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Abstract 

 Iris recognition is a means of biometric identification. A key part of the 

recognition system using iris is the extraction of prominent texture information or 

features in the iris. The identification delay in iris recognition can be reduced by 

reducing the feature vector generated from the feature extraction of iris images.  In 

this thesis, two algorithms are proposed for the reduction of the iris feature vector. 

The first method is the combination of Haar wavelet transformation (HWT) and local 

binary pattern (LBP) termed here as HWT-LBP. The second method is a new form of 

LBP termed LBPX. First, HWT-LBP is considered. In this case, input eye images are 

processed and converted to normalized iris images employing circular Hough 

transformation and Daugman’s rubber sheet model. HWT is then applied to the 

normalized image. The output of this HWT goes through the LBP process.  In this 

hybrid method, HWT is applied to the normalized iris image resulting in four output 

images, including the approximation image known as LL sub-band. This LL sub-band 

is then further decomposed using HWT into four sub-images. The resultant second-

level LL is decomposed using HWT into the third-level LL sub-band. The application 

of repeated HWT extracts the major information containing region, reducing the 

information size. Next, MLBP is applied to the obtained LL, where MLBP includes 

LBP and XOR operations. The output of MLBP is a binary iris template. The 

effectiveness of this proposed hybrid HWT-MLBP method is experimentally 

evaluated using three different datasets, namely CASIA-IRIS-V4, CASIA-IRIS-V1 

and MMU. The proposed HWT-MLBP method can obtain a reduced feature vector 

length of 1×64. For instance, when applied to CASIA-IRIS-V1 dataset, HWT-MLBP 

can obtain an average correct recognition rate of 98.30% and false acceptance rate of 

0.003%. Results indicate that the proposed HWT-MLBP outperforms existing 

methods in terms of reduced feature length, which ensures faster iris recognition. 

Next, the LBPX method is considered. The LBPX method is based on the concepts of 

uniform LBP, rotation-invariant LBP, and XOR operators. Moreover, the existing 

rotation-invariant uniform LBP (RIU LBP) method is applied here in the context of 

iris feature extraction. LBPX is applied to the normalized iris images. The 

performance of LBPX based recognition system adopting iris image is evaluated in 

terms of accuracy and feature vector length. This is done for three datasets CASIA-
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IRIS-V4, UBIRIS and IITD. Results indicate that LBPX can achieve acceptable 

accuracy values of 97.15%, 97.20%, 96% and 96.40% for CASIA-IRIS-V1, CASIA-

IRIS-V4, UBIRIS, and IITD datasets, respectively. Furthermore, results show LBPX 

outperforms existing feature extraction methods in terms of reduced feature-length, 

ensuring faster iris recognition.  
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CHAPTER 1 

Introduction 

1.1 Biometrics 

The requirement for a reliable and secure authentication system is extremely 

important since security and personal authentication are increasingly needed because 

of the new dimension in the security problems faced by the globe today. Biometric 

identification methods are quite popular because they can verify people through their 

unique and measurable personal traits that are harder to alter or counterfeit [1-6]. The 

constant hacking into organizational and personal systems and the raging identity 

robbery experienced today in the world is proof of an obsolete and technologically 

advanced world of the traditional authentication systems based on key codes, 

passwords and tokens. Iris biometrics, a relatively new biometric technology in 

comparison to other biometric technologies, has been quite popular among computer 

vision and pattern recognition scientists because of certain key factors: i) the iris is an 

internal body organ that can be captured without invasion employing a cheap CCD 

camera, ii) the iris is considered to be one of today's best biometrics, and it is highly 

unique for the individual that the iris patterns are completely different from both the 

single iris and identical twins [4-8]. These fascinating features of the iris have spurred 

studies on the use of iris for the identification of persons. 

However, identification of iris entails complicated mathematical procedures, often too 

slow to be applied in highly demanding and advanced systems today. Furthermore, 

the capture process of most installed iris recognition systems is not very convenient 

and may result in a loss of time. In addition, the environment for capturing iris 

pictures involves the employment of near-infrared lighting to highlight the iris before 

capture, a source of the mistake, and a requirement for the full cooperation of the 

person. These are restrictive variables for iris biometrics. Today, new research has 

begun to push the frontiers of iris biometrics and the capturing of the iris in motion 

and is increasing at a distance. Those new iris capturing technologies are now 

producing un-ideal iris pictures that are more difficult to analyze utilizing the 

traditional iris biometric algorithm. Non-ideal iris pictures include camera noise, 

reflections, and occlusions. The extraction of the iris part from the eye picture, or 
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more broadly a segmentation of the iris portion in the eye image, is a highly crucial 

operation for any iris recognition system as it specifies the portion of the iris image 

utilized for the identification of the iris. The diverse nature of the iris pictures may be 

an extremely hard operation. The extraction of significant iris characteristics utilized 

to depict the iris sample is likewise very difficult due to its richness and complexity. 

A novel method for iris detection achieving these tasks is presented in this work and 

is evaluated to establish their efficacies. 

1.2 Motivation and Challenges 

The amazing uniqueness of iris patterns and the ability to record iris photography in a 

non-invasive way have motivated biometrics researchers to build an automatic iris 

identification system based on 2-D iris pictures. Although there has been a well-

documented performance of existing iris recognition systems, the problem of reaching 

high accuracy in non-ideal pictures with the efficiency of the iris remains a difficulty 

without an effective solution. The efficiency of iris recognition systems depends 

heavily on the precision and speed of the iris segmentation module. The improvement 

of the speed and precision of the segmentation module would, therefore, substantially 

improve the efficiency and efficacy of the iris identification system. In non-ideal iris 

picture segmentation, the iris borders are either divided into an expensive 

evolutionary curve approach based on a level method [9] or a supervised way of 

learning. Both approaches are costly and have a detrimental influence on the overall 

system speed. 

In addition, extracting significant characteristics from the non-ideal iris sample 

remains an issue to be solved. Current iris extraction methods describe the sample of 

iris with a high dimensional iris code that affects the effectiveness of categorization. 

In addition, with poorer quality pictures of iris recorded in the course of the day under 

no subject, existing iris extraction algorithms mainly lead to a lot of erroneous 

rejection mistakes. The representation of the iris with smaller iris codes is, therefore, a 

topic that has yet to be investigated without an effective answer. Most contemporary 

methods for iris feature extraction and representation have tried to use discrete 

wavelets to extract iris features [6, 10, 11]. This approach is normally affected by shift 

variance and phase problems which are inherent in discrete wavelet transform (DWT). 

A new system must be built to overcome these obstacles and to build a more efficient 
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and accurate iris segmentation and display approach, which is our motivation in this 

research. Furthermore, the success of iris recognition is our greatest motivation in 

various critical areas of application, including home security, border and security 

surveillance, web security, national identity management, fast passenger information 

management, controlled access to privileged information, forensic inquiry, and 

welfare management. The broad scope of the use of iris biometrics, therefore, means 

that this study will be of great advantage to many organizations, governments and 

people alike. 

Most of the current research on iris recognition mainly focused on iris segmentation 

schemes, which are usually based on the complete information of the iris region. In 

this thesis, the iris segmentation approach has been emphasized based on computation 

time locating the iris area. In order to improve time efficiency, the Morphological 

segmentation approach has been used to speed up the process of locating the iris area. 

The traditional approach of iris recognition spends considerable computation time 

locating the iris area. In this thesis, a feature selection strategy using the fusion of 

Haar wavelet decomposition and extension of local binary pattern analysis is 

proposed for dimensional reduction as well as to minimize recognition error. 

Furthermore, the Hamming distance method is utilized for matching proposes. 

The primary challenges confronting iris recognition systems are as follows: 

(i) Lack of robustness: The excellent recognition accuracy reported by most 

contemporary iris recognition algorithms in highly limited imaging conditions 

can simply be depleted when the same algorithm is used in an unconstrained 

setting. It is quite straightforward to produce an amazing performance with a 

low error rate in a severely limited imaging environment when a high-quality 

iris picture is acquired utilizing a sophisticated imagery setup [8, 12-19]. Most 

existing state-of-the-art iris recognition algorithms, on the other hand, fail 

when used in a less cooperative iris capture situation, when the chances of 

acquiring a low-quality iris image are extremely high. Iris images are taken 

utilizing a flexible imagery setup in an uncontrolled imaging environment, and 

as a result, noises such as motion blur, camera diffusion, head rotation, gaze 

direction, camera angles, reflections, low contrast, brightness, occlusions, and 

pupil dilation are common [20-22]. These non-idealities significantly affect 
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the performance of both the iris segmentation and feature representation 

algorithms, and as a result, the iris recognition algorithm's overall performance 

suffers. 

(ii) Iris and pupil boundary non-circularity: Researchers have discovered that the 

iris and pupil boundaries have arbitrary shapes [23, 24]. As a result, if fitted 

with some relatively basic forms like circles or ellipses, this can result in 

segmentation mistakes. The precise delineation of the iris' limits has remained 

a problem to this day. 

(iii)Speed: The current time efficiency of modern iris recognition technologies 

restricts the use of iris biometrics in today's high-demand, high-speed systems. 

Iris segmentation is regarded as the bottleneck in iris recognition systems 

because it takes the longest time to complete [24, 25]. 

(iv) Dimensionality: The millions of interclass and intraclass comparisons that 

occur during iris recognition contribute to iris biometric systems' time 

inefficiency. The high dimensionality of the recognition system increases the 

number of interclass and intraclass comparisons made at the classification 

level, slowing down total recognition speed. As a result, it is necessary to 

minimize the dimensionality of the iris feature vector while keeping high 

accuracy. 

In light of these challenges, it is pertinent that a new iris segmentation algorithm with 

enhanced performance and efficiency is developed to meet today’s needs. Moreover, 

this research work looks at reducing the dimensionality of the iris feature vector 

through a feature selection technique. In order to improve the speed of the recognition 

system, a method is developed for selecting the most prominent features of the iris for 

iris representation which reduces the dimensionality of the iris feature vector and 

improves speed. 

1.3 History 

Dr. Leonard Flom and Aron Safir's 1980s work on iris recognition resulted in the first 

general idea patent. However, John Daugman, pioneered the utility of iris recognition 

as a means of human verification, as well as the algorithms that build a digital 
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representation of the iris pattern and enable the matching of one iris to another 

identified via a thorough search of even very large databases. Although John 

Daugman invented and patented the first algorithms for performing iris recognition, as 

well as the earliest articles and live demonstrations, the notion underlying his 

discovery dates back considerably further. The basic theoretical concept underlying 

Daugman's methods is that the failure of a statistical independence test can provide an 

extremely strong basis for pattern identification. He patented this method of iris 

recognition and the underlying Computer Vision algorithms for image processing, 

feature extraction, and matching in 1994 and published the paper [1]. These 

pioneering algorithms have been widely licensed by a number of firms (IriScan, 

Iridian, Sarnoff, Sensar, LG-Iris, Panasonic, Oki, BI2, IrisGuard, Unisys, Sagem, 

Enschede, Securimetrics, and L1. With numerous advancements over the years, these 

algorithms remain the foundation for all important public iris recognition 

implementations today. However, scholarly study on numerous elements of this 

technology has blossomed in recent years. As Bowyer et al. stated in their survey, 

over 1,000 articles have been published in the previous few years on optics, 

photonics, sensors, biology, genetics, ergonomics, interfaces, decision theory, coding, 

compression, protocol, security, hardware, and algorithmic elements of this 

technology. However, the most astounding deployment began in 2011 in India, where 

the government is registering the iris patterns (and other biometrics) of all 1.2 billion 

individuals in the Aadhaar scheme for entitlement distribution, which is administered 

by the Universal Identification Authority of India (UIDAI). Its objective is to provide 

each person with a biometrically verifiable unique entitlement number (Aadhaar) via 

which benefits can be claimed and social inclusion is improved; thus, the slogan of 

UIDAI is: "To give the poor an identity’’. 

1.4 Proposed Approaches: Main Steps 

An Iris recognition method is proposed with a feature vector size-reduction scheme 

based on Haar wavelet and LBP. Fig. 1.1 illustrates the main steps of the proposed 

approach. In the image pre-processing stage, iris and pupil boundary are detected by 

contact labelling of binary image and basic geometrical principles. Eyelashes and 

other non-iris regions are eliminated using wavelets and thresholding methods. For 

avoiding the size inconsistencies of the localized region, the annular iris part is 
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normalized into a rectangular block. Haar wavelet decomposition and LBP are applied 

to extract the discriminant iris features from the normalized area and reduce the 

dimension of the feature vector. After that, a conventional approach of Hamming 

distance is used for iris pattern classification. 
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Fig. 1.1: Flow diagram of the proposed approach 
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1.5 Objectives of the thesis 

The objectives of this research work are listed as follows: 

a) Familiarization with biometric systems. 

b) Iris Segmentation with Eyelids, eyelashes and noise detection to increase the 

recognition accuracy in subsequent processing. 

c) Normalizing the localized or segmented iris region to avoid the size 

inconsistencies 

d) Reducing the size of the iris feature vector with a new hybrid feature 

extraction method.  

e) Performance evaluation of a proposed approach for reducing the size of an iris 

feature vector.  

f) Reducing the feature length without loss of major information. 

g) Performance evaluation of Hamming distance as matching purposes.  

1.6 Main Contribution of this Thesis 

 The main contributions are enlisted as follows: 

(i) A new hybrid iris feature extraction method is proposed. This new method 

is based on repeated Haar wavelet transformation (HWT) and MLBP. 

Note that MLBP is the local binary pattern (LBP) operation followed by 

Exclusive OR (XOR). This proposed method is different from the 

technique used single-level HWT and LBP (without XOR) in the context 

of face recognition.  

(ii) A novel iris feature extraction method termed here as local binary pattern 

X (LBP X) is proposed in this paper. This new method is based on the 

concepts of uniform LBP, rotation-invariant LBP, and XOR operators. 
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Moreover, the existing rotation-invariant uniform LBP (RIU LBP) method, 

reported earlier for face recognition, is applied here in the context of iris 

feature extraction. 

(iii) The efficacy of the HWT-MLBP method is evaluated using three well-

known benchmark datasets:  CASIA-Iris-V4, CASIA-Iris-V1, and MMU 

iris database. Next, the effectiveness of the LBPX method is evaluated 

using CASIA-IRIS-V4, UBIRIS, and IITD datasets.  

(iv) A comparison is made of the new techniques with the existing methods of 

feature extraction in terms of feature vector length, FAR, and FRR.  

1.7 Thesis Organization 

The thesis is organized into eight chapters. An overview of these chapters is presented 

below. 

 Chapter 1 introduces the main motivation and contribution of this thesis work 

and gives the objectives. 

 Chapter 2 describes a background study of biometric authentication and 

verification system with detailed concepts of iris features and its advantage 

over other biometric modules. 

 Chapter 3 describes iris recognition approaches and system design. This 

chapter also explains iris image acquisition, image preprocessing, 

segmentation procedure, and the flow diagram of the proposed method for iris 

boundary localization. This chapter also includes normalized iris images of 

different iris databases after implementing the unwrapping algorithm. 

 Chapter 4 explains a novel feature extraction method proposed for faster iris 

recognition. This new method is based on repeated Haar wavelet 

transformation (HWT) and MLBP. The application of repeated HWT extracts 

the major information-containing region reducing the information size. MLBP 

is the local binary pattern (LBP) operation followed by XOR. 
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 Chapter 5 describes a new iris feature extraction method called local binary 

pattern X (LBP X). This new method is based on the concepts of uniform 

LBP, rotation-invariant LBP, and XOR operators. Moreover, the existing 

rotation-invariant uniform LBP (RIU LBP) method, reported earlier for face 

recognition, is applied here in the context of iris feature extraction. 

 Chapter 6 explains some distance measurement parameters to measure the 

closeness of two iris templates. A decision threshold is applied to differentiate 

the genuine and imposter scores. 

 Chapter 7 explains different iris databases used for this thesis work. This 

chapter also explains the analysis of experimental result and compare them 

with other methods. 

 Finally, the conclusion and future scope of iris recognition system biometric 

security application are described. 
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CHAPTER 2 

Background Study 
 

2.1 Biometric Overview 

Any automatically measurable, robust, and distinctive physical characteristic or 

personal trait that can be used to identify an individual or verify the claimed identity 

of an individual is called Biometrical Identification or simply Biometrics. It’s a 

combination of two Greek words: Bios means Life, and Metrics means To Measure. 

2.1.1 Requirements of Biological Systems 

Any human physiological and/or behavioural characteristic can be used as a biometric 

characteristic as long as it satisfies the following requirements: 

a) Universality: each person should have the characteristic; 

b) Distinctiveness: any two persons should be sufficiently different in terms of 

the characteristic; 

c) Permanence: the characteristic should be well invariant (concerning the 

matching criterion) over some time; 

d) Collectability: the characteristic can be measured quantitatively. 

However, in a practical biometric system (i.e., a system that employs biometrics for 

personal recognition), there are several other issues that should be considered, 

including: 

a) Performance, which refers to the achievable recognition accuracy and speed, 

the resources required to achieve the desired recognition accuracy and speed, 

as well as the operational and environmental factors that affect the accuracy 

and speed; 

b) Acceptability, which indicates the extent to which people are willing to accept 

the use of a particular biometric identifier (characteristic) in their daily lives; 
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c) Circumvention, reflects how easily the system can be fooled using fraudulent 

methods. 

2.1.2 Biometric Systems 

A biometric system is simply a pattern recognition system that functions by receiving 

biometric data from a person, extracting a feature set from the obtained data, and 

comparing this feature set to the template set in the database. A biometric system may 

function in either verification or identification mode, depending on the application 

environment. 

2.1.2.1 Verification Mode 

In the verification mode, the system confirms a person's identification by comparing 

the collected biometric data to her own biometric template(s) stored in the system 

database. In such a system, a person who wants to be recognized claims an identity, 

usually through a PIN (Personal Identification Number), a user name, a smart card, or 

other means, and the system performs a one-to-one comparison to determine whether 

the claim is true or not (refer to Fig. 2.1). Identity verification is commonly used for 

positive recognition to prevent several persons from using the same identity. 

2.1.2.2 Identification Mode 

In the identification mode, the system recognizes an individual by searching the 

templates of all the users in the database for a match. Therefore, the system conducts 

a one-to-many comparison to establish an individual’s identity without the subject 

having to claim an identity. Identification is a critical component in negative 

recognition applications where the system establishes whether the person is who she 

(implicitly or explicitly) denies being.  

Identification may also be used in positive recognition for convenience (the user is not 

required to claim an identity). While traditional methods of personal recognition such 

as passwords, PINs, keys, and tokens may work for positive recognition, negative 

recognition can only be established through biometrics. 
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Fig. 2.1: Block diagrams of enrollment, verification, and identification tasks are shown using the four 

main modules of a biometric system, i.e., sensor, feature extraction, matcher, and system database. 
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The verification problem may be formally posed as follows: given an input feature 

vector XQ (extracted from the biometric data) and a claimed identity I, determine if (I, 

XQ) belongs to class w1 or w2, where w1 indicates that the claim is true (a genuine 

user) and w2 indicates that the claim is false (an impostor). Typically, XQ is matched 

against XI, the biometric template corresponding to a user I, to determine its category. 

Thus, 

(𝐼, 𝑋𝑄) ∈ {
𝑤1, 𝑖𝑓 𝑆(𝑋𝑄, 𝑋𝑙) ≥ 𝑡

𝑤2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (2.1) 

where S is the function that measures the similarity between feature vectors XQ and 

XI, and t is a predefined threshold. The value S(XQ, XI) is termed as a similarity or 

matching score between the biometric measurements of the user and the claimed 

identity. Therefore, every claimed identity is classified into w1 or w2 based on the 

variables XQ, I, XI, and t, and the function S. Note that biometric measurements (e.g., 

fingerprints) of the same individual taken at different times are almost never identical. 

This is the reason for introducing the threshold t. 

The identification problem, on the other hand, may be stated as follows: given an 

input feature vector XQ, determine the identity Ik, k ∈ [1 N, N +1 N, N +1]. Here I1, 

I2,...., IN are the identities enrolled in the system, and IN+1 indicates the rejected case 

where no suitable identity can be determined for the user. Hence, 

𝑋𝑄 ∈ {
𝐼𝑘, 𝑖𝑓 max{𝑆(𝑋𝑄 , 𝑋𝐼𝑘)} ≥ 𝑡, 𝑘 = 1,2, … . . , 𝑁

𝐼𝑁+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (2.2) 

Where XIK is the biometric template corresponding to identity Ik, and t is a predefined 

threshold. 

2.1.2.3 Modules in Biometric System 

A biometric system is built with the four major elements listed below: 

a) Sensor module: It collects an individual's biometric data. A fingerprint sensor 

that photographs the ridge and valley structure of a user's finger is one 

example. 
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b) Feature extraction module: This module processes the obtained biometric 

data to extract a collection of prominent or discriminating characteristics. In 

the feature extraction module of a fingerprint-based biometric system, for 

example, the location and orientation of minutiae points (local ridge and valley 

singularities) in a fingerprint picture are retrieved. 

c) Matcher Module: In this module, the characteristics recognized during 

recognition are compared to the stored templates to generate matching scores. 

For example, the matching module of a fingerprint-based biometric system 

determines the number of matching minutiae between the input and template 

fingerprint pictures and reports a matching score. The matcher module also 

includes a decision-making module, which uses the matching score to affirm 

or establish a user's stated identity (verification). 

d) System Database Module: The biometric system uses the system database 

module to store the biometric templates of the enrolled users. The enrollment 

module is in charge of enrolling people in the biometric system database. 

During the enrollment step, an individual's biometric characteristic is initially 

scanned by a biometric reader to generate a digital representation (feature 

values) of the characteristic. Depending on the program, data gathering 

throughout the enrollment process may or may not be overseen by a human. A 

quality check is usually done to guarantee that the obtained sample can be 

processed reliably by subsequent steps. For easier matching, the digital input 

representation is further processed by a feature extractor to create a compact 

yet expressive representation known as a template. Depending on the 

application, the template may be kept in the biometric system's central 

database or on a smart card provided to the individual. To account for changes 

in the biometric characteristic, several templates of an individual are typically 

kept, and the templates in the database may be changed over time. 

2.1.3 Biometric Devices 

Several biometric characteristics exist and are in use in various applications. Each 

biometric has its strengths and weaknesses, and the choice depends on the application. 

No single biometric is expected to effectively meet the requirements of all the 
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applications. In other words, no biometric is “optimal.” The match between a specific 

biometric and an application is determined depending upon the operational mode of 

the application and the properties of the biometric characteristic. 

Various Biometric Technologies that were designed till now are as given below: 

  DNA Fingerprinting 

  Vein Thermogram 

  Face Recognition 

  Fingerprint 

  Hand and Finger Geometry Recognition 

  Iris Scanning 

  Retina Scanning 

  Signature Verification 

  Voice Recognition 

  Ear Scanning 

  Gait Sequence Analyzing 

  Keystroke Analyzing 

  Odor Sensing 

  Palmprint Recognition 

Of these, the last five viz: Ear Scanning, Gait Sequence Analyzing, Keystroke 

Analyzing, Odor Sensing, and Palmprint Recognition are not very effective. 

2.2 Iris Structure  

The iris is the colourful part of the eye that controls the quantity of light that enters 

the pupil. It consists of those different layers: the stroma or pigmented outer tissue. It 

consists of the iris sphincter muscle and iris dilatory muscle that contract and spread 

the iris. It consists of the anterior pigment myopithel, which is related to the muscular 

procedures of the iris dilator muscle. Furthermore, the iris is separated into two zones, 
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comprising the pupil area and the ciliary area. These two areas are separated by a 

single cell line, a collarette. The iris colouring varies between people and is hazel, 

grey, blue, green, and brown.  

  

The iris, like the ciliary body, is a continuation of the retina and choroid. It is attached 

to the ciliary body and extends in front of the lens.  

2.2.1 Iris Features 

The iris begins to form in the third month of gestation [26] and the structures creating 

its pattern are largely complete by the eighth month, although pigment accretion can 

continue into the postnatal years. Its complex pattern can contain many distinctive 

features such as arching ligaments, furrows, ridges, crypts, rings, corona, freckles, and 

a zigzag collarette. Iris colour is determined mainly by the density of melanin pigment 

[27] in its anterior layer and stroma, with blue irises resulting from an absence of 

pigment: long-wavelength light penetrates and is absorbed by the pigment epithelium, 

while shorter wavelengths are refected and scattered by the stroma. 

2.2.1.1 The Crypts and Furrows 

The Crypts of Fuchs are a series of openings located on either side of the collarette 

that allows the stroma and deeper iris tissues to be bathed in aqueous humour. 

Collagen trabeculae that surround the border of the crypts can be seen in blue irides. 

The pupillary ruffs (crenations) are a series of small ridges at the pupillary margin 

formed by the continuation of the pigmented epithelium from the posterior surface. 

The Circular contraction folds, also known as contraction furrows, are a series of 

circular bands or folds about midway between the collarette and the origin of the iris. 

These folds result from changes in the surface of the iris as it dilates. 

Crypts at the base of the iris are additional openings that can be observed close to the 

outermost part of the ciliary portion of the iris. This one is not strictly related to pupil 

dilation, but it’s too good to leave out.  



18 
 

 
 

2.2.1.2 Freckles 

Eye freckles are areas of the eye where the overlaying "skin" is thin enough that it 

becomes transparent. The freckles or spots that are visible are usually gray and are 

actually inside the eyeball.  

Another name for eye freckles is a choroidal nevus. It is a more advanced term that 

doctors usually use. Eye freckle is the easier name among normal people. There are 

various reasons why an eye freckle may develop inside the eye. Some people are born 

having this freckle inside their eyes. Some others develop it during childhood or even 

when they are adults. Too much exposure to sunlight can be one of the reasons. So 

make sure you keep your eyes protected by wearing sunglasses when in strong 

sunlight. Although eye freckles are not necessarily a "normal" finding in our eyes, 

they are quite common and may not represent anything wrong with the eye.  

2.2.1.3 ZigZag Collarette 

The iris complex pattern's zigzag collarette section is one of the essential components 

of the pattern. It is insensitive to pupil dilation and is not impacted by the eyelid or 

eyelash unless the pupil is partially obscured by the eyelid or eyelash, in which case it 

is affected by the pupil dilation. Certain studies have revealed that zigzag collarette 

areas are usually concentric with the pupil and that the radius of zigzag collarette 

areas is constrained to a specific range of values. The zigzag collarette area can be 

easily identified by looking through the center of the pupils. Some samples are shown 

in Fig. 2.2.  

 

Fig. 2.2: Zigzag Collarette area localization from CASIA iris database 
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2.3 Iris Recognition System Errors 

False accept (FA): Accepting an imposter as an authorized subject. 

False reject (FR): Rejecting an authorized subject incorrectly. 

Equal error (EE): When FA and FR are equal, the error is referred to as equal error. 

FAR: FAR is the measure of the likelihood that the biometric security system would 

incorrectly accept an attempt by an unauthorized user (Imposter). Fig. 2.3 depicts the 

process of FAR. 

 

Fig. 2.3: Illustration of FAR 

FRR: FRR is the measure of the likelihood that the biometric security system would 

incorrectly reject an attempt by an authorized user (Genuine). Fig. 2.4 depicts the 

process of FAR. 

 

Fig. 2.4: Illustration of FRR 
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2.4 Comparison of Iris Recognition with Other Biometrics 

Some relative comparisons of biometric security systems are listed below. The main 
advantages of an iris recognition system over other biometric systems are the highest 
accuracy, reliability, non-invasive, highest speed, etc. 
 

Table 2.1: Comparison of different biometric security systems 
Comparison 
title 

Iris recognition Finger prints Facial 
recognition 

Hand 
geometry  

Accuracy Highest accuracy: It 
had no false matches 
in over 2 million 
cross-comparisons. 

The fingerprint 
is not as 
accurate. Its 
FAR is 1 in 
100,000. 
 

Lighting, age, 
glasses, and 
head/face 
coverings all 
impact false 
reject rates. 

Weather, 
temperature 
and medical 
condition can 
affect hand 
size and 
accuracy. 

Privacy Convenient: Image 
is non-invasive and 
inherently safe. 

N/A  Image can be 
used without 
explicit opt-in 
permission 

N/A 

Equipment Extremely low 
maintenance 
costs. 

Wide range of 
vendors and 
solutions. 

Easy to deploy, 
can use standard 
CCTV 

Fairly 
expensive 
equipment is 
required. 

Physical 
characteristics 

240 characteristics 
to create the unique 
Iris Code. 

Approximately 
40-60 
characteristics. 

N/A N/A 

Uniqueness Iris pattern has 
vastly more 
randomness. 

It has less 
uniqueness 
compared to the 
iris pattern. 

Face structures 
have some 
uniqueness, but 
it's not 
overwhelming. 

N/A 

Stable The iris itself is 
stable throughout a 
person’s life. 

User 
fingerprints may 
be obscured, 
damaged or 
changed. 

Age, facial hair, 
surgery, head 
coverings, and 
masks all affect 
results. 

Hand size 
and geometry 
change over 
time. 

Hygienic 
issue 

It does not require a 
hygienic issue 

Users need 
physical contact 
with a scanner 
device that 
needs to be kept 
clean (hygiene 
issue). 

It does not 
require a 
hygienic issue 

The user 
needs 
physical 
contact. So 
there is a 
question 
about 
hygienic. 

Speed and 
high volume 

Ability to handle 
very large 
populations at high 
speed 

In large-scale 
deployments, it 
takes many 
minutes, not 
seconds 

 Unsuitable 
for the high 
volume, large 
population 
applications 



21 
 

 
 

2.5 Strengths and Weakness of Iris Recognition 

A progressive biometric iris is more accurate than fingerprints or faces. The iris is 

unique and stable over time. It is the most stable biometric on the human body. 

Although its superior accuracy, iris recognition has not been widely used because the 

technology is several time-consuming, requiring the user to stop them close to the 

camera and remain there for several moments. As any technology with its limitations, 

the iris has faced many challenges in terms of user acceptance, they think it involves a 

laser, and it will hurt their eye. It is also challenging because it is rather a small target 

about a centimeter in diameter. Some strengths and weak points of iris recognition 

systems are given below. 

2.5.1 Strengths of Iris Recognition 

 The iris patterns have small intra-class variability [5, 28]. 

 The iris is a well-protected internal organ of the eye that contains a high 

degree of randomness [28] 

 The iris is externally visible, which makes iris image acquisition possible from 

a distance [14, 19]. 

 The iris pattern remains stable throughout the lifetime of a person, and it is 

assumed that each individual has a unique iris pattern [5]. 

 It is possible to encode the iris pattern, and the recognition system’s 

decidability is tractable [29]. 

 No evidence of genetic influence has been found in the structure of the iris 

[12]. Therefore, the iris structures in both eyes of the same person are 

different, and those of identical twins are also different [30]. 

 Iris recognition systems require very low maintenance costs with high 

interoperability between different hardware vendors. 

 Proven highest accuracy: iris recognition had no false matches in over two 

million cross-comparisons, according to Biometric Product Testing Final 

Report (19 March 2001, Center for Mathematics and Scientific Computing, 

National Physics Laboratory, U.K.)  (Refer Table 2.2) 

 Ability to handle very large populations at high speed 

 Search speed: 1 million Iris Codes per second, with a 3 GHz CPU 
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Table 2.2: Cross-comparisons of different Biometric Products 
 

Testing organization Number of cross-comparisons False matches 

Sandia Labs, USA (1996) 19,701 0 

British Telecom Labs, UK (1997) 222,743 0 

Sensar Crop, USA (2000) 499,500 0 

Joh. Enschede, NL (2000) 19,900 0 

EyeTicket, USA (2001) 300,000 0 

National Physical Lab, UK (2001) 2.73 million 0 

J. Daugman, UK (2003) 9.1 million 0 

Iridian Technologies, USA (2003) 984 million 0 

Source:  http://www.cl.cam.ac.uk/users/jgd1000/iristests.pdf 

 

Table 2.3: Template size of different biometrics 
Biometrics Approx. Template size 

Voice 70k ~ 80k 
Face 84 bytes ~ 2k 

Signature 500 bytes ~ 1000 bytes 
Fingerprint 256 bytes ~ 1.2 k 

Hand Geometry 9 bytes 
Iris 256 bytes ~ 512 bytes 

Retina 96 bytes 

2.5.2 Weakness of Iris Recognition 

 It is difficult to capture the iris image since the size of the iris is very small (its 

approximate diameter is 1 cm). A specialized camera with an extensive 

apparatus setup is needed to acquire iris images [4, 28]. 

 The iris could be partially occluded by lower and upper eyelids and obscured 

by eyelashes, reflections, and lenses [8, 12-15, 31]. 

 The size of the pupil changes, non-elastic deformation is a major drawback [3, 

5, 14, 28, 32]. 

2.6 Application of Iris Recognition 

Some Current and Future Applications of Iris Recognition: 

 national border controls: the iris as a living passport  

 computer login: the iris as a living password  
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 cell phone and other wireless-device-based authentication  

 secure access to bank accounts at cash machines  

 ticketless travel; authentication of rights to services  

 premises access control (home, office, laboratory, etc.)  

 driving licenses; other personal certificates  

 entitlements and benefits authorization  

 forensics; birth certificates; tracing missing or wanted persons  

 credit-card authentication  

 automobile ignition and unlocking; anti-theft devices  

 anti-terrorism (e.g., security screening at airports)  

 secure financial transactions (electronic commerce, banking)  

 Internet security; control of access to privileged information  

 "Biometric-Key Cryptography" (stable keys from unstable templates)  

 any existing use of keys, cards, PINs, or passwords  

Some Currently available iris recognition services as a product: 

  L1 Identity Solutions (owner and worldwide licensor of the algorithms)  

 LG-Iris (largest number of deployments: more than 1,000)  

 Panasonic (residential and logical access control; airport uses)  

 Oki Electric Industries (access control; iris patterns in lieu of passports)  

 IBM (border-crossing applications)  

 Iris Guard UAE deployment, using scalable server architecture for large-scale 
Iris Code database searches: the Iris Farm.  

 Securimetrics (portable handheld cameras for military and police use, and 
high-speed SIRIS search engine)  

 Sagem (national biometric identification projects)  

 Argus Australia (access control; pharmaceutical dispensing)  

 10 UK airport terminals (entry into the UK by iris pattern, instead of a 
passport)  

 Amsterdam Schiphol Airport (instead of passport presentation)  

http://www.l1id.com/
http://www.lgiris.com/
http://www.panasonic.com/business/security/biometrics.asp
http://www.oki.com/en/press/2002/z02011e.html
http://www.cl.cam.ac.uk/users/jgd1000/ibm.html
http://www.irisguard.com/
http://www.cl.cam.ac.uk/users/jgd1000/deployments.html
http://www.cl.cam.ac.uk/users/jgd1000/UAEdeployment.pdf
http://www.securimetrics.com/
http://www.sagem.com/
http://www.argus-solutions.com/
http://www.ind.homeoffice.gov.uk/managingborders/technology/iris/
http://www.accessexcellence.org/WN/SU/SU102001/irisscan.html
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2.7 Summary 

The authentication of people using iris-based recognition is a widely developing 

technology. Iris recognition is feasible for use in differentiating between identical 

twins. Though the iris colour and the overall statistical quality of the iris texture may 

depend on genetic factors, the textural details are independent and uncorrelated for 

genetically identical iris pairs. As a result, iris recognition is considered one of the 

most reliable biometric systems. Iris-based recognition is a beneficial biometric 

solution to human identification due in part to the minimally intrusive nature of its 

data collection and the accuracy and security derived from the uniqueness of human 

irises.   
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CHAPTER 3 

Iris Segmentation and Normalization 
 

3.1 Overview 

To do iris recognition, the first step is to extract the actual iris region in a digital 

image of the eye. Two circles can be used to approximate the iris region: one for the 

iris/sclera boundary and another, which is internal to the first, for the iris/pupil 

boundary. The upper and lower regions of the iris region are generally concealed by 

the upper and lower eyelids and eyelashes. Additionally, specular reflections can 

occur within the iris region, causing the iris pattern to become distorted. It is 

necessary to employ a strategy to isolate and exclude these artifacts, as well as to 

locate the circular iris region. The success of segmentation is dependent on the quality 

of the eye pictures used in the segmentation process. Due to the use of near-infrared 

light for illumination, the images in the CASIA iris database [13] do not contain 

specular reflections, as do images in other databases. In addition, individuals with 

darkly pigmented irises will have relatively low contrast between the pupil and iris 

region if their eyes are imaged under natural light, which makes the segmentation 

more difficult. As previously stated, segmentation is crucial to the success of an iris 

recognition system since data that is incorrectly represented as iris pattern data will 

contaminate the biometric templates generated, resulting in low recognition rates. 

It is necessary to modify the iris region so that it has fixed dimensions in order to 

make comparisons possible after it has been successfully segmented from an eye 

image. It is mostly owing to pupil dilatation produced by variable levels of 

illumination that the differences in dimensional consistency between eye pictures can 

be explained by stretching of the iris. Aside from variable imaging distance, rotation 

of the camera and head tilt, and movement of the eye within the eye socket, other 

sources of inconsistency include: The normalizing method will result in iris areas that 

have the same constant dimensions, resulting in two images of the same iris taken 

under different conditions having typical features at the same spatial location in both 

photographs.  
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3.2 Image Acquisition 

The first step of iris recognition is the acquisition of iris images using a special iris 

camera. The module of iris image acquisition defines the inter-face between the user 

and the iris recognition system, so its usability is critical to user experiences. 

Moreover, the capability of iris image acquisition determines the quality of iris 

images used for iris pattern recognition (refer to Fig. 3.1). Therefore, iris image 

acquisition is an extremely important step in an iris recognition system. However, iris 

image acquisition is a very challenging problem due to the following reasons: 

 The iris is a very small internal organ with a diameter of about 1cm, but the 

resolution of the iris images must be higher enough for them to be useful for 

recognition, typically no less than 150 pixels across the diameter. So the depth 

of field (DoF) of an iris acquisition system is often limited. 

 The microstructures or texture of the irises of many people, especially those of 

Asians, only become visible under near-infrared (NIR) lighting. So the 

configuration of NIR lighting is a major issue in iris image acquisition. 

 When people wear eyeglasses, it is challenging to capture clear iris images due 

to specular reflections and dirt on eyeglasses.  

 The human subject may be in motion when the iris image is being taken, so 

the image may be blurred due to motion. 

There are several techniques for image acquisition, especially for iris biometric 

systems. Most biometric device Manufacturer Company develops their own camera 

for the acquisition of images in a proper way. Sarnoff Company proposed their iris 

image acquisition technique in the 1990s [3]. R.P Wilds focused on several 

parameters while taking the iris image for person authentication [48]. The image 

should acquire sharp, high resolution and also be imaged at about 128 pixels across 

the diameter. Regarding the person height, these images must be well centered with 

good contrast. Finally, the artifacts, i.e., spectacular reflection, should be eliminated 

from the acquired images.  
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Fig. 3.1: Schematic diagram of image acquisition components 

3.3 Literature Review 

3.3.1 Hough Transform 

The Hough transform is a standard computer vision algorithm that can be used to 

determine the parameters of simple geometric objects, such as lines and circles, 

present in an image. The circular Hough transform can be employed to deduce the 

radius and center coordinates of the pupil and iris regions. An automatic segmentation 

algorithm based on the circular Hough transform is employed by Wildes et al. [48], 

Kong and Zhang [55], Tisse et al. [56], and Ma et al. [7]. Firstly, an edge map is 

generated by calculating the first derivatives of intensity values in an eye image and 

then thresholding the result. From the edge map, votes are cast in Hough space for the 

parameters of circles passing through each edge point. These parameters are the 

center coordinates xc and yc, and the radius r, which can define any circle according to 

the equation, 

𝑥𝑐
2 + 𝑦𝑐

2 = 𝑟2                       (3.1) 



28 
 

 
 

A maximum point in the Hough space will correspond to the radius and center 

coordinates of the circle best defined by the edge points. Wildes et al. and Kong and 

Zhang also make use of the parabolic Hough transform to detect the eyelids, 

approximating the upper and lower eyelids with parabolic arcs, which are represented 

as; 

(−(𝑥 − ℎ𝑗) sin 𝜃𝑗 + (𝑦 − 𝑘𝑗) cos 𝜃𝑗)2

= 𝑎𝑗((𝑥 − ℎ𝑗) cos 𝜃𝑗 + (𝑦 − 𝑘𝑗) 𝑠𝑖𝑛 𝜃𝑗)          (3.2) 

 

Where aj controls the curvature, (hj, kj) is the peak of the parabola and 𝜃𝑗  is the angle 

of rotation relative to the x-axis. 

In performing the preceding edge detection step, Wildes et al. bias the derivatives in 

the horizontal direction for detecting the eyelids and in the vertical direction for 

detecting the outer circular boundary of the iris; this is illustrated in Fig. 3.2. The 

motivation for this is that the eyelids are usually horizontally aligned, and also the 

eyelid edge map will corrupt the circular iris boundary edge map if using all gradient 

data. Taking only the vertical gradients for locating the iris boundary will reduce the 

influence of the eyelids when performing circular Hough transform, and not all of the 

edge pixels defining the circle are required for successful localization. Not only does 

this make circle localization more accurate, but it also makes it more efficient since 

there are fewer edge points to cast votes in the Hough space. 

 
Fig. 3.2: (a) an eye image (020_2_1 from the CASIA database) (b) corresponding edge map (c) edge 

map with only horizontal gradients (d) edge map with only vertical gradients. 

There are a number of problems with the Hough transform method. First of all, it 

requires threshold values to be chosen for edge detection, and this may result in 

critical edge points being removed, failing to detect circles/arcs. Secondly, the Hough 
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transform is computationally intensive due to its ‘brute-force’ approach and thus may 

not be suitable for real-time applications. 

Iris boundary localization algorithm is as follows: 

 Step 1. Pupil center coarse localization; 

 Step 2. Select a small image block and extract edge information based on the 

canny operator; 

 Step 3. Pupil boundary localization based on Hough transform; 

 Step 4. Select a small image block and extract edge information based on the 

line’s grey gradient extreme value; 

 Step 5. Iris outer boundary localization based on Hough transforms. Due to 

improve localization speed and localization accuracy, taking advantage of the 

grey information, the number of edge points has to be decreased and the 

parameter range down to a small range to locate iris boundary. 

3.3.2 Daugman’s Integro-differential Operator 

Daugman’s integrodifferential equation can be applied to find the center coordinates 

as well as the radius of the iris and the pupil. This equation can be stated as follows 

[11] 

𝑚𝑎𝑥(𝑟,𝑥0,𝑦0) |𝐺𝜎(𝑟) ∗
𝜕

𝜕𝑟
∮

𝑓(𝑥, 𝑦)

2𝜋𝑟
𝑑𝑠

 

𝑟,𝑥0,𝑦0

|               (3.3) 

Where I(x,y) is an image containing an eye. The operator searches over the image 

domain (x,y) for the maximum in the blurred partial derivative with respect to 

increasing radius r of the normalized contour integral of I(x,y) along with a circular 

arc ds of radius r and center coordinates (x0,y0). The symbol * denotes convolution, 

and Gσ(r) is a smoothing function such as a Gaussian of scale σ. The complete 

operator behaves in effect as a circular edge detector, blurred at a scale set by σ, 

which searches iteratively for a maximum contour integral derivative with increasing 

radius at successively finer scales of analysis through the three-parameter space of 

center coordinates and radius (x0,y0,r) defining a path of contour integration. The 
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operator searches for the circular path where there is the maximum change in pixel 

values by varying the radius ‘r’ and the center (x, y) of the circular contour. The 

operator is applied iteratively with the amount of smoothing progressively reduced in 

order to obtain accurate localization. 

 

 

 

 

 

  

Fig. 3.3: Assuming rmin, rmax: (90, 110) the minimum and maximum values of the iris radius using 
Daugman's integrodifferential operator. 

Function to search for the centre coordinates of the pupil and the iris along with their 

radii. It makes use of Camus&Wildes' method to select the possible centre coordinates 

first. The method consists of thresholding followed by checking if the selected 

points(by thresholding) correspond to a local minimum in their immediate(3*s) 

neighbourhood. These points serve as the possible centre coordinates for the iris. 

Once the iris has been detected(using Daugman's method); the pupil's centre 

coordinates are found by searching a 10*10 neighbourhood around the iris centre and 

varying the radius until a maximum is found(using  Daugman's integrodifferential 

operator). 

Assuming that the variables x, y and r belong to the ranges [0; X], [0; Y] [0; R] 

respectively, this method has the computational complexity of order [X × Y × R]. 

Thus, at every pixel, a total of R scans are necessary to compute the circle parameters 

using this approach. 

3.3.2 Eyelash and Noise Reduction 

Kong and Zhang [15] present a method for eyelash detection, where eyelashes are 

treated as belonging to two types, separable eyelashes, which are isolated in the 
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image, and multiple eyelashes, which are bunched together and overlap in the eye 

image. Separable eyelashes are detected using 1D Gabor filters since the convolution 

of a separable eyelash with the Gaussian smoothing function results in a low output 

value. Thus, if a resultant point is smaller than a threshold, it is noted that this point 

belongs to an eyelash. Multiple eyelashes are detected using the variance of intensity. 

If the variance of intensity values in a small window is lower than a threshold, the 

center of the window is considered as a point in an eyelash (refer to Fig. 3.4). The 

Kong and Zhang model also makes use of connective criteria so that each point in an 

eyelash should connect to another point in an eyelash or to an eyelid. Specular 

reflections along the eye image are detected using thresholding since the intensity 

values at these regions will be higher than at any other region in the image. 

 

Fig. 3.4: The eyelash detection technique, eyelash regions are detected using thresholding and denoted 
as black 

3.4 Morphology and Geometrical Approach Iris Localization 

A two-stage iris segmentation algorithm has been applied in this stage. Firstly, a 

manual edge point evolution approach based on binary morphology has been applied 

to detect the inner boundary. In the second stage, the geometrical operation via the 

image intensity has been utilized in order to find the iris center and, finally, the iris 

boundary. Iris Inner and Outer boundary localization algorithm can be described as 

follows. 

3.4.1 Inner and Outer Boundary Localization 

Iris Inner and Outer boundary localization algorithm can be described as follows: 

 Step 0. The original Eye image captured by an imaging sensor 

 Step 1. Obtained the binary image of the iris; 
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 Step 2. Obtained the Medfilt image of the binary image.  

 Step 3. Image Compliment 

 Step 4. Removing Small areas 

 Step 5. Finding pupil center with pupil boundary. 

 Step 6. Apply appropriate threshold  

        cos 𝜃 = (𝑋 − 𝑋0)/𝑅                                      (3.4) 

        cos (
𝜋

2
− 𝜃) = (𝑌 − 𝑌0)/𝑅                            (3.5) 

 Step 7. Adjusted the image and studied the image intensity 

 Step 8. Determine the iris boundary 

 Step 9. Connect the two points of iris boundary 

 Step 10. Finding the center of lines. 

 Step 11. Apply two horizontal lines. The  theory behind this, i.e., The 
horizontal line from the middle of the radius in any circle passes through the 
center of the circle 

 Step 12.  The intersection of two horizontal lines is the required iris center. 
This can be found by this equation: 

𝒓𝟐 − 𝒓𝟏

𝒄𝟐 − 𝒄𝟏
=

𝑹 − 𝒓𝟐

𝑪 − 𝒄𝟐
             (3.6) 

𝒓𝟒 − 𝒓𝟑

𝒄𝟒 − 𝒄𝟑
=

𝑹 − 𝒓𝟒

𝑪 − 𝒄𝟒
             (3.7) 

 Step 13. Calculating the radius and area by the following equation 

𝑹 = √(𝒄𝟏 − 𝒄𝟎)𝟐 +  (𝒓𝟏 − 𝒓𝟎)𝟐       (3.8) 

𝑨 = 𝟐𝝅𝑹                                                 (3.9) 

 Step 14. Finally, the area will be detected. 
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Step 8 

 

Step 9 

 

Step 10 

 

Step 11 and 12 

 

Step 13 

 

Step 14 

Fig. 3.5: Illustration of Iris localization steps according to the Morphology and Geometrical algorithm 

Algorithms: Estimation of the center of Pupil 

Input: f(s,t) (the iris image), The Complement  iris image  

Output: o(sc ,tc )  (the pupillary center) and the 𝑅𝑀𝑎𝑥 (Pupillary Radius) 

1. To find the Brightest point (sp1, tp2) on the upper side of the pupil  

2. 𝑝1 ← 𝑠𝑡𝑜𝑟𝑒(𝑓(𝑠, 𝑡))  𝑞1 ← 𝑠𝑡𝑜𝑟𝑒(𝑓(𝑠, 𝑡))  

3. To find the Brightest  point (sp2, tp2) on the Bottom  side of the pupil  

4. 𝑝2 ← 𝑠𝑡𝑜𝑟𝑒(𝑓(𝑠, 𝑡))  𝑞2 ← 𝑠𝑡𝑜𝑟𝑒(𝑓(𝑠, 𝑡))  
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5. To find the Brightest  point (ss1, tr1) on the Left  side of the pupil  

6. 𝑠1 ← 𝑠𝑡𝑜𝑟𝑒(𝑓(𝑠, 𝑡))  𝑟1 ← 𝑠𝑡𝑜𝑟𝑒(𝑓(𝑠, 𝑡))  

7. To find the Brightest  point (ss2, tr2) on the Right Side of the pupil  

8. 𝑠2 ← 𝑠𝑡𝑜𝑟𝑒(𝑓(𝑠, 𝑡))  𝑟2 ← 𝑠𝑡𝑜𝑟𝑒(𝑓(𝑠, 𝑡))  

9. The Pupillary  center  (sc ,tc )← (𝑟𝑜𝑢𝑛𝑑 (
𝑝1+𝑝2

2
) , round (

𝑠1+𝑠2

2
)) 

10. The Pupillary Radius do 

𝐷1 ← 𝑠𝑡𝑜𝑟𝑒 (√(𝑠𝑐 − 𝑝1)2 + (𝑡𝑐 − 𝑞12)) 

 𝐷2 ← 𝑠𝑡𝑜𝑟𝑒(√(𝑠𝑐 − 𝑝2)2 + (𝑡𝑐 − 𝑞2)2)   

𝐷3 ← 𝑠𝑡𝑜𝑟𝑒(√(𝑠𝑐 − 𝑟1)2 + (𝑡𝑐 − 𝑠1)2)   

𝐷4 ← 𝑠𝑡𝑜𝑟𝑒(√(𝑠𝑐 − 𝑟2)2 + (𝑡𝑐 − 𝑠2)2)   

11. The Pupillary Radius 

𝑅𝑀𝑎𝑥 ← 𝑟𝑜𝑢𝑛𝑑 [𝑀𝑎𝑥 (∑ 𝐷𝑁

𝑁=4

)] 

12. return (sc ,tc) and 𝑅𝑀𝑎𝑥 
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Fig. 3.6: Flow Diagram of finding Pupil Center and its Boundary/Radius 
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3.5 Experimental Result of Segmentation Stage 

In order to evaluate the performance of the Morphology and Geometrical approach 

proposed in my undergraduate thesis [33], it has been applied to the CASIA ver1.0 

database, and present a detailed comparison with the methods of Daugman and 

Wildes, implemented according to the published papers [5, 9, 34] and the open codes 

of MASEK [31]. All of the algorithms are implemented in MATLAB and executed on 

a computer (Intel Core i7-4500U CPU, 2.40 GHz, 12Gb RAM). Note that the original 

eye images are classified into class I (lighter interfered) and class II (seriously 

interfered), according to the extent to which iris boundaries are overlapped by eyelash 

and eyelid. All of the experiments have been completed in same environment. 

 

 

 

 

 

 

 

Fig. 3.7: Location results for class I: (a) Daugman’s method (b),Wildes’ method, (c) Morphology and 
Geometrical approach 

 

(a) (b) 

(c) 
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This experiment is designed to compare the location performance of the three 

methods. Figs. 3.7 and 3.8 show the location result for class I and class II 

respectively. Obviously, Fig. 3.7 shows that all three methods can locate the iris 

boundaries correctly, and there are hardly any differences between the results. 

Certainly, it suggests that the proposed method can locate the iris, and the new idea of 

the proposed method is right. From Fig. 3.8, one can see that Daugman’s and Wildes’ 

methods give incorrect results, but the result of the Morphology and Geometrical 

approach is satisfactory. This experiment shows that the proposed method can 

complete iris location even for a seriously interfered image. It is more robust than 

Daugman’s and Wildes’ methods. 

 

 

Fig. 3.8: Location results for class II: (a) Daugman’s method (b) Wildes’ method (c) Morphology and 
Geometrical approach 

Table 3.1: Results obtained with the use of three methods for different classes 
Method Time [sec] CLR [%] 

Class I II I II 

Daugman 6.82 8.26 94.6 93.1 

Wildes 11.75 12.68 94.8 92.4 

Morphology and 

Geometrical approach [33] 

2.45 3.10 97.26 98.10 

 
Table 3.2: Results obtained with the use of three methods for all images (CLR: correct location ratio) 

 
Method CLR [%] Time [sec] 

Daugman 93.85 7.52 

Wildes 93.6 12.24 

Morphology and Geometrical approach [33] 97.85 2.45 

(a) (b) (c) 
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In the experiment, a comparison was made of the correct location ratio and the 

expenditure of time of the three methods. Table 3.1 shows the results obtained using 

the three methods with reference to a particular class, and Table 3.2 lists the results 

for both classes. Table 3.1 is designed to test whether the Morphology and 

Geometrical approach can give a perfect performance or not. By quantitative data, the 

difference between these methods can be illustrated clearly. From Table 3.1, it 

follows that the proposed method has better performance than the other methods for 

both classes. Whether it is class I or class II, the Morphology and Geometrical 

approach not only reduces the location errors but makes it more computationally 

efficient. So, it can be concluded that the proposed method is more robust than the 

other methods so far as the interference of eyelashes is concerned. 

3.6 Daugman’s Rubber-Sheet Model 

The normalization locates the outer and inner borders to reimburse the varying size 

and capturing distance. The size of the iris of the same eye might change because of 

the distance from the camera, illumination, variations, etc. The non-concentric 

characteristics of the iris and the pupil may affect the result of matching. According to 

Daugman’s rubber sheet model, each pixel is mapped into a pair of polar coordinates 

(r,θ) where r is on the interval [0,1] and θ is angle [0,2π] as shown in Fig. 3.9.  

 

 

Fig. 3.9: Daugman’s rubber sheet model 

The unwrapping formula is as follows: 

𝐼(𝑥(𝑟, 𝜃), 𝑦(𝑟, 𝜃)) → 𝐼(𝑟, 𝜃)             (3.10) 

𝑥(𝑟, 𝜃) = (1 − 𝑟)𝑥𝑝(𝜃) + 𝑟𝑥𝑖(𝜃)     (3.11) 
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𝑦(𝑟, 𝜃) = (1 − 𝑟)𝑦𝑝(𝜃) + 𝑟𝑦𝑖(𝜃)     (3.12) 

Where, 

𝑥𝑝(𝜌, 𝜃) = 𝑥𝜌0(𝜃) + 𝑟𝑝 ∗ cos 𝜃    (3.13) 

𝑦𝑝(𝜌, 𝜃) = 𝑦𝜌0(𝜃) + 𝑟𝑝 ∗ sin 𝜃    (3.14) 

𝑥𝑖(𝜌, 𝜃) = 𝑥𝑖0(𝜃) + 𝑟𝑖 ∗ cos 𝜃     (3.15) 

𝑦𝑖(𝜌, 𝜃) = 𝑦𝑖0(𝜃) + 𝑟𝑖 ∗ sin 𝜃     (3.16) 

Where, 𝑥(𝑟, 𝜃) and 𝑦(𝑟, 𝜃) are the combinations between the coordinates of the 

pupillary boundaries (xp(θ), yp(θ)) and the coordinates of the iris boundary (xi(θ), 

yi(θ)), in the direction θ while rp and ri are respectively the radius of the pupil and the 

iris and (𝑥𝑝0, 𝑦𝑝0), (𝑥𝑖0, 𝑦𝑖0) are the centers of pupil and iris, respectively. Due to 

having non-concentric property of the pupil compared to the iris, a remapping formula 

is needed to rescale points depending on the angle round the circle given by 

equations:  

𝑟′ = √𝛼𝛽 ± √𝛼𝛽2 − 𝛼 − 𝑟𝐼
2     (3.17) 

With, 𝛼 = 𝑜𝑥
2 + 𝑜𝑦

2, 𝛽 = cos(𝑟 − arctan (
𝑜𝑥

𝑜𝑦
) − 𝜃 

Where, 𝑟′ is the distance between the edge of the pupil and edge of the iris at an angle 

𝜃 around the region, the displacement of the center of the pupil relative to the center 

of the iris is given by 𝑜𝑥, 𝑜𝑦 𝑎𝑛𝑑 𝑟𝐼 is the radius of the iris. Fig. 3.10 depicts the output 

of the normalization of the CASIA-V4-iris image with the help of the remapping 

formula.  

 

Fig. 3.10: Output of Normalization 
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Algorithm: Normalization 

Step 1: Initialize radial resolution =18 and angular resolution =230.  

Step 2: Calculate displacement of pupil center from the iris center by equation 

𝑟′ = √𝛼𝛽 ± √𝛼𝛽2 − 𝛼 − 𝑟𝐼
2 

With, 𝛼 = 𝑜𝑥
2 + 𝑜𝑦

2, 𝛽 = cos(𝑟 − arctan (
𝑜𝑥

𝑜𝑦
) − 𝜃 

Step 3: Exclude values at the boundary of the pupil iris border and the iris sclera 

border.  

Step 4: Calculate the Cartesian location of each data point around the circular iris by 

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃 

Step 5: Extract intensity values into the normalized polar representation through 

interpolation.  

Step 6: Store it in a polar array. Create a noise array with the location of NaN (Not a 

Number) values in the polar array. 

 

3.6.1 Implementation  

Normalization generates a fixed dimension feature vector for better recognition. 

Daugman’s rubber sheet model maps each point in the (x, y) domain to polar 

coordinates (r, h). The pupil center is measured as the reference point for the radial 

vectors to pass through the region of the iris. The radial resolution is defined as the 

number of data points along each radial line, and the angular resolution is defined as 

the number of data points going around the iris region. A fixed number of points are 

selected along each radial line regardless of how wide or narrow the radius is at an 

angle. The angular and radial positions in the normalized pattern create the Cartesian 

coordinates of the data points. Normalization produces a 2D array with a vertical 

dimension of radial resolution and a horizontal dimension of angular resolution. 
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Another 2D array is created for marking eyelids, eyelashes and specular reflections 

detected in the segmentation stage. The data points that occur along the pupil border 

or the iris border are discarded to prevent the non-iris region from corrupting the 

normalized representation. Once the eyelids and eyelashes are detected, the noisy area 

is mapped to be masked, and the iris without noise is extracted.  

 

Fig.3.11: Unwrapping Normalized Iris; CASIA [S1211L04] 

 

 

Fig. 3.12: Unwrapping Normalized Iris; [S1211L05] 

The normalization process proved to be successful, and some results are shown in 

Figs. 3.11-3.12. However, the normalization process was not able to perfectly 

reconstruct the same pattern from images with varying amounts of pupil dilation 

since the deformation of the iris results in small changes in its surface pattern. The 

pupil is smaller in the image; however, the normalization process is able to rescale the 

iris region so that it has a constant dimension. In this example, the rectangular 

representation has a constant dimension (MN) is (64512). 

3.6.2 Enhancement of Normalization Image 

Once the iris Normalization is successfully done from the segmented iris image, the 

next stage is to enhance the normalized image for better feature extraction. Histogram 
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equalization technique has been applied for image contrast enhancement. The enhanced 

image is then used for the next stage, feature encoding. The corresponding histogram is 

shown in Fig. 3.13. 

 
 
 
 
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3.13: Enhanced normalized image with the histogram 

3.6 Summary 

Iris segmentation is a crucial stage of the iris recognition system because the accuracy 

of recognition mainly depends on the accurate localization of the iris inner and outer 

boundary with minimally affected by eyelids and eyelashes. The proposed 

segmentation approach considerably reduces the computation and time load for 

detecting the inner and outer boundaries of an iris while improving the detection rate 

if approximation components are used without rescaling.  In other words, the 

proposed method cannot only make the computations more efficient but also improve 

Enhanced image 

Histogram Histogram 
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the correct location ratio at the same time. The experiments prove that the idea of the 

proposed method is quite feasible.  

A normalized iris image is the input image of the feature extraction stage. 

Normalization algorithm has been implemented for many iris databases such as 

CASIA, MMU, etc.  Since the normalized iris image has relatively low contrast and 

may have non-uniform intensity values due to the position of the light sources, a local 

intensity-based histogram equalization technique is applied to enhance the quality of 

the contrast of the normalized iris image, thereby increasing the subsequent 

recognition accuracy. 
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CHAPTER 4 

Feature Extraction using Three Level Haar Wavelet 
Transform and Modified Local Binary Pattern 

4.1 Overview 

Iris recognition has several applications in security systems of banks, border control, 

restricted areas, etc., [35-37]. One key part of such a system is the extraction of 

prominent texture information or features in the iris. This feature extraction method 

generates feature vectors or feature codes. The feature vectors of the unknown images 

are used to match those of the stored known ones. In an iris recognition system, the 

matching process matches the extracted feature code of a given image with the feature 

codes previously stored in the database. In this way, the identity of the given iris 

image can be known. Despite significant research results so far [3, 31, 37-44], there 

are several challenges in iris recognition [45-57]. One problem is the occlusion, i.e., 

the hiding of the iris caused by eyelashes, eyelids, specular reflection, and shadows 

[53]. Occlusion can introduce irrelevant parts and hide useful iris texture [53].  

Another issue is the computation time of iris identification. For large population sizes, 

the matching time of iris can sometimes become exceedingly high for real-time 

applications, and the identification delay increases with the increase in the population 

size and the length of feature codes. It has been reported in the recent literature [46, 

48, 49] that the existing iris recognition methods still suffer from long run times apart 

from other factors. This is particularly true when the sample size is very large, and the 

iris images are non-ideal and captured from different types of cameras. Hence, 

devising a method that reduces the run time of iris recognition without compromising 

accuracy is still an important research problem. The identification delay can be 

reduced by reducing the feature vector of iris images. Thus, this chapter focuses on 

the issue of reducing the feature vector, which will lead to a reduction in identification 

delay without lowering the identification accuracy. For lowering the feature vector, 

the concept of Haar wavelet along with a modified local binary pattern (MLBP) is 

used in this work. Note that in the context of face recognition [58-61] and fingerprint 

identification [62], the Haar wavelet transform demonstrates an excellent recognition 

rate at a low computation time. In [63], the Haar wavelet is also proposed without the 

use of MLBP.  
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In this chapter, a feature extraction method is proposed for faster iris recognition. This 

new method is a hybrid process combining three-level HWT and MLBP. In this 

hybrid method, firstly, HWT is applied to the normalized iris image resulting in four 

output images, including the approximation image known as LL sub-band. This LL 

sub-band is then further decomposed using HWT into four sub-images. The resultant 

second-level LL is decomposed using HWT into the third-level LL sub-band. The 

application of repeated HWT extracts the major information containing region, 

reducing the information size. Next, MLBP is applied to the obtained LL, where 

MLBP includes LBP and XOR operations. The output of MLBP is a binary iris 

template. The effectiveness of this proposed hybrid HWT-MLBP method is 

experimentally evaluated using three different datasets. 

4.2 Literature Review 

A number of research papers describe iris feature extraction techniques which are 

discussed in the following. 

Ma et al. [37] applied a bank of spatial filters to acquire local details of the iris. 

These spatial filters generate discriminating texture features for an iris image based on 

the characteristics of the iris. Ma et al. [38] considered a bank of circular symmetric 

filters for iris feature extraction. These filters [38] are modulated by a circular 

symmetric sinusoidal function which is different from the Gabor filter modulated by 

an orientated sinusoidal function. Monro et al. [39] used discrete cosine transform 

(DCT) for iris recognition. Daugman [3] introduced the idea of using a 2-D Gabor 

wavelet filter for extracting features of an iris image. Furthermore, Masek et al. [31] 

used 1-D and 2-D Log-Gabor filters for feature extraction. Li et al. [40] used a 

convolutional neural network (CNN) algorithm, which is a form of deep learning to 

extract iris features. Umer et al. [41] used a novel texture code defined over a small 

region at each pixel. This texture code was developed with a vector order based on the 

principal component of the texture vector space. Soliman et al. [42] considered feature 

extraction using the Gabor filter, where the original Gabor features were masked via a 

random projection scheme. The masking was performed to increase the level of 

security. In this scheme, the effects of eyelids and eyelashes were removed. An iris 

feature extraction method using wavelet based 2D mel-cepstrum was proposed in [44] 

where cepstrum of a signal is the inverse Fourier transform of the logarithm of the 
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estimated signal spectrum. This scheme applied Cohen-Daubechies-Feauveau (CDF) 

9/7 filter bank for extracting features. In wavelet cepstrum, non-uniform weights are 

assigned to the frequency bins. In this way, the high frequency components of the iris 

image are emphasized resulting in greater recognition reliability. Furthermore, this 

wavelet cepstrum method helps to reduce the feature set. 

Barpanda et al. [45] used a tunable filter bank to extract region-based iris features. 

These filters were used for recognizing non-cooperative images instead of high-

quality images collected in cooperative scenarios. The filters in this filter bank were 

based on the half band polynomial of 14th order, where the filter coefficients were 

extracted from the polynomial domain. To apply the filter bank, the iris template was 

divided into six equi-spaced parts, and the features were extracted from all the parts 

except the second one, which mainly contains artifacts. Betancourt et al. [46] 

proposed a robust key-points-based feature extraction method. To identify distinctive 

key-points, three detectors, namely Harris-Laplace, Hessian-Laplace, and Fast-

Hessian were used. This method is suitable for iris recognition under variable image 

quality conditions. 

For iris feature extraction, Sahua et al. [48] used phase intensive local pattern 

(PILP), which consists of density-based spatial clustering and key-point reduction. 

This technique groups some closely placed key-points into a single key-point leading 

to high-speed matching. Jamaludin et al. [49] used 1D log-Gabor filter and considered 

the sub-iris region for feature extraction. This filter has a symmetrical frequency 

response on the log axis. In this case, only the lower iris regions that are free from 

noise, as well as occlusions, are considered.  

In [50], combined discrete wavelet transform (DWT) and DCT were used for the 

extraction of iris features. Firstly, DWT was performed where the output of this stage 

was in the spatial domain. Next, DCT was performed to transform the spatial domain 

signal to the frequency domain and to obtain better discriminatory features. Another 

feature extraction method is the discrete dyadic wavelet transform reported in [51]. In 

dyadic wavelet transform, the decomposition at each level is done in a way that the 

bandwidth of the output signal is half of the input. In [52], a phase intensive local 

pattern (PILP) technique is used for feature extraction and to obtain a feature vector of 

1×128. In this PILP method, there are four stages named keypoint detection via phase 

intensive patterns, removal of edge features, computation of oriented histogram and 

formation of a feature vector. Iris features were extracted using 1-D DCT and 
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relational measure (RM), where RM encodes the difference in intensity levels of 

local regions of iris images [53]. The matching scores of these two approaches were 

fused using a weighted average. The score-level fusion technique compensates for 

some images that are rejected by one method but accepted by the other [53]. Another 

way of extracting feature vectors from iris images is the use of linear predictive 

coding coefficients (LPCC) and linear discriminant analysis (LDA) [54]. Llano et al. 

[57] used a 2D Gabor filter for feature extraction. Before applying this filter, a fusion 

of three different algorithms was performed at the segmentation level (FSL) of the iris 

images to improve the textual information of the images. Oktiana et. al. [64] proposed 

an iris feature extraction system using an integration of Gradientface-based 

normalization (GRF)where GRF uses an image gradient to remove the variation in 

illumination level. Furthermore, the work in [64] concatenated the GRF with a Gabor 

filter, a difference of Gaussian (DoG) filter, binary statistical image feature (BSIF), 

and LBP, for iris feature extraction in a cross-spectral system. Shuai  et al. proposed 

[65] a iris feature extraction method based on multiple source feature fusion 

performed by a Gaussian smoothing filter and a texture histogram equalization. 

Besides, there have been some recent studies in the field of iris recognition [66-75], 

where some focus on iris feature extraction methods [67-72] and some on iris 

recognition tasks [73-75].  

A summary of some of the most relevant works on iris feature extraction is shown 

in Table 4.1. 
Table 4.1: Summary of literature review 

 
Ref. Adopted Technique Remarks Database 

[37] Spatial filters constructed 

based on observations 

Features are extracted only in the upper 

portion of the normalized iris image as it 

provides useful texture information. The 

feature vector length is large, being 

1x1536.  

CASIA-Iris-

V1 

[38] A bank of circular symmetric 

filters 

The top-most 75% of the unwrapped iris 

images are used for texture information. 

The variation of the texture of the iris in 

the local region is not focused on in this 

paper.  
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Ref. Adopted Technique Remarks Database 

[39] Patch Coding technique for 

extracting  fast Fourier 

transformation (FFT) based 

features from normalized iris 

images 

The method has low complexity with high 

accuracy. The dimensionality of the 

feature vector is 1x 2343. However, non-

ideal images are not considered.  

CASIA-Iris-

V1 

[3] 2D Gabor filter The dimensionality of the feature vector is 

1x2048.  

 

[31] 1D and 2D Log-Gabor filters This method cannot produce features of 

different frequencies, and the size of the 

iris template is 1×4800.  

CASIA-Iris-

V1 

[40] Deep learning CNN as deep learning is used to extract 

iris features, and the features are then 

used for image encryption. 

CASIA-Iris-

V4 

[41] Texture code co-occurrence 

matrix 

Feature vector size 1x400.  The method 

uses only part of the iris images to avoid 

occlusion caused by eyelashes and 

eyelids. 

UPOL, 

CASIA-Iris-

V3 Interval, 

MMU1 

and IITD, 

[42] 1D Gabor filter where Gabor 

features are masked 

Masks the original Gabor features to 

increase the level of security while 

excluding eyelids and eyelashes’ effects. 

Moreover, considers only the upper half 

of the normalized iris portion. 

CASIA-Iris-

V3-Interval 

[43] 2D kernel and hybrid 

MLPNN–PSO algorithm 

Feature extraction is performed on a small 

sample of 140 images at an accuracy rate 

of 95.36%. In this case, 1000 iterations 

are performed, which leads to high 

computational time.  

CASIA-Iris-

V3 

[44] 2D wavelet cepstrum 

technique for feature 

extraction 

False acceptance rate is 10.45%, 

recognition accuracy is  89.93%.  

CASIA-Iris-

V3 , 

UBIRISv1, 

IITD 

[45] Tunable filter bank based on 

half band polynomial of 14th 

order 

The false acceptance rate is 8.45%, 

recognition accuracy is 91.65%.  

CASIA-V3 , 

UBIRISv1, 

IITD 
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Ref. Adopted Technique Remarks Database 

[46] Key-points based feature 

extraction method 

Considers only salient key points in the 

whole region. The feature extraction stage 

is time-consuming. 

CASIA-Iris-

V4-Interval, 

MMU 2,  

UBIRIS 1 

[48] Density-based spatial 

clustering and key-point 

reduction to be applied on 

PILP 

For feature extraction and feature vector 

reduction, post-processing is required 

leading to additional time consumption. 

BATH and 

CASIA-Iris-

V3 

[49] Sub-iris Technique Does not extract features of the 

unoccluded upper part of the iris region.   

CASIA-Iris-

V4 

[51] Discrete dyadic wavelet 

transform 

Iris images of only 10 people are used, 

and a feature vector of 1×256 is achieved. 

Results need to be validated with a higher 

number of subjects. 

 

[52] local feature based on phase 

intensive patterns 

Feature extraction is based on keypoint 

detection via phase-intensive patterns. 

Obtains a feature vector of 1×128. 

BATH, 

CASIA-Iris-

V3, 

UBIRISv2, 

and FERETv4 

[53] DCT and RM Based on the dissimilarity score of DCT 

and RM and using the Hamming distance 

metric, the matching of images is 

performed. This is used to compensate for 

images rejected by either DCT or RM but 

accepted by the other. 

CASIA-Iris-

V4 Interval, 

Lamp, and 

self-collected 

IITK 

[54] LPCC and LDA The method has high complexity, and for 

the case of LPCC, the feature vector 

results in 1x546 dimension  

CASIA-Iris-

V1 

[57] Textural information 

development and exploration 

This method has three stages: quality 

evaluation, automatic segmentation, and 

fusion at the segmentation level. This 

method rejects images having low quality. 

The obtained feature vector is 1x2048. 

MBGC-V2, 

CASIA-Iris-

V3, CASIA-

Iris-V4 and 

UBIRIS v1 

(for iris image) 
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Ref. Adopted Technique Remarks Database 

[64] Gabor filter, a DoG filter, 

BSIF, and LBP 

The feature extraction is done using the 

fusion of GRF with a Gabor filter, a DoG 

filter, a BSIF, and LBP. Hamming 

distance is used for matching purposes. 

Hong Kong 

Polytechnic 

University 

Cross-Spectral 

Iris 

Images 

Database  

[65] Convolutional neural network Feature extraction is done using the 

concept of feature fusion which is 

achieved by a Gaussian filter and a 

texture histogram equalizer. 

JLU iris 

library 

4.3 The Proposed Feature Extraction Scheme 

This section describes the proposed iris feature extraction method. Fig. 4.1 

represents the block diagram of the proposed three-level HWT and MLBP. The 

decomposition of the image three times by HWT results in the reduction in feature 

size without significant loss in the image quality or important attributes.  The use of 

MLBP further reduces the feature vector size without a loss in image attributes.  Fig. 

4.2 shows the three-level HWT. It can be seen from the figure that at each level of 

HWT, the input image is divided into four output images. These output images are 

denoted as horizontal detail (HL), vertical detail (VL), diagonal detail (HH), an 

approximation (LL) images. The LL subimage, also known as LL subband, contains 

the significant information of the original image. In other words, the LL subband is a 

coarse approximation of an image, and it does not contain high-frequency 

information. Next, the three-level HWT algorithm is discussed. 
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Algorithm 1: HWT 

Input: Normalized iris image 

Output: Approximation part of level three 

Main Process: 

Step 1: Apply first level HWT to the normalized iris image to generate its wavelet 

coefficients. 

Step 2: Apply second level HWT on the approximation part obtained from Step 1 to 

generate its wavelet coefficients. 

Step 3: Apply third level HWT on the approximation part obtained from Step 2 to 

generate its wavelet coefficients. 

Step 4: Get the level three approximation part obtained from Step 3. 

 
Fig. 4.1: Block diagram of the proposed approach for iris feature extraction. 
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Fig. 4.2: Three-level HWT 

 
 

 
Fig. 4.3: Three-level wavelet decomposition of normalized iris 

 
The main idea of using HWT is that wavelet decomposition can transform a 

detailed image into approximation images. The approximation parts contain a major 

portion of the energy of the images. The HWT is repeatedly executed to shrink the 

information size. The results of the three-level decomposition produce a reduced 
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characteristics region having little loss. This is shown in Fig. 4.3. It can be noted that 

most of the information of the iris image is contained in the extracted LL (low 

frequency) region on the multi-divided iris image, as indicated by Fig. 4.3. The other 

regions have less information, as indicated by their low intensity (dark) levels. Fig. 

4.4 illustrates the size of each level for the three-level HWT. The application of level-

1 HWT to the normalized image of size 64512 results in wavelet coefficients of 

LL1, LH1, HL1, and HH1. In this case, the approximation part of level 1 denoted as 

LL1 becomes of size 32256. Next, level 2 HWT is applied to LL1, which generates 

wavelet coefficients of LL2, LH2, HL2, and HH2.  In this case, the approximation part 

of level 2 (LL2) becomes of size 16128. After that level-3 HWT is applied to LL2 to 

generate its wavelet coefficients LL3, LH3, HL3, and HH3. In this case, the 

approximation part of level 3 (LL3) becomes of size 864. Hence, a major distinctive 

region, LL3 is obtained by performing the wavelet transformation three times. Next, 

LL3 region is used for the MLBP tasks.   

 
Fig. 4.4: Three-level HWT with the size of each level 
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Now, consider the MLBP operation [55], which generates robust binary features. 

Furthermore, MLBP has low computational complexity. MLBP labels each pixel 

based on the neighbouring pixels and considers a given threshold. MLBP then 

produces outputs in the binary format. This binary code can describe the local texture 

pattern.  Note that MLBP is an LBP followed by an XOR operation. Next, MLBP 

operation is described in the following.  

For a center pixel 𝑐, and neighboring pixels 𝑝 within a neighborhood of 𝑃 pixels, 

the MLBP operation can be expressed as follows. 

𝐿𝐵𝑃𝑝 = ∑ 𝑆(𝑔𝑝 − 𝑔𝑐) × 2𝑝                                           (1)

𝑃−1

𝑝=0

 

Where, 𝐿𝐵𝑃𝑝 is the MLBP operator, 𝑔𝑐 is the gray level of 𝑐 and 𝑔𝑝 is the gray level 

of 𝑝 pixels. Moreover, 𝑆(𝑥) in (1) refers to the sign function defined as, 

𝑆(𝑥) = {
1      𝑖𝑓𝑥 ≥ 0

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                       (2) 

Next, the center pixel value is generated by applying XOR operation on the values of 

𝐿𝐵𝑃𝑝.  This results in the following expression. 

ψ
⊕

(𝑠𝑝) = so ⊕ s1 ⊕ … ⊕ sP−1                                            (3) 

Where ⊕ denotes the XOR operator and ψ
⊕

(sp) is the binary iris code obtained as 

XOR output. Since it is a commutative operation of XOR, this can be performed by 

circularly shifting on 𝑠𝑝 in clockwise or anticlockwise. Now XOR is performed to 

reduce the size from 864 to 164. XOR is computed in the column vector. In other 

words, 8-row iris signature is reduced to a single row only. Fig. 4.5 and Fig. 4.6 

describe the MLBP operation. Fig. 4.5 shows the center pixel in a 3×3 neighborhood, 

while Fig. 4.6 illustrates the computation of  𝐿𝐵𝑃8,1 with XOR for a single pixel.  
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Fig. 4.5: Center element of a 3x3 pixel image 

 
Fig. 4.6: MLBP operation of 3x3 sub region: (a) the neighborhood of a pixel within the image, (b) the 
threshold version of the neighbourhood, (c) MLBP pattern where the middle pixel has been computed. 

Algorithm 2: Feature encoding using the proposed MLBP 

Input: Level three approximation part of the normalized image 

Output: Binary sequence of the normalized iris image. 

Main Process: 

Step 1: Read the intensity values of the level three approximation part of the 

normalized image. 

Step 2: Convert the RGB image to grayscale form 

Step 3: Resize the image if required and then store the size [𝑀, 𝑁] of the image 

Step 4: Divide the image into 8 segments. 

Step 5: For each of the image segments, apply a 3×3 kernel 

Step 6: Get the list of neighbourhood pixels, P 

Step 7: Loop through each neighbourhood pixel in the image  

Step 8: Take the center pixel (gc) and set it as a threshold for its P neighbors. 

Step 9: Compute the difference pixel value after finding out the difference between 

neighbouring pixels and centre pixels 
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Step 10: If the difference pixel value is less than zero, then set the sign function value 

of that neighbouring pixel to zero. Otherwise, set the sign function value to 1.  

Step 11: End of loop. 

Step 12: Apply the XOR operation of the sign function output to get the binary mask. 

Step 13: Place the binary output of the XOR operation in the center pixel. 

Step 14: Move the kernel in order to obtain a binary template. 

Step 15: Apply XOR operation across the columns. 

So, for the case of MLBP, the first LBP operation extracts the distinctive features to 

generate a unique iris code. This code is reduced from 8× 64 features to 1× 64 by 

applying the XOR operation. 

4.4 Summary 

Iris feature extraction is an important aspect of many modern security systems. Hence, 

an efficient and faster approach is important for iris recognition. This chapter 

proposes a new hybrid HWT and MLBP based technique to reduce feature size so that 

the iris images can be matched faster. HWT extracts the most prominent features of 

the iris, reducing the template size. In this work, a three-level HWT is applied to 

extract the region containing the major information of the iris image. The three-level 

approximation part resulting from HWT is considered as a major characteristics 

region. For instance, the repeated HWT converts a 64×512 normalized iris image into 

an approximation image of 8×64 which becomes a template of 1×64 after the 

application of MLBP and XOR. The proposed hybrid HWT and MLBP algorithm are 

applied on three different iris datasets. 
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CHAPTER 5 

LBPX: A Novel Feature Extraction Method for Iris 
Recognition 

 

5.1 Overview 

Iris recognition is a means of biometric identification. A key part of the recognition 

system using the iris is the extraction of prominent texture information or features in 

the iris. The identification delay in iris recognition can be reduced by reducing the 

feature vector generated from the feature extraction of iris images. A new form of 

LBP termed LBPX is proposed in this thesis as an iris feature extraction method. For 

this, input eye images are processed and converted to normalized iris images 

employing circular Hough transformation and Daugman’s rubber sheet model. Next, 

LBPX is applied to the normalized images. In this LBPX stage, rotation-invariant 

LBP operation takes place. The performance of LBPX based recognition system 

adopting iris image is evaluated in terms of accuracy and feature vector length. This is 

done for three datasets CASIA-IRIS-V4, UBIRIS, and IITD. 

5.2 Literature Review  

Several research papers describe iris feature extraction methods. The work in [38] 

used a bank of special filters with parameters modulated by circular and symmetric 

sinusoidal functions to extract the features of the iris image. Ma et al. [37] applied a 

bank of spatial filters to acquire local details of the iris. These spatial filters generate 

discriminating texture features for an iris image based on the characteristics of the iris. 

Mohammad AE Abdalla et al. [76] provided a method in order to analyze the 

amalgamation of the iris features extracted by DWT and DCT all at once. They used 

CASIA interval-V4 as an image database and multiclass SVM to classify the iris 

patterns [76]. Discrete cosine transform (DCT) was also applied to recognize the iris 

template of a person [39].  Younghui Wang applied Hough transform to find the iris’ 

inner and outer boundaries of the iris and then normalized the segmented iris image 

[77]. The db4 wavelet was used with Shanon entropy to decompose that normalized 

iris image and extract the important features from the decomposed image. Hamming 
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distance had been used for matching purposes [77]. Hammou Djalal Rafik et al. 

adopted Hough Transform for achieving the segmented iris image and 1D Log-Gabor 

filter for extracting the iris features from the segmented image [78]. They had also 

used Hamming distance for determining the authenticity of the person’s identity [78]. 

Amina A. abdo et al. [79] proposed an iris recognition system on the CASIA interval-

V4 iris image database combining histogram equalization and DCT to capture the iris’ 

discriminative features. Thiri Kyaw used Sobel edge operating to detect the iris edges 

and statistical correlation technique based on skewness and entropy to obtain less 

execution time [80]. Adamović et al. [81] applied the Base64 encoding algorithm for 

transforming a normalized iris segment into a template having stylometric-based 

features and then applied different machine learning models for performance 

evaluation. Muktar Danlami et al. [82] applied Gabor filter and Legendre wavelet 

filters on the processed image of three different datasets such as CASIA, MMU, and 

UBIRIS for extracting the unique feature of the segmented iris image in order to 

recognize the person’s identity. They evaluated and compared their proposed model 

based on the FRR, FAR, GAR (Genuine Acceptance Rate), and accuracy. Their result 

showed that the Legendre wavelet filter’s recognition accuracy is comparatively better 

than the Gabor filter for the UBIRIS image database. Chen et al. applied DCT and 

Gabor wavelet on the segmented iris images collected from the CASIA image 

database to perform the iris localization and iris extraction stage [75]. Finally, 

Euclidean distance and the nearest neighbor distance detector were used as classifiers 

in the iris recognition system [75]. Lasker Ershad Ali et al. [83] proposed a novel 

approach by applying RW (random walker) algorithm for segmenting the coarse iris 

segmentation in order to achieve the iris image with its corresponding binary mask 

and by utilizing Log-Gabor wavelet-based Contourlet transform (LGCT) feature 

descriptor with kernel-based extreme learning machine (KELM) classifier. CASIA-v4 

database was used in [84]. Oluwakemi Christiana Abikoye et al. [85] addressed a 

comparative analysis of three feature extraction methods. These schemes include 

Gabor/Haar Wavelet Transform and Scale Invariant Feature Transform (SIFT) 

applied to CASIA iris dataset. They declared in their experimental results that Gabor 

Wavelet method outperformed the other two methods in terms of training time, testing 

time, and recognition accuracy. The study in [31] performed feature extraction using 

1-D and 2-D Log-Gabor filters. Li et al. [40] reported the use of the convolutional 

neural network (CNN), while Umer et al. [41] used a texture code defined for each 
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pixel on a small region. Soliman et al. [42] removed eyelids and eyelashes and then 

masked the features obtained at the output of a Gabor filter.   

5.3 Methodology 

This section describes the LBPX method used in this thesis. The experiment was 

conducted on images collected from IITD [86], CASIA-IrisV1 (756 iris images of 

resolution 320x280 from 108 eyes) [87], and CASIA-IrisInterval [84]. After 

performing iris image pre-processing, iris segmentation, and iris normalization, LBPX 

was applied to extract the feature of the normalized iris image. Firstly, pre-processing 

was performed. As part of pre-processing, iris edge detection and noise removal were 

performed [88]. In this experiment, the Canny operator was applied to find the edges 

considering the image gradients. Then the operator focuses on local maxima. After 

that, a threshold value was applied by the operator for discovering the potential edge. 

In order to remove any unwanted noise, various basic filters were used [89]. In the iris 

segmentation stage, Hough transform was applied in finding the boundaries (inner as 

well as outer)  and next to find the areas of the eyelids and eyelashes. In the 

normalization stage, Daugman’s Rubber Sheet model was used in this case. The 

segmented iris images were transformed from the radial co-ordinate axis to the 

rectangular, polar co-ordinate axis to sustain the size invariance or translation 

invariance. LBPX was introduced in the feature extraction stage. LBPX is a gray scale 

and rotation invariant texture operator. This operator was derived by focusing the 

joint distribution of gray values within a circularly symmetric neighbour set of pixels. 

The proposed LBPX approach can be considered as a robust method in terms of gray 

scale variations due to the invariance property of the operator against any monotonic 

transformation of the gray scale. The gray scale-invariant operator can also integrate a 

specified set of rotation invariant patterns [90-93]. 

The proposed LBPX is a combination of the concepts of uniform LBP, rotation-

invariant LBP, and XOR operators. Firstly, the concept of a uniform LBP operator is 

discussed. A uniform LBP operator is a generalized grayscale scheme developed to 

extract certain binary texture T. These are fundamental features of the iris image and 

have a uniform look as there are limited discontinuities on the circular patterns. The 

uniform LBP operator detects the patterns at the circular neighbourhood of the 
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angular space. Uniform LBP operator can be denoted as  𝐿𝐵𝑃𝑄,𝑅 where Q indicates 

the circularly symmetric member set and the quantization factor of the angular space, 

and radius R of the circle indicates the spatial resolution. The term 𝐿𝐵𝑃𝑄,𝑅 can be 

expressed as  

𝐿𝐵𝑃𝑄,𝑅 = ∑ 𝑉(𝑔𝑞 − 𝑔𝑐) × 2𝑞                                           (5.1)

𝑄−1

𝑞=0

 

where 𝑉( ) is the sign function, the term 𝑔𝑐  is the gray value of the pixel placed at the 

center, 𝑔𝑞  indicates the gray values of Q number of pixels that are placed at equal 

distance on the circle circularly symmetric neighbour set. The 𝐿𝐵𝑃𝑄,𝑅 is constant 

against any monotonic transformation of gray values of the images. The operator 

𝐿𝐵𝑃𝑄,𝑅 generates 2𝑄 output values for 2Q binary patterns for the case of P pixels. For 

rotated images, the term 𝑔𝑞 moves circularly around g0 . When a binary pattern is 

rotated, a different 𝐿𝐵𝑃𝑄,𝑅 value is generated. However, when the pattern has only 1’s 

or only 0’s, the different 𝐿𝐵𝑃𝑄,𝑅 value remains constant irrespective of the rotation. 

The rotation invariant LBP operator 𝐿𝐵𝑃𝑄,𝑅
𝑟𝑖   can be expressed as, 

𝐿𝐵𝑃𝑄,𝑅
𝑟𝑖 = min{𝑅𝑂𝑅(𝐿𝐵𝑃𝑄,𝑅 , 𝑛)  | 𝑛 = 0, 1, … … . . , 𝑄 − 1     (5.2) 

where ROR(y,n) is the circular shift on the right side of Q-bit number, and y n means 

the number of shifts. As the formal definition of ‘uniform’ patterns, a uniformity 

measure U(‘pattern’) has been introduced, which indicates the number of bitwise 

changes known as transitions in space. 

𝐿𝐵𝑃𝑄,𝑅
𝑟𝑖𝑢2 = {

∑ 𝑉(𝑔𝑞 − 𝑔𝑐)𝑖𝑓 𝑈(𝐿𝐵𝑃𝑄,𝑅) ≤ 2
𝑄−1
𝑞=0

𝑄 + 1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
              (5.3) 

where,  

𝑈(𝐿𝐵𝑃𝑄,𝑅) = |𝑉(𝑔𝑄−1 − 𝑔𝑐) − 𝑉(𝑔0 − 𝑔𝑐)| + ∑ |𝑉(𝑔𝑞 − 𝑔𝑐) − 𝑉(𝑔𝑞−1 − 𝑔𝑐)|𝑄−1
𝑞=1     

(5.4) 

In  𝐿𝐵𝑃𝑄,𝑅
𝑟𝑖𝑢2, the superscript riu2 is the rotation invariant ‘uniform’ pattern which has a 

maximum at most of 2. It can be noted that Q+1 ‘uniform’ binary patterns exist. After 
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incorporating the uniform and rotation invariant LBP concepts, the proposed LBPX 

operator calculates XOR operation through its column vector. 

5.4 Summary 

This chapter describes a novel feature extraction method termed LBPX. This LBPX is 

a combination of the ideas of uniform LBP, rotation-invariant LBP, and an XOR 

method followed by LBP operations. The proposed method leads to a smaller feature 

vector size compared to existing methods, including RIU LBP.  
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CHAPTER 6 

Matching and Distance Measurement 
 

6.1 Overview 

After extracting the features applying discrete wavelet transforms or local binary 

patterns, the normalized iris image is transformed into a unique representation within 

the feature vector. In order to obtain the acceptance and refusal rate, a distance is 

calculated to measure the close-ness of an iris pattern match. The template that is 

generated in the feature encoding process will also need a corresponding matching 

metric, which gives a measure of similarity between two iris templates. This metric 

should give one range of values when comparing templates generated from the same 

eye, known as intra-class comparisons, and another range of values when comparing 

templates created from different irises, known as inter-class comparisons. These two 

cases should give distinct and separate values so that a decision can be made with 

high confidence as to whether two templates are from the same iris, or from two 

different irises. 

6.2 Hamming Distance 

The Hamming distance gives a measure of how many bits are the same between two-

bit patterns. Using the Hamming distance of two-bit patterns, a decision can be made 

as to whether the two patterns were generated from different irises or from the same 

one.  

In comparing the bit patterns X and Y, the Hamming distance, HD, is defined as the 

sum of disagreeing bits (sum of the exclusive-OR between X and Y) over N, the total 

number of bits in the bit pattern.  

𝐻𝐷 =
1

𝑁
∑ 𝑋𝑖(𝑋𝑂𝑅)𝑌𝑖

𝑁

𝑖=1

                           (6.1) 

Since an individual iris region contains features with high degrees of freedom, each 

iris region will produce a bit-pattern that is independent of that produced by another 
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iris. On the other hand, two iris codes produced from the same iris will be highly 

correlated.  

If two bits patterns are completely independent, such as iris templates generated from 

different irises, the Hamming distance between the two patterns should equal 0.5. 

This occurs because independence implies the two-bit patterns will be totally random, 

so there is a 0.5 chance of setting any bit to 1 and vice versa. Therefore, half of the 

bits will agree, and half will disagree between the two patterns. If two patterns are 

derived from the same iris, the Hamming distance between them will be close to 0.0 

since they are highly correlated, and the bits should agree between the two iris codes.  

The Hamming distance is the matching metric employed by Daugman, and 

calculation of the Hamming distance is taken only with bits that are generated from 

the actual iris region. Two iris templates generated from the same iris will have a 

Hamming distance of 0.0; in practice, this will not occur. Normalization is not perfect, 

and also, there will be some noise that goes undetected, so some variation will be 

present when comparing two intra-class iris templates.  

In order to account for rotational inconsistencies, when the Hamming distance of two 

templates is calculated, one template is shifted left and right bit-wise, and a number of 

Hamming distance values are calculated from successive shifts. This bit-wise shifting 

in the horizontal direction corresponds to rotation of the original iris region by an 

angle given by the angular resolution used. If an angular resolution of 180 is used, 

each shift will correspond to a rotation of 2 degrees in the iris region. This method is 

suggested by Daugman [3, 4, 7] and corrects for misalignments in the normalized iris 

pattern caused by rotational differences during imaging. From the calculated 

Hamming distance values, only the lowest is taken since this corresponds to the best 

match between two templates.  

The number of bits moved during each shift is given by two times the number of 

filters used, since each filter will generate two bits of information from one pixel of 

the normalized region. The actual number of shifts required to normalize rotational 

inconsistencies will be determined by the maximum angle difference between two 

images of the same eye, and one shift is defined as one shift to the left, followed by 

one shift to the right. The shifting process for one shift is illustrated in Fig. 6.1. One 
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shift is defined as one shift left and one shift right of a reference template. In this 

example, one filter is used to encode the templates, so only two bits are moved during 

a shift. The lowest Hamming distance, in this case, zero, is then used since this 

corresponds to the best match between the two templates.  

 
Fig. 6.1: An illustration of the shifting process.  

 

6.3 Experimental Results 

Figs. 6.2 and 6.3 illustrate the unmatched and matched condition respectively. For 

unmatched conditions, the obtained hamming distance is 0.4632. On the contrary, for 

the matched condition, the achieved hamming distance is 0.2455 since the threshold 

value of 0.28 is selected in this case.  
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Fig. 6.2: Unmatched Conditions 

 

 

Hamming Distance=0.4632 
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Fig. 6.3: Matched Condition 

 

 

 

 

 

Hamming Distance=0.2455 
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CHAPTER 7 

Experimental Result and Analysis 
 

7.1 Overview 

In this chapter, the performance of the iris recognition system as a whole is examined. 

Tests were carried out to find the best separation so that the false match and false 

accept rate is minimized and to confirm that iris recognition can perform accurately as 

a biometric for recognition of individuals. As well as confirming that the system 

provides accurate recognition; experiments were also conducted in order to confirm 

the uniqueness of human iris patterns by deducing the number of degrees of freedom 

present in the iris template representation. There are a number of parameters in the iris 

recognition system, and optimum values for these parameters were required in order 

to provide the best recognition rate. 

7.2 Datasets 

7.2.1 Chinese Academy of Sciences - Institute of Automation (CASIA) 

CASIA Iris Image Database Version 1.0 (CASIA-IrisV1) includes 756 iris images 

from 108 eyes. For each eye, 7 images are captured in two sessions with our self-

developed device CASIA close-up iris camera, where three samples are collected in 

the first session and four in the second session. Fig. 7.1 represents the sample images 

CASIA-IrisV1. All images are stored in BMP format with resolution 320*280[87]. 

CASIA-IrisV4 is an extension of CASIA-IrisV3 and contains six subsets. The three 

subsets from CASIA-IrisV3 are CASIA-Iris-Interval, CASIA-Iris-Lamp, and CASIA-

Iris-Twins, respectively[84]. The three new subsets are CASIA-Iris-Distance, CASIA-

Iris-Thousand, and CASIA-Iris-Syn. CASIA-IrisV4 contains a total of 54,601 iris 

images from more than 1,800 genuine subjects and 1,000 virtual subjects. All iris 

images are 8 bit gray-level JPEG files, collected under near-infrared illumination or 

synthesized. Fig. 7.2 represents the iris images of CASIA-Iris-Interval. 
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Fig. 7.1: Example iris images in CASIA-IrisV1 

 

Fig. 7.2: Example iris images in CASIA-Iris-Interval 

7.2.2 MMU 

MMU1 iris database contributes a total number of 450 iris images (refer to Fig. 7.3) 

which were taken using LG IrisAccess ®2200. This operates at the range of 7-25 cm. 

On the other hand, MMU2 iris database consists of 995 iris images [94, 95]. 

 

Fig.7.3: Example iris images in MMU1 Database 
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7.2.3 UBIRIS Database 

Many iris recognition algorithms achieve almost perfect results even though they 

operate under advantageous conditions, such as minimal picture noise factors. These 

settings are difficult to achieve and require a high level of cooperation from the 

subject, who is subjected to longer and more painful image collection processes. The 

goal of UBIRIS is related to this point: it provides images with different types of 

noise, simulating images captured without or with minimal collaboration from the 

subjects, to become a practical resource for the evaluation and development of robust 

iris identification methodologies. The UBIRIS database contains 1877 photos that 

were gathered from 241 individuals over two separate sessions in September 2004 

[96, 97]. It is one of the largest publicly accessible and freely available iris databases. 

7.3 Inner and Outer Boundary Detection  

Fig. 7.4 illustrates the normalization of iris images from three datasets. For each of the 

datasets; the one original input image is shown, followed by its inner and outer 

boundary detection, and then its segmented version and finally its normalized version. 

Three original images from three datasets are shown in Figs. 7.4(a), 7.4(e) and 7.4(i). 

First of all, Fig. 7.4(a) is one original image from CASIA-Iris-V4 dataset. For the iris 

image in Fig. 7.4(a), Figs. 7.4(b), 7.4(c) and 7.4(d) represent the corresponding inner 

and outer boundaries, segmented and normalized versions, respectively. Secondly, 

Fig. 7.4(e) is one original image from CASIA-Iris-V1 dataset. For the iris image in 

Fig. 7.4(e), Figs. 7.4(f), 7.4(g), and 7.4(h) represent the corresponding inner and outer 

boundaries, segmented and normalized versions, respectively. Thirdly, Fig. 7.4(i) is 

one original image from the MMU iris database and Figs. 7.4(j), 7.4(k) and 7.4(l) 

represent the corresponding inner and outer boundaries, segmented and normalized 

versions, respectively. 
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(a) (b) (c) (d) 

 

   

(e) (f) (g) (h) 

   

 

(i) (j) (k) (l) 
Fig. 7.4: Illustrations of (a, e, i) original input images; (b, f, j) images with inner and outer boundary 

detection; (c, g, k) segmented iris regions, (d, h, l) iris images after normalization 

 

7.4 Performance Evaluation using Haar wavelet and MLBP  

This section discusses the experimental results of the proposed method. For the 

experimentation, images are obtained from three different datasets [33-35]. Figs. 7.1, 

7.2, and 7.3 correspond to images from CASIA-IRIS-V4 [33], CASIA-IRIS-V1 [34], 

and MMU [35] datasets, respectively. The datasets are described in Table 7.1. 

CASIA-IRIS-V4  dataset consists of 2639 images of 249 subjects/persons. On the 

other hand, the CASIA-IRIS-V1  dataset has 756 iris images from 108 eyes of 54 

subjects, while the MMU  dataset consists of 450 images of 45 subjects. Firstly, one 

original iris image from [84] is illustrated in Fig. 7.5(a), whereas Fig. 7.5(b) is the 

corresponding template after applying LBP to LL3 of size 8×64. For clarity, Fig. 

7.5(c) illustrates a larger view of the final template. The template is further reduced to 

1×64 size by applying XOR operation through column vectors. Secondly, Figs. 7.6(a), 

7.6(b), and 7.6(c) illustrate another original iris image from [87], its corresponding 
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template after applying LBP, and a larger view of the template, respectively. Thirdly, 

Figs. 7.7(a), 7.7(b) and 7.7(c) illustrate the same for an original iris image from [95]. 
Table 7.1: Description of the datasets used in this work 

 
Dataset Images Subjects Sensor Light 

wavelength 
CASIA-IRIS-V4 

(CASIA-Iris 
-Interval) [84] 

2639 249 CASIA close-up 
iris camera 

 

NIR 

CASIA-IRIS-V1 
[87] 

756 54 CASIA close-up 
iris camera 

NIR 

MMU (MMU 1) 
[95] 

450 45 LG EOU 2200 NIR 

 

 
The performance of the proposed method is evaluated for above mentioned three 

datasets. For each dataset, 90% (rounded up to the next integer) of the images are 

considered for training while the remaining are considered for testing.   

 

 
 
 
 
 
 
 
  
(a) 

 
(b) 
 

 
(c) 

 
Fig. 7.5: (a) An original iris image from CASIA-IRIS-V4 dataset [84], (b) the final generated iris 

template,  (c) larger view of the binarized template 

 
 
 
 
  
 
 
 
(a) 

 
(b) 
 

 
(c) 

Fig. 7.6: (a) An original iris image from CASIA-IRIS-V1 dataset [87], (b) the final generated iris 
template, (c) larger view of the binarized template 



73 
 

 
 

 
(a) 

 
(b) 
 

 
(c) 

 
Fig. 7.7. (a) An original iris image from the MMU dataset [95], (b) the final generated iris template, (c) 

a larger view of the binarized template 

Next, the proposed new method is compared with the existing techniques reported 

in the literature [3], [37, 38], [51], [54]. Table 7.2 presents the comparative results of 

the proposed method with the previous ones. For the proposed method, the best 

results that are obtained with Hamming distance method using the CASIA-IRIS-V1 

dataset are taken into consideration. In this case, the threshold value is set for 

computing FAR which is the rate at which a biometric security system incorrectly 

accepts an unauthorized user and FRR which is the rate at which the system 

incorrectly rejects an authorized user. In other words, the FAR is the ratio of the 

number of false acceptance (NFA) to the number of imposter verification attempts 

(NIVA), whereas FRR is the ratio of the number of false rejections (NFR) to the 

number of enrollee verification attempts (NEVA). This proposed method and the 

works in [37, 54] use the same CASIA-IRIS-V1 dataset having BMP images with a 

resolution of 320×280.  From Table 7.2, it can be seen that the proposed method has a 

FAR of 0.003% and FRR of 0.80% and an average accuracy of 98.30%. The feature 

vector length and the computation time of the proposed scheme is significantly lower 

than existing methods reported in [3], [37, 38], [51], [54]. Among the research works 

listed in Table 7.2, the proposed method has the second-best (lowest) FAR percentage 

while the work in [54] reports having a FAR of 0%, but its generated feature vector 

length is over 8.5 times that of our proposed one. The extremely low FAR (0.003%) 

attained by our method indicates its strong security capability by not allowing access 

to imposter iris. As a comparison to the method proposed in [37], which is a highly 

cited work in this domain, our method outperforms in all three performance metrics 

with highly reduced feature vector length (1/24th of the former), making our method 

highly suitable for real-time person identification. The average accuracy of the 

proposed scheme is slightly lower than those reported in [38], and [54]. Similarly, the 
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method in [38], though it produces higher accuracy, suffers from the highest FAR and 

FRR of all methods, including ours. Considering all performance metrics and very 

small feature vector, the proposed method is highly attractive for real-time 

applications. 
 

Table 7.2: Comparisons of results with the existing methods 
 

Reference Feature 
Vector 
length 

FAR 
(in 
%) 

FRR 
(in 
%) 

Avg. 
Accuracy 
(in %) 

Dataset Image Resolution 

[37] 1×1536 0.02 1.98 98.00 CASIA-IRIS-
V1 

BMP format with 
resolution 320×280 
 

[38] 1×384 0.10 3.56 99.85 CASIA-IRIS-
V1 

BMP format with 
resolution 320×280 
 

[54] 1×546           0.00 0.69 99.14 CASIA-IRIS-
V1 

BMP format with 
resolution 320×280 

Proposed 
method   
(Hamming 
distance)       

1×64           0.003 0.80 98.30 CASIA-IRIS-
V1 

BMP format with 
resolution 320×280 

Proposed 
method   
(Hamming 
distance)       

1×64           0.004 0.82 98 CASIA-IRIS-
V4 

8-bit Gray level 
JPEG 

Proposed 
method   
(Hamming 
distance)       

1×64           0.008 0.88 96.80 MMU 1 Greyscale image 
with resolution 
320×240 
 

 

 

 

  

  

 

   

   

 

 96.40%, while UBIRIS has 96% accuracy.

and CASIA-IRIS-V4  datasets, respectively.  In addition,  IITD  has  an  accuracy  of 

accuracy  value  of 97.15%  and 97.20%  is  achieved  for  the  case  of  CASIA-IRIS-V4 

7.3 shows the accuracy values of LBPX for three datasets. Table 7.3 indicates that the 

of 14-55 years. Out of 224, 176 users are males, and 48 users are females [86]. Table 

IITD dataset consists of a total of 1120 images collected from 224 users having ages 

images. There are 2639 images of 249 subjects in the CASIA-IRIS-V4 database [84]. 

enables the recognition techniques because of having several noise factors within the 

the UBIRISv1  database collected  from  241  persons [96].  This set  of  iris  images 

experimentation,  images  are  obtained  from  three  datasets. There  are  1877  images  in 

  In this section, we describe the experimental results of the LBPX scheme. For the 

7.5 Performance Evaluation using LBPX



75 
 

 
 

 
Table 7.3: Comparison of accuracy of proposed LBPX 

 
Dataset Successful Matching Rate using HD 

CASIA-IRIS-V1 97.15% 
CASIA-IRIS-V4 97.20% 

UBIRIS 96% 
IITD 96.40% 

 
 

Table 7.4: Comparative analysis between LBPX and other methods 
 

Reference Size of Feature 
Vector 

No. of times higher 
than the proposed 

method 

Overall Recognition 
Accuracy 

[77] 1x384 48 99.85% 

[44] 1x1536 192 98% 

[83] 1x400 50 90.34% 

[31] 1x200 25 98.63% 

[31] 1x1000 125 96.56% 

[40] 1x992 124 86.53% 

RIU LBP (Q=24, 
R=3) 

1x26 3.25 97.20% 

RIU LBP (Q=16, 
R=2) 

1x18 2.25 96.60% 

LBPX 1x8 - 97.15% 
 

Table 7.4 shows the comparative summary of LBPX and existing methods. CASIA 

Iris-V1 dataset was used in [31]. CASIA Iris-V4 dataset was used in [44, 77, 83].In 

Table 7.4, the size of the feature vectors and the recognition accuracy is shown for 

different studies. Results show that the work in [77] results in a feature vector size of 

1x384 at an accuracy of 99.85%. The performance of RIU LBP was also evaluated. It 

was found that RIU LBP (Q=24, R=3) achieved a vector size of 1x26 at an accuracy 

of 97.20%, while RIU LBP (Q=16, R=2) exhibited a vector size of 1x18 at an 

accuracy of 96.60%. On the other hand, the proposed LBPX has a reduced feature 

vector size of only 1x8 at an accuracy of 96.40%. Therefore, LBPX outperforms 

others in terms of reduced feature vector size. 
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CHAPTER 8 

Conclusion and Future Works 
 

8.1 Summary of the Work 

This thesis has presented an iris recognition system and two algorithms for iris feature 

reduction.  

Firstly, an iris recognition method is presented using an efficient iris feature 

extraction for the selection of optimal features with reduced feature-length. Firstly, 

the Haar wavelet is applied to the normalized iris. The three-level Haar wavelet 

decomposition produces LL3 (level-3 approximation part) which is considered as a 

major characteristics region. A similar approach has been utilized for local binary 

pattern feature extraction used in the approach. LBP operators cannot properly detect 

large-scale textural structures. To overcome this problem, this feature extraction 

scheme has been applied to LL3 part, and reduced feature-length has been obtained. 

Secondly, a novel LBP method termed LBPX is proposed in order to reduce the size 

of the iris feature vector more. Different types of rotation invariant LBP has been 

applied and compared to LBPX for different iris databases.  Results show that the 

proposed methods reduce the feature-length multiple times than the existing methods 

reported in the literature. This reduced length results in a reduction in computation 

time. This reduced feature-length is at the cost of a small amount of reduction in the 

accuracy level compared with some previously proposed methods but still produces 

better FAR and FRR than existing methods. Hence, the proposed two methods are 

highly attractive to develop a fast and reliable iris recognition system. 

8.2 Main Findings of the Work 

At the feature extraction stage, the proposed methods considerably reduce the 

computation time and also shrink the feature-length without loss of major information 

of the characteristics region. It is proposed in this thesis that a novel hybrid HWT and 

MLBP-based technique be developed to reduce feature size in order to match iris 

pictures more quickly. The most notable features of the iris are extracted using HWT, 

which reduces the template size. In this study, a three-level HWT is used to extract 
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the region of the iris picture that contains the majority of the important information. It 

is deemed to be a major characteristics region when the three-level approximation part 

derived from HWT is evaluated. The repeated HWT, for example, changes a 64x512 

normalized iris picture into an approximation image of 8x64, which after application 

of MLBP and XOR becomes a template of 1x64 following the application of MLBP. 

On three independent iris datasets, the suggested hybrid HWT and MLBP methods 

are tested and proven to be effective. Using the proposed method, the feature-length is 

reduced by multiple orders of magnitude compared to the existing methods reported 

in the literature, according to the results. As a result of the shorter length, the 

computation time is shorter as well.  

A new form of the local binary pattern (LBP) termed LBPX is proposed in this thesis 

as an iris feature extraction method. In this LBPX, we combine the concepts of 

uniform LBP, rotation-invariant LBP, and an XOR approach followed by LBP 

operations to create a hybrid of these concepts. Comparing the suggested technique to 

current methods, such as RIU LBP, the new method results in a reduced feature vector 

size. It is possible to attain an acceptable accuracy with a 1x8 feature vector size when 

used to the CASIA, UBIRIS, and IITD datasets. The performance of LBPX based 

recognition system adopting iris image is evaluated in terms of accuracy and feature 

vector length. Furthermore, results show LBPX outperforms existing feature 

extraction methods in terms of reduced feature-length, ensuring faster iris recognition. 

This reduced length can definitely improve speed. The proposed approaches can be 

further improved by proper iris segmentation with removing image artefacts. 

However, this proposed approach is effective enough to be used with a security 

system where a higher speed of recognition rate is required with more accuracy. 

8.3 Suggestions for Future Work 

In this thesis, the proposed approaches perform reasonably well. However, there are a 

number of issues, which should be addressed and resolved. In order to increase the 

accuracy of the system, a more accurate and elaborate eyelids and eyelashes detection 

scheme can be employed. Since the quality of the images affects the overall matching 

accuracy, an iris quality assessment scheme can be deployed. The most complex part 

involves the feature extraction and size of feature vector reduction with HWT and 

MLBP maintaining good recognition accuracy. Since the system has been 
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implemented in MATLAB, which is an interpreted language, development of speed 

can be achieved if the most time-consuming part is implemented in C or C++. 

Traditional Hamming Distance and Euclidean distance have been used for the 

classification of iris templates. A more accurate classifier can be used for better 

classification. In the future, Artificial Neural Network strategies such as deep learning 

can be employed to reduce the computational time for the overall iris recognition 

system. In order to make the proposed approach applicable in real-time situations, 

reducing the overall time consumption may be considered an important factor. Many 

efficient systems for iris recognition are available nowadays. However, the properties 

of iris texture and the underlying processes of generating it have not been explored. 

Therefore, an additional room for the extension of the successful iris recognition 

system is to give an insight into these aspects. 

Although the experimental results exhibit that the proposed approaches work well, 

there are still some anomalies that should be considered. The iris liveness detection is 

a major issue in this respect. Fake iris detection is another important factor that should 

be handled carefully. Contact lenses are vastly used nowadays, which can change the 

individual’s iris recognition accuracy. They may create a problem for any iris 

recognition system. Furthermore, spectacles may introduce too much specular 

reflection, which results in failure of automatic segmentation or recognition. 
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