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ABSTRACT

This thesis deals with the numerical study of laminar flow separation over
annular backsteps. Both inner- and outer-radius annular backsteps are
considered. The governing differential equations are solved by a control-volume
based iterative finite difference technique. A non uniform staggered grid with
finer spacing near the step and the walls is used. The differential equations are
integrated over their appropriate staggered control volumes and discretised
using a hybrid difference scheme. The discretised equations with boundary
condition modifications are solved utilizing the SIMPLE with TDMA
algorithms. The capability of the computational code for predicting recirculation
flows is first tested by comparing the results with the available predicted and
experimental data. It is found that the present numerical predictions have good
matching with the available predicted and experimental data. The computational
model is then used to analyze the flow separation over annular backsteps.
Computations are done for different annular radius ratio and different Reynolds
number for both cases. Constant streamline contours, constant vorticity contours
and vorticity distribution along the walls for both cases are presented. The
Reynolds number is based on the average velocity at the inlet and the step

height.

It is observed that the length of the primary vortex attached to the step increases
with Reynolds number in both the cases, but this increment is much higher in
case of outer radius annular backstep. The length of the primary vortex increases
with annular radius ratio in case of inner-radius annular backstep but decreases
with annular radius ratio in outer-radius annular backstep. Secondary vortex
forms on the opposite wall at higher Reynolds number and at larger annular
radius ratio. The effect of Reynolds number and annular radius ratio on the flow
field is also examined. The previous research work in this field was limited to
lower Reyn()lds number ( 25 -100) and single annular radius ratio ( a = 0.2) for
inner- radius annular backstep geometry but the present research is extended to a
wider range of Reynolds number ( 50 - 500) and different annular radius ratio
( 0.1 _ 1.0) for inner- radius annular backstep. The work reveals its own identity
with its application on the outer- radius annular backstep geometry.
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CHAPTER-l

INTRODUCTION

1.1 BACKGROUND

The subject of fluid flow separation in one of the many aspects of viscous
flow, which is very important but complicated. Because of flow separation,
energy is lost. In case of external flow at subsonic speeds such as in air borne
vehicles, the stream lines deviates the drug increases, the lift decreases and
reverse flow and stalling occur. In the transonic speed range, control and
structure problems are created by flow separations. For cases of internal flow,
separation can cause reduction in efficiencies. The optimum performance of
fluids handling devices such as fans, turbines, pumps, compressors, etc., can
only be predicted with accurate understanding of flow separation, because
the separation occurs just prior to or at maximum loading. Separation is a
phenomenon that can occur under widely varying conditions. For several
reasons at high Reynolds number Le.boundary layer separation, has received
far more attention than low Reynolds number separation. Firstly, high
Reynolds flows are encountered much more widely. Secondly, there are some
flow configurations for which separation occurs at high Reynolds but not at
low whereas the converse is probably not true.

Among the many flow geometries employed to carryout basic studies of
separated flows, backward facing step has gained particular attention due to
its geometrical simplicity. Flow separation over a backstep has been studied
in considerable details. The separated flows are of considerable interest to the
designs of fluids engineering devices [1]. The separation of the shear layer
adjacent to a wall may occur of the adverse pressure gradient in the direction
of motion is sufficiently large or of there is a sufficiently abrupt change in the
guiding wall geometry. The flow over a backstep is a problem inwhic1l. the ..'
guiding wall has a step change in its geometry that is perpendicular to the
direction of the flow approaching the step. The guiding wall is assumed to be
planar upstream and downstream of the step. In this problem the separation. jt

1
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point is fixed and the flow leaves the boundary at zero angle of separation. It
is the simplest problem that contains the essential features of a separated
flow.

1.1.1 CHARACTERISTIC PHYSICAL FEATURES OF FLOW

There are certain characteristic physical features of the flow of a viscous fluid.
A study of the characteristics phenomena is very useful in gaining a general
understanding of flow. Basic to an understanding of the flow of fluids is the
observation first recorded by Osborne Reynolds [29]of distinct types of flow.
The list of these charaCteristics as: Laminar flow; turbulent flow; transition
between Laminar and turbulent flow; formation of boundary layers; and
separation.

Laminar flow is also called viscous or streamline flow. In laminar flow the
fluid flows in layer or laminae; there is no mixing of minute particles of fluid
on a macroscopic scale. The only mixing which occurs is on a molecular
level. In laminar flow the velocity at any point is either constant or varies
with time in some non random manner. Separation is found that the fluid
breaks iway from the surface; there may be an eddying wake [33].

A streamline is a line in a fluid flow which, at every point along the line has
the direction on the local velocity of the fluid at some instant of time. The
streamline form the flow pattern at any instant of time. If the flow is steady,
then the streamlines describe the motion of individual fluid particles. For
steady flow, a streamline by definition is a line across which no fluid flows.

Pathline: The motion of individual particle over a finite time interval is called
its pathline. In steady flow the streamlines and pathlines are identical.

Streakline : A streakline in the current location of fluid particles, all of which
passed through a fixed point in the fluid at some previous time. They are
identical to streamlines for steady flow.

"
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1.1.2 MECHANICS OF FLOW SEPARATION

The problem of the flow separation is perhaps, one of the most important
hydrodynamics problems to be investigated intensively in order to find its
solution satisfactorily. Because of the complexity of the problem, a rigorous
definition of flow separation and stall should be made. The classical concept
of flow separation is due to viscosity. In additional a necessilry condition for
flow separation is the adverse pressure gradient.

In a general sense according to Maskell's concept of separation, flow
separation is inevitable for flow over the finite dimension. Flow will separate
from the solid body surface at the trailing edge and also upstream of it if the
required conditions are met there. The flow separation is not only caused by a
gradual process, which is the case of flow over a smooth surface, but also by
sever discontinuity of the tangent to the surface.

1.1.3 CLASSICAL CONCEPT OF ONSET OF FLOW SEPARATION

As a young engineer at the Maschinen Fabrik Augsburg- Nurnberg (MAN),
Prandtl found that the computed pressure recovery could not be achieved in
actual diffusers. He was occupied for 3 years in figuring out why and how
the flow separations and pressure losses were caused. This problem was
solved finally by his theoretical concept of the boundary layer [47]. His
concept may be referred to as classical in compilrison to the modern
development of separation of flow theory.

The classical concept of flow separation is found for two-dimensional and
axisymmetric steady flow. Prandtl [47] states dearly that the necessary
condition for flow separation from the wall is the increasing pressure in the
streamwise direction i.e. positive ( or adverse) pressure gradient along the
flow path. This statement holds for compressible as well as incompressible
flow. Therefore it may be said that, in general, flow separation occurs under
adverse pressure gradient and with laminar or turbulent viscosity effects. If
one of these two factors is missing, then the flow does not separate.

3



1.2 ANNULUS AND ITS APPLICATION

An annulus is formed by introducing a core through a circular tube. The ratio
of the inner and outer radii (annular radius ratio, a) is an important
parameter in addition to other variables that determines the nature of the
flow in the annuli. A pipe (a = 0) and a parallel plate channel (a = 1) are the
two limiting cases of an.annulus.

Laminar flows are not just of academic interest. Flow separations are of
considerable practical importance to the designers of forced convection
heating and cooling devices used in the electronics, bio-mechanics and
aerospace industries, among others [2].There has been a continued interest
within the fluid mechanics community in the prediction of laminar flow
separation over backsteps.

In Indu~trial heat exchangers, bio-mechanics, aerospace industries, nuclear
reactors etc there are many cases where heat transfer begins immediately at
the entrance of the annulus and therefore the calculation of heat transfer
coefficients for these cases requires a detailed knowledge of the velocity field
in the entrance region of the annular passage.

1.3 MOTIVATION OF THE PRESENT INVESTIGATION

In recent years laminar flow separation over annular backsteps have been
studied in considerable detail due to their relevance to the problems of
heating and cooling heat exchanger.

A literature review indicates that until now there seems to be no sufficient
data available on annular backsteps. In many engineering applications flow
separation and reattachments occur and hence they have been the subject of
study for many years. Laminar flows are of considerable practical
importance to the designers of fluids engineering devices, forced convection
heating and cooling. devices used in the electronics, bio-mechanics
equipments, combustors, heat exchanger, micro"electronics equipment and
aerospace industries etc.

4



The sudden expansion geometry produces recirculating region downstream
of the expansion that are substantially higher than those that would be
obtained at the same Reynolds number in the entrance region of a annular
passage.

Hence detail knowledge of the flow properties are required before
manufacturing the equipment's encountering investigations are quite
expensive. This thesis, therefore, suggests numerical studies to investigate the
effect of different flow parameters and also to generate information which
would be helpful for production purpose in the lost effectiveway.

1.4 OBJECTIVES OF THE PRESENT RESEARCH

The objective of this study is to investigate numerically some important flow
characteristics, valuable for greater understanding of the behavior of the
inner-radius annular and outer-radius annular backstep. A modified version
of the PACE Computer program was done by Jones, W. P. [39],will be used
for the present study. This version offers fast and reliable computer program
for solving the governing finite difference equations at given boundary
conditions.

The specific objectives of this research are:

i. To test the capability of the model in predicting complex recirculating
. flow.

ii. To study the effect of Reynolds number on the primary and secondary
vortices for both cases.

iii. To analyze the effect of annular radius ratio on the primary and
secondary vortices for both inner and outer radius annular backsteps.

iv. To compared with the available experimental and computational
results.

5
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v. To observe the vorticity distribution along the walls for both inner and
outer radius annular backsteps.

vi. To also observe the effect of annular radius ratio on the variation of
vorticity along the stepside and opposite walls for both cases.

1.5 SCOPE OF THE THESIS

The main purpose of this thesis is to analyze numerically the flow of laminar
separation over an imler-and outer- radius annular backsteps. The
remaining part of this thesis is divided into four chapters. The general
necessity of research in the field of laminar flow separation over annular
backsteps and the objectives of this research work is described in chapter-I. A
comprehensive review of the literature is described in chapter - 2. The
mathematical model used and the numerical algorithm for the prediction
method, boundary conditions are briefly described in chapter-3.

Chapter-4 contains the results and discussion. In this chapter, the present
predicted results are first compared with the experimental data and available
predicted results to prove the capability of the program. Then the effect of
Reynolds number, annular radius ratio, vorticity distribution along the walls
on an iriner- and outer -radius annular backsteps'are carefully investigated.

The summary of the achievements obtained in this study and suggestion for
the possible future work are presented in chapter-5.

References and figures are given at the end of this research work.
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CHAPTER-2

LITERATURE REVIEW

2.1 SCOPE

In many engineering applications flow separation and reattachment occur
and hence they have been the subject of study for many years. Two
dimensional annular backstep is one of such geometries where the separation
and reattachment occur and this has gained particular interest for its simple
geometry. The majority of reported studies for this configuration deals with
turbulent flow, however in the aforementioned applications, the fluid
velocities and/ or channel dimensions are small and hence laminar flow
prevails, following is a brief outline of some of the important work.

2.2 PREVIOUS WORK

Recent studies of laminar flow over planar backsteps Goldstein et al. [10]
carried out Results of an experimental investigation of the laminar flow of air
over a downstream facing step. The experiments include visual observations
of smoke filaments ( in the viscous layer), qualitative velocity flJctuation
measurements and mean velocity profiles. Results are reported over a range
of 0.36 - 1.02 cm in step height, 0.61 - 2.44 m/sec in free stream velocity at
the step and 0.16 - 0.51 cm in boundary layer displacement thickness at the
step. Laminar flow to reattachment of a free shear layer is observed for'
subsonic flow and two criteria for which transition to turbulence at
reattachment exists are presented. The laminar reattachment length is not a
constant number of step heights as for turbulent.' flow but varies with
Reynolds number and boundary layer thickness at the step.

Cramer [9] postulates a rather idealized model to obtain analytically a
correlation for laminar separation bubbles. He assumes incompressible flow
over a stepped flat plate and that "The usual laminar boundary layer

7
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assumptions are applicable". He further assumes that for a small step height,
the air in the bubbles is stagnant and the flow downstream of the step before
reattachment grows toward the wall in the manner of a spreading laminar jet.

Chapman et al. [12] reported laminar separations that are steady in. the
supersonic stream and depends only to a relatively small extent on Reynolds
number. They also note that the stability of a separated laminar mixing layer
increases markedly with much number. Laminar reattachment lengths of
about 18 step heights and turbulent reattachment lengths of a~out 6 step
heights are reported for a down stream facing step in a along the separation
streamline. At Reynolds numbers above this the vortices began to lose
definition and to form eddies of a more random nature as the flow became
turbulent.

Macagno and Hung [2] carried out both an experimental and a numerical
investigation of laminar flow in a step expansion geometry. They chose
H/h = 2 and 0 < Re ~ 200.For Re ~ 70 their 'I' and (0 calculation used a time-
independent central difference scheme. Since this was unstable for higher
Reynolds number. They used an unsteady approach to obtain results upto Re
= 200..'Their experimental work gave measurements of the reattachment
length'~md eddy centre for Re < 135 and these results were in authenticatul
their computations. The streamlines and vorticity contours are presented as
function of the Reynolds number of the flow. The dynamic interaction
between the main flow and the captive eddy between it and the walls is
analyzed.

Hung and Macagno [20], examined the laminar flow separation over a
circular backstep produced by a sudden pipe expansion and Reynolds
number range from 36 - 4500. The results revealed that, at a Reynolds
number 36, clear cellular eddies could be observed behind the sudden
expansion and appeared to be symmetry in form. The flow sustained its
symmetry at higher Reynolds number by the trapped eddy became
progressively longer and less pronounced.

Durst,et al. [19] studied the low Reynolds number flow over a 2:1 double
expansion located in a channel of aspect ratio 3.75:1in this geometry it was

8
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found that the flow was not sensibly two-dimensional in the vicinity of the
duct centre-line.
Durst et al. [44] found that complex three- dimensional flow patterns
occurred in a 3:1 planar expansion with an aspect ratio of 9 to 1 at Reynolds
number as low as 114. At Reynolds numbers above 250, strong periodic
fluctuations in velocities were observed. In an experimental investigation of a
two- ~imensional step. Armaly et al. [5] found that the flow was not two -
dimensional at Reynolds number above 400. At even higher Reynolds
number it was noticed that additional regions of flow separation occurred
with each having their own characteristic parameters. It is not known at what
Reynolds number each of these factors will arise for the boundary conditions
and geometries considered in the present study.

Scott et al. [41] laminar flow of a Newtonian fluid in planar and
axisymmetric abrupt expansions is studied the Navier- stokes equations
using the finite element method.

Denham [13] and Atkins [14]have both carried out visualization studies for
laminar flow over a backward facing step and observed that as the Reynolds
number increased above a certain value, the flow became progressively
unsteady. Large eddies were observed to be shed off the step edge and the
occurrence of this phenomena was seen to correspond with a reduction in the
recirctilation zone length.

Back and Roschke [61] carried out an investigation into the hydrodynamic
behavior of flow through an axisymmetric sudden expansion of a circular
pipe for a Reynolds number range of 20 - 4200.Their investigation was for an
expansion ratio of 2.6 and a nearly flat inlet velocity profile. The reattachment
length reached a peak at a Reynolds number of approximately 250 and then
decreased until the flow became turbulent at a Reynolds number of about
1000, when the reattachment length began to increase slowly. Visual
observations showed that for Reynolds number in the range 200-400 there
was a "vortex street-like" region.

Abbott and Kline [21] studied the effect of the expansion ratio in turbulent
flow and observed that the main effect was a lengthening of the separation
zones with increasing step heights, the longer zone growing proportionally a

i' 9



little faster than the smaller zone, but there was no evidence of a third
separation region.
Resent also studies of the laminar flow over planar backsteps include the
works of Goldstein et al. [10],Denham and Patrick [13],Sinha et al. [42], Leal
and acrivos [22],Durst et al. [44]and Armaly et al. [5].Macagno and Hung [2]
presented numerical predictions of laminar separation in a 2-D conduit
expansion. Aung [45] examined the forced convection heat transfer problem
associated with the flow over a planar backstep. lribarne et al. [3], and Hung
and Macagno [20] examined the laminar flow separation over a circular
backstep produced by a sudden pipe expansion.

Napolitano and Cinnella [51], Lewis and Pletcher [32] and Kwon et al. [8]
investigated sudden expansion flows with boundary layer equations. They
compared solutions from finite difference approximations of the Navier-
stoke~equations with solutions. As expected, the boundary layer solutions
were acceptable for sufficiently large Reynolds number only.

Valentine and Hyde [4] presented numerical predictions of the size of the
recirculation region behind an annular backstep created by an abrupt change
in radius of the inside cylinder in an annular flow passage. Their'predictions
were based on a Navier-stokes solver that implemented a nearly 2nd order
finite difference method that used the AD! method complied with an artificial
compressibility scheme to accelerate convergence to steady state. The present
investigation examined the inner- and outer- radius annular backsteps flow
problem in more detail.
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CHAPTER-3

METHOD OF SOLUTIONS

3.1 SCOPE

In this chapter, the method of the numerical simulation is briefly described.
The governing equations are first summarized. The solution of the set of
equations requires specification of boundary conditions for all the unknown
variables. Certain types of boundary are common in all flows examined in
this thesis and corresponding "problem independent" boundary conditions
are described in section 3.3. In sections 3.4 and 3.5, important aspects of the
governing equations in general forms and the numerical solution of the
governing partial differential equations relevant to the problems studied are
discussed respectively. The solution technique is then briefly outlined.
Boun~ary conditions are described in short. Finally, closing remarks are also
given.!'

3.2 GOVERNING EQUATIONS

Considering an incompressible, steady axisymriletric flow with a Newtonian
constant viscosity fluid, the governing differential equations are as follows:

The continuity equation for an axisymmetric flow is

(3.1)

The Navier stokes equations for an axisymmetric incompressible flow are
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x-momentum equation

(3.2)

r-momentum equation

(3.3)

where p is the density, v is the kinematic viscosity and p is pressure, u and v
are the velocity components in the x - and r- directions respectively, x and r
are the axisymmetric cylindrical co-ordinates as shown in figure-4.1.

3.3 BOUNDARYCONDITIONS

The transport equations mentioned above are of elliptic type. The solution of
elliptic partial differential equations requires information to be provided at all
points on a closed boundary surrounding the solution domain. The
. specification of these conditions varies according to the type of boundary and
the dependent variable under consideration.

i. INLET BOUNDARY:

At inlet, a fully developed velocity profile

[
a2 _ r2 + _a_

2
_-_b_

2
._ln a]

_U = 2 In_(_b_/_a_) _r_

U. [a2 + b2 + a
2

- b
2

]
In(a / b)

was used where Do is the average velocity at the inlet. Here a = r3 and h = rz
for inner- radius annular backstep and a = rz and b = rl for outer- radius
annular backstep.
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ii. PLANE OR AXIS OF SYMMETRY

At a symmetry plane or at an axis of symmetry, the normal gradient is zero
for all scalar quantities and velocity components parallel to the plane; the
velocity component normal to the plane is set to zero.

iii. OUTLET CONDITION

The imposed exit boundary condition is a parallel outflow with the pressure
gradient in the r-direction set equal to zero and the vertical velocity
component set equal to zero as well.

iv. SOLID WALL

No-slip boundary conditions were applied to all solid walls (Le. top, side and
bottom wall).

3.4 THE GOVERNING EQUATIONS IN GENERAL FORM

The governing differential equations for steady, incompressible, two-
dimensional laminar flows of Newtonian fluid in cylindrical co-ordinates in
the following forms:

a Ia a alj> la alj>-(pulj» +--(rpvlj» =-(J.!-) +--(rJ.!-) +5,
ax rar ax ax rar ar

[3.4]

In equation 3.4 the first two terms are the convection terms, third and fourth
terms are the diffusion terms and Slj>is the source terms which contains terms
describing the generation (creation) and consumption (dissipation) of
variable <1>.In above equation, replacement of <I>with value 1 gives the
continuity equation, while for <I>= u, v gives the two momentum equations are
obtained. The forms for the source term S<I>are given in Table 3.1.

13



/

TABLE -3.1
Source Terms for General Equation (3.4)

Value of <1> Name of equation Source Term, SdI

I continuity 0
u x- momentum _ dp +Su

dx
v r- momentum _ dp _ J.lV+ SV

ar r2

where,

u d ( au) 1 a ( au)S = dX J.ldX + -;:ar rJ.lax

v d ( av) 1 d ( dV)5 = dX J.ldX + -;:ar rJ.lax

The above equations have to be solved for the pressure, p; velocity component
U,v.

3.5 NUMERICAL SOLUTION OF DIFFERENTIALEQUATIONS

All partial differential equations have the following generalized form:

(3.5)

j

where <1> is a general dependent variable and can be equated to 1 for continuity
(51 = 0), Ui for momentum. These equations differ only in the form of the
source term, 5<1> and their dynamic viscosity ,fl
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only a brief description of the general make-up of the method is provided
together with a few remarks of special practices particular to the flows
considered in this thesis.

3.5.1 THE FINITE-DIFFERENCE EQUATIONS - GENERAL REMARKS

The differential equation ( 3.5 ) is reduced to a set of algebraic equations by
integration over small control volumes or cells. The calculation domain is
divided into a finite number of such control volumes by a computational grid
which for the present problems conforms to either cartesian or cylindrical
polar co-ordinate lines. Numerical values of the scalar variables and pressure
are determined at the intersection of these mesh lines (grid node). The
velocities,are calculated at a point half way between these grid nodes. This
"staggered" location for velocities makes the calculation of the pressure
gradients easy which drive the velocity and necessitates the adoption of
different control volumes for each of the velocity components. Figure 3.1
shows such control volumes for a 2-D case in cartesian co-ordinates.

Integration of equation 3.5 [excluding the time-dependent term] over the
corresponding control volume for the variable in question together with
appropriate assumptions about the way in which quantities vary between
grid nodes leads to algebraic equations of the following form [37].

(3.6)

where ap =Lai and P is the central node of the control volume and N, 5, E,W
are neighbour nodes of the control volume ( see figure 3.1). The neighbour
coefficients ai contain the influence of the convective and diffusive fluxes
through the cell faces.

3.5.2 THE DISCRETIZATION SCHEME

The integration of the convection terms on the left hand side of equation ( 3.5 )
leads to the need to interpolate e values at the cell faces from adjacent nodal
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values. This interpolation practice constitutes the most problematic element
of the discretization scheme (the diffusive fluxes are always discretized using
second order accurate central differencing). In the present work the quadatric
upstream weighted scheme proposed by Leonard [16] known as QUICK
(Quadratic Upstream Interpolation for Convective Kinematics) has been used.
This avoids many of the numerical stability problems associated with central
differencing and the numerical or false diffusion inaccuracies related to the
first order UPWIND scheme (Leonard et. al. [56], Leonard [16], Leschziner
[57], Leschziner & Rodi [58]), both of which are common alternatives used
often in the past. Figure 3.2 presents an illustration of the differences between
these schemes for the interpolation of e at one cell face in terms of the adjacent
nodal values (uniform mesh used for simplicity).

Although the QUICK scheme improves the false diffusion aspect of the crude
UPWIND scheme, the solutions it produces may not be bounded (Le.
under/overshoots may occur) and problems may be experienced due to the
generation of oscillations in the dependent va'riables in circumstances where
the flow displays a combination of high cell Peclet number and high spatial
gradients [Leonard, 16].These oscillations are mainly due to the appearance
of negative values of the finite difference ai coefficients with the QUICK
scheme and may (i) produce physically unrealistic solution (e.g. negative k
and e) and (ii) destroy the diagonal dominance of the coefficient matrix which
eventually produces numerical divergence when a line-by-line iterative
method of solution of the linearised equations is employed.

3.5.3' SOLUTION ALGORITHM

The mass conservation, momentum and the coupled scalar equations are
solved simultaneously using the SIMPLE(Semi Implicit Method for Pressure-
Linked Equations) algorithm proposed by Patimkar & Spalding [60] to obtain
the pressure field. This algorithm has been described in detail by Patankar
[37].

The algebraic equations (3.6) are solved by repeated sweeps of a line-by-line
application of the well known Tri-diagonal Matrix algorithm (TDMA) (See
Patankar [37]).The equations solved along constant Xilines and in so doing
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the variables located along adjacent lines are kept constant. The ai coefficients
of equation (3.6) and source term, S8 are evaluated using values of the
variables at the start of the TDMA sweep and are not changed during TDMA
solution.

The convergence history of all solutions was monitored by using a
normalized mass source error whose value has to be less than 10-5 for
convergence to be accepted. This mass source error was defined as:

n a
Error = L -(pUj) ;

i=l aXj .
I

n = number of cells

This was then normalized by the actual flow rate into the calculation domain.

3.6 Closure

The governing differential equations are presented in this chapter in a form
which has been used in the computer program. The solution technique, finite
difference formulations and boundary conditions are discussed briefly.
Finally the solution procedure is also outlined.

An available computer program is used to simulate the present flow field and
the results are discussed in the next chapter.
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CHAPTER-4

RESULTS AND DISCUSSIONS

4.1 SCOPE

This chapter is devoted to the analysis of results obtained from the numerical
predictions of the laminar flow separation over an inner- and outer-radius
annular backsteps, using a modified version of the PACE Computer Code of
Jones [39]. The governing equations presented in the previous chapter are
used for the present study. The problem is first defined, and then the validity
and credibility of the computer code are verified by comparing the numerical
prediction for similar problems for which experimental data are available.
The effect of Reynolds number and the annular radius ratio are studied. Also
the vorticity (skin friction co-efficient) distribution along the walls are
inves~igated. Closing remarks are provided at the end of the chapter.

4.2 PROBLEMSTATEMENT

The computational domain is shown in figure 4.1. Primarily, the prediction
was performed using the flow geometry considered was made up of an inlet
annular depth of h = 40 mm merging into an another annular cylinder of
depth H = (h + s) = 80mm yielding a depth ratio H/h = 2.0.The length of the
computational domain was considered 30 times of the larger annular depth,
H; so that the exit boundary should be far away from the separated regions.
The annular radius ratio is defined as a= rd r3 where r3= rl +H. Then the
effect of the radius ratio was tested using H = 80 mm but varying the inlet
annular depth, h. Present study predicts the numerical study of Mohamed et
al. [15] and experimental study of Armaly et al. [5] and also predicted Islam
et al. [7] for a = 1.0 and for an expansion ratio H/h = 1.94.All the dimensions
of the configurations are also shown in figure 4.1. The computational domain
was divided with a (70 * 50) grid using non-uniform line spacing. 70 grid
lines in the streamwise direction and 50 grid lines in the transverse direction.
Grid dependency was tested by repeating calculations for a = 0.2with 65 ~45,
100 * 40 and 70 * 50 grids. The 70 * 50 grid gave reasonably good predictiorisc'

~ C;:?
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when compared to the numerical prediction of Mohammed et al. [15] ( see
fig 4.2). A fine grid was used in the flow separation area and solid walls and
a relatively course grid used in the flow regions far from the step.

4.3 VALIDATION OF THENUMERICALMODEL

To validate the present methodology primarily a series of predictions are
I

performed for Reynolds number ranging Res = 50 - 500. The Reynolds
Us

number, Res is defined as: Re, = _0_. The present numerical prediction is
V

compared with available predicted results for an expansion ratio 2.0 with
fully developed velocity profile at inlet in fig 4.3 ( Mohamed et al. [15] ). It
appears that the predictions of the present methodology are in good
agreement with the experimental data and available predicted data and
hence it may be concluded that the present numerical model has the
capability of predicting complex laminar flows with reasonable accuracy.

The computer code is then modified to incorporate calculation for the present
study.

4.4 COMPARISONWITHAVAILABLEDATA

The qualitative results of the lengths of the primary and secondary vortices
are presented in figs. 4.4 - 4.7. Figure 4.4 shows the variations of the length of
the primary vortex with Reynolds number (Res) for different annular radius
ratio (a) for the inner-radius annular backstep. The results for a = 0.2 and a =
1.0 (Planar backstep) are compared with the available predicted and
experimental data. Note that the results of Armaly et al. [5]and Islam et al. [7]
for a = 1.0 are for an expansion ratio H/h = 1.94, whereas the present
prediction is for H/h = 2.0. However, the present prediction provides an
excellent agreement for this case upto Res = 300. For the Reynolds number
Res >.300, the agreement to be less good for the case of the present prediction
and Armaly et al. [5],but the results of Islam et al. [7] are also agreement with
higher Reynolds number. This increased disagreement between experimental'
and present predicted results at higher Reynolds number is caused by the
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occuratice of inherent three dimensional effects in the experiments that reach
the centre plane of the Channel [5]. Armaly et al. [5] pointed out that the
experimental values were determined from photographic records that
depend on a flow visualization that used entrained air bubbles, appropriate
illumination, depth of field and time of exposure. The length of the
recirculation region presented by Leal and Acrivos [22] are known to be
higher than the lengths presented by others for the planar backsteps; (see
Islam et al. [7] ). The results of Mohamed et al. [15]for a = 0.2 and expansion
ratio H/h = 1.5,whereas the present prediction is for H/h = 2.0.However the
present prediction provides an good matching. The present prediction is
consistent with the same conclusions drawn by Denham and Patrick [13] in
their investigations of the laminar recirculation zone behind a planar, 2-D
backstep in a channel. The experimental data and supporting numerical
predictions for planar backstep indicate that the length of the recirculation is
a strong function of Reynolds number and annular radius ratio (a), and a
relativ~ly weak function of the other parameters. The predicted fact that the
change'in length of the recirculation region with Res was also found by
Macagno and Hung [20] for the pipe expansion backstep problem. It is also
shown that the inner-radius annular backstep geometry produces the
shortest recirculation zones.

The predicted length of the primary vortex for the outer-radius annular
backstep is presented in fig. 4.5 and also compared with pipe expansion. The
area expansion ratio (a) for the pipe expansion data is 0.25. For 0.= 0.1 and
0.2, the length of the primary vortex increases linearly with Res like the pipe
expansion case. The occurance of the secondary vortex on the opposite wall
at a = 0.5 - 1.0 slows down the growth of the primary vortex with Reynolds
number (Res). The longest recirculation regions are observed in the pipe
expansion backstep geometry. For the equivalent Reynolds number (Res), the
recirculation region (or length of the primary vortex) will be the longest in
pipe expansion flow as shown in fig. 4.5.

The predicted size of the secondary vortex is shown in figs. 4.6 and 4.7 for the
inner- and outer-radius annular backsteps for different annular radius ratio
(a) respectively. The top three curves are for reattachment point X3 which
increases linearly with Reynolds number and bottom three curves are for
reattachment point Xz which also increases linearly with Reynolds number
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but the slope of the top three curves becomes more steeper than those of
bottom. The secondary vortex on the opposite wall grows bigger in size
(X3 - X2) with annular radius ratio, ex at a particular Res for bot~ inner and
outer radius annular backstep cases.

4.5 EFFECT OF REYNOLDS NUMBERS

The numerical results for the configuration shown in figure-4.1 are presented
in this section for a Reynolds number range of 50 - 500 and an annular
radius ratio range of 0.1 - 1.0. The prediction of the recirculation region
length were presented by Valentine & Hyde [4].Their results were produced
by solving the Navier-stokes equations for unsteady, incompressible, laminar
flow l:>Y applying a nearly 2nd-order finite difference method that uses the
ADI method coupled with an artificial compressibility scheme to accelerate
convergence to steady-state. In addition to verify the previously reported,
preliminary results the new solution provide additional information about
laminar flow separation over annular backstepso

Figure 4.8 shows the constant streamline contours for inner- radius annular
backstep at ex = 0.1 [ Note that the axial distance has been compressed by 5
times] for several Res values. The length of the primary vortex attached to the
step increases with Reynolds number. For Res > 100 the secondary
circulation in the recirculation region that occurs in the lower corner of the
backstep is significant in size. These secondary circulation increases with
Reynolds number. Figure 4.9 shows the constant streamline contours for
outer~radius annular backstep at annular radius ratio ex = 0.1 for several
Reynolds number. The length of the primary vortex attached to the step also
increases linearly with Reynolds number, but this increment is much higher
in the°l:aseof outer-radius annular backstep.

Figure 4.10 and 4.11 show constant streamline contours for both inner- and
outer-radius annular backsteps at ex = 0.2 for several Reynoids number
respectively. The length of the primary vortex attached to the step increases
with Reynolds number in both cases, but this increment is also much higher
in the case of outer-radius annular backstep. A secondary vortex is formed at
the opposite wall at Res = 500 for the inner- radius annular backstep. An
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additional recirculating flow region ( secondary vortex) was observed at the
opposite wall downstream of the flow passage (see in fig. 4.10).The presence
of secondary vortices are also supported by experimental studies of Armaly
et. al. [5].This separation region develops in the laminar range and remains
in existences throughout the transition region [5]. Its appearance is due to the
adverse pressure gradient created on the opposite wall owning to the
curvature of the streamline for primary vortex. Its existences is largely
depend,ent on the annular radius ratio ( a) and Reynolds number for both
cases. ;

Figures 4.12 and 4.13 show constant streamline contours for both inner- and
outer-radius annular backsteps at a = 0.5 for several Reynolds number
respectively. The length of the primary vortex are similar in both the cases.
For Res> 300, the secondary vortex also appears at the opposite wall for
inner-radius annular backstep but for Res> 200, the secondary vortex also
appears at the opposite wall for outer- radius annular backstep. The size of
the secondary vortex are increases with Reynolds number for both inner- and
outer-radius annular backstep and a second secondary vortex also appears at
the step side wall for outer radius annular backstep at Res> 400.

Figures 4.14 and 4.15 show the constant streamline contours for both inner-
and outer-radius annular backsteps at a = 0.75for several Reynolds number

•respectively. The length of the primary vortex are similar of previously
discussed above. For inner radius annular backstep, the secondary vortex
also appears at the opposite wall beyonds Res = 300 and for outer-radius
annular backstep, the secondary vortex are also appears at the opposite wall
beyonds Res = 100 and a secondary vortex grows bigger iil'size with
Reynolds number and also a second secondary vortex also appears at the
step side wall for outer radius annular backstep at Res = 500 but size of a
second secondary vortex is smaller than a = 0.5 and Res> 400. In addition to
the secondary vortex on the opposite wall, another secondary vortex appears
on the stepside wall downstream of the primary region of the separation.
Armaly et al. [5] also reported this separation region for plane sudden
expansion geometry. It is very thin. It originates in the reynolds number
range corresponding to the early part of the transition region [5] (see
fig. 4.33 ) , where the reattachment length experiences a sharp drop in its
magnitude. These strong veriations in flow properties to be caused by vortex,'c, 22



sheddihg from the edge of the step. These vorties were thought to approach
the wall, and the secondary recirculating flow might then be due to the sharp
change of flow direction which the eddies experience.

Figure 4.16 show the constant streamline contours for both inner- radius
annular backstep for several Reynolds number at a = 1.0 (i.e. planar
backstep). Predictions of the size of the flow separation region downstream of
the planar backstep examined experimentally by Armaly et a1.[5]were made
to compare with their observation. For the low Res planar backstep flows the
computed reattachment length increases monotonically with Reynolds
number. The increase of reattachment length with Res is nonlinear. However,
when there is only one vortex in the recirculation region the change.in length
is linear. The length of primary vortex for bqth inner and outer backstep
increases with Res. At this configuration, a secondary vortex appears beyond
Res =200 for inner radius annular backstep. The secondary vortex grows for
both dses bigger with Reynolds number.

Figures 4.17 - 4.21 are shown the constant vorticity contours for the inner-
radius annular backstep at a = 0.1, 0.2, 0.5, 0.75, 1.0 for several Reynolds
number respectively. [ Note that the axial distance has been compressed by 5
times]. The vorticity lines shown in figures are stretched in the direction of
flow as the Reynolds number becomes larger; it is obvious that the peak value
of the vorticity cannot coincide with the separation line, because otherwise a
contradiction would result at the reattachment point, where the vorticity
must be zero. In fact, the vorticity peak first moves into the main flow when
separation occurs and then moves back to the wall well downstream from the
stream reattachment point. Figures 4.22 - 4.25 also shown'theconstant
vorticity contours for the outer-radius annular backstep at a = 0.1, 0.2, 0.5,
and 0,75 respectively.

4.6 EFFECTOFANNULAR RADIUS RATIO

The effect of the annular radius ratio on the flow field are presented in figures
4.26 and 4.27 for inner and outer radius annular backstep at Res = 100 [ Note
that the axial distance has been compressed by 5 times] respectively. The
length of the primary vortex increases with annular radius ratio for inner
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radius annular backstep and decreases monotonically with annular radius
ratio for outer radius annular backstep.

Figures 4.28 and 4.29 show the constant stream line contours for inner- and
outer- radius annular backsteps at Res = 200 respectively. The length of the
primary vortex attached to the step increases with annular radius ratio for
inner radius annular backstep but decreases for outer-radius annular
backstep. At these configuration, a secondary vortex appears only outer-
radius annular backstep cases at a = 0.75 - 1.0 and the secondary circulation
in the recirculation region that occurs in the lower corner of the backstep is
less significant in size at a = 0.1 for inner radius annular backstep.

Figure 4.30 and 4.31 also show the constant stream line contours for inner
and outer radius annular backstep respectively at Res = 300.The length of the
primary: vortex are quantitatively similar in comparison to the case Res = 200.
Secondary vortex appears on the opposite wall for both inner- and outer-
radius annular backstep cases beyonds a = 0.2 .
Figures 4.32 and 4.33 show the constant stream line contours for inner- and
outer- radius annular backstep respectively for several annular radius ratio at
Res = 500. The length of the primary vortex attached to the step increases
with annular radius ratio (a) for inner- radius annular backstep but
decreases for outer- radius annular backstep. The length of the primary
vortex much higher at lower Reynolds number for outer- radius annular
backstep. For inner- radius annular backstep, the secondary vortex appears at
the opposite beyonds a = 0.1 and the size of the secondary vortex increases
with annular radius ratio (a) also the similar phenomena for outer- radius
annular backstep and also the secondary circulation occurs in the lower
corner~Ofthe backstep at a = 0.1 and bottom surface at a = 0.2. The second
secondary vortex also appears at the stepside wall for outer- radius annular
backstep at a = 0.5 - 0.75.

"

4.7 VORTICITY DISTRIBUTION ALONG THE WALLS

The shear stress distribution along the walls of the passage are of engineering
interest. The local valu'e of the vorticity at the wall (or no-slip boundary) is
proportional to the local value of the shear stress. Hence, to examine the
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variation in shear stress acting on the walls of the annular passage, we may
examine the plots for the vorticity distributions along the step side and the
opposite walls for both inner and outer radius annular backstep.

The vorticity at the walls is related to the local skin friction coefficient and is
defined as

2rwc =--
f pU2

where "w is the shear stress along the wall, p is the mass density of the fluid
and U is the characteristic velocity. Newtons Law of viscosity states that

dU
'tw = lldr

where fl is the dynamic viscosity of the fluid and r is the direction normal to
the wall. For the stepside wall r is R.Hence

2 s dU
cf=-'-'-. ResUdr

Thus the wall value of the vorticity along the inner wall is related to the local
value of the skin friction as follows

Figures 4.34 (a-f) show the vorticity distribution along the walls for the inner-
radius annular backstep for a = 0.1. For Res = 50, the magnitude of the
vorticity (on shear stress) along the opposite wall decreases in the direction
downstream from the backstep to a minimum at about x/H =' 2.2 which is a
point just downstream of the reattachment point ( see fig. 4.34 a).Then it
increases to the fully developed flow value. Along the stepside wall the
vorticity (or shear stress) increases from zero at the bottom of the backstep to a
maximum value at x/H =1.0.The magnitude of the maximum vorticity along
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the stepside wall is 1.3. It then decreases to the fully developed value. The
reattachment point is at x/H = 2.0, which is defined as the point where the
vorticity (or shear stress) is zero at the step side wall. For x/H > 5.5, the
vorticity becomes almost constant. In figures 4.34 (b-f) the vorticity
distributions on the both walls are presented for Res = 100,200,300,400 and
500 respectively. The general trend of the vorticity distribution is similar to
that of Res'" 50 except in the cases of Res ~ 200. In such cases, the vorticity
distributions along the stepside wall has a second peak.

In figure 4.35 (a-f) the vorticity distributions along the wall of outer- radius
annular backstep is shown.

In the inner radius annular backstep case a "vortex ring" is compressed in
the circumferential direction as it moves downstream over the backstep. The
compr~ssion causes the "ring" to induce higher magnitude of the velocity at
points' equidistant from the "ring" in any (r, x) plane. At radii less than the
radius of the "ring" the relatively larger induced velocity field induced by the
compressed "ring vortex" will tend to retard the local velocity and thus the
growth of the recirculation region as compared with the equivalent
nonstritched "vortex" moving over the 2-D (Planar) backstep ( see Mohamed
et. al. [15]). Hence the recirculation region in the inner-radius annular
backstep problem is indeed expected to be shorter than for the planner
backstep problem.

The effects of Reynolds number and annular radius ratio are shown in
figures 4.36 - 4.37 along the stepside and opposite wall for inner-radius
annular backsteps respectively. As we see in the fig. 4.36 , with the increase of
Reynolds number the maximum value of the vorticity increases as well as the
locations move downstream of the annular flow passage. The value of
second peak increases with Reynolds number and locations moves
downstream of the passage. For fig. 4.37, with the increase of Reynolds
number the negative peak value of the vorticity increases as ':Vellas locations
moves downstream of the annular flow passage.

The effects of Reynolds number and annular radius ratio are also shown in
figures 4.38 - 4.39 along the stepside and opposite walls for outer-radius
annular backsteps respectively. As we see in the fig. 4.38,with the increase of
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Reynolds number both the negative and the positive maximum peak values
of the vorticity increase as well as locations moves downstream of the flow
passage. For fig. 4.39 with the increase of Reynolds number the maxinum
value of the vorticity increases.

4.7 CLOSURE

The present computer code is used to simulate the laminar flow separation
over annular backsteps. Numerical predictions are compared with the
available experimental data and found to have reasonably good matching.
The flow was investigated for different Reynolds number, annular radius
ratio over annular backsteps. Also the vorticity distribution along the walls
was studied for different Reynolds number and annular radius ratio (a).
Useful nondimensionalized results are provided with discussions.
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CHAPTER-5

CONCLUSIONS AND RECOMMENDATIONS

5.1 SCOPE

This chapter summaries the results of the flow fields over the inner- and outer-
radius annular backsteps and also suggests the scope of further extension of the
present study.

5.2 CONCLUSIONS

The results of this thesis have been presented in the previous chapter. Based on
those results the following conclusions can be drawn:

1. The laminar reattachment length is a relatively strong function of
Reynolds number ( Res). The length of the primary vortex attached
to the step wall increases with Reynolds number for both the inner-
and outer- radius annular backsteps, but this increment is much
higher in the case of outer-radius annular backstep. This is a typical
characteristics of the separation of laminar flow over backsteps.

2. The length of the primary vortex increases with annular radius ratio
(a) in the case of inner- radius annular backstep but decreases in
outer- radius annular backstep.

3 For the equivalent Reynolds number the reattachment length for the
inner- radius annular backstep is shorter than for the planar
backsteps but in case of outer- radius annular backstep
reattachment length is larger than the same planar backstep and
shorter than for the axisymmetric pipe expansion.

4. Secondary vortex appears on the opposite wall but its occurrence
depends on the Reynolds number and annular radius ratio (a)

5. High Reynolds number range with multiple separation bubbles
approaching the onset of the transition. In the case of outer-radius
annular backstep length of reattachment region linear for low
. annular radius ratio. 0
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6. The secondary vortex grows bigger in size with annular radius ratio
(a) at a particular Reynolds number for both the inner- and outer-
radius annular backsteps. .

5.3 RECOMMENDATION FOR FUTURE WORK

There are many different ways in which this work can be extended. For future
improvement, the followingworks may be recommended:

1. The effectof an expansion ratio can be studied.

2. Unsteady, compresible laminar flow can also be studied.

3. Heat transfer can be added.

4. The effectofmass transfer can also be added.

5. Turbulent flow can be considered.

6. Concentric annular backsteps with inner pipe rotating can be
studied.

7. Annular backstep with outer pipe rotating can also be investigated.

8. The effect of inlet condition on the structure of laminar flow over
annular backsteps may be incorporated.
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