
M.Sc. Engg. (CSE) Thesis

A Probabilistic Method for Filling Gaps in Genome
Assemblies

Submitted by

Sumit Tarafder
0417052023

Supervised by
Dr. Atif Hasan Rahman

Submitted to
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering

January 2022

Acknowledgement

I am thankful to Almighty for giving me the patience to fulfil this research work. I
am also grateful to my mother for giving me inspiration throughout. Finally, I want to
express my gratitude to the wise committee members whose invaluable guidance helped
me to navigate through this work and my supervisor whose advice and continuous
support this whole time at every aspect of this critical work helped me to complete my
thesis.

Dhaka
January 25, 2022

Sumit Tarafder
0417052023

iii

Contents

Candidate’s Declaration i

Board of Examiners ii

Acknowledgement iii

List of Figures vi

List of Tables vii

Abstract viii

1 Introduction 1
1.1 Genes and genomes . 1
1.2 Generations of genome sequencing technologies 2
1.3 Genome assembly and gaps . 3
1.4 Contributions of this research . 5
1.5 Thesis organization . 6

2 Literature review 7
2.1 Long read or contig based methods . 7
2.2 Short read based methods . 9

2.2.1 GapCloser . 10
2.2.2 Gap2Seq . 10
2.2.3 GapFiller . 11
2.2.4 Sealer . 11

2.3 Limitations of the existing tools . 13
2.4 Motivation of the work . 15

3 Preliminaries 16
3.1 Sequenced reads . 16
3.2 Read pairs . 17
3.3 Insert size of a read pair . 17

iv

3.4 Quality of sequencing reads . 19
3.5 N50 statistics of genome assembly . 20
3.6 Sequencing read coverage . 21
3.7 Maximum Likelihood Estimation . 22
3.8 Expectation Maximization algorithm 23

4 Methods 25
4.1 Algorithm Overview . 26
4.2 Aligning and parsing read pairs . 26
4.3 A generative model for sequencing . 27
4.4 Learning distributions . 28
4.5 Gap Filling using the EM algorithm . 29
4.6 Selecting the gap length . 34
4.7 Finalizing the gap sequence . 34
4.8 Implementation . 35
4.9 Script iterations and read usage . 36
4.10 Adjustment of gap filling based on heuristics 38

5 Experiments and results 43
5.1 The genome assemblies . 43
5.2 The sequenced reads . 44
5.3 Configurations of the tools used for comparison 44
5.4 Quality Evaluation of Filled Sequence 45
5.5 Findings on the GAGE datasets . 45
5.6 Discussions . 52
5.7 Time and memory usage comparison 54
5.8 Commands and configurations used to run the tools 59

6 Conclusions 60
6.1 Discussions . 61
6.2 Future works . 62
6.3 Availability . 62

References 63

v

List of Figures

1.1 Genome assembly overview . 4

2.1 Overview of FGAP . 7
2.2 Steps of gapFinisher algorithm . 9
2.3 Schematic overview of GapFiller . 12
2.4 Local assembly methods for the tools 13
2.5 Existence of multiple eulerian path in a graph 14

3.1 A graphical view of insert-size concept of a read pair. 18
3.2 Insert-size distribution for paired-end library 18
3.3 N50 calculation . 20
3.4 A flowchart of EM algorithm . 23

4.1 Overview of Figbird. 25
4.2 Different types of read pairs used for gap filling 27
4.3 Overview of CGAL . 28
4.4 Learned insert size probabilities on ABySS2 assembly 29
4.5 Possible placement of unmapped read in different gap positions 30
4.6 Formulation of gap filling in Figbird using EM algorithm 31
4.7 Range exploration of gaps with unknown lengths 38
4.8 Consensus string at each EM iteration 40
4.9 Slow convergence due to limited overlap between reads 41
4.10 Zero alignment with both flanks . 42
4.11 An illustration of discontinuous placement of reads 42

5.1 Scatter plots showing the performance of Figbird compared with four
state-of-the-art gap filling tools in literature 53

vi

List of Tables

4.1 Reads used in gap filling . 36

5.1 Genomes used in evaluation . 43
5.2 Read sets used in evaluation . 44
5.3 Quality of the original and the gap-filled assemblies of Staphylococcus

aureus . 46
5.4 Quality of the original and the gap-filled assemblies of Rhodobacter

sphaeroides . 48
5.5 Quality of the original and the gap-filled assemblies of Human

Chromosome 14 . 50
5.6 Gap-closing performance of the tools on draft genome assemblies of

Staphylococcus aureus . 54
5.7 Gap-closing performance of the tools on draft genome assemblies of

Rhodobacter sphaeroides . 56
5.8 Gap-closing performance of the tools on draft genome assemblies of

Human Chromosome 14 . 57

vii

Abstract

Advances in sequencing technologies have led to sequencing of genomes
of a multitude of organisms. However, draft genomes of many of these
organisms contain a large number of gaps due to repeats in genomes, low
sequencing coverage and limitations in sequencing technologies. Although
there exists several tools for filling gaps, many of these do not utilize
all information relevant to gap filling. Here, we present a probabilistic
method for filling gaps in draft genome assemblies using second generation
reads based on a generative model for sequencing that takes into account
information on insert sizes and sequencing errors. Our method is based
on the expectation-maximization (EM) algorithm unlike the graph based
methods adopted in the literature. Experiments on real biological datasets
show that this novel approach can fill up large portions of gaps with small
number of errors and misassemblies compared to other state of the art gap
filling tools. Thus this unique probabilistic method for filling gaps is a
valuable technique in terms of balance between closing gap sequence and
subsequent introduction of error. The method is implemented using C++ in
a software named “Filling Gaps by Iterative Read Distribution (Figbird)”,
which is available at: https://github.com/SumitTarafder/Figbird.

viii

https://github.com/SumitTarafder/Figbird

Chapter 1

Introduction

1.1 Genes and genomes

In the field of genomics, the complete material that constitutes the materials of a living
being called organism, i.e., all of the chromosomes of a cell is referred to as genome.
Genome contains useful information for the development and functionalities of that
species and this information is then passed on from one generation to the next over time.
Some important experiments done between the 1920s and the 1950s showed concrete
evidence that the genetic information was carried by DNA (deoxyribonucleic acid) or
RNA (ribonucleic acid). There are four types of DNA nucleotides namely Adenine (A),
Cytosine (C), Guanine (G) and Thymine (T). Moreover, RNA can be represented as
a string of four types of nucleotide namely Adenine (A), Cytosine (C), Guanine (G)
and Uracil (U). In general, by the word “genome”, we refer to the chromosomes in the
nucleus of a eukaryotic cell. But, eukaryotic cells also have organelles like mitochondria
and chloroplasts that have their own DNA and referred to as the mitochondrial or
chloroplast genomes to distinguish them from the nuclear genome.

Certain regions of genome termed as “genes” or coding regions were separated by the
scientists from non-coding regions that were simply referred to as intergenic sequences.
After many years of research, it has been established that the phenotypic traits of a
species are controlled by these specific section of genome, i.e., genes [1]. The process of
replication, transcription, and translation known as “Central Dogma”. With the help
of this process, the genetic heredity and encoding of DNA into various gene products is
maintained. These genetic products can be RNAs or proteins based upon orientation
of genes. Various experiments have shown that any perturbation of these genes are
responsible for the cause of various genetic disorders and diseases [2].

1

1.2. GENERATIONS OF GENOME SEQUENCING TECHNOLOGIES 2

1.2 Generations of genome sequencing technologies

Genome sequencing of an organism, i.e., determining nucleotide base order which is
correct in a DNA macromolecule using biochemical methods and sequencing machines
that make up the entire genome is a prerequisite for performing experiments to study
that organism’s cellular functions and fundamental to understanding how different
organisms relate to each other. A DNA sequencing machine outputs files which holds
DNA sequences [3]. Scientists have researched for a long time to sequence the complete
genomes of many organisms and till now, it has been completed for thousands of species
from all domains of life and many more are to be completed soon. As sequencing
technology has been going through a rapid development, there are three generations
of technology that have evolved over past two decades. We will discuss about their
characteristics below in brief.

• First generation of sequencing: The first generation of technologies were developed
in 1977 by Sanger [4] and Maxam [5]. Sanger Sequencing is a method that
terminates chain or the sequencing by synthesis method. It can create fragments
or reads of length 400-900 approximately. Despite Sanger sequencing was the
ultimate prevalent technique of sequencing based on the efficiency which is high
and radioactivity which is low [6], it is not applied currently due to it’s high cost
and enormous time to complete the run. For example, it took almost fifteen years
for the human genome to be sequenced using the Sanger sequencing which costed
approximately 100 million US dollars and a cooperation of lot of laboratories
around the world.

• Second generation of sequencing: The introduction of a new flurry of sequencing
technologies broke the restriction of the first generation. These new technologies
are known as “Next Generation Sequencing (NGS) Technologies” or Second
Generation of Sequencing (SGS). Some of the important characteristics of NGS
include parallel generation of millions of short reads using amplification libraries
with lower processing time and cost than Sanger sequencing. There are three
main SGS approaches : 454/Roche in 2005 [7], Solexa/Illumina [8] in 2006 and in
2007 the SOLiD/ABi. After using the 454 Genome Sequencer, it took time which
is close to only two months and in terms of cost it took close to one of hundred
than that [9] of Sanger based methods to complete human genome sequencing
project. Illumina technology has been able to produce short reads in paired-end
(PE) manner in which they sequence both ends of each DNA strand. Illumina
Hiseq technology has managed to generate reads up to length of 150 base pairs
for both single end (SE) and paired end (PE) reads [10].

1.3. GENOME ASSEMBLY AND GAPS 3

• Third generation of sequencing: Due to the requirement of PCR amplification
step in SGS technologies, the execution time and price also gets higher. In
addition to that, most genomes are extremely repetitive and SGS technologies
can’t solve these repeat regions due to relative short length of reads. The amount
of repetitive sequences in human genome(H. sapiens) is above 60% [11]. For
these reasons, “third generation sequencing” (TGS) which is a a new generation of
sequencing has been developed which does not require the amplification libraries.
The technology of TGS consists of approaches like Single Molecule Sequencing
Technology (SMRT) [12]. This approach has been the basis for sequencers such as
Pacific Biosciences and Oxford Nanopore sequencing. These can generate longer
read sequences of lengths up to 10 kilobase pairs (Kbp) and beyond. Although
long reads are significantly larger and thus can positively affect genomic analysis,
it comes with the cost of containing more error than Illumina reads. These
error mostly consist of insertion errors and also sometimes deletions errors and
a random distribution of errors along the long read [13] can be observed. Both
PacBio and Nanopore technologies have far higher error rate (88− 94% accuracy
for Nanopore and 85− 87% for PacBio) as opposed to 99.9% accuracy for second
generation Illumina HiSeq 4000 [14].

1.3 Genome assembly and gaps

As next generation sequencing technologies have become very advanced, more and more
sequencing data are getting available day by day. However, genomes can be billions of
nucleotide base pairs long and there is no existing technology that can sequence the
entire genome in one single run. So instead of constructing the complete genome,
different generation of sequencing technologies discussed above generate millions of
smaller fragments called reads. The process of reconstructing the original genome from
these read sequences is known as genome assembly. A graphical overview of the steps
of genome assembly is presented in Figure 1.1.
Genome assembly pipeline constitutes of the following steps. The first step is to
stitch the read sequences generated from sequencers into a larger and contiguous
sequences called contigs. Then using paired-end (PE) or mate-pair (MP) reads, these
contigs are oriented and organized into a larger linear ordering of sequences named as
scaffolds. A large number of de novo assemblers, i.e., novel algorithms and pipelines
such as ABySS [15], Velvet [16], Allpaths-LG [17], SPAdes [18], ISEA [19], EPGA [20],
EPGA2 [21] etc. have been developed for this assembly purpose. Nonetheless, the
process of finding a complete genome remains a demanding task as the assemblers are

1.3. GENOME ASSEMBLY AND GAPS 4

Figure 1.1: Genome assembly overview
.

unable to assemble parts of genome due to the presence of repetitive elements, regions
with low read coverage, heterozygous alleles, sequencing errors etc. This creates a
fragmented version of the genome rather than a complete assembly (Miller et al., 2010;
Treangen and Salzberg, 2012). Although the presence of approximate insert distance
information of read pairs may help to solve these issues [22, 23], this method will be
unable to solve the deeper problems of low-coverage and repetitive elements.

So, the draft assemblies constructed with these de novo assemblers still contain
thousands of intervening gaps within the assembled scaffolds as shown in Figure 1.1.
This is due to the fact that contig extension is prevented due to various factors such as
repeats, errors in sequencing, coverage issues and alleles [24, 25]. Filling these gaps
with minimal introduction of error is one of the crucial steps in genome assembly
pipeline as an error free complete genome can lead to better downstream analysis such as
genotyping structural variants [26], a complete annotation of genes [27] etc. Structural
variants refer to a larger variation between reference genome and donor genome in the
form of insertions, deletions, duplication and inversions and identifying the type of
variant is referred to genotyping. Also, it is not only the intergenic DNA region of
genome that contain crucial genomic features but also the regions that are not coded
and repeats are responsible for the evolution of many organisms [28,29]. Chromosomal
rearrangements, i.e., the duplication, deletion, inversion and translocation of genomic
material, in most cases occur due to the implication by repetitive DNA [30,31]. However,
presence of such repetitive DNA obstructs genome assembly process hugely and in many
sequencing projects, the physical co-localization of genetic loci is found in the gaps [32],

1.4. CONTRIBUTIONS OF THIS RESEARCH 5

thus these rearrangements aren’t fully observed. So, an error free, contiguous, gap
less and close to complete genome assembly will go a long way to further improve
the identification of these structural rearrangements, effector genes and co-regulated
genes [33] and accurate statistical analysis [34].

1.4 Contributions of this research

Maintaining the balance between closing a large number of gaps and introducing
minimal error across a variety of draft assemblies is a tedious and computationally
challenging task to achieve. In this thesis work, we have developed a likelihood based
probabilistic method for filing gaps in the scaffolds using second generation Illumina
sequencing [35] based short reads. The reason for using reads from SGS technology
instead of TGS technology is that although long reads can significantly help during the
metagenomic analyses and solve repeat related problems, specially in genome assembly
[36], its use in the gap filling process is still questionable due to the high error rate
present in the reads as mentioned in Section 1.2. Error in sequencing data can only be
managed on some levels if high coverage is available to guarantee the quality which can
be an expensive process. Gap filling is the last stage of genome assembly pipeline where
modification of the scaffolds are carried out in terms of insertion of new sequences. So
any erroneous sequence inserted in this stage will carry over to subsequent analysis tasks
and may lead to incorrect observations. For this reason, we have chosen comparatively
correct second generation read sequences for gap filling purpose in this research work.

In this work, we formulate gap filling as a parameter estimation problem and develop a
probabilistic method for filing gaps in scaffolds. The method is based on a generative
model for sequencing proposed in CGAL [37] and subsequently used to develop a
scaffolding tool SWALO [38]. The model incorporates information such as distribution
of insert size of read pairs, sequencing errors, etc. and can be used to compute likelihood
of an assembly with respect to a set of read pairs. We use this model to estimate the
length of the gap and to find a sequence for each gap that maximizes probability of the
reads mapping to that gap region. However, in this case the insert sizes of the read
pairs that have only one end mapped is unknown. So, we use an iterative approach
similar to the expectation-maximization (EM) algorithm [39]. We have also presented
a comprehensive comparison between our proposed method and other state-of-the-art
tools based on six different evaluation metrics such as misassembly, erroneous length
and number of gaps remaining using QUAST [40], which is absent on most other
contemporary works related to gap filling.

1.5. THESIS ORGANIZATION 6

Our method is implemented in C++ in a tool called Figbird. An extensive comparison
with a number of different gap-filling tools on bacterial genomes and human chromosome
14 data sets from GAGE [41] is also presented in this work. On Staphylococcus aureus

dataset, Figbird shows great performance in reducing total missassembly rate on average
by 4% and erroneous length by 22% over 8 different de novo assemblies of this genome
which is the best among all other state-of-the-art tools. In case of Human chromosome
14 dataset, Figbird is second to GapCloser in terms of the amount of gap filled. But
the additional 3% gap filled by GapCloser comes at the expense of 47% and 7% more
misassemblies and erroneous length respectively compared to Figbird. Overall, our
probabilistic method performs well consistently on six different metrics over variety of
real draft assemblies, and is able to reduce amount of gaps substantially while keeping
missassemblies and errors low. Although the method is computationally intensive, it is
linear in the number of reads as well as the number and the lengths of gaps, and is thus
scalable and applicable to large genomes. Achieving a significant amount of gap closure
along with erroneous length reduction coupled with the introduction of extremely low
missassembly than other gap filling tools, Figbird shows promising robustness of our
proposed probabilistic method.

1.5 Thesis organization

We have organized our thesis work in the following way: Firstly, we have introduced a
literature review on the existing gap filling methods used for genome assembly pipelines
in Chapter 2. Then, the preliminary concepts of the mathematical ideas and algorithms
used to develop Figbird have been described in Chapter 3. Then, in Chapter 4, we have
described the entire method along with the parameters used to develop Figbird. In
Chapter 5, we have compared the performance of Figbird with other gap filling methods
on three datasets to solidify the concreteness of our novel approach of of gap filling on
real life organisms. Finally, in Chapter 6 we have concluded the thesis by discussing
potential ideas for the improvement of our proposed algorithm in future.

Chapter 2

Literature review

We will discuss about the research works conducted to solve the problem of existence of
gaps in genome assembly pipeline in this particular chapter. Our literature review will
be summarized in the following way. We will review an array of tools or methods that
use either the long read or short read sequencing data currently available in sequencing
databases in Sections 2.1 and 2.2 respectively. Then we will present the limitations of
these existing methods in Section 2.3 and finally in Section 2.4 , we will discuss about
the motivations that these limitations lead us to do this thesis work.

2.1 Long read or contig based methods

These methods are based on contigs or long reads that are aligned to the scaffolds
and gap regions to find the anchoring reads. The advantages of these approaches are
that the contigs or long reads can span across large gap regions and thus the resultant
gap filled assembly will have better contiguity and less fragmentation. A tool named
FGAP [42] utilizes nucleotide BLAST [43] as it’s component to align multiple contigs
to draft assembly and then identifies the best sequences that overlap with gaps. A
graphical overview of FGAP is given below in Figure 2.1.

Figure 2.1: Overview of a gap filled by FGAP (This figure was taken from
[42] published by BioMed Central under Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0).

7

2.1. LONG READ OR CONTIG BASED METHODS 8

The alignment of contigs to proposed scaffolds will be done separately. To restrict the
alignments and choose the best alignment from all returned alignments, parameters
like minimum score, identity of minimum and e-value are used in FGAP. Another
tool named GMcloser [44] concentrates on minimization of misassemblies on the gap
closing sites. A set of contigs which is pre-assembled or a long read set which is
error-corrected using PacBio reads is used to close the gaps. The method incorporates
splitting scaffolds and then alignment of contigs with other preassembled contigs using
Nucmer [45] or BLASTn. Using likelihood-based classifications derived from the stats
that represent alignment, GMcloser finds proper closure of gap regions using those reads
or contigs. Also, GMcloser uses a filtering function of Coval [46] to filter mismatches
between reads and haploid or heterozygous diploid genomes. Pairwise alignment has
been performed with the YASS aligner [47] in case of gaps that are closed partially
based on the alignment stats between Watson and Crick strand. There is a further tool
that close the gaps using long reads is PBJelly [48] which uses Pacific Biosciences [49]
long reads. PBJelly performs read alignment to the gap region to construct a sequence
that is based on majority voting approach of those aligned reads. Then it tries to bridge
gaps and if there are any erroneous sequence present in the closed sequences, it tries to
make correction to those as well.

Another long read based tool in literature is called gapfinisher [50] which uses an
automated gap filling pipeline using FGAP [42] algorithm and claims to achieve efficient
and reliable gap filling. A detailed overview of gapFinisher is given in Figure 2.2.
The tool gapFinisher currently only works on SSPACE-LongRead [51] output and
requires FGAP [42], an [52] interpreter in Perl for SSPACE-LR. The basic workflow
of gapFinisher invloves steps such as indexing the FASTA file of draft genome and the
file in FASTA format of reads that are long and generating a superscaffolds list. Then
FGAP will be run for each superscaffold to fill gaps in them.

GapBlaster [53], a graphical application which uses an alignment method that uses
contigs generated in the genome assembly process and performs an alignment of reads to
the draft scaffold set using BLAST or Mummer [45]. Then, the tool identifies alignments
which encompasses the gaps in the draft scaffolds and they are chosen by the user for
gap filling purpose via graphical interface. G4ALL [54], another tool which is similar to
GapBlaster is implemented using JAVA programming language. It uses BLAST to align
contigs to scaffolds and use the alignment results as a choice via a graphical interface so
that users can choose which scaffolds should be used to fill the gaps. Additionally, there
are some assembly-merging tools such as PCAP.REP [55], CISA [56], Minimus2 [57]

2.2. SHORT READ BASED METHODS 9

Figure 2.2: A detailed overview of gapFinisher (This figure was taken from
[50] published by PLoS ONE under Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0).)

.

which are sometimes used as a gap closure method by merging a set of assembled
sequences. However, these methods don’t fully serve the purpose of gap filling and
instead used as an extension procedure of multiple assemblies.

2.2 Short read based methods

Just like long read based tools, there are also quite a few short read based tools available
in literature. We will discuss quite a few of them here and mainly focus on the four
tools that are the most state-of-the-art in the context of gap filling. The methods of
the tools for filling gaps can be described in two categories [58] as follows. In category
1, there are methods based on either paired end reads or reads that are mate-pairs
which may span a gap and a local assembly is performed to fill those gaps. IMAGE [59]
is a tool that uses process based on iterative approach. It also utilizes Velvet [16] for
the assembly purpose of reads whose flanking regions align with one ends of the read
pairs. Only smaller sized genomes can be used to fill gaps using IMAGE [60]. FinIS [61]
utilizes un-assembled reads to construct an overlap graph with reads and with the help
of a program that depends on mixed-integer quadratic method, it identifies an optimal
path that can be used to fill the gap. It only utilizes reads that went un-used during
contig assembly and scaffolding process. Next, CloG [62], which only makes use of the
VELVET assembler for the generation process of a hybrid assembly. A set of of reads

2.2. SHORT READ BASED METHODS 10

of different lengths were used in this purpose from NGS reads to contigs. Another tool
named GAPPadder [63] is built for diminishing existing gaps in draft scaffolds which
is similar to other tools that we discussed in the sense that a local assembly method
is conducted on reads assembled to fill the gap regions. The main difference between
GAPPadder and other methods is it utilizes more read information compared to other
methods and considers a range of different insert sizes of read pairs. This tool is also
different in the sense that the local assembly method is a combination of two steps since
a two-stage local assembly is done in this case. Firstly assembly of contigs in the gap
region is performed from reads and and then another local assembly which is of better
quality is created by merging those previous contigs. Now we will discuss about the
four state-of-the-art tools in literature:

2.2.1 GapCloser

GapCloser is a stand-alone module in SOAPdenovo [64] package, which utilizes the
paired reads to fill the gaps. It is designed as one of the last steps in SOAPdenovo
assembler’s pipeline as a finishing process but it can also be used as an independent tool.
SOAPdenovo [65] is the first published version of this method and it has successfully
assembled many large eukaryotic genomes. GapCloser constructs a De Bruijn graph

on the set of available reads to perform the local assembly. A De Bruijn graph is a
directed graph that represents overlap among read sequences. In this graph, the nodes
are considered as k-1 mers extracted from the reads and an edge between two nodes
represent the k-mer. It is an iterative process and considers all the available reads at
that stage to build the graph. Although it works well for smaller genomes, it is highly
memory inefficient for larger genomes [66] and thus not scalable. Furthermore, it only
considers read pairs with insert size less than 2000 as it can not make the high insert-size
read pairs to work.

2.2.2 Gap2Seq

Gap2Seq [67] is a recent computational approach for gap filling where the problem is
formulated as an exact path length (EPL) problem, implemented in pseudo-polynomial
time with some optimization. As studied in [68], the gap which exists between two
ends of a pair of reads is considered to be reconstructive if there can be built a local
assembly graph from the reads where a unique path that is shortest in the graph between
the flanking nodes can be found. Such a formulation of problem where path finding
is performed is called exact path length (EPL) problem [69]. In Gap2Seq, they have
formulated the gap-filling problem as EPL problem and used De-Bruijn graph structure

2.2. SHORT READ BASED METHODS 11

on entire read set to perform the gap filling process.
The major drawback of such an approach of Gap2Seq is that the EPL problem is
NP-hard and it uses all the available reads in dataset without considering any insert-
size information and constructs a huge DBG graph on whole readset which is a huge
computational approach. That’s why although it works well on most small prokaryotic
genomes, this approach does not scale to large genomes well and thus unable to fill
large gaps as it fails to solve the NP-hard problem formulation.

2.2.3 GapFiller

GapFiller [60], is a software designed by the SSPACE-tools [23, 51] researcher and is
one of the successful ones in the literature. It uses only paired-end read information
and only partially aligned reads to the gaps. Gaps are not filled if the reads partially
aligned do not span the entire gap and kept as it is. It assembles read pairs with one
end aligned to the scaffold and the other end partially aligned to the gap region. The
similarity between the gap lengths present in the scaffolds and the lengths of the newly
inserted sequences predicted for a particular gap is maintained in this tool. Finally
the reads are assembled using k-mer-based method exploiting a majority voting ratio
strategy to fill the gaps. The limitations of GapFiller are that it does not use a lot
of sequence information due to the only use of partial reads and also time inefficient
for larger genomes [66] with no intermediate outputs. An overview of the GapFiller
pipeline is given below in Figure 2.3.

2.2.4 Sealer

Sealer [66] is designed to close gaps in scaffolds by navigating De Bruijn graphs
represented by space-efficient bloom filter data structures. Sealer boasts to be scalable
for larger genomes ranging from 100 Mb to giga base pair sized genomes. Sealer is
highly memory efficient and uses Konnector [70] as its core to close gaps that are
present in scaffolds but does not consider the insert size of paired reads. Sealer performs
three sequential functions as follows: First, gap regions and the flanking sequences are
extracted and stored in separate files. Then, these flanking sequence pairs along with
reads are provided to Konnector as the inputs. A set of k-mer values is given to the
Konnector to find the optimal sequence. Finally, a correct sequence is used to fill the
gaps. The positive side of Sealer is that the size information of gaps is ignored by Sealer
as the length of the gaps provided in the scaffold file may not be always correct.

2.2. SHORT READ BASED METHODS 12

Figure 2.3: Work flow overview of the method of GapFiller . (The figure is taken
from [60] published by BioMed Central under Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0).

2.3. LIMITATIONS OF THE EXISTING TOOLS 13

Almost all of the tools discussed above utilize a common pipeline to fill gaps: (i)
Utilization of read alignment to gap regions in the scaffold; (ii) Collection of different
types of read pairs to fill the gap; (iii) Formulation of a method to perform the assembly
of the collected read pairs based on De Bruijn graphs, read overlap graphs or any other
complex k-mer based strategies as depicted in Figure 2.4 and (iv) the repeated iteration
of processes (i–iii).

Figure 2.4: General overview of local assembly methods for the tools

2.3 Limitations of the existing tools

Almost all of the methods mentioned above use graph based formulation of the problem,
most widely De Bruijn graph or read-overlap graph and then try to find an Eulerian
path through the graph that will correspond to the unique gap sequence relevant to that
gap. But there are some inherent complications in these graph based methods. Firstly,
the reason that there are gaps that exist in genomes are identical to the reasons of the
presence and creation of fragmentation of contigs. To formulate the problem, gap filling
is often described as finding an optimal path from a starting node which is one flank
and then to an ending node in a graph that is another flank. So there are two primary
steps: (i) Graph construction is a primary step. However, as the graph becomes dense
because of the huge dataset, there becomes more paths and branches in that graph. A
reduction of branching may lead to a loss of nodes that represent low coverage areas.
Furthermore, the reason of the presence of gaps in draft genome assembly is because the
assemblers failed to solve these regions using graph based methods in the first place. So
the search for a novel formulation is more appropriate in this context instead of graph
based methods, (ii) While choosing an optimal path between the two cornering nodes,
the branching problem, i.e., the existence of multiple such Eulerian paths present in the
graph due to the presence of repetitive regions or sequencing errors [16] and only one
of those paths corresponds to the true genomic sequence of the gap. Such a scenario is

2.3. LIMITATIONS OF THE EXISTING TOOLS 14

illustrated in the Figure 2.5:

Figure 2.5: Existence of multiple eulerian path in a graph

As you can see from Figure 2.5, there are two possible Eulerian paths through the
graph, one starting from node CA and then following the path of AG, GT, TA, GA etc.
and another path goes around the graph constructing a sequence of CAGAAGTAGG.
Finding a unique and thus correct path from these multiple choices can get complicated
either due to the presence of repeats or because of the memory constraint issue due to
the dense structure of the graph built from a large set of k-mers. Although GapCloser
has mentioned in their paper that in case of assemblies that are very large, methods
that are based on DBG will take a huge amount of memory for the step that constructs
the graph with nodes. To have a better approach in SOAPdenovo2, they implemented
a sparse De Bruijn graph method [71]. In this methods, reads are split into k-mers
and they are stored in the memory as a group rather than uniquely. Despite this fact,
GapCloser still suffers from high memory consumption issue and thus the problem still
persists. Also, most of the tools, in some proposition, ignore distance information from
the other end of the pair, i.e., insert size, that may help disambiguate among multiple-
mapped sequences and solve repeat related issues. To resolve this problem we can use
the coverage information to check the copy number of each node. But when there is a
triple (or more) repeat present in the assembled sequence, even coverage will not give
a unique solution. In these cases, we can try to retrieve longer reads or use the paired-
end read information and thus insert-size information present in the reads to span the
repeat. So, searching for the true gap sequence that can solve the above stated unsolved
issues in literature is still a challenging area to be explored in genome assembly.

2.4. MOTIVATION OF THE WORK 15

2.4 Motivation of the work

As we thoroughly discussed on Section 2.3 about the limitations of the existing tools in
literature, it is extremely motivating to look out for a method that can give a reasonable
solution to the problems. Also, keeping in mind about the fact that, a lot of methods in
the literature have only managed to utilize one specific assembly for gap filling purpose
or testing purpose and ignored the rest of them or it wasn’t available at that time.
Also, a lot of gap filling tools ignore gaps of small length for example 1−20 bp [50] and
some have ignored larger gaps due to huge computational complexity [67]. That’s why
we have tried to devise a method that is completely novel in formulation and doesn’t
depend on graph based techniques while taking insert-size and other information in
consideration. Also, we wanted to design a tool that can maintain the balance between
closing a large number of gaps ranging from smallest to the largest and introducing
minimal error or missasembly across a variety of draft assemblies of a genome which is
a tedious and computationally challenging task to achieve.

Chapter 3

Preliminaries

In this chapter, we will introduce the preliminary concepts that will be necessary to
explain the methodology and evaluation of Figbird in later sections. As Figbird is a gap
filling tool which uses read sequences to fill those gaps, so most of concepts discussed
below is related sequencing reads and also genome assembly and assessment metrics.

3.1 Sequenced reads

In case of DNA sequencing, as genomes are billions of base pair long, so there is
no sequencing technology yet that can sequence the entire genome sequence at once.
Instead, what the sequencing machines generate smaller fragments of sequences called
reads. These reads can be single or in pair and they are stored in corresponding files
in FASTA/FASTQ format accordingly. The characters present in the reads are usually
A, C, G and T. But sometimes there can be another character present in the sequence
which is ‘N’. This character indicates that in that position there is a possibility of any
of the four characters specified above and the particular sequencer was unsure due to
the low coverage or any other reason during sequencing process.

Also, the length of the sequenced reads has great impact on biological experiments [72]
such as gap filling, solving repeat related regions in genome etc. as we have discussed
before. Therefore, sequencing reads length is crucial in case of bioinformatics analyses
[73]. Figbird is designed and then further developed considering second generation short
read libraries such as frag or mate-pair libraries which are sometimes known as jumping
libraries [74]. These libraries contain reads in pair, that is they are sequenced from both
strands of DNA. They are called paired end or mate pair reads based on the distance
between the pairs. We will refer to both these type of reads as read pairs.

16

3.2. READ PAIRS 17

3.2 Read pairs

Most commercially available high-throughput sequencing technologies achieve the
sequencing by synthesis process and synthesize in a based on the directions and
mechanisms of DNA polymerase works in every living organism’s cells. In conventional
paired-end sequencing, the Watson strand (5’- end) is sequenced first by attaching the
adapter and then sequencing using the adapter for reverse end starts once this is over.
Therefore the paired-end read pairs stored FASTQ files conceptually point towards each
other on opposite strands.

During the alignment of the read to the genome, one read will align to the forward
strand whereas the other end to the reverse strand or reverse complement of the genome.
Thus they are inwardly pointed towards each other and known as an “FR” read or
forward/reverse or “innie” direction. But there are also some different technologies
that incorporates large insert sizes known as jumping libraries [75], where reads are
aligned in an “RF” position or reverse/forward or “outie” direction. These are derived
due to the presence of circularized DNA fragments. So the two read pairs are pointing
away from one another.
So, with all these, there can be a total three orientation possibilities of reads and
they are categorized as: forward reverse, reverse-reverse/forward-forward (TANDEM)
and reverse forward (RF). The read pairs that are oriented in a FR orientation is
called paired-end reads. They have relatively small inserts (300− 500) bp. Mate-pair
fragments are usually in a RF conformation containing larger inserts (3 kb). The
tandem reads are a bit different and they are the results of reshuffling during library
preparation.

3.3 Insert size of a read pair

Insert size is a terminology in high-throughput sequencing genome sequencing which
can be easily confused with other terms and that can lead to misunderstanding of the
entire topic. We work with the reads from a sequencing run which is sequenced and is
actually a piece of DNA with two adapter sequences attached, one at each end. Figure
3.1 is an outline of what a fragment, with an insert of DNA to be sequenced looks like
in case of paired-end reads.
The insert size is the size of the piece of DNA of interest, without the adapters. It
is the distance between the two starting points of that particular read-pair. This
varies depending on library prep protocol and usually generates a distribution of inserts

3.3. INSERT SIZE OF A READ PAIR 18

Figure 3.1: A graphical view of insert-size concept of a read pair.

of different lengths. For example, the paired-end read library (frag) collected from
GAGE [41] and used in this experiment has an approximate insert size range of 150−200

bp. Identification of the range of possible insert sizes is important in our work as it
limits the possible placement positions of unmapped read pairs. Although we have
calculated the mean and standard deviation of this distribution in our method, we have
demonstrated this distribution here graphically in figure 3.2. To do that, we mapped the
read library to the reference genome using bowtie2 [76] and evaluated the distribution
of insert size for all the properly mapped pairs using Qualimap [77] which is shown
below in figure 3.2.

Figure 3.2: Insert-size distribution for paired-end library evaluated using Qualimap [77]

3.4. QUALITY OF SEQUENCING READS 19

Although, the insert size of a read pair is not exactly known, with a large sample, the
distribution of inert size approximately follows a normal distribution whose mean and
standard deviation can be calculated [37, 38]. The advantage of getting two reads per
fragment is that it can give additional information and increase the mapping accuracy
the two reads to a reference genome.

3.4 Quality of sequencing reads

Each and every read sequence generated by next generation sequencing technologies can
contain errors and these error probabilities can be predicted for each base indicated by
quality (Q) scores or Phred scores. These Q scores are extremely helpful in case of read
filtering and reducing errors in different experiments in downstream genome analysis
tasks such as gap filling, marker gene sequencing experiments [78] etc. The Q score is
defined as an integer which is usually in between a range of 2 to 40 indicating the base
call misjudgment probability. So, Q = 3 indicates an error probability is 50%, while
Q=10 indicates to an error probability of 10%. If P is the error probability, then:

P = 10−Q/10 (3.1)

These Q scores are sometimes encoded as ASCII characters in the corresponding fastq
files. There are different rules for this conversion process but ASCII BASE 33 is most
prevalent in case of Illumina data.

The overall quality of a read can also be calculated using a term called expected number
of errors in the read. To do that, at first we have to calculate the error probabilities P
according to the Q scores in a given read from a FASTA file. The underlying assumption
is that a very large number of reads have to be present that contains errors with those
probabilities. Although the Q scores fail to indicate the exact amount of errors present
in a given read, the Phred quality scores can indicate the average number of errors
present in a huge read set where some of the reads have error and some don’t. This is
called the expected number of errors which is real rather than integer because it’s an
average and can be less than one [79]. One can calculate the expected number of errors
using the formulae and their proofs from [80].

3.5. N50 STATISTICS OF GENOME ASSEMBLY 20

3.5 N50 statistics of genome assembly

N50 metric is represented in a large number of genome assembly papers for evaluation
purpose. It is a measure that indicates or was designed to indicate the contiguity of a
genome assembly but in reality it gives us information about contig length distribution.
So to calculate N50, all the contigs in the assembly has to be sorted in the order of their
sequence lengths as shown in Figure 3.3. Now while traversing through these sorted
contigs, the contig length that constitutes half or more than half of the total assembly
length is N50 of the genome assembly as shown below.

Figure 3.3: Calculation of N50 for a set of seven contigs.

So, N50 contig size refers to a length that indicates that considering a genome, half of
this length is covered by this size or a length that is greater than this N50 value [81].
The reason of using N50 most often than N90 or anything else and why it describes a
length instead of a number is because of it’s first introduction in the original human
genome paper [82] the way as it is.

3.5.1 Problem with N50

The problem with N50 is in it’s highly misleading behavior in case of usage in genome
assemblies. In an ideal case, there would only be a few contigs in the assembly and it
will lead to a high N50 value. On the other hand, a low quality assembly would consist
of a large number of fragmented contigs which will lead to a low N50. However, there
can be many different scenarios where N50 value can be manoeuvred to give a false
indication of high quality for a poor assembly as described in this blog [83] which is
known as N50 filtering problem. Also, contigs can be incorrectly merged together to
create a larger contiguous genome with higher N50 value and thus N50 can easily be
inflated by manipulating the contigs which is known as N50 misassembly problem. A
wrongly assembled genome with lots of chimeras is not better than one with multiple
contigs and low N50, so this is important to address.

3.6. SEQUENCING READ COVERAGE 21

3.5.2 NGA50: A solution to both the problems of N50

The solution to N50 filtering problem is possible if the genome length of the organism is
known approximately. In such a case, new metric called NG50 (G refers to genome) is
derived. The difference between this metric and N50 is that instead of considering half of
the total assembly length, NG50 consider half of the total genome length. That means,
which ever way we filter the contigs of an assembly, it will not affect the NG50 length
as reference genome length is now considered instead of independent assembly lengths.
To solve the misassembly problem of N50, i.e., the erroneous joining of small contigs,
multiple solutions have been proposed [40, 41, 84, 85]. There is a massive similarity
among the methods as all of them require a high quality reference genome. A new
metric NAx [40] is calculated, where A stands for Aligned. To compute NA50 of an
assembly, sequence alignment has to be performed for the set of contigs to the genome.
If there are any misassemblies, then the contig is split into aligned blocks and an
independent alignment is performed. These two solutions are merged together to solve
both the problems and a new metric called NGA50 derived. It is computed similarly to
the NA50 but considering half of the reference genome length an not assembly length.
For our experimental evaluation we will use the NGA50 metric as this is computed by
QUAST [40].

3.6 Sequencing read coverage

Next-generation sequencing (NGS) coverage is defined as an average of the count of the
total number of reads that align to a known reference base position. The sequencing
coverage level indicates the level of confidence in case of variant genotyping at particular
base positions. Also an important fact is to remember that the reads will be sampled
in a random manner from multiple copies of a genome. So, the distribution of reads
will be uneven over an entire genome sequence. Thus a fluctuation of coverage will be
observed at different base positions from the average coverage.

By coverage, we mean depth of coverage, i.e., the total number of times a
particular sequenced base covered the genome. The term coverage and depth is used
interchangeably in literature. It is also known as mapping depth which indicates the
confidence level of the coverage of a genome using sequenced fragments (short reads).
The Lander/Waterman [86] equation for calculating the depth of coverage is given
below:

3.7. MAXIMUM LIKELIHOOD ESTIMATION 22

C = L ∗N/G

Here, C is coverage, G is the length of genome, L is the length of reads and N represents
the count of total reads. So, if we take the following example in count:

C = (100bp) ∗ (189106)/(3109bp) = 6.3

3.7 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a technique to estimate the parameters of a
probability distribution. The parameter θ can be a vector such as θ = (θ1, θ2, θ3, ..., θk).
The purpose of this process is to find a model that best fits the data under an assumed
statistical model [87] so that the likelihood is maximized. An example of the use of
MLE is in finding the mean and variance of a sample population where the population
is assumed to follow a normal distribution. If x1, x2, x3, ..., xn is a set of observations
that are generated from a probability distribution f which depends on some parameter
θ, then the primary purpose of MLE is to maximize the likelihood function:

L = f(x1, x2, x3, ..., xn | θ) =
n∏

i=1

f(xi | θ)

The advantage of MLE is that it is consistent in the sense that a sequence of MLE
will converge in probability to the actual parameter being estimated. To determine the
value of θ in the space of values Θ that maximizes this likelihood, we use maximum
likelihood estimation:

θ̂ = arg max
θ∈Θ

L̂

During likelihood calculation, the product of the probabilities may get so small that
they can underflow and thus become useless. Also, finding the maximum requires the
calculation of differentiation of the function which sometimes gets too complicated.
So, to make things simple as well as to preserve small probability estimates, the
function is simplified by taking natural logarithm. Since natural log is a monotonically
increasing function, the consistency of identifying correct parameter is maintained in
both techniques.

lnL =
n∑

i=1

ln f(xi | θ)

3.8. EXPECTATION MAXIMIZATION ALGORITHM 23

3.8 Expectation Maximization algorithm

The Expectation-Maximization (EM) algorithm finds maximum-likelihood for cases
where both model parameters as well as observations are unknown or incomplete. In
practical scenarios, it is often analytically impossible to find the derivative of the
log-likelihood function due to missing parameters or values. This is the scenario
where instead of the exact approach, EM algorithm can give numerical solutions to
predict model parameters. It is iterative in nature to identify the maximum likelihood.
Expectation-maximization (EM) algorithm, originally published in [39] is presented in
Figure 3.4 in most simplified manner possible. EM approach can be applied to solve
those classes of problems which have some hidden observations as well as unknown
model parameters.

Figure 3.4: A flowchart of EM algorithm

The EM algorithm proceeds by picking an initial set of model parameters to estimate
the hidden observations with the assumption that the data comes from a specific model.
This is called the E-step, for the expected distribution. Then, using the newly estimated
values of hidden observations, the parameters or initial hypothesis gets updated. This
step is called the M-step and here, the probability distribution calculated from the E-
step is updated after accumulating the calculated values in M-step to update the initial
set of assumed parameters. These two steps keep iterating until the resulting values
both converge to a fixed point or the allocated time ends. The only negative side of
EM algorithm is that it has extremely slow convergence. It is feasible when the data
dimensionality is low or missing data constitutes a small portion of the entire set. The

3.8. EXPECTATION MAXIMIZATION ALGORITHM 24

higher the dimensions, the slower the E-step will be. It is also possible that sometimes,
in case of gap filling, the E-step may run extremely slowly if there is not enough overlap
between suffix and prefix of assembled sequence data.

Chapter 4

Methods

This chapter in details describes the methodology and the formulation applied in Figbird
to perform the gap filling task. A high level overview of our gap-filling method has
been illustrated in the block diagram in Fig 4.1. For general understanding and overall
organization, we will describe our methodology in the following two steps.

• Pre-processing step: Identifying relevant read pairs and learning distributions.

• Gap filling step: Probabilistic approach for filling gaps using the parsed reads.

Figure 4.1: Overview of Figbird.

25

4.1. ALGORITHM OVERVIEW 26

4.1 Algorithm Overview

At first paired end and mate pair reads (we will refer to both these type of reads as
read pairs) is aligned to the scaffold set using Bowtie2 [88] aligner. Then the SAM [89]
format output of bowtie2 is parsed to collect all possible relevant read pairs necessary
for our method. The details of the read pairs as well as the read parsing criteria is
described in Section 4.2. In the next step, the insert size distribution and parameters
for our error model are learned using uniquely and fully mapped read pairs.

In the gap filling phase, read pairs with one end unmapped or partially mapped are
locally assembled using a maximum likelihood approach calculated using a model
described in Section 4.5. As we do not know exactly where the unmapped end of
the read pair should be placed within the gap, we use the expectation-maximization
(EM) algorithm [39] to iteratively find the placement of the read using the learned
insert size distribution and the current estimate of the nucleotide in the gap sequence,
and re-estimate the probabilities of the nucleotide using the current placements. The
process is iterated over a range of gap estimates with different lengths and the one
with the maximum likelihood value is chosen to fill the gap region. Once the gap
length and the corresponding sequence is estimated, the distribution of probability of
fully mapped reads learnt from the previous step are used to decide whether the reads
should be considered to fill that particular gap based on a cut-off value and reads with
probability below the cut-off are discarded. Finally, a consensus is calculated based on
the probabilistic placements of the chosen reads in gaps which is regarded as the final
predicted gap sequence.

4.2 Aligning and parsing read pairs

In this phase, read pairs are aligned to the draft scaffolds using Bowtie2 and the resulting
output file in SAM format [89] is parsed to separate read pairs, and to assign relevant
reads to specific gaps. The different types of reads considered are shown on Figure 4.2
and described below:
(i) Fully aligned: Fully aligned read pairs are the ones whose both ends map to the
draft genome concordantly, i.e., in proper orientation and within the specified insert
size. These type of reads are used to learn insert size distributions and sequencing error
rates which are used to calculate the likelihood of a gap estimate.
(ii) One end unmapped: These are the read pairs which have one end mapped to the
draft scaffold but the other end remains unmapped. To find which gap the unmapped

4.3. A GENERATIVE MODEL FOR SEQUENCING 27

end is possibly associated with, the mapped end of the read pair is checked to determine
whether it falls within 1.15 ×M base pairs on either side of the gap region and these
pairs are then separately saved per gap region. Here, M denotes the insert size mean
of the corresponding library given input to Figbird and the threshold is set based on
the observation that most of the insert sizes fall within one hundred and fifteen percent
of the input mean.

Figure 4.2: Different types of read pairs used for gap filling

If the condition is satisfied for more than one gap due to the congested and fragmented
nature of the gaps, then it is ambiguous as to which gap the unmapped read actually
belongs to. In that case, we chose the gap for which the distance is closest in terms of
insert size mean of the library.
(iii) One end partially mapped: By running Bowtie2 in the mode that supports local
alignment, we also collect the read pairs whose one end is partially mapped to one of
the ends of a gap region. These type of reads should lead to an error free construction
of gap sequences as the placement of the reads are known in this case.
Due to the potential presence of huge number of gaps as well as the large lengths of
those gaps, a lot of read pairs often have none of their ends mapped to the draft genome.
Since our method is going to run several times on different read sets, there is a chance
that the reads that are unmapped in initial iterations may get mapped in subsequent
iterations. So in addition to using the three types of reads stated above, we may also
be able to utilize both end unmapped reads as well for gap filling.

4.3 A generative model for sequencing

Our method is dependent on a generative model for sequencing presented in [37]. The
generative model gives the likelihood that a read pair is generated from a certain region
of the genome based on learnt parameters. We have used this model and parameter
estimation approach as a basis for computing the likelihood of the placement of other
end of the read that partially or fully falls in a gap region. A brief description of the

4.4. LEARNING DISTRIBUTIONS 28

model will be presented in this section. If, N paired end reads, R = {r1, r2, . . . , rN}
are generated from a genome, then the read pair ri = (ri1, ri2) constitute a segment
symbolized by this read pair based on three distributions. The insert size li of the
fragment is chosen from an insert distribution F. The starting point for the Watson end
of the fragment si is chosen based on a distribution, S and an error model, E was learned
to count for sequencing mismatches. The model is illustrated in following figure.

Figure 4.3: Overview of CGAL. (This figure was taken from CGAL [37]
published by BioMed Central under Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0).

4.4 Learning distributions

. In order to fill gaps using Figbird, we need to learn insert size distribution and
sequencing error characteristics which are required to calculate the probability that a
set of read pairs is generated from a certain region of the genome using the generative
model presented in CGAL [37]. Since sequencing characteristics differ among different
libraries, we have chosen to learn distributions from individual libraries used in the
experiments. To do that, we map the read pairs to the scaffolds using Bowtie2 and
learn empirical distributions using fully mapped read pairs that map uniquely. As the
number of uniquely mapped reads to learn the insert size distribution from may not
be very high for some datasets, it is smoothed using a window size of 12 as well as
truncated as proposed in [38]. We calculate the insert size distribution for each dataset
as shown in examples in Figure 4.4.
We also compute the mean µ and left-sided and right-sided standard deviations, σl and
σr respectively and truncate the distribution at µ − 2.5σl and µ − 2.5σr which we use

4.5. GAP FILLING USING THE EM ALGORITHM 29

Figure 4.4: Insert size probabilities learned for (A) frag library and (B) jump library
on ABySS2 assembly of Staphylococcus aureus bacterial genome.

as our minimum and maximum threshold for the insert size range of an unmapped
read. The error model used in our computation, described in detail in [37], includes
substitutions or mismatches, insertions-deletions and takes into account differences in
error rates across positions in reads.

4.5 Gap Filling using the EM algorithm

In the next phase, we fill the gaps using read pairs with one end mapped and the other
end unmapped or partially mapped with a likelihood based approach. Given a gap
sequence G of length g and a set of unmapped reads R = {r1, r2, . . . , rN}, the log
likelihood of G is given by

l(G;R) = log
N∏
i=1

p(ri|G)

where p(ri|G) is the probability that ri is generated from G. We are interested in the
gap sequence that maximizes this likelihood and to calculate this, we use the generative
model described in CGAL. However, since one end of the read pair is mapped to a fixed
position, we modify the model and define probability of a read as follows:

p(ri|G) = pF (L)pE(ri|G)

where L is the insert size of the read pair, and pF and pE are insert size and error
distributions respectively.
In this thesis, we formulate gap filling as a parameter estimation problem. Given a gap
of length g, we introduce the parameter to be estimated as

θj,c for 1 ≤ j ≤ g and c ∈ {A,C,G, T}

4.5. GAP FILLING USING THE EM ALGORITHM 30

where θj,c denotes the probability of nucleotide c at index j of gap sequence. The gap
filling problem then converts into a parameter estimation problem where the goal is to
find the estimates of θj,cs that maximize the likelihood l(G;R).
However, to estimate these parameters, we need to know the insert sizes exactly.
Although the insert sizes are known for one end partially mapped reads, we do not
know these for one end unmapped reads as sequencing experiments do not provide the
exact distance between the two ends. It is worth noting that although we don’t exactly
know the insert size values, the read pairs follow an approximately normal distribution
which can be learnt as discussed earlier and this observation can reduce the possible
positions of the unmapped end within a range of minimum and maximum value of insert
size for that read pair as indicated in Figure 4.5.

Figure 4.5: Possible placement of the unmapped end r
′′
i of read ri in different gap

positions.

Now, if the insert size of a read pair was exactly known, we could have placed the read
at the correct position within the gap and use the sequence to adjust the probabilities of
the nucleotides occurring at those gap positions as shown in Figure 4.6A. On the other
hand, if the gap sequence was known to us beforehand, then we could have aligned the
read to that known sequence and obtain the likely placement of the unmapped end as
shown in Figure 4.6B. But neither the exact insert sizes nor the sequence of the gap
region are known beforehand and to solve one of these problems we need the solution
of the other.
To solve this set of interlocking problems, we will use the expectation maximization
(EM) algorithm. EM algorithm can be applied to solve those class of problems which
have some hidden observations as well as unknown model parameters. It proceeds by
picking an initial set of model parameters to estimate the hidden observations with

4.5. GAP FILLING USING THE EM ALGORITHM 31

Figure 4.6: Formulation of gap filling using the EM algorithm. (A) If the insert sizes
are known exactly, the reads can be placed within the gap in the correct positions
and the gap sequence can be inferred. (B) If the sequence of nucleotides in the gap
is known, reads can be aligned to the sequence, and their placement and insert sizes
can be estimated. (C) Figbird solves gap filling using the EM algorithm. It starts by
initializing each nucleotide with equal probability. In the E-step, current probabilities
of nucleotides and insert size distribution is used to calculate placement probabilities
of each read within the gap. Then in the M-step, the placement probabilities and
read sequences are used to update the probabilities of nucleotides. These two steps are
iterated until convergence. (D) A simplified simulation of the EM algorithm for gap
filling.

4.5. GAP FILLING USING THE EM ALGORITHM 32

the assumption that the data comes from a specific model. This is called the E-step.
Then, using the newly estimated values of hidden observations, the parameters or initial
hypothesis gets updated. This step is called the M-step. These two steps are iterated
until the resulting values converge to a fixed point or the allocated time ends. In our
method, the hidden observations are insert sizes of the read pairs and the parameters
are the probabilities of each nucleotide occurring at each gap position.

EM formulation

A schematic diagram of our expectation maximization approach for gap filling is
shown in Figure 4.6C. We start with an initial hypothesis that each of the four bases
{A,C,G, T} are equally probable at each gap position j and initialize the estimation
parameter θj,c with 0.25 for all gap positions and for all four possibilities of nucleotide
c. Then the E step and M step is applied iteratively as follows:
E-step: In the E-step, we place the unmapped end of the read ri = c1c2 . . . cl in all
possible gap positions based on the set of allowable insert sizes Li = [Lmin

i , Lmax
i],

where Lmin
i and Lmax

i are the minimum and maximum threshold value of insert size for
read ri respectively. Then the probability that the read is generated from that position
is calculated using the current estimated probabilities θ. This posterior probability of
read ri having a particular insert size L ∈ Li, i.e., that it starts at s, is given by:

fi(L) ∝ pF (L)

[j=s+l−1,k=l∏
j=s,k=1

(
θj,ck × (1− per(k)) + τj,ck × per(k)

)]
where l is the length of the read and s is the start position of the read within the gap
corresponding to the insert size L, per(k) is the error probability at read position k, and
τj,ck is the probability of getting nucleotide c at gap index j and read position k due to
a sequencing error which can be calculated using the following equation:

τj,ck =
5∑

k=1

5∑
i=1

θj,i × γi,ck

where, γ is a 5 × 5 square matrix containing the probability of substitution of each of
the four nucleotide characters and character ’N’ into others.
M-step: In this step, we accumulate the probabilities calculated for all the reads in
E-step in an intermediate matrix α with the same dimensions as θ. If s is the starting
position of read ri ∈ R in the gap with respect to an insert size L ∈ Li, α is updated
according to the following equation:

4.5. GAP FILLING USING THE EM ALGORITHM 33

αj,c = ϵ+
N∑
i=1

∑
L∈Li

fi(L)1i(j − s+ 1, c)

where ϵ is a small value added to ensure the probability of characters do not become
zero and 1i(k, c) is a variable indicating whether the k-th character of ri equals c ,i.e.,

1i(k, c) =

1 if ri,k = c

0 otherwise

Finally, the update of our estimation parameter θ using the intermediate values in α is
done as following:

θj,c =
αj,c∑4
i=1 αj,ci

∀j 1 ≤ j ≤ g

Here, ci denotes each of the four possible nucleotides in position j. Based on this
updated hypothesis, we will continue our E and M steps until there is a convergence
,i.e., the placement positions of reads don’t change anymore and thus the hypothesis
reaches a fixed set of values.

A simplified simulation of our EM algorithm is presented in Figure 4.6D. Initially, the
probabilities of each nucleotide is equal across all positions as indicated in the top left of
the figure. Based on this set of parameters, we calculate the probabilities of each read
aligning at each gap position in the E-step and accumulate those probabilities at M-
step to determine an intermediate consensus with updated nucleotide probabilities. The
relative height and frequency of nucleotides at different positions in the figure denote
the corresponding information content and relative probabilities at those positions. The
information content I for a particular position i at y-axis is denoted by:

I = log2(s)− (Hi + en) (4.1)

Here, s = 4 is used for 4 different types of nucleotide. Hi is the Shannon Entropy [90]
at position i defined as:

Hi =
4∑

c=1

fc,i ∗ log2 fc,i (4.2)

where, fc,i is the relative frequency of base c at position i. The en is small-sample
correction defined as:

4.6. SELECTING THE GAP LENGTH 34

en =
1

ln 2
∗ s− 1

2n
(4.3)

Here, value of s is 4 and n is the total number of sequences present in the alignment.
These two steps then iterate two more times and finally at the end of third iteration
we manage to obtain the true placements of the unmapped reads in gap based on the
continuously updated set of parameters and the steps converge to a fixed value. The
final consensus is constructed based on the final placement of reads using a majority
voting approach and the gap is filled with the predicted final consensus sequence.

4.6 Selecting the gap length

Once the EM converges for a particular gap length g, we compute the likelihood of the
estimated parameters as follows:

l(θg,c;R) = log
N∏
i=1

p(ri|θg,c)

where p(ri|θg,c) is the maximum over all placement probabilities of ri ,i.e.,

p(ri|θg,c) = max
L∈Li

fi(L) (4.4)

However, since the gap length is often not known exactly, we iterate over a range
of gap lengths and select the gap length that maximizes the above likelihood ,i.e.,
maxg l(θg,c;R). For each gap with length g in the scaffold file, we compute the likelihood
for the range 0.5 × g to 2.5 × g and the gap estimate with the maximum likelihood
is selected as the final gap estimate. We observe that for most of the gaps, the
actual gap length is within the specified range. However, for long gaps this becomes
computationally expensive. So, we use a heuristic for deciding the range which is
described in details in Section 4.10. It is to be noted that gap length can be negative
if the sequences preceding and succeeding the gap region overlaps.

4.7 Finalizing the gap sequence

At this stage of our pipeline, we will finalize our gap sequence based on an error model
and learnt cut-off value. The significance of this step is that every unmapped read parsed
during the preprocessing phase does not truly belong to that gap region due to the fact
that one or both end of a read pair might be very error prone and the aligner sometimes

4.8. IMPLEMENTATION 35

fail to map these reads to the scaffolds and thus they remain unmapped. So it is essential
not to consider such reads in gap filling process. To prune these unnecessary reads out,
we perform the following steps. Firstly, we generate an intermediate consensus sequence
C based on the output of final M-step of our method for the gap length corresponding the
highest likelihood. Then each unmapped read ri is slid across the allowable consensus
positions based on the insert size, and the error probability of ri placed on consensus
position s is calculated using the following equation:

p(ri|C) = max
L∈L

e(L)

If the consensus character at position j, i.e., Ck matches with rij which is the jth

character of read ri, then

e(L) =

j=s+l−1,k=l∏
j=s,k=1

1i(k, Cj)(1− per(k)− pin(k)− pdel(k))

+ (1− 1i(k, Cj))(per(k)× γ(Cj, ri,k))

where per, pin, pdel are error position, insertion and deletion distributions respectively
across all read position calculated using the parsed CIGAR information from SAM
alignment output. If the error probability p(ri|C) of ri is less than a cut off error
probability, only then we will consider the read for gap filling, otherwise it is discarded
from consensus consideration. The cut off probability value is pre-calculated using the
distribution of probabilities of uniquely and fully mapped reads. It is the value above
which the probabilities of 80% of such reads lie.
Finally, we place each read that are above the cut-off threshold value at their most likely
position according to Equation 4.4 and construct a final consensus sequence based on
a maximum voting approach. This is our final predicted sequence G for that particular
gap.

4.8 Implementation

The method is implemented using C++ and is available for download freely at:
https://github.com/SumitTarafder/Figbird. In order to reduce the runtime and ensure
accuracy, we apply the following heuristics in the implementation:

• Removal of duplicate reads: We have removed duplicate reads while parsing reads
with one end unmapped which helps significantly in the calculation of likelihood

https://github.com/SumitTarafder/Figbird

4.9. SCRIPT ITERATIONS AND READ USAGE 36

due to the presence of erroneously parsed reads as discussed in before. We have
observed that such reads tend to pile up in certain parts of gaps due to the
sequence similarity and including them negatively affects both the accuracy and
running time of the method.

• Iterative implementation: To make the most out of the various types of reads
available, we run Figbird with one end partially mapped and one end unmapped
reads of different libraries in an iterative manner. A detailed description of the
iterations are given in Section 4.9

• Reduction of read library: To make the method scalable, we have removed read
pairs with both ends mapped from our dataset after the first iteration as learning
the distributions and error parameters once suffices for the rest of the iterations.

• Other heuristics: To improve accuracy in the predicted consensus sequence, a
number of heuristics are applied at different stages of gap filling which are
described in details in Section 4.10.

4.9 Script iterations and read usage

To run our method as a software Figbird, we have prepared a driver script to manage
the entire program. In this section, we will discuss about some parameters, details of
iterations and types of reads and some house checking used in iteration for the entire
process.
Firstly the read pairs and their usage is described in table below:

Read type Read library
Partial Frag

Unmapped Shortjump

Table 4.1: Reads used in gap filling

As, frag reads have higher length compared to jump reads, we used only this read as
partial reads as there is a higher chance of partially falling in gaps for these reads. Also
as longer reads contain more N, only the reads with N count less than or equal to 3 is
considered. All the reads are checked so that don’t contain any character other than
A,C,G,T and N. We have also considered gaps with length 1 unlike other methods.
Sometimes filling a 1 length gap can increase or reduce erroneous length and NGA50
by a huge margin because of the nature of scaffold assembly and a false filling of that
gap can give totally opposite result which makes every change very tricky and time

4.9. SCRIPT ITERATIONS AND READ USAGE 37

consuming. That’s why these type of reads were ignored in other methods, but we have
tried to fill every possible gap.

Our method is implemented in an iterative fashion where multiple iterations are
performed using different sets of reads with different types. The reason for an iterative
approach is that a lot of gaps that have been filled in previous iterations can act as
mapping regions for the reads that are currently unmapped. So a lot of reads that were
unmapped in first few iterations will now have a higher chance of getting mapped and
thus we can extract more out of the higher insert size jump libraries. For each iteration,
the alignment using bowtie2 is done twice. This is for the fact, that once it is run to
find the partially aligned reads and second time it is run to find the one end unmapped
reads. As frag type library has much higher number of read pairs (36 million read pairs
as opposed to 14 million in case of jump library for Staphylococcus aureus genome, we
reduced frag read set after first iteration by removing those pairs whose both end has
been mapped (Cigar string in SAM file will be 101M), so that subsequent iterations
have less read to map.

In iteration 1, we use frag reads as partial reads (soft clipped) and initialize probabilities
with soft clipped frag type reads and use these partial reads to fill the gaps. In iteration
2−3, we use jump reads as unmapped reads and initialize probabilities with soft clipped
frag type reads. The reason for using jump reads at the beginning part of the iterations
is because of their comparative higher insert size. So, they were able to close more
gaps and larger gaps at the beginning, that means the burden is going to be less for
later iterations with less and small length gaps. In iteration 4 and 5, we use frag reads
as partial reads and jump type reads as unmapped reads to fill the gaps respectively.
Then finally, in iteration 6 − 8, we use frag reads as soft clipped reads and initialize
probabilities with soft clipped frag type reads to complete the gap filling process. The
reason for using these three iterations at ending part is that there are a lot of gaps
which have small flanking regions on either side. So, using a library with higher insert
will be useless in this scenario and thus the choice of frag type reads is made which has
lower insert size.

At any point during the run of Figbird, if there is no change in gap length for the
current iteration compared to previous one, we will break the loop and end the process
there. To make these iterations faster, we will reduce the read set as well as the scaffold
set ,i.e., only those scaffolds having gaps is kept and rest are removed. While placing
the reads in gaps, we have chosen insert size threshold to be 3 times the left and right

4.10. ADJUSTMENT OF GAP FILLING BASED ON HEURISTICS 38

standard deviations from the mean calculated from the fully mapped read pairs for that
library of reads. Finally the number of EM iterations during gap filling were kept 3 for
partially aligned reads and 200 for the case of unmapped reads, with a break condition
from the loop if the consensus is complete before the limit or it is stuck for 5 iterations
straight.

4.10 Adjustment of gap filling based on heuristics

4.10.1 Exploration of range for gap estimates likelihood calculation:

As discussed in Section 4.5, for each gap with length lg, we will compute l(G;R) for all
G with length between 0.5 × lg to 2.5 × lg. This is done for gaps with length ≤ 400.
Otherwise we will fill the gaps considering their original length. But gap lengths given
are not always exactly accurate. So to avoid the problem of filling gaps exactly with
the same length, we do the following:

Figure 4.7: How consensus string is formulated at each EM iteration

Gaps are iteratively filled at each iteration as shown in figure 4.7. If the number of N
in consensus sequence becomes less than two times the read length, then we stop EM
iteration and break from the loop. As the gap length became smaller, it is evaluated
as the range specified above in next iterations. Also, in the finalize step, for this type
of gaps, we further cut read length characters from either side to make sure it gets
evaluated using the range.

4.10.2 Detection of repetitive region:

Sometimes, in our gap filling process, we will skip some gaps from filling process based
on some repeat detection condition. This is only applicable in case of read pairs with
low insert size (< 250 bp) ,i.e., frag type reads (partial or unmapped) in our case. To
detect such gap, what we do is following: For each read, we evaluate the following 2
conditions:

• If a chunk of characters (≥ 20) characters from left side of the gap start position
is present in the read more than 1 time

4.10. ADJUSTMENT OF GAP FILLING BASED ON HEURISTICS 39

• If a chunk of characters (≥ 20) characters from right side of the gap start position
is present in the read more than 1 time

If both of this conditions are met for the same read, then the region is considered as
highly repetitive and we don’t fill that gap. Otherwise, if one of the above conditions
is met and and original Gap is greater than 6 times (A high value is given to make
sure the gap length surpasses the insert size) the read length, the gap is not filled. The
reason for doing so is that as it is a large gap and insert size for this condition is lower,
then filling it with partial or unmapped frag does not help much. As we have to depend
on jump library for these cases, so we avoided them them from filling up incorrectly as
jump reads were performing among the two libraries.

4.10.3 Negative overlap detection:

Sometimes there are some gaps present in scaffold where, there shouldn’t have been
a gap. That means the gap should be closed down and there is an indirect overlap
between the left and right flank sequences of these gaps, which we are calling the
negative overlap. We have considered this for gaps with length ≤ 30(default value)
which can be set by user. If the two flank sequences have an overlap greater than 5
bp and if there is any read with sufficiently long length that supports this merging of
sequences, then we remove the gap and merge both sides into one and shrink the gap.
The number of such gaps is very few (5 out of 1000) and only present in some assembly
such as MSR-CA and SGA [91].

4.10.4 Maximum likelihood modification:

Likelihood modification for invalid reads: While placing a read in the gap, if it
falls within the insert size range allowed, we place the read in certain range in all
possible positions and calculate the best position of that read using the likelihood
computed using the model parameters and probability distributions. Finally we add
this probability to calculate the sum of likelihood for that gap estimate. Now, to solve
the unnecessary read problem and incorrect gap length prediction specially in case of
jump reads, we do the following: We compute the consensus sequence based on above
placement of reads and for each read, find the probability of of that read generating from
that position. If the probability is less than log (cutoff value), we accept this likelihood
value in sum calculation, otherwise we add a penalty for that read (-50). The reason
to put a fixed negative penalty is to discard a gap estimate of smaller length and stop
shrinking the gap. If there are more valid reads falling in the gap, there is more used
reads, thus gap estimate is close to actual one.

4.10. ADJUSTMENT OF GAP FILLING BASED ON HEURISTICS 40

Likelihood modification based on coverage: We also modify our sum likelihood
calculation based on gap coverage as shown in figure below:

Figure 4.8: Consensus string at each EM iteration

In case of such scenarios, we try to find the starting and ending position of such
fragmented regions ,i.e., x and y in above figure and discard all the reads that fall
in this region by adding a similar penalty (-50) sum of max likelihood calculation. Note
that they are mostly the unnecessary reads as the correct reads tend to have overlap.
Even if they are correct reads, we don’t want these fragmented regions in our method
and increase the final gap count.
Likelihood modification based on the overlapping characteristics: Based on the
overlapping characteristics of all the reads either unmapped or partially assembled,
a penalty scheme is added. The penalty scheme for unmapped reads contains the
followings:

• Gap penalty: Gap found between reads aligned to the left flank and right flank
and going inwards.

• Overlap threshold penalty: If overlap between the reads is less than 4 bp for that
particular read placement.

• Left/ Right alignment advantage: A likelihood boost based on the count of the
reads that has more than 4 character aligned to the left or right side of the gap.

In case of partially mapped reads, our overlapping characteristics are determined as
follows. For each gap estimate, we call a function that detects whether there is a
overlap between reads and does the following. If there is a read that covers the entire
gap and matches with both left and right regions of the gap sequence with fixed low
threshold of error, we add a positive value to the maximum likelihood. Otherwise, if
there is a correct overlap with reads from both sides,then we find the overlap length
and add positive value to maximum likelihood based on that count of overlaps. Else if
there is a false overlap detected, then we give a penalty for that gap estimate.

4.10. ADJUSTMENT OF GAP FILLING BASED ON HEURISTICS 41

4.10.5 Consensus probability update based on intermediate alignment:

In an ideal scenario, gaps are filled from one/both flanks and eventually merges at some
EM iteration. But sometimes the consensus sequence gets updated circularly ,i.e., it
changes back and forth into the same sequence every other iteration or it gets stuck as
the EM iteration carries on at one/both sides as shown in figure below:

Figure 4.9: Consensus string gets stuck after certain EM iterations

The reason for this is that the read to be placed next has very little overlap with the
filled consensus sequence and thus our algorithm can’t find the correct position to place
it. The advantage of this process is not only to solve these issues but also to make the
convergence process faster. EM is by default a slow algorithm and the probabilities
take a long time to converge. So, to solve these problems, we will perform the update
if a combination of conditions are met. They are:

• If the consensus is stuck for more than two iterations.

• If the length of the gap is ≥ 400 and thus for this gap estimate we didn’t run a
range of gap estimate calculation.

If both of these conditions are met, we do the following for each flank. We find those
reads that has a certain threshold of base pair match with current filled consensus
sequence of that flank. Conditions for accepting such read are that they are not yet
accepted or placed, the read is in proper insert size range, segment taken from left or
right flank must be greater than 20 and match count between prefix and suffix depends
on the length of the read. Then finally, we update the probability with the consensus
of all such reads considered.

4.10.6 Clearing a filled sequence based on threshold values:

Sometimes, during the iterations where unmapped reads are used, some gaps can be
wrongly filled by our method. The reasons could be either because of wrong read
placement due to erroneous reads or false alignment by bowtie2. In those cases, we
have identified such gap sequences by performing a number of checks and for all such

4.10. ADJUSTMENT OF GAP FILLING BASED ON HEURISTICS 42

cases, we have considered an overlap threshold that is arbitrarily 10% of the length
of reads. Since the minimum read length in case of unmapped reads is 37 in our
experiment, we have used the value 4 for all three datasets. The conditions for clearing
such gaps are:

• If there is no aligned read with left and/or right flank such as shown below, then
clear the gap.

Figure 4.10: Zero alignment with both flanks

• There is a check for discontinuity among the placed reads where the overlap
between the two reads is ≤ 2, it is considered as a fragmented or discontinuous
sequence and a read length amount character is going to be chopped off from the
point of discontinuity to outwards direction in both sides.

Figure 4.11: An illustration of discontinuous placement of reads

• If the amount of left flank aligned character or right flank aligned character in
consensus is less than overlap threshold then clear that particular sided aligned
reads and build a new consensus.

Chapter 5

Experiments and results

In this chapter, we compare Figbird with four other state-of-the-art gap filling tools
in literature that use short reads from SGS technology. The results in this chapter
show that, Figbird is able to close more gaps reducing overall erroneous length and
misassembly compared to the other tools.

5.1 The genome assemblies

To assess the performance of Figbird and to compare it with existing gap filling
tools, we use the GAGE dataset [41]. It is a standard dataset that was generated
to critically evaluate the genome assemblers and is also used to assess gap filling
tools [67]. In this experiment, we use the data for two bacterial species Staphylococcus
aureus, Rhodobacter sphaeroides as well as Homo sapiens Chromosome 14, as shown
in Table 5.1, for which reference genomes are available. We collect a wide array genome
assemblies for the three datasets generated using various tools as part of the GAGE
project and performed gap filling using Figbird on each of them, and evaluate the results
by comparing the filled sequences with the reference sequences.

Organism Genome size No. of assemblies No. of gaps Gap length range
Staphylococcus aureus 2 - 3 Mbp 8 35 - 654 1 - 3462
Rhodobacter sphaeroides 3 - 5 Mbp 9 38 - 938 1 - 4808
Human Chromosome 14 80 - 150 Mbp 9 1061 - 51567 1 - 34745

Table 5.1: Genomes used in evaluation

43

5.2. THE SEQUENCED READS 44

5.2 The sequenced reads

As part of the GAGE datasets, second generation sequencing reads were collected for
the three different genomes specified before. The sequenced reads available in GAGE
define a crucial role in the evaluation and design process of sequencing experiments and
thus it is standard to use these reads for our research purpose. In GAGE, there are
two libraries available for each of these three datasets. For our experiment, we use both
the fragment (paired-end) as well as the short jump (mate pair) libraries. The details
about the short reads libraries used in this experiment are listed in Table 5.2.

Organism Library Mean Insert Size Read length No. Read Pairs

Staphylococcus aureus
Frag 180 101 1,294,104

Shortjump 3500 30 - 37 1,614,660

Rhodobacter sphaeroides
Frag 180 101 2,050,868

Shortjump 3500 50 - 101 1,526,850

Human Chromosome 14 Frag 155 101 36,504,800
Shortjump 2283 - 2803 50 - 101 14,054,994

Table 5.2: Read sets used in evaluation

The coverage is 45X for all cases, which indicates that the library has coverage high
enough for gap filling purpose. For more details about the different assemblies and read
sets, readers are encouraged to check the official GAGE website. For sequences from
the short jump library, we use Quake [92] corrected versions of the reads for better
accuracy due to it’s conservative nature of error correction mechanism [93]. We run
Bowtie2 version 2.2.3 to align these read pairs to the gapped scaffolds for our experiment
and then fill the gaps using Figbird.

5.3 Configurations of the tools used for comparison

We compare the performance of our tool Figbird with the four state-of-the-art tools
available for filling gaps using short reads which are, SOAPdenovo’s stand-alone tool
GapCloser v1.12-r6 [64], GapFiller v1.10 [60], Gap2Seq v1.0 [67] and Sealer [66]. For
GapFiller, both BWA [94] and Bowtie [76] aligners are used. All experiments are
run using 24 cores on a machine with Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz
processors. We used the time.h library in C++ to measure the time taken for each of
these tools and used the Python script Memusg to benchmark peak memory usage.

http://gage.cbcb.umd.edu/data/index.html
https://github.com/jhclark/memusg

5.4. QUALITY EVALUATION OF FILLED SEQUENCE 45

5.4 Quality Evaluation of Filled Sequence

As gap-filling is the last stage of the genome assembly pipeline, the thorough evaluation
of the quality of the filled sequences is extremely crucial. A wrongly introduced sequence
will affect the subsequent metagenomic analysis if the gap region falls into the human
protein-coding genes. Also, considering the fact that contig construction stops at
regions with low coverage and highly repetitive regions, we have chosen to assess the
quality using QUAST [40]. QUAST uses nucmer [45] to find alignments between the
gap-filled assembly and the reference sequence. For this experiment, we used QUAST
v2.3 and the outputs were modified using a python script used in [67] to make corrections
in the classification of “misassemblies’’as depicted in [67].The value of N is chosen to
be 4000, since it is an upper bound of the insert distance of the mate pair libraries.

To assess the quality of the filled sequence and the robustness of our method, we list
six different metrics reported by the modified version of QUAST on every assembly. A
short note on each metric follows:

• Misassemblies: The number of misassembled sequences in a scaffold that are larger
than M bp. Here, M is chosen to be 4000, which is the upper bound on the insert
size of the mate pair libraries used in this experiment.

• Erroneous length: It is the sum of the lengths of all mismatches, indels and local
misassemblies, i.e., the length of the misplaced sequence is ≤ M

• Unaligned length: The total length of the unaligned sequence in an assembly.

• NGA50: NG50 is the size of the longest scaffold such that at least half of the
reference genome is contained by scaffolds longer than it. NGA50 is the NG50
after scaffolds have been broken at every position where a local misassembly or
misassembly has been found.

• Number of gaps: The total number of gaps, i.e., a contigous sequence of ‘N’
remaining where gap length can be ≥ 1

• Total gap length: The sum of remaining amount of unknown nucleotide positions
denoted by ‘N’ in the filled assembly.

5.5 Findings on the GAGE datasets

5.5. FINDINGS ON THE GAGE DATASETS 46

Table 5.3: Quality of the original and the gap-filled assemblies of the Staphylococcus
aureus genome using various tools.

Tool Original Gap-
Closer

GapFiller
bowtie

GapFiller
bwa

Gap2-
Seq

Sealer Figbird

ABySS
Misassmblies 5 40 0 -20 60 20 20
Erroneous-length 10587 26.3 -3.5 31 70.5 32.5 -21.8
Unaligned-length 7935 -21.9 -10.2 -10.2 -43 0 -7.9
NGA50 31079 0 0 0 0.3 0.3 -1.2
Number of gaps 69 -18.8 -13 -29 -87 -71 -29
Total gap length 55885 -24.9 -9.5 -26 -94.5 -59.4 -17.6

ABySS2
Misassmblies 5 20 0 40 40 40 20
Erroneous-length 10312 -3.7 0.5 0.1 -27.4 -13.7 -30.9
Unaligned-length 0 0 0 0 0 0 0
NGA50 106796 15.1 0 0 29 0 3.6
Number of gaps 35 -34.3 -11.4 -31.4 -80 -80 -57.1
Total gap length 9393 -60.8 -29.9 -53.2 -94.5 -93 -79.9

Allpaths-LG
Misassmblies 0 0 1 1 0 0 0
Erroneous-length 5991 -22.7 -5.9 -8.4 9.7 55.5 -26.9
Unaligned-length 0 0 0 0 0 0 0
NGA50 110168 2.7 35.9 69.6 48.5 35.9 31.5
Number of gaps 48 -47.9 31.2 -41.7 -70.8 -68.8 -52.1
Total gap length 9900 -74.4 -23.1 -40.8 -94.7 86.6 -72.9

Bambus2
Misassmblies 0 1 0 0 0 0 0
Erroneous-length 24570 -30.6 -4.4 16.9 -1.4 -19 -15.6
Unaligned-length 0 0 0 0 0 0 0
NGA50 40233 34.8 1.6 7.3 17.2 24 17.2
Number of gaps 99 -67.7 -14.1 -18.2 -69.7 -53.5 -62.6
Total gap length 29205 -78 -23.9 -37.2 -84.1 37.8 -76.7

MSR-CA
Misassmblies 10 -30 -30 -30 -20 20 -30
Erroneous-length 17276 -2.6 0.3 1.8 -4 -12.3 -9.1
Unaligned-length 0 0 0 0 0 0 0
NGA50 64114 50.3 20.4 20.4 50.3 45.3 58.3
Number of gaps 81 -51.9 -19.8 -29.6 -56.8 -50.6 -61.7
Total gap length 10353 -76.4 -24.5 -39.4 -70.5 -47.3 -73.3

(continued)

5.5. FINDINGS ON THE GAGE DATASETS 47

Table 5.3 – Continued
Tool Original Gap-

Closer
GapFiller
bowtie

GapFiller
bwa

Gap2-
Seq

Sealer Figbird

SGA
Misassmblies 2 0 0 0 -50 -50 -50
Erroneous-length 13811 -49.3 -19.9 -31.4 -10.6 -16.8 -53.8
Unaligned-length 0 0 0 0 0 0 0
NGA50 9541 123.7 8.9 9.7 221.4 173.3 169.1
Number of gaps 654 -75.1 -20.8 -37.3 -80.1 -78.7 -82.3
Total gap length 300607 -54.3 -5.7 -10.1 -72.1 -61.6 -83.2

SOAPdenovo
Misassmblies 2 0 0 0 0 0 0
Erroneous-length 35433 -1.3 1.2 .7 -1.5 -0.2 -2.4
Unaligned-length 4055 -100 -100 -100 3.9 0 -7.5
NGA50 69834 0 0 0 0 0 0
Number of gaps 9 -22.2 -22.2 -33.3 -55.6 -22.2 -33.3
Total gap length 4857 -60.4 -24 -30.8 -94.2 -1.2 -27.7

Velvet
Misassmblies 25 8 0 4 8 12 4
Erroneous-length 24160 -32.1 -2.2 -18.8 -36.3 13.8 -15.6
Unaligned-length 1270 -49.4 -20.5 -21.3 -49.4 0 -49.4
NGA50 46087 19.1 26 49 73.3 20.9 51.5
Number of gaps 128 -46.9 -30.5 -41.4 -68.8 -52.3 -54.7
Total gap length 17688 -59.6 -37.9 -49.2 -81.2 -29.2 -68.8

Total (average %)
Misassmblies 49 5 -3 0 -3 6 -4
Erroneous-length 142140 -14 -4 -1 -2 5 -22
Unaligned-length 13260 -21 -16 -16 -12 0 -8
NGA50 477852 31 12 20 51 37 65
Number of gaps 1123 -45 -20 -32 -71 -59 -54
Total gap length 437888 -61 -22 -36 -85 -52 -62

5.5. FINDINGS ON THE GAGE DATASETS 48

Table 5.4: Quality of the original and the gap-filled assemblies of the Rhodobacter
sphaeroides genome using various tools.

Tool Original Gap-
Closer

GapFiller
bowtie

GapFiller
bwa

Gap2-
Seq

Sealer Figbird

ABySS
Misassmblies 20 0 0 0 5 5 0
Erroneous-length 140634 1 -2.5 0.1 -0.4 -0.8 -1.2
Unaligned-length 23522 -7.2 100.9 70.8 -10 -10 106.6
NGA50 6538 0.2 0.6 0.2 4.4 2.7 0.2
Number of gaps 323 -20.1 -8.7 -19.8 -45.8 -39.6 -36.5
Total gap length 114587 -3.2 -0.3 -3.7 -19.6 -8.6 -5.6

ABySS2
Misassmblies 12 8.3 0 0 133.3 0 0
Erroneous-length 15750 13.5 -0.4 0 38.5 -5 0.3
Unaligned-length 8230 -0.4 -1.9 -36.1 0 0 -39.6
NGA50 31197 11.1 0 3.8 11.1 5.7 -12.1
Number of gaps 292 -21.2 -1.4 -5.8 -19.9 -10.3 -11.3
Total gap length 62627 -9.9 2.6 -9 -38.7 -8.7 -6.3

Allpaths-LG
Misassmblies 5 20 0 0 0 0 0
Erroneous-length 11738 97.1 -2.6 -2 3.4 -2.7 0.6
Unaligned-length 0 0 0 0 0 0 0
NGA50 79634 11.5 2 0 12.8 0 0
Number of gaps 170 -3.5 -3.5 -3.5 -9.4 -7.6 -10.6
Total gap length 21409 -13.4 8 1.2 -25 -10.2 -10.7

Bambus2
Misassmblies 5 0 0 0 0 0 0
Erroneous-length 106359 -0.3 -0.6 -0.8 0.5 -4.2 -0.5
Unaligned-length 4716 -0.7 -2.7 -5.5 -100 0 -11.5
NGA50 15043 0 0 0 1.3 0.6 0.5
Number of gaps 85 -15.3 -5.9 -7.1 -35.3 -21.2 -11.8
Total gap length 57041 -14.2 -9.6 -13.6 -31.9 -14.9 -23.8

CABOG
Misassmblies 15 0 0 -13.3 -13.3 -13.3 0
Erroneous-length 16750 44.1 0.3 0.4 -1.9 -1.4 -2.1
Unaligned-length 0 0 0 0 0 0 0
NGA50 26819 0.8 11.4 11.4 3.9 3.9 24.8
Number of gaps 193 -2.6 -2.1 -4.7 -9.3 -5.7 -18.1
Total gap length 21547 -13 5.7 -3.9 -22.5 -7.3 -10.5

(continued)

5.5. FINDINGS ON THE GAGE DATASETS 49

Table 5.4 – Continued
Tool Original Gap-

Closer
GapFiller
bowtie

GapFiller
bwa

Gap2-
Seq

Sealer Figbird

MSR-CA
Misassmblies -20 -20 0 10 270 -20 -10
Erroneous-length 22522 -0.8 2.6 8.4 19.7 -0.9 1.5
Unaligned-length 1377 0 0 0 0 0 0
NGA50 75776 -5.3 19 20 13.9 -1.1 44
Number of gaps 356 -12.1 -7.3 -10.4 -26.4 -5.3 -29.5
Total gap length 32628 -19.9 3.4 -7 -67.1 -9.8 -27.3

SGA
Misassmblies 2 0 0 0 1600 0 50
Erroneous-length 58135 4.1 -2.9 -5.1 33.9 -13.3 -1.3
Unaligned-length 69226 -0.7 -12.5 -13.2 -41 -24.4 -24.3
NGA50 2601 5.7 1.2 5.2 98 31.8 8.6
Number of gaps 938 -8.6 -3.9 -7.7 -37.1 -18.8 -13.2
Total gap length 1145600 -2.2 -0.3 -2.7 -23.3 -9.4 -10.4

SOAPdenovo
Misassmblies 3 0 0 0 33.3 0 0
Erroneous-length 56228 8.7 -0.1 0.1 -7.1 -0.5 0.9
Unaligned-length 0 0 0 0 0 0 0
NGA50 27434 0 -1.2 -1.2 0 0 -1.2
Number of gaps 38 0 0 0 -10.5 -2.6 -10.5
Total gap length 10461 -10 2.4 0.3 -20.2 -3.5 -17.3

Velvet
Misassmblies 19 15.8 0 -15.8 10.5 0 -26.3
Erroneous-length 40419 -14.5 -4.5 3.2 -5.4 -5.5 10.9
Unaligned-length 28344 -3 -5.9 -7.6 -17.4 -1.5 -22.7
NGA50 54238 0.3 -9.8 -0.9 0 0 -16.4
Number of gaps 427 -11.2 -5.4 -9.4 -21.5 -13.3 -29.3
Total gap length 86815 -7.6 0 -6.3 -26.3 -3.8 -13.3

Total (average %)
Misassmblies 91 3 0 -2 227 -3 2
Erroneous-length 468535 18 -1 1 10 -3 2
Unaligned-length 135415 -1 9 1 -18 -3 -5
NGA50 319280 2 3 5 17 5 6
Number of gaps 2822 -10 -4 -7 -23 -13 -18
Total gap length 1552715 -10 2 -4 -30 -8 -13

5.5. FINDINGS ON THE GAGE DATASETS 50

Table 5.5: Quality of the original and the gap-filled assemblies of Human Chromosome
14 using various tools.

Tool Original Gap-
Closer

GapFiller
bowtie

GapFiller
bwa

Gap2-
Seq

Sealer Figbird

ABySS
Misassmblies 3 133 33.3 0 100 66.7 0
Erroneous-length 190458 18.2 7.6 7.4 -9.4 -17.6 8.5
Unaligned-length 262068 -16.6 -28.9 -34.1 -8.4 -3.6 -19.5
NGA50 1320 1 0.5 0.7 1.3 1.2 0.8
Number of gaps 1061 -5.9 -28.9 -32.5 -33.4 -46.6 -27.2
Total gap length 585628 -24.5 -23.4 -27.5 -25.5 -25.6 -22.9

ABySS2
Misassmblies 99 18.2 2 4 5.1 0 8.1
Erroneous-length 555099 15.9 1.5 2.8 3.5 -6.5 3.1
Unaligned-length 157759 -21.4 -28.8 -36.3 -15.4 -2.2 -26.4
NGA50 11869 4.1 1.5 3 2.4 2.9 3.2
Number of gaps 2820 -14.5 -29.5 -38.5 -23.9 -22.69 -43.8
Total gap length 949137 -34.9 -10.6 -25.3 -36.8 -15.5 -28.1

Allpaths-LG
Misassmblies 95 -6.3 5.3 8.4 14.7 2.1 6.3
Erroneous-length 667229 34.5 -0.6 7.8 -3 -3.4 8.6
Unaligned-length 36941 -14.3 -11.1 -11.9 26.8 12.3 3.8
NGA50 34534 48.3 20.7 23 23.3 6 32.5
Number of gaps 4307 -35.1 -19.3 -20.6 -29.8 -17.7 -33.6
Total gap length 3227193 -37.9 -16 -17.2 -16 -7.2 -39.4

Bambus2
Misassmblies 1584 3.1 2.3 5.4 2.1 -0.2 3.4
Erroneous-length 11114542 -9.6 -0.2 14.8 -0.6 -18.2 -3.9
Unaligned-length 161358 -42.7 -35.8 -31.3 2.5 -33.8 -37.3
NGA50 3045 34.8 12 15.2 1.8 23.7 25.1
Number of gaps 11809 -16.4 -2.3 -2.3 -6.6 -22.3 -1.6
Total gap length 10370362 -45.6 -18.9 -29.3 -4.6 -21.4 -46.6

CABOG
Misassmblies 91 16.5 7.7 5.5 7.7 2.2 4.4
Erroneous-length 615239 19 -2.2 0.2 -3.5 -4.4 -0.3
Unaligned-length 2506 0 0 0 0 0 0
NGA50 46665 16.2 58.8 62.3 8.9 11.9 39.8
Number of gaps 3043 -18.9 -46.5 -51.2 -13.8 -15.1 -38.6
Total gap length 231078 -50.3 -34.9 -41.2 -22.6 -19.9 -32.5

(continued)

5.5. FINDINGS ON THE GAGE DATASETS 51

Table 5.5 – Continued
Tool Original Gap-

Closer
GapFiller
bowtie

GapFiller
bwa

Gap2-
Seq

Sealer Figbird

MSR-CA
Misassmblies 1110 14.5 9.9 25.3 6.8 1.3 13.3
Erroneous-length 5412965 2.8 3.9 21.7 -6 -6.5 -4.9
Unaligned-length 318421 -30.5 -28.8 -33 -13.1 -9 -31.2
NGA50 5704 73.3 65.9 77.7 32.9 18.9 52.5
Number of gaps 30622 -34.9 -42.4 -49.5 -27.8 -26 -46.5
Total gap length 6097928 -49.3 -37.8 -49.2 -18.1 -11.3 -48.3

SGA
Misassmblies 8 375 37.5 87.5 287.5 12.5 150
Erroneous-length 1580489 21.1 -18.4 -13.9 -24.6 -26.6 -0.6
Unaligned-length 1160159 -83.9 -82.8 -87 -38.6 -22.1 -90.5
NGA50 2644 244.2 206.6 239.3 149.1 80.4 164.6
Number of gaps 21459 -56.7 -46.3 -49.9 -51.5 -39.4 -49
Total gap length 12840408 -53.5 -50 -55.4 -30.2 -17.6 -62.9

SOAPdenovo
Misassmblies 1250 17.1 3.5 9.4 11.7 1.6 13.1
Erroneous-length 8449941 -1.3 1.1 3.2 -0.5 -4.7 0.2
Unaligned-length 1306173 -28.8 -24.4 -28.1 -14.1 -10.1 -27.2
NGA50 6592 17.4 3.6 4.1 4 7.5 4.9
Number of gaps 8544 -25.2 -4.5 -5.1 -18.8 -11.7 -5.7
Total gap length 10255930 -21.3 -11.3 -15.9 -6.3 6 -18

Velvet
Misassmblies 9308 26.3 24.8 51.5 13.3 10.5 24
Erroneous-length 12531431 -10.4 32.3 58.6 -0.5 -23.1 23.5
Unaligned-length 23484076 -58.4 -54.9 -70 -20.7 -31 -52.4
NGA50 1793 104.4 49.6 67.5 27 65.1 43.1
Number of gaps 51567 -43.4 -24.1 -26.6 -26.6 -37 -21.5
Total gap length 63559964 -22.8 -14.7 -22.8 -4.2 -11.8 -17.1

Total (average %)
Misassmblies 13449 67 15 22 50 11 20
Erroneous-length 40562294 11 3 12 -4 -12 4
Unaligned-length 26731702 -32 -32 -36 -9 -11 -34
NGA50 102297 61 47 55 28 25 40
Number of gaps 132412 -27 -27 -30 -25 -26 -29
Total gap length 107168491 -37 -24 -31 -18 -15 -34

5.6. DISCUSSIONS 52

5.6 Discussions

In this section, we present the performance comparison of Figbird with four other state-
of-the-art gap filling tools that use short reads as discussed in Section 5. The detailed
evaluation results from QUAST are provided in Tables tables 5.3 to 5.5. Each table
shows the percentage increase or decrease in the six evaluation metrics achieved by
the five gap filling tools along with the original values before gap filling. For each
assembly, these relative percentages are determined using the differences in evaluated
values between original assembly and gap filled assembly using QUAST. The results
over all the assemblies are presented in the bottom of the tables named ‘Total’, which
is obtained by determining the average for a particular metric over all the assemblies
for each gap filling tool. The overall percent reduction in gap length as well as percent
changes in misassembly and errors for all three datasets are also shown in Figure 5.1.
We focus on these three metrics as unaligned length and NGA50 are related to these
while filling a gap partially lead to an increase in number of gaps which we believe is
misleading. This cumulative way of representation of the total result instead of value
based method helps us to remove bias from the result in case of the presence of some
extremely large valued metrics among smaller ones. From the overall results, we observe
that, Figbird is able to close considerably high portion of gap regions yet managing to
keep the erroneous length and misassembly low compared to the other state of the
art tools. It is noteworthy to mention here that the results obtained in this work are
deterministic by nature and contain no element of randomness in the model despite
being called a probabilistic model. The sole reason for calling the model probabilistic
is that it is based on a number probability distributions learned from fully aligned read
pairs which indicate the probable position of the unmapped or partially mapped end
of a read pair in a range of insert size possibilities.

For the Staphylococcus aureus dataset, we observe from the scatter plots in Figure 5.1A
that none of the other tools have managed to fill more nucleotides than Figbird while
achieving better accuracy in terms of error or misassembly, i.e., there are no points in
the scatter plots that are to the right and below the points representing Figbird. We
can also see from Table 5.3 that Figbird has reduced the total misassembly rate by
4%, which is the best among all other tools, and reduced erroneous length by 22% thus
outperforming the next best tool GapCloser in this respect by 8%. The only tool which
is able fill a higher portion of gaps than Figbird is Gap2Seq which is at the expense of
higher rate of misassembly and substantially higher amount of erroneous sequences.

In case of our second bacterial dataset Rhodobacter sphaeroides, a similar trend can

5.6. DISCUSSIONS 53

Figure 5.1: Scatter plots showing the performance of Figbird compared to other
gap filling tools on (A) S.aureus, (B) R.sphaeroides and (C) Human Chromosome
14 datasets in terms of average percentage of misassemblies and erroneous length
against the average percentage of nucleotides filled by each tool. The values are
computed by determining the percent change in misassembly and erroneous length,
and percent reduction in gap length obtained by each tool for all the de novo draft
genome assemblies from GAGE, and then averaging over the values for all those
assemblies.

5.7. TIME AND MEMORY USAGE COMPARISON 54

be observed from Figure 5.1B like the previous dataset. None of the other tools have
outperformed Figbird which has managed to close second highest amount of ‘N’s, only
behind Gap2Seq. However, Gap2Seq increases misassembly and erroneous length by
227% and 10% respectively which are substantially higher than the 2% misassembly and
2% erroneous length increase by Figbird, as shown in Table 5.4. It is worth highlighting
that the sequencing error rate for R.sphaeroides dataset is higher compared to that
of S.aureus dataset and the sequencing reads being more error-prone, mapping tools
finds it difficult to align reads properly to the scaffolds [95], and also leads to errors
during gap filling. This shows that Gap2Seq lacks robustness to sequencing errors and
may introduce large amount of errors whereas Figbird is still performs in a balanced
way without introducing massive amounts of misassemblies and errors.

Finally, detailed results of QUAST evaluation on the Human Chromosome 14 (HC14)
dataset is summarized in Table 5.5. Despite the highly repetitive nature of HC14
dataset as suggested in [64], three of the tools, Figbird, GapCloser and GapFiiler filled
more than 30% nucleotides. From the overall comparison presented in Figure 5.1C, it
can be observed that Figbird is second to GapCloser in terms of the amount of gap
filled. But the additional 3% gap filled by GapCloser comes at the expense of 47%
and 7% more misassemblies and erroneous length respectively compared to Figbird.
Moreover, GapCloser fills smaller amount of gaps while making more misassemblies
and errors than Figbird in the other datasets. On the other hand, Gap2Seq, which
is able to reduce the gap length by the highest amount in the other two datasets,
fills 16% less gaps than Figbird despite 30% more misassemblies. Overall, our EM
based method shows pareto optimal performance with respect to amount of gap filled,
misassemblies and erroneous sequence introduced in all three datasets, i.e., no other tool
is able to fill more nucleotides while making less misassemblies or errors than Figbird.
Figbird has achieved best or near best performance score for all the evaluation metrics
in every dataset used in evaluation suggesting the usefulness of our approach of gap
filling procedure.

5.7 Time and memory usage comparison

Table 5.6: Gap-closing performance of the tools mentioned in the paper on 8 draft
genome assemblies of Staphylococcus aureus.

Assembly Software Time (min) Memory (GB)

ABySS

GapCloser 0.2 0.68
GapFiller-bwa 5.8 0.12

5.7. TIME AND MEMORY USAGE COMPARISON 55

Sealer 3.7 20
Gap2seq 0.2 1.95
Figbird 10 0.7

ABySS2

GapCloser 0.23 0.67
GapFiller-bwa 5.6 0.15

Sealer 3.7 20
Gap2seq 0.2 1.95
Figbird 16 0.72

Allpaths-LG

GapCloser 2.2 0.71
GapFiller-bwa 5.6 0.12

Sealer 3.7 20
Gap2seq 0.3 1.95
Figbird 39 0.71

Bambus2

GapCloser 0.23 0.72
GapFiller-bwa 7.5 0.12

Sealer 3.6 20
Gap2seq 0.45 1.9
Figbird 63 0.75

MSR-CA

GapCloser 0.26 0.73
GapFiller-bwa 6.6 0.11

Sealer 3.8 20
Gap2seq 0.65 1.92
Figbird 34 0.79

SGA

GapCloser 0.15 0.73
GapFiller-bwa 15.2 0.15

Sealer 3.6 20
Gap2seq 2 1.9
Figbird 77 0.9

SOAPdenovo

GapCloser 0.16 0.69
GapFiller-bwa 4.7 0.11

Sealer 3.6 20
Gap2seq 0.3 1.9
Figbird 10 0.7

Velvet

GapCloser 0.17 0.71
GapFiller-bwa 7.5 0.12

Sealer 3.8 20
Gap2seq 0.9 1.9
Figbird 35 0.8

5.7. TIME AND MEMORY USAGE COMPARISON 56

Table 5.7: Gap-closing performance of the tools mentioned in the paper on 9 draft
genome assemblies of Rhodobacter sphaeroides.
*The performance metric values for Gap2seq tool has been taken from their paper [67]
as the tool could not be evaluated due to the high run time and memory constraints.

Assembly Software Time (min) Memory (GB)

ABySS

GapCloser 0.1 0.41
GapFiller-bwa 17 0.11

Sealer 4.2 20
Gap2seq* 800 2.1
Figbird 22 0.78

ABySS2

GapCloser 0.11 0.42
GapFiller-bwa 21.3 0.12

Sealer 4.1 20
Gap2seq* 998 2.1
Figbird 25 0.8

Allpaths-LG

GapCloser 10.9 0.82
GapFiller-bwa 7.3 0.12

Sealer 4.3 20
Gap2seq* 578 2.2
Figbird 19 0.79

Bambus2

GapCloser 0.35 0.61
GapFiller-bwa 10.1 0.14

Sealer 4.5 20
Gap2seq* 991 2.1
Figbird 176 0.83

CABOG

GapCloser 0.2 0.55
GapFiller-bwa 13.8 0.11

Sealer 4.2 20
Gap2seq* 121 2.2
Figbird 23 0.8

MSR-CA

GapCloser 0.25 0.64
GapFiller-bwa 20.8 0.11

Sealer 4.3 20
Gap2seq* 858 2.5
Figbird 68 0.8

SGA

GapCloser 0.2 0.67
GapFiller-bwa 30.1 0.15

Sealer 4.2 20
Gap2seq* 10e+3 2.1
Figbird 91 1.1

5.7. TIME AND MEMORY USAGE COMPARISON 57

SOAPdenovo

GapCloser 0.3 0.59
GapFiller-bwa 2.4 0.12

Sealer 4.2 20
Gap2seq* 105 2.1
Figbird 10 0.8

Velvet

GapCloser 0.1 0.58
GapFiller-bwa 13.1 0.12

Sealer 4.1 20
Gap2seq* 1221 2.1
Figbird 54 1.1

Table 5.8: Gap-closing performance of all the tools on 9 draft genome assemblies of
Human Chromosome14 genome.*The performance metric values for Gap2seq tool has
been taken from the corresponding paper [67] as the tool could not be evaluated due
to the high run time and memory constraints.

Assembly Software Time (hr) Memory (GB)

ABySS

GapCloser 0.14 6.5
GapFiller-bwa 1.7 0.11

Sealer 0.31 20
Gap2seq* 166 22
Figbird 2.2 7.5

ABySS2

GapCloser 0.16 6.4
GapFiller-bwa 2.9 0.14

Sealer 0.32 20
Gap2seq* 333 17
Figbird 3.5 7.5

Allpaths-LG

GapCloser 24 8.2
GapFiller-bwa 6.3 0.17

Sealer 0.52 20
Gap2seq* 8e+3 21
Figbird 8 5.5

Bambus2

GapCloser 0.19 6.8
GapFiller-bwa 13.1 0.12

Sealer 0.5 20
Gap2seq* 16e+3 25
Figbird 17 5.4

CABOG

GapCloser 0.08 6.5

5.7. TIME AND MEMORY USAGE COMPARISON 58

GapFiller-bwa 4.4 0.11
Sealer 0.35 20

Gap2seq* 167 14
Figbird 5.4 5.3

MSR-CA

GapCloser 0.4 7.6
GapFiller-bwa 13.8 0.14

Sealer 0.8 20
Gap2seq* 13e+3 23
Figbird 29 6.1

SGA

GapCloser 0.3 6.5
GapFiller-bwa 13.1 0.11

Sealer 0.6 20
Gap2seq* 15e+3 23
Figbird 32 8.9

SOAPdenovo

GapCloser 0.25 6.8
GapFiller-bwa 5.2 0.3

Sealer 0.5 20
Gap2seq* 14e+3 25
Figbird 9 7.1

Velvet

GapCloser 1.2 7.7
GapFiller-bwa 41.7 0.2

Sealer 1.1 20
Gap2seq* 16e+3 27
Figbird 38 11.5

We have compared the performance of Figbird in terms of run time and peak memory
usage with four other tools in literature as mentioned in Section 5. The detailed
commands and parameters used to run each of these tools can be found in Section 5.8.
Table 5.8 shows the time and memory usage of the tools on the Human Chromosome 14
dataset. The comparisons on other two datasets are summarized on Table 5.6 and 5.7.
From Table 5.8, we can see that, GapCloser and Sealer are the two fastest tools in terms
of run time across all the assemblies while Gap2Seq is the slowest among all. Figbird and
GapFiller-bwa have moderate time requirements. In case of memory usage, Gap2seq
and Sealer requires the highest amount of memory due to their problem formulation
whereas GapFiller requires the lowest. The memeory requirement of Figbird is almost
similar to that of GapCloser, taking less memory in case of Allpaths-LG, CABOG,
MSR-CA etc. while taking slightly more memory in case of Velvet, ABySS etc. Overall,

5.8. COMMANDS AND CONFIGURATIONS USED TO RUN THE TOOLS 59

we find that although there are gap filling tools with lower time and memory usage
than Figbird, it falls within the time and memory requirement range of the state-of-
the-art tools. The increased run time can be regarded as a trade-off with the improved
performance. Moreover, the time and memory requirements of Figbird scale linearly
with the number and lengths of gaps, and the number of reads making it applicable to
large datasets unlike some of the other gap filling tools.

5.8 Commands and configurations used to run the tools

To evaluate using GapCloser and GapFiller, we have provided a separate configuration
file for each of them during each ru assembly run. Following are the commands with
specific parameters used to run for each tool. All other parameters that are not
mentioned in commands have been kept default.

• GapCloser:
./GapCloser -t 12 -l 101 -a scaffold.fa -b dataset.config -o output.fa

• GapFiller:
perl GapFiller.pl -l dataset.config -s scaffold.fa -i 10 -T 24 -b output.fa

• Gap2Seq:
./Gap2Seq –scaffolds genome.scf.fasta –filled genome.scf.fill.fasta –reads
frag1.fastq frag2.fastq,shortjump1.fastq,shortjump2.fastq

• Sealer:
./abyss-sealer -b40G -k90 -k80 -k70 -k60 -k50 -k40 -k30 -o output -S scaffold.fa -j
24 -P 10 -B 3000 -F 4000 frag1.fasta frag2.fasta shortjump1.fasta shortjump2.fasta

• Figbird:
./RunFigbird.sh Config.json > output.txt

In the configuration files for GapCloser, GapFiller and Figbird, we have given
average insert size as 180 for frag library in case of S.aureus and R.sphaeroides

dataset as input. In case of Human Chromosome 14 we have used 160. For
jump library, the insert size is 3500 for S.aureus and R.sphaeroides dataset and
2500 for Human Chromosome14 dataset for all three above mentioned tools The
standard deviation in GapFiller tool has been given 0.25 for all three datasets.

Chapter 6

Conclusions

In this thesis, we have presented Figbird, a bioinformatics tool that can fill withstanding
gaps in scaffolds in the genome assemblies using second generation sequencing reads.
Genome assemblies still contain thousands of gaps and it is extremely important to fill
those gaps as much as possible, as a lot of those can contain exons or even a full genome
providing that the gap length is huge. Such a gapless genome can significantly help in
downstream analysis and with Figbird, we can fill those gaps with minimal introduction
of erroneous sequence and achieve better outputs than contemporary tools in literature.

As gap filling is the last stage of genome assembly pipeline and the easy regions of the
genome have already been reconstructed by the contig assembler in previous stages,
thus only the complex regions are left at this stage to fill up. So, the main objectives
of our study was to incorporate crucial information such as insert size distribution,
sequencing errors, aligned read statistics and sequence quality during gap filling to
correctly estimate the true lengths of gaps. We developed a likelihood based method
similar to the Expectation-Maximization algorithm for gap filling based on a generative
model for sequencing namely CGAL. Our proposed methodology can be summarized
into two steps namely preprocessing step and gap filling step. In the preprocessing
step, two different types of read pairs, i.e., pair-end and mate-pair reads generated by
second generation Illumina sequencing technology were corrected using a read correction
tool Quake for better acuuarcy. Then those reads were aligned to the draft genome
assembly containing gaps using Bowtie2 software. Then partially mapped as well as
fully unmapped read sequences will be assigned to appropriate gaps based on the parsed
alignment information recorded in SAM format which will later be used in gap filling
step. During the gap filling step, each of the four bases were initially be assumed to
be equally probable in each gap position and the following two steps similar to the
expectation-maximization (EM) algorithm was applied iteratively. In E-step, each read

60

6.1. DISCUSSIONS 61

will be placed in each gap position and the probability that the read originated from
that position will be computed. In the M-step, the probabilities of the four bases at each
gap position will be adjusted using the probabilities of reads computed in the previous
E-step. With the help of this novel methodology along with the Gaussian distributions
accounting for sequencing errors and insert size, we were able to fill gaps with more
accuracy and achieved better results across various assemblies from standard GAGE
datasets.

6.1 Discussions

In this thesis work, we have used read pairs generated by high throughput second
generation sequencing machines: Illumina Genome Analyzer II and Illumina HiSeq
2000, which are comparatively accurate than the third generation technologies such as
PacBio or MinION. The reason for doing so is firstly, that the error rates in sequencing
for PacBio and MinION are much higher compared to that of Illumina. So a more
conservative approach should be taken in these cases since errors in this step will
accumulate in later steps of assembly. Secondly, there is also an issue of coverage
in case of Illumina since the coverage is higher for this than the other two despite
being cost efficient and higher chance of availability. As gap filling is the last step
of genome assembly pipeline, we have chosen to use accurate short reads which will
provide minimal errors in assembled gap sequences.

Unlike other state-of-the-art methods which focus on a graph based solution, our method
uses an expectation maximization approach which bypasses the inherent complexities
associated with the local assembly of reads or k-mers from the reads and thus it can
circumvent the obstacles of the overlap or De-Bruijn graph based methods. The method
is largely parameter free and shows promising results on variety of draft bacterial
and human chromosome assemblies outperforming other gap filling tools on maximum
occasions which we have demonstrated in the Section 5. The quality and robustness
of our proposed method was assessed on real data from the GAGE project and the
analyses included a comprehensive comparison among our method and other state-of-
the-art gap filling tools based on six different metrics such as misassembly, erroneous
length, number of gaps remaining etc. evaluated using QUAST. Results from the
experiment clearly shows that Figbird has managed to achieve a balanced result across
different assembly pipelines, managing to close a larger number of gaps improving the
overall NGA50 value while still maintaining to keep the amount of misassembly and
length of erroneously introduced sequence lower in most cases.

6.2. FUTURE WORKS 62

Among many practical applications of gap filling, variant analysis [96] is one worthy
of mentioning. Such an application is presented here [26], where they have presented
a one-to-one correspondence between the hardest structural variant search problem of
genotyping insertion variants and gap filling in genome assembly. Such an example
shows how gap filling problem can not only reach towards a complete genome but also
achieve better genomic analysis via more information captured through this newly filled
sequences.

6.2 Future works

One of the two possible extensions of the current methodology can be the modification
of the method to incorporate long read sequences from the TGS technologies such as
PacBio or ONT. Long reads will definitely span those large gaps where SGS reads won’t
map due to significantly low insert sizes. Our strategy of using learnt distributions will
not only help to solve the issues of repeat related gaps but also the error model can solve
the issues of misassembly and high error rates associated with long reads. But to do
so, we will have to change our sequencing error distributions accordingly. The second
possible change that can yield a better gap filling output will be to split the reads into
k-mers where parameter k has to be identified through an evaluation of the read library.
When reads are longer in length (approximately > 70 bp), there are possibilities of a
burst error occurring through the read at any position. Thus, they read may not get
aligned properly by bowtie2 currently and eventually getting ignored at current state.
But as our entire methodology is based on inset size of a read pair, we will have to come
to a solution to the definition and application of insert size in case the reads get split
into multiple k-mers and change the corresponding insert size distribution parameters
implemented in CGAL [37].

6.3 Availability

Figbird is publicly available at https://github.com/SumitTarafder/Figbird, with a user
manual and all necessary dependencies.

https://github.com/SumitTarafder/Figbird

References

[1] M. Brbić, M. Piškorec, V. Vidulin, A. Kriško, T. Šmuc, and F. Supek, “The
landscape of microbial phenotypic traits and associated genes,” Nucleic Acids
Research, p. gkw964, 2016.

[2] J. Lamb, E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel, J. Lerner,
J.-P. Brunet, A. Subramanian, K. N. Ross, et al., “The Connectivity Map: using
gene-expression signatures to connect small molecules, genes, and disease,” Science,
vol. 313, no. 5795, pp. 1929–1935, 2006.

[3] J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature Biotechnology,
vol. 26, no. 10, pp. 1135–1145, 2008.

[4] F. Sanger, S. Nicklen, and A. R. Coulson, “DNA sequencing with chain-terminating
inhibitors,” Proceedings of the national academy of sciences, vol. 74, no. 12,
pp. 5463–5467, 1977.

[5] A. M. Maxam and W. Gilbert, “A new method for sequencing DNA,” Proceedings
of the National Academy of Sciences, vol. 74, no. 2, pp. 560–564, 1977.

[6] C. S. Pareek, R. Smoczynski, and A. Tretyn, “Sequencing technologies and genome
sequencing,” Journal of Applied Genetics, vol. 52, no. 4, pp. 413–435, 2011.

[7] Z. Qiang-long, L. Shi, G. Peng, and L. Fei-shi, “High-throughput sequencing
technology and its application,” Journal of Northeast Agricultural University
(English Edition), vol. 21, no. 3, pp. 84–96, 2014.

[8] J. K. Kulski, “Next-generation sequencing—an overview of the history, tools,
and “omic” applications,” Next generation sequencing-advances, applications and
challenges, pp. 3–60, 2016.

[9] D. A. Wheeler, M. Srinivasan, M. Egholm, Y. Shen, L. Chen, A. McGuire, W. He,
Y.-J. Chen, V. Makhijani, G. T. Roth, et al., “The complete genome of an
individual by massively parallel DNA sequencing,” Nature, vol. 452, no. 7189,
pp. 872–876, 2008.

63

REFERENCES 64

[10] M. Kchouk, J.-F. Gibrat, and M. Elloumi, “Generations of sequencing technologies:
from first to next generation,” Biology and Medicine, vol. 9, no. 3, 2017.

[11] A. J. de Koning, W. Gu, T. A. Castoe, M. A. Batzer, and D. D. Pollock, “Repetitive
elements may comprise over two-thirds of the human genome,” PLOS Genetics,
vol. 7, no. 12, p. e1002384, 2011.

[12] D. R. Bentley, S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton, C. G.
Brown, K. P. Hall, D. J. Evers, C. L. Barnes, H. R. Bignell, et al., “Accurate
whole human genome sequencing using reversible terminator chemistry,” Nature,
vol. 456, no. 7218, pp. 53–59, 2008.

[13] S. Koren, M. C. Schatz, B. P. Walenz, J. Martin, J. T. Howard, G. Ganapathy,
Z. Wang, D. A. Rasko, W. R. McCombie, E. D. Jarvis, et al., “Hybrid error
correction and de novo assembly of single-molecule sequencing reads,” Nature
Biotechnology, vol. 30, no. 7, pp. 693–700, 2012.

[14] S. Ardui, A. Ameur, J. R. Vermeesch, and M. S. Hestand, “Single molecule real-
time (SMRT) sequencing comes of age: applications and utilities for medical
diagnostics,” Nucleic Acids Research, vol. 46, no. 5, pp. 2159–2168, 2018.

[15] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol,
“ABySS: a parallel assembler for short read sequence data,” Genome Research,
vol. 19, no. 6, pp. 1117–1123, 2009.

[16] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read assembly
using de Bruijn graphs,” Genome Research, vol. 18, no. 5, pp. 821–829, 2008.

[17] J. Butler, I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte, E. S. Lander,
C. Nusbaum, and D. B. Jaffe, “ALLPATHS: de novo assembly of whole-genome
shotgun microreads,” Genome Research, vol. 18, no. 5, pp. 810–820, 2008.

[18] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov,
V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, et al., “SPAdes: a new
genome assembly algorithm and its applications to single-cell sequencing,” Journal
of Computational Biology, vol. 19, no. 5, pp. 455–477, 2012.

[19] M. Li, Z. Liao, Y. He, J. Wang, J. Luo, and Y. Pan, “ISEA: Iterative seed-
extension algorithm for de novo assembly using paired-end information and
insert size distribution,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 14, no. 4, pp. 916–925, 2016.

REFERENCES 65

[20] J. Luo, J. Wang, Z. Zhang, F.-X. Wu, M. Li, and Y. Pan, “EPGA: de novo assembly
using the distributions of reads and insert size,” Bioinformatics, vol. 31, no. 6,
pp. 825–833, 2015.

[21] J. Luo, J. Wang, W. Li, Z. Zhang, F.-X. Wu, M. Li, and Y. Pan, “EPGA2: memory-
efficient de novo assembler,” Bioinformatics, vol. 31, no. 24, pp. 3988–3990, 2015.

[22] A. Dayarian, T. P. Michael, and A. M. Sengupta, “SOPRA: Scaffolding algorithm
for paired reads via statistical optimization,” BMC Bioinformatics, vol. 11, no. 1,
pp. 1–21, 2010.

[23] M. Boetzer, C. V. Henkel, H. J. Jansen, D. Butler, and W. Pirovano, “Scaffolding
pre-assembled contigs using SSPACE,” Bioinformatics, vol. 27, no. 4, pp. 578–579,
2011.

[24] T. J. Treangen and S. L. Salzberg, “Repetitive DNA and next-generation
sequencing: computational challenges and solutions,” Nature Reviews Genetics,
vol. 13, no. 1, pp. 36–46, 2012.

[25] J. R. Miller, S. Koren, and G. Sutton, “Assembly algorithms for next-generation
sequencing data,” Genomics, vol. 95, no. 6, pp. 315–327, 2010.

[26] R. Walve, L. Salmela, and V. Mäkinen, “Variant genotyping with gap filling,”
PLOS ONE, vol. 12, no. 9, p. e0184608, 2017.

[27] M. J. Chaisson, R. K. Wilson, and E. E. Eichler, “Genetic variation and the de novo
assembly of human genomes,” Nature Reviews Genetics, vol. 16, no. 11, pp. 627–
640, 2015.

[28] M. Prudencio, P. K. Gonzales, C. N. Cook, T. F. Gendron, L. M. Daughrity,
Y. Song, M. T. Ebbert, M. Van Blitterswijk, Y.-J. Zhang, K. Jansen-West, et al.,
“Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD
patients,” Human Molecular Genetics, vol. 26, no. 17, pp. 3421–3431, 2017.

[29] P. Johnsson, L. Lipovich, D. Grandér, and K. V. Morris, “Evolutionary
conservation of long non-coding RNAs; sequence, structure, function,” Biochimica
et Biophysica Acta (BBA)-General Subjects, vol. 1840, no. 3, pp. 1063–1071, 2014.

[30] J. L. Argueso, J. Westmoreland, P. A. Mieczkowski, M. Gawel, T. D. Petes, and
M. A. Resnick, “Double-strand breaks associated with repetitive DNA can reshape
the genome,” Proceedings of the National Academy of Sciences, vol. 105, no. 33,
pp. 11845–11850, 2008.

REFERENCES 66

[31] S. Raffaele and S. Kamoun, “Genome evolution in filamentous plant pathogens:
why bigger can be better,” Nature Reviews Microbiology, vol. 10, no. 6, pp. 417–
430, 2012.

[32] R. de Jonge, M. D. Bolton, A. Kombrink, G. C. van den Berg, K. A. Yadeta, and
B. P. Thomma, “Extensive chromosomal reshuffling drives evolution of virulence
in an asexual pathogen,” Genome Research, vol. 23, no. 8, pp. 1271–1282, 2013.

[33] B. P. Thomma, M. F. Seidl, X. Shi-Kunne, D. E. Cook, M. D. Bolton, J. A. van
Kan, and L. Faino, “Mind the gap; seven reasons to close fragmented genome
assemblies,” Fungal Genetics and Biology, vol. 90, pp. 24–30, 2016.

[34] D. Domanska, C. Kanduri, B. Simovski, and G. K. Sandve, “Mind the gaps:
overlooking inaccessible regions confounds statistical testing in genome analysis,”
BMC bioinformatics, vol. 19, no. 1, pp. 1–9, 2018.

[35] M. Meyer and M. Kircher, “Illumina sequencing library preparation for highly
multiplexed target capture and sequencing,” Cold Spring Harbor Protocols,
vol. 2010, no. 6, pp. pdb–prot5448, 2010.

[36] J. A. Frank, Y. Pan, A. Tooming-Klunderud, V. G. Eijsink, A. C. McHardy, A. J.
Nederbragt, and P. B. Pope, “Improved metagenome assemblies and taxonomic
binning using long-read circular consensus sequence data,” Scientific Reports,
vol. 6, no. 1, pp. 1–10, 2016.

[37] A. Rahman and L. Pachter, “CGAL: computing genome assembly likelihoods,”
Genome Biology, vol. 14, no. 1, p. R8, 2013.

[38] A. Rahman and L. Pachter, “SWALO: scaffolding with assembly likelihood
optimization,” Nucleic Acids Research, vol. 49, pp. e117–e117, 08 2021.

[39] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the Royal Statistical Society.
Series B (methodological), pp. 1–38, 1977.

[40] A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, “QUAST: quality assessment
tool for genome assemblies,” Bioinformatics, vol. 29, no. 8, pp. 1072–1075, 2013.

[41] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren, T. J.
Treangen, M. C. Schatz, A. L. Delcher, M. Roberts, et al., “GAGE: A critical
evaluation of genome assemblies and assembly algorithms,” Genome Research,
vol. 22, no. 3, pp. 557–567, 2012.

REFERENCES 67

[42] V. C. Piro, H. Faoro, V. A. Weiss, M. B. Steffens, F. O. Pedrosa, E. M. Souza,
and R. T. Raittz, “FGAP: an automated gap closing tool,” BMC Research Notes,
vol. 7, no. 1, pp. 1–5, 2014.

[43] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman, “Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402,
1997.

[44] S. Kosugi, H. Hirakawa, and S. Tabata, “GMcloser: closing gaps in assemblies
accurately with a likelihood-based selection of contig or long-read alignments,”
Bioinformatics, vol. 31, no. 23, pp. 3733–3741, 2015.

[45] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu,
and S. L. Salzberg, “Versatile and open software for comparing large genomes,”
Genome Biology, vol. 5, no. 2, pp. 1–9, 2004.

[46] S. Kosugi, S. Natsume, K. Yoshida, D. MacLean, L. Cano, S. Kamoun, and
R. Terauchi, “Coval: improving alignment quality and variant calling accuracy
for next-generation sequencing data,” PLOS ONE, vol. 8, no. 10, p. e75402, 2013.

[47] L. Noé and G. Kucherov, “YASS: enhancing the sensitivity of DNA similarity
search,” Nucleic Acids Research, vol. 33, no. suppl_2, pp. W540–W543, 2005.

[48] A. C. English, S. Richards, Y. Han, M. Wang, V. Vee, J. Qu, X. Qin, D. M.
Muzny, J. G. Reid, K. C. Worley, et al., “Mind the gap: upgrading genomes with
Pacific Biosciences RS long-read sequencing technology,” PLOS ONE, vol. 7, no. 11,
p. e47768, 2012.

[49] “Pacific biosciences.” http://www.pacificbiosciences.com/. [Online; accessed 20-
July-2021].

[50] J. I. Kammonen, O.-P. Smolander, L. Paulin, P. A. Pereira, P. Laine, P. Koskinen,
J. Jernvall, and P. Auvinen, “gapFinisher: A reliable gap filling pipeline for
SSPACE-LongRead scaffolder output,” PLOS ONE, vol. 14, no. 9, p. e0216885,
2019.

[51] M. Boetzer and W. Pirovano, “SSPACE-LongRead: scaffolding bacterial draft
genomes using long read sequence information,” BMC Bioinformatics, vol. 15, no. 1,
pp. 1–9, 2014.

[52] T. Christiansen, L. Wall, J. Orwant, et al., Programming Perl: Unmatched power
for text processing and scripting. ” O’Reilly Media, Inc.”, 2012.

http://www.pacificbiosciences.com/

REFERENCES 68

[53] P. H. de Sa, F. Miranda, A. Veras, D. M. de Melo, S. Soares, K. Pinheiro,
L. Guimarães, V. Azevedo, A. Silva, and R. T. Ramos, “GapBlaster—a graphical
gap filler for prokaryote genomes,” PLOS ONE, vol. 11, no. 5, p. e0155327, 2016.

[54] R. T. J. Ramos, A. R. Carneiro, P. H. Caracciolo, V. Azevedo, M. P. C. Schneider,
D. Barh, and A. Silva, “Graphical contig analyzer for all sequencing platforms
(G4ALL): a new stand-alone tool for finishing and draft generation of bacterial
genomes,” Bioinformation, vol. 9, no. 11, p. 599, 2013.

[55] X. Huang, S.-P. Yang, A. T. Chinwalla, L. W. Hillier, P. Minx, E. R. Mardis, and
R. K. Wilson, “Application of a superword array in genome assembly,” Nucleic
Acids Research, vol. 34, no. 1, pp. 201–205, 2006.

[56] S.-H. Lin and Y.-C. Liao, “CISA: contig integrator for sequence assembly of
bacterial genomes,” PLOS ONE, vol. 8, no. 3, p. e60843, 2013.

[57] D. D. Sommer, A. L. Delcher, S. L. Salzberg, and M. Pop, “Minimus: a fast,
lightweight genome assembler,” BMC Bioinformatics, vol. 8, no. 1, pp. 1–11, 2007.

[58] J. Luo, J. Wang, J. Shang, H. Luo, M. Li, F.-X. Wu, and Y. Pan, “GapReduce: A
gap filling algorithm based on partitioned read sets,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 17, no. 3, pp. 877–886, 2018.

[59] I. J. Tsai, T. D. Otto, and M. Berriman, “Improving draft assemblies by iterative
mapping and assembly of short reads to eliminate gaps,” Genome Biology, vol. 11,
no. 4, pp. 1–9, 2010.

[60] M. Boetzer and W. Pirovano, “Toward almost closed genomes with GapFiller,”
Genome Biology, vol. 13, no. 6, p. R56, 2012.

[61] S. Gao, D. Bertrand, and N. Nagarajan, “FinIS: improved in silico finishing
using an exact quadratic programming formulation,” in International Workshop
on Algorithms in Bioinformatics, pp. 314–325, Springer, 2012.

[62] X. Yang, D. Medvin, G. Narasimhan, D. Yoder-Himes, and S. Lory, “CloG: a
pipeline for closing gaps in a draft assembly using short reads,” in 2011 IEEE 1st
International Conference on Computational Advances in Bio and Medical Sciences
(ICCABS), pp. 202–207, IEEE, 2011.

[63] C. Chu, X. Li, and Y. Wu, “GAPPadder: a sensitive approach for closing gaps on
draft genomes with short sequence reads,” BMC Genomics, vol. 20, no. 5, pp. 1–10,
2019.

REFERENCES 69

[64] R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu,
et al., “SOAPdenovo2: an empirically improved memory-efficient short-read de
novo assembler,” Gigascience, vol. 1, no. 1, pp. 2047–217X, 2012.

[65] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan,
K. Kristiansen, et al., “De novo assembly of human genomes with massively parallel
short read sequencing,” Genome Research, vol. 20, no. 2, pp. 265–272, 2010.

[66] D. Paulino, R. L. Warren, B. P. Vandervalk, A. Raymond, S. D. Jackman, and
I. Birol, “Sealer: a scalable gap-closing application for finishing draft genomes,”
BMC Bioinformatics, vol. 16, no. 1, pp. 1–8, 2015.

[67] L. Salmela, K. Sahlin, V. Mäkinen, and A. I. Tomescu, “Gap Filling as Exact Path
Length Problem,” Journal of Computational Biology, vol. 23, no. 5, pp. 347–361,
2016.

[68] J. Wetzel, C. Kingsford, and M. Pop, “Assessing the benefits of using mate-pairs to
resolve repeats in de novo short-read prokaryotic assemblies,” BMC Bioinformatics,
vol. 12, no. 1, pp. 1–14, 2011.

[69] M. Nykänen and E. Ukkonen, “The exact path length problem,” Journal of
Algorithms, vol. 42, no. 1, pp. 41–53, 2002.

[70] B. P. Vandervalk, S. D. Jackman, A. Raymond, H. Mohamadi, C. Yang, D. A.
Attali, J. Chu, R. L. Warren, and I. Birol, “Konnector: Connecting paired-end
reads using a bloom filter de Bruijn graph,” in 2014 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pp. 51–58, IEEE, 2014.

[71] C. Ye, Z. S. Ma, C. H. Cannon, M. Pop, and W. Y. Douglas, “Exploiting sparseness
in de novo genome assembly,” in BMC Bioinformatics, vol. 13, pp. 1–8, BioMed
Central, 2012.

[72] S. Chhangawala, G. Rudy, C. E. Mason, and J. A. Rosenfeld, “The impact of
read length on quantification of differentially expressed genes and splice junction
detection,” Genome Biology, vol. 16, no. 1, p. 131, 2015.

[73] A. Conesa, P. Madrigal, S. Tarazona, D. Gomez-Cabrero, A. Cervera,
A. McPherson, M. W. Szcześniak, D. J. Gaffney, L. L. Elo, X. Zhang, et al.,
“A survey of best practices for RNA-seq data analysis,” Genome Biology, vol. 17,
no. 1, p. 13, 2016.

REFERENCES 70

[74] I. Vasilinetc, A. D. Prjibelski, A. Gurevich, A. Korobeynikov, and P. A.
Pevzner, “Assembling short reads from jumping libraries with large insert sizes,”
Bioinformatics, vol. 31, no. 20, pp. 3262–3268, 2015.

[75] M. E. Talkowski, C. Ernst, A. Heilbut, C. Chiang, C. Hanscom, A. Lindgren,
A. Kirby, S. Liu, B. Muddukrishna, T. K. Ohsumi, et al., “Next-generation sequenc-
ing strategies enable routine detection of balanced chromosome rearrangements
for clinical diagnostics and genetic research,” The American Journal of Human
Genetics, vol. 88, no. 4, pp. 469–481, 2011.

[76] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome,” Genome
Biology, vol. 10, no. 3, pp. 1–10, 2009.

[77] F. García-Alcalde, K. Okonechnikov, J. Carbonell, L. M. Cruz, S. Götz,
S. Tarazona, J. Dopazo, T. F. Meyer, and A. Conesa, “Qualimap: evaluating next-
generation sequencing alignment data,” Bioinformatics, vol. 28, no. 20, pp. 2678–
2679, 2012.

[78] “Expected errors predicted by Phred (Q) scores.” https://drive5.com/usearch/
manual/readqualfiltering.html. [Online; accessed 24-July-2021].

[79] “Expected errors predicted by Phred (Q) scores.” https://drive5.com/usearch/
manual/exp_errs.html. [Online; accessed 24-July-2021].

[80] R. C. Edgar and H. Flyvbjerg, “Error filtering, pair assembly and error correction
for next-generation sequencing reads,” Bioinformatics, vol. 31, no. 21, pp. 3476–
3482, 2015.

[81] “N50 statistics.” https://sites.google.com/site/wiki4metagenomics/pdf/definition/
assembly/n50. [Online; accessed 24-July-2021].

[82] G. I. S. Consortium et al., “Initial sequencing and analysis of the human genome,”
Nature, vol. 409, no. 6822, pp. 860–921, 2001.

[83] “Why is N50 used as an assembly metric (and what’s the deal with NG50)?.” http:
//www.acgt.me/blog/2013/7/8/why-is-n50-used-as-an-assembly-metric.html.
[Online; accessed 24-July-2021].

[84] D. Earl, K. Bradnam, J. S. John, A. Darling, D. Lin, J. Fass, H. O. K. Yu,
V. Buffalo, D. R. Zerbino, M. Diekhans, et al., “Assemblathon 1: a competitive
assessment of de novo short read assembly methods,” Genome Research, vol. 21,
no. 12, pp. 2224–2241, 2011.

https://drive5.com/usearch/manual/readqualfiltering.html
https://drive5.com/usearch/manual/readqualfiltering.html
https://drive5.com/usearch/manual/exp_errs.html
https://drive5.com/usearch/manual/exp_errs.html
https://sites.google.com/site/wiki4metagenomics/pdf/definition/assembly/n50
https://sites.google.com/site/wiki4metagenomics/pdf/definition/assembly/n50
http://www.acgt.me/blog/2013/7/8/why-is-n50-used-as-an-assembly-metric.html
http://www.acgt.me/blog/2013/7/8/why-is-n50-used-as-an-assembly-metric.html

REFERENCES 71

[85] V. Mäkinen, L. Salmela, and J. Ylinen, “Normalized n50 assembly metric using
gap-restricted co-linear chaining,” BMC Bioinformatics, vol. 13, no. 1, pp. 1–5,
2012.

[86] E. S. Lander and M. S. Waterman, “Genomic mapping by fingerprinting random
clones: a mathematical analysis,” Genomics, vol. 2, no. 3, pp. 231–239, 1988.

[87] Wikipedia contributors, “Maximum likelihood estimation — Wikipedia, the free
encyclopedia,” 2019. [Online; accessed 22-July-2021].

[88] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with Bowtie 2,”
Nature Methods, vol. 9, no. 4, p. 357, 2012.

[89] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, and R. Durbin, “The sequence alignment/map format and SAMtools,”
Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 2009.

[90] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[91] J. T. Simpson and R. Durbin, “Efficient construction of an assembly string graph
using the FM-index,” Bioinformatics, vol. 26, no. 12, pp. i367–i373, 2010.

[92] D. R. Kelley, M. C. Schatz, and S. L. Salzberg, “Quake: quality-aware detection
and correction of sequencing errors,” Genome Biology, vol. 11, no. 11, p. R116,
2010.

[93] M. S. Fujimoto, P. M. Bodily, N. Okuda, M. J. Clement, and Q. Snell,
“Effects of error-correction of heterozygous next-generation sequencing data,” BMC
Bioinformatics, vol. 15, no. 7, pp. 1–8, 2014.

[94] H. Li and R. Durbin, “Fast and accurate short read alignment with Burrows–
Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[95] M. Hunt, C. Newbold, M. Berriman, and T. D. Otto, “A comprehensive evaluation
of assembly scaffolding tools,” Genome Biology, vol. 15, no. 3, pp. 1–15, 2014.

[96] S. Pabinger, A. Dander, M. Fischer, R. Snajder, M. Sperk, M. Efremova,
B. Krabichler, M. R. Speicher, J. Zschocke, and Z. Trajanoski, “A survey of
tools for variant analysis of next-generation genome sequencing data,” Briefings
in Bioinformatics, vol. 15, no. 2, pp. 256–278, 2014.

Generated using Postgraduate Thesis LATEX Template, Version 1.02. Department of
Computer Science and Engineering, Bangladesh University of Engineering and

Technology, Dhaka, Bangladesh.

This thesis was generated on Saturday 26th February, 2022 at 2:28pm.

72

	Candidate's Declaration
	Board of Examiners
	Acknowledgement
	List of Figures
	List of Tables
	Abstract
	Introduction
	Genes and genomes
	Generations of genome sequencing technologies
	Genome assembly and gaps
	Contributions of this research
	Thesis organization

	Literature review
	Long read or contig based methods
	Short read based methods
	GapCloser
	Gap2Seq
	GapFiller
	Sealer

	Limitations of the existing tools
	Motivation of the work

	Preliminaries
	Sequenced reads
	Read pairs
	Insert size of a read pair
	Quality of sequencing reads
	N50 statistics of genome assembly
	Sequencing read coverage
	Maximum Likelihood Estimation
	Expectation Maximization algorithm

	Methods
	Algorithm Overview
	Aligning and parsing read pairs
	A generative model for sequencing
	Learning distributions
	Gap Filling using the EM algorithm
	Selecting the gap length
	Finalizing the gap sequence
	Implementation
	Script iterations and read usage
	Adjustment of gap filling based on heuristics

	Experiments and results
	The genome assemblies
	The sequenced reads
	Configurations of the tools used for comparison
	Quality Evaluation of Filled Sequence
	Findings on the GAGE datasets
	Discussions
	Time and memory usage comparison
	Commands and configurations used to run the tools

	Conclusions
	Discussions
	Future works
	Availability

	References

