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Abstract

In this thesis, efficient deep neural network architectures are proposed for extracting

features from diverse receptive fields by introducing numerous optimization, feature

fusion, and data transformation schemes targeting numerous multi-dimensional ap-

plications. Firstly, to exploit effective features in data constrained environment

from a single modality, feature learning from multiple perspectives is introduced

through varying resolutions and novel data augmentation strategies. In addition,

features from varying receptive fields have been extracted by introducing multi-

kernel depthwise separable convolutions with varying dilation rates, and the per-

formance is validated in the case of 1-D (electrocardiogram, ECG) and 2-D (chest

X-ray image) data for disease classification. Afterward, feature spaces of multiple

modalities have been explored by incorporating various transformed representations

of multi-modal 1D time series sensor data. Moreover, a sequential training algo-

rithm is proposed to gradually converge extracted features to the final objective and

the overall scheme is deployed on human activity recognition application. For the

purpose of multi-dimensional data segmentation (2D endoscopy images, and 3D CT

volumes), instead of using conventional uni-scale feature propagation, multi-scale

contextual feature aggregation and fusion-based building blocks are designed and

incorporated in the DNN which offers improved feature sharing while minimizing

the contextual information loss. Especially in the case of 3D data, a hybrid DNN

architecture is proposed performing 2D slice-wise processing accompanied by lighter

3D-volumetric segmentation to reduce the complexity of the optimization process.

Finally, a triple attention based learning scheme is proposed combining the channel,

spatial, and pixel level attentions, which is incorporated in the DNN architectures to

improve the feature sharing process targeting multiple objectives through hierarchi-

cal training and joint optimization. The proposed methods are validated in various

multi-dimensional datasets targeting real-world applications such as disease clas-

sification, infection segmentation, disease severity prediction, and human activity

recognition.
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Chapter 1

Introduction

Machine learning approaches have been widely incorporated in wide range of ap-

plications including health science, computer vision, automation, and industrial

applications [1], [2]. Particularly, these algorithms have brought about revolution-

ary improvements in diverse domains of health science including automated disease

diagnosis, region-of-interest segmentation, severity prediction, and patient moni-

toring [3]. However, performances obtained with traditional hand-crafted feature

based approaches with shallow neural networks and other machine learning algo-

rithms demand domain expertise, and careful selection of features that limit their

applicability in diverse applications [4]–[6]. Recently, deep learning approaches have

been established as a paradigm shift for the automatic extraction of effective fea-

ture representation from the data with deep neural networks. With the widespread

availability of the data in this era along with the massive computational advan-

tages of modern hardware, such approaches have been incorporated in wide range

of applications for achieving the optimum performance [7], [8].

Despite the widespread applicability with unprecedented performance of the deep

learning algorithms, most of the successes came through huge amounts of labeled

data that limits the applicability in data-constraint critical applications [9]. Hence,

achieving considerable performance with a limited amount of labeled data is one

of the major challenges of such schemes [10]. To exploit the available information

embedded in the data, several methods have been studied in the literature [11]–[13].

Most of the traditional schemes primarily depend on the architectural variations of

the deep network to incorporate effective features while keeping the data mostly

unaltered [12], [13]. However, it is necessary to process the data further to incorpo-

rate multi-perspective features in operations along with the architectural variations.

Yet, there exists a critical shortage of works to process data of a particular modal-

ity from multifarious observation windows to exploit the feature space. Moreover,
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most of the traditional approaches deal with unimodal data that further limits the

applicability [12]–[14]. When multimodal data are available, it is necessary to incor-

porate features from multiple modalities for making the feature extraction process

more robust [15]. However, such objectives demand additional optimization strate-

gies for effective feature selection, and fusion [15]. Transfer learning is one of the

most widely used techniques to propagate knowledge from one domain to another.

However, in practical conditions, it is difficult to get suitable applications with ad-

equate labeled data to transfer knowledge. Without depending on few traditional

architectures for all applications, it is necessary to design efficient deep neural net-

work architectures targeting the final applications that demand reformulation of the

objective function, domain-specific adaptation, effective training, optimization, and

finer data processing schemes.

1.1 Multi-receptive Feature Optimization: Meth-

ods and Opportunities

For improving the feature quality, the training data should be processed from diverse

operational perspectives to extract features from different receptive areas [16]. Sev-

eral approaches can be incorporated in the data processing framework at different

stages to represent distinctive features. Architectural modifications can be incor-

porated to improve the feature extraction process by exploring different receptive

areas of the operational data [17]. Apart from solely depending on the architectural

variations with raw data, numerous transformations can be introduced for facilitat-

ing the feature extraction process by sequentially integrating features from diverse

perspectives through improved optimization strategies [18], [19]. Moreover, various

scales of features generated at different subsequent stages of the deep neural network

can be processed with group fusion schemes for extracting the multi-scale contextual

features to improve the robustness of the features [20], [21]. Finally, multi-objective

learning can be an effective strategy for integrating the effective feature representa-

tions from multiple objectives though joint multi-phase optimization schemes [22].

Such learning greatly improves the feature quality as different objectives extract fea-

tures from various receptive areas and thus, provides the opportunity to learn the

generic feature representation to reduce the bias in the optimization. These strate-

gies for multi-receptive feature optimization are briefly discussed in the following

discussions.
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1.1.1 Architectural Modifications

Existing deep neural network architectures have incorporated numerous architec-

tural renovations to make the network more robust for diverse applications [23],

[24]. Nevertheless, different applications offer diverse challenges that makes it dif-

ficult to optimize the same network for all the applications despite the widespread

generalization capability of the deep neural network [25], [26]. Hence, domain spe-

cific adaptation of the neural network architecture plays a significant role to achieve

optimum performance in a particular application [27]. Moreover, the main limiting

condition for achieving optimum performance with the deep neural network is their

data hungry nature. To obtain optimum performance, it is of great importance to

incorporate features from distinct receptive areas through architectural modifica-

tion. Therefore, the topology of the network architecture is required to be adjusted

for facilitating the feature extraction process.

1.1.2 Multi-transformed Data Representation

Along with the architectural modifications of the deep neural network, it is required

to explore the available training data from diverse perspectives by introducing differ-

ent representation of the data [18]. Due to environmental perturbations and many

other noises, sometimes it becomes complicated to extract the optimum feature rep-

resentation from one viewpoint with the unaltered raw data. Transformation on

the raw data offers the opportunity to explore the data from different viewpoint

that helps to improve the robustness of the system [28]. Nevertheless, to utilize

the opportunities provided by these transformations, it is required to have effec-

tive feature extractors to extract the underlying feature representation. As different

transformations provide varied challenges with their diversified representations, it

is challenging to design the optimum feature extractors for all these transformed

spaces [29]. However, deep learning algorithms have provided the great opportu-

nity to utilize the data representation for obtaining the optimum feature extractors.

Therefore, there exists significant research opportunity to explore diverse represen-

tations of the data with the end-to-end deep learning framework to generate the

optimum feature representation for improving performance.

1.1.3 Multi-scale Contextual Feature Optimization for Seg-

menting Region-of-Interests

Segmentation of the region-of-interests from the images have great significance with

numerous potential applications in healthcare, automation, and vision applications
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[20], [21], [30]. It provides precise localization of the objects that greatly reduces the

operational burden in diverse applications. It poses additional complexity to per-

form pixel-wise classification of the whole image that requires generalization of the

different scales of contextual features. To improve the segmentation performance, it

is of great importance to effectively extract the multi-scale contextual features that

greatly helps to get the multi-perspective view of the target objects [31]. Moreover,

volumetric segmentation puts forward further challenges to extract contextual fea-

tures from the whole volume [32]. Since the network gets bigger, it demands larger

amount of labelled 3D data for obtaining considerable performance as well as in-

creases the computational cost. To improve the computational performance as well

as to integrate the multi-perspective contextual features effectively from the whole

3D data frame, hybrid 2D-3D optimization technique can be explored in sequential

optimization phases.

1.1.4 Multi-objective Learning with Multi-phase Optimiza-

tion

Despite achieving satisfactory performances in different objectives separately, multi-

objective learning provides further opportunity to improve performance, particularly

in the case of applications with multiple objectives with shared feature spaces [33].

To improve feature sharing for facilitating the optimization, it is required to design

the network in a customized manner targeting a particular application with multiple

objectives [34]. Moreover, in many applications, some of the objectives provide

additional challenges demanding larger amount of labelled data, whereas some other

objectives comparatively offer lower burden on the feature extractors for having

sufficient amount of labelled data [35]. In such cases, learning from a particular

objective can be effectively transferred to learn other objectives with significantly

smaller amount of labelled data [28]. Such multi-phase optimization provides the

opportunity to efficiently extract the generic multi-perspective contextual features

to achieve the optimum performance on all of the objectives.

1.2 Multi-dimensional Data Processing in Real-

world Applications

In practice, most of the real world applications come with the challenges of multi-

dimensional data processing [36]. With increasing dimensionality, the data becomes

richer with contextual details that provide opportunities for improved feature ex-
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traction. However, higher dimensionality increases computational complexity of the

feature extraction schemes requiring advanced optimization strategies to exploit the

finer details [37]. On the other hand, lower dimensional data provide lighter workload

on the feature extraction scheme while being less robust with contextual informa-

tion. Different applications demand the choice of dimensionality of the operating

data targeting separate devices based on the computational overhead and intended

users. Therefore, different dimensional data should be optimized with customized

framework to get the optimum performance.

For mobile applications, lower dimensional data can be an effective choice for

lower complexity with considerable performance [38]. Several real world applica-

tions have been incorporated in the mobile devices, such as wearable sensor based

data processing, mobile healthcare, and utility applications. For the improved per-

formance, it is required to process higher dimensional data with finer details. How-

ever, the increased complexity of the features demand robust feature extraction and

optimization schemes for exploiting the higher dimensional features. Moreover, to

optimize the deep neural network with higher dimensional data, considerably larger

volume of data are required. The challenges offered with the smaller available data

with higher dimensionality require customization of the deep neural network ar-

chitectures and optimization schemes considering the requirement of the operating

conditions.

In this thesis, 1-dimensional wearable sensor data from different modalities have

been studied for human activity recognition [19]. Moreover, for representing mo-

bile healthcare based applications, electrocardiogram data have been studied for

cardiac arrhythmia diagnosis that have significant importance to prevent cardiovas-

cular diseases [27]. Moreover, 2D-image data of chest X-ray have been studied for

diagnosing pneumonia and COVID-19 under data constraint scenarios [20]. More-

over, endoscopy images have been studied for segmenting polyp lesions with diverse

textures, types, and shapes [21]. Additionally, 3D chest CT volumes have been ex-

perimented for improving diagnosis, and chest lesion segmentation of COVID-19 [22],

[30].

1.3 Literature Review

Efficient deep neural network architectures have been experimented for several real-

world applications with multi-dimensional data representations. Firstly, multi-class

arrhythmia detection and diagnosis application is experimented from electrocardio-

gram (ECG) data. On this task, a number of methods have already been presented
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in the literature ranging from the traditional feature-based machine learning process

to the end-to-end deep learning process in recent times. In feature-based arrhythmia

detection techniques [39]–[48], various feature extraction approaches are employed,

such as wavelet transform [41]–[45], principal component analysis [47], independent

component analysis [48] and Hermite function [46]. For performing classification

with the extracted features, support vector machine (SVM) [39], K-nearest neigh-

bour [40], feed-forward neural network [43], [46], [48] and random forest [41] have

been used. These approaches mostly depend on handcrafted feature extraction pro-

cess that most often leads to loss of information required for the classification due to

improperly chosen features or inadequate features. Automating the process of fea-

ture extraction and classification was the primary motivation behind the popularity

of end-to-end deep learning-based frameworks.

A number of deep learning-based approaches have also been adopted recently

for arrhythmia classification [25], [49]–[60]. In [49]–[54], 1D convolutional neural

network (CNN) and in [58]–[60], recurrent neural network (RNN) and LSTM net-

work are employed while in [55]–[57], 2D CNN is used by converting 1D ECG beats

into 2D images. Most of the deep learning-based approaches are facing some com-

mon issues: (1) raw ECG data collected from patients are being directly fed to the

deep neural network making the classification process complicated due to presence

of various low and high-frequency noises, (2) for dealing with 1D ECG signal, data

augmentation is not necessarily used and even if it is used, natural variational pat-

tern of ECG isn’t properly captured or preserved, and (3) most of the approaches

use very deep CNNs with large number of parameters that not only increase the

computational complexity but also lead to overfitting the model to training data.

Hence, a deep CNN based arrhythmia classification scheme which can overcome the

above problems and can provide very satisfactory classification performance with

low computational burden is still in great demand.

Afterwards, wearable time-series data from multi-modal sensors have been in-

corporated for human activity recognition. Large varieties of approaches have been

applied to make the correct recognition ranging from traditional feature-based ap-

proaches to the end-to-end deep neural network in recent times. Numerous hand-

crafted feature extraction process with shallow classifiers are explored in the litera-

ture for utilizing multimodal sensor data in activity recognition [61]–[68]. Though

these types of handcrafted features perform well in limited training data scenario, the

extraction of effective features gets very complicated with more number of sensors.

Additionally, the process heavily demands domain expertise for proper selection of

features which becomes harder with the presence of random noises that occurs very
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often in practical conditions.

To automate the complicated feature extraction process, various types of deep

neural networks have been studied in the literature to recognize human activity

from wearable sensor data [69]–[79]. Most of these approaches directly employ the

collected raw sensor data for automated feature extraction using the deep neural

network, such as convolutional neural network (CNN) [69]–[71], recurrent neural

network (RNN) [75], [76], long short term memory (LSTM) network [77], hybrid

CNN-LSTM network [78], and a more complicated LSTM-CNN-LSTM based hi-

erarchical network [79]. Most of these networks are very deep in structure and

therefore, a large amount of data is required to train them properly. Moreover,

due to random noises and perturbations in multi-modal sensor data from differ-

ent sources, the process gets more intricate to operate with the raw data directly.

Hence, with an increasing number of sensors, while having a small amount of data

for some of the activity classes, this problem becomes critical for the automated

extraction of features from raw sensor data using deep network that severely affects

the performance.

In [80]–[83], various approaches have been introduced to represent the time series

data in a modified space that makes the feature extraction process easier by reducing

the effects of noise or random variations. These transformations on the time series

sensor data provide more opportunities to explore the variations of features from dif-

ferent spaces. Though these transformations provide efficient representation of some

of the features in a different space, some other features may become complicated

to extract from that particular space. However, different transformations provide

diverse viewpoints to explore the feature space of raw time series data. Hence,

similar to these studies, depending solely on a single transformed space for feature

exploration limits the scope of feature extraction that may result in smaller per-

formance in many circumstances. If features extracted from different transformed

spaces can be incorporated in the final decision-making process, it will provide a

more robust opportunity to analyze the information on raw data. But, the challeng-

ing task of integrating effective features from diverse transformed spaces through

joint optimization to reach the optimum performance in activity recognition is yet

to be attempted.

Following that, automatic diagnosis of different types of pneumonia and Coron-

avirus Disease-2019 (COVID-19) from chest radiography (X-ray) have been exper-

imented. different modalities of data have been experimented for the automatic

diagnosis of the Coronavirus Disease-2019 (COVID-19). With a serious shortage of

experts, while having large similarities of COVID-19 with traditional pneumonia,
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an artificial intelligence (AI) assisted automated detection scheme can be a signif-

icant milestone towards a drastic reduction of testing time. The mortality rate is

increasing alarmingly throughout the world demanding an early response to diag-

nose and prevent the rapid spread of this disease. Because of having no specific

drugs and treatments, the situation has become frightening to billions of individu-

als [84]. Symptoms ranging from dry cough, sore throats, and fever to organ failure,

septic shock, severe pneumonia, and Acute Respiratory Distress Syndrome (ARDS)

are detected from COVID-19 patients [85]. Reverse transcription-polymerase chain

reaction (RT-PCR), the most commonly used diagnostic test of COVID-19, suf-

fers from low sensitivity in early stages with elongated test period assisting further

transmission [86]. Furthermore, the extreme scarcity of this expensive test kit [87]

exacerbating the situation. Hence, a chest scan such as X-rays and Computer to-

mography (CT) scans are prescribed to all individuals with potential pneumonia

symptoms for faster diagnosis and isolation of the infected individuals. With a seri-

ous shortage of experts, while having large similarities of COVID-19 with traditional

pneumonia, an artificial intelligence (AI) assisted automated detection scheme can

be a significant milestone towards a drastic reduction of testing time.

In [88], [89], CT scans are used with deep learning-based systems for automated

COVID-19 pneumonia detection. Though CT scans provide finer details, X-rays are

quicker, easier to take, less injurious and more economical alternative. However,

due to the scarcity of COVID-19 X-rays, it is extremely difficult to train a very

deep network effectively. Hence, transfer-learning can be a viable solution in this

circumstance that have been widely adopted in many recently proposed COVID-19

detection schemes [90]–[93]. Yet, the traditional scheme of transfer-learning that uses

established deep networks pre-trained on the ImageNet database for transferring

its initial learning can’t be a good choice as the characteristics of COVID-19 X-

rays are solely different from images intended for other applications. Therefore,

an automated deep learning based approach for diagnosis COVID-19 and other

traditional pneumonia from X-rays under such data constrained scenarios is of great

demand.

Afterwards, efficient neural network architecture is experimented for automatic

polyp segmentation from endoscopic images which has great clinical significance

for preventing colorectal cancer. Colorectal cancer has become one of the major

causes of death throughout the world. Early detection of Polyp, an early symptom

of colorectal cancer, can increase the survival rate to 90%. Segmentation of Polyp

regions from colonoscopy images can facilitate the faster diagnosis [94]. Due to

varying sizes, shapes, and textures of polyps with subtle visible differences with
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the background, automated segmentation of polyps still poses a major challenge

towards traditional diagnostic methods [95], [96]. Though not all polyps lead to

colorectal cancer, all colorectal cancer starts with polyps that become cancerous over

time which makes the accurate detection, investigation, and analysis of the types,

patterns, and structures of the polyps of primary importance to reduce spread of

CRC. [97] Some of the rare types of polyps are visually difficult to distinguish due

to flat natures that demands wide experiences and expertise of the endoscopists

that may considerably increase the miss rate during colonoscopy. According to [98],

most of the CRC events are found to occur (91% ∼ 94%) in patients who aren’t up-

to-date with colonoscopic examinations, whereas 6% ∼ 9% events still occur even

after up-to-date colonoscopies. These discrepancies mainly arise from the higher

miss-rate with the flat/sessile type of polyp which becomes critical for the proper

diagnosis of polyps. Furthermore, risks associated with the adenomatous polyps

turning to be malignant increases with the structural deformation of the polyp

regions for abnormal growth. Also, increased number of polyps lead to higher risks

of colorectal cancer demanding regular clinical investigation by expert endoscopist.

Numerous hand-crafted feature-based approaches have been explored for auto-

matic polyp segmentation in the last two decades [99]. In [100], [101], a fuzzy

c-mean clustering method is proposed followed by adaptive deformable models for

separating polyp regions. In [102], the analysis of the color, shape, and curvatures

of the contour regions is carried out for feature extraction. In [103], sparse autoen-

coder is incorporated for extracting super-pixel based features with different saliency

methods to outline polyp regions. In [104], protrusion measurements using second

principal curvature flow is introduced to extract structural features of polyps. How-

ever, due to the additional complexity in polyp region detection for its diversified

textures, shapes, and colors, while having minute differences with the background,

sub-optimal performance is achieved in most of these hand-crafted feature-based

approaches.

Though not all polyps lead to colorectal cancer, all colorectal cancer starts with

polyps that become cancerous over time which makes the accurate detection, in-

vestigation, and analysis of the types, patterns, and structures of the polyps of

primary importance to reduce spread of CRC. Some of the rare types of polyps are

visually difficult to distinguish due to flat natures that demands wide experiences

and expertise of the endoscopists that may considerably increase the miss rate dur-

ing colonoscopy. According to [98], most of the CRC events are found to occur

(91% ∼ 94%) in patients who aren’t up-to-date with colonoscopic examinations,

whereas 6% ∼ 9% events still occur even after up-to-date colonoscopies. These
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discrepancies mainly arise from the higher miss-rate with the flat/sessile type of

polyp which becomes critical for the proper diagnosis of polyps. Furthermore, risks

associated with the adenomatous polyps turning to be malignant increases with the

structural deformation of the polyp regions for abnormal growth. Also, increased

number of polyps lead to higher risks of colorectal cancer demanding regular clini-

cal investigation by expert endoscopist. Hence, Computer Aided Detection (CAD)

systems can contribute to this situation in a different avenue by potentially acting

as a second observer that can complement the physician by pointing out overlooked

polyps. Also, such systems would not require any notable alteration to the proce-

dure of colonoscopy that makes the integration of this system more practical and

easier. In addition, accurate segmentation of polyps may significantly reduce the

miss-rate of polyps, and hence, can be an effective clinical tool for faster screening.

However, such precise segmentation of the polyp regions is particularly complicated

that requires extraction of effective features for precisely detecting the edges of di-

versified shapes of polyps. Therefore, an automated computer-aided scheme for

properly segmenting regions of polyps from colonoscopy images/videos can be a

significant contribution to expedite the process of early-stage polyp detection with

more precision [26], [105].

Similar to other medical imaging applications, deep learning-based approaches

have gained much attention in recent years for automating the feature extraction

process to detect and segment polyp regions with unprecedented precision [106],

[107]. In [108], mask-RCNN is incorporated with traditional CNN based feature ex-

tractors to provide bounding boxes in the polyp region. In [109], two mask-RCNN

networks with different base CNN modules are ensembled for better prediction of

bounding boxes. For obtaining pixel-level segmentation instead of such bounding

boxes, a modified fully convolutional neural network (FCNN) is used with multiple

decoders in [110]. To introduce more contextual information in polyp segmentation,

a deep residual network with dilated kernels is incorporated in the FCNN module

in [111]. Instead of a single encoder in traditional FCNN architecture, an encoder-

decoder based structure is proposed, named as UNet, that increases the performance

of FCNN considerably and has established as a popular choice in medical image

segmentation [112]. However, there exist some architectural limitations in the tra-

ditional Unet architecture that opens the opportunity to improve the performance

further.

Each level of both the encoder and decoder of Unet contains a series of tradi-

tional convolution operations that make it difficult to extract variational features

from diverse receptive areas at different scales. To increase diversity, multi-dilated
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residual units are introduced in [113], instead of traditional convolutions, followed

by squeeze and excitation unit. In [114], a multires block is introduced that utilizes

residual operation after separately integrating features learned from all sequential

traditional convolutions. However, residual learning is more effective for the stack

of deep convolutional layers at each level [115]. Incorporating residual learning with

a single residual block at each level may hinder the learning process. In [116], unit

block of densely connected convolutional layers are integrated at each level for better

performance.

The skip inter-connection of Unet directly connects the output feature map gen-

erated from each level of the encoder to the corresponding level of decoder for propa-

gating information that may be lost through subsequent pooling operation. In [114],

a semantic gap between feature maps is noticed while merging two feature maps at

each level of the decoder and a deep residual path is introduced in the shortcut skip

connection. In [117], a dense residual operation is incorporated with convolutions

of multiple dilation rates in the skip connection. However, most of these skip con-

nections operate with the output feature maps generated from a particular level of

the encoder to reduce the semantic gap with the corresponding decoder level. It is

expected that more effective information flow between encoder and decoder can be

achieved if all output feature maps from different encoder levels can be integrated

for interconnecting with each decoder level. In [118], a nested convolutional stack

is incorporated in between encoder and decoder modules to inter-connect diverse

semantic levels. However, it increases the computational complexity considerably

that hinders the optimization and propagation of the flow of information from the

encoder module to the respective decoder level.

Moreover, the semantic information of the output mask is gradually aggregated in

subsequent levels of the decoder and the reconstructed mask is generated considering

only the final semantic level in traditional segmentation architectures. It makes the

convergence of the network more complicated through such a deep stack of encoder-

decoder layers mostly arising from the vanishing gradient problems. Since different

scales of reconstructed feature maps are generated at various levels of the decoder,

it is expected that more efficient reconstruction can be achieved during the final

reconstruction phase through integrated and joint optimization of these multi-scale

decoded feature maps. Hence, there exists several scopes for further improvement

of the traditional Unet architecture for precise segmentation of polyp regions.

Afterwards, the CNN architecture for image segmentation have been extended

further for volumetric segmentation of COVID-19 chest CT lesions. Several deep

learning-based frameworks have been explored in recent times deploying automated
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screening of chest radiography and computer tomography as one of the vital sources

of information for COVID diagnosis [119]–[123]. However, owing to the relatively

higher sensitivity and the provision of enhanced infection visualization in the three-

dimensional representation, CT-based screening is a more viable alternative than

the X-ray counterparts. Processing 3D CT volume at a whole increases computa-

tional complexity exponentially that makes the optimization and convergence more

difficult limiting the architectural diversity of the network. The most widely used

alternative of 3D-processing is to operate separately on 2D-slices extracted from the

CT-volume [124]–[128]. However, such slice-based processing loses inter-slice con-

textual information that results in sub-optimal performance. In [129]–[132], smaller

sub-volumes are extracted from the original 3D volumes to minimize the computa-

tional burden as well as to utilize 3D contextual information. However, such methods

suffer from inter-volume contextual information loss by considering a smaller por-

tion of the whole set at a time as well as increases complexity to process sub-volume

level prediction into the final result.

Different architectural modifications have been explored in recent years to over-

come some of these limitations. To increase the diversity of operations at each

scale of feature maps, numerous established network building blocks are integrated

in encoder/decoder module, e.g. residual block [133], dense block [134], inception

block [135], dilated residual block [24], and multi-res block [136]. To reduce the

semantic gap between a particular scale of encoder and decoder, a residual path

is proposed in MultiResUnet architecture instead of a direct skip connection of

Unet [136]. However, the semantic gap generated between multi-scale feature maps

of encoder and decoder modules still persists. In Unet++ [137], a nested stack of

convolutional layers is introduced to reduce the semantic gaps. But, it increases

computational complexity considerably which makes convergence difficult. In [131],

Vnet is proposed that utilizes residual building blocks in Unet architecture, while

in [132], cascaded-Vnet is presented for performance improvement that utilizes a

dual-stack of the cascaded encoder-decoder module. Nevertheless, with existing nu-

merous architectural limitations of traditional U-shaped architecture in each stage,

it increases semantic gaps with the additional encoding-decoding stage as well as

increases vanishing gradient issues with contextual information loss that open up

opportunities for further optimization.

However, most of the recent studies mostly opt for solving the daunting task of

COVID-19 diagnosis partially where infection segmentation, diagnosis, or severity

analysis have separately attempted [138]–[140]. However, there exists large degrees

of correlation among all of these tasks. Under the data constrained scenarios, such
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learning approaches may help to achieve better performances in all of the objectives

compared to separate independent learning. For some of the challenging applica-

tions, such joint optimization can be designed in a sequential way to facilitate the

information flow through all of the objectives. Hence, the joint multi-objective

optimization a promising way of further research for better COVID-19 diagnosis,

infected lesion segmentation, and severity prediction.

1.4 Objectives and Scopes

The objectives of this research with specific aims are as follows:

1. To develop efficient DNN architecture, building blocks, and data augmentation

strategies for efficient feature learning from diverse receptive areas of unimodal

data.

2. To incorporate effective features from multi-resolution images with multi-stage

transfer learning strategies for sequential knowledge transfer and optimization.

3. To develop a multi-perspective feature integration scheme from numerous

transformed spaces of multi-modal data through effective selection and fusion

of features with deep neural networks.

4. To develop improved CNN architecture for multi-dimensional image segmen-

tation applications by introducing multi-scale contextual feature aggregation

and fusion based building blocks.

5. To investigate joint optimization strategies for developing a hybrid neural net-

work architecture targeting multiple objectives through effective feature shar-

ing and feature fusion schemes.

The possible outcome of this research is to develop efficient deep neural net-

work architectures along with effective training, data processing, and optimization

schemes to achieve optimum performance in disease classification, infection segmen-

tation, and human action recognition.

1.5 Organization of the Thesis

In this thesis, several novel deep neural network architectures have been introduced

along with diverse data representations, multi-phase optimization and customized
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learning objectives for exploring the feature spaces from diverse receptive windows

in several real-world applications with multi-dimensional data.

Firstly, a deep neural network architecture (DeepArrNet) is presented with multi-

receptive building blocks for arrhythmia classification from denoised ECG beats.

The presented scheme offers an end-to-end framework for precise diagnosis and clas-

sification of cardiac arrhythmia incorporating ECG beat extraction, denoising, beat

augmentations for smaller classes, feature extractions with varying kernel windows,

and regularized optimizations.

Secondly, the network architecture has been improvised with a novel multi-

dilation building block for incorporating multi-receptive features from 2d chest X-ray

images in order to diagnose and classify multi-class pneumonia including COVID-

19. Additionally, to transform the observation perspectives, multi-resolution images

have been introduced with customized neural networks along with a stacking algo-

rithm for improved diagnosis. Moreover, for overcoming the scarcity of the available

data for COVID-19, a multi-stage transfer learning approach has been presented for

exploiting available chest X-ray images for learning generic feature representation.

Thirdly, different transformed representations of the multi-modal time series data

from numerous wearable sensors are explored for improving the performance of hu-

man activity recognition objective by introducing diverse perspectives of the data.

Moreover, efficient training and optimization algorithms have been proposed to grad-

ually incorporate the effective feature representations from these representations.

Furthermore, different augmentation techniques have been introduced for handing

imbalance in the training data as well as to introduce different perspectives of the

available data. Several real world datasets have been used for verifying the effective-

ness of the proposed schemes under diverse environmental and operating conditions

of different subjects.

Fourthly, a modified encoder-decoder based deep neural network architecture

(PolypSegNet) is presented for segmenting polyp lesions from endoscopy images.

This network generates various scales of feature representation from the endoscopy

image through sequential encoding-decoding stage with inter-linked skip connection.

Moreover, multi-scale feature maps generated from various levels of the network

have been processed through group fusion and optimization schemes for extracting

the general contextual information for precise segmentation. Such architectural

building blocks facilitate the feature extraction process to cover diverse receptive

areas for learning the generic representation of the region-of-interests. Several real-

world datasets has been experimented to validate the effectiveness of the proposed

multi-scale feature optimization framework.
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Fifthly, a multi encoder-decoder architecture (CovSegNet) is introduced with

horizontal and vertical expansion strategies for improved performance of COVID-

19 lesion segmentation from CT volumes. Several encoding and decoding stages

are stacked sequentially with multi-scale feature fusion schemes for gathering richer

contextual details. The proposed architecture can be optimized for processing 2D

images as well as can be designed for operating with 3D data. Though operating

with 3D CT-volumes provides detailed contextual information, it increases the com-

putational complexity of the optimization process demanding considerably larger

amount of labelled data. To improve the computational performance as well as to

integrate the multi-perspective contextual features effectively from the whole 3D

data frame, hybrid 2D-3D optimization technique has been introduced in this chap-

ter. Various architectural topology have been introduced with multi-phase training

strategies to gradually optimize the system for achieving robust performance. The

proposed approaches have been experimented on several publicly available datasets

of COVID-19 CT volumes that represents the effectiveness of the proposed scheme

outperforming traditional approaches.

Finally, a multi-objective learning framework is introduced for joint diagnosis,

severity prediction, and infected lesion segmentation of COVID-19 chest CT vol-

umes. Numerous architectural building blocks have been introduced including tri-

level attention unit, a novel segmentation network, contextual feature aggregation

along with an end-to-end framework for the joint optimization of the system of net-

works. Several objectives are integrated together in a hybrid-learning framework

to optimize the system of networks with a multi-phase optimization scheme. Such

optimization approaches have greatly reduced the burden of the feature extraction

process that significantly improves the performance compared to the separate learn-

ing of these objectives.
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Chapter 2

DeepArrnet: A Multi-receptive

Neural Network for Arrhythmia

Classification from ECG Beats

Cardiovascular diseases (CVDs) have become one of the most common causes of

death throughout the world in recent times. Early recognition of cardiac abnormal-

ity is vital for proper treatment before occurring any major irreversible damages.

Among various CVDs, the arrhythmia is one of the most common problems that de-

scribes irregularity and abnormality in heart beats [141]. There are various types of

arrhythmia, such as ventricular fibrillation, premature atrial contraction and supra-

ventricular arrhythmia [142], [143]. Electrocardiogram (ECG) signal, a recording of

the heart’s electrical potential to show the electrical activity of the heart, is most

widely used by physicians to check the proper functionality of the heart. Arrhythmia

detection based on manual inspection of ECG signals by experts is the commonly

used approach which is often complicated, time-consuming, human error-prone and

difficult due to lack of experts.

In this chapter, an efficient deep convolutional neural network (CNN) archi-

tecture is proposed based on depthwise temporal convolution along with a robust

end-to-end scheme to automatically detect and classify arrhythmia from denoised

electrocardiogram (ECG) signal, which is termed as ‘DeepArrNet’. The major con-

tributions of this chapter is summarized as follows:

1. A structural unit, namely PTP (Pontwise-Temporal-Pointwise Convolution)

unit, is designed with its variants where depthwise temporal convolutions with

varying kernel sizes are incorporated along with prior and post pointwise con-

volution.
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2. A deep neural network architecture is constructed based on the proposed struc-

tural unit where series of such structural units are stacked together while

increasing the kernel sizes for depthwise temporal convolutions in successive

units along with the residual linkage between units through feature addition.

3. Considering the variational pattern of wavelet denoised ECG data, a realistic

augmentation scheme is designed that offers a reduction in class imbalance as

well as increased data variations.

4. Multiple depthwise temporal convolutions are introduced with varying kernel

sizes in each structural unit to make the process more efficient while strided

convolutions are utilized in the residual linkage between subsequent units to

compensate the increased computational complexity.

5. Extensive experimentations are carried out on two publicly available datasets

to validate the proposed scheme that results in outstanding performances in all

traditional evaluation metrics outperforming other state-of-the-art approaches.

The primary results of these experimentation are published in [27].

2.1 Preprocessing

The raw data collected from patients need to be pre-processed first to make it

compatible with the deep neural network. This pre-processing stage consists of five

different operations. Each of them is described in detail below.

2.1.1 Wavelet based denoising

The input raw ECG signal, x[n] can be expressed as:

x[n] = x̂[n] + v[n] (2.1)

where x̂[n] is the original clean ECG signal that has a certain pattern, and v[n] is

the additive noise present in the raw data–generally random in nature–may signifi-

cantly vary during train and test phase. If x[n] is used for training, there is a chance

of getting poor performance during the test even with the highly trained model due

to the random nature of v[n]. Instead of using noisy raw data, if noise reduction

is possible to achieve clean x̂[n], much better training and testing performance is

achievable.
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Figure 2.1: A portion of ECG data collected from a patient is shown before
and after denoising.

ECG signals are corrupted by different types of noises, such as baseline wander-

ing, power line interference, electromyogram (EMG) noise, electrode motion arti-

facts, and channel noise. Different noise reduction techniques are used in literature

for removing noises from recorded ECG data [144]–[148]. Among them, wavelet

transformation, a time-scale representation method, decomposes signals into basis

functions of time and scale that makes it useful for data denoising. In this work, a

wavelet transform based approach with soft thresholding scheme has been employed

for the removal of the effects of noise. In Fig 2.1, the effect of denoising on a segment

of raw data is shown.

2.1.2 R Peak Detection

Following the denoising, the R peak of each ECG beat is located from the con-

tinuous beat stream. Various methods are proposed for R peak detection in the

literature [149]–[155]. As reported in [154], it provides very fast and precise detec-

tion of R-peak. Hence, this algorithm has been employed in this study. In this

method, the denoised ECG signal is squared, firstly, to enhance large values and

boost high-frequency components. Next, blocks of interest are generated using two

event-related moving average to extract the QRS features and to extract the QRSs

beat, respectively. Afterward, an even related threshold is applied to the generated

blocks to separate the blocks that contain the R-peak from the blocks that include
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noise. Finally, the maximum absolute value of each separated block is identified

that provides the R-peak index.

2.1.3 ECG Beat Extraction

To process the ECG beats using deep neural networks, all the beat length should be

uniform. In [56], the median of the R-R intervals is considered as the nominal period

to segment each beat by maintaining equal length in both sides of the R peak. After

segmenting each beat, zero padding is done to make the length uniform. In [52],

[57], [58], equal length of portion is cropped centering the R-peak as an individual

beat. In this work, each beat is segmented centering the R peak by cropping at the

midpoint of the adjacent R-R intervals. Following that, further cropping or padding

with the edge values is carried out centering the R-peak to make the length of each

beat uniform as in some cases, the extracted beat length becomes larger or smaller

than the predefined length. This process can be described as follows.

1. After R-peak detection, each beat is extracted centering the detected R peak

and cropping at two adjacent edges depending on the position of adjacent R

peaks. The cropping edges are decided to be the midpoint of adjacent R-R

intervals. Hence, if the sample number of the extracted beat is denoted by

n and a, b, c representing the sample containing three adjacent R-peaks while

b is representing the R-peak of the beat to be segmented, the range of the

segmented beat can be written as,

nmin = (a+ b)/2 (2.2)

nmax = (b+ c)/2 (2.3)

2. As some of the segmented beats will be smaller/larger than the predefined

length of beats, it is needed to be equalized for further processing on deep

neural networks. Hence, by centering the R peak of the extracted beat, further

cropping is done at the edges, if the beat is larger at the edges. Otherwise,

padding with the edge value is carried out if the beat is shorter.

2.1.4 ECG Beat Augmentation

Due to the scarcity of data for rare diseases compared to normal cases, data im-

balance is a common problem in almost every biomedical application. In ECG, the

imbalance is more prominent due to the lack of arrhythmia beats as many of the
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Figure 2.2: Augmentation on a right bundle branch block beat by applying
26 different combinations of operation on the original beat generated by
the proposed augmentation scheme.

beats are normal even for a patient with cardiovascular disease. With such imbal-

ance in the dataset, the trained model is prone to overfit with the large normal class,

as it considers diseases with a smaller number of data as outliers. For 1D ECG sig-

nal, the problem still persists as the various augmentation techniques have not that

much explored. In [57], 1D ECG data are converted to 2D images and some aug-

mentations are done with different cropping techniques. Due to the 1D properties

of ECG data, such techniques don’t provide that many variations, especially in the

case of smaller classes. In [58], the SMOTE augmentation technique is used which

mainly operates through interpolation within various classes. As the position and

shapes of the data still vary a significant amount within a class, such interpolations

often lead to severe distortions in the generated synthetic data that result in a false

representation of the original data class. In our previous work [53], we have provided

different augmentation techniques for ECG signals. In this work, we have increased

the augmentation techniques by modifying and combining these operations in an al-

gorithmic way to incorporate more realistic variations in the dataset. The following

steps are carried out sequentially while performing augmentations.

• Step 1 (Amplitude Scaling): The data, firstly, undergoes through amplifi-

cation, attenuation or no operation. For amplification/attenuation, the scaling

factor is chosen randomly from a range that is empirically determined. As in

practical cases, there exist some variations in the relative value of amplitudes

in ECG data, these introduced variations through amplitude scaling offer good

augmented beats.

• Step 2 (Time Scaling): Next, the amplitude scaled beat undergoes through

dilation, contraction or no operation on the time axis. For dilation, the beat

is first over-sampled followed by cropping operation while for contraction, the

beat is under-sampled followed by padding operation. The time scaling factor

is randomly chosen from an empirically selected range. As in practical cases,

20



Efficient Deep Neural Network Architectures

such dilations or contractions in beats are widely visible within a certain limit

and the original morphology of the beat isn’t changed, it offers a nice technique

to introduce variations in the dataset.

• Step 3 (Shifting): Finally, the beat undergoes through left shifting, right

shifting or no operation. After shifting, some samples of the particular beat

are cropped at one edge while some samples are padded at the other edge.

The number of samples shifted is chosen randomly from a predefined range.

This operation leads to some variations in the information content that leads

to making the classification action slightly challenging while demanding more

priority to generalize the global features.

By iterating through various choices of these steps, 26 different combinations of

operations are performed on the original beat that provides a more realistic repre-

sentation of the synthesized beats. In Fig. 2.2, all such operations on a particular

beat are shown.

2.2 Proposed Deep Neural Network

Once the pre-processed ECG beats are extracted, the next objective is to develop

efficient deep convolutional neural network architecture for arrhythmia classifica-

tion. In this case, instead of using traditional convolution, first, a structural unit is

designed based on depthwise separable convolution in the 1D domain and then, a

new deep CNN architecture is proposed utilizing the unit. Later, the topology and

formation of the proposed deep neural network is presented in detail.

2.2.1 Depthwise separable convolutions for 1D signal

For conventional 2D convolution operation, both spatial convolution of each channel

and the inter-channel convolution are performed jointly at the same time. This

increases the number of arithmetic operations exponentially with the larger size of

kernels. This overhead in computational cost also results in a larger network that

becomes prone to overfitting the training data.

In depthwise separable 2D convolution, the spatial convolution and inter-channel

convolution operations are performed separately. Generally, at first, a spatial convo-

lution is done on each channel separately and then, pointwise convolution is carried

out considering the inter-channel information together. This spatial convolution fol-

lowed by pointwise convolution is jointly termed as separable convolution. This type
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(a) (b)

Figure 2.3: Proposed structural units utilizing (a) single temporal convo-
lution, (b) multiple temporal convolution with various kernels in parallel
with prior and post pointwise convolution.

of convolution offers a similar transformation with a small number of model parame-

ters compared to traditional convolution. It was first proposed in [156] and is widely

used for 2D image analysis [157]–[160]. Recently, depthwise separable convolution

has also been incorporated for processing speech signals [161], [162].

The ECG signal is a 1D signal and in this case, the depthwise separable 2D

convolution needs to be modified. Instead of block-wise spatial convolution on each

2D channel, simple 1D temporal convolution is required to capture temporal infor-

mation individually. To classify among different classes of arrhythmia with a small

size of available data for most of the abnormal classes, the network is highly prone

to overfit with the large normal class. Hence, that opens the door of optimization

between network overall capacity, i.e. the number of parameters and the network

diversity to capture the minuscule difference in features of smaller classes. By uti-

lizing the depthwise separable convolution operation in the 1D domain for ECG

arrhythmia classification, both of these objectives can be achieved.

For better understanding, a comparison between traditional 1D convolution and

depthwise separable 1D convolution in terms of computational complexity and re-

quired number of network parameters is presented here:

Let’s consider an input data of length li with Ci number of channels. Standard

1D convolution with kernel size k can be used to transform from input data (li, Ci)
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to output data (li, Co), with Co number of channels, which requires a computational

cost of χs with ζs number of network parameters where:

χs = li × Ci × Co × k (2.4)

ζs = k × Ci × Co (2.5)

In case of depthwise separable 1D convolution, the temporal 1D convolution

requires a computational cost of li×Ci×k with k×Ci number of network parameters

and the pointwise convolution requires a computational cost of Ci × Co × li with

Ci × Co number of network parameters which results in total cost of χd with total

network parameter of ζd where:

χd = li × Ci × k + Ci × Co × li (2.6)

ζd = k × Ci + Ci × Co (2.7)

Here, the depth of the output feature map is changed by a factor of C0/Ci.

As a result, the reduction in computational cost is

χd
χs

=
1

Co
+

1

k
(2.8)

and the reduction in the number of network parameter is

ζd

ζs
=

1

Co
+

1

k
(2.9)

Therefore, depthwise separable convolution offers performance comparable to

traditional convolution with a large reduction in computational cost with a smaller

number of network parameters in case of 1D signals for the increased number of

channels with the larger kernel.

2.2.2 Proposed Structural Unit

Based on depthwise separable 1D convolution, a structural unit is designed where

before and after the depthwise temporal convolution, inter-channel pointwise con-

volutions are performed. A simplified schematic of the proposed structural unit is

shown in Fig. 2.3a. The motivation and purpose of different convolution operations

in this structural unit are described below.

• At first, a pointwise convolution is performed to combine the inter-channel

input data information and project the information on a larger space with an
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increased number of channels. The depth increase factor is chosen empirically

for proper optimization.

• Next, to capture temporal information from each channel, a separate temporal

convolution is carried out in the deeper feature map following the prior point-

wise convolution. The kernel dimension for this temporal convolution can be

varied.

• After that, another pointwise convolution is performed to merge the temporal

information of different channels and to project the extracted feature infor-

mation in a smaller space. The dimension reduction factor of the final space

is empirically selected to provide new features from each structural unit after

performing the temporal convolution from a larger window.

• Finally, these extracted new features will be combined with the input features

through concatenation or addition before entering into the deeper structural

unit. Such operations offer the opportunity to go deep with such units while

reducing the vanishing/exploding gradient problems by establishing linkage

between output and input feature map.

An alternate unit structure is shown in Fig. 2.3b where instead of doing sin-

gle temporal convolution with larger kernels in deeper sequential structural units,

multiple temporal convolutions with varying kernel dimensions are performed in par-

allel utilizing the broadened feature map from the first pointwise convolution. This

will pave the way to combine various temporal correlation collected from smaller to

broader time windows (by varying kernel dimension) at the same time with a small

increase in computational cost as this temporal convolution will be performed sepa-

rately on each channel. In this case, all the outputs from temporal convolutions are

concatenated depthwise before the final pointwise convolution. Similar to Fig. 2.3a,

the output of final pointwise convolution can be added/concatenated with the input

feature map.

In the development of the entire architecture, this structural unit can be used

(where temporal kernel dimension may be varied) repeatedly to incorporate features

from a broader spectrum. Utilizing the variations in proposed structural units, dif-

ferent deep convolutional neural network architectures can be designed for arrhyth-

mia detection and classification. In this study, the most effective and efficient form

with multiple parallel temporal kernels (Fig. 2.3b) is used for the construction of

‘DeepArrNet’ architecture which is discussed with implementation details as below.
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Figure 2.4: DeepArrNet Unit Block utilizing multiple temporal convolu-
tions with various kernels in parallel.

2.2.3 Proposed DeepArrNet Architecture

In the proposed DeepArrNet architecture, to make more efficient use of temporal

and pointwise convolution, based on the proposed structural unit shown in Fig. 2.3b,

a DeepArrNet Unit Block is designed which is presented in Fig. 2.4. In this block,

instead of using a single temporal convolution operation, multiple temporal convolu-

tion operations are performed in parallel using various kernel sizes at the same time.

In order to limit the computational complexity in parallel temporal convolution op-

erations, a strided temporal convolution is performed which also reduces the length

of the output feature map. As a result, this will reduce the computational com-

plexity in the subsequent stages of the proposed DeepArrNet architecture as well,

while extracting more generalized features combining various temporal windows.

The detail description of the operations performed in ‘DeepArrNet Unit Block’ is

summarized below.

• At first, the input data undergo through pointwise convolution with depth in-

crease factor of 2 and nonlinear activation function followed by normalization.

• Following that, the data are passed through four parallel paths to perform

separate temporal convolution with strides of 2 on each of them consider-

ing varying temporal kernel dimensions (e.g. kernel sizes of 3,5,7 and 9 are

chosen here). This strided multi-kernel temporal convolution operations not

only reduce the computational complexity but also provide adequate temporal
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Figure 2.5: Architecture of the Proposed DeepArrNet. Here, ‘k’ stands for
kernel size, ‘f ’ for number of filters and ‘s’ for strides in the convolution.

information extracted from varying observation perspective.

• Next, after undergoing through nonlinear activation and normalization, the

output feature maps from all four paths are concatenated vertically which

causes an increase in the number of channels.

• Thereafter, pointwise convolution is performed to project the resultant con-

catenated features on a smaller space. Here, the number of channels in the

output feature map is increased by 32 from the input feature map.

• Finally, the output of this pointwise convolution is added with the input feature

map after being passed through a strided pointwise convolution operation to

generate the final output feature map.

The complete architecture of the proposed DeepArrNet is presented in Fig. 2.5

where the input data are first passed through a standard convolution block. Next,

the output is fed to consecutive four ‘DeepArrNet Unit Block’s, In each block,

the length of the transformed feature map is reduced while increasing the depth.

Hence, after passing through these blocks, final features are obtained with a reduced
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length of 8 with a depth of 160 channels. After that, the global average 1D pooling

operation followed by traditional classification operations are performed.

Therefore, the proposed DeepArrNet architecture is capable of performing the

depthwise temporal and pointwise convolutions efficiently to merge features from

different observation windows. Consequently, this results in a very light deep neural

network, which can also capture the complex functionality of the data to distinguish

among minuscule variations in features of different classes effectively.

2.3 Results and Discussion

In this section, for the purpose of demonstrating the performance of the proposed

method experimental results are presented along with performance comparison and

detail analysis on the effects of various parameters on the performance. Two publicly

available datasets are used to carry out the experimentation. Description of the

datasets and method of training/testing are first discussed. Next, the results and

analysis are presented focusing on major findings.

2.3.1 Dataset Description

In this work, a very widely used publicly available MIT BIH arrhythmia dataset

is used for analyzing the ECG beats [163]. The dataset contains 48 half-hours of

two-channel (MLII and V1) ECG recordings collected from 47 patients, which are

digitized at 360 samples per second per channel with 11-bit resolution. There are

approximately 110,000 ECG beats in this dataset and the beats are classified into five

broad categories by the Association for the Advancement of Medical Instrumentation

(AAMI) [143]. It is to be noted that out of two channels, similar to most of the

research works, only MLII channel is considered as it provides better information

regarding the condition of the heart [164].

PTB database [165], another publicly available dataset, is also used for this

study. It contains 290 records of which 148 are diagnosed as MI, 52 are healthy and

rest ones are with 7 different diseases. Each record contains ECG signals sampled

to the sampling frequency of 1000 samples/sec.

2.3.2 Experimental Setup

For performance evaluation of multi-class arrhythmia classification methods, com-

monly used four performance criteria are used, namely accuracy, sensitivity, positive

predictive value (PPV) and F1 score [166].
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Table 2.1: Confusion Matrix for Proposed DeepArrNet

Actual
Predicted

N S V F Q
N 89955 118 272 109 135
S 11 2749 8 4 7
V 19 25 7170 7 15
F 6 2 3 789 3
Q 16 7 12 5 7999

* N: Normal, S: Supraventricular, V: Ventricular, F: Fusion, Q:
Unknown Beat.

Table 2.2: Effect of Proposed Data Augmentation and Denoising Methods
on Sensitivity

Class
Without Proposed

Augmentation
Without
denoising

Proposed
Method

N 98.5 98.8 99.3
S 96.4 98.5 98.9
V 98.2 98.7 99.1
F 95.9 97.8 98.3
Q 98.1 98.6 99.5
* N: Normal, S: Supraventricular, V: Ventricular, F: Fusion, Q: Unknown Beat.

2.3.3 Performance Evaluation

At first, the performance of the proposed architecture is analyzed from different

perspectives. Later, the performances of some existing approaches are compared

with that of the proposed method.

The proposed architecture is trained on the dataset after completing the pre-

processing stage. In Tables 2.1, the confusion matrix obtained by evaluating the

proposed architecture is provided. This matrix represents the overall performance

of the proposed architecture during testing. It is observed that diagonal values of

this matrix, representing the number of correctly predicted beats, are much higher

compared to others. Though the number of incorrect predictions seems to be large

for the normal class, with a large number of tested beats, these belong to a very

small percentage of total normal beats. Moreover, the proposed network consists of

238,629 number of total parameters and maximum accuracy is reached in 99 epochs.

Hence, this network is very lightweight that converges to the optimum performance

in considerably smaller number of iterations.

In Fig. 2.6, the performance of the proposed network is presented in terms of

sensitivity, positive predictive value and F1 score for each class (N, S, V, F, Q).

Generally, the presence of a large number of training beats in a particular class can

create a bias towards predicting that class in most of the cases which may result in
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Figure 2.6: Representing per class performance of the proposed network
in sensitivity, positive predictive Value, and F1 score in each class.

Table 2.3: Performance of the Proposed Scheme on Arrhythmia Detection
Employing Total Arrhythmia and Normal Class

Metric Value(%)
Positive Predictive Value 99.59

Sensitivity 99.71
Specificity 99.91
Accuracy 99.87

Table 2.4: Performance of the Proposed Scheme on PTB Database [165]

Metric Value(%)
Accuracy 99.21

Average Precision 99.03
Average Recall 99.12

Average F1 Score 99.08

a higher value of sensitivity in that class. However, this problem is almost overcome

with the proposed scheme providing quite satisfactory sensitivity values in all classes.

On the other hand, due to the tendency of biasing towards a larger sized class,

the number of false-positive predictions from other smaller sized classes likely to be

higher that results in lower value of positive predictive value in the larger sized class.

It is noticeable that the DeepArrNet architecture provides noteworthy predictive

value in all classes consistently. Moreover, the F1 score combines the results of

positive predictive value with sensitivity to provide a robust way of comparison. It

can be inferred that proposed scheme provides significant performance with high
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Table 2.5: Comparison of Proposed Scheme with Existing Methods on
Average Values of Evaluation Metrics on MIT BIH Dataset [163]

Work Method
No. of
Class

Accuracy
(%)

Average
Sensitivity(%)

Average
PPV(%)

Average
F1 Score(%)

Matris et al. [44] DWT + SVM 5 93.8 91.5 87.9 89.06
Li et al. [41] DWT + Random Forest 5 94.6 92.4 91.9 92.15

Derya et al. [59] RNN 4 97.07 97.15 97.03 97.09
Acharya et al. [52] 1D CNN 5 93.5 93.35 93.47 93.41
Kiranyaz et al. [50] 1D CNN 5 96.4 79.2 68.8 74.1

Proposed DeepArrNet 1D CNN 5 99.28 99.13 99.08 99.11

consistency in the F1 metric also for all five classes.

Due to the scarcity of data for classes with a very small number of members, the

trained network is prone to struggle to extract proper features for classification. A

proper augmentation method is thus necessary to increase the overall sensitivity of

the network. From Table 2.2, significant improvement in the sensitivity of minority

‘S’ and ‘F’ beat classes are noticeable in the proposed method comparing with the

one unaccompanied by the proposed realistic augmentation scheme. However, to

make fair comparison, in the scheme of without proposed augmentation, the minority

classes are oversampled by taking aliases of the existing beats in each training fold to

reduce the class imbalance. Hence, this comparison represents the significance of the

varieties of realistic augmentation techniques employed during training. Moreover,

the denoising operation applied to raw data reduces the complexity of processing and

offers more opportunities to generalize various classes. The effect of this denoising

operation is clearly visible in Table 2.2 with a noticeable increase in the sensitivity.

In many cases, it is required to detect arrhythmia rather than detecting all de-

tailed arrhythmia classes. In order to demonstrate the performance of the proposed

method in such arrhythmia detection problems, all the classes of arrhythmia are

considered to be the diseased class as a whole and the proposed methods are ap-

plied to identify them with the normal beats. In Table 2.3, the performance of the

proposed network in arrhythmia detection is presented. As it becomes a binary

classification problem, the proposed network is performing even better in this case.

In Tab. 2.4, performance of the proposed architecture is presented on the secondary

PTB database [165]. It is clear that the proposed architecture performs consistently

on this database also.

A comparative analysis of various approaches with the proposed one is presented

in Table 2.5 in terms of the evaluated metrics. Our 1D CNN based proposed ar-

chitecture with the applied techniques of augmentations and data denoising provide

outstanding results that outperform most other approaches. Moreover, the accuracy

metric that mainly represents the total number of correct predictions as a whole,

provides a significant improvement compared to others. Derya et al. [59] provided
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an RNN based approach with comparable results in all metrics. However, as RNN

is difficult to train compared to CNN while suffering from vanishing and exploding

gradient problems, proposed 1D CNN based methods provide better performance.

Li et al. [41] and Matris et al. [44] used traditional handcrafted feature-based ap-

proaches using discrete wavelet transform with traditional classifiers commonly used

for shallow networks, which offers unsatisfactory performance as expected.

2.4 Conclusion

In this chapter, a deep CNN architecture is proposed for arrhythmia detection and

classification from ECG data. It is observed that the proposed architecture pro-

vides better generalization among various smaller numbered classes. Moreover, the

proposed architecture utilizes various temporal windows in parallel while reducing

the feature map using strided convolution. This offers a very lightweight architec-

ture with great generalization capability that becomes the best fit for arrhythmia

classification and provides state of the art result in all the evaluation metrics. It

is expected that the proposed architecture can also be used in other applications

similar to arrhythmia classification employing various other 1D bio-signals.
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Chapter 3

CovXNet: A Multi-dilation

Neural Network for COVID-19

Diagnosis from Chest X-ray

Coronavirus disease (COVID-19), caused by SARS-CoV-2, has been declared as a

global pandemic by WHO that almost collapsed the healthcare systems in many

of the countries [85], [167]. Reverse transcription-polymerase chain reaction (RT-

PCR), the most commonly used diagnostic test of COVID-19, suffers from low sen-

sitivity in early stages with elongated test period assisting further transmission [86].

Furthermore, the extreme scarcity of this expensive test kit [87] exacerbating the

situation. Hence, a chest scan such as X-rays and Computer tomography (CT) scans

are prescribed to all individuals with potential pneumonia symptoms for faster di-

agnosis and isolation of the infected individuals. Though CT scans provide finer

details, X-rays are quicker, easier to take, less injurious and more economical alter-

native. However, due to the scarcity of COVID-19 X-rays, it is extremely difficult

to train a very deep network effectively.

In this chapter, an efficient scheme is proposed utilizing relevant available X-ray

images for training an efficient deep neural network so that the trained parameters

can be effectively utilized for detecting COVID-19 cases even with very smaller size of

available COVID-19 X-rays. The major contributions of this chapter is summarized

as follows:

1. Instead of using other traditional databases used for disparate applications, a

larger database containing X-rays from normal and other non-COVID pneu-

monia patients are used for transfer learning.

2. A deep neural network is proposed, named as CovXNet, to detect COVID-
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Figure 3.1: The complete workflow is represented schematically.

19 from X-rays, which is built from a basic structural unit utilizing depthwise

convolutions with varying dilation rates to incorporate local and global features

extracted from diversified receptive fields.

3. A stacking algorithm is developed that utilizes a meta-learner to optimize the

predictions of different forms of CovXNet operating with different resolutions

of X-rays and thus covering diverse receptive fields.

4. The initially trained convolutional layers are transferred directly with some

additional fine-tuning layers to train on the smaller COVID-19 X-rays along

with other X-rays. This modified network incorporates all its initial learning on

X-rays into further exploration of the COVID-19 X-rays for proper diagnosis.

5. A gradient-based localization is integrated for further investigation by circum-

scribing the significant portions of X-rays that instigated the prediction.

6. Intense experimentations of the proposed methods exhibit significant perfor-

mance in all traditional evaluation metrics. The primary results obtained from

these experimentation are published in [20].

3.1 Methodology

The workflow of the proposed method is schematically shown in Fig. 3.1. As pneu-

monia caused by COVID-19 contains a high degree of similarity with traditional
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(a) Proposed Residual Unit (b) Proposed Shifter Unit

Figure 3.2: Proposed structural units. Here, h, w, and c denote the height,
width and no. of channels of the feature map, respectively, while ‘k’
stands for kernel size, ‘s’ for strides and ‘f’ for number of filters in the
convolution. In depthwise convolution, dilation rate will be varied from
1 to ‘m’.

pneumonia from both clinical and physiological perspectives [168], [169], transfer-

ring knowledge gained from a large number of chest X-rays collected from normal

and other traditional pneumonia patients can be an effective way to utilize smaller

COVID-19 X-rays for extracting additional features. Therefore, in the initial train-

ing phase, a larger database containing X-rays collected from normal and other

non-COVID viral/bacterial pneumonia patients are used for training the proposed

CovXNet. Here, after pre-processing, different resolutions of input X-rays are de-

ployed to separately train different CovXNet architectures. Afterward, a stacking

algorithm is employed to optimize the predictions of all these networks through a

meta-learner. As the convolutional layers are optimized to extract significant spatial

features from X-rays, weights of these layers are directly transferred in the transfer

learning phase. Next, a smaller database containing COVID-19 and other pneumo-

nia patients are used to train the additional fine-tuning layers integrated with the

CovXNet. Finally, in the testing phase, this trained, fine-tuned, stacked modified

CovXNet is employed to efficiently predict the test X-ray image class. Moreover,

a gradient-based localization algorithm is used to visually localize the significant

portion of X-ray that mainly contribute to the decision.

3.1.1 Preprocessing

The collected X-rays pass through minimal preprocessing to make the testing process

faster and easier to implement. Images are reshaped to uniform sizes followed by
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(a) dilation
rate=1

(b) dilation
rate=2

(c) dilation
rate=3

Figure 3.3: Dilated Convolution for different dilation rates with kernel
size (3× 3) are encompassing different receptive areas. With increased
dilation rate, the receptive area also gets bigger, though kernel size is
kept unchanged.

min-max normalization for further processing with the proposed CovXNet.

3.1.2 Proposed Structural Units

Two structural units are proposed, as shown in Fig. 3.2, which are the main building

blocks of the proposed CovXNet architecture. Depthwise dilated convolutions are

efficiently introduced in these units to effectively extract distinctive features from

X-rays to identify pneumonia.

As the features of pneumonia can be very localized (consolidated) or diffusely

distributed over a larger area of the X-rays, it is necessary to incorporate features

from different levels of observations [168], [170], [171]. In [172], dilated convolution

is introduced to broaden the receptive field of the convolution without increasing the

total number of parameters of kernels by increasing dilation rates. This process is

presented visually in Fig. 3.3. Various features extracted from different convolutions

with varying dilation rates will integrate more diversity in the feature extraction

process.

Moreover, traditional convolution can be divided into depthwise convolution fol-

lowed by a pointwise convolution that makes the process extremely computationally

efficient [173]. In depthwise convolution, i.e. a spatial convolution, each input chan-

nel is individually filtered by separate filters without combining them. Afterward, a

pointwise convolution, i.e. traditional convolution with 1× 1 windows, is performed
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for projecting the inter-channel features into a new space.

DepthwiseConv(W, y)(i,j) =

K,L∑
k,l

W(k,l) � y(i+k,j+l) (3.1)

PointwiseConv(W, y)(i,j) =
M∑
m

Wm � y(i,j,m) (3.2)

In the proposed structural units, depthwise dilated convolutions along with

pointwise convolutions are introduced efficiently. Firstly, the input feature map

undergoes through a pointwise convolution to project the inter-channel informa-

tion into a broader space. Following that, numerous depthwise convolutions are

performed with different spatial kernels with varying dilation rates starting from

dilation rate of 1 to a max-dilation rate of m. The value of m is adjusted according

to the shape of the input feature map for covering the necessary receptive area.

Hence, these depthwise convolutions are extracting spatial features from various

receptive fields ranging from very localized features to broader perspective general-

ized features. Thereafter, all these variegated features go through another pointwise

convolution to merge these inter-channel features into a constricted space.

In the proposed residual unit, as shown in Fig. 3.2a, this pointwise-depthwise-

pointwise convolutional mapping is set to fit a residual mapping by adding the output

with the input feature map. This type of residual learning, introduced in [174], is

used to capture the identity mapping that helps to produce a very deep network

without overfitting. If the proposed residual mapping is denoted by R with input

tensor X such that X 7→ R(X), the final output mapping F can be represented as

F : X → [X + R(X)]. These residual units can be stacked in more numbers to

produce a deeper network.

In the proposed shifter unit, as presented in Fig. 3.2b, the input feature map

undergoes through some dimensional transformations. Firstly, the depth of the in-

put feature map is increased by 4 times to introduce more processing for spatial

reduction. Later, the spatial dimensions are halved through strided depthwise con-

volution instead of traditional pooling operation as it loses positional information

[5]. Such spatial reduction helps to broaden the receptive field for further processing

to introduce more generalization. Finally, the depth of the output feature map is

doubled in the final pointwise convolution to increase the filtering operations in later

stages.
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Figure 3.4: Schematic of the Proposed CovXNet architecture optimized
for input shape (128,128,1). Each residual unit is replicated for ‘d′ times.

3.1.3 Proposed CovXNet Architecture

The residual and shifter units are the main building blocks of the proposed CovXNet

architecture, as shown in Fig. 3.4. Firstly, the input image undergoes convolutions

with broader kernels to process the information with the larger receptive area. The

following convolution introduces some dimensional transformation. Afterward, it

passes through a series of residual units. Depth of this stack of residual learning

(d) can be increased to produce a deeper network. Shifter units are incorporated

in between such stacks to introduce dimensional transformation to generalize the

extracted the information further. However, the maximum dilation rate (m) of each

residual unit is determined based on the dimension of the input feature map. For

processing larger features, m is set to be higher to increase the maximum receptive

area of the residual unit accordingly to encompass more variations in the extracted

features. Finally, the processed feature map passes through global average pooling

followed by some densely connected layers before providing final prediction. More-

over, the rectified linear unit (Relu) is instigated after each convolution for non-linear

activation with batch normalization to make the convergence faster.

3.1.4 Stacking of Multiple Networks

The proposed CovXNet architecture can be optimized for input images with different

resolutions by adjusting the number and maximum dilation rates of the structural

residual and shifter units. Such introduced architectural variations with changing

resolutions of X-rays will force these networks to explore the information content

from different levels of observations. Though with the reduction of the resolution,

information content of an image decreases, it insists the network on focusing the gen-

eralized features by broadening receptive area. In the proposed scheme, a stacking

algorithm is incorporated to learn the generalizability of these networks by optimiz-

ing their predictions to produce a more accurate final prediction. This step can be

considered as a meta-learning process and it is schematically presented in Fig. 3.5.

Firstly, total training data is divided into two portions: one for training all
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Figure 3.5: Individually optimized networks are stacked together by using
the meta-learner for obtaining more-optimized predictions.

the individual networks, while other for training the meta-learner. Next, all the

individual networks are trained separately with the resized representations of input

images. These networks analyze the data from different perspectives for proper

prediction. After being properly optimized, these networks are used to generate a

prediction on the other portion of data kept for meta learner training. Finally, the

meta learner is being optimized by exploring the predictions of all the individual

networks to generate the final output. This approach offers the meta learner to

optimize the analysis by inspecting diversified viewpoints. As the meta learner

deals with the predictions of individually optimized networks, a very small portion

of training data is used to train the meta-learner. Hence, shallow neural networks

along with other traditional machine learning techniques can be utilized to build

the meta-learner.

3.1.5 Proposed Transfer Learning Method on Novel Corona

Virus Data Using CovXNet

As the CovXNet is optimized for analyzing X-rays using very deep architectures with

a large number of convolutional layers, this knowledge can be effectively transferred

to learn the representation of novel COVID-19 X-rays. This scheme is presented in

Fig. 3.6. All the convolutional layers including all residual and shifter units that

were initially trained on non-COVID X-rays are directly transferred with their pre-

trained weights. Additionally, two more convolutional layers are integrated at the

bottom for fine-tuning. Afterward, a traditional global pooling layer with a series of

densely connected layers are also incorporated for training. As very few images of

COVID-19 X-rays are available, it is difficult to train very deep architecture using

them. Nevertheless, as most of the pre-trained convolutional layers are directly
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Figure 3.6: Proposed Transfer learning scheme on CovXNet for fine tuning
with small number of images.

utilized without further training, very few parameters need to be fine-tuned for the

newly integrated layers.

3.2 Results and Discussions

In this section, the performances of the proposed schemes are presented with the

visual interpretations of the spatial localization from clinical perspectives. Different

cases are analyzed with COVID-19 X-rays to explore the robustness of the method.

Finally, some state-of-the-art methods for pneumonia detection along with some

traditional networks are also compared.

3.2.1 Dataset Description

One of the datasets used in this study is a collection of total 5856 images consisting

1583 normal X-rays, 1493 non-COVID viral pneumonia X-rays and 2780 bacterial

pneumonia X-rays collected in Guangzhou Medical Center, China [175]. Another

database containing 305 X-rays of different COVID-19 patients is collected from

Sylhet Medical College, Bangladesh which is also verified by expert radiologist panel.

Finally, a smaller balanced database is created combining all the COVID-19 X-rays

with equal number of normal, viral, bacterial pneumonia X-rays (305 X-rays in each

class) that are employed for the transfer learning phase (sample images are shown

in Fig. 3.7). The rest of the X-rays (Normal, viral, bacterial pneumonia) are utilized

for the initial training phase. In both these phases, five fold cross validation scheme

is employed for the evaluation of the proposed method.

3.2.2 Experimental Setup

Different hyper-parameters of the network are chosen through experimentation for

better performance. Numerous traditional metrics of classification tasks are used
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Figure 3.7: Sample X-ray images of normal, viral, bacterial and COVID-19
caused pneumonia patients are shown.

for evaluating the performance of the proposed architectures, such as accuracy, sen-

sitivity, specificity, area under curve (AUC) score, precision, recall, and F1 score.

3.2.3 Performance Evaluation

At the initial training phase, the network is optimized for the normal and other

non-COVID viral/bacterial pneumonia X-rays. Different combinations of output

classes are experimented for analyzing the inter-class relationships. As the Cov-

XNet architecture is highly scalable to adjust the receptive area depending on the

input data, performance with different resolutions of images are experimented with

targeting different classes of pneumonia. From the multi-class validation accuracy

plot for different resolutions over the training epochs, as shown in Fig. 3.8, it can be

observed that the networks with a higher resolution of X-rays lead over smaller ones

throughout all the epochs. Nevertheless, the smallest representation still provides

comparable performance that indicates the higher generalizability of the proposed

CovXNet which can still perform well with very small-scale of information. As a

result, utilizing images of different resolutions in the proposed meta-learner, the

prediction accuracy is further improved, as shown in Fig. 3.9. It is clearly observed

that the meta-learner optimizes the predictions generated from a different level of

data representation and provides a significant rise in accuracy for all types of clas-

sifications. As different optimized networks are analyzing the data from diversified

perspectives, optimizing all of these predictions through additional meta-learner

provides a more generalized decision.

After completing the initial training on non-COVID X-rays, these highly op-

timized convolutional layers are transferred to train with a smaller database con-

taining COVID-19 X-rays. In this transfer learning phase, COVID-19 X-rays are
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Figure 3.8: Multi-class validation accuracy in different training epochs is
shown for different resolutions of inputs.

Figure 3.9: Effect of using proposed stacking algorithm in the initial train-
ing phase.

experimented with different output classes of normal/traditional pneumonia through

fine-tuning of the additionally added layers. Similar to the initial training phase,

an additional meta-learner is trained to optimize the predictions obtained from dif-

ferent variants of modified CovXNet that are optimized for different resolutions of

input X-rays. The performance of these individually trained networks along with

the performance obtained after stacking with meta-learner is shown in Fig. 3.10. As

COVID-19 caused pneumonia contains a significant overlap of features with other

viral pneumonia [168], [169], it is difficult to isolate these two categories. Hence,
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Figure 3.10: Effect of using proposed stacking algorithm in the transfer
learning phase.

Figure 3.11: Effect of the choice of meta-learner in stacking.

comparably smaller accuracy is noticeable for separating COVID-19 and other vi-

ral pneumonia X-rays. However, due to significant variations of features between

COVID-19 and normal/bacterial pneumonia X-rays [176], [177], higher accuracy is

obtained in such cases. Moreover, stacking with meta-learner provides improved per-

formance in all the classification tasks relating to COVID-19. For example, stacking

provides 2.2% improvement of accuracy with respect to the best performing indi-

vidual network in COVID-19/Normal classification. However, this improvement of

accuracy may vary depending on the type of supervised classifier to be used in the
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(a) Before Stacking (b) After Stacking

Figure 3.12: Multi-class confusion matrices are shown before and after
stacking.

Table 3.1: Performance Comparison of the Proposed Method with Other
State-of-the-Art Approaches in Non-COVID Pneumonia Detection

Task Methods Accuracy(%) AUC Score(%) Precision(%) Recall(%) Specificity(%) F1 Score(%)

Normal/
Pneumonia

Proposed 98.1 99.4 98.0 98.5 97.9 98.3
Residual 91.2 96.4 90.7 95.9 84.1 93.4
Inception 88.7 92.6 88.9 94.1 80.2 91.1
VGG-19 87.2 90.7 85.6 91.1 77.9 89.3

[178] 95.7 99.0 95.1 98.3 91.5 96.7
[179] 92.8 96.8 - 93.2 90.1 -
[180] 96.4 99.3 93.3 99.6 - -

Viral/
Bacterial

Pneumonia

Proposed 95.1 97.6 94.9 96.1 94.3 95.5
Residual 89.5 92.4 88.3 96.9 78.1 92.4
Inception 85.8 90.6 84.5 93.8 72.1 88.9
VGG-19 83.2 88.5 81.1 91.3 71.7 86.6

[178] 93.6 96.2 92.0 98.4 86.0 95.1
[179] 90.7 94.0 - 88.6 90.9 -

Normal/
Viral/

Bacterial/
Pneumonia

Proposed 91.7 94.1 92.9 92.1 93.6 92.6
Residual 86.3 88.5 86.3 88.5 93.5 87.4
Inception 81.1 84.6 75.4 84.9 86.2 78.9
VGG-19 79.8 83.1 74.5 82.9 83.4 77.9

[178] 91.7 93.8 91.7 90.5 95.8 91.1

meta learner phase. For experimentation, different classifiers are tested, such as

Xgboost, random forest, decision tree, SVM, KNN, logistic regression and Gaussian

naive bias algorithm. Improvement of performance with different meta-learners are

shown in Fig. 3.11 for different classification tasks. Xgboost and RandomForest

algorithm provide the best performance as these learners provide prediction after

further ensembling of several boosting and bagging algorithms, respectively.

The multi-class confusion matrix is provided in Fig. 3.12. As expected, due to a

high degree of overlapping features, a few COVID-19/viral cases exhibit misclassi-

fication. However, very satisfactory performance is obtained for other classification

cases. However, recall of all of the classes can be improved further by incorporating

the meta-learner through the stacking of different networks.

The performance of the proposed schemes in the initial training phase on non-
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Table 3.2: Performance Comparison of the Proposed Method with Other
Traditional Networks on COVID-19 and Other Pneumonia Detection.

Task Methods Accuracy(%) AUC score(%) Precision(%) Recall(%) Specificity(%) F1 Score(%)

COVID/
Normal

Proposed 97.4 96.9 96.3 97.8 94.7 97.1
Residual 92.1 91.2 90.4 93.4 89.2 91.9
Inception 89.5 84.3 89.1 87.7 83.2 88.4
VGG-19 85.3 82.7 86.3 83.9 79.9 85.1

COVID/
Viral

Pneumonia

Proposed 87.3 92.1 88.1 87.4 85.5 87.8
Residual 80.4 78.9 81.1 79.3 77.1 80.2
Inception 78.2 75.5 76.8 79 75.4 77.9
VGG-19 72.1 67.7 70.9 74.7 69.3 72.8

COVID/
Bacterial

Pneumonia

Proposed 94.7 95.1 93.5 94.4 93.3 93.9
Residual 84.2 80.3 86.7 83.5 82.4 85.1
Inception 83.1 79.9 82.2 85.2 83.6 83.7
VGG-19 77.2 75.5 73.3 80.3 71.4 76.8

COVID/
Viral/

Bacterial
Pneumonia

Proposed 89.6 90.7 88.5 90.3 87.6 89.4
Residual 82.1 79.8 81.5 80.3 78.5 80.9
Inception 84.3 83.1 81.4 85.9 80.8 83.7
VGG-19 79.1 77.5 76.5 80.7 77.2 78.6

COVID/
Normal/
Viral/

Bacterial

Proposed 90.2 91.1 90.8 89.9 89.1 90.4
Residual 82.3 80.7 82.7 79.5 80.7 81.1
Inception 82.9 79.8 80.6 84.3 82.4 82.5
VGG-19 80.8 78.5 77.4 81.6 78.1 79.5

COVID X-rays is compared with other existing approaches in Table 3.1. Here,

the performance of different traditional architectures [174], [183], [184], developed

for other computer vision applications, are compared with our proposed CovXNet.

Additionally, performance of some state-of-the-art AI-based pneumonia detection

schemes [178]–[180] are also compared. Rajraman et al. [178], Kermany et al. [179],

and Chouhan et al. [180] utilized conventional transfer learning schemes using pre-

trained networks on ImageNet database for traditional pneumonia detection. The

proposed schemes outperform most other approaches by a considerable margin.

In Table 3.2, the performance of the proposed CovXNet is compared with other

traditional networks on COVID-19 and other types of pneumonia detection. It

can be observed that the proposed CovXNet architecture provides significantly bet-

ter performance in different classification tasks handling with COVID-19 X-rays

compared to other traditional architectures. Moreover, in Table 3.3, the proposed

method is compared with other existing state-of-the-art approaches for COVID-19

detection from X-rays. As the proposed schemes utilized all the non-COVID X-

rays in the initial learning phase, final training and evaluation is carried out on

the separated balanced database containing X-rays of COVID patients. Ozturk et

al. [181] proposed a deep neural network based approach without applying transfer

learning strategies. Whereas, Wang. et al. [90], Ioannis et al. [91], Sethy et al. [92],

and Narin et al. [93] used traditional networks with conventional transfer learning

scheme from ImageNet database. In most of these cases, the obtained result is bi-

ased due to the small amount of COVID-19 X-rays. It should be noticed that the

proposed schemes provide consisting performance in different combinations of clas-

sification with balanced set of data. Moreover, the larger number of non-COVID
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Table 3.3: Performance Comparison of the Proposed Scheme with Other
State-of-the-Art Approaches on COVID-19 and Other Pneumonia Detec-
tion

Work Amount of Chest X-rays Architecture Accuracy(%)

Ozturk et al. [181]

125 COVID-19 + 500 No finding

125 COVID-19 + 500 Pneumonia
+ 500 No finding

DarkCovidNet
98.08

87.02

Wang et al. [90] 53 COVID-19 + 5526 Non-COVID COVID-Net 92.4

Ioannis et al. [91]
224 COVID-19 + 700 Pneumonia

+ 504 Normal
VGG-19 93.48

Sethy et al. [92] 25 COVID-19+ 25 Non-COVID ReNet-50/SVM 95.38

Narin et al. [93] 50 COVID-19 + 50 Non-COVID ResNet-50 98

Proposed

305 COVID-19+ 305 Normal

305 COVID-19 + 305 Viral Pneumonia

305 COVID-19+ 305 Bacterial pneumonia

305 COVID-19 + 305 Viral Pneumonia
+ 305 Bacterial pneumonia

305 COVID-19+ 305 Normal+ 305 Viral
Pneumonia+ 305 Bacterial Pneumonia

Stacked
Multi-resolution

CovXNet

97.4

87.3

94.7

89.6

90.3

Table 3.4: Performance on Additional 468 X-ray Images of COVID-19
patients [182]

Metrics Values
True Positive 403 (86.1%)
False Negative 65 (13.9%)

Total 468

X-rays are properly utilized for initial training phase that is effectively transferred

for diagnosing COVID-19 and other pneumonias in the final transfer learning phase.

Additionally, performance of the proposed scheme has been tested on additional 468

chest X-ray images of COVID-19 patients collected from [182]. Here, the proposed

scheme provides consistence performance that validates its robustness on real-time

test scenario.

Gradient-based class activation mapping (Grad-CAM) algorithm [185] is inte-

grated with the proposed CovXNet to generate the class activation mapping for

localizing the particular portion of the X-rays that mainly instigated the decision.

By superimposing the heatmap with the input X-rays, such localizations are stud-

ied further to interpret the learning of the network from the clinical perspective.

In Fig. 3.13, some of the X-rays with imposed localization are shown. Following

findings are summarized:

• In normal X-rays, no kind of opacity is present that isolates the normal patients

from all kinds of pneumonia patients having some form of opacities [170], [171],
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[186]. In Fig. 3.13, it is observed that no significant region is localized for

normal X-rays. As it is more distinguishable, it is easier to isolate from other

patients.

• By carefully examining the heatmaps generated for traditional viral pneumo-

nia, it can be observed that our model has localized regions with bilateral

multifocal ground-glass opacities (GGO) along with patchy consolidations in

some of the cases. Additionally, some localized regions contain diffused GGOs

and multilobar infiltrations. These localized features are also commonly ap-

proved radiological features of traditional viral pneumonia [86], [168], [170],

[186].

• In the case of bacterial pneumonia, the localized activation heatmaps are

mainly involving opacities with consolidation on lower and upper lobes. Ad-

ditionally, there is also the involvement of both unilateral and bilateral along

with peripheral. According to [170], [171], these features mainly represent

bacterial pneumonia.

• According to [168], [169], there are lots of similarities between COVID-19

and traditional viral pneumonia both demonstrating bilateral GGOs along

with some patchy consolidations. Some more likely features of COVID-19

caused pneumonia are reported in [168], [169], [176], [177], such as peripheral

and diffuse distribution, vascular thickening, fine reticular opacity along with

the conventional viral-like ground-glass opacities. By carefully examining the

generated heatmap from some of the COVID-19 infected X-rays (Fig. 3.13),

it is distinguishable that peripheral and diffuse distribution of such opacities

is diagnosed. Moreover, vascular thickening is also localized for some of the

cases along with other traditional viral features.

Therefore, the radiological features extracted and localized by the proposed Cov-

XNet provide substantial information about the underlying reasons for pneumonia.

This type of localization can assist the clinicians to analyze the prediction obtained

from the proposed scheme.

3.3 Conclusion

Due to significant overlapping characteristics between COVID-19 and other pneumo-

nia, by transferring the initially trained convolutional layers with some additional

fine-tuning layers, a very satisfactory result is obtained with a smaller database
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Figure 3.13: Significant portions of the test X-rays that instigate the de-
cision are localized by imposing the activation heatmap obtained from
CovXNet.

containing COVID-19 X-rays. Moreover, it is observed that a stacking algorithm

provides additional performance improvement by further optimizing predictions ob-

tained from different variations of CovXNet that are primarily optimized with var-

ious resolutions of input X-rays. Furthermore, a generated class activation map

provides discriminative localization of the abnormal zones that can assist to diag-

nose the variations of clinical features of pneumonia on X-rays. Experimental results

obtained from extensive simulations suggest that it can a very effective choice for

faster diagnosis of COVID-19 and other pneumonia patients.
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Chapter 4

Multi Stage Learning for Human

Activity Recognition from

Multi-modal Wearable Sensors

Activity recognition using wearable sensors has been a trending topic of research for

its widespread applicability on diverse domains ranging from health care services

to military applications [187]. With the ubiquitous availability of modern mobile

devices such as smartphones, tablets, and smartwatches, various types of sensor data

are available that can be utilized effectively in numerous applications like activity

recognition. Various types of sensor data along with image and video data have been

employed for recognizing human activity [188]. In particular, time series wearable

sensor data, e.g. accelerometer, gyroscope, and magnetometer are easy to obtain

even with our smart devices and can be used to recognize human activity from

distant position on real-time basis as these sensors’ data are very small in volume and

easy to share through internet. In the previous chapters, architectural modifications

are explored for incorporating features from diverse receptive areas. Along with

the architectural modifications, numerous transformations on the raw data can be

introduced with novel optimization strategies for introducing newer perspectives on

the feature extraction process.

In this chapter, we have proposed a novel multi-stage training methodology to

make accurate recognition of human activity from multi-modal time-series sensor

wearable sensor data by efficiently employing a multitude of time-series transfor-

mations that facilitates the exploration of diversified feature spaces. The major

contributions of this chapter is summarized as follows:

1. Instead of relying on a single transformed space, features from numerous trans-

formed spaces are integrated together to make the process more resilient from
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noise and other random perturbations. The proposed approach opens scopes

for optimization of diversified features extracted from numerous representa-

tions of the raw data.

2. An efficient deep convolutional neural network architecture is proposed that

can be separately tuned and optimized as efficient feature extractors from

different transformed spaces.

3. A two-stage training algorithm is proposed to combine the separately opti-

mized networks operating on different transformed spaces into an unified ar-

chitecture utilizing an additional combined training stage.

4. A multi-stage sequential training algorithm is proposed for sequentially con-

verging the optimum feature representations obtained from numerous trans-

formed spaces through sequential weighting, optimization and integration of

multi-transformed features. This scheme makes it possible to optimize the

unified architecture with a smaller amount of available training data in several

stages.

5. Different types of realistic data augmentation techniques have been introduced

to increase the variations of the available data.

6. Results of intense experimentations have been presented using three publicly

available datasets that provide very satisfactory performance compared to

other state-of-the-art approaches. The primary results of the experimenta-

tion are published in [19].

4.1 Methodology

The proposed multi-stage training approach is represented in Fig. 4.1. In the first

stage of training, individual feature extractors operating on different transformed

spaces are trained in parallel with separate classifiers. In the literature, varieties of

feature extractors from time-series data have been explored ranging from PCA, ICA,

wavelet-based methods to modern CNN, DNN, LSTM, and numerous deep learning

methods [69], [73]–[75]. To overcome additional complexities mainly arising from the

difficulty of feature selection and optimization from different diversified transformed

representations of time series data, we have proposed deep CNN architectures as

feature extractors from different transformed domains. As it is completely data-

driven, deep CNN architecture can be trained as an efficient feature extractor from

any representation of data. For joint optimization of multiple transformed feature
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(a)

(b)

Figure 4.1: Multiple training stages are utilized to incorporate features
from numerous transformed representations of input sensor data. (a)
Two stage training, and (b) Multiple sequential stages of training.

spaces, learning of this first training stage is transferred into a unified structure uti-

lizing another combined training stage (Fig. 4.1a) or utilizing a number of sequential

training stages (Fig. 4.1b).

After completing the first stage of training, all the separate classifiers of indi-

vidual networks are removed. As a result, when input data is fed to the network,

representational features extracted from different transformed domains utilizing the

trained feature extractors are available which were fed into separate classifier units

in the first training stage. However, the feature quality can be varied with the trans-

formation of the raw data which can be visible by evaluating the performance of the

separate feature extractors in the first stage. Hence, in the second and final stage

of training (Fig. 4.1a), these feature vectors are multiplied by separate weighting

vectors to increase the selectivity of the system. Later, all these weighted feature

vectors are concatenated together and a common dense classifier unit is trained to

provide the exact prediction from these concatenated features. Therefore, these

weighting vectors, along with the combined dense classifier unit, are supposed to

learn in this stage of training utilizing the data again.

In Fig. 4.1b, the proposed multi-stage sequential training is shown. In the two-
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stage training, as described, the final second-stage training learns the weighting

vector for each feature map at the same time with the combined classifier. However,

in the multi-stage sequential training, weighting vectors for only two feature vec-

tors, extracted by the feature extractors trained in the previous stage, are learned

along with the combined classifier at a time. In the following stage, the classifier

is removed and the merged weighted feature vectors of these two transformations

undergo through similar next stage of training with one of the remaining feature

vectors representing different transformation. Thus, in each stage of sequential

training, weighted feature vector from an additional transformed space is accumu-

lated with the combined feature extractors trained in the previous stage. This

method of sequential training offers additional opportunity to converge individual

feature representations corresponding to variegated transformed spaces to the final

decision-making process by optimizing two feature vectors sequentially. Moreover,

in deep learning-based approaches, these weighting vectors applied on separate fea-

ture vectors can be easily integrated by introducing a separate densely connected

layer operating on each feature vectors accompanied by different weighting vectors.

4.1.1 Transformations on Time Series Data

Different types of transformations on time series data have been utilized in the

proposed approach. These are described briefly as below.

Gramian Angular Field Transformation (GAF)

Gramian angular field transformation maps the elements of a 1D time-series data

into a 2D matrix representation. This encoding scheme preserves the temporal de-

pendency of the original time series data along the diagonal of the encoded matrix

while the non-diagonal entries essentially represent the correlation between sam-

ples [80]. In this transformation, G : RN → RN×N , the input time series, X, is

transformed into polar coordinate (r, φ) after normalization.

φi = cos−1(xi), −1 ≤ xi ≤ 1, xi ε X (4.1)

ri =
ti
N
, ti ε N (4.2)

Here, ti the time stamp and N is a constant factor to regularize the span of the

polar coordinate system. These polar angles are utilized to get the final transformed

matrix G, which is,

Gi,j = cos(φi + φj), i, j = 1, 2, . . . , n (4.3)
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Recurrence Plotting

The recurrence plot portrays the inherent recurrent behavior of time-series, e.g.

irregular cyclicity and periodicity, into a 2D matrix [81]. This method provides

a way to explore the m-dimensional phase space trajectory of time series data for

generating a 2D representation by searching points of some trajectories that have

returned to the previous state and is represented by,

Ri,j = θ(ε− ||si − sj||), s(.)ε Rm, i, j = 1, 2, . . . , K (4.4)

where K is the number of considered states s, ε is a threshold distance, ||.|| a

norm and θ(.) is the Heaviside function.

Scattering Wavelet Transformation

Scattering wavelet transform offers representational features of the time-series data

those are rotation/translation-invariant while remaining stable to deformations.

This technique provides the opportunity to extract features from a very small num-

ber of data [82]. A mortlet wavelet function, defined as mother wavelet, undergoes

through convolution operation with the raw time series data while being scaled and

rotated, and thus creates different levels of representational features.

Let’s consider, Wj and Uj to be the averaging operation and complex modu-

lus of the averaged signal, respectively, for order j (0, 1, . . . , L) of the scattering

coefficients, and these coefficients can be described as

Sj = WjUjSj−1 ∗ |ψj| ∗ φj, (4.5)

where φj represents the Gaussian low pass filter and ψj represents the mortlet

wavelet function of order j. Therefore, a scattering representation, SX of time

series data, X, is obtained by concatenating the scattering coefficients of a different

order,

SX = [S0X,S1X, . . . , SLX] (4.6)

As multi-channel sensor data collected from numerous sensors have been used in

this work, each channel of such time-series data is transformed individually using

any of these transformations, and all such transformed data are stacked together

maintaining a similar time information in all the channels. Later, they undergo

through the feature extraction process utilizing deep neural networks.
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4.1.2 Proposed Deep Neural Network Architectures

For feature extraction and classification, two deep CNN architectures are proposed,

as shown in Fig. 4.2a and Fig. 4.2b, optimized to operate in 1D and 2D domain,

respectively. Both of them are very similar to each other, as the objective of them

is to extract features for activity recognition, with some modifications to operate in

different domains for handling different dimensions of data. In general, the proposed

CNN architecture mainly consists of a CNN base part followed by a top classifier

layer. The CNN base part involves a number of convolution and pooling opera-

tions while the top classifier layer consists of a series of densely connected layers

followed by the final activation layer to generate activity prediction. The operations

performed here are discussed below.

i. The input 1D time-series data undergo an initial transformation operation as

discussed above before starting the convolutional filtering in the deep network.

ii. Next, the tensor enters the convolutional base part where it passes through a

series of unit residual block operations to extract deep features from a broad

spectrum. Different representations of these unit residual blocks are shown in

Fig. 4.3 with some variations in operations for handling 1D (Fig. 4.3a) and

2D (Fig. 4.3b) data. In these blocks, the input tensor passes through two

different operations in parallel and the transformed tensors get added later

to produce the final output tensor. Subsequently, a global average pooling

operation is performed to extract the global features from each channel of the

transformed tensor. This CNN base part extracts effective temporal/spatial

features through convolutional filtering and pooling operations required for

the final decision.

iii. After that, the tensor propagates through the top classifier block where series

of densely connected layers explore the extracted features of the CNN base

part to get higher level of representation with the softmax activation layer at

the end to merge these representations into a specified class of action.

The values of different convolutional kernel sizes, number of convolutional layers

in each unit block, and number of unit residual blocks are established through ex-

perimentation to reach the maximum performance. Shallower networks are prone to

underfit with the training data while deeper networks are prone to overfit. However,

the proposed network effectively utilizes efficient separable convolutions along with

residual operations to reduce vanishing gradient and overfitting issues for achieving

optimum performance.
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(a) (b)

Figure 4.2: Proposed (a) 1D Convolutional Neural Network and (b) 2D
Convolutional Neural Network.

(a) (b)

Figure 4.3: Proposed (a) 1D unit residual block and (b) 2D unit residual
block.

4.1.3 Proposed Multi-Stage Training Scheme

In the proposed training method, a number of training stages have been utilized

to combine features from different transformed spaces. In Fig. 4.4, this scheme

is represented schematically. These optimizations of individually trained feature

extractors can be done in two stages or number of sequential stages. Algorithm 1

and 2 are executed for implementing two-stage training scheme, and multi-stage

sequential training scheme, respectively. Operations performed in different stages

are described below.
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Algorithm 1: Proposed Two-Stage Training Method

Data: training sample X; training label yactual
Result: weight matrices D ,F
/* Individual training begins */

1 for i← 1 to N do

2 Calculate X̂i = Ti(X);
3 Randomize Dl

1,i and Fi , for l = [1, . . . , L];

4 while The training error threshold is unsatisfied do

5 Calculate fi = Fi(X̂i);

6 Find y1
pred,i = DL

1,i(D
L−1
1,i (. . . (D1

1,i(fi))));

7 Find loss L1,i = L (y1
pred,i, yactual);

8 Update Dl
1,i and Fi, for l = [1, . . . , L] ;

9 end

10 Calculate di = Fi(X̂i);

11 end
/* Combined training stage begins */

12 Randomize Dm
2 , for m = 1, . . . , L′;

13 while The training error threshold is unsatisfied do
14 for i← 1 to N do
15 Set, fi = D1

2,i(di);

16 end
17 Set feature mapping group, f = [f1, f2, . . . , fN ];

18 Find y2
pred = DL′

2 (DL′−1
2 (. . . (D2

2(f))));

19 Find loss L2 = L (y2
pred, yactual);

20 Update Dm
2 , for m = 1, . . . , L′ ;

21 end

Fi denotes the CNN base part of ith transform.
Dl

n denotes the lth densely connected layer of nth training stage.
Ti denotes the ith transformation on raw data.

i. Individual training stage: This stage is common for both two-stage and

multi-stage training schemes. In this stage, separate CNN base parts with

associate dense classifiers are trained individually to prepare the CNN base

part as an efficient feature extractor for the respective transformed domain,

as shown in Fig. 4.4a. Here, the identity transform is also used to incorporate

features from unaltered raw data along with other transformations. However,

some of these transformations contain more distinctive features related to the

final activity recognition compared to others that lead to variations of perfor-

mance after being trained.

ii. Combined training stage: After the first training stage, an additional com-

bined training stage is employed to combine all these individually trained
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Algorithm 2: Proposed Sequential Training Method

Data: training sample X; training label yactual
Result: weight matrices D ,F
/* Individual training begins */

1 for i← 1 to N do

2 Calculate X̂i = Ti(X);
3 Randomize Dl

1,i and Fi , for l = [1, . . . , L];

4 while The training error threshold is unsatisfied do

5 Calculate fi = Fi(X̂i);

6 Find y1
pred,i = DL

1,i(D
L−1
1,i (. . . (D1

1,i(fi))));

7 Find loss L1, i = L (y1
pred,i, yactual);

8 Update Dl
1,i and Fi, for l = [1, . . . , L] ;

9 end

10 end
/* Sequential training begins */

11 Initialize Fmerged,1 = F1 ;
12 for n← 2 to N do

13 Set X̂merged,n = [X̂1, . . . , X̂n−1] ;
14 Randomize Dm

n , for m = 1, . . . , L′;
15 while The training error threshold is unsatisfied do

16 Set f1,n = D1
n(Fmerged,n−1(X̂merged,n));

17 Set f2,n = D2
n(Fn(X̂n)) ;

18 Set feature mapping group, fn = [f1,n, f2,n];

19 Find ynpred = DL′
n (DL′−1

n (. . . (D3
n(fn))));

20 Find loss Ln = L (ynpred, yactual);

21 Update weights of Dm
n , for m = 1, . . . , L′;

22 end

23 Calculate F̂n−1 = D1
n ◦ Fmerged,n−1;

24 Calculate F̂n = D2
n ◦ Fn;

25 Set Fmerged,n = [F̂n−1, F̂n];

26 end

Fi denotes the CNN base part for ith transform.
Dl

n denotes the lth densely connected layer of nth training stage.
Ti denotes the ith transformation on raw data.

feature extractors for the proposed two-stage training scheme, as shown in

Fig. 4.4b. In this stage, all individual top dense classifier blocks trained in

the first stage are removed while all CNN base parts are used unaltered as

they are finely tuned as efficient feature extractors. Next, a separate densely

connected layer is introduced on top of each CNN base part to reduce the

extracted spatial/temporal features into more general representation. These

separate densely connected layers act as the weighting vectors for feature se-
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(a) (b)

(c) (d) (e)

Figure 4.4: Schematic representation of the proposed multi-stage sequen-
tial training scheme. Here, (a) represents Individual training stage, (b)
represents combined training stage, and (c), (d), (e) represent the se-
quential training stages.

lection from different transformed domains as introduced in Fig. 4.1. Here, the

number of nodes in these densely connected layers are varied for incorporating

more features from the feature extractors that contain more information for

final classification.

iii. Sequential training stages: In the proposed multi-stage sequential training

scheme, individually trained feature extractors are optimized and converged

in a unified architecture through series of sequential training stages, as shown

in Fig. 4.4c, 4.4d and 4.4e. In this approach, two of the CNN base units

operating on different transformed spaces are optimized together at a time

by training an individual densely connected layer for each of the base units

followed by feature concatenation and combined dense classifier unit, as shown

in Fig. 4.4c. Later, these combined two feature extractors are considered as an

individual unit and further merged with the next CNN base part. Similarly,

in the next stage, another separate densely connected layers with a combined
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(a) (b) (c) (d) (e) (f)

Figure 4.5: Effect of various types of augmentation of the sample data. (a)
Raw sample data collected from 3 axis accelerometer, with (b) scaling, (c)
jittering, (d) permutation, (e) magnitude warping, and (f) time warping
applied on raw data.

dense classifier unit are trained, as shown in Fig. 4.4d and 4.4e. Therefore,

through each training stage, a new CNN base part corresponding to another

transformation is combined with the merged feature extractor. Moreover, each

such stage merges these base feature extractor units by introducing a newly

trained densely connected layers for providing the most optimized features at

a whole utilizing all the existing features.

4.1.4 Data Augmentation

As imbalance in the dataset makes the training process complicated for learning the

distribution of minority class, data augmentation is a viable approach to mitigate

such problems. We have utilized the combination of five techniques that incorporate

realistic variations in the data and make the process more robust [189]. However,

all such augmentations are applied to the training data leaving the testing data

unaltered for proper evaluation of the proposed methods. In Fig. 4.5, the individual

effect of these augmentations are shown on raw sample data.

4.2 Results and Discussions

Three publicly available datasets used for this study are described below. Detailed

comparative analysis of the results obtained is discussed later.

4.2.1 Dataset Description

UCI HAR database [190] contains 6 activities collected from 30 subjects with 50 Hz

sampling rate using 3 axis accelerometer, gyroscope, and magnetometer embedded

on a smartphone placed on the waist. USC HAR database [191] contains 12 activities

collected from 14 subjects with 100 Hz sampling rate using 3 axis accelerometer

and gyroscope. SKODA database [64] contains 11 activities collected from a single
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subject in a car maintenance scenario using only a 3 axis accelerometer sampled at

98 Hz.

4.2.2 Experimental Setup

A five-fold cross-validation scheme is carried out for evaluation of the proposed

scheme on each database separately. The performances of the evaluation metrics

obtained from each test fold are averaged to get the final values. The Wilcoxon

rank-sum test is used for statistical analysis of the average accuracy improvement

obtained from the proposed scheme. The accuracies of the proposed schemes are

statistically analyzed and the statistical significance level is set to α = 0.01. The

null hypothesis is that no significant improvement of average accuracy is achieved

using the proposed scheme over the other existing best performing approaches.

4.2.3 Performance Evaluation

The performance of the optimized networks is evaluated using the test data of var-

ious datasets. Traditional evaluation metrics for the multi-class classification task,

i.e accuracy, precision, recall, and intersection-over-union (IoU) score, are employed

for analyzing the performance. In Tab. 4.1, the score of averaged cross-validation

evaluation metrics are provided for both these training approaches. It is clear that

both these approaches provide a considerable performance of over 98% in most of

these classes that are separated almost perfectly. However, the two-stage method

slightly struggles to separate features between walking and ascending upstairs ac-

tivities as these activities contain close inter-relation in the feature space. But, in

the case of multi stage-training, this problem is reduced which signifies the robust

optimization capability of this method as it can separate features with proximity.

In Fig. 4.6, the average cross-validation IoU score of the optimized networks

on different transformed spaces along with the final converged networks using both

two-stage and multi-stage training are compared for all the activities. It is vis-

ible that identity transform representing the unaltered raw data provides better

performance with more than 2% improvement in most classes compared to other

transformed spaces in case of individual training. However, irrespective of the per-

formance, all the networks operating on separate transformed spaces extract fea-

tures that are significantly different as they work with diversified representations of

the data. Through optimization of these features, as visible in Fig. 4.6, the pro-

posed two-stage, and multi-stage training approach provide a sharp increase in IoU

scores in all the activity classes compared to the individual training stage. However,
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Table 4.1: Average Cross-Validation Performance Analysis on Various Ac-
tivities of UCI HAR Dataset [190] for Proposed Two-Stage and Multi-
Stage Training

Met-
rics

Prop.
Meth.

Class

Walk
Up

Stairs
Down
Stairs

Sit Stand Lay

Prec.
(%)

2-Stg. 98.53 96.34 99.14 98.75 99.58 100
M-Stg. 99.27 98.36 99.32 99.46 99.81 100

Rec.
(%)

2-Stg. 94.93 98.72 100 99.61 98.64 100
M-Stg. 97.44 99.26 100 99.83 99.35 100

IoU Sc.
(%)

2-Stg. 96.31 97.41 99.49 99.07 99.02 100
M-Stg. 98.24 98.68 99.52 99.59 99.47 100

Table 4.2: Average Cross-Validation Performance Analysis on Various Ac-
tivities of USC HAR Dataset [191] for Two-Stage and Multi-Stage Train-
ing

Class

Two stage
Training

Multi Stage
Training

Prec.
(%)

Rec.
(%)

IoU
(%)

Prec.
(%)

Rec.
(%)

IoU
(%)

Walking Forward 99.2 98.3 98.5 99.7 99.4 99.4
Walking Left 99.1 98.5 98.7 99.6 99.3 99.3

Walking Right 99.2 99.4 99.1 99.5 99.6 99.5
Walking Upstairs 99.3 98.6 98.8 99.5 99.1 99.2

Walking Down 98.2 98.4 98.1 99.1 98.8 98.7
Running 99.0 98.2 98.4 99.3 98.7 98.9
Jumping 97.2 97.4 97.1 97.9 98.6 98.1
Sitting 99.1 99.2 99.0 99.4 99.5 99.2

Standing 97.5 98.1 97.8 98.5 98.8 98.4
Sleeping 100 99.5 99.6 100 99.7 99.7

In Elevator 98.1 98.3 98.1 98.4 98.6 98.4

lower performing transformed spaces are de-emphasized through a smaller number

of densely connected nodes and with smaller weights generated in the later training

stages while merging, as shown in Fig. 4.4. All of the transformed spaces contribute

some new and valuable information that may be indistinguishable even on other

space that provides significantly better performance. Moreover, in multi-stage se-

quential training, two of the feature spaces are optimized at a time by integrating

an additional feature space to the resultant feature space (Fig. 4(c)-4(e)). It should

be noticed that more number of nodes are provided in the densely connected layer

following the features space of respective transformation to emphasize the features

from those space that provided higher performance during the individual training

stage.

In Tab. 4.2, the average cross-validation performance of the proposed schemes

on different activity classes of this dataset is provided. It is clear that both these

approaches provide consistent performance over 99% for most of the classes. How-

ever, multi-stage training provides a slight increase in incorrect predictions for some
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Figure 4.6: Comparison of Average Cross-Validation IoU scores on various
activities of UCI HAR Database [190].

Table 4.3: Average Cross-Validation Performance Analysis on Various Ac-
tivities of SKODA Dataset [64] for Two-Stage and Multi-Stage Training

Class

Two stage
Training

Multi Stage
Training

Prec.
(%)

Rec.
(%)

IoU
(%)

Prec.
(%)

Rec.
(%)

IoU
(%)

Null 95.3 96.4 95.8 96.2 96.5 96.1
Write on notepad 98.5 97.1 97.6 99.1 98.6 98.6

Open hood 95.2 94.5 94.7 97.3 95.4 96.3
Close hood 95.7 96.1 95.7 96.5 96.9 96.5

Check gaps on front door 96.3 97.5 96.5 97.8 99.1 98.3
Open left front door 96.6 95.8 96.1 97.5 95.7 96.4
Close left front door 96.7 95.6 95.9 97.2 95.9 96.3

Check trunk gaps 98.1 98.4 98.1 99.2 98.7 98.8
Open and close trunks 97.2 98.1 97.4 97.7 99.2 98.3
Check steering wheel 97.4 98.5 97.8 97.9 99.4 98.4

closely related activities like among various walking actions, between standing and

sitting actions. In Tab. 4.3, the average crosss-validation performance of both the

training approaches is presented on the SKODA dataset. Though most of the ac-

tivities contain close inter-relation in this dataset, our proposed training methods

provide consistent performance over 95% for most of the classes. However, some

activities like opening and closing hood, opening, and closing doors, are difficult to

separate as expected. Despite that, comparable performances have been achieved
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Figure 4.7: Average Cross-Validation IoU score in various training stages
of multi-stage sequential training on different databases.

in these classes utilizing the proposed scheme.

In Fig. 4.7, the average IoU score in different stages are shown for multi-stage

training. It is clear that each stage provides some improvement in performance by

incorporating new features. However, in the first two stages, the trained network

has achieved significant performance improvement with more than 3% improvement

in the average IoU score mostly achieved utilizing the features from identity trans-

formation and scattering wavelet transformation with the 1D deep CNN feature

extractor. Nevertheless, features from other transformations exploited at the later

stages still provide a considerable contribution with around 1 ∼ 2% improvement

in total to make the final network more optimized to separate challenging classes

and thus to attain a higher average IoU score. Hence, integration of features from

four transformed spaces in the proposed sequential training approach, 4 ∼ 6% im-

provement of average IoU score is achieved in total compared to operating with raw

sensor data alone.

Various existing approaches are compared with the proposed ones in Tab. 4.4

on different datasets. Average accuracies obtained from the proposed two-stage and

multi-stage training methods are compared with the reported accuracy of varieties

of state-of-the-art approaches. It can be noted that the proposed multi-stage scheme

has improved average accuracy from 86.1% to 99.29% (13.19% improvement) in UCI
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Table 4.4: Comparison of the Proposed Schemes with Other Existing Ap-
proaches on Different Datasets

UCI HAR Database [190] USC HAR Database [191] SKODA Database [64]
Work Method Acc.(%) P-value Work Method Acc.(%) P-value Work Method Acc.(%) P-value

[61] MLP 86.1 NA [192] MLP, J48 89.2 NA [64] HMM 86 NA
[70] CNN 94.2 NA [66] Random Forest 90.7 NA [67] DBN 89.4 NA
[65] DTW 95.3 NA [74] CNN 93.2 NA [73] Deep Conv LSTM 91.2 NA
[190] SVM 96 NA [68] LS-SVM 95.6 NA [72] CNN 91.7 NA
[75] Deep RNN 96.7 NA [69] CNN 97 NA [193] Ensemble LSTM 92.4 NA
[62] SVM 97.1 NA [75] Deep RNN 97.8 NA [75] DeepRNN 92.6 NA

Prop. 2-Stage CNN 98.63 3.4e-5 98.57 2.5e-6 96.51 4.2e-4
Prop. M-Stage CNN 99.29 5.1e-5 99.02 1.3e-6 97.21 2.8e-4

database, from 89.2% to 99.02% (9.82% improvement) in USC database, and from

86% to 97.21% (11.21% improvement) in SKODA database. The improvement in

the multi-stage approach is around 1% higher over the two-stage training approach

for its increased opportunity of optimization through multiple stages. However, the

training complexity also increases as more number of training stages need to be

adjusted. As the p−values obtained from the statistical significance test on different

databases are considerably smaller from the predefined threshold of 0.01, we have to

reject the null hypothesis and it suggests that considerable improvement of average

accuracy is achieved using the proposed schemes over other existing approaches.

4.3 Conclusion

In this chapter, it is shown that instead of utilizing trained CNN as a feature extrac-

tor from a single space if multiple trained CNNs dealing with numerous transformed

spaces can be utilized together, much better representation of features can be ob-

tained. Such an idea of multiple training stages utilizing the initially trained CNN

models from the preceding stages operating on different transformed spaces can

offer a significant increase in performance with 4 ∼ 6% improvement in average

IoU scores. This method outperforms other state-of-the-art approaches in differ-

ent datasets by a considerable margin with an average accuracy of 98.51% (11.49%

average improvement) over three databases.
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Chapter 5

PolypSegNet: A Modified Encoder

Decoder Architecture for Polyp

Segmentation from Endoscopy

Colorectal cancer (CRC) is the second most prevalent cause of cancer-related death

in the United States with a death toll of around 53,200 in 2020 [94]. Most colorectal

cancers start as adenomatous polyps (adenoma), initially benign growth on the inner

lining of the colon and rectum, which can become malignant over time and spread

to nearby organs. Early-stage diagnosis of polyps can increase the survival rate of

CRC to 90%, whereas the 5-year relative survival rate of distant-stage patients can

be as low as 14% [95] that makes early detection and removal of polyps vital for

survival. Though colonoscopy is the gold standard tool for polyp detection, accurate

detection is still a major challenge due to the varying size, position, and textures of

polyps (shown in Fig. 5.1) along with differing colonoscopic withdrawal techniques,

bowel preparation quality, and skills of the colonoscopist [96], [97], [194].

Numerous hand-crafted feature-based approaches have been explored for auto-

matic polyp segmentation in the last two decades [99]–[102]. With the advent of

deep learning, Unet architecture has become widely popular for image segmentation

applications. However, there exist some architectural limitations in the traditional

Unet architecture that opens the opportunity to improve the performance further,

such as semantic gap between corresponding encoder-decoder level, simpler building

blocks at each level, and sequential reconstruction of the output feature map. In

this chapter, an improved encoder-decoder architecture, named as PolypSegNet, is

proposed for efficient polyp segmentation by resolving all these architectural limita-

tions in traditional segmentation networks. The major contributions introduced in

this chapter can be summarized as follows:
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Figure 5.1: Some of the challenges presented by colonoscopy images are (a)
blurred or low quality images, (b) varying shapes and textures of polyps,
(c) small visible differences among polyps, and d) background presence
of extraneous matters.

i. For encompassing diverse receptive areas in the feature extraction process, a

depth dilated inception (DDI) module is introduced.

ii. An efficient and generalized D-Unit layer structure of the encoder/decoder

module is proposed that incorporates several sequential DDI modules for deep

feature extraction.

iii. To reduce the semantic gap in traditional skip connections of Unet, a deep fu-

sion skip module (DFSM) is proposed that aggregates various scales of feature

representations from different levels of the encoder.

iv. For introducing more efficient reconstruction, a deep reconstruction module

(DRM) is proposed for aggregation and joint optimization of multi-scale de-

coded feature maps generated at various levels of the decoder module.

v. Extensive experimentations on four publicly available datasets provide signifi-

cant improvement of performance in all evaluation metrics compared to other

existing state-of-the-art approaches. The primary results of these experimen-

tation are published in [21].
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5.1 Methodology

Colonoscopic images collected from patients undergo through minimal pre-processing

before extracting the segmented polyp regions using the proposed PolypSegNet. All

the images are reshaped to uniform sizes followed by the amplitude normalization

operation before feeding into the PolypSegNet architecture. The workflow of the

proposed network is shown schematically in Fig. 5.2. Operations in this network

can be divided into separate encoder and decoder modules in general. The encoder

module generates different scales of feature maps in subsequent layers. In each of the

proposed D-Unit layer, a feature map is processed through deep convolutional filter-

ing utilizing several Depth Dilation Inception (DDI) units for generating a particular

scale of feature representation that is down-sampled through strided convolution to

extract more general feature representation in the following unit layer. Afterwards,

different scales of feature maps generated from each D-Unit layer of the encoder

are processed together in the proposed deep fusion skip module (DFSM). In stead

of separately connecting different encoder and decoder layers, this module gener-

ates different scales of representations through a deep fusion of multi-scale encoded

feature maps and these representations are passed to the decoder module to be em-

ployed in the reconstruction process. Similar to the encoder module, each D-Unit

layer in the decoder module operates with a respective scale of the feature map.

The output of each D-Unit layer is upsampled through a deconvolution operation.

Hence, each D-Unit layer in the decoder module takes two input feature maps: one

from the DFSM module and other from the deconvolution operation, which are con-

catenated and processed together in the respective unit layer. Hence, the decoded

feature maps gradually gather finer and finer details of the segmentation mask in the

subsequent layers. Similar to the DFSM module, different scales of decoded feature

maps are aggregated and processed together for joint optimization in the proposed

deep reconstruction module (DRM). Instead of only considering the decoded map

from final layers, this DRM module generates the final segmentation mask through a

deep fusion of different scales of decoded feature maps in the reconstruction process.

The operations of different modules of the proposed PolypSegNet architecture are

discussed in detail in the following subsections.

5.1.1 Proposed Depth Dilated Inception (DDI) Module

One of the main building blocks of the proposed PolypSegNet architecture is the

depth dilated Inception (DDI) module, as shown in Fig. 5.3. In this block, advan-

tages of the inception module, dilated convolution, depthwise separable convolution,
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Figure 5.2: Schematic diagram of the proposed PolypSegNet Architecture

and asymmetric filtering are exploited for efficient feature extraction. The inception

block was introduced in [195] that utilized convolutions with different sized kernels

to extract features from diverse receptive areas. However, dilated convolutions [196]

offers the advantages of covering diverse receptive area without increasing compu-

tational complexity by utilizing varying dilation rates, which can be represented

by

y(i, j) =
∑
p

∑
q

x(i+ rp, j + rq) w(p, q) (5.1)

where y is the output of convolution with dilation rate of r, (i, j) represents the

center of the convolution, x represents the input feature map and w is the convolution

filter/kernel.

Moreover, a traditional convolution operation operates both the spatial and inter-

channel filtering simultaneously. For more efficient operation, it can be divided into

separate depthwise spatial convolution followed by inter-channel point-wise convo-

lution (kernel 1× 1) [197], that can be represented as

DWConv(W, y)(i,j) =
P∑
p

Q∑
q

W(p,q) � y(i+p,j+q) (5.2)

PWConv(W, y)(i,j) =
M∑
m

Wm � y(i,j,m) (5.3)

where W ∈ RP×Q is convolutional kernel, y is the feature map with M number of
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Figure 5.3: Schematic diagram of the proposed Depth Dilation Inception
(DDI) module.

channels, (i, j) is the centre of the convolution operation, and � denotes element-

wise multiplication.

Furthermore, asymmetric spatial convolutional filtering is found to be more com-

putationally efficient compared to traditional spatial filtering [198]. Therefore, a

(n × n) dimensional kernel can be efficiently divided into two sequential convolu-

tional filtering operations with (n× 1) and (1× n) kernels.

In the proposed DDI block, a pointwise-depthwise-pointwise operation is effec-

tively incorporated for feature aggregation from diverse receptive areas. The initial

pointwise convolution deepens the input feature map for introducing more convolu-

tional filtering in the subsequent stage. Following that, depthwise convolutions are

carried out on the deepened feature map with increasing dilation rates in parallel

which accumulate features from diverse receptive areas. In each parallel path, two

sequential depthwise convolutions are carried out with asymmetric kernels of (3×1)

and (1 × 3) while maintaining the similar dilation rates. These two asymmetric

convolutions provide an efficient alternative of symmetric (3 × 3) kernel for depth-

wise convolution by covering the similar spatial receptive area while incorporating

less number of parameters. The depth growth ratio (d) of the initial pointwise con-

volution along with the total number (n) of parallel depthwise convolution with
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increasing dilation rates are adjusted considering the dimension of the input feature

map. For a deeper input feature map, the depth growth ratio (d) of initial convolu-

tion is reduced accordingly to limit the computational complexity. Moreover, when

the spatial resolution of the input feature map gets smaller, the maximum dilation

factor, n, is also reduced to limit the observation window accordingly. Afterwards,

parallel outputs generated from multiple depth dilated convolutions are aggregated

through concatenation and final pointwise convolution is carried out to reduce the

depth through inter-channel filtering. Hence, the proposed transformation in the

DDI module provides effective feature extraction with considerable diversity utiliz-

ing depthwise dilated convolutions with varying dilation rates.

5.1.2 Proposed D-Unit Layer Structure

In the proposed D-Unit layer structure (shown in Fig. 5.4), several depth dilated

Inception (DDI) blocks are placed in series to extract deep features from the input

feature map. After that, different levels of feature maps with similar dimensions

generated by each DDI module are accumulated to gather the information of each

transformation. Generally, deeper feature maps are generated at the later unit layers

of the encoder module which contain more generalized representation with reduced

spatial dimension and increased number of channels. As a result, the computational

complexity also increases accordingly in the DDI unit for filtering more number of

channels at a time. Hence, fewer DDI units are used to limit the computation for

the D-Unit layers with deeper input feature maps. In this way, the total number

of DDI units (m) incorporated in each layer is adjusted according to the depth of

the input feature map. Finally, different stages of transformed feature maps are

aggregated from individual DDI module and an inter-channel pointwise convolution

is carried out to reduce the depth of the accumulated feature map by extracting the

more-generalized feature representation utilizing contributions of all DDI modules.

Therefore, the stack of DDI modules is effectively integrated into the proposed D-

Unit layer structure to generate various scales of feature maps. Both in the encoder

and decoder module of PolypSegNet architecture, different scales of feature maps

are generated utilizing the D-Unit layer structure in subsequent layers. Structural

details of all D-Unit layers operating with various scales of feature maps in the

encoder/decoder module are provided in Table 5.1.
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Figure 5.4: Schematic diagram of the proposed D-Unit layer structure.
Different number of DDI units (m) have been integrated in each layer
depending on the feature map dimension.

Table 5.1: Structural Details of Different D-Unit layers in Encoder and
Decoder Block

Layer
Output

Dimension
Depth Growth

Ratio (d)
Max dilation

factor (n)
No. of DDI
Units (m)

D-Unit Layer 1 256x256x16 4 5 6
D-Unit Layer 2 128x128x32 3 4 5
D-Unit Layer 3 64x64x64 2 4 4
D-Unit Layer 4 32x32x128 2 3 4
D-Unit Layer 5 16x16x256 1 2 3

5.1.3 Proposed Deep Fusion Skip Module (DFSM)

In traditional Unet architecture, different scales of feature maps are generated from

various layers of the encoder that are directly passed to the decoder to establish skip

interconnection. In the decoder module, these different scales of feature maps are

used in the subsequent layers for reconstruction. However, these types of connections

only contain feature representation from a particular level of encoder that limits the

information flow between encoder and decoder. In the proposed deep fusion skip

module (DFSM), skip inter-connections are generated utilizing different scales of

feature representations from all individual layers of the encoder (shown in Fig. 5.5).

Operations in this DFSM module is designed to be divided into two general stages:

i. A fusion feature vector creation for combining effects of different levels of the

encoder.

ii. Multi-scale feature maps creation for establishing skip interconnections be-

tween encoder and decoder.

Thus, a fusion feature vector is created utilizing the outputs from all encoder

layers which is repeatedly used later to produce different scales of representation for

skip interconnections. Firstly, different scales of encoded feature maps, generated

from various D-Unit layers, are upsampled to make them uniform in spatial resolu-

tion. After that, these upsampled variants of feature maps are aggregated through

concatenation to produce a fusion feature vector.
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Figure 5.5: Schematic representation of the Deep Fusion Skip Module
(DFSM).

For generating multiple scales of feature representations, this fusion vector is

passed through the separate depth and spatial scaling operations using pointwise

convolutions followed by series of depthwise separable convolutions, respectively.

Firstly, a pointwise convolution (kernel, 1 × 1) is used to scale the depth of the

fusion vector according to the depth of the respective decoder layer without changing

the spatial resolution (256 × 256). Following that, series of depthwise separable

convolutions with kernel (2 × 2) is carried out with stride of (2 × 2) to reduce

the spatial resolution with sequential spatial filtering to match the resolution with

respective decoder layer.

Hence, the proposed DFSM module generates feature maps for skip interconnec-

tion through the deep fusion of multi-scale features from all respective layers of the

encoder.

5.1.4 Proposed Deep Reconstruction Module (DRM)

Different scales of encoded feature maps generated from the encoder module are

passed through the decoder module that gradually decodes the segmentation mask.
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The initial layers of the decoder module contain more generalized and global rep-

resentations of the mask that gradually incorporate finer details in the subsequent

layers before final reconstruction. In traditional Unet and other architectures, the

final representation obtained from the top of the decoder block is used for the final

reconstruction. However, considering the only single scale of decoded feature map

for final reconstruction limits the gradient flow in the network as well as cannot fully

utilize different scales of contextual information generated from various levels of the

decoder module.

In the proposed deep reconstruction module (DRM), different scales of contextual

information aggregated from various decoder layers are used for final reconstruction

that not only increases the gradient flow through joint optimization but also incor-

porates more information for effective reconstruction (shown in Fig. 5.6). Similar to

the DFSM block, operations in the DRM block can be divided into two stages:

i. A fusion feature vector generation for accumulating effect of various decoder

levels.

ii. A segmentation mask creation utilizing the fusion feature vector.

Hence, all the decoded feature maps generated from various levels of the decoder

are made spatially uniform through upsampling for feature aggregation. Afterwards,

parallel convolution operations with different kernels are carried out to generate di-

versified representations through diverse convolutional filtering operations for fusing

multi-scale contextual decoded features. Next, all these transformed representations

are added together to generate the equivalent effect of fusion through various kernels.

Finally, a pointwise convolution is carried out with sigmoid activation to produce

the final binary segmentation map. Therefore, the proposed deep reconstruction

module (DRM) generates the final segmentation map by integrating a deep fusion

of different scales of decoded feature maps.

5.2 Results and Discussions

Experimentations are carried out on several colonoscopy image datasets to validate

the robustness and applicability of the proposed scheme for segmenting regions of

polyps. Finally, performances achieved from extensive experimentations are dis-

cussed and analyzed from different perspectives.
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Figure 5.6: Schematic representation of the Deep reconstruction module
(DRM).

5.2.1 Database Description

Four publicly available databases are used for training and evaluation of the proposed

PolypSegNet. Details of these databases are summarized as below:

• CVC-ClinicDB [199] dataset consists of 612 images from 31 different types of

polyps along with the corresponding ground truth of defined polyp regions

which are manually annotated by experts. All the images originally have a

resolution of 384× 288.

• Kvasir-SEG [200] dataset contains 1000 polyp images and their corresponding

ground truth masks manually annotated by expert endoscopists from Oslo

University Hospital (Norway). The resolutions of the images varied from 332×
482 to 1920× 1072.

• ETIS-Larib [201] dataset contains 36 different types of polyps in 196 images

with resolution of 1225× 966. These images were extracted from colonoscopy

videos and the ground truths for the mask were annotated.
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• CVC-ColonDB [202] dataset contains 300 polyp images and their correspond-

ing pixel level annotated polyp masks which are extracted from 15 video se-

quences. The images had a resolution of 574× 500.

All the images are resized to uniform resolutions of (256 × 256) for operating

with the proposed PolypSegNet.

5.2.2 Experimental Setup

Different hyper-parameters of the network are chosen through experimentation for

better performance. A number of traditional evaluation metrics are used for eval-

uation of performance. Five-fold cross-validation scheme is carried out separately

on these databases for evaluation of the proposed scheme. The Wilcoxon rank-sum

test is used for statistical analysis of the performance improvement obtained from

the proposed scheme. The performances of the proposed schemes are statistically

analyzed and the statistical significance level is set to α = 0.01. The null hypothesis

is that no significant improvement of performance is achieved using the proposed

scheme over the other best performing approaches.

5.2.3 Performance Evaluation

In the proposed PolypSegNet, depth dilation block (DDB) based D-Unit layer, deep

fusion skip module (DFSM), and deep reconstruction module (DRM) are introduced.

The effects of all these blocks are separately studied to validate the effectiveness of

these blocks. For the baseline model, traditional Unet architecture is considered.

And these modules are gradually integrated into the Unet architecture and the

performance improvement is compared in different combinations of the proposed

modifications. In Table 5.2, the performances of the network in different evaluation

metrics obtained from these modifications are summarized. It should be noticed

that the integration of the proposed modules provides consistent improvement of

performance in all evaluation metrics compared to the baseline Unet architecture.

To evaluate the improvement in more detail, let’s consider the ETIS-Larib database

as it is more challenging due to the smaller amount of available data. Integration

of the DDI module into the baseline Unet provides 3.34% improvement in dice

coefficient and 1.75% improvement in the mean IoU. Whereas, integration of the

DFSM module into the Unet provides 5.53% improvement in the dice score and

3.34% improvement in IoU. And, incorporation of the DRM module provides a

4.42% improvement in dice coefficient and 2.92% improvement in IoU. Hence, it can

be observed that the DFSM module and the DRM module have higher effects on
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Table 5.2: Effect of Different Network Configuration in the Performance
on CVC-ClinicDB, Kvasir-SEG, and ETIS-Larib Databases

Model
ETIS-Larib CVC-ClinicDB Kvasir-SEG

Prec.(%) Rec.(%) Dice(%) IoU(%) Prec.(%) Rec.(%) Dice(%) IoU(%) Prec.(%) Rec.(%) Dice(%) IoU(%)
Unet 82.12 71.26 73.31 66.92 95.21 89.35 89.13 83.52 75.21 89.33 82.14 74.52

Unet + DDI 85.71 73.82 76.65 68.67 95.64 89.96 90.38 84.61 79.61 90.66 84.43 76.46
Unet + DFSM 87.52 75.56 78.84 70.26 95.79 90.34 90.61 84.94 81.36 90.84 85.65 77.17
Unet + DRM 86.83 74.52 77.73 69.84 95.72 90.13 90.47 84.65 80.85 90.77 84.26 76.53

Unet + DFSM+DRM 92.62 81.58 81.99 75.33 96.08 90.97 91.12 85.76 87.51 92.23 86.82 80.42
Unet + DDI+DFSM 90.58 79.87 80.22 72.92 95.87 90.65 91.01 85.58 85.67 91.96 86.17 79.54
Unet + DDI+DRM 89.95 79.41 81.56 73.78 95.93 90.54 91.09 85.47 84.58 91.34 85.39 78.73

PolypSegNet 95.71 84.34 84.79 78.32 96.21 91.13 91.52 86.22 91.68 92.54 88.72 82.56

performance improvement. This occurs due to their increased opportunity in the

information flow and gradient propagation throughout the network as both these

modules integrate multi-scale feature maps that are generated at different levels

of encoder and decoder. After observing the individual effect of these three mod-

ules, different combinations of two of these modules are further studied. It can be

noticed that highest improvement is achieved when DFSM and DRM modules are

integrated (8.68% improvement in dice score and 8.61% improvement in IoU) while

DDI module combining with DFSM module provides 6.91% improvement in dice

score, and 8.25% improvement in dice score is achieved when combined with DRM

module. Finally, all three modules are integrated into the baseline Unet that results

in the proposed PolypSegNet architecture and it provides the highest performance

in all the metrics compared to other combinations. It provides 13.59% improvement

in precision, 13.08% improvement in recall, 11.48% improvement in dice score, and

11.4% improvement in mean IoU. Hence, it justifies that all three modules con-

tribute to the performance improvement of the proposed PolypSegNet architecture

compared to the baseline Unet.

The performance of the proposed PolypSegNet is compared with other state-of-

the-art segmentation networks. To make a fair comparison, most of these networks

are re-produced using their open-source implementations while maintaining a sim-

ilar training condition. Moreover, similar optimizer and loss functions are used

for the performance evaluation of all the networks that prioritize the architectural

contributions in performance improvements.

In Table 5.3, the performances of these networks are summarized. It should

be noted that the proposed network consistently outperforms other networks im-

proving dice score from 80.92% to 91.52% (10.6% improvement) in CVC-ClinicDB

database, from 71.1% to 92.8% (21.7% improvement) in CVC-ColonDB database,

from 64.25% to 88.72% (24.47% improvement) in Kvasir-SEG database, and from

59.71% to 84.79% (25.08% improvement) in ETIS-Larib database. Moreover, consid-

erable improvements are also achieved in mean IoU, precision, and recall metrics. All

these improvements are found to be statistically significant (p < 0.01). As the pro-
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Table 5.3: Comparison of Performance of the Proposed PolypSegNet with
Other State-of-the-Art Approaches on CVC-ClinicDB, CVC-ColonDB,
Kvasir-SEG, and ETIS-Larib Databases with Five-Fold Cross-validation
Scheme

Model
CVC-ClinicDB [199] CVC-ColonDB [202] Kvasir-Seg [201] ETIS-Larib [200]

Pre Rec Dice IoU p-Val Pre Rec Dice IoU p-Val Prec Rec Dice IoU p-Val Pre Rec Dice IoU p-Val
FCN [203] 81.4 79.4 80.9 75.3 - 95.5 73.3 71.1 67.9 - 61.9 63.8 64.2 60.8 - 68.2 61.3 59.7 53.9 -
Unet [112] 95.2 89.3 88.1 83.5 - 99.0 79.7 79.5 74.2 - 75.2 89.3 82.1 74.5 - 82.1 71.2 73.3 66.9 -

Unet++ [118] 92.1 82.2 87.4 77.3 - 97.1 71.1 75.8 70.8 - 82.4 70.1 76.7 63.6 - 79.6 56.6 65.3 54.8 -
MultiResUnet [114] 96.3 85.1 88.5 82.7 - 98.8 77.2 77.8 72.8 - 89.7 71.7 80.1 73.1 - 95.7 62.5 69.1 63.6 -
ResUnet++ [204] 87.3 70.6 79.4 79.8 - 94.9 72.3 73.2 69.9 - 79.2 81.7 71.3 66.9 - 69.3 65.1 60.9 56.9 -

LinkNet [205] 92.2 85.8 86.2 79.5 - 91.8 64.1 66.9 63.4 - 79.2 68.6 72.2 63.4 - 77.8 61.4 58.2 48.6 -
Double-Unet [206] 95.4 82.9 87.7 84.0 - 98.4 85.5 85.8 81.1 - 87.8 76.5 82.6 78.9 - 83.9 73.3 76.2 72.1 -

BA-Net [207] 93.8 88.2 88.2 84.3 - 99.1 91.6 90.2 86.9 - 90.9 82.1 87.8 82.0 - 89.8 76.1 78.3 72.5 -
Dil. ResFCN [208] 94.5 86.9 87.1 83.8 - 97.6 83.8 84.7 79.4 - 86.6 79.6 82.3 77.3 - 87.7 71.9 75.5 71.1 -

PolypSegNet(Ours) 96.2 91.1 91.5 86.2 9e-4 99.2 93.1 92.8 88.2 2e-3 91.7 84.5 88.7 82.5 6e-3 95.7 84.3 84.8 78.3 4e-5

Table 5.4: Comparative Analysis of Cross-Dataset Performances of Differ-
ent State-of-the-Art Networks with Different Combinations of Training
and Testing Dataset

Training
Dataset

Testing
Dataset

Dice Score(%)
Unet [112] Unet++ [118] MultiResUnet [114] Double-Unet [206] BA-Net [207] ResUnet++ [204] PolypSegNet(Ours)

CVC-ClinicDB CVC-ColonDB 65.5 62.9 64.9 71.1 72.3 60.4 74.7
CVC-ColonDB CVC-ClinicDB 72.5 69.8 73.6 74.2 74.9 63.8 76.1

CVC-ColonDB+
ETIS-Larib

CVC-ClinicDB 75.7 71.2 74.8 75.7 77.1 66.1 80.4

CVC-ClinicDB ETIS-Larib 57.5 54.9 58.6 61.2 63.7 41.8 68.6
CVC-ColonDB ETIS-Larib 52.7 50.1 51.3 56.8 60.1 36.9 63.7

Kvasir-Seg ETIS-Larib 60.2 58.3 60.5 64.4 67.1 44.7 71.8
Kvasir-Seg CVC-ClinicDB 75.0 71.1 73.8 75.3 76.6 65.4 78.1

CVC-ClinicDB Kvasir-Seg 66.8 62.3 65.1 67.6 68.4 52.7 70.7
CVC-ClinicDB

+CVC-ColonDB
Kvasir-Seg 70.1 67.2 68.9 71.4 72.5 56.2 75.3

posed PolypSegNet incorporates three major modifications in the traditional Unet

architecture, these modifications improved the extracted feature quality by intro-

ducing more opportunities to optimize at a whole for better gradient propagation

throughout the network. Moreover, the proposed PolypSegNet effectively utilizes

multi-scale feature representations generated at different levels of the encoder to

reduce the semantic gap with the decoder as well as incorporates better reconstruc-

tion strategy through combining multi-scale decoded representations from different

levels of the decoder, which offer the considerable performance improvements over

other segmentation networks.

In Table 5.4, cross-dataset evaluation has been carried out for measuring the

generalization capability of different networks where trained models are tested on

different datasets. As the trained networks are tested on data collected from other

sources, it is expected to be very challenging for source variations. Different com-

binations of train-test datasets are formed by utilizing the four available datasets.

It should be noticed that the proposed network consistently provides better perfor-

mance compared to other existing methods, though the achievable performances are

lower than those of the similar train-test data experimentation. For instance, while

the networks are trained on CVC-ClinicDB and tested on ETIS-Larib, our proposed

PolypSegNet provides 4.9% higher performance than next closer performing BA-
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Table 5.5: Computational Performance Analysis of Different State-of-the-
Art Networks

Networks
Total

Parameters (M)
Inference
Time(ms)

Speed
(FPS)

Mean Dice
Score (%)

Unet [112] 34.5 42 24 80.7
Unet++ [118] 8.8 35 28 76.3

MultiResUnet [114] 7.2 33 30 78.9
Double-Unet [206] 29.3 47 22 83.1
ResUnet++ [204] 16.2 48 21 71.2

LinkNet [205] 20.3 50 20 70.9
PolypSegNet(Ours) 5.5 39 25 89.5

Net, and provides 11.1% higher dice score than Unet. These improvements indicate

the better generalizability of the proposed PolypSegNet that can be an effective

choice for practical applications with considerable data-variations.

In Table 5.5, computational performances of numerous networks are summa-

rized including number of parameters used and operational speed. It is to be noted

that the proposed PolypSegNet has lowest number of parameters requiring 5.5M

parameters which is considerably smaller compared to other existing networks. For

efficiently exploiting all of the network parameters while increasing feature diver-

sity, the proposed network integrates some novel architectural building blocks that

causes slight increase in processing time. However, the PolypSegNet operates with

comparable speed of other state-of-the-art networks with inference time of 39ms

which leads to 25 FPS processing speed. Hence, the proposed network is capable

of performing at near real time speed with minimal memory requirement that can

be vital for mobile devices. Though MultiResUnet and Unet++ provide slightly

higher FPS compared to the proposed PolypSegNet, these come with comparatively

lower mean dice score over four datasets. Therefore, this network provides an ef-

ficient means for precisely segmenting polyp regions with considerably lightweight

architectures operating with near-real time speed that can be deployed to real time

video colonoscopy data processing.

In Fig. 5.7a, 5.7b, and 5.7c some of the challenging cases collected from four

databases are used for visual discrimination of the performance of different networks.

The predicted segmentation masks generated by the networks are used for segment-

ing the region of polyps and corresponding false positives and false negative regions

are identified comparing with the provided ground truth. It is noticeable that the

proposed PolypSegNet extracts the polyp regions effectively that provides consis-

tent performance in most challenging cases with minimum false positive and false

negative regions compared to other state-of-the-art networks. Moreover, the perfor-

mance improvement is prominently noticeable when the boundary of the polyps are
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(a) Kvasir-SEG [200]

(b) CVC-ClinicDB [199]

(c) ETIS-Larib [201]

Figure 5.7: Visual representation of the input colonoscopic images and the
segmented polyp regions obtained using various architectures on different
databases. In segmented polyps, ‘blue’ denotes the false positive region
and ‘green’ denotes the false negative region.
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difficult to visually discriminate from the background, when the polyp regions are

much smaller, and when there exist considerable differences in the contrast over the

image. Hence, it can be said that the proposed PolypSegNet provides considerably

better segmentation of the polyp regions in many challenging cases while most-other

methods provide sub-optimal performance.

5.3 Conclusion

In this chapter, it is shown that combining all three modules (DDI, DRM, DFSM)

in the proposed PolypSegNet, significant improvements in evaluation metrics are

achieved consistently on all four databases used for extensive experimentation. More-

over, considerable qualitative visible improvements are obtained mostly in challeng-

ing conditions where traditional networks are supposed to under-perform. Fur-

thermore, in the cross dataset performance analysis, it is found that the proposed

network also provides higher generalizability over other state-of-the-art approaches

that makes it more suitable for practical applications where wide-variations on data

occur frequently.
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Chapter 6

CovSegNet: A Multi Encoder

Decoder Architecture for

Improved Lesion Segmentation

from COVID-19 Chest CT-scans

Chest radiography has already been proven to be an effective source for COVID diag-

nostics due to its major implications relating to various levels of lung infections [209].

Computer tomography (CT) scan and chest X-ray have been extensively explored in

the literature to establish an automated AI-based COVID diagnostic scheme [210],

[211]. Despite the easier access to chest X-ray, CT scans are more widely accepted

due to its finer details leveraging the accurate diagnosis of COVID infections. Pre-

cise segmentation of lung lesions in chest CT scans is one of the most demanding

and challenging aspects for faster diagnosis of COVID-19 due to the shortage of

annotated data, diverse levels of infections, and novel types and characteristics of

the infections [124].

A wide variety of approaches have been introduced in recent years for segmenting

the region-of-interest in diverse applications. In [212], a fully connected network

(FCN) is introduced that produces multiple scales of encoded feature maps and

reconstructs the segmentation mask utilizing these encoded representations. In [213],

Unet architecture is introduced by integrating an inverted decoder module following

the encoder module to gradually reconstruct the mask that gains much popularity

over the years. However, several architectural limitations of Unet are identified that

provides suboptimal performance.

• The skip connection introduced in Unet generates semantic gap between corre-

sponding feature scale of encoder-decoder modules, which mainly arises from
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Figure 6.1: Workflow of the proposed scheme for segmenting lung lesions
of COVID-19 in CT volume.

the direct concatenation of two semantically dissimilar feature maps.

• Contextual information loss occurs in traditional pooling/strided convolution-

based downsampling operations that become more eminent with deeper archi-

tecture.

• The vanishing gradient problem rises in a deeper structure for sequential op-

timization of multi-scale features.

• Simplistic sequential convolutional layers are integrated into each level of en-

coder/decoder modules that lack enough architectural diversity to extract fea-

tures from a broader spectrum.

In this chapter, an improved, automated scheme is proposed for precise lesion

segmentation of COVID-19 chest CT volumes by overcoming the limitations of tra-

ditional approaches with a novel deep neural network architecture, named as Cov-

SegNet. The major contributions of this work are summarized below:

i. Along with the opportunity of vertical expansion, a horizontal expansion strat-

egy is introduced in the CovSegNet architecture.

ii. For further replenishing the loss of contextual information in traditional pool-

ing/upsampling operations, a scale transition scheme is introduced in the en-

coder/decoder module by incorporating multi-scale feature maps from preced-

ing levels.

iii. For reducing semantic gaps among corresponding feature scales of the encoder-

decoder modules, a multi-scale fusion module is introduced in between succes-

sive encoder-decoder modules.

iv. A multi-phase training approach is introduced for integrating the advantages

of both the 2D and 3D data processing scheme to reach the optimum perfor-

mance.

81



Efficient Deep Neural Network Architectures

v. The proposed CovSegNet architecture is designed in a modular and structured

way that can be adapted to its lightweight, shallow form to reduce complicacy

with considerable performance.

vi. Extensive experimentations have been carried out to validate the effectiveness

of the proposed scheme on two publicly available datasets containing chest CT

scans from COVID-19 patients. The primary results of these experimentation

are published in [30].

6.1 Methodology

The proposed scheme splits the segmentation of CT volumes into two subsequent

phases to reduce the computational complexity of 3D convolution as well as to take

the advantages of multi-scale 2D convolutions (Fig. 6.1). In the first phase of train-

ing, 2D slices are extracted from the 3D CT-volumes and these are used for the opti-

mization of CovSegNet2D (i.e. 2D variant of the proposed CovSegNet architecture)

from randomized initial state. After the optimization, the trained CovSegNet2D

is capable of extracting lesions from 2D slices. However, slice-based processing of

input CT volumes will lead to loss of inter-slice contextual information resulting

in sub-optimal performance. Nevertheless, 2D-processing are computationally effi-

cient and easy to optimize compared to the complete 3D processing. To introduce

further optimization for integrating the inter-slice contextual information of par-

ticular CT volume, phase-2 of the training stage is incorporated. Here, a hybrid

volumetric processing scheme is introduced where the CovSegNet2D is initialized

with the pre-trained weights obtained from the phase-1 of the training. Thus, the

complete 3D-CT volume is split into several 2D-slices that are processed through

the CovSegNet2D to extract the region-of-interest in the 2D CT-slices. Afterwards,

these enhanced 2D CT-slices are aggregated to generate the ROI-enhanced CT-

volume where most of the redundant parts are suppressed. Nevertheless, to extract

the inter-slice contextual information for further optimization, a lighter variant of

CovSegNet3D is incorporated to operate on the ROI-enhanced CT-volume. In the

second phase of the training, CovSegNet3D will be optimized from scratch to ex-

tract the inter-slice contextual information, while CovSegNet2D will be fine-tuned

for better extraction of the intra-slice features. Hence, this joint optimization oper-

ation in phase-2 is supposed to optimize a very lighter variant of CovSegNet3D (as

it operates on the ROI-enhanced Volume), which reduces the computational burden

of complete 3D-processing with very deep network. Moreover, as the CovSegNet2D

is initially pretrained in the phase-1 for efficient 2D-slicewise processing, it greatly
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reduces the optimization complexity in phase-2 through generating ROI-enhanced

CT-volume. Hence, this hybrid networking scheme is capable of utilizing both the

inter-slice and intra-slice contextual information while greatly reducing the compu-

tational complexity of complete 3D-processing.

6.1.1 Problem Formulation

Let consider the set of CT volumes as X, and their corresponding ground truths

as Y, such that Xi ∈ Rh×w×s×c, Yi ∈ Rh×w×s×c, and i = {1, 2, 3, . . . , N}, where

(h,w, s, c) denote height, width, number of slices, and channels per slice, respectively,

of a particular CT volume from total N number of CT volumes. Moreover, let

consider xi,j ∈ Rh×w×c as the ith slice from total S slices of jth CT volume and yi,j ∈
Rh×w×c as its corresponding mask, such that i = {1, 2, . . . , S}, and j = {1, 2, . . . , N}.
In the first phase of training, the objective function for slice-based optimization of

CovSegNet2D is

Phase 1: argminθL2D(θ, yp, y) (6.1)

where, θ denotes the network parameter of CovSegNet2D, x,yp,y denote the input

2D-slice, predicted probability mask, and corresponding ground truth mask.

In the phase-2 of training, the pre-trained CovSegNet2D network obtained from

phase-1 is employed to generate ROI enhanced CT volume X′, and thus

x′ = x� yp ; ∀ x′ ∈ X′, x ∈ X, yp ∈ Yp (6.2)

where � denotes element-wise multiplication and x denotes 2D-CT slice, x′ denotes

ROI-enhanced CT-slice, and yp denotes the predicted probability mask.

Afterwards, optimization of the CovSegNet3D is carried out utlizing ROI-enhanced

CT-volume, while CovSegNet2D is fine-tuned to generate more accurate probabil-

ity masks from 2D-slices, and the joint optimization objective function F can be

formulated as

6.1.2 Proposed CovSegNet architecture

The proposed CovSegNet architecture is a generic representation of a network with

a wide range of flexibility for increasing its applicability in different challenging

conditions. This architecture can be designed for efficient operations in both 2D and

3D domains. Moreover, it can be made deeper/lighter according to the requirement

of the applications.
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Figure 6.2: Schematic representation of the two-stage implementation
of the proposed CovSegNet architecture where two sequential encoder-
decoder operational stages are employed with L subsequent levels.

In CovSegNet architecture, multiple stages of sequential encoding and decoding

operations are carried out along with a fusion scheme of multi-scale features in

between subsequent encoder/decoder module. Each stage of the network consists of

an encoder module and a corresponding decoder module. Hence, the network, N ,

can be represented as

N = Dm(Em . . . (D1(E1(θE1), θD1), . . . , θEm), θDm) (6.3)

where Ei,Di represents the encoder and decoder modules, respectively, of ith stage

from total m stages, and θEi , θDi represents their respective parameters. Two-stage

implementation of this architecture is schematically presented in Fig. 6.2.

This network can be extended from level-1 to level-L to produce a deeper variant.

The encoder/decoder module constitutes of several unit cells operating at each level

of the network. To generate a deeper network, additional unit cells are integrated

in each of the encoder/decoder module to increase number of levels. Here, Ei,j,

Di,j represent the ith unit cell of jth stage of encoder and decoder, respectively,

where i = {1, 2, . . . , L}, and j = {1, 2, . . . ,m}. Hence, L number of different scales

of representative feature maps are obtained from each encoder/decoder module.

Moreover, scale transition of feature maps is carried out in between succeeding

encoder/decoder unit cells, and effective transformation on each scale of feature

maps are integrated utilizing the generalized unit cell structure in encoder/decoder

module.

In between successive encoder/decoder modules, a multi-scale fusion (MSF) mod-

ule is introduced to reduce the semantic gap with preceding stages as well as to im-
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prove the gradient propagation through parallel linkage of multi-scale features. Sim-

ilar to encoder/decoder module, each MSF module consists of several operational

unit cells operating at different levels. Let consider, Fi represents the ith MSF mod-

ule, Fi,j represents the ith unit cell of jth MSF module, such that i = {1, 2, . . . , L},
j = {1, 2, . . . , 2m− 1}, and Fi,j ∈ Fi.

Each MSF module takes all scales of feature representations as input from all

preceding encoder/decoder stages, and generates L number of different feature maps

for the following encoder/decoder stage through deep fusion of multi-scale features

obtained from preceding stages. In each unit cell of MSF module, multi-scale feature

aggregation and pyramid fusion scheme is employed, which can be represented as

Fi,j = F (E1,E2, . . . ,E j
2
,D1,D2, . . . ,D j

2
) (6.4)

∀ i = {1, 2, . . . , L}, j = {1, 2, . . . , 2m− 1}

where F (.) represents the functional operations in the MSF unit cell considering

L scale of representations from each of the preceding encoder/decoder module.

From final level of the sequential decoder modules, several decoded feature rep-

resentations are obtained which are processed together in the fusion optimizer unit

(O) to produce the final segmentation mask, and it can be given by,

O = F(D1,1, D1,2, . . . , D1,m) (6.5)

where O(.) represents the fusion optimizer function.

All the basic building blocks of the CovSegNet architecture are generic and can be

designed and optimized for both 2D and 3D operations. In the following discussions,

different building blocks of the CovSegNet architecture are presented in detail.

Phase 2: argminΘ1,Θ2F{L2D(Θ1,y
p,y),L3D(Θ2,Y

p,Y)} (6.6)

where Θ1 denotes the network parameters of CovSegNet2D, Θ2 denotes the net-

work parameters of CovSegNet3D, X′,Yp,Y denote the ROI enhanced CT volume,

predicted 3D mask, and corresponding 3D ground truth.

6.1.3 Proposed Encoder/Decoder Structure

The encoder and decoder modules are structurally similar that are successively used

in the sequential stages of CovSegNet. Encoder/decoder modules are schematically

presented in Fig. 6.3. These encoder/decoder modules are composed of several

operational unit cells with transitional dense interconnections. The operations of
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(a) Encoder Module (b) Decoder Module

Figure 6.3: Schematic representations of the proposed encoder and decoder
modules in five-level implementation.

encoder/decoder modules can be divided into two categories: unit cell operations

and transitional operation.

Encoder/Decoder Unit Cell operation

In Fig. 6.4, the unit cell structure of the encoder/decoder module is presented. In

each unit cell, two input feature map is entered, one from the transitional unit

and the other from the preceding MSF unit while the output feature map is passed

through following transitional and multi-scale fusion operations. Moreover, each unit

cell consists of four densely interconnected convolutional layers, where each convolu-

tional layer provides two sequential convolutional filtering with (1×1) and (3×3) ker-

nels. Such dense interconnection between convolutional operations has been proven

to be effective in numerous applications. No dimensional scaling has been carried

out in each of this unit cell as it is employed for introducing adequate transforma-

tion in the feature space to encode/decode effective representation. Hence, this unit

cell operations can be functionally represented as, E,D : Rh×w×c → Rh×w×c, where

(h,w, c) represents the height, width and channel of the feature map.

Encoder Down-transitional Operation

During down transitional operations between subsequent unit cells of the encoder

module, the spatial dimension of the feature map is reduced for generalizing the

feature map, whereas the channel depth is increased to incorporate more filtering

operations in subsequent levels for generating more sparser features. It can be
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(a) Encoder Unit Cell (b) Decoder Unit Cell

Figure 6.4: Structure of the Encoder/Decoder Unit cells.

functionally presented as, f : Rh×w×c → Rh/2×w/2×2c, where spatial resolution is

downscaled by 2 and channel depth is increased by 2 from the input feature map

obtained from the previous level. However, traditional downsampling operations

using pooling/strided convolutions results in loss of contextual information. More-

over, it can be more prominent while incorporating a deep stack of unit cells in the

encoder module. To mitigate the loss of contextual information in down transitional

operation, a higher level of dense interconnection is proposed among multi-scale fea-

ture maps generated from different unit cells. In Fig. 6.5a, the structure of such

a down transition unit is schematically presented. In each of such down transition

unit, encoded feature representations generated from all higher levels of unit cells

are considered for generating the down-scaled feature map. Hence, contextual in-

formation lost in each transitional operation can be recovered from very deep stack

of unit cells as feature representations from all preceding cells are considered dur-

ing transition. To converge multi-scale feature maps from preceding levels, firstly,

pooling operations with different kernels are carried out to make their spatial di-

mension uniform and subsequently, channelwise feature aggregation is carried out.

The aggregated feature map, Fagg,DT , generated at ith level can be represented as

F i
agg,DT = Ei ⊕ P (2×2)(Ei−1) · · · ⊕ P (2i−1×2i−1)(E1) (6.7)

where ⊕ indicates the feature concatenation, P (2×2) represents pooling operation

with (2× 2) window, Ei represents the output of ith unit cell of the encoder.

Finally, a convolutional operation with (2× 2) kernel is carried out with a stride

of (2 × 2) for generating the downscaled feature map by filtering the aggregated

feature vector.
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(a) Down Transition Unit (DT-3) (b) Up Transition Unit (UT-2)

Figure 6.5: Schematic representations of the down transition unit (operat-
ing between level-3 and 4) and the up transition unit (operating between
level-(L− 2) and (L− 3)).

Decoder Up-transitional Operation

On the contrary, up transitional operations are carried out in between successive

decoder unit cells to provide the dimensional shifting towards the reconstruction

of the final segmentation mask. In each of such up-transition operations, spatial

resolution is upscaled by 2 while channel depth is reduced by 2 to get closer to the

final reconstruction mask and it can be represented as, f ′ : Rh×w×c → R2h×2w×c/2.

Similar to the down-transitional operation in Encoder, all the preceding represen-

tations of multi-scale decoded feature maps generated from different unit cells are

taken into consideration in the up-transition operation to gather more contextual

information (Fig. 6.5b). Firstly, spatially uniform feature maps are created through

bi-linear interpolation upsampling with different windows, and feature aggregation

is carried out to generate aggregated feature vector, Fagg,UT , which is given by

F i
agg,UT = Di ⊕ U (2×2)(Di+1) · · · ⊕ U (2i−1×2i−1)(DL) (6.8)

where U (2×2) represents bilinear upsampling operation with (2 × 2) window, Di

represents the output of ith unit cell of the decoder.

Finally, the aggregated feature map is processed using a deconvolution operation

with (2 × 2) kernel to incorporate the necessary dimensional up-scaling for further

processing in the following unit cell.
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Figure 6.6: Schematic representation of the proposed Multi-Scale Fusion
module.

6.1.4 Proposed Multi-Scale Fusion (MSF) Module with Pyra-

mid Fusion scheme

During sequential encoding-decoding operations, a semantic gap is generated be-

tween a similar scale of encoded and decoded feature maps. Moreover, in traditional

architecture, the gradient has to propagate sequentially that sometimes gives rise

to vanishing gradient problems for deeper encoder/decoder module particularly. As

multiple stages of encoding and decoding operations are integrated into the CovSeg-

Net, this problem is supposed to be more prominent if all the encoder and decoder

modules are sequentially connected. To overcome these limitations, a multi-scale

fusion module is proposed that develops parallel interconnection among different

scales of feature maps of the encoder/decoder modules utilizing a pyramid fusion

scheme.

As shown in Fig. 6.6, each MSF module consists of several MSF-unit cells where

each cell considers multi-scale feature maps generated from different levels of pre-

ceding encoder/decoder modules and generates feature map for the unit cell of the

following encoder/decoder module. Here, similar scale of feature representations

generated from different levels of the preceding encoder/decoder modules are con-

catenated, firstly, to produce L number of multi-scale feature maps. Afterward, all

the L scales of feature maps are made spatially equivalent in dimension through

pooling and bi-linear upsampling with different windows, and channelwise feature

concatenation is carried out to generate the aggregated feature vector.

Afterward, the aggregated feature vector is passed through a pyramid fusion
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Figure 6.7: Proposed pyramid fusion scheme for fusing multi-scale features.

scheme to generate the output feature vector that will be fed to the corresponding

encoder/decoder unit cell of the following module. Hence, the generated output fea-

ture map from each MSF unit cell contains information from all preceding modules

and thus, establishes a parallel flow of optimization for efficient gradient propaga-

tion.

6.1.5 Proposed Pyramid Fusion (PF) Module

The pyramid fusion (PF) module incorporates pyramid fusion scheme into the aggre-

gated feature map of MSF unit cell (Fagg,MSF ) utilizing the combinations of sequen-

tial multi-window pooling and upsampling operations (shown in Fig. 6.7). Firstly,

the depth of the aggregated vector, Fagg,MSF , is reduced through a pointwise convo-

lution (kernel, 1× 1) to generate feature vector fa, and thus, Fagg,MSF 7→ fa, where

fa ∈ Rh×w×c.

Afterwards, the generated vector, fa, passes through multiple spatial scaling-

vertical scaling-inverse spatial scaling operations in parallel with different scaling

factors. Spatial scaling operation is carried out utilizing pair of pooling and upsam-

pling operations with different kernel windows, while vertical scaling is employed

utilizing convolutional filtering (kernel, 3× 3) to reduce the channel depth by one-
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fourth of the initial depth. Initial reduction followed by expansion of the feature

map assists in gathering the more general feature representation, while initial expan-

sion followed by reduction of the feature map gathers the more detailed information

from a sparser domain. These operations pave the way to extract the most general-

ized representations through analyzing from diverse feature domains, which can be

represented by

Pr :Rh×w×c → Rh∗r×w∗r×c → Rh∗r×w∗r×c/4 → Rh×w×c/4

∀r = {0.25, 0.5, 2, 4} (6.9)

where Pr denotes one of the parallel operational paths in the PF module with a

spatial scaling factor of r.

Afterwards, feature aggregation operation is carried out utilizing different rep-

resentations generated at multiple paths along with the input representation to

generate the aggregated vector Fagg,PF , where Fagg,PF ∈ Rh×w×2c. Finally, a final

pointwise convolution (kernel, 1 × 1) is carried out to generate the output feature

map fout,PF , where fout,PF ∈ Rh×w×c.

6.1.6 Structure of the Fusion Optimizer(O)

The decoded feature maps generated from the top of decoder modules are consid-

ered for final reconstruction through a fusion optimization process. This process

is schematically shown in Fig. 6.8. Initially, an aggregated feature vector Fagg,O,

is created considering all the output feature maps from different decoder modules

which can be given by

Fagg,O = D1,1 ⊕D1,2 ⊕ · · · ⊕D1,S (6.10)

where S denotes total number of stages.

Afterward, pyramid fusion scheme is employed on aggregated vector to obtain

the more generalized representation utilizing multi-scale decoded representations.

Finally, another convolutional filtering (kernel, 3× 3) is carried out to generate the

final segmentation mask fmask, utilizing binary activation function, and these can

be represented as

fmask = σ(Conv(PF (Fagg,O)) (6.11)

where σ(.) denotes the non-linear activation.
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Figure 6.8: Schematic of the fusion optimizer module optimizing the de-
coded feature maps generated from two decoding stages.

6.1.7 Loss Function

Tversky Index is introduced in [214] for better generalization of the the dice index

by balancing out false positives and false negatives, which is given by

TI =

∑P
i=1 p1ig1i + ε∑P

i=1 p1ig1i + α
∑P

i=1 p0ig1i + β
∑P

i=1 p1ig0i + ε
(6.12)

where g0i, p0i indicate the ground truth and prediction probability of pixel i being in

a normal region, while g1i, p1i indicate the ground truth and prediction probability

of pixel i being in an abnormal region, P is the total number of pixels on a certain

image, α, β are used to shift emphasize for balancing class imbalance such that

α + β = 1, and ε(10−8) is used to avoid division-by-zero as safety factor.

To put more emphasis on hard training examples, a Focal Tversky loss function

is introduced in [215] utilizing the Tversky Index, which is given by

L =
∑
c

(1− TIc)
1
γ (6.13)

where γ is used to emphasize the challenging less accurate predictions. Due to the

better generalization over a large number of datasets according to [215], α = 0.7, β =

0.3, γ = 4
3

are used for all experimentations in this study.

If y,yp denote slice-wise mask ground truth and corresponding probability pre-

diction, respectively, while Y,Yp denote volumetric mask ground truth and corre-

sponding probability prediction, respectively, the objective loss functions for sepa-

rately optimizing CovSegNet2D and CovSegNet3D can be represented as

L2D = L(y,yp); y,yp ∈ Rh×w×c (6.14)

L3D = L(Y,Yp); Y,Yp ∈ Rh×w×s×c (6.15)
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The joint optimization objective function used in phase-2 combining slice-wise

and volumetric operations is given by

F = λ(
1

S

S∑
i=1

L i
2D) + L3D (6.16)

where λ denotes the scaling factor of 2D-loss term, and s denotes total number

of 2D-slices per volume. Here, λ = 0.2 is used for optimization to provide more

emphasis on CovSegNet3D in phase-2 as CovSegNet2D is pre-trained in phase-1

and is supposed to be fine-tuned in phase-2.

6.2 Results and Discussions

Experimentations have been carried out on three publicly available datasets to vali-

date the effectiveness of the proposed scheme on numerous segmentation tasks. Per-

formances of CovSegNet2D and CovSegNet3D have been separately studied along

with the proposed hybrid scheme of joint optimization combining CovSegNet2D and

CovSegNet3D.

6.2.1 Dataset Description

Dataset-1 contains 20 CT volumes with 1800+ slices annotated by expert radiologist

panel [216]. All the slices have annotations for both lung and infection regions. Each

slices are of resolution (630×630) which are resized to (512×512). Dataset-2 is the

“COVID-19 CT Segmentation dataset” that contains 110 axial CT images collected

by the Italian Society of Medical and Interventional Radiology from 40 different

COVID-patients [217]. All the images are of resolution (512 × 512). Each slice

contains multi-class annotations of infections.

6.2.2 Experimental Setup

Different hyper-parameters of the network are chosen through experimentation for

better performance. A number of traditional evaluation metrics are used for the

evaluation of performance, such as IoU, dice score, sensitivity, and specificity. A

five-fold cross-validation scheme is carried out separately on these databases for

evaluation of the proposed scheme. Mean and standard deviations of the evaluation

metrics obtained from different test folds are reported. The Wilcoxon rank-sum test

(α = 0.01) is used for statistical analysis of the performance improvement obtained

from the proposed scheme.
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Table 6.1: Ablation Study of the Effect of Different Modules in the Perfor-
mance (Mean±Standard Deviation) of the Proposed CovSegNet2D Ar-
chitecture

Network
Dataset-1 Dataset-2

Sen.(%) Spec.(%) Dice(%) IoU(%) p-Value Sen.(%) Spec.(%) Dice(%) IoU(%) p-Value
Baseline (V1) 82.7± 0.49 97.4± 0.09 84.1±0.29 79.8±0.21 - 71.7±0.12 95.8±0.18 71.9±0.33 65.8±0.27 -

Baseline+ DT (V2) 83.8±0.29 97.8±0.12 85.8±0.36 81.1±0.08 0.0033 73.6±0.31 96.5±0.15 73.4±0.14 67.6±0.21 0.0023
Baseline+ UT (V3) 83.1±0.25 97.7±0.08 85.4±0.16 80.9±0.13 0.0017 73.1±0.55 96.3±0.18 73.1±0.19 67.2±0.35 0.0044

Baseline+ DT+UT (V4) 84.9±0.41 98.1±0.11 86.7±0.27 82.3±0.32 0.0021 74.6±0.17 97.1±0.12 74.8±0.34 69.4±0.18 0.0012
Baseline+(MSF-w/o PF) (V5) 86.9±0.15 98.3±0.07 87.3±0.28 82.9±0.26 0.0019 76.2±0.27 97.9±0.16 77.2±0.29 72.8±0.24 0.0034

Baseline+ MSF (V6) 88.4±0.28 98.7±0.08 89.2±0.32 84.1±0.21 0.0041 78.8±0.25 98.4±0.11 79.5±0.21 74.1±0.25 0.0048
CovSegNet2D (V7) 90.8±0.32 99.1±0.13 91.1±0.25 86.9±0.09 0.0011 81.5±0.22 98.9±0.13 82.7±0.08 77.5±0.14 0.0009

6.2.3 Performance Analysis

To analyze the effectiveness of different modules of the proposed CovSegNet ar-

chitecture, an ablation study is carried out. The baseline model is defined as the

two-stage implementations with encoder and decoder modules only excluding the

down-transition (DT) units, up-transition units (UT), and multi-scale fusion mod-

ules. The statistical significance test is carried out to validate the improvement of

dice-scores over the baseline model.

i. Effects of the transition unit: Instead of proposed down-transition units

and up-transition units, traditional max-pooling and upsampling operations

are used, respectively, in the baseline model according to the conventions of

traditional Unet architecture. Performances with different combinations of

transition units are provided in (V2-V4) of Table 6.1 for 2D analysis. The

inclusion of down-transition unit (V2) in encoder modules provides 1.7% im-

provement and 1.5% improvement of dice scores in Database-1 and 2, respec-

tively, over the baseline. Moreover, the inclusion of up-transition unit (V3) in

decoder modules provides 1.3% and 1.2% improvements of dice scores, while

the inclusion of both of the transition units (V4) provide 2.6% and 2.9% im-

provements of dice scores in Database-1 and 2, respectively. Hence, both of

the up-transition units and down-transition units are contributing consider-

able improvements over the baseline performance. Similar improvements can

be noticeable for 3D variants of the transition units also (from V 23D to V 43D)

that are summarized in Table 6.5. All the improvements are found to be

statistically significant (p < 0.01).

ii. Effects of the multi-scale fusion (MSF) module: The MSF modules

are proposed in place of the traditional direct skip connection scheme of Unet

architecture to reduce the semantic gaps between subsequent encoder and de-

coder modules. In the baseline model, direct skip connections are used between

succeeding modules instead of the MSF module. In Table 6.1, the change of

performance with the inclusion of the MSF module in the 2D-baseline model
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Table 6.2: Performance Comparison (Mean±Standard Deviation) of the
Proposed CovsegNet2D Architecture with Other State-of-the-Art Ap-
proaches on 2D-CT slices

Network
Dataset-1 Dataset-2

Sen.(%) Spec.(%) Dice(%) IoU(%) p-Value Sen.(%) Spec.(%) Dice(%) IoU(%) p-Value
Unet [213] 75.9±0.34 88.9±0.12 79.3±0.26 74.9±0.18 - 52.9±0.29 86.2±0.09 43.3±0.34 38.8±0.32 -

Unet++ [137] 78.6±0.17 91.1±0.18 81.1±0.23 76.2±0.21 - 57.7±0.32 89.2±0.11 52.3±0.31 48.1±0.37 -
MultiResUnet [136] 77.2±0.33 90.3±0.24 82.7±0.28 77.4±0.15 - 56.9±0.27 86.9±0.15 50.8±0.28 45.2±0.22 -

Attention-Unet-2D [218] 81.1±0.29 92.2±0.11 85.1±0.14 79.6±0.28 - 60.8±0.25 88.4±0.12 57.7±0.36 51.9±0.26 -
CPF-Net [219] 78.9±0.27 91.7±0.14 84.4±0.25 79.3±0.25 - 62.2±0.14 91.1±0.14 60.4±0.25 56.1±0.21 -

Semi-Inf-Net [124] 82.7±0.26 94.8±0.21 86.9±0.34 81.1±0.18 - 72.9±0.44 95.8±0.19 74.1±0.24 68.1±0.32 -
CovSegNet2D(Ours) 90.8±0.32 99.1±0.13 91.1±0.25 86.9±0.09 0.0008 81.5±0.22 98.9±0.13 82.7±0.08 77.5±0.14 0.0013

Table 6.3: Performance Comparison (Mean±Standard Deviation) of the
CovSegNet3D Architecture with Other State-of-the-Art Networks on 3D-
CT Volumes of Dataset-1

Network Sen.(%) Spec.(%) Dice(%) IoU(%) p-Value
Unet-3D [213] 77.1±0.22 89.8±0.18 84.2±0.27 79.4±0.24 -

Unet++-3D [137] 79.2±0.17 91.7±0.25 85.1±0.29 80.2±0.26 -
MultiResUnet-3D [136] 78.7±0.27 90.9±0.16 84.5±0.31 78.9±0.18 -
Attention-Unet-3D [218] 82.5±0.26 93.1±0.31 85.9±0.24 81.4±0.29 -

CPF-Net-3D [219] 80.1±0.23 92.6±0.23 85.2±0.18 80.8±0.34 -
VNet-3D [131] 84.3±0.29 93.9±0.17 85.7±0.31 81.3±0.19 -

CovSegNet3D(Ours) 91.1±0.26 99.3±0.09 92.3±0.15 87.7±0.23 0.0024
CovSegNet-Hybrid(Ours) 92.6±0.25 99.5±0.07 94.1±0.19 90.2±0.27 0.0011

is provided in V6. It should be noticed that 5.1% improvement of dice-score,

4.3% improvement of IoU score have been achieved in Database-1, while 7.6%

improvement of dice-score, 8.3% improvement of IoU score have been achieved

in Database-2. Similar performance improvements can be noticed for the in-

corporation of MSF module in the 3D-baseline model (V 63D in Table 6.5).

These improvements are found to be statistically significant (p < 0.01).

iii. Effects of the pyramid fusion scheme in MSF module: Pyramid fu-

sion (PF) modules are integrated into the MSF modules to operate on the

aggregated multi-scale feature vector in the MSF module. Instead of the PF

module, a point-wise convolution with (1 × 1) kernel can be performed to

reduce and transform the aggregated vector into the output vector. The per-

formance of the 2D-baseline model including this simplified version of the MSF

module is reported in V5 of Table 6.1. It is to be noted that 2.3% improvement

of dice score is achieved in Database-1 and 3.4% improvement is achieved in

Database-2 over the baseline model using these simplified MSF modules, and

these improvements are statistically significant (p < 0.01). However, 3.2% and

5.3% reduction of dice scores can be noticed in Database-1 and 2, respectively,

from the baseline model with original MSF modules (V6) incorporating PF

scheme. Similarly, considerable improvement is also achieved for the incorpo-

ration of 3D-pyramid fusion scheme in the 3D variants of MSF module which
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Table 6.4: Effect of Vertical Expansions (Levels) and Horizontal Expan-
sions (Stages) on the Dice Score (Mean±Standard Deviation) in Dataset-
1

Level
CovSegNet2D CovSegNet3D

1-stage 2-stage 3-stage 1-stage 2-stage 3-stage
2 49.9±0.37 75.3±0.13 78.12±0.21 57.3±0.18 79.8±0.18 82.1±0.19
3 64.8±0.23 85.8±0.32 88.5±0.15 69.3±0.35 89.2±0.26 90.2±0.25
4 75.2±0.32 89.6±0.27 90.8±0.22 79.8±0.29 92.3±0.15 91.8±0.17
5 83.5±0.19 91.1±0.25 89.9±0.12 84.5±0.43 90.2±0.34 89.7±0.28
6 86.7±0.27 90.9±0.21 89.1±0.11 89.3±0.21 89.8±0.41 87.9±0.36

Table 6.5: Ablation Study of the Effect of Different Modules in the Perfor-
mance (Mean±Standard Deviation) of the Proposed CovSegNet3D Ar-
chitecture in Dataset-1

Network
Dataset-1

Sensitivity(%) Specificity(%) Dice Score(%) IoU(%) p-Value
Baseline3D (V13D) 84.5±0.21 97.9±0.12 85.2±0.23 80.8±0.32 -

Baseline3D + DT (V23D) 85.7±0.31 98.2±0.19 86.1±0.25 82.3±0.29 0.0011
Baseline3D + UT (V33D) 85.2±0.18 98.1±0.08 85.9±0.18 82.0±0.21 0.0008

Baseline3D + DT+UT (V43D) 86.7±0.22 98.7±0.14 88.3±0.28 83.5±0.27 0.0017
Baseline3D+(MSF-w/o PF) (V53D) 87.4±0.25 97.9±0.11 88.2±0.21 83.8±0.31 0.0032

Baseline3D+ MSF (V63D) 89.6±0.19 98.4±0.15 89.9±0.17 85.1±0.19 0.0021
CovSegNet3D 91.1±0.26 99.3±0.09 92.3±0.15 87.7±0.23 0.0025

can be noticed from V 53D and V 63D in Table 6.5. It justifies the effectiveness

of the pyramid fusion scheme in the MSF module.

iv. Effects of vertical and horizontal scaling The proposed CovSegNet ar-

chitecture is designed in a modular way with the opportunity for both vertical

and horizontal expansions for integrating more number of levels and stages, re-

spectively. In Table 6.4, the performances of the CovSegNet architecture with

different numbers of levels and stages are provided. It should be noticed that

the optimum dice score of 91.1% is obtained for CovSegNet2D with 5-levels

and 2-stages. The best performance on single stage implementation is found

to be 86.7%, which is 4.4% lower than the best of the 2-stage implementation.

Similar analyses have been carried out on CovSegNet3D using volumetric data

where the highest dice score of 92.3% is achieved with 3-levels and 2-stages

implementation. Moreover, when more stages are included, comparably higher

performances are obtained in a lower number of levels, e.g. best dice score of

90.8% in the 3-stage setup of CovSegNet2D has been achieved with 4-levels.

With the horizontal expansion, the model gathers more amount of contextual

information in a lower number of stages that result in higher performances.

However, more expansion in both directions starts to increase the complexity

that causes a decrease in performance due to overfitting issues.

v. Effects of the hybrid 2D-3D joint optimization scheme with two-
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Table 6.6: Comparison of Performances (Mean±Standard Deviation) on
Different Types of Infections (Ground Glass Opacity and Consolidation)
in Different CT-slices of Dataset-2

Network
Consolidation Ground-Glass Opacity

Sen.(%) Spec.(%) Dice(%) IoU(%) p-Value Sen.(%) Spec.(%) Dice(%) IoU(%) p-Value
Unet [213] 41.1±0.26 96.2±0.12 40.3±0.28 35.5±0.28 - 35.1±0.27 98.2±0.09 44.1±0.27 39.8±0.25 -

Unet++ [137] 48.8±0.23 97.8±0.16 42.6±0.26 38.2±0.19 - 41.2±0.32 96.6±0.14 49.9±0.22 45.7±0.27 -
MultiResUnet [136] 46.6±0.28 97.1±0.14 42.1±0.19 37.6±0.27 - 44.5±0.28 97.3±0.11 47.7±0.18 43.1±0.28 -

Attention-Unet-2D [218] 44.8±0.19 96.8±0.08 44.5±0.25 40.1±0.33 - 55.3±0.31 95.4±0.08 52.9±0.17 47.6±0.35 -
CPF-Net [219] 49.9±0.18 97.4±0.15 44.1±0.23 39.9±0.29 - 53.5±0.22 96.9±0.13 56.9±0.26 51.1±0.34 -

Semi-Inf-Net [124] 50.9±0.22 96.7±0.11 45.8±0.31 41.4±0.18 - 62.2±0.34 96.1±0.18 62.7±0.22 58.4±0.23 -
CovSegNet2D(Ours) 63.8±0.17 98.4±0.09 56.8±0.24 51.9±0.25 0.0017 73.3±0.25 98.9±0.12 70.9±0.31 66.1±0.19 0.0028

Figure 6.9: Visual representations of the segmentation performances of
different state-of-the-art networks on the CT images from Database-1
and Database-2. Here, ‘yellow’, ‘red’, and ‘blue’ represent true positive
(TP), false negative (FN), and false positive (FP) regions, respectively.

phase training: The proposed 2-phase training scheme exploits the advan-

tages of both the slice-based optimization and volumetric optimization. Quan-

titative performances obtained using CovSegNet2D, CovSegNet3D, and the

hybrid scheme are provided in Table 6.2 and 6.3. Slice based processing pro-

vides the advantages of employing deeper networks for lighter 2D-convolutions,

while loses the inter-slice contextual information that results in sub-optimal

performance. On the other hand, 3D-volumetric analysis incorporates more

contextual information while increasing the computational burden of opti-

mization for the expensive 3D-kernels processing. The best variant of Cov-

SegNet3D provides 1.2% higher dice score, and 0.8% higher IoU score over

the best variant of CovSegNet2D. Thus, the performances of the proposed
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Figure 6.10: Visual representations of the segemntation performances ob-
tained using single phase training (CovSegNet2D and CovSegNet3D) and
multi-phase training (with hybrid 2D-3D networks) in Dataset-1.

CovSegNet architectures are quite comparable in both 2D and 3D process-

ing with minor variations. It is to be noted that, more improvements can

be achieved with the expensive 3D-processing if the number of training CT-

volumes can be increased substantially for exploiting the advantages of the

complete 3D-processing. However, by combining the advantages of both these

schemes in the proposed multi-phase hybrid training approach, 3% and 1.8%

higher dice scores are achieved compared to the best performing CovSegNet2D

and CovSegNet3D architectures, respectively. In the hybrid scheme, to reduce

the computational burden of 3D-data processing, only 2-level and dual-stage

implementation of the CovSegNet3D is employed accompanied by the 4-level

and dual-stage implementation of the CovSegNet2D that provides the optimal

performance with minimal complexity. Since a very shallower variant of Cov-

SegNet3D is employed in the hybrid network compared to the best performing

variant of CovSegNet3D, the operational complexity is greatly reduced in the

hybrid network that led to the optimum performance with the available CT-

volumes. This improvement signifies the effectiveness of the hybrid networking

scheme in multi-phase training (p < 0.01). Moreover, qualitative analysis of

the performances of the individual networks and hybrid networks are presented

in Fig. 6.10 with different levels of infection. It should be noticed that both
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Figure 6.11: Visual representations of the segmented multi-class lesions
of the CT images from Database-2 obtained using different state-of-the-
art networks. Here, ‘red’ represents the ‘Ground Glass Opacity (GGO)’
regions and ‘yellow’ represents the ‘Consolidation’ regions.

of the false positive and false negative regions are reduced in the segmented

mask for the hybrid scheme compared to the individual networks. Therefore,

for the proper optimization with the hybrid networking scheme through multi-

phase training, optimum performance is achieved compared to the independent

2D/3D data processing.

vi. Comparison with Other Existing Approaches: To compare the per-

formances of the proposed CovSegNet architecture, several state-of-the-art

networks are considered. To compare on a fair platform, most of these net-

works are implemented using their open-source implementation, and same

train-test folds are used for performance evaluation. Infection segmentation

performances using slice-based 2D-operations and volumetric 3D-operations

are summarized in Table 6.2 and 6.3, respectively. CovSegNet2D provides a

4.2% higher dice score in Database-1, and an 8.6% improvement in dice score

in Database-2 compared to the second-highest score (Semi-Inf-Net). Hence,

consistent improvements in performances have been achieved in 2D-slice based

analysis using CovSegNet2D. Moreover, in the volumetric analysis approach,

CovSegNet3D provides an 8.4% higher dice score and 9.4% higher IoU score

compared to the next-best performing model (VNet). Thus, the 3D-variant

of CovSegNet provides consistent improvements over other 3D-counterparts

of existing networks. It should be noticed that the proposed hybrid scheme

combining CovSegNet2D and CovSegNet3D provides the most optimum per-
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formance with a dice score of 94.1% and IoU score of 90.2%. Some of the

qualitative visualizations of performances obtained in different challenging

conditions are shown in Fig. 6.9. For having the volumetric information of

the Database-1, the proposed hybrid scheme is employed here, while only 2D-

slice based analysis is carried out in Database-2 using CovSegNet2D. It should

be noted that the proposed scheme performs consistently better compared to

other networks in segmenting most of the challenging diffused, blurred, and

varying shaped edges of COVID lesions. Moreover, quantitative performances

on challenging multi-class lesion segmentation, including separate ground-glass

opacity (GGO) and consolidation regions, are summarized in Table 6.6, where

8.2% improvement in dice score is obtained in GGO segmentation and 11%

improvement in consolidation segmentation using CovSegNet architecture over

the other best-performing approaches. Additionally, from the visual analysis

of the performances shown in Fig. 6.11, it can be easily noted that the proposed

network considerably reduces the false predictions even in these challenging

conditions compared to other state-of-the-art approaches.

vii. Computational Efficiency Analysis of Numerous Approaches: The

proposed CovSegNet architecture ensures the proper optimization of all the

network parameters through improved parallelization that enhances efficient

gradient propagation in the whole network. However, this improved paral-

lelism also poses some computational burden for the effective exploitation of

the network parameters. Nevertheless, the CovSegNet architecture provides

additional opportunity for horizontal scaling as well as vertical scaling that

facilitates the performance improvement with much shallower variant. On the

contrary, other traditional networks solely depend on vertical scaling that ex-

ponentially increases the computational burden with exponential increase of

the number of convolutional filters in the deeper layers. In Table 6.7, the

computational efficiency of different networks are summarized, where perfor-

mances of different variants of CovSegNet is summarized based on the number

of levels (L) and stages (S). For 2D-processing, it is to be noted that. the

CovSegNet2D-v2 achieves 3.5% higher dice score compared to the Unet while

incorporating only 3-levels (L-3), and two-horizontal stages (S-2). Due to lower

number of filtering operations in the upper vertical levels, significantly lower

number of parameters (reduced 94.8%) are incorporated. However, for proper

optimization of these parameter with improved parallelism in the network,

comparatively lower gain is achieved in terms of the GPU consumption (re-

duced 14.2%) and inference time (reduced 30%) with respect to the Unet. A
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similar observation can be carried out for 3D analysis with CovSegNet3D. It is

clear that 3D processing increases computational complexity greatly compared

to the 2D networks. However, it should be noticed that CovSegNet-Hybrid

provides the best achievable dice score (94.1%) while consisting of 0.09x pa-

rameters of Unet3D with 0.08s reduction of inference time. This significant

reduction in parameter counts is mainly achieved by integrating a shallower

variant of CovSegNet3D with the CovSegNet2D. Moreover, this hybrid pro-

cessing effectively extracts both the inter-slice and intra-slice contextual infor-

mation that are responsible for the highest dice score. Therefore, this hybrid

scheme provides considerable advantages over other existing 3D variants in

terms of parameters, and dice scores with comparable processing speed.

6.3 Conclusion

In this chapter, an automated scheme is proposed with an efficient neural network

architecture (CovSegNet) for very precise lung lesion segmentation of COVID CT

scans that provides outstanding performances with 8.4% average improvement of

dice score over two datasets. It is found that horizontal expansion mechanism with

multi-stage encoder-decoder modules assists in further improvements for gathering

more multi-scale contextual information when coupled with the traditional vertical

expansion mechanism. Furthermore, the two-phase optimization scheme with hybrid

2D-3D processing provides considerable improvement over traditional single domain

approaches for introducing more contextual information to gather finer details.
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Chapter 7

CovTANet: A Multi Objective

Learning Framework for Lesion

Segmentation, Diagnosis, and

Severity Prediction of COVID-19

With a large number of asymptomatic patients, early detection of COVID-19 through

CT imaging is still a stupendously challenging task due to significantly smaller, scat-

tered, and obscure regions of infections that are difficult to distinguish [220]. These

diverse heterogeneous characteristics of infections among different subjects also make

the severity prediction to be an extremely difficult objective to achieve [221]. The

scarcity of considerably large reliable datasets further increases the complexity of the

endeavor. Most of the recent studies mostly opt for solving this daunting task par-

tially where infection segmentation, diagnosis, or severity analysis have separately

attempted [138]–[140]. Such methods lack the complete integration of the objectives

for providing a robust clinical tool.

In this chapter, CovTANet, an end-to-end hybrid neural network is proposed,

that is capable of performing precise segmentation of COVID lesions along with

accurate diagnosis and severity predictions. The intricate network of the proposed

scheme emerges as an effective solution by overcoming the limitations of the tra-

ditional approaches. The major contributions of this work can be summarized as

follows:

i. A novel tri-level attention guiding mechanism is proposed combining channel,

spatial and pixel domains for feature recalibration and better generalization.

ii. A tri-level attention based segmentation network (TA-SegNet) network is pro-
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Figure 7.1: Graphical overview of the optimization scheme of CovTANet

posed for precise segmentation of COVID lesions integrating the triple atten-

tion mechanisms with parallel multi-scale feature optimization and fusion.

iii. A multi-phase optimization scheme is introduced by effectively integrating the

initially optimized TA-SegNet with the joint diagnosis and severity prediction

framework.

iv. A system of networks is proposed for efficient processing of CT-volumes to

integrate all three objectives for improving performance in challenging condi-

tions.

v. Extensive experimentations have been carried out over a large number of sub-

jects with diverse levels and characteristics of infections. The primary results

of these experimentation are published in [22].

7.1 Methodology

The proposed CovTANet network is developed in a modular way focusing on diverse

clinical perspectives including precise COVID diagnosis, automated lesion segmen-

tation, and effective severity prediction. The whole scheme is represented in Fig. 7.1.

Here, a hybrid neural network (CovTANet) is introduced for segmenting COVID le-

sions from CT-slices as well as for providing effective features of the region-of-lesions

which are later integrated for the precise diagnosis and severity prediction tasks.

The complete optimization process is divided into two sequential stages for ef-

ficient processing. Firstly, a neural network, named as Tri-level Attention-based

Segmentation Network (TA-SegNet), is designed and optimized for slicewise lesion
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Figure 7.2: Optimization flowchart of the proposed CovTANet network.

segmentation from a particular CT-volume. A tri-level attention gating mechanism

is introduced in this network with multifarious architectural renovations to overcome

the limitations of the traditional Unet network (Section 7.1.2), which gradually ac-

cumulates effective features for precise segmentation of COVID lesions. Because of

the pertaining complicacy with blurred, diffused, and scattered patterns of COVID

lesions, it is quite obvious that direct utilization of the final segmented portions for

diagnosis may result in loss of information due to some false positive estimations.

The proposed CovTANet aims to resolve this issue by extracting effective features

regarding the regions-of-infection utilizing the initially optimized TA-SegNet as it

is optimized for precisely segmenting COVID lesions with diverse levels, types, and

characteristics.

Additionally, separate regional feature extractors are employed for generating

more generalized forms of the slicewise feature vectors from different lung regions.

Subsequently, these generalized feature representations of CT-slices are guided into

separate volumetric feature aggregation and fusion schemes through the proposed

tri-level attention mechanism for extracting the significant diagnostic features as

well as severity based features. The diagnostic path is supposed to extract the more

generalized representation of infections while the severity path is more concerned

with the levels of infections. Both the diagnostic and severity predictions are opti-

mized through a joint optimization strategy with an amalgamated loss function. The

optimization flow of the complete CovTANet network is shown in Fig. 7.2. Several

architectural submodules of the CovTANet are discussed in detail in the following

sections.

7.1.1 Proposed Tri-level Attention Scheme

Attention mechanism, first proposed in [222] for enhanced contextual information

extraction in natural language processing, has been adopted in numerous fields in-

cluding medical image processing [223], [224]. This mechanism assists faster con-

vergence with considerable performance improvement by eliminating the redundant

parts while putting more attention on the region-of-interests through the general-
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Figure 7.3: Schematic of the proposed channel, spatial, and pixel attention
mechanisms.

ization of the predominant contextual information. Here, we have proposed a novel

self-supervised attention mechanism combining three levels of abstraction for im-

proved generalization of the relevant contextual features, i.e. channel-level, spatial-

level, and pixel-level. The channel attention (CA) mechanism operates on a broader

perspective to emphasize the corresponding channels containing more information,

while the spatial attention (SA) mechanism concentrates more on the local spatial

regions containing region of interests, and finally, the pixel attention (PA) mech-

anism operates on the lowest level to analyze the feature relevance of each pixel.

However, relying only on the higher level of attention causes loss of information

while relying on lower/local levels may weaken the effect of generalization. Hence,

to reach the optimum point of generalization and re-calibration of feature space,

we have introduced a tri-level attention unit (TAU) mechanism that integrates the

advantages of all three levels of attention. This TAU unit module is repeatedly used

all over the CovTANet network (Fig. 7.1) to improve the feature relevance through

feature recalibration.

In general, the proposed attention mechanisms operating at different levels of ab-

straction (shown in Fig. 7.3) can be divided into two phases: a feature re-calibration

phase followed by a feature generalization phase. In each phase, a statistical descrip-

tion of the intended level of generalization is extracted, which is processed later for

generating the corresponding attention map. Let, Fin ∈ RH×W×C be the input fea-

ture map where (H,W,C) represent the height, width, and channels of the feature

map, respectively. Here, channel description, Dc ∈ R1×1×C is generated by taking

the global averages of the pixels of particular channels, while the spatial description,

Ds ∈ RH×W×1 is created by convolutional filtering, and the input feature map, Fin

represents the pixel description, Dp ∈ RH×W×C itself.

Afterwards, the feature re-calibration phase is carried out by projecting the de-
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scriptor vector D to a higher dimensional space followed by the restoration process

of the original dimension to generate the re-calibration attention map Ar, which

is utilized to obtain the re-calibrated feature map Fr. This process assists in the

redistribution of the feature space in the subsequent feature generalization phase

for better generalization of features through sharpening the effective representative

features. It can be represented as:

Fr = Fin ⊗ Ar = Fin ⊗ σ(WR(WE(D))) (7.1)

= Fin ⊗ σ(WR(WE(WD(Fin)))) (7.2)

where ⊗ represents the element-wise multiplication with the required dimensional

broadcasting operation, WD denotes the statistical descriptor extractor, WE rep-

resents the dimension expansion filtering, WR represents the dimension restoration

filtering, and σ(·) represents the sigmoid activation. For the channel-attention mech-

anism, WE and WR are realized by fully connected layers, while for spatial and pixel

attention, convolutional filters are employed.

Subsequently, the feature generalization operation is carried out through the

squeeze and excitation operation on the re-calibrated feature space, Fr to generate

the effective attention map A. In this phase, the extracted feature descriptor, D′

is projected into a lower-dimensional space to extract the most effective representa-

tional features and thereafter, reconstructed back to the original dimension. Such

sequential dimension reduction and reconstruction operations provide an opportu-

nity to emphasize the generalized features while reducing the redundant features.

Hence, the generated attention map A provides the opportunity to reduce the effect

of redundant features by providing more attention to the effective features, and it

can be represented as:

A = σ(WR′(WS(D′))) = σ(WR′(WS(WD′(Fr)))) (7.3)

where WS,WR′ represents the corresponding squeeze and restoration filtering, re-

spectively, while WD′ represents the statistical descriptor extractor. Therefore, three

levels of attention maps are generated, i.e. a channel attention map AC ∈ R1×1×C ,

a spatial attention map AS ∈ RH×W×1, and a pixel attention map AP ∈ RH×W×C .

The tri-level attention unit (TAU), represented in Fig. 7.4, generates the effective

volumetric, triple attention mask AT integrating all three maps, which is given by:

AT = AP ⊗ (AS ⊗ AC) (7.4)
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Figure 7.4: Schematic of the proposed Tri-level Attention Unit (TAU)
integrating channel attention (CA), spatial attention (SA), and pixel at-
tention (PA) mechanisms.

Later, this accumulated attention mask AT is used to transform the input feature

map Fin to F ′ for enhancing the region-of-interest, and finally the output feature

map, Fout is generated through the weighted addition of the input and transformed

feature maps, and these can be summarized as:

F ′ = Fin ⊗ AT (7.5)

Fout = T (Fin) = αFin + (1− α)F ′ (7.6)

where T(·) represents the proposed Tri-level attention mechanism, α is a learnable

parameter that is optimized through the back-propagation algorithm along with

other parameters.

7.1.2 Proposed Tri-level Attention-based Segmentation Net-

work (TA-SegNet)

The proposed TA-SegNet network is deployed for segmenting the infected lesions

as well as for extracting features for the following joint diagnosis and segmentation

tasks (as shown in Fig. 7.1). For better segmentation, this network introduces

several modifications over traditional networks which are mostly based on Fully

convolutional networks (FCN) and Unet networks generally.

The proposed TA-SegNet network (shown in Fig. 7.5) integrates the advantages

of both Unet and FCN by introducing an encoder-decoder based network with re-

duced semantic gaps along with the opportunity of parallel optimization of multi-

scale features. Firstly, the input images pass through sequential encoding stages

with convolutional filtering followed by sequential decoding operations similar to the
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Figure 7.5: Schematic representation of the proposed Tri-level Attention-
based Segmentation Network (TA-SegNet).

Unet. Moreover, the output feature map generated from each layer of the encoder

unit is connected to the corresponding decoder layer through a Tri-level Attention

Unit (TAU) mechanism for better reconstruction in the decoder unit. For further

generalization and refinement of contextual features, all scales of decoded feature

representations also pass through another stage of the attention mechanism. After-

wards, for introducing joint optimization of multi-scale features, the attention gated,

refined feature maps generated at different stages of encoder and decoder modules

are accumulated through a series of operational stages. Initially, sequential concate-

nation of corresponding encoder-decoder layer outputs (after attention-gating) are

carried out. Following that, channel downscaling operations through convolutional

filtering and bi-linear spatial upsampling operations are employed to produce fea-

ture vectors with uniform dimensions. Afterwards, these uniform feature vectors are

accumulated through channel-wise concatenation to generate the fusion vector Ffus,

and it can be represented as:

Ffus = FNi=1(T (Ei)⊕ T (Di)) (7.7)

where ⊕ represents feature concatenation, Ei, Di stand for ith level of feature repre-

sentations from total N levels of the encoder, and decoder modules, respectively, T (·)
represents the tri-level attention unit operation, and F(·) represents the multi-scale

feature fusion operation.

Afterwards, the final convolutional filtering is operated on the fusion feature map

(Ffus) to produce the output segmentation mask. Moreover, to introduce transfer-

learning in this TA-SegNet similar to other networks, the encoder module can be

replaced by different pre-trained backbone networks for better optimization. Hence,
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the proposed TA-SegNet facilitates faster convergence through parallel optimization

of the multi-scale features while effectively extracting the region-of-interest from

each scale of representation with the novel tri-level attention gating mechanism for

providing the optimum performance even in the most challenging conditions.

7.1.3 Proposed Regional Feature Extractor Module

To overcome the loss of information especially for the early stage of infection, the

final fusion vector Ffus generated at TA-SegNet is incorporated into further process-

ing, instead of the segmented lesion, as it contains the effective feature representa-

tions of the region-of-infections. For further emphasizing the COVID lesion features,

a regional feature extractor module (RFex) is also proposed that separately operates

on each of the slice-wise fusion vector Ffus and thus generates the effective regional

feature representation Freg. From Fig. 7.1, it is to be noted that such regional fea-

ture extractor module separately operates on the extracted feature vectors of each

CT-slice and hence, enhance the effective regional features regarding the infection.

The architectural details of this module are presented in Fig. 7.6. It consists of

several stages of convolutional filtering while incorporating the Tri-level Attention

Unit at each stage. These attention units operated at different stages are supposed

to execute different roles. As we go deeper into this RFex module, more generalized

feature representations are created through subsequent pooling operations where the

information is made more sparsely distributed among increased channels. Therefore,

the regional feature extractor module effectively incorporates the proposed tri-level

attention mechanism to extract the most generalized representative features of in-

fections from different regions of the respective CT volume.

7.1.4 Volumetric Feature Aggregation and Fusion Module

This module accumulates the volumetric features from the generalized feature repre-

sentation of each slice as well as introduces an effective fusion of features to generate

the corresponding representative feature vector of the CT-volume. Moreover, this

module plays an influential role in the proper selection of features especially in the

early stage of infection when few of the slices contain infected lesions. To facilitate

the feature selection process, the processing of severity based features and diag-

nostic features are isolated. In Fig. 7.1, separate volumetric feature aggregation

and fusion modules are integrated to separately optimize the diagnostic and sever-

ity features. Though similar operational modules are employed in both of these

cases, another stage of attention-gating operations is employed to guide the effec-
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Figure 7.6: Representation of the proposed regional feature extractor mod-
ule

tive slice-wise features in these operational modules with different objectives (shown

in Fig. 7.1). This module is schematically presented in Fig. 7.7. Firstly, the volu-

metric feature accumulation is carried out to produce the aggregated feature vector

Fagg from the regional features (Freg) of all slices. Thereupon, the fusion scheme is

employed utilizing dilated convolutions [225] which provides the opportunity to ex-

plore features from diverse receptive areas. Firstly, a pointwise convolution (1×1) is

carried out for depth reduction of the aggregated vector Fagg. Subsequently, several

dilated convolutions are operated with varying dilation rates for the effective fusion

of features, and outputs of these convolutions are processed through another stage

of aggregation, convolutional filtering, and global pooling operations to generate a

1D-representational feature vector. Finally, several fully connected layer operations

are employed for generating the final prediction for a specific CT-volume.

7.1.5 Loss Functions

The optimization of the whole process is divided into two phases where the TA-

SegNet is optimized in the first phase and joint optimization of the diagnostic and

severity prediction tasks are carried out in the second phase utilizing the optimized

TA-SegNet from phase-1. A focal Tversky loss function (LFTL) is proposed in [226]

utilizing the Tversky index that performs well over a large range of applications

which is used as the objective function to optimize TA-SegNet.

In general, both the COVID diagnosis and severity predictions are defined as

binary-classification tasks, where normal/disease classes are considered for diagno-
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sis while mild/severe classes are considered for severity predictions. For joint opti-

mization of the diagnosis and severity prediction, an objective loss function (Lobj)

is defined by combining the objective loss functions for diagnosis (Ld) and severity

prediction (Ls). The severity prediction task will only be initiated for the infected

volumes where yd = 1, while for the normal cases (yd = 0), this task is ignored.

However, the diagnosis task is carried out for all normal/infectious volumes. Hence,

the objective loss function (Lobj) can be expressed as:

Lobj = Ld(Yd,Y
p
d) + Ls(Yd,Ys,Y

p
s )

=
1

M

M∑
i=1

LB(yd,i, y
p
d,i) +

1

MI

MI∑
i=1

yd,iLB(ys,i, y
p
s,i) (7.8)

where Yd and Ys represent the set of diagnosis and severity ground truths while

Yp
d,Y

p
s represent the corresponding set of predictions, LB denotes binary cross-

entropy loss, M denotes the total number of CT-volumes, and MI represents the

total number of infected volumes. Hence, the proposed CovTANet network can be

effectively optimized for joint segmentation, diagnosis, and severity predictions of

COVID-19 utilizing this two phase optimization scheme.

7.2 Results and Discussions

In this section, results obtained from extensive experimentation on a publicly avail-

able dataset are presented and discussed from diverse perspectives to validate the

effectiveness of the proposed scheme.

7.2.1 Dataset Description

This study is conducted using “MosMedData: Chest CT Scans with COVID-19

Related Findings” [227], one of the largest publicly available datasets in this domain.

The dataset, being collected from the hospitals in Moscow, Russia, contains 1110

anonymized CT-volumes with severity annotated COVID-19 related findings, as well

as without such findings. Each one of the 1110 CT-volumes is acquired from different

persons and 30-46 slices per patient are available. Pixel annotations of the COVID

lesions are provided for 50 CT-volumes which are used for training and evaluation

of the proposed TA-SegNet. For carrying out the diagnosis and severity prediction

tasks, all the CT-volumes are divided into normal, mild (<25% lung parenchyma)

and severe (>25% lung parenchyma) lung infection categories.
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Figure 7.7: Proposed volumetric feature accumulation and fusion scheme
used for severity and diagnostic feature extraction

7.2.2 Experimental Setup

With a five-fold cross-validation scheme over the MosMed dataset, all the exper-

imentations have been implemented on the google cloud platform with NVIDIA

P-100 GPU as the hardware accelerator. For evaluation of the segmentation per-

formance, some of the traditional metrics are used, such as accuracy, precision,

dice score, and intersection-over-union (IoU) score, while for assessing the severity

classification performance, accuracy, sensitivity, specificity, and F1-score are used.

7.2.3 Performance Evaluation

Similar to chapter 6, an ablation study is carried out to analyze the effect of differ-

ent building blocks in the TA-SegNet for segmentation objective. Afterwards, the

performance of the best performing variant is compared with other networks from

qualitative and quantitative perspectives.

Traditional Unet network has been used as a baseline model (V1) and five other

schemes/modules have been incorporated in the baseline model to analyze the con-

tribution of different modules in the performance improvement of the proposed TA-

SegNet (V8). For ease of comparison, only Dice score is used as it is the most widely

used metric for segmentation tasks. From Table 7.1, it can be noted that the encoder
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TAUs (V4) provide 4.1% improvement of the Dice score from the baseline, while the

decoder TAUs (V5) provide a 2.9% improvement and when both these are combined

(V6), 6.6% improvement is achieved. As the encoder TAUs contribute significantly

to the reduction of semantic gaps with the corresponding decoder feature maps,

while the decoder TAU units guide the decoded feature maps with finer details for

better generalization of multi-scale features, considerable performance improvement

is achieved when employed in combination. Moreover, all the multi-scale feature

maps generated from various encoder levels are guided to the reconstruction process

through a deep fusion scheme along with the multi-scale decoded feature maps. The

integration of these multi-scale features from the encoder-decoder modules in the

fusion process (V3) contributes to the efficient reconstruction, and 4.4% improve-

ment of Dice score is achieved over the baseline. Moreover, 9.7% improvement of

Dice score is achieved when the fusion scheme is combined with two-stage TAU-

units (V7). Additionally, for introducing transfer learning, pre-trained models on

the ImageNet database can be used as the backbone of the encoder module of the

TA-SegNet similar to most other segmentation networks. It should be noted that

with the pre-trained EfficientNet network as the backbone of the encoder module

(V8), the performance gets improved by 2.1% compared to the TA-SegNet frame-

work without such backbone (V7).

In Table 7.2, performances of some of the state-of-the-art networks are sum-

marized. It should be noticed that the proposed TA-SegNet outperforms all the

methods compared by a considerable margin in all the metrics. Using the proposed

framework, 11.8% improvement of Dice score over Unet, and 26.7% improvement of

Dice score over the FCN have been achieved. Furthermore, our network improves

the dice score of the second-best method (Inf-Net) by about 10.5%, which intuitively

indicates its excellent capabilities over the rest of the models. The robustness of the

proposed scheme and the enhanced capability of our model in terms of infected

region identification is further demonstrated by the high sensitivity score (99.6%)

reported. This signifies the fact that the model integrates the symmetric encoding-

decoding strategy of Unet as well as exploits the parallel optimization advantages of

FCN that provides this large improvement. Most other state-of-the-art variants of

the Unet provide sub-optimal performances for increasing complexity considerably

that makes the optimization difficult in most of the challenging cases. However, due

to the smaller amount of infections in the annotated CT-volumes used for training

and optimization of the segmentation networks, a higher amount of false positives

have been generated in most of the networks which reduced the precision. The

proposed TA-SegNet has considerably reduced the false positives along with false
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Table 7.1: Performance (Mean ± Standard Deviation) of the Ablation
Study of the Proposed TA-SegNet on MosMedData

Version
EfficientNet
Backbone

Encoder
TAU Unit

Decoder
TAU Unit

Encoder
in Fusion

Decoder
in Fusion

Dice(%)

V1 7 7 7 7 7 50.5±0.26
V2 7 7 7 7 3 52.4±0.17
V3 7 3 7 7 7 54.9±0.14
V4 7 3 7 7 7 54.6±0.14
V5 7 7 3 7 7 53.4±0.19
V6 7 3 3 7 7 57.1±0.33
V7 7 3 3 3 3 60.2±0.26
V8 3 3 3 3 3 62.3±0.18

Table 7.2: Comparison of Performances with Other the State-of-the-Art
Networks on COVID Lesion Segmentation on MosMedData

Networks Sensitivity(%) Precision(%) Dice(%) IoU(%)
FCN [228] 78.8±0.23 58.9±0.16 35.6±0.36 29.3±0.45
Unet [229] 94.3±0.34 74.4±0.32 50.5±0.26 40.3±0.23
Vnet [230] 84.5±0.42 64.6±0.54 40.2±0.33 36.4±0.26

Unet++ [231] 78.1±0.15 65.1±0.25 37.2±0.27 33.3±0.32
CPF-Net [232] 82.4±0.25 71.3±0.29 48.9±0.21 37.6±0.38

COPLE-Net [140] 85.5±0.18 73.1±0.20 51.1±0.21 41.2±0.38
Mini-SegNet [139] 81.5±0.25 69.1±0.19 43.7±0.23 35.2±0.38

Inf-Net [138] 92.8±0.27 76.9±0.34 51.8±0.31 41.6±0.27
TA-SegNet (Prop.) 99.6±0.09 84.8±0.26 62.3±0.18 51.7±0.29

negatives and has improved both precision and sensitivity.

In Fig. 7.8, qualitative representations of the segmentation performances of dif-

ferent networks are shown in some challenging conditions. The comparable dimen-

sions of the small infected regions and the arteries, veins embedded in the thorax

cavity with varying anatomical appearance might be attributed to the large oc-

currences of the false positives. It is evident that most other networks struggle

to extract the complicated, scattered, and diffused COVID-19 lesions, while the

proposed TA-SegNet considerably improves the segmentation performance in such

challenging conditions. This depiction conforms to the fact that our network can

correctly segment both of the large and small infected regions. Furthermore, our

framework consistently demonstrates almost non-existent false negatives compared

to the other models while considerably reducing the false positive predictions as

it can distinguish sharper details of the lesions and effectively perform for precise

diagnosis of the infection.

In Table 7.3, the performances obtained from the joint diagnosis and severity

prediction tasks are summarized. To analyze the effectiveness of the proposed multi-

phase optimization scheme, some of the state-of-the-art networks are also evaluated

for the slice-wise processing of the CT-volumes in the joint-classification scheme

discarding the TA-SegNet.
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Figure 7.8: Visualization of the lesion segmentation performance of some of
the state-of-the-art networks in MosMedData [227]. Here, ‘green’ denotes
the true positive (TP) region, ‘blue’ denotes the false positive region, and
‘red’ denotes the false negative regions.

The diagnosis performances with mild and severe cases of COVID-19 are sep-

arately reported to distinguish the severity prediction performance. The proposed

CovTANet provides 85.2% accuracy in isolating the COVID patients even with mild

symptoms, while the accuracy is as high as 95.8% when the CT volumes contain

severe infections. However, the other networks operating without the TA-SegNet no-

ticeably suffer especially in the mild lung infection phase, as it is difficult to isolate

the small infection patches from the CT-volume.

In the joint optimization process based on the amount of infected lung parenchy-

mas, mild and severe patients are also categorized. Despite the additional challenges

regarding the isolation and quantification of the abnormal tissues, the proposed

scheme generalizes the problem quite well which provides 91.7% accuracy in cate-

gorizing mild and severe patients. It should be noted that the highest achievable

severity prediction accuracy with a traditional network is 64.8% (using ResNet50)

with considerably smaller results in most other metrics. Traditional network di-

rectly operates on the whole CT-volume to extract effective features for severity

prediction which makes the task more complicated. Whereas, the proposed hybrid

CovTANet with multiphase optimization effectively integrates features regarding

infections from the TA-SegNet for considerably simplifying the feature extraction

process in the joint-classification process that results in higher accuracy.
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7.3 Conclusion

In this chapter, it is shown that the proposed joint classification scheme not only

provides better diagnosis at severe infection stages but also is capable of categorizing

mild and severe lung infections with outstanding precision. It can be interpreted that

this high early diagnostic accuracy of CovTANet is significantly contributed by the

multi-phase optimization scheme that incorporates the highly optimized TA-SegNet

for extracting the most effective lesion features to mitigate the effect of redundant

healthy parts. Furthermore, considerable performances have been achieved in sever-

ity screening that would facilitate a faster clinical response to substantially reduce

the probable damages. The proposed scheme can be a valuable tool for the clinicians

to combat this pernicious disease through faster-automated mass-screening.
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Chapter 8

Conclusion

In this chapter, we will conclude the discussions on efficient deep neural network

architectures for multi-dimensional data processing. A brief summary of the thesis

is presented where the key contributions of this thesis are highlighted. Afterwards,

some of the future research directions have been presented for improving the per-

formance of the multi-receptive feature extraction and optimization process.

8.1 Summary

Despite the widespread applicability of the deep neural network in diverse applica-

tions, limitations of the available data with enormous computational burden open

up the opportunity for further improvements of the feature extraction process. To

make the process more resilient for extracting the optimum feature representation,

multi-receptive feature spaces are intensely explored through various data repre-

sentation approaches and architectural modifications of the deep neural network.

A multi-receptive neural network (DeepArrNet) is introduced for exploring diverse

kernel windows of time-series data with pointwise-depthwise-pointwise (PTP) con-

volutional building blocks. This architecture is optimized for arrhythmia diagnosis

from the time series ECG data along with numerous data processing strategies in-

cluding denoising, beat segmentation, and various time-series data augmentations

for handling class-imbalance.

Afterwards, a deep neural network architecture namely CovXNet is proposed to

efficiently detect COVID-19 and other types of pneumonia with distinctive local-

ization from chest X-rays. Instead of using traditional convolution, efficient depth-

wise convolution is used with varying dilation rates that integrates features from

diversified receptive fields to analyze the abnormalities in X-rays from different per-

spectives. To utilize the small number of COVID-19 X-rays, a larger database is
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utilized containing X-rays from normal and other traditional pneumonia patients

for initially training the deep network. Moreover, the proposed CovXNet is highly

scalable with enormous receptive capacity that can also be employed in varieties of

other computer vision applications.

Furthermore, various types of human activities are recognized utilizing the pro-

posed multi-stage training method. Firstly, the raw data undergo through numerous

transformations to interpret the information encoded in raw data in different spaces

and thus to obtain a diversified representation of the features. Afterwards, separate

deep CNN architectures are trained on each space to be an optimized feature extrac-

tor from that particular space for the final prediction of activity. Later, these tuned

feature extractors are merged into a final form of deep network effectively through

a combined training stage or through sequential stages of training by exploring the

extracted feature spaces exhaustively to attain the most robust and accurate fea-

ture representation. Therefore, the proposed scheme opens up a new approach of

employing multiple training stages for deep CNNs deploying various transformed

representations of data which can also be utilized in very diversified applications by

increasing the diversity of the extracted features.

Next, an improved architecture is proposed, namely PolypSegNet, for proper

segmentation of the polyp regions from colonoscopy images. To reduce some major

architectural limitations of the traditional Unet architecture, three major building

blocks are incorporated in the baseline Unet architecture, i.e. DDI module based

D-Unit layer, DFSM block, and DRM block. For efficient feature extraction from di-

verse receptive fields, a DDI module is introduced and repeated use of DDI modules

in the D-Unit layer of encoder/decoder improved the performance over the tradi-

tional baseline Unet model. Higher improvement is achieved using the proposed

DFSM block as it reduces the semantic gap between encoder and decoder utilizing

a deep fusion of multi-scale features generated at various encoder levels. Moreover,

the proposed DRM block also provides comparable performance improvement for

its efficient reconstruction through the incorporation of multiscale decoded feature

maps in the final reconstruction. Though the proposed PolypSegNet is extensively

studied for polyp segmentation in this work, it can be easily extended for any medi-

cal image segmentation related applications that can be a better alternative to other

traditional networks.

Additionally, a multi encoder-decoder based architecture (CovSegNet) is intro-

duced with numerous architectural renovations that assist in achieving state-of-the-

art performance on COVID lesion segmentation. The horizontal and vertical ex-

pansion mechanisms provide the opportunity to incorporate more detailed features
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as well as more generalized features, which improved the feature quality consid-

erably that is particularly effective in distinguishing multi-class, scattered COVID

lesions with widely varied shapes. Moreover, the improved gradient flow through-

out the network, achieved with the introduction of multi-scale fusion module and

scale transition modules, have greatly reduced the contextual information loss in the

generalization process and have also ensured the best optimization of all network

parameters that particularly contribute to recover and distinguish the blurry, dif-

fused edges of COVID lesions as well as the very minute instances of abnormalities.

Furthermore, the integration of a hybrid 2D-3D networking scheme exploits both

the intra-slice and inter-slice contextual information without increasing computa-

tional burden that results in more precise, finer segmentation performance mostly

in challenging conditions.

Finally, a multi-phase optimization scheme is proposed with a hybrid neural

network (CovTANet) where an efficient lesion segmentation network is integrated

into a complete optimization framework for joint diagnosis and severity prediction

of COVID-19 from CT-volume. The tri-level attention mechanism and parallel op-

timization of multi-scale encoded-decoded feature maps which are introduced in

the segmentation network (TA-SegNet) have improved the lesion segmentation per-

formance substantially. Moreover, the effective integration of features from the

optimized TA-SegNet is found to be extremely beneficial in diagnosis and sever-

ity prediction by de-emphasizing the effects of redundant features from the whole

CT-volumes.

8.2 Limitations and Future Works

Despite significant performance is achieved using the proposed schemes presented in

this thesis, some other perspectives can be explored in future studies. Firstly, simi-

lar to the most other established studies in arrhythmia classification [41], [44], [50],

[51], five arrhythmia classes are considered for experimentation and very satisfactory

performance is achieved. However, the proposed scheme with DeepArrNet can be

extended considering more number of arrhythmia classes as considered in [54], [57].

Secondly, to incorporate effective features from new representational space with the

sequential learning algorithm, separate CNN-based feature extractors need to be

incorporated which will increase the total size of the network accordingly. Never-

theless, the proposed training scheme separately optimizes individual deep feature

extractors and integrates the extracted feature spaces in a sequential manner pro-

viding a significant advantage over the traditional training approaches. Thirdly, the
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CovXNet model can be made more accurate and robust through the incorporation

of more data. However, the proposed scheme is highly adaptive and the CovXNet

can be more finely tuned in the transfer learning phase with additional COVID-19

X-rays. Hence, further research should be carried out with more diversified data

for a thorough investigation of the clinical features of COVID-19. Lastly, although

consistent performances have been achieved on COVID-19 lesion segmentation, the

proposed segmentation approaches will be extended with the incorporation of diver-

sified datasets including patient-based study considering age, sex, health conditions,

and geographical locations of the patients. An in-depth, closer, patient-specific

study should be carried out for better understandings of the nature of the infec-

tion. Moreover, to understand the mutation and evolution of this deadly virus, the

proposed hybrid multi-task learning should be extended considering patients from

diverse geographic locations.
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