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Abstract 

Higher order boundary value problem which are known to arise in the study of astrophysics, 

hydrodynamic and hydromagnetic stability, fluid dynamics, astronomy, beam and long wave 

theory, engineering and applied physics. In this thesis under the title “Numerical Solution of 

Higher Order Boundary Value Problem by Exp-Function Method”, two problems have been 

studied. 

Firstly, we discuss the propagation of nonlinear kinky periodic wave and breather wave for the 

dominant nonlinear pseudo-parabolic physical models: the one-dimensional Oskolkov equation 

is explored. By executing Exp-Function method, compilation of disguise adaptation of exact 

nonlinear wave solutions with some noteworthy parameters for the Oskolkov equations is 

accessed. The presentation of this technique is reliable, direct, and easy to execute contrasted 

with other existing strategies. 

Secondly, there are many methods to solve Fisher’s equation, but each method leads to single  

special solution. In this thesis, a new method, namely the Exp-Function method, is employed to 

solve the Fisher’s equation. The obtained results are shown graphically. The generalized solution 

with some free parameters might imply some fascinating meanings hidden in the Fisher’s 

equation. 
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Chapter 1 

Introduction 

This thesis is concern with numerical solutions of higher order boundary value problem by Exp-

function method. In thesis Oskolkov equation and Fisher’s equation are solved by Exp-function 

method. 

The mathematical model of physical phenomena usually results in non-linear equations, which 

may be algebra, ordinary differential, partial differential, integral or combination of these. The 

non-linear equations may contain one or several independent variables. The solutions of these 

non-linear systems are dominated by their singularities (if exist). A value of independent variable 

(or variables) for which the function is undefined is known as a singularity of the function. 

Singularity plays an important role in many reflect some changes in the nature of the flow and 

their study is of great practical interest. Sometimes it is very difficult to find out the exact 

solution of physical problems. Particularly in statistical mechanics, there a large number of 

problems for which the first few terms of the power series may be obtained exactly while the 

exact solution is unobtainable. On the other corresponding function is not known, then it 

becomes difficult to reproduce the function from the given power series. However, one can study 

their singularities by some power series approximant methods. In order to study these problems 

many powerful techniques have been used to find the power series coefficients. At the same time 

a variety of methods have been introduced for getting the required information about the 

singularities by using a finite number of series coefficients. 

1.2 Motivation 

There are many methods to solve non-linear higher order differential equations, but each method 

can only lead to special solution. A new method, namely the Exp-function method, is employed 

to solve non-linear higher order differential equations. The obtained result includes all solutions 

in open literature as special cases, and the generalized solution with some free parameters might 

imply some fascinating meanings latent in the non-linear higher order differential equations. 
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In the Exp-function method, we can solve non-linear higher order differential equations without 

their boundary conditions. So in this thesis, I have motivated to solve the Fisher’s and Oskolkov 

equations in the Exp-function method with their free boundary conditions. 

1.3 Literature Review 

Higher order boundary value problems occur in the study of fluid dynamics, astrophysics, 

hydrodynamic, hydromagnatic stability, astronomy, beam and long wave theory, induction 

motors, engineering, and applied physics. The boundary value problems of higher order have 

been examined due to their mathematical importance and applications in diversified applied 

science. Boutayeb and Twizell [2] used finite difference method to solve eighth order boundary 

value problem. Noor and Mohyud Din [25] solved the same order boundary value problem by 

variational iteration decomposition method. Siddiqi et al. [30] used the variational iteration 

technique for the solution of the eleventh order boundary value problem. Wazwaz [9] used the 

modified decomposition method for solving linear and nonlinear boundary value problems of 

tenth-order and twelfth-order. Adeosum et al. [32] presented the variational iteration method 

(VIM) to find the approximate solutions of linear and nonlinear thirteenth order boundary value 

problems. In the last few decennary, the study of nonlinear evolution equations established much 

concentration in diverse fields of nonlinear science, such as fluid mechanics, nuclear physics, 

solid-state physics, plasma physics, chemical physics, optical fiber and geochemistry. Many 

scholars planned through NEEs to construct traveling wave solution by implement several 

methods. The procedures that are well established in recent literature such as extended 

Kudryashov method [14], New extended (G’/G) expansion method [17] trial solution method [3]. 

Roshid [26] showed exact and explicit traveling wave solutions to two nonlinear evolution 

equations which describe incompressible viscoelastic Kelvin vogit-fluid. Turgutet al. [7] 

Propagation of nonlinear shock waves for the generalized Oskolkov equation and its dynamic 

motions in the presence of an external periodic perturbation by implement in this method. 

Sviridyuk [15] showed on the stability of solutions of the Oskolkov equations on a graph. In 

2006, He and Wu [20] have introduced the Exp-function method to obtain the solitary solutions 

and the periodic solutions of nonlinear wave equations. Wu [34] discussed Exp-function method 

and its application to nonlinear equations. Chun [11] obtained new solitary wave solutions to 
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nonlinear evolution equations by the Exp-function method. Ebaid [4] showed the possibility of 

solving Burgers equation by the exp-function method. He also obtained the exact solutions for 

the KdV equation and the extended KdV equation and exact solitary wave solutions for some 

nonlinear evolution equations via this method. The method was also used to solve different 

nonlinear wave equations, generalized Klein–Gordon equation [5], evolution equations with 

nonlinear terms of any orders [16], (2+1)-dimensional Konopelchenko-Dubrovsky equations [31] 

the Schwarzian Korteweg-de Vries equation [18], Broer-Kaup-Kupershmidt equations [8] 

nonlinear evolution equations with variable coefficients [1] fifth order KdV equation and 

modified Burgers equation [19]. Feng [24] presented the higher-order soliton, breather, and 

rogue wave solutions of the coupled nonlinear Schrödinger equation by applying the DT method. 

Al-Khaled [23] presented a sin collocation method to study numerical solutions of nonlinear 

reaction diffusion Fisher’s equation. Rajni and Mittal [29] describes numerical study of reaction 

diffusion Fisher’s equation by fourth order cubic B-spline collocation method. Eisa [13] 

represented numerical solution of Fisher’s equation using finite difference method. Numerous 

complex phenomena in real life are modeled by nonlinear evolution equations. Pseudo parabolic 

model is one kind of partial differential equations in which the time derivative emerged in 

highest order derivative and they have been exploiting for different areas of mathematics and 

physics such as instance, for fluid flow in fissured rock, consolidation of clay, shear in second-

order fluids, thermodynamics and propagation of long waves of small amplitude. Nowadays, 

much attention has been paid to investigate NEEs such as Pseudo parabolic equation [27]. It is 

important to note that a completely integerable Pseudo parabolic model provides innovative and 

explicit different type exact traveling wave solution. Shuimeng [36] obtain N-soliton solutions of 

the KP equation used Exp-function method. Wu [33] used Exp-function method get solitary 

solutions, periodic solutions and compacton-like solutions. Chang [22] applied the Exp-function 

method to solve a system of nonlinear PDEs, and some new exact solitary solutions are obtained 

with some free parameters. Yildrim [10] solved nonlinear reaction-diffusion equation arising 

mathematical biology by the application of Exp-function method. Ji-Huan [21] used the Exp-

function method to show the generalized solitary solution and compacton-like solution of the 

Jaulent-Miodek equations. Chun [12] find soliton and periodic solutions for the fifth- order 

Korteweg-de Vries (KdV) equation with the Exp-function method. Qiuand Sloan [35] solved the 

Fisher’s equation by moving mesh method and showed that moving mesh methods produce 
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much better results if the monitor function is chosen to suit the proper-ties of the differential 

equation and of the numerical solution. In 2005, Anguelov et al. [28] solved the problem 𝑢𝑡 =

𝑢𝑥𝑥 + 𝑢(1 − 𝑢) by using a periodic initial condition with θ-nonstandard method. They 

concluded that their method is elementarily stable in the limit case of space-independent 

variable, stable with respect to the boundedness and positivity property and finally stable with 

respect to the conservation of energy in the stationary case. 

 

1.4 Objectives of The Thesis 

The primary objective is to numerically investigate the performance of exp-function method over 

higher order boundary value problem. The specific aims are: 

 To use the exp-function method to solve different higher order boundary value problems. 

 To analyze the alternative ways of solving higher order boundary value problem by exp-

function method. 

 To compare the results found from this study with other related published works to 

validate the computational procedure. 

 

1.5 Outline of The Thesis 

In chapter one, the introductory discussions, motivations, literature review and objectives are 

discussed. Some basic definitions and some basic formula are given in the chapter two. The idea 

and method of the Exp-function method and some theorem are also given in this chapter. In 

chapter three, the analytic results of the Oskolkov and Fisher’s equations in the Exp-function 

method without their boundary conditions are discussed. The numerical result discussion of the 

Oskolkov and Fisher’s equations in the Exp-function method are also discussed in this chapter. 

And finally, in the chapter four, the conclusion of the thesis and my future work are given. 
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Chapter 2 

Mathematical Preliminaries 

2.1 Introduction 

Real-life problems are mainly modeled by partial differential equations (PDEs) with applications 

to engineering, physics, chemistry, ecology, biology, and other related fields of science. 

Partial Differential Equation can be of different forms: 

(i) linear or nonlinear, 

(ii) homogeneous or non-homogeneous, 

(iii) elliptic, hyperbolic, or parabolic PDEs  

Have some specifications that give the information how smooth the solution is, how rapid 

information propagates, and what is the impact of initial and boundary conditions (which help to 

find if a particular approach is suitable to the problem being portrayed by the PDEs). 

2.2 Differential Equation 

An equation involving derivatives of one or more dependent variables with respect to one or 

more independent variables is called a differential equation. 

For example of differential equations we list the following: 

𝑑2𝑦

𝑑𝑥2 + 𝑥𝑦 (
𝑑𝑦

𝑑𝑥
)

2

= 0          (2.1) 

𝑑4𝑥

𝑑𝑡4 + 5
𝑑2𝑥

𝑑𝑡2 + 3𝑥 = 𝑠𝑖𝑛𝑡          (2.2) 

𝜕𝑣

𝜕𝑠
+

𝜕𝑣

𝜕𝑧
= 𝑣          (2.3) 

From the brief list of differential equations in first example it is clear that the various variables 

and derivatives involved in a differential equation can occur in a verity of ways. 

2.2.1 Ordinary Differential Equation 

A differential equation involving ordinary derivatives of one or more dependent variables with 

respect to a single independent variable is called an ordinary differential equation. 
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Example: 

𝑑2𝑦

𝑑𝑥2 + 𝑥𝑦 (
𝑑𝑦

𝑑𝑥
)

2

= 0          (2.4) 

𝑑4𝑥

𝑑𝑡4 + 5
𝑑2𝑥

𝑑𝑡2 + 3𝑥 = 𝑠𝑖𝑛𝑡           (2.5 

In Equation (2.4) the variable 𝑥 is the single independent variable where as 𝑦 is dependent 

variable. In Equation (2.5) the independent variable is 𝑡, where as 𝑥 is dependent. 

2.2.2 Partial Differential Equation 

A differential equation involving partial derivatives of one or more dependent variables with 

respect to more than one independent variable is called a partial differential equation. 

Example: 
𝜕𝑢

𝜕𝑠
+

𝜕𝑢

𝜕𝑡
= 𝑣          (2.6) 

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2 = 0          (2.7) 

In Equation (2.6) the variables 𝑠 and 𝑡 are independent variables and 𝑣 is a dependent variable. 

In equation (2.7) there are three independent variables 𝑥, 𝑦 and 𝑧, in the equation where as 𝑢 is 

dependent. 

More about Partial Differential Equation 

In Mathematics, a partial differential equation is one of the types of differential equations, in 

which the equation contains unknown multi variables with their partial derivatives. It is a special 

case of an ordinary differential equation. 

2.2.3 Types of Partial Differential Equation 
The different types of partial differential equations are: 

(i) First-order Partial Differential Equation 

(ii) Linear Partial Differential Equation 

(iii) Quasi-Linear Partial Differential Equation 

(iv) Homogeneous Partial Differential Equation 

Let us discuss these types of PDEs here. 

 (i) First-Order Partial Differential Equation 
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In Math’s, when we speak about the first-order partial differential equation, then the 

equation has only the first derivative of the unknown function having ‘m’ variables. It is 

expressed in the form of; 

   𝐹(𝑥1, ⋯ ⋯ ⋯ 𝑥𝑚 , 𝑢1, 𝑢𝑥1, ⋯ ⋯ ⋯ ⋯ 𝑢𝑥𝑚) = 0   

 (ii) Linear Partial Differential Equation 

If the dependent variable and all its partial derivatives occur linearly in any PDE then such an 

equation is called linear PDE otherwise a nonlinear PDE. 

Example: 

  𝐴
𝜕2𝑢

𝜕𝑥2 + 𝐵
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2 + 𝐷
𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑦
+ 𝐹𝑢 = 0 

  (x2 + y2)
∂u

∂t
+

∂2u

∂x ∂y
− 3u = 0 

 (iii) Quasi-Linear Partial Differential Equation 

A PDE is said to be quasi-linear if all the terms with the highest order derivatives of dependent 

variables occur linearly, that is the coefficient of those terms are functions of only lower-order 

derivatives of the dependent variables. However, terms with lower-order derivatives can occur in 

any manner. 

Example: 

  𝑢𝑥
𝜕2𝑢

𝜕𝑥2 + 𝑢2𝑥𝑦
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑢𝑦

𝜕2𝑢

𝜕𝑦2 + (
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

+ 𝑢3 = 0  

 (iv) Homogeneous Partial Differential Equation 

If all the terms of a PDE contain the dependent variable or its partial derivatives then such a PDE 

is called non-homogeneous partial differential equation or homogeneous otherwise. In the above 

four examples, Example  
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   ∂2u

∂t2 − c2 ∂2u

∂x2 = 0 

   ∂u

∂t
− T

∂2u

∂x2 = 0 

2.2.4 Initial Value Problem 

An Initial Value Problem is a differential equation along with an appropriate of initial conditions. 

The following is an initial value problem 

4𝑥2𝑦′′ + 12𝑥𝑦′ + 3𝑦 = 0; 𝑦(4) = 8, 𝑦′(4) = − 3 64⁄          (2.8) 

2.2.5 Boundary Value Problem 

If the given conditions are given at more than one point and the differential equation is of order 

two or greater, it is called a boundary value problem. A Boundary Value Problem can have none, 

one, or many solutions. 

Example 

𝑑2𝑦

𝑑𝑥2 − 𝑦 = 0; 𝑦(0) = 1, 𝑦(𝜋 2⁄ ) = 2.                  (2.9) 

2.3 Non Linear Equation 

A nonlinear system of equations is a set of equations where one or more terms have a variable of 

degree two or higher and/or there is a product of variables in one of the equations. Most real-life 

physical systems are non-linear systems, such as the weather. 

2.3.1 Higher Order Non Linear Differential Equation  
We shall concerned with sixth-order nonlinear differential equations of the form  

   𝑑6𝑥

𝑑𝑡6 = 𝐹 (𝑥,
𝑑𝑥

𝑑𝑡
)      

As a specific example of such an equation we list the important Van der Pol equation  

   𝑑2𝑥

𝑑𝑡2 + 𝜇(𝑥2 − 1)
𝑑𝑥

𝑑𝑡
+ 𝑥 = 0     
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Where, 𝜇 is a positive constant. 

2.3.2 Oskolkov Equation  

It’s some kind of non-linear partial differential equation used to model the propagation of shock 

waves in certain materials. 

Example: 

The (1+1) dimensional Oskolkov equation is in the following from 

   𝑢𝑡 − 𝛽𝑢𝑥𝑥𝑡 − 𝛼𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0     

2.3.3 Fisher’s Equation  

Fisher's equation, which describes a balance between linear diffusion and nonlinear reaction or 

multiplication. 

Example: 

We consider the reaction diffusion equation is 

   𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢(1 − 𝑢)       

2.4 The Exp-Function Method 

In this section we state some basic theorem describing general properties of exp-function method 

whose material of this section can be found in [6] 

The Exp-function method has been widely used to solve different kinds of nonlinear partial 

differential equations. These nonlinear partial differential equations are transformed first into 

nonlinear ordinary differential equations and then the ansatz of the Exp-function method is 

𝑢(𝜂) =
∑ 𝑎𝑛𝑒𝑥𝑝(𝑛𝜂)𝑑

𝑛=−𝑐

∑ 𝑏𝑚𝑒𝑥𝑝(𝑚𝜂)𝑞
𝑚=−𝑝

 applied to obtain the solution. However, a part of the solution using this 

method is to construct the relations between c, p, d and q by balancing the highest order linear 
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term with the highest order nonlinear term. It is proved in this thesis that c = d and p = q  are 

the only relations that can be obtained by applying this method to any nonlinear ordinary 

differential equation. Therefore, the additional calculations of balancing the highest order linear 

term with the highest order nonlinear term are not longer required in future. Hence, the method 

becomes more straightforward. 

2.4.1 Method 

Consider the given (1+1)-dimensional nonlinear wave equation  

  𝑁(𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑡𝑡, 𝑢𝑡𝑥, ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ) = 0                 (2.10) 

Or, the (2+1)-dimensional nonlinear PDE 

  𝑁(𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑦,𝑢𝑥𝑥, 𝑢𝑡𝑡 , 𝑢𝑦𝑦 , 𝑢𝑥𝑦 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ) = 0                (2.11) 

Seeking for the wave solution for equation (2.10) requires the transformation: 

 𝑢 = 𝑢(𝜂),                    𝜂 = 𝜇(𝑥 − 𝜔𝑡).                    (2.12) 

For equation (2.11), the wave solution requires the transformation: 

 𝑢 = 𝑢(𝜉),                    𝜂 = 𝑥 + 𝛼𝑦 + 𝛽𝑡.                   (2.13) 

Consequently, equation (2.10) is reduced to the ODE: 

  𝑁(𝑢, −𝜇𝜔𝑢′, 𝜇𝑢′, 𝜇2𝑢′′, 𝜇2𝜔2𝑢′′, −𝜇2𝑢′′, ⋯ ⋯ ⋯ ) = 0, 𝑢 = 𝑢(𝜂)               (2.14) 

And, equation (2.11) is reduced to 

 𝑁(𝑢, 𝛽𝑢′, 𝑢′, 𝛼𝑢′, 𝑢′′, 𝛽2𝑢′′, 𝛼2𝑢′′, 𝛼𝑢′′ ⋯ ⋯ ⋯ ) = 0, 𝑢 = 𝑢(𝜉).                (2.15) 

The Exp-function method anstaz is expressed in the form: 

 𝑢(𝜂) =
∑ 𝑎𝑛𝑒𝑥𝑝(𝑛𝜂)𝑑

𝑛=−𝑐

∑ 𝑏𝑚𝑒𝑥𝑝(𝑚𝜂)𝑞
𝑚=−𝑝

=
𝑎−𝑐𝑒𝑥𝑝(−𝑐𝜂)+⋯⋯⋯⋯+𝑎𝑝𝑒𝑥𝑝(𝑝𝜂)

𝑏−𝑑𝑒𝑥𝑝(−𝑑𝜂)+⋯⋯⋯⋯+𝑏𝑞𝑒𝑥𝑝(𝑞𝜂)
,                  (2.16) 

Which can be applied to solve equation (2.14), a similar anstaz can be also applied to solve 

equation (2.15). 
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2.4.2 General formula 

On using the ansatz given by equation (2.4.1.4) then the following derivatives are resulted 

 𝑢(1)(𝜂) =
𝜏1 exp[−(𝑐+𝑑)𝜂]+⋯⋯𝜎1 exp[(𝑝+𝑞)𝜂]

ƍ1 exp[(−2𝑑)𝜂]+⋯⋯Г1 exp[(2𝑞)𝜂]
, 

 𝑢(2)(𝜂) =
𝜏2 exp[−(𝑐+3𝑑)𝜂]+⋯⋯𝜎2 exp[(𝑝+3𝑞)𝜂]

ƍ2 exp[(−4𝑑)𝜂]+⋯⋯Г2 exp[(4𝑞)𝜂]
, 

 𝑢(3)(𝜂) =
𝜏3 exp[−(𝑐+7𝑑)𝜂]+⋯⋯𝜎3 exp[(𝑝+7𝑞)𝜂]

ƍ3 exp[(−8𝑑)𝜂]+⋯⋯Г3 exp[(8𝑞)𝜂]
, 

 𝑢(4)(𝜂) =
𝜏4 exp[−(𝑐+15𝑑)𝜂]+⋯⋯𝜎4 exp[(𝑝+15𝑞)𝜂]

ƍ1 exp[(−16𝑑)𝜂]+⋯⋯Г4 exp[(16𝑞)𝜂]
,                  (2.17) 

Where,𝜏𝑖, 𝜎𝑖, 𝜚𝑖 and Г𝑖 are all constants. Therefore, the following general derivative formula is 

obtained 

 𝑢(𝑟)(𝜂) =
𝜏𝑟 exp[−(𝑐+(2𝑟−1)𝑑)𝜂]+⋯⋯+𝜎𝑟 exp[(𝑝(2𝑟−1)𝑞)𝜂]

ƍ𝑟 exp[(−2𝑟𝑑)𝜂]+⋯⋯+Г𝑟 exp[(2𝑟𝑞)𝜂]
.                 (2.18) 

This formula for the r-derivative of 𝑢(𝜂) will be used in the next section to explore the 

mathematical aspect of the Exp-function ansatz. 

2.4.3 Theorems 

Theorem 1: Suppose that u(r)and uγ are respectively the highest order linear term and the 

highest order nonlinear term of a nonlinear ODE, where r and γ are both positive integers. Then 

the balancing procedure using the Exp-function ansatz: 𝑢(𝜂) =
∑ 𝑎𝑛𝑒𝑥𝑝(𝑛𝜂)𝑑

𝑛=−𝑐

∑ 𝑏𝑚𝑒𝑥𝑝(𝑚𝜂)𝑞
𝑚=−𝑝

 leads to c =

d and p = q, ∀ r ≥ 1, ∀γ ≥ 2. 

Proof. Assuming that γ is a positive integer then have from the Exp-function ansatz: 

 𝑢𝛾 = (
∑ 𝑎𝑛𝑒𝑥𝑝(𝑛𝜂)𝑑

𝑛=−𝑐

∑ 𝑏𝑚𝑒𝑥𝑝(𝑚𝜂)𝑞
𝑚=−𝑝

)
𝛾

=
𝑎−𝑐

𝛾
exp(−𝛾𝑐𝜂)+⋯⋯+𝑎𝑝

𝛾
exp (𝛾𝑝𝜂)

𝑏−𝑑
𝛾

exp(−𝛾𝑑𝜂)+⋯⋯+𝑏𝑞
𝛾

exp(𝛾𝑞𝜂)
                 (2.19) 

In order to balance the linear term of the highest derivative u(r) with the highest nonlinear term 

uγ, we first rewrite u(r) as    𝑢(𝑟)(𝜂) =

𝜏𝑟 exp[−(𝑐+(2𝑟−1)𝑑)𝜂]+⋯⋯+𝜎𝑟 exp[(𝑝(2𝑟−1)𝑞)𝜂]

ƍ𝑟 exp[(−2𝑟𝑑)𝜂]+⋯⋯+Г𝑟 exp[(2𝑟𝑞)𝜂]
×

𝑏−𝑑
𝛾

exp(−𝛾𝑑𝜂)+⋯⋯+𝑏𝑞
𝛾

exp(𝛾𝑞𝜂)

𝑏−𝑑
𝛾

exp(−𝛾𝑑𝜂)+⋯⋯+𝑏𝑞
𝛾

exp(𝛾𝑞𝜂)
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  =
𝜏𝑟𝑏−𝑑

𝛾
exp[−(𝑐+(2𝑟−1+𝛾)𝑑)𝜂]+⋯⋯+𝜎𝑟𝑏𝑞

𝛾
exp[(𝑝(2𝑟−1+𝛾)𝑞)𝜂]

ƍ𝑟𝑏−𝑑
𝛾

exp[(−2𝑟+𝛾)𝑑𝜂]+⋯⋯+Г𝑟𝑏𝑞
𝛾

exp[(2𝑟+𝛾)𝑞𝜂]
.                (2.20) 

Also from equation (2.19) we obtain  

 𝑢𝛾 =
𝑎−𝑐

𝛾
exp(−𝛾𝑐𝜂)+⋯⋯+𝑎𝑝

𝛾
exp (𝛾𝑝𝜂)

𝑏−𝑑
𝛾

exp(−𝛾𝑑𝜂)+⋯⋯+𝑏𝑞
𝛾

exp(𝛾𝑞𝜂)
×

ƍ𝑟 exp[(−2𝑟𝑑)𝜂]+⋯⋯+Г𝑟 exp[(2𝑟𝑞)𝜂]

ƍ𝑟 exp[(−2𝑟𝑑)𝜂]+⋯⋯+Г𝑟 exp[(2𝑟𝑞)𝜂]
 

  =
ƍ𝑟𝑎−𝑐

𝛾
exp[(−2𝑟𝑑+𝛾𝑐)𝜂]+⋯⋯+Г𝑟𝑎𝑝

𝛾
exp[(2𝑟𝑞+𝛾𝑝)𝜂]

ƍ𝑟𝑏−𝑑
𝛾

exp[(−2𝑟+𝛾)𝑑𝜂]+⋯⋯+Г𝑟𝑏𝑞
𝛾

exp[(2𝑟+𝛾)𝑞𝜂]
               (2.21) 

On balancing the lowest and the highest order of the Exp-function in Eqs. (2.20) and (2.21), it 

then follows  

  −(𝑐 + (2𝑟 − 1 + 𝛾)𝑑) = −(2𝑟𝑑 + 𝛾𝑐) 

  𝑝 + (2𝑟 − 1 + 𝛾)𝑞 = (2𝑟𝑞 + 𝛾𝑝).                   (2.22) 

Simplifying the last two equations yields  

  (𝛾 − 1)𝑑 = (𝛾 − 1)𝑐, 

  (𝛾 − 1)𝑝 = (𝛾 − 1)𝑞.                     (2.23) 

Noting that 𝛾 ≥ 2, we find from Eqs. (2.23) that c=d and p=q, and this complete the proof. 

Theorem 2: Suppose that u(r)and u(s)u(k) are respectively the highest order linear term and 

the highest order nonlinear term of a nonlinear ODE, where r, s and k are all positive integers. 

Then the balancing procedure using the Exp-function ansatz leads to c = d and p = q, ∀ r, s, k ≥

1. 

Proof. Let r, s, and k be positive integers. The nonlinear term u(s)u(k) can be evaluated by using 

the general formula given by Eq.(2.18) and the Exp-function ansatz as  

 𝑢(𝑠)𝑢𝑘 =
𝜏𝑠 exp[−(𝑐+(2𝑠−1)𝑑)𝜂]+⋯+𝜎𝑠 exp[(𝑝(2𝑠−1)𝑞)𝜂]

ƍ𝑠 exp[(−2𝑠𝑑)𝜂]+⋯+Г𝑠 exp[(2𝑠𝑞)𝜂]
×

𝑏−𝑐
𝑘 exp(−𝑘𝑐𝜂)+⋯+𝑏𝑝

𝑘 exp(𝑘𝑝𝜂)

𝑏−𝑑
𝑘 exp(−𝑘𝑑𝜂)+⋯+𝑏𝑞

𝑘 exp(𝑘𝑞𝜂)
 

 =
𝜏𝑠𝑏−𝑐

𝑘 exp[−((𝑘+1)𝑐+(2𝑠−1)𝑑)𝜂]+⋯+𝜎𝑠𝑏𝑝
𝑘 exp[((𝑘+1)𝑝+(2𝑠−1)𝑞)𝜂]

ƍ𝑠𝑏−𝑑
𝑘 exp[(−2𝑠𝑑)𝜂]+⋯+Г𝑠𝑏𝑞

𝑘 exp[(2𝑠+𝑘)𝑞𝜂]
                 (2.24) 

Multiplying both numerator and denominator of the R.H.S of this equation by 

  (ƍ𝑟 exp[(−2𝑟𝑑)𝜂] + ⋯ ⋯ + Г𝑟 exp[(2𝑟𝑞)𝜂]), 
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We then get 

 𝑢(𝑠)𝑢𝑘 =
𝛼1 exp[−((𝑘+1)𝑐+(2𝑠+2𝑟−1)𝑑)𝜂]+⋯+𝛼2 exp[((𝑘+1)𝑝+(2𝑠+2𝑟−1)𝑞)𝜂]

𝛽1 exp[−(2𝑠+2𝑟+𝑘)𝑑𝜂]+⋯+𝛽2 exp[(2𝑠+2𝑟+𝑘)𝑞𝜂]
,               (2.25) 

Where 𝛼1, 𝛼2, 𝛽1, 𝑎𝑛𝑑 𝛽2 are constants and given as  

  𝛼1 = ƍ𝑟𝜏𝑠𝑏−𝑐
𝑘 ,             𝛼2 = Г𝑟𝑏𝑝

𝑘𝜎𝑠, 

  𝛽1 = ƍ𝑟ƍ𝑠𝑏−𝑑
𝑘 ,            𝛽2 = Г𝑟Г𝑠𝑏𝑞

𝑘,                   (2.26) 

On multiplying both numerator and denominator of the R.H.S of u(r) by 

  (ƍ𝑠𝑏−𝑑
𝑘 exp[(−(2𝑠 + 𝑘))𝑑𝜂] + ⋯ ⋯ + Г𝑠𝑏𝑞

𝑘 exp[(2𝑠 + 𝑘)𝑞𝜂]), 

We get 

 𝑢(𝑟) =
𝛿1exp [−(𝑐+(2𝑠+2𝑟+𝑘−1)𝑑)𝜂]+⋯⋯⋯+𝛿2exp [(𝑝+(2𝑠+2𝑟+𝑘−1)𝑞)𝜂]

β1exp [−(2𝑠+2𝑟+𝑘)𝑑𝜂]+⋯⋯⋯+𝛽2exp [(2𝑠+2𝑟+𝑘)𝑞𝜂]
,                (2.27) 

Where 𝛿1 𝑎𝑛𝑑 𝛿2 are given by 

  𝛿1 = 𝜏𝑟ƍ𝑠𝑏−𝑑
𝑘 ,             𝛿2 = 𝜎𝑟Г𝑠𝑏𝑞

𝑘.                   (2.28) 

In view of Eqs.(2.25) and (2.27) and balancing the lowest and the highest order of the Exp-

function, we get  

  −((𝑘 + 1)𝑐 + (2𝑠 + 2𝑟 − 1)𝑑) = −(𝑐 + (2𝑠 + 2𝑟 + 𝑘 − 1)𝑑), 

 (𝑘 + 1)𝑝 + (2𝑠 + 2𝑟 − 1)𝑞 = 𝑝 + (2𝑠 + 2𝑟 + 𝑘 − 1)𝑞.                 (2.29) 

These equations can be also simplified to give c=d and p=q. 

Theorem 3: Let u(r)and (u(s))Ω be respectively the highest order linear term and the highest 

order nonlinear ODE, where r, s and Ω are all positive integers. Then the balancing procedure 

using the Exp-function ansatz leads to c=d and p=q, ∀𝑟, 𝑠 ≥ 1, ∀𝛺 ≥ 2. 

Proof. Proceeding as above, the nonlinear term (u(s))Ω can be evaluated by using the general 

formula given by Eq.(2.18) as 

 (u(s))Ω ==
𝜖1 exp[−[(𝑐+(2𝑠−1)𝑑)𝛺+2𝑟𝑑]𝜂+⋯⋯+𝜖2 exp[[(𝑝+(2𝑠−1)𝑞)𝛺+2𝑟𝑞]𝜂]

𝜖3 exp[−(2𝑠𝛺+2𝑟)𝑑𝜂]+⋯⋯+𝜖4 exp[(2𝑠𝛺+2𝑟)𝑞𝜂]
,               (2.30) 

Where, 𝜖1, 𝜖2, 𝜖3 and 𝜖4 are constants. Also u(r) can be written as 
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 u(r) =
𝜒1 exp[−[(𝑐+(2𝑟−1)𝑑)+2𝑠𝛺𝑑)𝜂]+⋯⋯+𝜒2 exp[(𝑝+(2𝑟−1)𝑞+2𝑠𝛺𝑞)𝜂]

𝜒3 exp[−(2𝑠𝛺+2𝑟)𝑑𝜂]+⋯⋯+𝜒4𝜖 exp[(2𝑠𝛺+2𝑟)𝑞𝜂]
,                (2.31) 

Where,𝜒1, 𝜒2, 𝜒3and𝜒4 are also constants. The balancing procedure leads to the system: 

  −[(𝑐 + (2𝑠 − 1)𝑑)𝛺 + 2𝑟𝑑 = −(𝑐 + (2𝑟 − 1)𝑑) + 2𝑠𝛺𝑑), 

  (𝑝 + (2𝑠 − 1)𝑞)𝛺 + 2𝑟𝑞 = (𝑝 + (2𝑟 − 1)𝑞 + 2𝑠𝛺𝑞.                (2.32) 

On simplifying this system we then have 

  (𝛺 − 1)(𝑐 − 𝑑) = 0, 

  (𝛺 − 1)(𝑝 − 𝑞) = 0.                     (2.33) 

Noting that 𝛺 ≠ 1 the system above requires that c=d and p=q, and this complete the proof. 

Theorem 4: Suppose that 𝑢(𝑟)and(𝑢(𝑠))𝛺𝑢𝜆are respectively the highest order linear term and 

the highest order nonlinear term of a nonlinear ODE, where 𝑟, 𝑠, 𝛺 and 𝜆 are all positive integers. 

Then the balancing procedure used the Exp-function leads to c=d and p=q, ∀𝑟, 𝑠, 𝛺, 𝜆 ≥ 1. 

Proof. On using (2.4.1.4) and (2.4.2.2) we can rewrite 𝑢(𝑟)and (𝑢(𝑠))𝛺𝑢𝜆as 

(𝑢(𝑠))𝛺𝑢𝜆 =
𝜖5 exp[−[(𝑐+(2𝑠−1)𝑑)𝛺+2𝑟𝑑+𝜆𝑐]𝜂+⋯⋯+𝜖6 exp[[(𝑝+(2𝑠−1)𝑞)𝛺+2𝑟𝑞+𝜆𝑝]𝜂]

𝜖7 exp[−(2𝑠𝛺+2𝑟+𝜆)𝑑𝜂]+⋯⋯+𝜖8𝜖 exp[(2𝑠𝛺+2𝑟+𝜆)𝑞𝜂]
               (2.34) 

And 

 𝑢(𝑟) =
𝜒5 exp[−[(𝑐+(2𝑟+2𝑠𝛺+𝜆−1)𝑑)𝜂]+⋯⋯+𝜒6 exp[(𝑝+(2𝑟+2𝑠𝛺+𝜆−1)𝑞)𝜂]

𝜒7 exp[−(2𝑠𝛺+2𝑟+𝜆)𝑑𝜂]+⋯⋯+𝜒8 exp[(2𝑠𝛺+2𝑟+𝜆)𝑞𝜂]
                (2.35) 

Where, 𝜖𝑖 and 𝜒𝑖 𝑖 = 5, ⋯ ⋯ ⋯ ⋯ ⋯ 8, are constants. From Eqs. (2.34) and (2.35) we obtain  

  −[(𝑐 + (2𝑠 − 1)𝑑)𝛺 + 2𝑟𝑑 + 𝜆𝑐] = −[(𝑐 + (2𝑟 + 2𝑠𝛺 + 𝜆 − 1)𝑑), 

  (𝑝 + (2𝑠 − 1)𝑞)𝛺 + 2𝑟𝑞 + 𝜆𝑝 =  𝑝 + (2𝑟+2𝑠𝛺 + 𝜆 − 1)𝑞,               (2.36) 

Which can be simplified as 

  (𝜆 + 𝛺 − 1)(𝑐 − 𝑑) = 0, 

  (𝜆 + 𝛺 − 1)(𝑐 − 𝑑) = 0.                    (2.37) 

Noting that 𝜆 + 𝛺 − 1 ≠ 0, ∀ 𝜆, 𝛺 ≥ 1, we obtain c=d and p=q, and this complete the proof. 
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Chapter 3 

Solution of Higher Order Boundary Value 

Problems 

3.1 Introduction 

The problems of Oskolkov and Fisher’s equation have been solved by Exp-function method. 

Oskolkov and Fisher’s equation are most widely studied problems in which are mostly used in 

modeling transport of air, adsorption of pollutants in soil, diffusion of neutrons, food processing, 

modeling of biological and ecological systems, modeling of semiconductors, oil reservoir flow 

transport, fluid mechanics, nuclear physics, solid-state physics, plasma physics, chemical 

physics, optical fiber and geochemistry. There are many methods to solve Fisher’s and Oskolkov 

equations, but each method can only lead to special single solution. In this thesis, a new method, 

namely the Exp-function method, is employed to solve the Fisher’s and Oskolkov equation. The 

obtained result includes all solutions in open literature as special cases, and the generalized 

solution with some free parameters might imply some fascinating meanings latent in the Fisher’s 

and Oskolkov equations. For this reason, we can solve a higher order boundary value problem 

without its boundary conditions. So, in this thesis, we have solved the Fisher’s and Oskolkov 

equations with their free boundary conditions. In this thesis, we also implement such figures by 

solving the Fisher’s and Oskolkov equations we have computer software to get different shape of 

figure. 

3.2 Oskolkov Equation 

In this subsection we implement the Exp-function method for (1+1) Dimensional Oskolkov 

Equation in the following form  

   𝑢𝑡 − 𝛽𝑢𝑥𝑥𝑡 − 𝛼𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0      (3.2.1) 
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Where 𝛼, 𝛽 are arbitrary constant and 𝑢(𝑥, 𝑡) is an unknown function . Used the traveling wave 

variable 𝑢(𝑥, 𝑡) = 𝑢(𝜂) and 𝜂 = 𝑘𝑥 − 𝜔𝑡 where k is a constant & ω is wave speed. Now we 

convert the equation (3.2.1) into the following ordinary differential equation  

   2𝑘2𝜔𝛽𝑢′′ − 2𝛼𝑘2𝑢′ − 2𝜔𝑢 + 𝑘𝑢2 = 0     (3.2.2) 

Where the prime denote the derivative with respect to η 

We know, the Exp-function method is based on the postulate that traveling wave solutions could 

expressed in the following form 

   𝑢(𝜂) =
∑ 𝑎𝑛𝑒𝑥𝑝(𝑛𝜂)𝑑

𝑛=−𝑐

∑ 𝑏𝑚𝑒𝑥𝑝(𝑚𝜂)𝑞
𝑚=−𝑝

       (3.2.3) 

             =
𝑎𝑐𝑒𝑥𝑝(𝑐𝜂)+⋯⋯⋯⋯⋯⋯⋯+𝑎−𝑑𝑒𝑥𝑝(−𝑑𝜂)

𝑏𝑝𝑒𝑥𝑝(𝑝𝜂)+⋯⋯⋯⋯⋯⋯⋯+𝑏−𝑞𝑒𝑥𝑝(−𝑞𝜂)
     (3.2.4) 

Where c, d, p and q are positive integers which are unknown to be further determined 𝑎𝑛 & 𝑏𝑚 

are unknown constants. To determine the values of 𝑐 & 𝑝. We balanced the linear term of highest 

order in equation with the highest order nonlinear term. Similarly to determine the values of d & 

q, we balanced the linear term of lowest order in equation with the lowest order nonlinear term. 

Now differentiate equation (3.2.4) with respect to η and both side squaring we get  

   𝑢′ =
𝑏𝑝𝑒𝑝𝜂𝑎𝑐𝑐𝑒𝑐𝜂−𝑏𝑝𝑝𝑒𝑝𝜂𝑎𝑐𝑒𝑐𝜂

𝑏𝑝
2𝑒2𝑝𝜂        (3.2.5) 

    =
𝑒𝑝𝜂𝑒𝑐𝜂[𝑏𝑝𝑎𝑐(𝑐−𝑝)]

𝑏𝑝
2𝑒2𝑝𝜂        (3.2.6) 

    =
𝑒(𝑝+𝑐)𝜂

𝑒2𝑝𝜂          (3.2.7) 

Here 
𝑏𝑝𝑎𝑐(𝑐−𝑝)

𝑏𝑝
2 = constant 

Again, 

   𝑢′′ =
𝑒2𝑝𝜂𝑒(𝑝+𝑐)𝜂.(𝑝+𝑐)−𝑒(𝑝+𝑐)𝜂.2𝑝.𝑒2𝑝𝜂

(𝑒2𝑝𝜂)2       (3.2.8) 

   ⇒ 𝑢′′  =
𝑒2𝑝𝜂𝑒(𝑝+𝑐)𝜂{(𝑝+𝑐)−2𝑝}

𝑒4𝑝𝜂        (3.2.9) 

   ∴ 𝑢′′  =
𝑐1𝑒(3𝑝+𝑐)𝜂

𝑐2𝑒4𝑝𝜂                  (3.2.10) 

And 

   𝑢2  =
𝑎𝑐

2.𝑒2𝑐𝜂

𝑏𝑝
2.𝑒2𝑝𝜂                  (3.2.11) 
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   𝑢′𝑢2 =
𝑒𝑝𝜂𝑒𝑐𝜂[𝑏𝑝𝑎𝑐(𝑐−𝑝)]

𝑏𝑝
2𝑒2𝑝𝜂 .

𝑎𝑐
2.𝑒2𝑐𝜂

𝑏𝑝
2.𝑒2𝑝𝜂               (3.2.12) 

    =
(𝑐−𝑝).𝑏𝑝.𝑎𝑐.𝑎𝑐

2.𝑒3𝑐𝜂+𝑝𝜂

𝑏𝑝
4.𝑒4𝑝𝜂                 (3.2.13) 

    =
𝑐3.𝑒(3𝑐+𝑝)𝜂

𝑐4.𝑒4𝑝𝜂
                 (3.2.14) 

Balanced the highest order of Exp-function in equation (3.2.10) & (3.2.14), we have 3𝑝 + 𝑐 =

3𝑐 + 𝑝, and we obtain 𝑝 = 𝑐. Used the same method, we can also obtain that 𝑞 = 𝑑. 

For solved, we put 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1, so equation (3.2.4) reduce to 

    𝑢(𝜂) =
𝑎1𝑒𝑥𝑝(𝜂)+𝑎0+𝑎−1𝑒𝑥𝑝(−𝜂)

𝑏1𝑒𝑥𝑝(𝜂)+𝑏0+𝑏−1𝑒𝑥𝑝(−𝜂)
              (3.2.15) 

Substituting equation (3.2.15) into equation (3.2.2) and by the help of computer program we get  

𝑐1 = −2𝜔𝛽𝑘2𝑎0𝑏1𝑏0 + 2𝜔𝛽𝑘2𝑎1𝑏0
2 + 2𝛼𝑘2𝑎0𝑏1𝑏0 − 2𝛼𝑘2𝑎1𝑏0

2 − 4𝜔𝑎0𝑏1𝑏0 + 2𝑘𝑎1𝑎0𝑏0

+ 4𝛼𝑘2𝑎−1𝑏1
2 − 4𝜔𝑎1𝑏1𝑏−1 + 2𝑘𝑎1𝑎−1𝑏1 + 𝑘𝑎1

2𝑏−1 − 2𝜔𝑎−1𝑏1
2 − 2𝜔𝑎1𝑏0

2

+ 𝑘𝑎0
2𝑏1 − 8𝛽𝜔𝑎1𝑏1𝑏−1 + 8𝛽𝜔𝑘2𝑎−1𝑏1

2 − 4𝛼𝑘2𝑎1𝑏1𝑏−1 

𝑐−1 = 2𝛼𝑘2𝑎0𝑏−1
2 − 4𝜔𝑎−1𝑏0𝑏−1 + 2𝑘𝑎0𝑎−1𝑏−1 + 𝑘𝑎−1

2 𝑏0 − 2𝜔𝑎0𝑏−1
2 − 2𝜔𝛽𝑘2𝑎−1𝑏0𝑏−1

+ 2𝜔𝛽𝑘2𝑎0𝑏−1
2 + 2𝛼𝑘2𝑎−1𝑏0𝑏−1 

𝑐2 = 2𝛼𝑘2𝑎0𝑏1
2 − 4𝜔𝑎1𝑏1𝑏0 + 2𝑘𝑎1𝑎0𝑏1 + 𝑘𝑎1

2𝑏0 − 2𝜔𝑎0𝑏1
2 − 2𝜔𝛽𝑘2𝑎1𝑏1𝑏0 + 2𝜔𝛽𝑘2𝑎0𝑏1

2

− 2𝛼𝑘2𝑎1𝑏1𝑏0 

𝑐−2 = −6𝛼𝑘2𝑎1𝑏0𝑏−1 + 6𝛼𝑘2𝑎−1𝑏1𝑏0 + 6𝜔𝛽𝑘2𝑎1𝑏0𝑏−1 + 6𝜔𝛽𝑘2𝑎−1𝑏1𝑏0

− 12𝜔𝛽𝑘2𝑎0𝑏1𝑏−1 − 2𝜔𝑎0𝑏0
2 + 𝑘𝑎0

2𝑏0 + 2𝑘𝑎1𝑎0𝑏−1 + 2𝑘𝑎1𝑎−1𝑏0

+ 2𝑘𝑎0𝑎−1𝑏1 − 4𝜔𝑎1𝑏0𝑏−1 − 4𝜔𝑎0𝑏1𝑏−1 − 4𝜔𝑎−1𝑏1𝑏0 

𝑐3 = −2𝜔𝑎1𝑏1
2 + 𝑘𝑎1

2𝑏1 

𝑐−3 = 𝑘𝑎−1
2 𝑏−1 − 2𝜔𝑎−1𝑏−1

2  

Now solved the above equations used by computer program get the following set of solutions are 

Case-1: 𝑘 = √
−1

6𝛽
, 𝜔 =

𝛼

5𝛽
, 𝑎−1 = 0, 𝑎0 = 0, 𝑎1 = −

3𝑏0
2𝛼

5𝑏−1
∙ √

−1

6𝛽
, 𝑏−1 = 𝑏−1, 𝑏0 = 𝑏0, 𝑏1 =

𝑏0
2

4𝑏−1
 

 

Now substituting all values of case -1 in equation (3.2.15) and yielding the following solution of 

equation (3.2.1) 
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   𝑢(𝜂) =
3

5

𝑏0
2𝛼(1

√−6𝛽⁄ )𝑒−𝜂

𝑏1(𝑏1𝑒𝜂+𝑏𝑜+
𝑏0

2𝑒−𝜂

4𝑏1
)
                (3.2.16) 

Similarly get solution of equation (3.2.1) for the case of 2, 3, & 4 

Case-2: 𝑘 = √
1

6𝛽
, 𝜔 =

−𝛼

5𝛽
, 𝑎−1 = 0, 𝑎0 = 𝑎0, 𝑎1 = −

5𝑎0
2𝛽

8𝛼𝑏−1
∙ √

1

6𝛽
, 𝑏−1 = 𝑏−1, 𝑏0 = −

5𝑎0𝛽

𝛼
∙

√
−1

6𝛽
, 𝑏1 =

25𝑎0
2𝛽

96𝛼2𝑏−1
 

   𝑢(𝜂) =

−5𝑎0
2.𝑒𝜂.√6𝛽

48.𝛼.𝑏−1
+𝑎0

25.𝑎0
2.𝛽𝑒.𝜂

96.𝛼2.𝑏−1
+

5.√6𝛽.𝑎0
12.𝛼

+𝑏−1𝑒−𝜂
               (3.2.17) 

Case-3: 𝑘 = √
−1

6𝛽
, 𝜔 =

−𝛼

5𝛽
, 𝑎−1 =

3𝑏0
2𝛼

5𝑏1
∙ √

−1

6𝛽
, 𝑎0 = 0, 𝑎1 = 0, 𝑏−1 =

𝑏0
2

4𝑏1
, 𝑏0 = 𝑏0, 𝑏1 = 𝑏1 

   u(η) =
3

5
.

b0
2.α.e−η

√−6β.(b1∙eη+b0+
b0

2.e−η

4b1
)
               (3.2.18) 

Case-04: k = √
1

6β
, ω =

α

5β
, a−1 =

5a0
2β

8αb1
∙ √

1

6β
, a0 = a0, a1 = 0, b−1 =

25a0
2β

96α2b1
, 𝑏0 =

5𝑎0𝛽

2𝛼
∙

√
1

6β
, b1 = b1 

   𝑢(𝜂) =
a0+

5

48
.

𝑎0
2

𝛼𝑏1
.√6𝛽.𝑒−𝜂

𝑏1∙𝑒𝜂+
5

12

a0
𝛼

.√6𝛽+
25𝑎0

2𝛽

96𝛼2𝑏1
.𝑒−𝜂

               (3.2.19) 

3.3 Fisher’s Equation 

The nonlinear reaction-diffusion equation  

   𝑢𝑡 = 𝐷𝑢𝑥𝑥 + 𝑚𝑢(1 − 𝑢)                  (3.3.1) 

This equation was first introduced by Fisher as a model for the propagation of a mutant gene. 

Here 𝑢(𝑥, 𝑡) is the concentration of the reactant, D represents its diffusion coefficient, and m 

represents the rate of chemical reaction. In media of other natures, u might be temperature or 

electric potential, D might be the thermal conductivity or specific electrical conductivity. 

Equation (3.3.1) becomes 

   𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢(1 − 𝑢)                   (3.3.2) 
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Here the independent variables 𝑥 & 𝑡 into wave variable 𝜂 = 𝑘𝑥 + 𝜔𝑡 to carry out a partial 

differential equation into two independent variables. 

Now, 

   𝜂 = 𝑘𝑥 + 𝜔𝑡                    (3.3.3) 

Differentiation equation (3.3.3) with respect to t we get 

   ⇒
𝜕𝜂

𝜕𝑡
= 𝜔                  (3.3.3a) 

   ∴ 𝑢𝑡 =
𝜕𝑢

𝜕𝑡
=

𝜕𝑢

𝜕𝜂

𝜕𝜂

𝜕𝑡
                 (3.3.3b) 

   ∴ 𝑢𝑡 = 𝑢′. 𝜔                  (3.3.3c) 

Again, 

   𝜕𝜂

𝜕𝑥
= 𝑘                   (3.3.3d) 

   ∴ 𝑢𝑥 =
𝜕𝑢

𝜕𝜂
.

𝜕𝜂

𝜕𝑥
                  (3.3.3e) 

    = 𝑘 ∙ 𝑢′                 (3.3.3g) 

   ∴ 𝑢2𝑢𝑥 = 𝑘𝑢2𝑢′                 (3.3.3h) 

Again differentiate equation (3.3.3g) with respect to x we get 

   𝑢𝑥𝑥 = 𝑘2 ∙ 𝑢′′                   (3.3.3i) 

Now used the equation (3.3.3) to (3.3.3i) convert the Fisher’s equation (3.3.2) to the Ordinary 

Differential Equation is 

   −𝜔𝑢′ + 𝑘2𝑢′′ + 𝑢(1 − 𝑢) = 0                 (3.3.4) 

Where the prime denote the derivative with respect to η. We know, the Exp-function method is 

based on the postulate that traveling wave solutions can be expressed in the following form 

   𝑢(𝜂) =
∑ 𝑎𝑛𝑒𝑥𝑝(𝑛𝜂)𝑑

𝑛=−𝑐

∑ 𝑏𝑚𝑒𝑥𝑝(𝑚𝜂)𝑞
𝑚=−𝑝

                  (3.3.5) 

             =
𝑎𝑐𝑒𝑥𝑝(𝑐𝜂)+⋯⋯⋯⋯⋯⋯⋯+𝑎−𝑑𝑒𝑥𝑝(−𝑑𝜂)

𝑏𝑝𝑒𝑥𝑝(𝑝𝜂)+⋯⋯⋯⋯⋯⋯⋯+𝑏−𝑞𝑒𝑥𝑝(−𝑞𝜂)
              (3.3.5a) 

Where c, d, p and q are positive integers which is unknown to be further determined  𝑎𝑛 & 𝑏𝑚 

are unknown constants. To determine the values of c & p. We balance the linear term of highest 
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order in equation with the highest order nonlinear term. Similarly to determine the values of d & 

q, we balance the linear term of lowest order in equation with the lowest order nonlinear term. 

Now differentiate equation (3.3.5a) with respect to η we get 

   𝑢′ =
𝑏𝑝𝑒𝑝𝜂𝑎𝑐𝑐𝑒𝑐𝜂−𝑏𝑝𝑝𝑒𝑝𝜂𝑎𝑐𝑒𝑐𝜂

𝑏𝑝
2𝑒2𝑝𝜂                 (3.3.5b) 

   =
𝑒𝑝𝜂𝑒𝑐𝜂[𝑏𝑝𝑎𝑐(𝑐−𝑝)]

𝑏𝑝
2𝑒2𝑝𝜂                  (3.3.5c) 

   ∴ 𝑢′ =
𝑒(𝑝+𝑐)𝜂

𝑒2𝑝𝜂                   (3.3.5d) 

   Here 
𝑏𝑝𝑎𝑐(𝑐−𝑝)

𝑏𝑝
2 = constant. 

Again, from equation (3.3.5d) we get 

   𝑢′′ =
𝑒2𝑝𝜂𝑒(𝑝+𝑐)𝜂.(𝑝+𝑐)−𝑒(𝑝+𝑐)𝜂.2𝑝.𝑒2𝑝𝜂

(𝑒2𝑝𝜂)2                (3.3.5e) 

   ⇒ 𝑢′′  =
𝑒2𝑝𝜂𝑒(𝑝+𝑐)𝜂{(𝑝+𝑐)−2𝑝}

𝑒4𝑝𝜂                  (3.3.5f) 

   ∴ 𝑢′′  =
𝑐1𝑒(3𝑝+𝑐)𝜂

𝑐2𝑒4𝑝𝜂                  (3.3.5g) 

And squaring equation (3.3.5a) obtain,  

   𝑢2  =
𝑎𝑐

2.𝑒2𝑐𝜂

𝑏𝑝
2.𝑒2𝑝𝜂                  (3.3.5h) 

Now multiplying equation (3.3.5c) & (3.3.5h). Then  

   𝑢′𝑢2 =
𝑒𝑝𝜂𝑒𝑐𝜂[𝑏𝑝𝑎𝑐(𝑐−𝑝)]

𝑏𝑝
2𝑒2𝑝𝜂 .

𝑎𝑐
2.𝑒2𝑐𝜂

𝑏𝑝
2.𝑒2𝑝𝜂                (3.3.5i) 

    =
(𝑐−𝑝).𝑏𝑝.𝑎𝑐.𝑎𝑐

2.𝑒3𝑐𝜂+𝑝𝜂

𝑏𝑝
4.𝑒4𝑝𝜂                  (3.3.5j) 

   ∴ 𝑢′𝑢2 =
𝑐3.𝑒(3𝑐+𝑝)𝜂

𝑐4.𝑒4𝑝𝜂                  (3.3.5k) 

Balancing the highest order of Exp-function in equation (3.3.5g) & (3.3.5k) & we have 3𝑝 + 𝑐 =

3𝑐 + 𝑝, and we obtain 𝑝 = 𝑐. Used the same method, we can also obtain that 𝑞 = 𝑑. 

 

For solved, we put 𝑝 = 𝑐 = 1 & 𝑞 = 𝑑 = 1, so equation (3.3.5a) reduce to 
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    𝑢(𝜂) =
𝑎1𝑒𝑥𝑝(𝜂)+𝑎0+𝑎−1𝑒𝑥𝑝(−𝜂)

𝑏1𝑒𝑥𝑝(𝜂)+𝑏0+𝑏−1𝑒𝑥𝑝(−𝜂)
     (3.3.6) 

Substituting equation (3.3.6) into equation (3.3.4) and by the help of computer program we get  

𝑐1 = 𝜔𝑎0𝑏1𝑏0 − 𝑘2𝑎0𝑏1𝑏0 + 𝑎1𝑏0
2 + 𝑎0

2𝑏1 + 2𝑎0𝑏1𝑏0 − 𝜔𝑎1𝑏0
2 + 𝑘2𝑎1𝑏0

2 − 2𝑎0𝑎1𝑏0

+ 2𝜔𝑎−1𝑏1
2 + 4𝑘2𝑎−1𝑏1

2 − 2𝑎1𝑎−1𝑏1 + 2𝑎1𝑏1𝑏−1 − 2𝜔𝑎1𝑏1𝑏−1 − 4𝑘2𝑎1𝑏1𝑏−1

− 𝑎1
2𝑏−1 + 𝑎−1𝑏1

2 

𝑐−1 = −𝜔𝑎0𝑏−1𝑏0 − 𝑘2𝑎0𝑏−1𝑏0 + 𝑎−1𝑏0
2 + 𝑎0

2𝑏−1 + 2𝑎0𝑏−1𝑏0 + 𝜔𝑎−1𝑏0
2 + 𝑘2𝑎−1𝑏0

2

− 2𝑎0𝑎−1𝑏0 + 2𝑎−1𝑏1𝑏−1 − 2𝜔𝑎1𝑏−1
2 + 4𝑘2𝑎−1𝑏−1

2 − 2𝑎1𝑎−1𝑏−1

+ 2𝜔𝑎−1𝑏1𝑏−1 − 4𝑘2𝑎−1𝑏1𝑏−1 − 𝑎−1
2 𝑏1 + 𝑎1𝑏−1

2  

𝑐2 = −𝑎−1
2 𝑏0 + 𝜔𝑎−1𝑏0𝑏−1 − 𝑘2𝑎−1𝑏0𝑏−1 + 𝑘2𝑎0𝑏−1

2 + 2𝑎−1𝑏0𝑏−1 − 𝜔𝑎0𝑏−1
2 + 𝑎0𝑏−1

2

− 2𝑎0𝑎−1𝑏−1 

𝑐−2 = 𝑎0𝑏1
2 − 𝑎1

2𝑏0 + 𝑘2𝑎0𝑏1
2 + 2𝑎1𝑏1𝑏0 + 𝜔𝑎0𝑏1

2 − 𝑘2𝑎1𝑏1𝑏0 − 2𝑎1𝑎0𝑏1 − 𝜔𝑎1𝑏1𝑏0 

𝑐3 = −𝑎1
2𝑏1 + 𝑎1𝑏1

2 

𝑐−3 = 𝑎−1𝑏−1
2 − 𝑎−1

2 𝑏−1 

𝑐0 = −3𝜔𝑎1𝑏0𝑏−1 + 3𝜔𝑎−1𝑏1𝑏0 + 3𝑘2𝑎1𝑏0𝑏−1 + 3𝑘2𝑎−1𝑏1𝑏0 − 6𝑘2𝑎0𝑏1𝑏−1 + 2𝑎1𝑏0𝑏−1

+ 2𝑎−1𝑏1𝑏0 + 2𝑎0𝑏1𝑏−1 − 2𝑎1𝑎0𝑏−1 − 2𝑎1𝑎−1𝑏0 − 2𝑎0𝑎−1𝑏1 

Now solve the above equations by using computer program get the following sets of solutions 

are 

Case-01: 𝑘 = √
1

6
𝜔 =

5

6
𝑎−1 = 0𝑎0 = 0𝑎1 =

𝑏0
2

4𝑏−1
𝑏−1 = 𝑏−1𝑏0 = 𝑏0𝑏1 =

𝑏0
2

4𝑏−1
 

Now substituting all values of case-1 in equation (3.3.6) and yielding the following solution of 

equation (3.3.1) 

   𝑢(𝜂) =
1

4
.

𝑏0
2𝑒𝜂

𝑏−1(
𝑏0

2𝑒𝜂

4𝑏−1
+𝑏0+𝑏−1𝑒−𝜂)

      (3.3.7) 

Similarly get solution of equation (3.3.1) for the case of 2, 3, & 4 

Case-02: 𝑘 = √
−1

6
, 𝜔 =

5

6
, 𝑎−1 = 0, 𝑎0 = 𝑏0, 𝑎1 = 0, 𝑎1 =

𝑏0
2

4𝑏1
, 𝑏−1 = 𝑏−1, 𝑏0 = 𝑏0, 𝑏1 =

𝑏0
2

4𝑏−1
 

   𝑢(𝜂) =
1

4⁄
𝑏0

2𝑒𝜂

𝑏−1
+𝑏0

1
4⁄

𝑏0
2𝑒𝜂

𝑏−1
+𝑏0+𝑏−1𝑒−𝜂

       (3.3.8) 
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Case-03: 𝑘 = √
1

6
, 𝜔 = −

5

6
, 𝑎−1 =

𝑏0
2

4𝑏1
, 𝑎0 = 0, 𝑎1 = 0, 𝑏−1 =

𝑏0
2

4𝑏1
𝑏0 = 𝑏0, 𝑏1 = 𝑏1 

   𝑢(𝜂) =
1

4

𝑏0
2𝑒−𝜂

𝑏1(𝑏1𝑒𝜂+𝑏0+
𝑏0

2𝑒−𝜂

4𝑏1
)
       (3.3.9) 

Case-04: 𝑘 = √
−1

6
, 𝜔 = −

5

6
, 𝑎−1 =

𝑏0
2

4𝑏1
, 𝑎0 = 𝑏0, 𝑎1 = 0, 𝑏−1 =

𝑏0
2

4𝑏1
, 𝑏0 = 𝑏0, 𝑏1 = 𝑏1 

   𝑢(𝜂) =
𝑏0+

𝑏0
2𝑒−𝜂

4𝑏1

𝑏1𝑒𝜂+𝑏0+
𝑏0

2𝑒−𝜂

4𝑏1

                 (3.3.10) 

3.4. Result Discussion 

3.4.1 Numerical Result Discussion of Oskolkov Equation 

In this area, we have discussed about the physical portrayal of the acquired exact and solitary 

wave solution to the (1+1) Dimensional Oskolkov equation. We speak to these solutions in 

graphical and check about the sort of solution. Now we pictorial some obtain solutions realize by 

Exp-function method for the Oskolkov equation. 

Case-1: 

The real and imaginary part of solution (3.2.16) is shown in figure-1(a) and figure-1(b) which is 

the rogue wave solution for the values 𝑏0 = −1, 𝛼 = 1, 𝛽 = 1, 𝑏−1 = − 1 10⁄ . In these figure it 

can be seen that lower density plot appears in the 3D plot. If we increase the values of 𝛼 then we 

analyze a dynamics behave of all solution. Here if we increase the values of 𝛼 then we can seen 

that the rogue wave solution deform in kinky rogue wave solution as shown in the fig-1(c) to fig 

-1(f). From fig-1(g), we seen that this graph embodies the rogue wave solution of the imaginary 

part of solution (3.2.16) whose 3D plot lower density plot below for the values of the parameters 

𝑏0 = −1, 𝛼 = −1, 𝛽 = 1, 𝑏−1 = − 1 10⁄ . The fig-1(h) behave kink shape solution of the solution 

(3.2.16) for the values of parameter 𝑏0 = −1, 𝛼 = 1, 𝛽 = −2, 𝑏−1 = − 1 10⁄  we get this type 

solutions for the condition 𝛼 > 0. Fig-1(i) represent anti-kink shape solution of (3.2.16) for the 

parametric values 𝑏0 = −1, 𝛼 = −1, 𝛽 = −2, 𝑏−1 = − 1 10⁄ . We estimate anti type solutions for 

the condition 𝛼 < 0. 
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Figure-1(a): The real part of the solution (3.2.16) for the values of the parameters 

𝑏0 = −1, 𝛼 = 1, 𝛽 = 1, 𝑏−1 = − 1 10⁄  

 
Figure-1(b): The imaginary part of the solution (3.2.16) for the values of the parameters 

𝑏0 = −1, 𝛼 = 1, 𝛽 = 1, 𝑏−1 = − 1 10⁄  
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Figure-1(c): The 3D plot of the solution (3.2.16) for the values of the parameters 

𝑏0 = −1, 𝛼 = 3, 𝛽 = 1, 𝑏−1 = − 1 10⁄  

 

 
Figure-1(d): The 3D plot of the solution (3.2.16) for the values of the parameters 

𝑏0 = −1, 𝛼 = 5, 𝛽 = 1, 𝑏−1 = − 1 10⁄  
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Figure-1(e): The 3D plot of the solution (3.2.16) for the values of the parameters 

𝑏0 = −1, 𝛼 = 7, 𝛽 = 1, 𝑏−1 = − 1 10⁄  

 
Figure-1(f): The 3D plot of the solution (3.2.16) for the values of the parameters 

𝑏0 = −1, 𝛼 = 10, 𝛽 = 1, 𝑏−1 = − 1 10⁄  
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Figure-1(g): The imaginary part of the solution (3.2.16) for the values of the parameters 

𝑏0 = −1, 𝛼 = −1, 𝛽 = 1, 𝑏−1 = − 1 10⁄  

 
Figure-1(h): The 3D plot of the solution (3.2.16) for the values of the parameters  

𝑏0 = −1, 𝛼 = 1, 𝛽 = −2, 𝑏−1 = − 1 10⁄  
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Figure-1(h(i)): The 2D plot the solution (3.2.16) for the value of 

𝑥 = 1 

 
Figure-1(i): The 3D plot of the solution (3.2.16) for the values of the parameters 

𝑏0 = −1, 𝛼 = −1, 𝛽 = −2, 𝑏−1 = − 1 10⁄  
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Figure 1(i(a)): The 2D plot of the solution (3.2.16) for the value of the 𝑥 = 1. 

Case-2: 

The imaginary parts of solution (3.2.17) are shown in fig-2(a), fig -2(b), fig-2(c) and fig -2(d) 

which is the kinky rogue wave solution for the values 𝑎0 = 1, 𝛼 = −1, 𝛽 = 1 10⁄ , 𝑏−1 = −1. 

For increased values of 𝛼, we get an interaction between kink and rogue wave solution. Here in 

the fig.-2(b) the value of 𝛼 = − 1 2⁄ , in fig-2(c) the value of 𝛼 = 1 2⁄ ; in fig-2(d) the value of 

𝛼 = 1. 

 

Figure-2(a): The 3D plot of the solution (3.2.17) for the values of the parameters 

𝑎0 = 1, 𝛼 = −1, 𝛽 = 1 10⁄ , 𝑏−1 = −1 
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Figure-2(b): The 3D plot of the solution (3.2.17) for the values of the parameters 

𝑎0 = −1, 𝛼 = −1 2⁄ , 𝛽 = 1 3⁄ , 𝑏−1 = − 1 10⁄  

 

Figure-2(c): The 3D plot of the solution (3.2.17) for the values of the parameters 

𝑎0 = −1, 𝛼 = 1 2⁄ , 𝛽 = 1 3⁄ , 𝑏−1 = − 1 10⁄  
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Figure-2(d): The 3D plot of the solution (3.2.17) for the values of the parameters 

𝑎0 = −1, 𝛼 = 1, 𝛽 = 1 3⁄ , 𝑏−1 = − 1 10.⁄  

Case-3: 

The imaginary part of solution (3.2.18) is shown in fig-3(a), fig-3(b), fig-3(c) and fig-3(d) which 

is the anti-kinky rogue wave solution for the values 𝑏0 = −1/10, 𝛼 = 1, 𝛽 = 1 3⁄ , 𝑏1 = −1/10. 

For increasing values of 𝛼, we get an interaction between anti-kinky and rogue wave solution. 

Here in the fig-3(b) the value of 𝛼 = −1 in fig-3(c) the value of 𝛼 = −3. We added that for 

increase the value of 𝛼 the height of kink shape increasing & decreasing the value of 𝛼 the height 

kink shape decreasing in among fig-3(a) and fig-3(b) to fig-3(c). 
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Figure-3(a): The 3D plot of the solution (3.2.18) for the values of the parameters  

𝑏0 = − 1 10⁄ , 𝛼 = 1, 𝛽 = 1 3⁄ , 𝑏1 = − 1 10⁄  

 

Figure-3(b): The 3D plot of the solution (3.2.18) for the values of the parameters 

𝑏0 = − 1 10⁄ , 𝛼 = 3, 𝛽 = 1 3⁄ , 𝑏1 = − 1 10⁄  
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Figure-3(c): The 3D plot of the solution (3.2.18) for the values of the parameters 

𝑏0 = − 1 10⁄ , 𝛼 = −1, 𝛽 = 1 3⁄ , 𝑏1 = − 1 10⁄  

Case-4: 

The real and imaginary part for the solution of equation (3.2.19) is represented different type 

periodic solution. Here we shown the behave of these solution with 3D and 2D plot as below: 

fig-4(a) & fig-4(b) represent the periodic solution for these values of parameters 𝑎0 = −3, 𝛼 =

1, 𝛽 = −2, 𝑏1 = − 1 10⁄ . In this fig-4(c) represent periodic wave solutions of real part for values 

are 𝑎0 = −3, 𝛼 = 1, 𝛽 = 2, 𝑏1 = −1 10⁄ . From fig-4(d) & fig-4(e) we can appeared that the 

same nature of periodic wave of imaginary and absolute part for these different values of 

parameters are 𝑎0 = −3, 𝛼 = −1, 𝛽 = −2, 𝑏1 = − 1 10⁄  and 𝑎0 = −4, 𝛼 = 1, 𝛽 = −2, 𝑏1 =

− 1 10⁄ . 
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Figure-4(a): The 3D plot of the solution (3.2.19) for the values of the parameters  

𝑎0 = −3, 𝛼 = 1, 𝛽 = −2, 𝑏1 = − 1 10⁄  

 

Figure-4(a (i)): The 2D plot of the solution (3.2.19) for the value of 𝑡 = 1 
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Figure-4(b): The 3D plot of the solution (3.2.19) for the values of the parameters 

𝑎0 = −3, 𝛼 = 1, 𝛽 = −2, 𝑏1 = − 1 10⁄  
 

 

Figure-4(b(i)): The 2D plot of the solution (3.2.19) for the value 𝑡 = 1 
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Figure-4(c): The 3D plot of the solution (3.2.19) for the values of the parameters  

𝑎0 = −3, 𝛼 = −1, 𝛽 = 2, 𝑏1 = − 1 10⁄  
 

 

 

Figure-4(c(i)): The 2D plot of the solution (3.2.19) for the value 𝑡 = 1 
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Figure-4(d): The 3D plot of the solution (3.2.19) for the values of the parameters 

𝑎0 = −3, 𝛼 = −1, 𝛽 = −2, 𝑏1 = − 1 10⁄  

 

Figure-4(d(i)): The 2D plot of the solution (3.2.19) for the value 𝑡 = 1 
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Figure-4(e): The 3D plot of the solution (3.2.19) for the values of the parameters 

𝑎0 = −4, 𝛼 = 1, 𝛽 = −2, 𝑏1 = − 1 10⁄  
 

 

Figure-4(e(i)): The 2D plot of the solution (3.2.19) of for the value 𝑡 = 1 

3.4.2 Numerical Result Discussion of Fisher’s Equation 
In this area, we have wanted to shed light about the physical phenomenon of the obtained exact 

and solitary wave solution to the (1+1) Dimensional Fisher’s equation. We speak to these 
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solutions in graphical and check about the sort of solution. Here we have gotten some figures for 

the Fisher’s equation by putting different arbitrary values. 

Case-1: 

The real and imaginary parts of solution (3.3.7) are shown in fig-5(a) and fig-5(b) which is the 

rogue wave solution for the values 𝑏0 = 15, 𝑏−1 = − 1 5⁄ . In these figure it can be seen that 

lower density plot appears in the 3D plot. 

 
Figure-5(a): The real part of the solution of (3.3.7) for the values 

𝑏0 = −15, 𝑏−1 = − 1 5⁄  
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Figure-5(b): The imaginary part of the solution of (3.3.7) for the values 

𝑏0 = −15, 𝑏−1 = − 1 5⁄  

Case-2: 

The imaginary part of solution (3.3.8) is shown in fig-6(a) and fig-6(b) which is the rogue wave 

and the periodic rogue wave solution for the values 𝑏0 = 2, 𝑏−1 = − 1 10⁄ . and 𝑏0 = −2, 𝑏−1 =

1 10⁄ . respectively. 

 
Figure-6(a): The imaginary part of the solution of (3.3.8) for the values 

𝑏0 = 2, 𝑏−1 = − 1 10⁄  
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Figure-6(b): The imaginary part of the solution of (3.3.8) for the values 

𝑏0 = −2, 𝑏−1 = 1 10⁄  

Case-3: 

The real and imaginary part of solution (3.3.9) are shown in fig-7(a) and fig-7(b) which is the 

kink shape and the soliton graph for the values 𝑏0 = −2, 𝑏1 = 1 10⁄ . and 𝑏0 = −15, 𝑏1 = 15. 

 
Figure-7(a): The imaginary part of the solution of (3.3.9) for the values 

𝑏0 = −2, 𝑏1 = 1 10⁄  
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Figure-7(a (i)): The 2D plot of the solution of (3.3.9) for the value 𝑥 = 1

 
Figure-7(b): The imaginary part of the solution of (3.3.8) for the values 

𝑏0 = −15, 𝑏1 = 15 
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Case-4: 

The real and imaginary part of solution (3.3.10) are shown in fig-8(a) and fig-8(b) which are 

represented the kinky rogue wave solution for the values 𝑏0 = −15, 𝑏1 = 15. In these figure it 

can be seen that lower density plot appears in the 3D plot. 

 
Figure-8(a): The real part of the solution of (3.3.10) for the values 

𝑏0 = −15, 𝑏1 = 15 

 
Figure-8(b): The imaginary part of the solution of (3.3.10) for the values 

𝑏0 = −15, 𝑏1 = 15  
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Chapter 4 

Conclusion and Future Work 

4.1 Conclusion 

In this thesis, we obtain exact traveling wave solutions for the Oskolkov and Fisher’s equation by 

using the Exp-function method. The obtained solutions show that the Exp-function method is 

promising and powerful mathematical tool for solving nonlinear evolution equations. It is hoped 

that the method can be effectively used for further studies to many nonlinear evolution equations. 

In this thesis, the principle exertion is to discover, test and break down the new voyaging wave 

arrangements and physical properties of the nonlinear Oskolkov equation by applying 

dependable scientific procedures. The Exp-function scheme performance a substantial trick to 

find traveling wave solutions in-terms of exponential, trigonometric and hyperbolic function 

from which we could build specially kinky periodic wave, rogue wave solution, solitary and 

periodic wave solutions. This technique offers arrangements with free parameters that may be 

essential to clarify some unpredictable nonlinear physical marvels. We give a very simple and 

straightforward method called Exp-function method for nonlinear wave equations. The used 

method has some pronounced merits: 

(1) The method leads to both the generalized soliton solutions and periodic solutions; 

(2) The solution procedure, by the help of computer program, is of utter simplicity, and can 

be easily extended to all kinds of non-linear equations. 

4.2 Future Work 

In future, we will solve more non-linear evaluation equations such as beam equation, Calogero-

Bogoyavlenskii-Schiff (CBS) equations, Kadomtsev–Petviashvili (KP) equation, Burger 

equation by Exp-function method. 
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