaging to enable a client to be notified of desired states of one or
more resources (IoT devices) in an asynchronous manner. Cloud performs the following tasks:

• Completes account verification process and informs client application whether account
information is valid or not.

• Maintains cloud table and performs database CRUD (create, read, update, and delete)
operations.

• Passes push notification messages to cloud push service.

• Responses accordingly with the request of client applications and IoT devices.

17
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IoT device mainly generates events (notification messages) to inform corresponding client mobile
devices through cloud. Notification message parameters are:

• Unique identifier of the IoT device (UUID).

• Unique identifier of the Client.

• Timestamp.

• Key-value pairs of the message’s payload.

The user can also control an IoT device by sending proper instructions like on, off, move left,
move right etc. operations from a client application. IoT device operates on both local networks
(wifi, wifi-direct, bluetooth etc.) and remote network (through internet).

On the other hand in IoTivity platform, cloud servers are separated into two levels:

• IoTivity Region Cloud (IRC).

• IoTivity Global Cloud (IGC).

IRC includes regional Cloud Interface servers that accept connections from both IoT devices and
IoT controllers, receive sensory data and sends RESTful messages through connected pipelines
to IGC. The IGC is the global cloud that includes message queue, resource directory, and account
servers. IoTivity client consists of IoT devices and IoT controllers. It handles the client side
OAuth2.0 handshake protocol and sends keep-alive messages to cloud interface periodically. The
client is also able to send resource registration and observe events sent from the cloud thrown by
IoT devices.

3.1 Client application

Client app runs as a service in the background. It performs sign-in to cloud using own credentials
like Facebook and Google account, does easy setup with IoT device, inserts or updates rows in
Amazon cloud database, generates refreshed token and push notification message receiver and
identifies message type defined in IoTvity specification.

3.1.1 Send account information to cloud for authentication

Client app’s responsibility is to send account id, password and account type to Amazon cloud.
Then cloud verifies account information with the proper authentication server. The client app is
replied by cloud whether account login successful or not. After successful login, client app will
be able to receive push notification message sent by corresponding IoT devices and perform easy
setup with other IoT devices.
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Figure 3.1: CloudPush Framework

3.1.2 Push notification message receiver and refreshed token generation

In client app, we implement an android project to receive a push notification. Client app generates
a refresh token that will be used in FCM server part to send the push notification. A service
extending FirebaseInstanceIdService is used to access FCM token. For a single client application,
unique token is generated so that FCM server can send message directly to the client app. The
registration token may change when client app deletes instance ID or client app is restored on a
new device or user uninstalls/reinstalls client app or user clears app data in the client device. A
client app can receive basic push messages up to 4KB over the Firebase Cloud Messaging APNs
interface.

3.2 IoT devices

IoT devices are an outcome of combining the worlds of information technology (IT) and
operational technology (OT). Many IoT devices are the result of the convergence of cloud
computing, mobile computing, embedded systems, big data, low-price hardware, and other
technological advances. IoT devices can provide computing functionality, data storage, and
network connectivity for equipment that previously lacked them, enabling new efficiencies and
technological capabilities for the equipment, such as remote access for monitoring, configuration,
and troubleshooting. IoT can also add the abilities to analyze data about the physical world and
use the results to better inform decision making, alter the physical environment, and anticipate
future events.

IoT devices are often called “smart” devices because they have sensors and complex data analysis
programs (analytics). IoT devices collect data using sensors and offer services to the user based
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on the analyses of the data and according to user-defined parameters. For example, a smart
refrigerator uses sensors (e.g., cameras) to inventory stored items and can alert the user when
items run low based on image recognition analyses. Sophisticated IoT devices can “learn” by
recognizing patterns in user preferences and historical use data. An IoT device can become
“smarter” as its program adjusts to improve its prediction capability so as to enhance user
experiences or utility.

IoT devices are connected to the internet: directly; through another IoT device; or both. Network
connections are used for sharing information and interacting with users. The IoT creates linkages
and connections between physical devices by incorporating software applications. IoT devices
can enable users to access information or control devices from anywhere using a variety of
internet-connected devices. For example, a smart doorbell and lock may allow a user to see and
interact with the person at the door and unlock the door from anywhere using a smartphone.

IoT devices include:

• Automated devices which remotely or automatically adjust lighting or HVAC

• Security systems, such as security alarms or Wi-Fi cameras, including video monitors used
in nursery and daycare settings

• Medical devices, such as wireless heart monitors or insulin dispensers

• Thermostats

• Wearables, such as fitness devices

• Lighting modules which activate or deactivate lights

• Smart appliances, such as smart refrigerators and TVs

• Office equipment, such as printers

• Entertainment devices to control music or television from a mobile device

• Fuel monitoring systems.

An IoT device that needs to be configured to join user’s device network. It typically has limited
CPU, memory, and power resources, so- called “constrained devices”. It is often used as
sensors/actuators, smart objects, or smart devices. IoT technologies allow everyday objects
including small devices in sensor networks to be capable of connecting to the Internet. IoT
devices will request cloud to send its event to client app using amazon cloud through fcm. Every
IoT device has universal uid that is a unique identity for an IoT device.

In this CloudPush framework, IoT devices will generate events that are defined in IoTivity
spec. so that it works in a heterogeneous environment. All IoT device’s generated events are
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recognized in IoT ecosystem. Suppose, an IoT device, Robot Vacuum Cleaner(RVC) is cleaning
a room. After cleaning is completed, RVC sends a push notification to client application so that
user gets notified. RVC has other event types too like its battery charge level is too low, inside of
its desk full of dust etc. So all events of RVC must be recognized by the client application to
propagate exact information to the user.

3.2.1 IoT event specifications

A standard notification message format is needed to be defined because there are varieties of IoT
devices exist in an IoT ecosystem. As different IoT devices behave differently, Open Connectivity
Foundation (OCF) developed standard event specifications [36] and other technology companies
will follow these OCF standards. Suppose, Fridge, an IoT device’s door is opened and it needs to
notify client application (user). In this case, the fridge will need a standard messaging format so
that client application understands the message and render properly in the display. On the other
hand, IoT device also needs to understand client’s requested message to execute its operation.
Fridge device has door open or close operation but vacuum cleaner has turn left right operation.
So instruction set will vary among devices to devices. We use JSON data format while sending
request between a client application and IoT device via the cloud. An example is given below:

URI:/notification/message

{

"rt": "x.notification.message",

"clientid": "cid",

"providerid": "uuid",

"cloudid": "aid",

"from": "Fridge",

"to:" "Client",

"messageData": [

{

"messageid": 1234,

"type": "Home Appliance",

"Source": "Fridge",

"title": "Door opened",

"contenttext": "Front door opened",

"time": "2017-10-13 11:22",

"ttl": 30,

"type": 1 (EVENT)

}

]}
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3.3 Easy setup with IoT device

When an IoT device is shipped to the end consumers, it’s required to configured to the system.A
consumer would expect the following logical steps to configure the IoT device:

• Install client application in the mobile device.

• Power on the IoT device.

• Client application recognizes the IoT device and perform an easy setup.

3.3.1 Challenges and Solutions

IoT device can’t connect to Wi-Fi network at home

In order to perform easy setup, an IoT device needs to connect to the internet. An IoT device
generally gets access to a Wi-Fi network through the client application.The first step in the
setup is logically involved providing the home Wi-Fi network and the password. The IoT device
is shipped to host an hotspot with a known service set identifier(SSID) name. The client app
connects to the IoT device and informs it about the wifi network and cloud information. Once
the network settings are available, the IoT device can join the home Wi-Fi network. Then it
can communicate with the cloud and complete the easy setup process. It can fall back to be an
hot-spot if the credentials are invalid or has other connectivity issues.

IoT device discovery

Normally the client application needs to know the IP address to establish the communication
with the IoT device. Conversely, the IoT device can’t connect to the client app because it does
not know the IP address of it or the phone or client device IP address could have changed. In this
case, the solution is the IoT device joins the home Wi-Fi network registered itself to a registry
server using a well defined HTTP POST request with the following Parameters:

• MAC address.

• IP address.

The Client can query to get the IP address using HTTP GET request that returns:

• IP address.

• TTL (Time to Live)
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Figure 3.2: Easy setup work flow

The IP address of the IoT device itself is not a publicly visible IP address but private address
that is only valid in the local Wi-Fi network. The session mapping of public IP address to the
private address is done automatically by the local router using the NAT protocol. The client app
manages its own MAC address to IP address table and uses TTL values to intelligently query to
get the IP address. Figure 3.2, client app is named as Mediator, IoT device as Enrollee and home
AP as Enroller in an IoT system.

After completing successful account authentication, easy setup process starts for the very first
time between client application and unboxed IoT device. Client app connects to the unboxed
IoT device using a Soft AP network or BT/BLE connection. On the other hand, client app is
also connected to the Home router or Home AP that provides public internet. Now client app
transfers Home router or Home AP and other information such as Service Set Identifier(SSID),
password, security type of Home AP to the unboxed IoT device. Unboxed IoT device connects
to Home AP using this information. Client app also transfers cloud access information to the IoT
device via Home AP network. Then unboxed IoT device registers to our Amazon cloud and lets
client app know that cloud registration is successful. A new entry is added to the cloud table
containing IoT device id, client device id, account id, server key, FCM refreshed token etc. after
easy setup phase.
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Figure 3.3: Account authorization

3.4 Private cloud: Amazon Web Services

3.4.1 Account authorization

At first, client app sends account id, password and account type to Amazon cloud. Then Amazon
cloud verifies the account information provided by client app with proper account authorization
server. Amazon cloud verifies whether provided account information is valid or not. Account
authorization server can be Google, Yahoo, Samsung servers etc. Amazon cloud implements
only the business layer of account authorization. It returns to client success if provided account
is valid or failure otherwise. Account authorization sequence flow is shown in Figure 3.3.

After giving the permission to retrieve an access token on behalf of the end user, Amazon
cloud by Authorization server, cloud request for access token. Access token is a long string of
characters that serves as a credential used to access protected resources. Account registration
is successful if authorization server response with a token. This process runs every time, client
app login into amazon cloud. This will ensure cloud security so that no 3rd party app or bot can
request to the cloud to hack the system. Only valid app id can request to the cloud.

3.4.2 Push notification message sending logic

We have used Firebase Cloud Messaging (FCM) in our CloudPush framework. FCM is an
extremely powerful and simple to use product by Google for sending messages and notifications.
It is part of a huge growing ecosystem of integrated tools that is called Firebase. It offers a
powerful console, a ready-made integration with a host of other tools such as A/B Testing and
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Predictions. It does not offer specific features for the management of users who share the same
device and log in and log out of it and for those who at the same time want to receive their own
notifications and decide what types of content to receive through them. A typical implementation
of Firebase Cloud Messaging system will include an app server that interacts with FCM either
using HTTP or XMPP protocol and a client app. Messages and notifications can be sent to the
client app using the app server or the Firebase notifications console. It works on the principle of
down streaming messages from FCM servers to client’s app and upstream messages from client
apps to FCM servers. In our framework, IoT device informs cloud that an event has occurred.
After that cloud server sends the push message to the corresponding client application devices
who register the FCM callback.

3.4.3 Amazon cloud DynamoDB operations

Amazon DynamoDB seamlessly scales a single table over hundreds of servers. It has no limit
to the amount of data user can store in its table [37–39]. Our IoT system performs insert
operation after easy setup phase and scans cloud table when data communication between client
applications and IoT devices are needed via the cloud.

We have used Amazon cloud as private cloud. Amazon Web Service(AWS) is a cloud computing
platform that enables user to access on demand computing services like database storage, virtual
cloud server, etc. And AWS Lambda lets user run code without provisioning or managing servers.
There are many services that AWS provides. We mainly used two services of AWS to implement
our cloud framework. We upload some logic(code) into cloud and AWS Lambda takes care of
everything required to run and scale the code with high availability. Amazon DynamoDB is
a fully managed NoSQL database service that provides fast and predictable performance with
seamless scalability. DynamoDB lets user offload the administrative burdens of operating and
scaling a distributed database, so that user doesn’t have to worry about hardware provisioning,
setup and configuration, replication, software patching, or cluster scaling. We have performed
amazon dynamoDB for create, update, read, write, scan/query etc. into the table.

After finishing easy setup procedure, client app will insert a row in amazon cloud table. There is
no limit to the amount of data user can store in an Amazon DynamoDB table, and the service
automatically allocates more storage, as user store more data using the Amazon DynamoDB
write APIs. Amazon DynamoDB scales horizontally and seamlessly scales a single table over
hundreds of servers. Scaling of dynamodb depends on two dimensions, throughput and size of
the data. Any number of items can be added to a table where maximum item size is 400KB. So
scaling is achieved through partitioning. Throughput is provisioned at the table level. Write
capacity units (WCUs) are measured in 1 KB per second and read capacity units (RCUs) are
measured in 4 KB per second. RCUs measure strictly consistent reads and eventually consistent
reads cost 1/2 of consistent reads. Read and write throughput limits are independent [38].
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Figure 3.4: Built-in burst capacity

As IoT devices are increasing rapidly, we have used amazon dynamoDB that will support
unlimited number of rows. For determine performance issue properly, we perform partitioning
math below.

Table 3.1: Partitioning math

Number of partitions
By Capacity (Total RCU/3000)+(Total WCU/1000)

By Size Total Size/10 GB
Total Partitions CEILING(MAX(Capacity, Size))

Table 3.2: Partitioning Example:
Total size = 8GB, RCUs=5000, WCUs=500

Number of partitions
By Capacity (5000/3000)+(500/1000)=2.17

By Size 8/10 = 0.8
Total Partitions CEILING(MAX(2.17, 0.8))=3

RCUs and WCUs are uniformly spread across partitions.

RCUs per partition = 5000/3 = 1666.67

WCUs per partition = 500/3 = 166.67

Data/partition = 10/3 = 3.33 GB

According to DynamoDB developer guide, “To get the most out of DynamoDB throughput,
create tables where the hash key element has a large number of distinct values, and values are
requested fairly uniformly, as randomly as possible.” DynamoDB saves 300 seconds of unused
capacity per partition to handle bursts. This is used when a partition runs out of provisioned
throughput due to bursts and provided excess capacity that is available at the node.
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Figure 3.5: Insufficient burst capacity

If sustained throughput goes beyond provisioned throughput per partition caused throttling, Fig:
[3.4 , 3.5].

Suppose a table is created with 5000 RCUs, 500 WCUs

RCUs per partition = 1666.67

WCUs per partition = 166.67

If sustained throughput is greater than (1666 RCUs or 166 WCUs) per key or partition,
DynamoDB may throttle requests. Solution of this problem is to increase provisioned throughput.

3.5 Algorithms

CloudPush framework initialization algorithm is described in 1. Initially client application
logs-in to the cloud with a token given by account authentication server. It helps IoT device by
providing information about cloud and a new row is inserted in the cloud table for the first time
when client application, IoT device and cloud are connected with each other. After that client
registers cloud push service to receive any events or state change from the IoT device.

In algorithm 2, when an IoT device state is changed or event is triggered, cloud gets notified
and scans cloud table. It retrieves a list of events associated with the IoT device id. Then cloud
push service scans for corresponding client list to send notifications to clients. After that clients
receive and process the push notification messages.
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Algorithm 1 CloudPush Framework Initialization
if token = null then
token← Cloud.GetToken(AccountID, Password)

end if
Client.LoginCloud(token)
if IoT Device is registered in cloud then

Connect(IoTDevice, Cloud)
else

Client.Send(IoTDevice, CloudInformation)
Connect(IoTDevice, Cloud)
Cloud.AddToCloudTable(IoTDevice, ClientInformation)
Cloud.RegisterPushService(CloudPushService)

end if

Algorithm 2 Event Triggered By IoT Device
Cloud:
while eventTriggered in Cloud do
eventList← Cloud.search(CloudTable, IoTDeviceID)
Cloud.Send(CloudPushService, eventList)
ClientList← CloudPushService.Search(eventList)
while ClientList is not empty do

CloudPushService.Send(Client, clientEventList)
end while

end while

Client Application:
while waitingForPushMessage do
message← CloudPushService.getPushMessage()
Client.Process(message)

end while
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Figure 3.6: Diff CloudPush Iotivity

3.6 Difference between CloudPush And IoTivity notification
framework

Difference between the CloudPush And IoTivity notification framework is shown in Fig: 3.6.
It clearly depicts that the CloudPush framework supports communication among ”multiple
users (client devices) or multiple accounts of a single user” with an IoT device where IoTivity
framework doesn’t.



Chapter 4

Implementation

In our CloudPush framwork, client application runs as a service. It registers firebase messaging
service to receive remote messages sent by IoT devices. Client app service also updates refreshed
token by extending FirebaseInstanceIdService class. This token is used by FCM server to identify
the client app device for sending push messages. Client app now sends account id and password to
amazon cloud to verify account id. Amazon cloud verifies account through account authentication
server. After completed verification account, amazon cloud sends success notification to client
app. Now client app is ready for easy setup. Client app starts easy setup process with IoT device.
After successful wifi-provisioning and cloud-provisioning, IoT device is successfully registered
into the cloud and a new row is inserted in the dynamodb table that contains client device id,
account id, authentication code, IoT device id, web-key and token columns. Now the setup is
done. If IoT device generates an event according to iotivity specification, it notifies amazon
cloud that an event is generated from the IoT device. Inside dynamodb table, specific IoT device
related entries are searched. As FCM server logic is implemented inside amazon cloud, then it
requests for push notification to FCM server. FCM server then sends the push notification to
client app. If N number of rows of the IoT devices are found, then N times FCM notifications
are sent to client app through firebase cloud messaging service.

4.1 Client application

Client app runs as a service in the background. It performs sign-in to cloud using own credentials
like Facebook and Google account, does easy setup with IoT device, inserts or updates rows in
Amazon cloud database, generates refreshed token and push notification message receiver and
identifies message type defined in IoTvity specification.

It registers Firebase Cloud Messaging (FCM) client part to receive push notification from IoT
devices. Then client app sign-up to amazon cloud using their own credential like Facebook or
Google Account. Amazon cloud will verify through proper authentication servers. For example,

30
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client app sign-up google account using OAuth 2.0 where amazon cloud will verify token to
make sure valid sign-in. After successful cloud sign up process, client app will start easy setup
process with corresponding IoT device. When easy setup process is completed then client app
will add a row inside amazon cloud table with deviceID, Account, Authentication code, IoT
device ID, FCM Web key and FCM token. After IoT devices are connected to cloud through
internet and ready for receiving command. Even if user is not at home, he can control things
using 3G network. If things working as Hub, it also delegates local device to cloud.

4.1.1 Send account information to cloud for authentication

Client app’s responsibility is to send account id, password and account type to Amazon cloud.
Then cloud verifies account information with the proper authentication server. The client app is
replied by cloud whether account login successful or not. After successful login, client app will
be able to receive push notification message sent by corresponding IoT devices and perform easy
setup with other IoT devices.

4.1.2 Push notification message receiver and refreshed token generation

Logic for refreshed token and push message receiving APIs is shown in algorithm 3

Algorithm 3 Push notification handling and refresh token access
Push notification receive:
Receive RemoteMessage from the push server
if RemoteMessagesize > 0 then

Process push notification message by Client device
end if
Refresh token:
if Refreshtokenisexpired then

Request MyFirebaseInstanceIDService instance to get the refresh token from push
server.
refreshedToken← FirebaseInstanceId.getToken()

end if

In client app, we implement an android project to receive a push notification. Push notification
message attributes are converted into JSON string. Then the JSON string is passed and processed
in the communication channel is shown in algorithm 4.

Client app generates a refresh token that will be used in FCM server part to send the push
notification. A service extending FirebaseInstanceIdService is used to access FCM token. For a
single client application, unique token is generated so that FCM server can send message directly
to the client app. The registration token may change when client app deletes instance ID or client
app is restored on a new device or user uninstalls/reinstalls client app or user clears app data in
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Algorithm 4 JSON conversion from push message
Instantiate parent JSON object
Create and add every notification attribute into its own json objects
Add notification object to parent
Add request attributes to parent
if Multicast Collection is not empty then

Create and add all targets to the JSON array
Add targets to parent.

end if

the client device. A client app can receive basic push messages up to 4KB over the Firebase
Cloud Messaging APNs interface.

4.2 IoT devices

IoT devices will generate events that are defined in IoTivity spec. so that it works in a
heterogeneous environment. All IoT device’s generated events are recognized in IoT ecosystem.
Suppose, an IoT device, Robot Vacuum Cleaner(RVC) is cleaning a room. After cleaning is
completed, RVC sends a push notification to client application so that user gets notified. RVC
has other event types too like its battery charge level is too low, inside of its desk full of dust etc.
So all events of RVC must be recognized by the client application to propagate exact information
to the user.

4.2.1 IoT event specifications

A standard notification message format is needed to be defined because there are varieties of IoT
devices exist in an IoT ecosystem. As different IoT devices behave differently, Open Connectivity
Foundation (OCF) developed standard event specifications [36] and other technology companies
will follow these OCF standards. Suppose, Fridge, an IoT device’s door is opened and it needs to
notify client application (user). In this case, the fridge will need a standard messaging format so
that client application understands the message and render properly in the display. On the other
hand, IoT device also needs to understand client’s requested message to execute its operation.
Fridge device has door open or close operation but vacuum cleaner has turn left right operation.
So instruction set will vary among devices to devices. We use JSON data format while sending
request between a client application and IoT device via the cloud. An example is given below:

1 URI:/notification/message

2 {

3 "rt": "x.notification.message",

4 "clientid": "cid",
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5 "providerid": "uuid",

6 "cloudid": "aid",

7 "from": "Fridge",

8 "to:" "Client",

9 "messageData": [

10 {

11 "messageid": 1234,

12 "type": "Home Appliance",

13 "Source": "Fridge",

14 "title": "Door opened",

15 "contenttext": "Front door opened",

16 "time": "2017-10-13 11:22",

17 "ttl": 30,

18 "type": 1 (EVENT)

19 }

20 ]

21 }

4.2.2 Virtual IoT Device

We implement virtual IoT device to generate an event that is sent to cloud and the cloud requests
the message to the corresponding client application device through FCM server. Virtual IoT
device is nothing but an Android application that trigger the lambda function of the Amazon
cloud if an event is occurred. Then Amazon cloud has the communication channel with FCM.
When Amazon cloud communicates with corresponding client application device id with FCM
then it sends the push message to the client device. Virtual IoT device event sending logic is
shown in algorithm 5.

Algorithm 5 Virtual IoT Device
Event preparation:
CognitoCachingCredentialsProvider object setup:
get the context for the application
Identity Pool ID of the Amazon server
Select Region (US-EAST-1 or EU-WEST-1)
LambdaInvokerFactory object instantiate
Invoke Lambdafunction with the corresponding event into the server.
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4.3 Easy setup with IoT device

After completing successful account authentication, easy setup process starts for the very first
time between client application and unboxed IoT device. Client app connects to the unboxed
IoT device using a Soft AP network or BT/BLE connection. On the other hand, client app is
also connected to the Home router or Home AP that provides public internet. Now client app
transfers Home router or Home AP and other information such as Service Set Identifier(SSID),
password, security type of Home AP to the unboxed IoT device. Unboxed IoT device connects
to Home AP using this information. Client app also transfers cloud access information to the IoT
device via Home AP network. Then unboxed IoT device registers to our Amazon cloud and lets
client app know that cloud registration is successful. A new entry is added to the cloud table
containing IoT device id, client device id, account id, server key, FCM refreshed token etc. after
easy setup phase.

4.3.1 Local communication between the client app and IoT device

In an easy setup process, the IoT device first connects to the local network with the client
device. Client-server communication protocol is established in between them. As both the client
application and the IoT device perform communication by sending and receiving response, both
server and client socket mechanism needs to apply to them. In our case, virtual IoT device and
client app both implement the below described codes:

Retrieve local network IP list of the connected devices

The IoT device can’t connect to the client app because it does not know the IP address. Client
app performs a searching operation with it’s connected devices and retrieve the IP address of the
IoT device. IP address retrieval algorithm 6 is shown below.

Algorithm 6 Retrieve local network IP list from ARP table

Prepare a data structure to hold IPaddress, H/Waddress and Deviceinformation
Read file buffer from /proc/net/arp
while read each line of file until EOF do

Split the line string with ” + ”
if splitted = nullANDsplitted.length >= 4 then
IPaddress← splitted[0]
H/Waddress← splitted[1]
Deviceinformation← splitted[3]

end if
end while
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4.3.2 IoT device public network communication with cloud server

An IoT device needs to connect to the internet to register its entry into the server. The client app
connects to the IoT device locally and informs it about the wifi network and cloud information.
Once the network settings are available, the IoT device can join the home Wi-Fi network. Then
it can communicate with the cloud and complete the easy setup process.

4.4 Private cloud: Amazon Web Services

4.4.1 Account authorization

OAuth 2.0 client code is written in Java in the CloudPush framework. The Client app sends
account id, password and account type to Amazon cloud. Then Amazon cloud verifies the
account information provided by client app with proper account authorization server. Amazon
cloud verifies whether provided account information is valid or not. Account authorization
server can be Google, Yahoo, Samsung servers etc. Amazon cloud implements only the business
layer of account authorization. It returns to client success if provided account is valid or failure
otherwise.

Amazon server request the authentication server for access token. Access token is a long string
of characters that serves as a credential used to access protected resources. Account registration
is successful if authorization server response with a token. This process runs every time, client
app login into amazon cloud. Access token retrieval process is shown in algorithm 7.

Algorithm 7 Access Token Retrieval
Initialize HttpPost object
clientId← OauthDetails.getClientId()
clientSecret← OauthDetails.getClientSecret()
scope← OauthDetails.getClientSecret()
Prepare the payload of the http post request from OauthDetails
try

Execute http post request
response← DefaultHttpClient.execute()
code← response.getStatusLine().getStatusCode()

catch(ClientProtocolException)
throw new RuntimeException ex

finally
accessToken← response.getAccessToken()

4.4.2 Amazon cloud DynamoDB operations

Amazon cloud side DynamoDB operations is shown in algorithm 8.
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Algorithm 8 Amazon cloud DynamoDB operations
Get AmazonDynamoDBClient object from DynamoDBController
Initialize DynamoDBMapper object
try

Initialize UserPreference object
userPreference.setDeviceID ← deviceID
userPreference.setAccountID ← accountID
userPreference.setIoTDevID ← ioTDevID
userPreference.setToken← token
userPreference.setServerkey ← serverkey
Assign UserPreference object to the DynamoDBMapper object
Insert or update row in cloud table
Delete row in cloud table
Scan relevant data in cloud table

catch(AmazonServiceException)
Print error message

Amazon DynamoDB seamlessly scales a single table over hundreds of servers. It has no limit
to the amount of data user can store in its table [37–39]. Our IoT system performs insert
operation after easy setup phase and scans cloud table when data communication between client
applications and IoT devices are needed via the cloud.

4.4.3 Lambda Function in Amazon Cloud Server

We have used AWS Lambda function that works on demand where FCM server logic is
implemented in our system. A Lambda instance executes within milliseconds of an event.
When an IoT device generates an event, it immediately invokes lambda function to let Amazon
cloud know. Then Amazon cloud searches corresponding IoT device id in the cloud table.
Following algorithm 9 is showing how lambda function has been implemented and triggering
http post request to FCM server:

4.5 Work Flow

4.5.1 Work flow of client application

Client app runs as a background service so that it can receive push notification message sent
by IoT devices through Amazon cloud and FCM. Work flow of a client application is shown
in Figure 4.1. Client application asks the user for easy setup with an IoT device. If user wants
easy setup with an IoT device, then client application asks user for valid account id (Gmail,
Yahoo etc.) and password for verifying account with the corresponding authentication server.
After successful account verification by cloud, easy setup process starts. A new row is added to
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Algorithm 9 Activate push notification into the Amazon cloud
Instantiate Lambda function into the Amazon cloud server
try

userPreference.setAccountID ← ”https : //fcm.googleapis.com/fcm/send”
Setup connection with URL object for httpPOST request
Set httpPOST headers
Set request property with FIREBASE − SERV ER−KEY
Set request property with Content− Type
Send httpPOST body
Close output stream
Trigger httpPOST request to the FCM server

catch(Exception)
PrintStackTrace

the DynamoDB table existed in Amazon cloud if corresponding IoT device row does not exist
otherwise row is updated. Easy setup is needed only once between a particular IoT device and
an account ID from client app side. In most of the cases, the only login is required to authorize
account id by Amazon cloud. As client device id is unique id, after login Amazon cloud checks
whether device id’s row exists. If corresponding client device’s row doesn’t exist, the error code
is returned from the cloud. As client app starts “FirebaseInstanceIdService”, by this time FCM
token is available. FCM token is required to identify client device to send push messages by
FCM server. Now client app sends unique device id, server key, token to update a row of cloud
table.

4.5.2 IoT device sends event to client app through Amazon cloud and
FCM

If an event occurs in IoT device, then it sends notification message to Amazon cloud with the
specific event code. For example, a vacuum cleaner is an IoT device. After completion of its
work, it sends event code to Amazon cloud that its work is done. Then Amazon cloud queries
in DynamoDB table and finds out IoT device relevant rows by searching unique universal IoT
device id in the table. After finding corresponding rows, Amazon cloud sends the messages to
FCM server. FCM server then sends push messages to corresponding client applications with
the help of refreshed tokens. Client application registers “FirebaseMessagingService” to receive
push notification messages from IoT devices. After receiving the message by a client application,
JSON parser parses the message and identify event type that defines in IoT event specification
and then client app notifies user by rendering message and event type into the user interface or
notification panel. Work flow of an IoT device is shown in Figure 4.2.
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Figure 4.1: Workflow of Client Application
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Figure 4.2: Work flow among IoT device, Amazon cloud and client application.



Chapter 5

Vulnerabilities of the Proposed
Framework

While supporting multi-user feature in the deployment of the proposed framework, we figure out
some vulnerabilities that can leak information to outsiders. Client application receives unintended
and unauthorized notification messages through cloud from IoT device. As a result, user sensitive
data can be exposed by others. Below vulnerabilities of the framework are discussed:

5.1 Hack IoT device information through phishing attack

Phishing attacks involve tricking a victim into taking some action that benefits the attacker.
Attacker can track the IoT device credentials by registering the IoT device in the system along
with the real user. As, it is possible to receive unauthorized message by the CloudPush system in
this case, hacker can perform phishing attack. Details of phishing attack in terms of CloudPush
framework are described below with examples.

As CloudPush framework supports multi-user feature, a single client application can use multiple
accounts in its device. For a client, only one account id is active at a time. Client application
should receive only the notification from IoT devices that are registered with this current account
id. Other registered accounts than current should not get notification message triggered by IoT
devices. The issue is, client app’s current log-in account id is not related to IoT devices but
client app can still receive messages from those IoT devices. Unauthorized message received
by client app is shown in Fig. 5.1. Client device “Client1” has two entries in the cloud table.
“Client1” is registered with IoT Device “ID1” and “ID2”. “ID1” is registered with account
“a@gmail.com” and “ID2” is registered with account “b@gmail.com” by “Client1”. Suppose,
“Client1” is currently logged in with account “b@gmail.com”. Now “Client1” should not receive
any push messages from IoT device “ID1” as it is registered with different account. As shown in
Fig. 5.1, IoT device “ID1” generates an event and “Client1” is currently logged in with account
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Figure 5.1: Unauthorized message received by Client app

“b@gmail.com”. Cloud scans cloud table with value “ID1” and sends an unauthorized push
message to “Client1” through cloud push service. In this case, “Client1” should not receive any
messages from “ID1” as currently logged in account is “b@gmail.com”.

In the same way, hacker can register his account “a3” with IoT device “ID1”, an army robot.
Above described way, hacker can trace the location information of the army robot as shown in
Fig. 5.2. When the robot sends its location information to the real user, hacker is also getting the
same information due to the security flow of the system.

5.2 Denial of service attack (DoS attack) by triggering
unlimited push notification messages

A denial-of-service (DoS) attack occurs when users are unable to access information systems,
IoT devices, or other network resources due to the actions of a malicious cyber threat actor. The
possibility of DoS attack in the CloudPush framework is described below.
When a single client application device with multiple accounts register with a single IoT device
then corresponding multiple rows are inserted in cloud table. For multiple accounts (multiple
rows in cloud table) with a single IoT device, a client application may get multiple messages
wrongly. Two scenarios are discussed below. For the correct scenario, client devices receive
push messages properly but for an incorrect scenario, a client receives multiple messages for a
single IoT device’s event instead of a single message.

Correct scenario: Multiple client devices with multiple accounts: We show an example in
Fig. 5.3 where multiple client devices are registered with a single IoT device. Suppose, IoT
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Figure 5.2: Phishing attack by the hacker

device, ID1 generates an event. Cloud starts searching cloud table’s corresponding rows with IoT
DeviceID. Three entries of cloud table have been found that match with “ID1”. As cloud push
service is implemented in the cloud, it pushes messages for “Client1” with token “T1”, “Client3”
with token “T3” and “Client4” with token “T4”. For example, vacuum cleaner completes its
task and wants to notify client applications that are registered with it. Three client devices are
registered with the vacuum cleaner. So all the three client devices get notified through cloud.

Incorrect scenario: Single client device with multiple accounts: In Fig. 5.4, it is shown
that single client device receives multiple notification messages from an IoT device for a single
generated event. Suppose, a single device supports multiple accounts for registering with a single
IoT device. “Client1” device registers three different accounts with a single IoT device “ID1”.
As same client device, refreshed token value is same “T1”. If IoT device “ID1” generates an
event, Cloud table inside cloud server finds three rows with different account id but same client
device id and token value. Cloud sends three messages to cloud push service with token value
“T1”. Then cloud push service delivers three push messages to “Client1”. For a single IoT device
event, client app is receiving three push messages through cloud. This is an issue in our proposed
IoT push notification framework.

In Fig: 5.5, hacker registers many accounts with the same IoT device and user device by
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Figure 5.3: Multiple devices with multiple accounts in CloudPush Framework

Figure 5.4: Single device with multiple accounts issue in CloudPush Framework

launching a bot or manipulating cloud database. In this scenario, we consider that the hacker
somehow manage to get the user device “U1” credentials. When the army robot triggers an event,
communication channels can be overloaded due to huge number of push message requests send
through the server to the client device and the system can be unresponsive as well as army robot
can be unavailable or inaccessible by the CloudPush system.
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Figure 5.5: DoS attack by the hacker

5.3 Hacker controls the IoT Device: Man in the Middle
(MITM) attack

Hacker pretends to be as a real user by manipulating cloud database or getting real user’s
credentials and controls the IoT device. It is possible when the same client device ID exists
in multiple rows in the cloud table. If Client app and same IoT device register for multiple
times in cloud somehow, then multiple cloud table’s rows can be inserted. As shown in Fig. 5.6
“Client1” registers with an IoT device “ID1” in cloud twice. That’s why two rows are inserted
in cloud table with account id “a@gmail.com” and token “T1”. Suppose, “ID1” generates an
event. Cloud scans cloud table with value “ID1” and sends two event messages with token “T1”
to cloud push service. Then cloud push service sends two push messages to “Client1” as token
“T1” is associated with “Client1” device.
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Figure 5.6: Single event generated by IoT device and client device receives multiple messages

As per above scenario, hacker takes the control of the real user device or manipulating cloud
database. As a result, same client device id exists in multiple rows in the cloud table. Now hacker
is able to control the army robot as per his intention.

In Fig: 5.7 and 5.8, army robot believes that it is communicating with the real user. Attacker
makes independent connections with the army robot and relays messages between them to make
it believe they are talking to each other, when in fact the entire conversation is controlled by
the attacker. This enables an attacker to intercept information and data from the CloudPush
framework.
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Figure 5.7: IoT device is controlled by the hacker
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Figure 5.8: Man in the Middle (MITM) attack



Chapter 6

Solutions

We solve CloudPush framework vulnerabilities by encrypting notification message data and
implementing in cloud database layer by checking with currently active client account id.

6.1 Push notification message data

6.1.1 Key generation

Cloud encrypts notification message data using a key generated using the algorithm 10 and shares
the key with corresponding client application. When client application receives the encrypted
message from cloud, it decrypts the message using the key. As the key is generated based on
account id and client device id, it is not possible for other devices to extract the unauthorized
messages. This will help to prevent MITM attack of the CloudPush framework.

Algorithm 10 Key generation in cloud
input: AccountID, ClientDeviceID
prime1← GetPrimeNumber(AccountID)
prime2← GetPrimeNumber(ClientDeviceID)
key ← GenerateKey(prime1, prime2)
return Key

6.1.2 Key encryption

We use password-based encryption (PBE) [40] ciphers to encrypt the key and data that require
an initialization vector (IV) can obtain it from the key, if it’s suitably constructed, or from an
explicitly-passed IV. When passing a PBE key that doesn’t contain an IV and no explicit IV, the
PBE ciphers currently assume an IV of zero. When using PBE ciphers, it is required to pass an
explicit IV, as shown in the following algorithm 11:
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Algorithm 11 Key encryption
input: SecretKey, IV
Cipher ← Get instance of PBE cipher with SHA− 256 hashing”)
IV ← Generate random bytes
Cipher ← Initialize the cipher
return Encrypted Key

Table 6.1: Prevent receiving multiple messages by adding a column named “Current Account” in
cloud table

Client DeviceID Account Auth IoT DeviceID Server-Key Token Current Account
Client1 A1@gmail.com Abc ID1 X1 T1 N
Client1 B1@gmail.com Xyz ID1 X1 T1 Y
Client1 C1@gmail.com Pqr ID1 X1 T1 N

6.2 Active client account id verification in cloud

We prevent unnecessary and unauthorized notification message sending to client side by keeping
track of active client account id in cloud. We keep another column into the cloud table that
maintains which one is currently log-in account. A user can choose the current log-in account
from a client application and request to update corresponding row in cloud table or last log-in
account is the current account. When an event is generated by IoT device and the event is sent to
cloud, “Current Account” column in the cloud table is checked with corresponding client device
ID. Only current account “Y” related to client device get notification message if relevant IoT
device generates an event. In Table 6.1, client device “Client1” registers with IoT device “ID1”
and three accounts. Suppose “B1@gmail.com” is the current log-in account. “ID1” generates an
event and sends its event to cloud. Cloud finds “ID1”s corresponding row by checking “Current
Account” column “Y” and sends one notification message to client application “Client1”. So the
problem of receiving multiple messages is solved here.

In Table 6.2, client device “Client1” registers with two different IoT devices “ID1” and “ID2”
with two different accounts “A1@gmail.com” and “B1@gmail.com”. “B1@gmail.com” account
is currently logged in and bounded with “ID2”. If “ID1” generates an event, there is no current
login account exist in the cloud database. Hence no notification message is sent to “Client1”.
Thus “Current Account” column solves unauthorized message receiving problem too.

Table 6.2: Prevent receiving unauthorized message by adding a column named “Current Account”
in cloud table

Client DeviceID Account Auth IoT DeviceID Server-Key Token Current Account
Client1 A1@gmail.com Abc ID1 X1 T1 N
Client1 B1@gmail.com Xyz ID2 X1 T1 Y
Client1 C1@gmail.com Pqr ID1 X1 T1 N
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6.3 Maintain unique client device ID

To prevent creating a similar row for multiple times, we use unique client ID instead of random
device ID. This will ensure that same client device with same account id and same IoT device
cannot be registered more than once.

Every device has a unique id. In case of Android device, “TelephonyManager” class [41] has an
API “getDeviceId()” that provide unique device id. To keep unique client device ID for different
accounts, the following rule is used:

ClientDeviceID ← Device.MAC

Same client application device with multiple accounts situation in cloud table is shown in Table
6.3.

Table 6.3: Maintain Client device id uniqueness by adding client device id with account id.

Client DeviceID Account Auth IoT DeviceID Server-Key Token Current Account
Client1 + A1 A1@gmail.com Abc ID1 X1 T1 N
Client1 + B1 B1@gmail.com Xyz ID1 X1 T1 Y
Client1 + C1 C1@gmail.com Pqr ID1 X1 T1 N

6.4 Remove history records from cloud database

Another solution to prevent receiving multiple or unauthorized messages is that remove all other
records related to client app device except currently login account row just added in the cloud
table. This will make sure only one entry exists in cloud table related to the client application
device and the IoT device. Every time, client device logs into cloud, it creates a new row and
removes other rows related to client device id if it exists. This approach causes loss of previous
data as each time signing into the cloud, a new row is added and old rows are removed with
client device id. Moreover every time row insertion and deletion is costly and time-consuming
operation.

6.5 Optimized searching algorithm in cloud

We apply optimized runtime searching algorithm in cloud that find any component from cloud
database in O(search key length) time complexity. In Cloudpush framework, search items can
be (1) Client DeviceID (2) Account ID (3) IoT DeviceID. These three items are indexed in a
search tree. A search tree structure is formed in Fig: 6.1 based on the cloud table 6.5 using these
three search items. Leaf of the tree contains a object associated with the cloud table row. When
an item is searched from the tree, it can easily retrieve the corresponding row of the cloud table.
It saves a significant amount of time while querying and improves throughput of CloudPush
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Figure 6.1: Cloud items index tree for searching cloud records efficiently

framework.
Let w be the total amount of characters in the search items. It simply represents the max amount
of unique characters, N in the customized tree, that is space boundary.

• Search key length = L

• Total number of unique characters in the search items = N

• Total number of row in the table = K

• Total number of search items = I

Search algorithm efficiency is shown in table 6.4 in big O notation.

Table 6.4: Efficiency of the algorithm.

# Notation
Time complexity O(L)
Space complexity O(N +K ∗ I)

Table 6.5: Cloud data table for figure: 6.1.

Object Client DeviceID Account Auth IoT DeviceID Server-Key Token Current Account
Ob1 CL1 A1@g Abc ID1 X1 T1 N
Ob2 CL2 A2@g Xyz ID2 X1 T1 Y
Ob3 CL3 A3@g Pqr ID3 X1 T1 N



Chapter 7

Experimentation

7.1 Performance comparison between CloudPush frame-
work and IoTivity framework

7.1.1 Performance of IoTivity Framework

Testbed Setting, Testing Scenarios and Results

In this paper [16], testbed consists of four physical nodes as shown in Fig. 7.1. IoT device
node is aMid-2010 MacBook Pro with 4GB RAM and an Intel Core 2 duo CPU 2.4 GHz. IoT
controller node is hosted in a laptop computer with 8GB RAM and an Intel Core i5 duo CPU
2.3 GHz. The CI is hosted in a desktop computer with 3 GB RAM and an Intel Core i5-2500
CPU 3.3 GHz. The IGC with three components of MQ, Account, and RD servers is set up in
a single desktop computer. The computer has 16 GB RAM and Intel Core i7 CPU 3.60 GHz.
All the computers run the Ubuntu 16.04 LTS operating system, and support IoTivity framework
1.2.0. The IoTivity Cloud is deployed on the testbed similar to its architecture. They have added
Java hooking scripts into source code of the CI and the MQ to measure the performance of these
servers. The size of requests/responses are set in the simplest case where a message contains only
one character. The number of devices are varied to identify maximum capacity of the system.

Figure 7.2 illustrates similar trends of throughputs with different numbers of IoT devices. It
gradually increases and reaches the maximum value before starting decreasing as the number
of requests continues to increase. The increase of throughput can be justified by the fact that
a greater number of requests is introduced into the system and the system uses more CPU
utilization for handle those requests. On the other hand, the throughput decreases when the
number of requests is large enough and impacts the processing capacity of the system. The
throughput increases from 252269.2 (msg/sec) for one IoT device setup to 465519.2 (msg/sec) for
10 IoT devices setup, to 562967.7 (msg/sec) for 100 IoT devices setup and to 595406.2 (msg/sec)
for 500 IoT devices setup. In other words, the throughput increases at 343137 (msg/sec) which
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Figure 7.1: Testbed model.

is almost a 57.63% increase. However, the maximum throughput lightly decreases to 583455.1
(msg/sec) with the 1000 IoT devices setup. The maximum throughput of the CI reaches 595406.2
(msg/sec) for 500 IoT devices setup in the scope of our testbed configuration.

As shown in Fig.7.3, throughput of the MQ has a similar trend to that of the CI. However,
throughputs for setups with different numbers of IoT devices converge to approximate 3640
(msg/sec) when the number of requests passes 4000 (msg/sec). The maximum throughput
increases from 4266.4 (msg/sec) for one IoT device setup to 4926.8 (msg/sec) for 10 IoT devices
setup before going down to about 4772.2 (msg/sec) with 100 IoT devices setup and 500 IoT
devices setup, and to 4610.5 (msg/sec) with 1000 IoT devices setup. The maximum throughput
of the MQ reaches 4926.8 (msg/sec) which is much smaller than the throughput of the CI. This
can be justified by the fact that the CI is tasked to only forward requests of IoT devices to the
MQ while the MQ has to detaches the requests and then constructs the Kafka messages before
pushing them into the Kafka message queue. In case the number of generated requests is less
than the number of IoT devices, there will be some IoT devices do not generate requests but
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Figure 7.2: Throughput of CI server.

Figure 7.3: Throughput of the MQ (no IoT controllers).

we still create these IoT devices (C++ threads) and make them connect to the CI to experience
various testing cases.

The next scenario is the generalized case of the above described scenario in terms of the
functionality. What is added into this scenario is the different number IoT controllers which
are 1, 10, 50, 100, 200 for different tests. Unlike the simulation method of IoT devices, the
different numbers of IoT controllers are introduced by using independent processes instead of
using threads. A process is a compiled C++ program which is implemented by using IoTivity
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Figure 7.4: Throughput of the MQ IoT controllers

framework APIs. All IoT controllers subscribe to the same topic of the MQ; therefore, they
receive the same notification when a post request is published to the MQ broker. The purpose
of using different processes is that we want to duplicate the notification corresponding to the
number of subscribers. This cannot be done with a single process having multiple threads to
our knowledge about IoTivity framework APIs. Testing result from the first scenario shown
that throughput of the CI is much higher than throughput of the MQ so the bottleneck of the
throughput of the overall architecture is at the MQ. For this reason, we only focus on measuring
the throughput of the MQ in this scenario. Testing results of the second scenario are shown in
the Fig. 7.4.

The testing results of IoTivity framework show that the CI can handle a load of 1000 IoT devices
simultaneously and the maximum throughput reaches 595406.2 (msg/sec). The maximum
throughput of the MQ is 4926.8 (msg/sec) which is much smaller than the throughput of the CI.
What can be learned from this is the overall throughput of the architecture is mainly depended
on the performance of the MQ. In addition, the throughput of the MQ drops significantly when
we introduce a large number of IoT controllers into the system.

7.1.2 Performance of CloudPush Framework

There are two variants:

1. Number of events generated by IoT devices.
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Figure 7.5: Aggregated throughput comparison between CloudPush framework and IoTivity
framework by a varying number of events generated by an IoT device [variant: Events].

2. Number of client application devices received messages, are considered while comparing
aggregated throughput between CloudPush framework and IoTivity framework.

We observe that overall execution time of an IoT device generated events in CloudPush framework
is 12-15% better than IoTivity framework shown in Fig. 7.5. In this experiment, one IoT device
generates all the events and a client application receives all of the events. Overall execution time
increases if number of events generation by the IoT device increases for both frameworks.

If we vary both number of events generated by IoT devices and number of notification message
receivers (client application devices) then performance of CloudPush framework increases to
12-25% shown in Fig. 7.6. Events are distributed among client applications in this experiment.
Each IoT device generates equal number of events and these events are received by equal number
of client applications shown in the table 7.1. CloudPush framework performs better because we
use separate cloud server and cloud push service layer that are scaled up depending on number
of events requested by IoT devices and number of client application devices involved with the
events during execution time and run optimized searching algorithm in cloud server.
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Figure 7.6: Aggregated throughput comparison between CloudPush framework and IoTivity
framework by a varying number of events generated by IoT devices and message receivers
[variants: Events, client application devices].

Table 7.1: Distributed events among receivers (Client devices).

No. of IoT device Events(Per IoT device) Total events No. of Client (Receiver)
1 10 10 1
2 50 100 2
2 100 200 2
3 100 300 3
5 100 500 5
8 100 800 8

10 100 1000 10

Let, execution time to perform a full cycle of an event operation by CloudPush framework is
TO and by IoT framework is TI then the equation for performance measurement for CloudPush
framework is,

P =
TI − TO

TO

× 100% (7.1)
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Figure 7.7: CloudPush framework performance comparison after applying encryption in
notification message.

7.2 Performance comparison after applying notification
message encryption

After applying notification message encryption solution in CloudPush framework, it is observed
that system performance is reduced to 3-5% compared to without encrypted notification message
in CloudPush framework shown in Fig. 7.7. Notification message is encrypted for a secured
multi-user support but it makes existing CloudPush framework with raw message 3-5% slower
but performs 9-12% better than IoTivity framework for a single client. If events are distributed
among multiple clients than performance improves about 9-23% than the IoTivity framework.
Performance comparison between IoTivity framework and CloudPush framework for encrypted
and raw notification message solution is shown in table 7.2. As cloud server and client application
need to process notification message data, CloudPush framework gets little slower. Cloud server
converts a raw message to an encrypted message and sends to a client. A client device decodes
encrypted the notification message with a key shared earlier by the cloud.

Table 7.2: Performance improvement in CloudPush framework compared with IoTivity
framework

Variants Improvement without message encryption Improvement with message encryption
Events 12-15% 9-12%

Events + Client applications 12-25% 9-23%
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Figure 7.8: Aggregated events processing time comparison among CloudPush system encrypted
and not encrypted notifications and IoTivity framework.

Overall aggregated events processing time comparison among CloudPush system encrypted and
not encrypted notifications and IoTivity framework is shown in Fig. 7.8. It is shown that without
message encryption, CloudPush throughput is better than encrypted message in CloudPush and
IoTivity framework. Even applying message encryption in CloudPush framework, throughput is
better than IoTivity framework.



Chapter 8

Conclusions

Concerns have been raised that new IoT platforms are being developed rapidly and the
profound security challenges involved in these IoT environments are not taken into appropriate
consideration. This thesis introduces a push messaging framework named CloudPush for IoT
environment with multi-user support and discusses on the vulnerabilities of the framework and
their countermeasures. The aggregated throughput of CloudPush framework is 12-15% better
than IoTivity framework for a single client application working as a notification message receiver.
This framework works even better 12-25% if events are distributed among different number of
client application devices. Cloud server and cloud push service layer are separated that can scale
up the system depending on number of events requested by IoT devices and number of client
application devices involved with the events. Moreover, the cloud runs optimized searching
algorithm on cloud database records. Notification message is encrypted and tracking current
client account id in cloud for a secured multi-user support but it makes existing CloudPush
framework with raw message 3-5% slower but performs 9-12% better than IoTivity framework
for a single client. If events are distributed among multiple clients than performance improves
about 9-23%. Finally, the CloudPush framework described in this thesis is significant in the field
of IoT ecosystem as it supports secured multi-user feature. We have published our research work
here [Published1].

8.1 Future Work

We will solve the multi-agent collaboration system with multi-user support in an energy efficient
way. A multi-agent collaboration system comprises of various interacting agents that provide
energy efficient solution in the system. We will focus on task allocation mechanism to IoT
agents where each agent completes the task for a region in an energy efficient way on a 2D
surface. Task regions in the system will be distributed among multiple agents considering their
capabilities, capacities and distances from the assigned region determined by a cloud server or a
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local client machine. A task distribution algorithm will be proposed that distributes task region
among multiple IoT agents in polynomial time. After that, each agent will perform individually
to complete its task which is similar to the Traveling Salesman problem. Finding the optimal
solution of the problem is NP hard. We will provide a heuristic solution for the problem.
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Appendix A

Source Code

A.1 Push notification message receiver and refreshed token
generation

Sample codes (Java) for refreshed token and push message receiving APIs are given below. . .

1 import com.google.firebase.messaging.FirebaseMessagingService;

2 import com.google.firebase.messaging.RemoteMessage;

3 import com.google.firebase.iid.FirebaseInstanceId;

4 import com.google.firebase.iid.FirebaseInstanceIdService;

5

6 public class MyFirebaseMessagingService extends

↪→ FirebaseMessagingService {

7 private static final String TAG = "MyFirebaseMsgService";

8

9 @Override

10 public void onMessageReceived(RemoteMessage remoteMessage) {

11 Log.d(TAG, "FROM:" + remoteMessage.getFrom());

12 //Check if the message contains data

13 if(remoteMessage.getData().size() > 0) {

14 Log.d(TAG, "Message data: " + remoteMessage.getData());

15 }

16 //Check if the message contains notification

17 if(remoteMessage.getNotification() != null) {

18 Log.d(TAG, "Mesage body:" + remoteMessage.getNotification().

↪→ getBody());

19 sendNotification(remoteMessage.getNotification().getBody());

20 }

21 }
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22

23 private void sendNotification(String body) {

24 Intent intent = new Intent(this, MainActivity.class);

25 intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

26 PendingIntent pendingIntent = PendingIntent.getActivity(this,

↪→ requestCode, intent, PendingIntent.FLAG_ONE_SHOT);

27 Uri notificationSound = RingtoneManager.getDefaultUri(

↪→ RingtoneManager.TYPE_NOTIFICATION);

28

29 NotificationCompat.Builder notifiBuilder = new

↪→ NotificationCompat.Builder(this)

30 .setSmallIcon(R.mipmap.ic_launcher)

31 .setContentTitle("Firebase Cloud Messaging")

32 .setContentText(body)

33 .setAutoCancel(true)

34 .setSound(notificationSound)

35 .setContentIntent(pendingIntent);

36 NotificationManager notificationManager = (NotificationManager)

↪→ getSystemService(Context.NOTIFICATION_SERVICE);

37 notificationManager.notify(0 /*ID of notification*/,

↪→ notifiBuilder.build());

38 }

39 }

40

41 public class MyFirebaseInstanceIDService extends

↪→ FirebaseInstanceIdService {

42

43 private static final String TAG = "MyFirebaseInsIDService";

44

45 @Override

46 public void onTokenRefresh() {

47 //Get updated token

48 String refreshedToken = FirebaseInstanceId.getInstance().

↪→ getToken();

49 Log.d(TAG, "New Token: " + refreshedToken);

50 }

51 }

In client app, we implement an android project to receive a push notification. Push notification
message attributes are converted into JSON string. Then the JSON string is passed and processed
in the communication channel as below:
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1 private Collection<String> multicast;

2 private HashMap<String, Object> requestAttributes;

3 private HashMap<String, Object> notificationAttributes;

4 public String toJSON(){

5 JSONObject obj = new JSONObject(); // Parent object

6 // create and add every notification attribute into its own

↪→ json objects

7 JSONObject not = new JSONObject();

8 not.putAll(notificationAttributes);

9 // add notification object to parent

10 obj.put("notification", not);

11 // add request attributes to parent

12 obj.putAll(requestAttributes);

13 if(!multicast.isEmpty()){

14 // create and add all targets to the JSON array

15 JSONArray ids = new JSONArray();

16 ids.addAll(multicast);

17 // add targets to parent

18 obj.put("registration_ids", ids);

19 }

20 return obj.toString();

21 }

A.2 Virtual IoT Device

We implement virtual IoT device to generate an event that is sent to cloud and the cloud requests
the message to the corresponding client application device through FCM server. Virtual IoT
device is nothing but an Android application that trigger the lambda function of the Amazon
cloud if an event is occurred. Then Amazon cloud has the communication channel with FCM.
When Amazon cloud communicates with corresponding client application device id with FCM
then it sends the push message to the client device. Below we are showing the code of virtual
IoT device written in Java:

1 import com.amazonaws.auth.CognitoCachingCredentialsProvider;

2 import com.amazonaws.mobileconnectors.lambdainvoker.

↪→ LambdaFunctionException;

3 import com.amazonaws.mobileconnectors.lambdainvoker.

↪→ LambdaInvokerFactory;

4 import com.amazonaws.regions.Regions;
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5

6 import static android.content.ContentValues.TAG;

7

8 public class VirtualIoTDevice extends Activity {

9

10 String COGNITO_IDENTITY_POOL = "us-west-2:da60c3fb-957c-435a-xxxx

↪→ -4768e0fxxxxx";

11 private Button mSendEventButton;

12

13 public interface MyInterface {

14 //Invoke lambda function "echo". The function name is the

↪→ method name

15 @LambdaFunction

16 String FirebaseServer(Info info);

17 }

18

19 class Info {

20 private String firstName;

21 private String lastName;

22

23 public Info(String firstName, String lastName) {

24 this.firstName = firstName;

25 this.lastName = lastName;

26 }

27 }

28

29 @Override

30 protected void onCreate(Bundle savedInstanceState) {

31 super.onCreate(savedInstanceState);

32 setContentView(R.layout.activity_main);

33 mSendEventButton = (Button) findViewById(R.id.send_event_button

↪→ );

34

35 mSendEventButton.setOnClickListener(new View.OnClickListener()

↪→ {

36 @Override

37 public void onClick(View v) {

38 init();

39 }

40 });}

41
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42 private void init() {

43 CognitoCachingCredentialsProvider credentialsProvider = new

↪→ CognitoCachingCredentialsProvider(

44 getApplicationContext(), /* get the context for the

↪→ application */

45 COGNITO_IDENTITY_POOL, /* Identity Pool ID */

46 Regions.US_WEST_2 /* Region for your identity pool--

↪→ US_EAST_1 or EU_WEST_1*/

47 );

48 LambdaInvokerFactory factory = new LambdaInvokerFactory(

49 getApplicationContext(),

50 Regions.US_WEST_2,

51 credentialsProvider);

52

53 final MyInterface myInterface = factory.build(MyInterface.class

↪→ );

54 Info info = new Info("VirtualIoTDevice", "RVC");

55 // The Lambda function invocation results in a network

↪→ call

56 new AsyncTask<Info, Void, String>() {

57 @Override

58 protected String doInBackground(Info... params) {

59 try {

60 return myInterface.FirebaseServer(params[0]);

61 } catch (LambdaFunctionException lfe) {

62 Log.e(TAG, "Failed to invoke echo", lfe);

63 return null;

64 }

65 }

66 @Override

67 protected void onPostExecute(String result) {

68 if (result == null) {

69 return;

70 }

71 Toast.makeText(MainActivity.this, result, Toast.

↪→ LENGTH_LONG).show();

72 }

73 }.execute(info);

74 }

75 }



A.3. LOCAL COMMUNICATION BETWEEN THE CLIENT APP AND IOT DEVICE 72

A.3 Local communication between the client app and IoT
device

In an easy setup process, the IoT device first connects to the local network with the client
device. Client-server communication protocol is established in between them. As both the client
application and the IoT device perform communication by sending and receiving response, both
server and client socket mechanism needs to apply to them. In our case, virtual IoT device and
client app both implement the below described codes:

A.3.1 Client socket code for local network communication

1 public class ClientApp {

2 private Socket mSocket;

3 private static final int SERVERPORT = 6000;

4 private int mIPSendType = Utils.SEND_IP_NONE;

5 private InetAddress mServerAddress;

6 private Handler mHandler;

7 public ClientApp(InetAddress serverAddress, int sendType) {

8 mServerAddress = serverAddress;

9 mIPSendType = sendType;

10 init();

11 }

12 private void init() {

13 new Thread(new ClientThread()).start();

14 }

15 public synchronized void sendData(String str) {

16 try {

17 PrintWriter out = new PrintWriter(new

↪→ BufferedWriter(new OutputStreamWriter(mSocket.

↪→ getOutputStream())),

18 true);

19 out.println(str);

20 } catch (UnknownHostException e) {

21 e.printStackTrace();

22 sendMsg("socket sendData 1 at Client.java : " + e.

↪→ getMessage() + " mSocket: " + mSocket);

23 } catch (IOException e) {

24 e.printStackTrace();

25 sendMsg("socket sendData 2 at Client.java : " + e.

↪→ getMessage() + " mSocket: " + mSocket);



A.3. LOCAL COMMUNICATION BETWEEN THE CLIENT APP AND IOT DEVICE 73

26 } catch (Exception e) {

27 e.printStackTrace();

28 sendMsg("socket sendData 3 at Client.java : " + e.

↪→ getMessage() + " mSocket: " + mSocket);

29 }

30 }

31 class ClientThread implements Runnable {

32 @Override

33 public void run() {

34 try {

35 mSocket = new Socket(mServerAddress, SERVERPORT);

36 if (mIPSendType == Utils.SEND_IP_CLIENT_To_SERVER)

↪→ {

37 sendData(Utils.

↪→ SEND_CLIENT_TO_SERVER_NODE_JOINED_REQ +

↪→ Utils.SEPERATOR + Utils.

↪→ DEVICE_MAC_ADDRESS

38 + Utils.SEPERATOR + Utils.

↪→ getIpAddress().

↪→ getHostAddress());

39 } else if (mIPSendType == Utils.

↪→ SEND_IP_CLIENT_To_CLIENT) {

40 sendData(Utils.

↪→ SEND_CLIENT_To_CLIENT_NODE_JOINED_REQ +

↪→ Utils.SEPERATOR + Utils.

↪→ DEVICE_MAC_ADDRESS

41 + Utils.SEPERATOR + Utils.

↪→ getIpAddress().

↪→ getHostAddress());

42 }

43 } catch (IOException e) {

44 e.printStackTrace();

45 sendMsg("socket creation at Client.java : " + e.

↪→ getMessage() + " mSocket: " + mSocket);

46 }

47 }

48 }

49 public void stop() {

50 try {

51 if (null != mSocket) {

52 if (!mSocket.isClosed()) {
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53 mSocket.close();

54 }

55 mSocket = null;

56 }

57 mServerAddress = null;

58 } catch (IOException e) {

59 e.printStackTrace();

60 }

61 }

62 public Socket getSocket() {

63 return mSocket;

64 }

65 public void sethandler(Handler handler) {

66 mHandler = handler;

67 }

68 public InetAddress getInetAddress(){

69 return mServerAddress;

70 }

71 private void sendMsg(String str) {

72 Message msgObj = mHandler.obtainMessage();

73 Bundle b = new Bundle();

74 b.putString("message", str);

75 msgObj.setData(b);

76

77 mHandler.sendMessage(msgObj);

78 }

79 }

A.3.2 Server socket code for local network communication

1 public class LocalServer {

2 private ServerSocket mServerSocket;

3 Handler updateConversationHandler;

4 Thread serverThread = null;

5 private ArrayList<Thread> mCommunicationThreadList;

6 public static final int SERVERPORT = 6000;

7

8 public LocalServer(Handler handler) {

9 updateConversationHandler = handler;

10 mCommunicationThreadList = new ArrayList<Thread>();
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11 this.serverThread = new Thread(new ServerThread());

12 this.serverThread.start();

13 }

14 public void stop() {

15 try {

16 mServerSocket.close();

17 serverThread.interrupt();

18 for (int i = 0; i < mCommunicationThreadList.size(); i++)

↪→ {

19 Thread ct = mCommunicationThreadList.get(i);

20 ct.interrupt();

21 }

22 } catch (IOException e) {

23 e.printStackTrace();

24 }

25 }

26 class ServerThread implements Runnable {

27 public void run() {

28 Socket socket = null;

29 try {

30 mServerSocket = new ServerSocket(SERVERPORT);

31 } catch (IOException e) {

32 e.printStackTrace();

33 sendMsg("mServerSocket creation at Server.java : " + e.

↪→ getMessage());

34 }

35 while (!Thread.currentThread().isInterrupted()) {

36 try {

37 socket = mServerSocket.accept();

38 CommunicationThread commThread = new CommunicationThread(

↪→ socket);

39 Thread ct = new Thread(commThread);

40 mCommunicationThreadList.add(ct);

41 ct.start();

42 } catch (IOException e) {

43 e.printStackTrace();

44 sendMsg("mServerSocket accept at Server.java : " + e.

↪→ getMessage());

45 }

46 }

47 }
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48 }

49 class CommunicationThread implements Runnable {

50 private Socket clientSocket;

51 private BufferedReader input;

52 public CommunicationThread(Socket clientSocket) {

53 this.clientSocket = clientSocket;

54 try {

55 this.input = new BufferedReader(new InputStreamReader(

↪→ this.clientSocket.getInputStream()));

56 } catch (IOException e) {

57 e.printStackTrace();

58 }

59 }

60 public void run() {

61 while (!Thread.currentThread().isInterrupted()) {

62 try {

63 String read = input.readLine();

64 if (null == read) {

65 sendMsg(Utils.CLIENT_REMOVE_REQ+ Utils.SEPERATOR +

↪→ clientSocket.getInetAddress().getHostAddress

↪→ ());

66 if (null != clientSocket) {

67 clientSocket.close();

68 }

69 Thread.currentThread().interrupt();

70 return;

71 }

72 Message msgObj = updateConversationHandler.obtainMessage

↪→ ();

73 Bundle b = new Bundle();

74 b.putString("message", read);

75 msgObj.setData(b);

76 updateConversationHandler.sendMessage(msgObj);

77 updateConversationHandler.post(new updateUIThread(read));

78 } catch (IOException e) {

79 e.printStackTrace();

80 sendMsg("recever exception at Server.java : " + e.

↪→ getMessage());

81 }

82 }

83 }



A.3. LOCAL COMMUNICATION BETWEEN THE CLIENT APP AND IOT DEVICE 77

84 }

85 private void sendMsg(String str) {

86 Message msgObj = updateConversationHandler.obtainMessage

↪→ ();

87 Bundle b = new Bundle();

88 b.putString("message", str);

89 msgObj.setData(b);

90 updateConversationHandler.sendMessage(msgObj);

91 }

92 }

A.3.3 Retrieve local network IP list of the connected devices

The IoT device can’t connect to the client app because it does not know the IP address. Client
app performs a searching operation with it’s connected devices and retrieve the IP address of the
IoT device. IP address retrieval codes are shown below:

1 public void getLocalNetworkIPList(final int reachableTimeout) {

2 Runnable runnable = new Runnable() {

3 public void run() {

4 BufferedReader br = null;

5 final ArrayList<ClientDataResult> result = new ArrayList<

↪→ ClientDataResult>();

6 try {

7 br = new BufferedReader(new FileReader("/proc/net/

↪→ arp"));

8 String line;

9 while ((line = br.readLine()) != null) {

10 String[] splitted = line.split(" +");

11 if ((splitted != null) && (splitted.length >=

↪→ 4)) {

12 String mac = splitted[3];

13 if (mac.matches("..:..:..:..:..:..")) {

14 boolean isReachable = InetAddress

↪→ .getByName(splitted[0]).

↪→ isReachable(

↪→ reachableTimeout);

15 result.add(new ClientDataResult(

↪→ splitted[0], splitted[3],

↪→ splitted[5], isReachable));

16 }
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17 }

18 }

19 } catch (Exception e) {

20 Log.e(this.getClass().toString(), e.toString());

21 Log.e("Arifin", "getClientList() in WifiClient.java

↪→ , exception: " + e.toString());

22 } finally {

23 try {

24 br.close();

25 } catch (IOException e) {

26 Log.e(this.getClass().toString(), e.

↪→ getMessage());

27 }

28 }

29

30 Handler mainHandler = new Handler(mContext.getMainLooper

↪→ ());

31 Runnable myRunnable = new Runnable() {

32 @Override

33 public void run() {

34 for (int i = 0; i < result.size(); i++) {

35 if (result.get(i).isReachable() && (

↪→ result.get(i).getDevice().

↪→ contains("wlan0")

36 || result.get(i).getDevice

↪→ ().contains("eth0")

37 || result.get(i).getDevice

↪→ ().contains("ap0")))

↪→ {

38 mServerClientListener.

↪→ onSendAddress(result.get(i)

↪→ );

39 } else if(result.get(i).getIpAddr().

↪→ equals(Utils.HOTSPOT_IP) && !

↪→ result.get(i).isReachable()){

40 mServerClientListener.onSendMSG("

↪→ Wifi Hotspot unreachable

↪→ wifiClient.java");

41 }

42 }

43 }
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44 };

45 mainHandler.post(myRunnable);

46 }

47 };

48 Thread mythread = new Thread(runnable);

49 mythread.start();

50 }

51 class ClientDataResult {

52 private String mIpAddr;

53 private String mHWAddr;

54 private String Device;

55 private boolean isReachable;

56 public ClientDataResult(String ipAddr, String hWAddr, String

↪→ device, boolean isReachable) {

57 super();

58 this.mIpAddr = ipAddr;

59 this.mHWAddr = hWAddr;

60 this.Device = device;

61 this.isReachable = isReachable;

62 }

63 }

A.4 Account authorization

OAuth 2.0 client code is written in Java in the CloudPush framework. The Client app sends
account id, password and account type to Amazon cloud. Then Amazon cloud verifies the
account information provided by client app with proper account authorization server. Amazon
cloud verifies whether provided account information is valid or not. Account authorization
server can be Google, Yahoo, Samsung servers etc. Amazon cloud implements only the business
layer of account authorization. It returns to client success if provided account is valid or failure
otherwise.

Amazon server request the authentication server for access token. Access token is a long string
of characters that serves as a credential used to access protected resources. Account registration
is successful if authorization server response with a token. This process runs every time, client
app login into amazon cloud. Access token retrieval code is shown below:

1 HttpPost post = new HttpPost(oauthDetails.getTokenEndpointUrl());

2 String clientId = oauthDetails.getClientId();

3 String clientSecret = oauthDetails.getClientSecret();
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4 String scope = oauthDetails.getScope();

5 Map<String, String> map = new HashMap<String, String>();

6

7 List<BasicNameValuePair> parametersBody = new ArrayList<

↪→ BasicNameValuePair>();

8

9 parametersBody.add(new BasicNameValuePair(OAuthConstants.GRANT_TYPE,

↪→ oauthDetails.getGrantType()));

10 parametersBody.add(new BasicNameValuePair(OAuthConstants.CODE,

↪→ authorizationCode));

11 parametersBody.add(new BasicNameValuePair(OAuthConstants.CLIENT_ID,

↪→ clientId));

12 if (isValid(clientSecret)) {

13 parametersBody.add(new BasicNameValuePair(OAuthConstants.

↪→ CLIENT_SECRET, clientSecret));

14 }

15 parametersBody.add(new BasicNameValuePair(OAuthConstants.REDIRECT_URI

↪→ , oauthDetails.getRedirectURI()));

16 DefaultHttpClient client = new DefaultHttpClient();

17 HttpResponse response = null;

18 String accessToken = null;

19 try {

20 post.setEntity(new UrlEncodedFormEntity(parametersBody, HTTP.

↪→ UTF_8));

21 response = client.execute(post);

22 int code = response.getStatusLine().getStatusCode();

23 map = handleResponse(response);

24 accessToken = map.get(OAuthConstants.ACCESS_TOKEN);

25 } catch (ClientProtocolException e) {

26 e.printStackTrace();

27 throw new RuntimeException(e.getMessage());

28 } catch (IOException e) {

29 e.printStackTrace();

30 throw new RuntimeException(e.getMessage());

31 }

32 return map;

A.4.1 Amazon cloud DynamoDB operations

Our implemented AWS DynamoDB Java APIs are shown below:
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1 AmazonDynamoDBClient ddb = DynamoDBController.ddb();

2 DynamoDBMapper mapper = new DynamoDBMapper(ddb);

3 try {

4 UserPreference userPreference = new UserPreference();

5 userPreference.setDeviceID(deviceID);

6 userPreference.setAccountID(accountID);

7 userPreference.setIoTDevID(ioTDevID);

8 userPreference.setToken(token);

9 userPreference.setServerkey(serverkey);

10 ...............................

11 // insert/update row in cloud table

12 mapper.save(userPreference);

13 // delete row in cloud table

14 mapper.delete(deleteUserPreference);

15 // scan relevant data in cloud table

16 PaginatedScanList<UserPreference> result = mapper.scan(

↪→ UserPreference.class, scanExpression);

17 } catch (AmazonServiceException ex) {

18 Log.e(TAG, "Error");

19 }

A.5 Lambda Function in Amazon Cloud Server

We have used AWS Lambda function that works on demand where FCM server logic is
implemented in our system. A Lambda instance executes within milliseconds of an event.
When an IoT device generates an event, it immediately invokes lambda function to let Amazon
cloud know. Then Amazon cloud searches corresponding IoT device id in the cloud table.
Following code is showing how lambda function has been implemented and triggering http post
request to FCM server:

1 public void pushToFCM(Notification n) { //Lambda Function

2 HttpsURLConnection con = null;

3 try{

4 String url = "https://fcm.googleapis.com/fcm/send";

5 URL obj = new URL(url);

6 con = (HttpsURLConnection) obj.openConnection();

7 con.setRequestMethod("POST");

8
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9 // Set POST headers

10 con.setRequestProperty("Authorization", "key="+

↪→ FIREBASE_SERVER_KEY);

11 con.setRequestProperty("Content-Type", "application/json;

↪→ charset=UTF-8");

12

13 // Send POST body

14 con.setDoOutput(true);

15 DataOutputStream wr = new DataOutputStream(con.

↪→ getOutputStream());

16 BufferedWriter writer = new BufferedWriter(new

↪→ OutputStreamWriter(wr, "UTF-8"));

17 writer.write(n.toJSON());

18

19 // close output stream

20 writer.close();

21 wr.close();

22

23 // send request

24 con.connect();

25 }

26 catch(Exception e){

27 e.printStackTrace();

28 }

29 }
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