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Abstract 

Multi-objective optimization problem (MOOP) is an important class of optimization 

problem that ensures users to model a large variety of real world applications. A survey of 

quadratic programming is presented in corporate and economic planning formulation. An 

Advanced transformation technique has been proposed to solve MOOP. The research aims 

to find maximum profits diagnostics of a Textile industry by using proposed technique. 

Chandra Sen’s technique, statistical average technique and modified statistical average 

technique are used to solve multi-objective quadratic programming problem (MOQPP) and 

Pareto optimal solution analysis has been done. Applying on different types of examples, the 

result indicates that the proposed method gives better solution than other methods and it is 

less time consuming. This is easy to calculate which ensures more accuracy. Physical 

presentation and data analysis represent the worth of the method more compactly.  
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CHAPTER- 1 

Introduction 

1.1 Preliminary  

An exciting area of applied mathematics called Operations Research (OR) combines 

mathematics, statistics, computer science, physics, engineering, economics, and social 

sciences to solve real-world business problems. Numerous companies in industry require 

Operations Research professionals to apply mathematical techniques to a wide range of 

challenging questions. 

Operations Research can be defined as the science of decision-making. It has been successful 

in providing a systematic and scientific approach to all kinds of government, military, 

manufacturing, and service operations. Operations Research is a splendid area for graduates 

of mathematics to use their knowledge and skills in creative ways to solve complex problems 

and have an impact on critical decisions. 

There are many mathematical techniques that were developed specifically for OR 

applications. These techniques arise from basic mathematical ideas and became major areas 

of expertise for industrial operations. 

One important area of such techniques is Optimization. The process of optimizing 

systemically or simultaneously a collection of objective function is called Multi-Objective 

Optimization (MOO). Many problems in industry require finding the maximum or minimum 

of an objective function of a set of decision variables, subject to a set of constraints on those 

variables. Typical objectives are maximum profit, minimum cost, or minimum delay. 

Frequently there are many decision variables and the solution is not obvious. Techniques of 

mathematical programming for optimization include linear programming (optimization 

where both the objective function and constraints depend linearly on the decision variables), 

non-linear programming (non-linear objective function or constraints), integer programming 

(decision variables restricted to integer solutions), stochastic programming (uncertainty in 

model parameter values) and dynamic programming (stage-wise, nested, and periodic 

decision-making).The hypothesis of this research is that the study and evaluation of 
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fundamental MOO methods has been largely deficient; critical information concerning the 

significance of method parameters, the effect of formulation variation and guidelines for 

effective use of methods in general has been unavailable and unpublished. The primary goals 

of this work are to scrutinize, enhance and create MOO methods and methodologies to 

provide new understanding and to discover new aspects of solutions. We increase the often 

unrealized effectiveness of common MOO methods. We investigate the physical and 

mathematical significance of method parameters. 

With MOO, an improvement in one objective often results in detriment to another. 

Consequently, the idea of a solution is less straightforward than it is with single objective 

optimization. The predominant solution concept is Pareto Optimality and a point is Pareto 

optimal if and only if it is impossible to move from that point and reduce at least one 

objective function without increasing or affecting any other function. A Pareto optimality 

analysis has been discussed here. 

In real life problems, many different situations lead to nonlinear formulation of constraints 

and objective functions. The importance of nonlinear programming application is growing 

due to rapidly increasing sophistications of managers and operation researchers in 

implementing decision oriented mathematical models. Among all nonlinear programming 

problems, the quadratic formulation is the easiest to solve when one deals with a QP 

involving linear inequality constraints. In many situations, decision makers want to optimize 

several different objective functions at the same time under same constraints. This leads to 

Multi-Objective concept. The MOQPP has been greatly received by user to solve different 

types of real life problems.  

 

1.2 Operation Research and Its Practical Applications 

Though the framework of many processes and some aspects of their running may be 

extremely differentiated in the elementary operations composing them, they frequently 

reveal such similarities of behavior as to justify specialized inquiries and analyze. These 

analyses aim at detecting typical problems with a similar structure and, if possible, at 
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systemizing approaches to them. This has hastened the development of model or techniques 

peculiar to certain classes of problems. Some of these techniques were taken from various 

fields of science, while others are quite new and typical of operations research, and are 

therefore, susceptible of further developments and improvements. We do not pretend to give 

here an exhaustive and systematic documentation of them but giving a short survey of the 

most familiar techniques and of the characteristic problems connected with them.  

These techniques are the followings:   

 Mathematical programming (linear, nonlinear, dynamic and combinatorial 

programming) 

 Queuing Theory 

  Monte Carlo Method  

 Theory of Games 

  Replacement Theory 

1.3 Scope and Specific Objectives 

The aim of this research is to analyze several solution techniques to solve multi objective 

optimization problems. Quadratic objective functions are treated specially. To convert multi-

objective function into single objective function a popular technique named Chandra Sen’s 

technique has been discussed. Different types of statistical analysis such as arithmetic, 

geometric, harmonic methods are presented to solve MOQPP.  Also modified statistical 

average techniques are discussed.    

After analyzing different techniques, a new technique named Advanced transformation 

technique has been proposed which reveal the optimal solutions more accurately. Data 

collected from real world problems. 

The major objectives of this study are-           

 To ensure maximum profit of a textile company oriented with buyer’s 

requirement 
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 A Multi-Objective Quadratic Programming Problem (MOQPP) has been 

formulated from real industrial data to change the problem into mathematical 

formula 

 Solved the model by different techniques such as Graphical method, AMPL 

software, Chandra Sen’s technique, Statistical (arithmetic, geometric, 

harmonic) average technique and modified statistical average techniques 

 Compare the solutions with Pareto optimality analysis 

 Proposed new technique titled ‘Advanced Transformation technique’ to 

solve MOQPP 

 Different types of data analysis have been done to present the effectives of 

the proposed technique and also expressed the limitations    

 

After comparing, the results show that the new proposed advanced transformation technique 

is better than others. This research will present a survey of Quadratic Programming Problem 

in corporate and economic planning formulation. The aim is to find maximum profits 

diagnostics of a Textile industry by using Quadratic formulation and its solutions procedures.  

 

1.4 Research Background 

Multi-objective optimization (MOO) is an effective technique for studying optimal trade off 

solutions that balance several criteria. The fundamentals and applications of MOO have been 

already explored in great detail [1]. The main limitation of MOO is that its computational 

burden grows in size with the number of objectives. Among all nonlinear programming 

problems, the quadratic formulation is the easiest to solve when one deals with a QP 

involving linear inequality constraints. Various types of solution procedure have been 

already developed for solving MOO problems [2]. Some of them deal with theory and some 

of them concern with solution methods and applications. 

To solve multi-objective linear programming problems, various types of methods have been 

proposed by various scholars.  Such as -Mean and median method by Sulaiman and Sadiq 
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[3], Optimal transformation technique by Sulaiman and Ameen [4], Harmonic mean by 

Sulaiman and Mustafa [5], New statistical average method by Nahar and Alim [6]. 

On the other hand, Linear fractional programming problem has been solved by different 

researchers by different techniques. For example- A new procedure proposed by Tantawy 

[7] and by Guzel [8], An improved method by Mehdi, et al. [9], Arithmetic average technique 

by Sulaiman, et al.  [10], A new approach presented by Akter and Modi [11], New geometric 

average technique proposed by Nahar and Alim [12].  

Many research scholars have solved multi objective quadratic programming problem by 

applying several methods. We include some of them. Optimal cutting plane procedure [13] 

and Arithmetic average transformation technique [14] had been used by Sulaiman and 

Rahim. Optimal average maximum- minimum technique and Optimal geometric average 

technique had been used by Sulaiman & Nawkhass [15] and by Sulaiman et al. [16] gradually 

to solve multi objective quadratic programming problem.  

In multi-objective programming problem, it is difficult to find an optimal solution to achieve 

the extreme value of every objective function, so that the decision maker is exploring for the 

compromise solution. Based on this idea, the concepts of Pareto optimal solution and weakly 

Pareto optimal solution are introduced into multi-objective programming problem [17]. 

Liu and Peng analyzed the relations among absolutely optimal solutions, effective solutions 

and weakly effective solutions of multi-objective programming problem [18]. Caramin and 

Dell’olmo describes Scalarization techniques, ∈-constraints methods, Goal problem, 

Multilevel programming to solve Multi-objective optimization problem (MOOP ) [19]. A 

new approach to solve MOOP providing a rapid solution for Pareto set if the objective 

function involved quadratic are described by Britto, et al. [20]. Zhang and Zuo then analyze 

the Pareto solution for convex MOLPP [21]. 

The larger the size of the problem, the greater the number of inefficient solution generated 

and thus the slower the convergence of the algorithm. To overcome this problem, we propose 

an advanced transformation technique. We test the capabilities of this proposed technique 

drawing a comparison with other techniques. 
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In this paper, we focus our interest on multi-objective quadratic programming problem 

(MOQPP) where several quadratic objectives are to be optimized subject to a set of linear 

constraints and nonnegative integer variables. The optimization software package, namely 

AMPL has been employed in the computation. 

Multi-objective linear programming problem (MOLPP) has been solved by many research 

scholars. Hamad-Amin used arithmetic average technique to solve it [22]. Yesmin and Alim 

suggested a modified harmonic average technique to get more accurate solution by solving 

MOQPP [23].       

This study has presented MOQPP and proposed an advanced transformation technique to 

solve it. The result is compared with Pareto optimality and different techniques such as 

statistical average techniques and modified statistical average techniques. The comparison 

table shows the effectiveness of the proposed method. The proposed technique is more easy 

to realize and less time consuming. No matter how complex the problem, this proposed 

method can be applied. Physical interpretations have been presented and data analysis have 

been discussed for more convenience. 

1.5 Outlines of The Thesis 

For the sake of self-contain of the thesis, firstly the multi-objective optimization 

programming problems are introduced briefly in Chapter 1. Also we have given some 

related definitions and important theorems for better understanding of the research.  

The major objective of Chapter 2 is to describe multi-objective optimization with its 

variation. 

In Chapter 3, the usual Graphical method, Pareto Optimality, the computer oriented 

algorithm AMPL and Chandra Sen’s technique, the statistical average technique (SAT) such 

as arithmetic mean, geometric mean and harmonic mean, the modified statistical average 

technique (MSAT) for solving linear/nonlinear programming problems are discussed briefly.   

The proposed Advanced transformation technique to solve multi objective optimization 

problem has been presented in Chapter 4. 
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In Chapter 5, a numerical example of multi-objective quadratic programming problem 

(MOQPP) is discussed briefly. Also Data analysis and limitations of the proposed techniques 

are discussed.   

In Chapter 6, Practical aspects from real life problem are analyzed for maximum profit of 

a textile industry in Bangladesh.  

The research has been concluded by proper discussion according to the solved outcomes. 

1.6 Expected Outcomes 

Textile product’s quantities and respective prices are formulated as a quadratic function. 

Individual objective function will be presented for individual product. For different types of 

products, it forms multi objective function. With concern of company’s limitations and 

resources, it forms constraints. After that the multi-objective quadratic programming 

problem (MOQPP) will be formed.  

It will be seen that optimization results using new proposed technique will be better than that 

of other techniques.  From the analysis, it will be found that MOQPP will be best optimized 

by using new proposed advanced transformation technique. The conclusion will be focus on 

the maximum profit of the industry which ensures by using new proposed technique.  

MOQPP has attracted the interest of many researchers due to its application in many 

important fields such as production planning, financial and corporate planning, portfolio 

selection, monopolist’s profit maximization, inequality constrained least squares estimation, 

spatial equilibrium analysis, goal programming, optimal decision rules etc.                     

 Organizational outcomes expected 

The results may have some influences on future production decision and it illustrates an 

application of quadratic programming since the profit to be maximized may be written as 

quadratic function of product quantities and prices. Moreover, since the companies are 

already using software to maximize their profit, this conception may help them to develop 

the algorithm of the software. 

 National impacts expected 
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 The importance of the textile industry in the economy of Bangladesh is very high. 

Bangladesh is world’s 2nd biggest apparel exporter. Increasing profit in textile industry has 

great effect in our national economic balance. This research focuses on the maximization of 

profit of any textile company which adds a new dimension in our national economy.  

 

1.7 Fundamental Concept 

Most of the fundamental theory concerning multi-objective optimization (MOO) veers from 

the more familiar paradigms of single objective optimization. This chapter addresses basic 

concepts that are necessary for method analysis and development. 

Definitions 

MOO originally grew out of three areas: economic equilibrium and welfare theories, game 

theory and pure mathematics. Consequently, many terms and fundamental ideas stem from 

these fields. For the sake of brevity, only necessary terms are defined below. Many of these 

terms have multiple definitions in the literature stemming from the differences between 

engineering and economic jargon and in such cases the most common and most appropriate 

definitions are used.  

Convex Set: 

A convex set is a set of elements from a vector space such that all the points on the straight 

line. Line between any two points of the set are also contained in the set. If a and b are points 

in a vector space the points on the straight line between a and b are given by 

                         𝒙 = 𝒂λ + (𝟏 − λ)𝒃              for all λ from 0 to 1.  

A set S is convex if there are no points a and b in S such that there is a point on the line 

between a and b that does not belong to S. The point of this restatement is to include the 

empty set within the definition of convexity. The definition also includes singleton sets 

where a and b have to be the same point and thus the line between a and b is the same point.  
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With the inclusion of the empty set as a convex set then it is true that: The intersection of 

any two convex sets is a convex set. 

 

Figure 1.1: Convex and Non-convex set 

Extreme point: 

An extreme point is a point in a convex set which does not lie in any open line segment 

joining two points in the set. 

Let C⊆𝑅𝑛 be a non-empty closed convex set. Then ̄x is an extreme point of C if there are no 

two points 𝑥1, 𝑥2 ∈C and λ∈(0,1) such that  ̄x=λ𝑥1+ (1−λ) 𝑥2. 

                                         

Figure 1.2: Extreme point 

Saddle-point: 

Saddle point is a point at which a function of two variables has partial derivatives equal to 

zero but at which the function has neither a maximum nor a minimum value. 

Let �̅� ∈ 𝑋 𝑎𝑛𝑑 𝛿 ̅ ≥ 0, 𝑡ℎ𝑒𝑛  (�̅�, 𝛿̅) is a saddle point of 𝑙(𝑥, 𝛿) if 

                                      𝐿(�̅�, 𝛿) ≤ 𝐿(�̅�, 𝛿̅) ≤ 𝐿(𝑋, 𝛿̅)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋, 𝛿 ≥ 0.     

https://en.wikipedia.org/wiki/Extreme_point
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Decision variables: 

A decision variable is a quantity that the decision-maker controls. 

In the context of optimization, decision variables are unknown and controllable parameters 

of the system which finding their value is the purpose of problem solving effort. The value 

of decision values determines the system objective function value. 

Consider, a linear programing model 

                              max  𝑍 = 3𝑥 + 4𝑦 

Here, 𝑥 𝑎𝑛𝑑 𝑦 represents decision variables. 

Objective function: 

Objective function defines the criterion for evaluating the solution. It is a mathematical 

function of the decision variables that converts a solution in to a numerical evaluation of that 

solution. For example, the objective function may measure the profit or cost that occurs as a 

function of the amounts of various products produced. The objective function also specifies 

a direction of optimization, either to maximize or minimize. An optimal solution for the 

model is the best solution as measured by that criterion. 

The objective function indicates how much each variable contributes to the value to be 

optimized in the problem. The objective function takes the following general form: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝑐𝑖𝑋𝑖

𝑛

𝑖=1

 

where  

ci = the objective function coefficient corresponding to the 𝑖𝑡ℎ  variable and 

Xi = the 𝑖𝑡ℎ decision variable  

The coefficients of the objective function indicate the contribution to the value of the 

objective function of one unit of the corresponding variable. 

Constraints: 



 Chapter-1, Introduction 
 
  

 
 

11 
 

Constraints are a set of functional equalities or inequalities that represent physical, economic, 

technological, legal, ethical, or other restrictions on what numerical values can be assigned 

to the decision variables. For example, constraints might ensure that no more input is used 

than is available. Constraints can be definitional, defining the number of employees at the 

start of a period t+1 as equal to the number of employees at the start of period t, plus those 

added during period t minus those leaving the organization during period t. In constrained 

optimization models we find values for the decision variables that maximize or minimize the 

objective function and satisfy all constraints. 

Linear Programming Problem (LPP): 

Linear programming or linear optimization is a process which takes into consideration 

certain linear relationships to obtain the best possible solution to a mathematical model. 

linear programming, mathematical modeling technique in which a linear function is 

maximized or minimized when subjected to various constraints. This technique has been 

useful for guiding quantitative decisions in business planning in industrial engineering. 

The solution of a linear programming problem reduces to finding the optimum value (largest 

or smallest, depending on the problem) of the linear expression called the objective function 

                                          𝑓 = 𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛   

subject to a set of constraints expressed as inequalities: 

                                  

The a’s, b’s, and c’s are constants determined by the capacities, needs, costs, profits, and 

other requirements and restrictions of the problem. 

Linear programming models have three major components: decision variables, objective 

function, and constraints. 

Solution of LPP: 

https://www.britannica.com/technology/industrial-engineering
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Any set of variables �̅� = (𝑥1,𝑥2, … , 𝑥𝑛) is called solution of LPP if it satisfies constraints 

only. 

If a linear programming problem has a solution, then it must occur at a vertex, or corner 

point, of the feasible set, S, associated with the problem.  

Basic solution and basic variable: 

A solution is a basic solution if it is obtained by setting some variables equal to zero and then 

solving for remaining variables with the determinant of coefficients of these variables is non 

zero. Usually we call those variables as basic variables (BV) which are used to get identity 

matrix in solving LPP using simplex method. Of course, the different choices of non-basic 

variables (NBV) will lead to different basic solutions. 

 To illustrate, we find all the basic solutions to the following system of two equations in 3 

variables: 

                                                                      𝑥1 + 𝑥2 = 3 

            −𝑥2 + 𝑥3 = −1 

 We begin by choosing a set of 3-2=1 (3 variables, 2 equations) non basic variables. For 

example, if NBV={𝑥3}, then BV={𝑥1, 𝑥2}. We obtain the values of the basic variables by 

setting  𝑥3 =0 and solving  

                                                                  𝑥1 + 𝑥2 = 3 

             −𝑥2 = −1 

We find that 𝑥1 = 2, 𝑥2 = 1  . Thus 𝑥1 = 2, 𝑥2 = 1,   𝑥3  = 0   is a basic solution to the 

equation. 

However, if we choose NBV={  𝑥1 } and BV={𝑥2, 𝑥3}, we obtain the basic solution 𝑥1 =

0, 𝑥2 = 3,   𝑥3 = 2.   If we choose NBV={𝑥2}, we obtain the basic solution𝑥1 = 3, 𝑥2 =

0,   𝑥3 = −1.    

Feasible solution:  
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Feasible solution is a set of values for the decision variables that satisfies all of the constraints 

in an optimization problem. It satisfies the entire restrictions foreseen in the optimization 

problem. When at least one restriction of the problem is not met, the solution is considered 

not feasible. 

Any set of variables  �̅� = (𝑥1,𝑥2, … , 𝑥𝑛) is called feasible solution of LPP if satisfies 

constraints and must be non-negative. 

Basic feasible solution: 

A basic solution to a system of m linear equations in n unknowns (n>=m) is obtained by 

setting n-m variables to 0 and solving the resulting system to get the values of the other m 

variables. 

The variables set to 0 are called non-basic, the variables obtained by solving the system are 

called basic. 

A basic solution is called feasible if all its basic variables are non-negative. 

Example:                                                        𝑥 + 𝑦 + 𝑢 = 4 

𝑥 + 3𝑦 + 𝑣 = 6 

Then (0,0,4,6) is basic feasible solution. 𝑥, 𝑦 are non-basic; 𝑢, 𝑣  are basic feasible solution. 

 

Feasible region: 

A feasible region, feasible set, search space, or solution space is the set of all possible points 

(sets of values of the choice variables) of an optimization problem that satisfy the problem's 

constraints, potentially including inequalities, equalities, and integer constraints. 

https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Constraint_(mathematics)
https://en.wikipedia.org/wiki/Inequality_(mathematics)
https://en.wikipedia.org/wiki/Equality_(mathematics)
https://en.wikipedia.org/wiki/Integer
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Figure 1.3: Feasible region 

Unbounded solution:  

The solutions of a linear programming problem which is feasible can be classified as a 

bounded solution and an unbounded solution.  

The unbounded solution is a situation when the optimum feasible solution cannot be 

determined, instead there are infinite many solutions. It is not possible to solve the problem 

in which this situation occurs. If the value of objective function can be increased or decreased 

infinitely then such a solution is called as unbounded solution.  

Degenerate solution: 

A Linear Programming is degenerate if in a basic feasible solution, one of the basic variables 

takes on a zero value. Degeneracy is caused by redundant constraints.  

Non- degenerate basic feasible solution: 

A non-degenerate basic feasible solution is a basic feasible solution with exactly all basic 

variables are positive. 

 

Optimal solution: 

The term optimal solution refers to the best solution to solve a problem or achieve its aims. 

A solution to an optimization problem which minimizes (or maximizes) the objective 

function. The values of the decision variables that either maximize or minimize the objective 

function. 

https://xlinux.nist.gov/dads/HTML/optimization.html
https://xlinux.nist.gov/dads/HTML/objective.html
https://xlinux.nist.gov/dads/HTML/objective.html
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Pareto optimal solution: 

A solution is called Pareto optimal, if none of the objective functions can be improved 

without degrading some of the other objective values. 

A vector 𝑥∗ ∈ 𝑊 is said to be Pareto optimal for a multi-objective problem if all other vectors 

𝑥 ∈ 𝑊 have a higher value for at least one of the objective function 𝑓𝑖, with  i = 1,..., n, or 

have the same value for all the objective functions. 

 General Multi-Objective Optimization Problem: 

A general multi-objective optimization problem is defined as the minimization (or 

maximization) of the objective function set 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)) subject to 

inequality constraints 𝑔𝑖(𝑥) ≤ 0, 𝑖 = {1,2, … , 𝑚} and equality constraints ℎ𝑗(𝑥) = 0, 𝑗 =

{1, … , 𝑝}. The solution of a multi-objective problem minimizes (or maximizes) the 

components of a vector F (x) where x is a n-dimensional decision variable vector 𝑥 =

(𝑥1, … , 𝑥𝑛) from some universe Ω. 

 It is noted that  𝑔𝑖(𝑥) ≤ 0 and ℎ𝑗(𝑥) = 0  represent constraints that must be fulfilled while 

minimizing (or maximizing) F (x) and Ω contains all possible x that can be used to satisfy 

an evaluation of F (x). Thus, a multi-objective problem consists of k objectives reflected in 

the k objective functions, m + p constraints on the objective functions and n decision 

variables. The k objective functions may be linear or nonlinear and continuous or discrete in 

nature. Of course, the vector of decision variables 𝑥𝑖 can also be continuous or discrete. 

 

Existence of Optimal Solutions 

Most of the topics of this part are concerned with   

 existence of optimal solutions 

 characterization of optimal solutions and  

 algorithms for computing optimal solutions.  

To illustrate the questions arising in the first topic, consider the following optimization 

problems:  
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                                                   min      
1+𝑥

2𝑥
 

                                                     𝑠. 𝑡.   𝑥 ≥ 1 

Here there is no optimal solution because the feasible region is unbounded.  

                                                     min      
1

𝑥
 

                                                     𝑠. 𝑡.   1 ≤ 𝑥 < 2 

Here there is no optimal solution because the feasible region is not closed.  

min     𝑓(𝑥)  

                                                          𝑠. 𝑡.   1 ≤ 𝑥 ≤ 2 

                                                   where 𝑓(𝑥) = {
1

𝑥
,   𝑥 < 2

1,   𝑥 = 2
 

Here there is no optimal solution because the function 𝑓(. ) is not sufficiently smooth. 

Related Theorems 

Theorem 1: 

If a linear programming problem has a solution, then it must occur at a vertex, or corner 

point, of the feasible set, S, associated with the problem. Furthermore, if the objective 

function P is optimized at two adjacent vertices of S, then it is optimized at every point on 

the line segment joining these two vertices, in which case there are infinitely many solutions 

to the problem.  

Theorem 2: 

Suppose we are given a linear programming problem with a feasible set S and an objective 

function P = 𝑎𝑥 + 𝑏𝑦. Then, If S is bounded then P has both a maximum and minimum value 

on S If S is unbounded and both a and b are nonnegative, then P has a minimum value on S 

provided that the constraints defining S include the inequalities x≥ 0 and y≥ 0. If S is the 

empty set, then the linear programming problem has no solution; that is, P has neither a 

maximum nor a minimum value. 
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Theorem 3: 

Weierstrass’ Theorem for functions: Let 𝑓(𝑥) be a continuous real-valued function on the 

compact nonempty set F ⊂ 𝑅𝑛. Then F contains a point that minimizes (maximizes) 𝑓(𝑥) on 

the set F.  

Proof: Since the set F is bounded, 𝑓(𝑥) is bounded below on F. Since F ≠ ∅, there exists 

𝑣 = 𝑖𝑛𝑓𝑥∈𝐹 𝑓(𝑥). By definition, for any 휀 > 0, the set 𝐹𝜀 = {𝑥 ∈ 𝐹: 𝑣 ≤ 𝑓(𝑥) ≤ 𝑣 + 휀}  is 

non-empty. Let 휀𝐾 → 0 𝑎𝑠 𝑘 → ∞, and let 𝑥𝑘  ∈  𝐹𝜀𝑘
 . Since F is bounded, there exists a 

subsequence of {𝑥𝑘} converging k to some �̅� ∈ F. By continuity of f(x), we have 𝑓(�̅�) =

𝑙𝑖𝑚𝑘→∞𝑘  𝑓(𝑥𝑘)  and since 

𝑣 ≤ 𝑓(𝑥𝑘) ≤ 𝑣 + 휀𝐾 , it follows that  𝑓(�̅�) = 𝑙𝑖𝑚𝑘→∞𝑘  𝑓(𝑥𝑘) = 𝑣. 

Theorem 4: 

The Fundamental Theorem of Linear Programming 

Every LP has the following three properties: 

(i) If it has no optimal solution, then it is either infeasible or unbounded  

(ii) If it has a feasible solution, then it has a basic feasible solution 

(iii) If it is bounded, then it has an optimal basic feasible solution. 

 

Proof: Part (i): Suppose an LP has no solution. This LP is either feasible or infeasible. Let 

us suppose it is feasible. In this case, the first phase of the two-phase simplex algorithm 

produces a basic feasible solution. Hence, the second phase of the two-phase simplex 

algorithm either discovers that the problem is unbounded or produces an optimal basic 

feasible solution. By assumption, the LP has no solution so it must be unbounded. Therefore, 

the LP is either infeasible or unbounded. 

Part (ii): If an LP has a feasible solution, then the first phase of the two-phase simplex 

algorithm produces a basic feasible solution. 

Part (iii): Suppose an LP is bounded. In particular, this implies that the LP is feasible, and, 

so by Part(ii), it has a basic feasible solution. The second phase of the two-phase simplex 
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algorithm either discovers that the problem is unbounded or produces an optimal basic 

feasible solution. Since the LP is bounded, the second phase produces an optimal basic 

feasible solution. 
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CHAPTER- 2 

Multi-Objective Optimization 
 

The optimal value or the best solution can be found through the optimization process. The 

optimization problems include looking for maximum or minimum value or using one 

objective or multi-objective. Problems that have more than one objective is referred to as 

multi-objective optimization (MOO). This type of problem is found in everyday life, such as 

mathematics, engineering, social studies, economics, agriculture, aviation, automotive, and 

many others. 

2.1 Multi-Objective Optimization 

The foundation of mathematical programming relies on two major scientific works. John 

von Neumann and Oskar Morgenstern published Theory of Games and Economic Behavior 

in 1944. George B. Dantzig discovered in 1947 the simplex method. In the same year, John 

von Neumann developed the theory of duality. The origin of vector optimization goes back 

to Francis Y. Edgeworth (1881) and Vilfredo Pareto (1896). The two economists developed 

the theory of indifference curves and defined the basic concept of optimality in multi-

objective optimization (MOO). 

Multi-objective optimization is an area of multiple criteria decision making that is concerned 

with mathematical optimization problems involving more than one objective function to be 

optimized simultaneously. 

Mathematically, Multi objective decision making problems can be expressed as: 

                                                             𝑀𝑎𝑥 /𝑀𝑖𝑛[𝑓1(𝑥), 𝑓2(𝑥), … . , 𝑓𝑘(𝑥)] 

                    Subject to                        𝑥 ∈ 𝑋 = {𝑥| 𝑔ℎ(𝑥): {≥, =, ≤} 0,   ℎ = 1,2, … , 𝑚 } 

Where,      𝑓𝑗(𝑥) = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑗 ∈ 𝐽 

                 𝑓𝑖(𝑥) = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑖 ∈ 𝐼 

The problem consists of n decision variables, m constraints and k objectives.  

𝑓𝑗(𝑥), 𝑓𝑖(𝑥)  𝑎𝑛𝑑  𝑔ℎ(𝑥) ∀ 𝑖, 𝑗, ℎ  might be linear or nonlinear. 



 Chapter-2, Multi-Objective Optimization 
 
 

 
 

20 
 

The primary goals in multi-objective optimization problem solution are: 

 To preserve non dominated points in the objective space and associated solution 

points in the decision space; 

 To keep making algorithmic progress toward the Pareto front in the objective 

function space;  

 To maintain diversity of points on the Pareto front and of Pareto optimal solutions 

(decision space);  

 To provide the decision maker, the designer, with a large enough but limited number 

of Pareto points for selection. 

 

2.2 Development of Multi-Objective Optimization 

One should also indicate the fast evolution of a MOO approach in the mid-1980s with the 

help of evolutionary algorithm. An early attempt to use a genetic search algorithm to solve 

MOO problems was realized by Ito et al. (1983). Goldberg proposed Pareto-set fitness 

assignment to solve Schaffer’s multi-objective problems, Schaffer and Grefenstette, 1985. 

In the same period, two books were devoted to the theory and techniques of MOO, such as 

Chankong and Haimes’ book (1983) and that of Sawaragi et al. (1985). The fast expansion 

of this approach was stimulated by numerous real-world applications from science, 

technology, management, and finance. Rangaiah’s book (2009) was the first publication on 

MOO with a focus on chemical engineering. The applications in this area are notably in 

chemical, mineral processing, oil and gas, petroleum, pharmaceutical industries, etc. Lai and 

Huang (1994) extended the MOO approach to fuzzy decision-making problems. 

 

2.3 Classification of Multi-Objective Optimization  

MOO techniques can be ordered in different ways. The classification retained by Miettinen 

(1999) and Diwekar (2008) is based on two criteria, the number of generated Pareto solutions 
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and the decision-maker (DM)’s preferences. There are two groups of methods:  A first group 

includes the generating methods and the other the preference-based methods.  

 In the generating methods, the Pareto-optimal solutions are obtained without any 

action of the DM during the determination process. The role of the DM is the 

selection of all the generated optimal solutions. 

 On the contrary, preference-based methods integrate DM’s preferences at some stage 

of the resolution process.  

Generating methods include three following subgroups such as  

(i) no-preference methods,  

(ii) a posteriori methods using a scalarization transform and  

(iii) a posterior methods using a multi-objective approach.  

The no-preference methods include in particular the method of global criterion, the multi-

objective proximal bundle method. Posteriori methods using a scalarization transformation 

include the constraint method and weighting methods. A posteriori methods aim at producing 

all the Pareto optimal solutions or a representative subset of the Pareto optimal solutions. 

Most a posteriori methods fall into either one of the following two classes: mathematical 

programming-based a posteriori methods, where an algorithm is repeated and each run of 

the algorithm produces one Pareto optimal solution, and evolutionary algorithms where one 

run of the algorithm produces a set of Pareto optimal solutions. 

 

2.4 Different Types of MOO 

2.4.1 Multi-objective linear programming problem 

In Multi-Objective Linear Programming (MOLP) we are concerned with a continuum of 

alternatives demarcated by a finite number of linear constraints in a finite-dimensional space. 

Furthermore, there is a finite number of linear objective functions, and a single decision 

maker or a decision making body. 

https://en.wikipedia.org/wiki/Mathematical_programming
https://en.wikipedia.org/wiki/Mathematical_programming
https://en.wikipedia.org/wiki/Evolutionary_algorithm
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Linear programs are constrained optimization models that satisfy three requirements.  

1. The decision variables must be continuous; they can take on any value within some 

restricted range. 

2. The objective function must be a linear function. 

3. The left-hand sides of the constraints must be linear functions.  

 

Mathematically, the Multi-Objective Linear Programming Problem (MOLPP) can be 

defined as:                                                  

                                          𝑀𝑎𝑥 𝑓𝑖 = 𝐶𝑖𝑥 + 𝛼𝑖,         𝑖 = 1, … , 𝑟 

                                                                   𝑀𝑖𝑛 𝑓𝑖 = 𝐶𝑖𝑥 + 𝛼𝑖,         𝑖 = 𝑟 + 1, … , 𝑠 

   Subject to                                                 𝐴𝑥 [≤
=
≥

] 𝐵                                                 

                                                                          𝑥 ≥ 0 

where x is an n-dimensional vector of decision variables c is n-dimensional vector of 

constants, B is m-dimensional vector of constants, r is the number of objective function to 

be maximized, s the number of objective function to maximized plus minimized, ( s-r)  is the 

number of objective that is to be minimized, A is a (𝑚 × 𝑛) matrix of coefficients all vectors 

are assumed to be column vectors unless transposed, 𝛼𝑖(𝑖 = 1, . . 𝑠)  are scalar 

constants, 𝐶𝑖𝑥 + 𝛼𝑖,        𝑖 = 1, … , 𝑠   are linear factors for all feasible solutions. Most linear 

programs require that all decision variables be nonnegative. 

Linear programs make the following implicit assumptions.  

1. Proportionality: With linear programs, we assume that the contribution of individual 

variables in the objective function and constraints is proportional to their value. That is, if 

we double the value of a variable, we double the contribution of that variable to the objective 

function and each constraint in which the variable appears. The contribution per unit of the 

variable is constant. For example, suppose the variable  𝑥𝑗 is the number of units of product 

j produced and  𝑐𝑗is the cost per unit to produce product j. If doubling the amount of product 
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j produced doubles its cost, the per unit cost is constant and the proportionality assumption 

is satisfied. 

 2. Additivity: Additivity means that the total value of the objective function and each 

constraint function is obtained by adding up the individual contributions from each variable. 

 3. Divisibility: The decision variables are allowed to take on any real numerical values 

within some range specified by the constraints. That is, the variables are not restricted to 

integer values. When fractional values do not make a sensible solution, such as the number 

of flights an airline should have each day between two cities, the problem should be 

formulated and solved as an integer program.  

4. Certainty: We assume that the parameter values in the model are known with certainty 

or are at least treated that way. The optimal solution obtained is optimal for the specific 

problem formulated. If the parameter values are wrong, then the resulting solution is of little 

value. In practice, the assumptions of proportionality and additivity need the greatest care 

and are most likely to be violated by the modeler. With experience, we recognize when 

integer solutions are needed and the variables must be modeled explicitly 

2.4.2 Multi-objective quadratic programming problem 

In a non-linear programming problem, either the objective function is non-linear, or one or 

more constraints have non-linear relationship or both. 

Mathematically the multi-objective quadratic programming problem (MOQPP) can be stated 

as:   

                                                                𝑀𝑎𝑥  𝐹𝑟 =
1

2
 𝑥𝑇𝑃𝑟 𝑥 + 𝐶𝑟

𝑇𝑥 

                                                              𝑀𝑖𝑛  𝐹𝑠 =
1

2
 𝑥𝑇𝑃𝑠 𝑥 + 𝐶𝑠

𝑇𝑥                                      (2.4.2) 

                        Subject to                                           𝐴𝑥 [≤
=
≥

] 𝑏                                                 

                                                                                      𝑥 ≥ 0 
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Where r is the number of objective function to be maximized, s is the number of objective 

function to be maximized and minimized and (s-r) is the number of objective function to be 

minimized. Here P is a (𝑛 × 𝑛) symmetric matrix of coefficients, x is an n- dimensional 

vector of decision variables, C is the n-dimensional vector of constants, b is m-dimensional 

vector of constants. A is (𝑚 × 𝑛) matrix of coefficients. All vectors are assumed to be 

column vectors unless transposed. 

Classification of quadratic programming problem: 

The main basis for classification of quadratic problems comes from the nature of the 

quadratic matrix P (from equation [2.4.2]). Based upon this, quadratic problems can be 

classified as: 

1. Bilinear problems: Often, the matrix P is such that there exists two sub-vectors of 

distinct variables y and z of x such that the problem is linear when one of these 

vectors is fixed. Such problems are termed bilinear problems. 

2. Concave quadratic problems: When the matrix P is negative semidefinite (all its 

eigenvalues are non-positive) the problems reduces to one of concave minimization. 

3. Indefinite quadratic problems: These problems arise when the matrix P has both 

positive and negative eigenvalues. From the view of point of solution, this class of 

problems is the most intractable among these subclasses and consequently there are 

too many methods for solving these problems. 

 

2.4.3 Multi-objective integer programming problem 

Consider the following multi-objective problem (P): 

                      max 𝑧1 = 𝑓1 

                      …… 

                    max 𝑧𝑘 = 𝑓𝑘                                                                                             (2.4.3) 

                   𝑠. 𝑡.   𝑥 ∈ 𝑋 
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 Where 𝑋 ⊂ 𝑅𝑛 denotes the non-convex set of feasible solutions defined by a set of 

functional constraints, 𝑥 ≥ 0 𝑎𝑛𝑑 𝑥𝑗  integer 𝑗 ∈ 𝐽 ⊆ {1, … , 𝑛}. It is assumed that X is 

compact (closed and bounded) and non-empty. The integer variables can either be binary or 

take on general integer values. (P) is a multi-objective integer programming (MOIP) problem 

if all variables are integer. 

2.4.4 Multi-objective mixed integer programming problem    

Equation (2.4.3) denotes a multi-objective mixed integer programming (MOMIP) problem 

if all variables are not integer. Models with linear constraints and linear objective functions 

have been more often considered than nonlinear cases. 

In linear multi-objective integer or mixed-integer problems (MOILP/MOMILP), the 

functional constraints can be defined as 𝐴𝑥 ≤ 𝑏 and the objective functions 𝑓𝑖(𝑥) =

 𝑐𝑖(𝑥), 𝑖 = 1, … , 𝑘 where A is 𝑚 × 𝑛 matrix, b is a m-dimensional column vector and 

𝑐𝑖(𝑥), 𝑖 = 1, … , 𝑘 are n-dimensional row vectors. 

2.4.5 Convex multi-objective programming problem 

A convex multi-objective optimization problem can be stated as follows: 

  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  [𝑓1(𝑥), 𝑓2(𝑥) … . . 𝑓𝑚(𝑥)] 

         Subject to             𝑔𝑗(𝑥) ≤ 0;    𝑗 = 1,2, … 𝑝 

where x is an n -dimensional vector of  decision  variables, f1 (x), f2 (x),.., fm (x) are convex 

functions defined on X , and X ={x | g j (x) ≤ 0;  j = 1, 2,.., p} is convex set. The given Problem 

is called convex multi- objective programming problem. 

2.4.6 Fuzzy multi-objective optimization 

Often, constraint limits and objectives are not in absolute terms; they may be fuzzy rather 

than crisp and such constraints and objectives may be modeled mathematically using fuzzy 

theory. Fuzzy theory is a field of mathematics that enables one to model systems that involve 

non-quantitative human reason, perception and interpretation. With fuzzy optimization, 
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constraints and objectives are treated equivalently, a condition that lends itself to use with 

multiple objectives. Each constraint and objective is modeled with what is called a 

membership function which is developed based on the insight and experience of the user. 

The literature on general fuzzy optimization and fuzzy MOO is incorporated into weighted 

methods, goal programming and global criterion methods. 

 

2.4.7 Genetic multi-objective optimization 

There are many approaches to solve MOO problems by using global methods. However, 

genetic algorithms are by far the most common global optimization technique that is used 

with multi objective problems. Consequently, the amount of literature concerning genetic 

algorithm for MOO and genetic algorithm is vast. The algorithm is loosely based on 

Darwin’s theory of natural selection, although deficiencies in the comparison between 

biology and optimization algorithms are highlighted in the review.  

In addition, the basic components of general genetic algorithms are outlined. Genetic 

algorithm work with a population of points and consequently can converge on the Pareto 

optimal set as a whole rather than finding one point at a time. In this respect, they are most 

appropriate as a method for a posteriori articulation of preferences.   

 

2.5 Formulation of Multi-Objective Quadratic Programming 

Problem 

Multi-objective quadratic programming problem (MOQPP) involves a decision-making unit 

(DMU) with multiple objective functions. The objective functions of the DMU are quadratic 

in nature and the constraints are linear function. Mathematically the multi-objective 

quadratic programming problem (MOQPP) can be stated as: 
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𝑀𝑎𝑥  𝐹1 =
1

2
 𝑥𝑇𝑃1 𝑥 + 𝐶1

𝑇𝑥 

𝑀𝑎𝑥  𝐹2 =
1

2
 𝑥𝑇𝑃2 𝑥 + 𝐶2

𝑇𝑥 

                                                                             … … … …. 

                                                                             … … … … ..                                                                                        

 𝑀𝑎𝑥  𝐹𝑟 =
1

2
 𝑥𝑇𝑃𝑟  𝑥 + 𝐶𝑟

𝑇𝑥 

    𝑀𝑎𝑥  𝐹𝑟+1 =
1

2
 𝑥𝑇𝑃𝑟+1 𝑥 + 𝐶𝑟+1

𝑇 𝑥 

                                                                     𝑀𝑖𝑛  𝐹𝑟+2 =
1

2
 𝑥𝑇𝑃𝑟+2 𝑥 + 𝐶𝑟+2

𝑇 𝑥 

                                                                               … … … .. 

                                                                               … … … .. 

  𝑀𝑖𝑛  𝐹𝑠 =
1

2
 𝑥𝑇𝑃𝑠  𝑥 + 𝐶𝑠

𝑇 

                                            𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜    

                                                                                  𝐴𝑥 [≤
=
≥

] 𝑏                                                                

                                                                                     𝑥 ≥ 0 

Where r is the number of objective function to be maximized, s is the number of objective 

function to be maximized and minimized and (s-r) is the number of objective function to be 

minimized. Here P is a (𝑛 × 𝑛) symmetric matrix of co-efficient, x is an n-dimensional 

vector of decision variables, C is the n-dimensional vector of constants, b is m-dimensional 

vector of constants. A is (𝑚 × 𝑛) matrix of coefficients. All vectors are assumed to be 

column vectors unless transposed. 

The procedure for mathematical formulation of quadratic programming problem consists of 

the following major steps:  

Step 1: Identify the unknown variables to be determined (decision variables) and represent 

them in terms of an algebraic symbol.  
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Step 2: Formulate the other conditions of the problem such as resource limitations, market 

constraints and inter-relation between variables etc. as quadratic equations in terms of 

decision variables.  

Step 3: Identify the objective or criterion and represent it as linear or quadratic function of 

the decision variables, which is to be maximized or minimized.  

Step 4: Add the ‘non-negativity’ constraint from the consideration that negative values of 

the decision variables do not have any valid physical interpretation. 

The objective function, the set of constraints and the non-negative constraints together form 

a quadratic programming problem. 

The quadratic objective function may be convex - which makes the problem easy to solve or 

non-convex, which makes it very difficult to solve. 

The best QPs have Hessians that are positive definite (in a minimization problem) or negative 

definite (in a maximization problem). A QP with a semi-definite Hessian is still convex. 

A QP with an indefinite Hessian has a "saddle" shape - a non-convex function.  Its true 

minimum or maximum is not found in the "interior" of the function but on its boundaries 

with the constraints, where there may be many locally optimal points.  Optimizing an 

indefinite quadratic function is a difficult global optimization problem and is outside the 

scope of most specialized quadratic solvers. 

Note: 𝑥𝑇𝑃𝑥  represents a quadratic form. This quadratic form is said to be positive-definite 

(negative definite) if 𝑥𝑇𝑃𝑥 > 0(< 0) for 𝑥 ≠ 0 and positive-semi-definite (negative-semi-

definite) if 𝑥𝑇𝑃𝑥 ≥ 0 (≤ 0)  for all 𝑥  such that there is one 𝑥 ≠ 0 satisfying 𝑥𝑇𝑃𝑥 = 0.  

It can easily be shown that 

1. If 𝑥𝑇𝑃𝑥  is positive-semi-definite (negative-semi-definite) then it is convex 

(concave) in x over all of  𝑅𝑛  and 

2. If  𝑥𝑇𝑃𝑥   is positive-definite (negative-definite) then it is strictly convex (strictly 

concave) in x over all of 𝑅𝑛 . 

https://www.solver.com/convex-optimization
https://www.solver.com/convex-optimization
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These results help in determining whether the quadratic objective function is concave 

(convex) and the implication of the same on the sufficiency of the Karush-Khun-Tucker 

condition for constrained maxima (minima) of 𝑓(𝑥). 

Constrained quadratic programming problems: 

A special case of the NLP arises when the objective functional f is quadratic and the 

constraints h, g are linear in 𝑥 ⊂ 𝑅𝑛 . Its general form is

min  𝑓(𝑥) =
1

2
𝑥𝑇𝐵𝑥 − 𝑥𝑇𝑏

𝑜𝑣𝑒𝑟  𝑥 ∈ 𝑅𝑛  (2.5) 

𝑠. 𝑡.  𝐴1𝑥 = 𝑐

𝐴2𝑥 ≤ 𝑑 

Where 𝐵 ∈ 𝑅𝑛×𝑛 is symmetric, 𝐴1 ∈ 𝑅𝑚×𝑛 , 𝐴2 ∈ 𝑅𝑝×𝑛  𝑎𝑛𝑑  𝑏 ∈ 𝑅𝑛 , 𝑐 ∈ 𝑅𝑚, 𝑑 ∈ 𝑅𝑝.

 The above QP is known as Constrained quadratic programming problem. 

Equality constrained quadratic programming: 

If only equality constraints are imposed, the QP (2.5) reduces to 

min  𝑓(𝑥) =
1

2
𝑥𝑇𝐵𝑥 − 𝑥𝑇𝑏

𝑜𝑣𝑒𝑟  𝑥 ∈ 𝑅𝑛

𝑠. 𝑡.  A𝑥 = 𝑐  

Where 𝐴 ∈ 𝑅𝑚×𝑛, 𝑚 ≤ 𝑛. For the time being we assume that A has full row rank m. The

KKT conditions for the solution x ∈ 𝑅𝑛 of the QP give rise to the following linear system

(𝐵 𝐴𝑇

𝐴 0
) (

𝑥∗

𝛾∗) = (
𝑏
𝑐

) 
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Where  𝛾∗ ∈ 𝑅𝑚 is the associated Lagrange multiplier. We denote by Z ∈ 𝑅𝑛×(𝑛−𝑚)  the 

matrix whose column span Ker A, i.e., AZ= 0.
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CHAPTER- 3 

Solution Procedure of MOQPP 
 

Quadratic programming is a special form of nonlinear programming which has special 

characteristics; that is, the objective function is in quadratic forms and constraint functions 

are linear form.  

Although the quadratic programming is part of nonlinear programming, the completion is 

still adopting some linear programming problem solving methods such as graphical solution, 

graphical analysis, simplex method, Wolfe method etc.  

The linear or quadratic programming problem with two variables can be solved graphically. 

The graphical method of solving linear or quadratic programming problem is of limited 

application in the business problems as the number of variables is substantially large. If the 

problem has larger number of variables, the suitable method for solving is simplex method. 

The simplex method is an iterative process through which it reaches ultimately to the 

minimum or maximum value of the objective function. 

Wolfe method transforms the quadratic programming problem into a linear programming 

problem. Wolfe modified the simplex method to solve quadratic programming problem by 

adding conditions of the Karush-Kuhn-Tucker (KKT) and changing the objective function 

of quadratic forms into a linear form. 

A Mathematical Programming Language (AMPL) is an algebraic modeling language to 

describe and solve high-complexity problems for large-scale mathematical computing such 

as large-scale optimization problems. AMPL can be used to solve QPP.  

At first Chandra Sen presented the Multi-objective programming (MOP) method to solve 

Multi-objective optimization problems. Different types of statistical average (mean) 

techniques and modified statistical average techniques can be used to solve MOQPP, which 

gives much better solutions.  

Here we use the below techniques to solve MOQPP.  

 Graphical Method 

https://en.wikipedia.org/wiki/Algebraic_modeling_language
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 Pareto Optimal Solution 

 AMPL  

 Chandra Sen’s Technique 

 Statistical Average Techniques (Arithmetic, Geometric, Harmonic) 

 Modified Statistical Average Techniques 

These all techniques are briefly described below. 

 

3.1 Graphical Method   

Owing to the importance of  programming models in various industries, many types of 

algorithms have been developed over the years to solve them. Here we are going to 

concentrate on one of the most basic methods to handle a quadratic programming problem 

i.e. the graphical method. 

In principle, this method works for almost all different types of problems but gets more and 

more difficult to solve when the number of decision variables and the constraints increases. 

Therefore, we’ll illustrate it in a simple case i.e. for two variables only.  

 

We will first discuss the steps of the algorithm: 

Step 1: Formulate the quadratic programming problem 

We have already understood the mathematical formulation of an QPP problem. Note that 

this is the most crucial step as all the subsequent steps depend on our analysis here. 

Step 2: Construct a graph and plot the constraint lines 

The graph must be constructed in ‘n’ dimensions, where ‘n’ is the number of decision 

variables. This should give an idea about the complexity of this step if the number of decision 

variables increases. 

One must know that one cannot imagine more than 3-dimensions. The constraint lines can 

be constructed by joining the horizontal and vertical intercepts found from each constraint 

equation. 

https://www.toppr.com/bytes/linear-programming/
https://www.toppr.com/guides/geography/industries/introduction-to-industry/
https://www.toppr.com/guides/maths/polynomials/value-of-polynomial-and-division-algorithm/
https://www.toppr.com/guides/maths/mathematical-reasoning/mathematical-statement/
https://www.toppr.com/guides/physics/units-and-measurement/dimensional-analysis-applications/
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Step 3: Determine the valid side of each constraint line 

This is used to determine the domain of the available space, which can result in a feasible 

solution. A simple method is to put the coordinates of the origin (0,0) in the problem and 

determine whether the objective function takes on a physical solution or not. If yes, then the 

side of the constraint lines on which the origin lies is the valid side. Otherwise it lies on the 

opposite one. 

Step 4: Identify the feasible solution region 

The feasible solution region on the graph is the one which is satisfied by all the constraints. 

It could be viewed as the intersection of the valid regions of each constraint line as well. 

Choosing any point in this area would result in a valid solution for our objective function. 

Step 5: Plot the objective function on the graph 

It will clearly be a straight line since we are dealing with linear equations here. One must be 

sure to draw it differently from the constraint lines to avoid confusion. Choose the constant 

value in the equation of the objective function randomly, just to make it clearly 

distinguishable. 

Step 6: Find the optimum point 

An optimum point always lies on one of the corners of the feasible region. Place a ruler on 

the graph sheet, parallel to the objective function. Be sure to keep the orientation of this ruler 

fixed in space. We only need the direction of the straight line of the objective function. Now 

begin from the far corner of the graph and tend to slide it towards the origin. 

 If the goal is to minimize the objective function, find the point of contact of the ruler 

with the feasible region, which is the closest to the origin. This is the optimum point 

for minimizing the function. 

 If the goal is to maximize the objective function, find the point of contact of the ruler 

with the feasible region, which is the farthest from the origin. This is the optimum 

point for maximizing the function.  

Example: 

https://www.toppr.com/guides/maths/linear-programming/linear-programming-problem/
https://www.toppr.com/guides/maths/smart-charts/bar-graph/
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Calculate the maximal and minimal value of z = 5𝑥2 + 3𝑦2 for the following constraints. 

                                                x + 2y ≤ 14 

                                                 3x – y ≥ 0 

                                                   x – y ≤ 2 

Solution: 

The three inequalities indicate the constraints. The optimization equation  z = 5𝑥2 + 3𝑦2. 

We have to find the (𝑥, 𝑦) corner points that give the largest and smallest values of z. 

To begin with, first solve each inequality. 

x + 2y ≤ 14 ⇒ y ≤ -(1/2) x + 7 

3x – y ≥ 0 ⇒ y ≤ 3x 

x – y ≤ 2 ⇒ y ≥ x – 2 

The area of the plane that will be marked is the feasible region. 

                                          

Figure 3.1: Feasible region for the given plane 

Now pair the lines to form a system of linear equations to find the corner points. 
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Here, y = -(½) x + 7 and y = 3x 

Solving the above equations, we get the corner points as (2, 6) 

Again, y = -1/2 x + 7 and y = x – 2 

Solving the above equations, we get the corner points as (6, 4) 

Also, y = 3x and y = x – 2 

Solving the above equations, we get the corner points as (-1, -3) 

For quadratic systems, the maximum and minimum values of the optimization equation lie 

on the corners of the feasibility region. Therefore, to find the optimum solution, we only 

need to plug these three points (2,6), (6,4) and (-1,-3) in the objective function z = 5𝑥2 + 

3𝑦2. 

At (2, 6): z = 5(2)(2) + 3(6)(6) = 20+108=128  

At (6, 4): z = 5(6)(6) + 3(4)(4) = 180+48=228 

At (–1, –3): z = 5(-1)(-1) + 3(-3)(-3) = 5+27=32 

Hence, the maximum of z = 228 lies at (6, 4) and the minimum of z = 32 lies at (-1, -3). 

 

In multi-objective programming problem, it is difficult to find an optimal solution to achieve 

the extreme value of every objective function, so that the decision maker is exploring for the 

compromise solution. Based on this idea, the concepts of Pareto optimal solution and weakly 

Pareto optimal solution are introduced into multi- objective programming problem. 

A Pareto outcome is an action that harms no one and helps at least one. The aim of this 

chapter is to define a solution concept of Pareto optimality for a Multi-Objective Quadratic 

Programming Problem (MOQPP) and design different methods to extract Pareto optimal 

solution of MOQPP. 
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3.2 Pareto Optimality 

A vector 𝑥∗ ∈ 𝑊 is said to be Pareto optimal for a multi-objective problem if all other vectors 

𝑥 ∈ 𝑊 have a higher value for at least one of the objective function  𝑓𝑖, with 𝑖 = 1, … , 𝑛 or 

have the same value for all the objective functions.  

   We have the following definitions: 

 A point  𝑥∗ is said to be a weak Pareto optimum or a weak efficient solution for the 

multi-objective problem if and only if there is no 𝑥 ∈ 𝑊 such that   𝑓𝑖(𝑥) <

𝑓𝑖(𝑥∗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ {1, … , 𝑛}. 

 A point  𝑥∗  is said to be a strict Pareto optimum or a strict efficient solution for the 

multi-objective problem if and only if there is no 𝑥 ∈ 𝑊  such that  𝑓𝑖(𝑥) ≤

𝑓𝑖(𝑥∗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ {1, … , 𝑛} with at least one strict inequality. 

 Construct a function for convex multi-objective programming problem(MOPP) 

𝛼𝑖(𝑓𝑖(𝑥)) =
𝑓𝑖(𝑥) −  𝑓𝑖

1

𝑓𝑖
∗ − 𝑓𝑖

1 ,   𝑖 = 1,2, … 𝑚;   𝑓𝑖
∗ = min

𝑥∈𝑋
𝑓𝑖(𝑥), 𝑓𝑖

1 = max
𝑥∈𝑋

𝑓𝑖(𝑥) 

           x* 𝜖 X  is said to be a M-Pareto optimal solution of convex MOPP, if  and only if 

there does not exist another x 𝜖  X  such that  𝛼𝑖 ( 𝑓𝑖(x)) ≥  𝛼𝑖 ( 𝑓𝑖 (x*)) , i = 1, 2,…, m  

with strict inequality holding for at least one i. 

 x* 𝜖 X  is said to be a Weakly M-Pareto optimal solution of convex MOPP, if 

and only if there does not exist another x 𝜖  X  such that   

  𝛼𝑖 (𝑓𝑖 (x)) > 𝛼𝑖 ( (𝑓𝑖(x*)) , i = 1, 2,…, m         

 

The image of all the efficient solutions is called Pareto front or Pareto curve or surface. The 

shape of the Pareto surface indicates the nature of the trade-off between the different 

objective functions. An example of a Pareto curve is showed in Figure 3.2, where all the 

points between (𝑓2(�̂�), 𝑓1(�̂�))  and (𝑓2(�̃�), 𝑓1(�̃�))  define the Pareto front. Those 

Points are called non-inferior or non-dominated points. 
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                                   𝑓1(𝑥) 

 

         

                                  

 

                                                     Pareto                  

                                                           Curve        

                                                                                         (𝑓2(�̃�), 𝑓1(�̃�)) 

                 

                                                                                                                                        𝑓2(𝑥) 

 

Figure 3.2: Pareto curve 

An example of weak and strict Pareto optima is shown in Figure 3.3: Points p1 and p5 are 

weak Pareto optima; Points p2, p3 and p4 are strict Pareto optima. 

 

 

                                    

                                                                                                                                     𝑓2(𝑥) 
                                                                                                                                                                                

Figure. 3.3: weak and strict Pareto optima 
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Techniques to Solve MOOP Using Pareto Optimality:  

Pareto curves cannot be computed efficiently in many cases. Even if it is theoretically 

possible to find all these points exactly, they are often of exponential size; a straightforward 

reduction from the knapsack problem shows that they are hard to compute. Thus, 

approximation methods for them are frequently used. However, approximation does not 

represent a secondary choice for the decision maker. Indeed, there are many real-life problems 

for which it is quite hard for the decision maker to have all the information to correctly and/or 

completely formulate them.  

Approximating methods can have different goals: representing the solution set when the 

latter is numerically available (for convex multi-objective problems).  Approximating the 

solution set when some but not all the Pareto curve is numerically available, approximating 

the solution set when the whole efficient set is not numerically available (for discrete multi-

objective problems). 

There are several techniques to solve multi-objective optimization problem: 

 Scalarization Technique 

 휀 − constraints Method 

 Goal Programming 

 Multi-Level Programming 

 The Norm-Ideal Point Method 

 The Membership-Function Method. 

Here, we discuss about the above mentioned methods. 

3.2.1 The Norm-Ideal point method 

For the convex MOPP, firstly give ideal value 𝑓�̅� for every objective 

function  𝑓𝑖(𝑥), which satisfies  𝑓�̅� ≤  min
𝑥∈𝑋

𝑓𝑖(𝑥), 𝑖 = 1,2, … , 𝑚,   𝑓̅ = (𝑓1,̅̅ ̅ 𝑓2,̅̅ ̅ … , 𝑓𝑚
̅̅ ̅) is called 

Ideal point, after then introduce the norm ||.||, finally get the feasible solution which is having 

the nearest distance with the given ideal point 𝑓 ̅in the norm. 
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Use the absolute value norm to structure the corresponding single objective programming 

(𝑆�̅�):

min
𝑥∈𝑋

∑ 𝑤𝑖|𝑓𝑖(𝑥) − 𝑓�̅�

𝑚

𝑖=1

|  𝑤ℎ𝑒𝑟𝑒 𝑤 = (𝑤1, 𝑤2, . . , 𝑤𝑚)𝑇 ∈  𝑅+
𝑚\{0}

Because 𝑓�̅� ≤ min
𝑥∈𝑋

𝑓𝑖(𝑥), 𝑖 = 1,2, . . , 𝑚;  (𝑆�̅�) can be simplified to min
𝑥∈𝑋

∑ 𝑤𝑖(𝑓𝑖(𝑥) − 𝑓�̅�
𝑚
𝑖=1 ). 

For the given ideal point 𝑓a̅nd weights  𝑤 ∈  𝑅+
𝑚\{0}, the optimal solution of 𝑆�̅� is weakly

Pareto optimal solution. 

There states a theorem that: If x*  X is weakly M-Pareto optimal solution of convex MOPP 

then there exist 𝑤 ∈  𝑅+
𝑚\{0} such that x* is the optimal solution of the corresponding single

objective programming problem. 

Attention should be paid that Pareto optimal solution must be weakly Pareto optimal 

solution, which implies that if all weakly Pareto optimal solutions can be obtained, then all 

Pareto optimal solutions can be obtained. This also shows that theoretically all Pareto 

optimal solutions can be obtained through changing weights. 

3.2.2 Membership function method 

Firstly structure membership function 𝛼𝑖 (𝑓𝑖 (x))  for every objective function 𝑓𝑖(𝑥), then use 

𝛼𝑖 (𝑓𝑖 (x)) as the new objective functions to structure the new multi objective programming 

problem and then turn the new multi objective programming problem to single objective 

programming problem through some appropriate methods, finally solve the single objective 

programming problem to get the optimal solution, which is also the M-Pareto optimal 

solution of the original multi objective programming problem. 

Now, Structure the membership function for every objective function as follows: 

𝛼𝑖(𝑓𝑖(𝑥)) =
𝑓𝑖(𝑥) −  𝑓𝑖

1

𝑓𝑖
∗ − 𝑓𝑖

1 ,   𝑖 = 1,2, … 𝑚;   𝑓𝑖
∗ = min

𝑥∈𝑋
𝑓𝑖(𝑥), 𝑓𝑖

1 = max
𝑥∈𝑋

𝑓𝑖(𝑥)

Without loss of generality 𝑓𝑖
∗ < 𝑓𝑖

1, 𝑖 = 1,2, . . , 𝑚
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There states two necessary theorems: 

Theorem 1: x* is M-Pareto optimal solution of problem convex MOPP, if and only if x* is 

Pareto optimal solution of problem convex MOPP. 

Theorem 2: If x* is weakly M-Pareto optimal solution of problem convex MOPP, then there 

exists w  Rm \ 0 such that x* is the optimal solution of the corresponding problem 𝑆𝛼.

The membership function of objective function is set by using simple linear function. 

According to the properties of the composition of convex function, if the membership 

function of 𝑓𝑖(𝑥) is non-increasing and concave about 𝑓𝑖(𝑥), then the above calculation still 

holds. 

3.3 AMPL- A Mathematical Programming Language 

Practical large-scale mathematical programming involves more than just the application of 

an algorithm to minimize or maximize an objective function subject to constraints equations 

and inequalities. AMPL is a new language designed to solve those problems easily and with 

less error-prone. 

By itself, AMPL can only be employed to specify classes of mathematical programming 

models. For the language to be useful, it must be incorporated into a system that manages 

data, models and solutions. 

Basic Definitions: 

Sets: A set can be any unordered collection of objects pertinent to a model. Two unordered 

sets in our example are the set P of final products and the set R of raw materials. They are 

declared by AMPL statements 

set prd;    # products 

 set raw;    # raw materials 

Parameters: 
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A parameter is any numerical value pertinent to a model. The simplest kind of parameter is 

a single, independent value, such as the number of periods or the maximum total production 

in our example. 

Most AMPL statements that declare parameters also specify certain restrictions on them. 

For instance, the number of periods is declared by 

param T > 0 integer; 

Variables: 

A linear program’s variables are declared much like its parameters. The only substantial 

difference is that the values of the variables are to be determined through optimization, 

whereas the values of the parameters are data given in advance. 

A typical declaration of variables is the one for raw material in storage: 

 var Store {raw,1..T+1} >= 0; 

Objective: 

An objective function can be any linear expression in the parameters and variables. The 

AMPL representation of the given objective is transcribed from the algebraic objective 

expression. AMPL representations of indexed sums appear for the first time in our example’s 

objective. The sum of the estimated profits for period t is typical: 

sum {j in prd} profit[j,t] * Make[j,t] 

The identifier j is a dummy index that has exactly the same purpose and meaning as its 

counterpart in the algebraic notation. It is defined for the scope of the sum, which extends to 

the end of the following term. 

Constraints: 

A constraint may be any linear equality or inequality in the parameters and variables. Thus 

a model’s constraints use all the same kinds of expressions as its objective. Whereas the 

objective is a single expression, however, the constraints come in collections indexed over sets. 

There is one production-limit constraint, for example, in each period. 
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The AMPL representation for a collection of constraints must specify two things: the set over 

which the constraints are indexed, and the expression for the constraints. Thus the production 

limits look like this: 

            subject to limit {t in 1..T}: sum {j in prd} Make[j,t] <= max_prd; 

Following the keywords subject to and the identifier limit, the expression in braces gives 

1, … , 𝑇 as the indexing set. 

Data: 

Once the AMPL translator has read and processed the contents, it is ready to read the data. 

Strictly speaking, the rules for the data are not a part of AMPL; each implementation of 

an AMPL translator may accept data in whatever formats its creators deem appropriate. As 

a practical matter, however, we wish to have a standard data format that all versions of the 

translator will accept.  A small data set for the sample LP in our standard format; it is a 

largely self-explanatory transcription. 

The components are fundamental to all models:  

 sets- like the products  

 parameters- like the production and profit rates  

 variables- whose values the solver is to determine  

 an objective- to be maximized or minimized  

 constraints- that the solution must satisfy 

Model file, Data file: 

This is exactly what AMPL does. It gives us a way to express the algebraic representation of 

the model and these value for the parameters separately. It does this using two separate files, 

a model file and a data file. AMPL reads the model from the .mod file, data from the . 𝑑𝑎𝑡 

file and puts them together into a format that the solver understands. Then, it hands over this 

problem instance to the solver, which in turn, solves the instance, and hands back the solution 

to AMPL. 
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Figure 3.4: AMPL model 

Algorithm for AMPL: 

Step 1: Once the file is created and we have checked the file name, run the AMPL program 

by selecting it from appropriate start menu. After some text appears, we will see the AMPL 

prompt, which is  

                                              ampl:  

Step 2: We have to select a solver, which is the program that AMPL calls to solve the math 

programs. We will be using the solver called cplex. So type:       

                                           option solver cplex;                                                      

Step 3: Type in the following command, which tells AMPL to read in the file we have 

created:        

                                           model problem.mod; 

Step 4: If we type in the model correctly, we will get no error messages. If we made a 

mistake, correct the model file and first reset AMPL by typing:   

                                                      reset;  
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To reload the model, type in:  model problem.mod;    

Step 5: For data file do the same process and type:     

                                           data problem.dat; 

Step 6: The files are successfully loaded, tell AMPL to run the model by typing:                                                           

                                                   solve; 

Once AMPL has solved the model, it displays the results. 

Example: 

We have the following linear program:  

                                  Maximize 25 XB + 30 XC  

                           Subject to (1/200) XB + (1/140) XC ≤ 40  

                                             0 ≤ XB ≤ 6000 

                                             0 ≤ XC ≤ 4000  

This is a very simple linear program. Solving this linear program with AMPL can be as 

simple as typing AMPL’s description of the linear program: 

             var XB;  

             var XC;  

          maximize Profit: 25 * XB + 30 * XC;  

          subject to Time: (1/200) * XB + (1/140) * XC <= 40;  

          subject to B_limit: 0 <= XB <= 6000;  

          subject to C_limit: 0 <= XC <= 4000;  

into a file — call it prod0.mod — and then typing a few AMPL commands:  

           ampl: model prod0.mod;  

           ampl: solve;  

        MINOS 5.5: optimal solution found.  
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2 iterations, objective 192000 

          ampl: display XB, XC; 

XB = 6000 

XC = 1400 

          ampl: quit; 

The invocation and appearance of an AMPL session will depend on operating environment 

and interface, but there will always have the option of typing AMPL statements in response 

to the ampl: prompt, until we leave AMPL by typing quit.  

Example:  Consider a basic production model in algebraic form: 

Given:      P, a set of products 

𝑎𝑗 = tons per hour of product j, for each j ∈P  

b = hours available at the mill 

 𝑐𝑗 = profit per ton of product j, for each j ∈P 

𝑢𝑗  = maximum tons of product j, for each j ∈P  

Define variables:  𝑋𝑗 = tons of product j to be made, for each j ∈P 

Maximize:  ∑   𝑐𝑗𝑋𝑗𝑗∈𝑃

Subject to: ∑ (
1

𝑎𝑗
)  𝑋𝑗 ≤ 𝑏𝑗∈𝑃  

0 ≤ 𝑋𝑗 ≤  𝑢𝑗 , 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ j ∈P 

Basic production model file in AMPL (file prod.mod). 

        set P; 

        param a {j in P}; 

        param b; 

        param c {j in P}; 
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        param u {j in P};  

        var X {j in P};  

        maximize Total_Profit: sum {j in P} c[j] * X[j];  

        subject to Time: sum {j in P} (1/a[j]) * X[j] <= b;  

        subject to Limit {j in P}: 0 <= X[j] <= u[j];   

 

Basis production data file in AMPL (file prod.dat). 

              set P :=   bands      coils;  

              param:       a            c        u :=  

              bands       200        25      6000  

              coils         140        30      4000 ;  

              param b :=  40;   

If we put all of the model declarations into a file called prod.mod and the data specification 

into a file prod.dat, then as before a solution can be found and displayed by typing just a few 

statements:  

            ampl: model steel.mod;  

            ampl: data steel.dat;  

            ampl: solve;  

           MINOS 5.5: optimal solution found.  

           2 iterations, objective 192000  

        

             ampl: display Make;  

              Make [*] :=  

               bands 6000  
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               coils 1400  

            ;  

The model and data commands each specify a file to be read, in this case the model from 

prod.mod, and the data from prod.dat. The use of two file-reading commands encourages a 

clean separation of model from data. 

Nonlinear Program:  

Many mathematical programs include nonlinear functions in the constraints and for the 

objective. Fortunately, AMPL allows us to model and solve nonlinear programs, as well. 

First, you have to change the solver, since cplex does not solve nonlinear programming 

problems. For nonlinear problems, we shall use the solver minos. So type:  

                                             option solver minos; 

If the objective function is non-linear, more specifically if the objective function is quadratic 

such as   

                Maximize   𝑥1
2 + 𝑥2

2 

               Subject to  𝑥1 + 2𝑥2 ≤ 7 

Then it can be expressed in model file as:     

               var 𝑥{1..2}>=0; 

               maximize 𝑥[1]^2 + 𝑥[2]^2 ; 

               s.t. m:  𝑥[1]+2*𝑥 [2]<=7; 

 In this section, we have just scratched the surface of the things we can do with AMPL. 

 

3.4 Chandra Sen’s Technique 

Mathematically the multi objective quadratic programming problem (MOQPP) can be stated 

as: 
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𝑀𝑎𝑥  𝑍1 =
1

2
 𝑥𝑇𝑃1 𝑥 + 𝐶1

𝑇𝑥 

𝑀𝑎𝑥  𝑍2 =
1

2
 𝑥𝑇𝑃2 𝑥 + 𝐶2

𝑇𝑥 

                                                                             … … … .. 

                                                                             … … … ..                                                                                       

 𝑀𝑎𝑥  𝑍𝑟 =
1

2
 𝑥𝑇𝑃𝑟  𝑥 + 𝐶𝑟

𝑇𝑥 

         𝑀𝑖𝑛  𝑍𝑟+1 =
1

2
 𝑥𝑇𝑃𝑟+1 𝑥 + 𝐶𝑟+1

𝑇 𝑥 

                                                                      𝑀𝑖𝑛  𝑍𝑟+2 =
1

2
 𝑥𝑇𝑃𝑟+2 𝑥 + 𝐶𝑟+2

𝑇 𝑥 

                                                                                … . . … .. 

                                                                              … … . … .. 

𝑀𝑖𝑛  𝑍𝑠 =
1

2
 𝑥𝑇𝑃𝑠 𝑥 + 𝐶𝑠

𝑇𝑥 

                                 𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜    

                                                                           𝐴𝑥 [≤
=
≥

] 𝑏                                                               

                                                                              𝑥 ≥ 0 

In Sen’s technique, all objective functions need to be maximized of minimized firstly by 

Simplex method. Each objective function is solved and following equations are obtained: 

                                                      𝑀𝑎𝑥  𝑍1 = 𝜑1 

                                                                         𝑀𝑎𝑥  𝑍2 = 𝜑2 

                                                                             ………… 

                                                                             ………… 

                                                                             𝑀𝑎𝑥  𝑍𝑟 = 𝜑𝑟  

                                                                        𝑀𝑖𝑛  𝑍𝑟+1 = 𝜑𝑟+1                    (3.4)     

𝑀𝑖𝑛  𝑍𝑟+2 = 𝜑𝑟+2 

                                                                               …………. 

                                                                                𝑀𝑖𝑛  𝑍𝑠 = 𝜑𝑠 
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Where 𝜑1,𝜑2 … … 𝜑𝑠  are optimal values of the objective functions of given equations. 

By Chandra Sen’s technique, these values are used to form a single objective function by 

adding (for maximization) and subtracting (for minimization).  Mathematically,    

 

                        𝑀𝑎𝑥  𝑍 = ∑
𝑍𝑖

|𝜑𝑖|
𝑟
𝑖=1 − ∑

𝑍𝑖

|𝜑𝑖|
𝑠
𝑖=𝑟+1       

                                           Where  |𝜑𝑖| ≠ 0 

Subject to constraints of the given equation remains same. The optimum value 𝜑𝑖 may be 

positive or negative. 

 

Example 1: Here is an example of MOLPP with constraints.  

                                                                   max  𝑧1 = 𝑥1 + 2𝑥2 

          max  𝑧2 = 𝑥1 

                                                                    min  𝑧3 = −2𝑥1 − 3𝑥2 

                                                                     min  𝑧4 = −𝑥2 

                                                𝑠. 𝑡.              6𝑥1 + 8𝑥2 ≤ 48   

                                                                       𝑥1 + 𝑥2 ≥ 3 

                         𝑥1 ≤ 4 

                                                                              𝑥2 ≤ 3 

                                                                          𝑥1, 𝑥2 ≥ 0 

The values of these objective functions can be obtained by using AMPL algorithm first.  

Thus the optimum values of the objective functions with same constraints are given in Table 

3.4.  
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Table 3.4 

 𝜑𝑖 𝑥𝑖 AX = |𝜑𝑖| 𝐴𝑌 = |𝜑𝑖| 

1 10 (4,3) 10  

2 4 (4,3) 4  

3 -17 (4,3)  -17 

4 -3 (4,3)  -3 

 

AX stands for maximization problems and AY stand for minimization problems. 

Then with these values, a single objective function is developed using Chandra Sen’s 

technique.  

                                               𝑀𝑎𝑥  𝑍 = ∑
𝑍𝑖

|𝜑𝑖|
2
𝑖=1 − ∑

𝑍𝑖

|𝜑𝑖|
4
𝑖=3  

                                                   = 𝑥1+2𝑥2

10
+

𝑥1

4
−

−2𝑥1−3𝑥2

−17
−

−𝑥2

−3
 

                                                    = 0.4676 𝑥1 + 0.7098 𝑥2  

By Chandra Sen’s technique, the multi-objective optimization problem is converted into 

single objective problem. The system becomes, 

                      𝑀𝑎𝑥  𝑍 = 0.4676 𝑥1 + 0.7098 𝑥2 

                                         𝑠. 𝑡.             6𝑥1 + 8𝑥2 ≤ 48   

𝑥1 + 𝑥2 ≥ 3 

        𝑥1 ≤ 4 

        𝑥2 ≤ 3 

                                                                   𝑥1, 𝑥2 ≥ 0 

After solving this applying AMPL, we get the optimal solution 

𝑍𝑚𝑎𝑥 = 3.9998  𝑤𝑖𝑡ℎ 𝑥1 = 4  𝑎𝑛𝑑  𝑥2 = 3. 
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3.5 Statistical Average Technique 

Statistics is a branch of applied mathematics that involves the collection, description, 

analysis, and inference of conclusions from quantitative data. The two major areas of 

statistics are descriptive and inferential statistics. Descriptive statistics mostly focus on the 

central tendency, variability and distribution of sample data. Central tendency means the 

estimate of the characteristics, a typical element of a sample or population and includes 

descriptive statistics such as mean, median, and mode. 

The mean, also referred to by statisticians as the average, is the most common statistic used 

to measure the center of a numerical data set. There are different types of mean, viz. 

arithmetic mean (AM), weighted mean (WM), geometric mean (GM) and harmonic mean 

(HM), root mean square (RMS), contra-harmonic mean (CHM). 

There are majorly three different types of mean value that we will discuss for our present 

research. 

1. Arithmetic Mean 

2. Geometric Mean 

3. Harmonic Mean 

In case of multi objective optimization problems, all the objectives are optimized 

individually. The mean, median and optimal averages of optimal values for maximization 

and minimization objectives are estimated separately. The combined objective function is 

constructed by weighting the objective functions by the inverse of the mean, median and 

optimal average as given below: 

𝑴𝒂𝒙  𝒁 = ∑
𝒁𝒊

𝒎𝒆𝒂𝒏, 𝒎𝒆𝒅𝒊𝒂𝒏, 𝒐𝒑𝒕𝒊𝒎𝒂𝒍 𝒂𝒗𝒆𝒓𝒂𝒈𝒆

𝒓

𝒊=𝟏

− ∑
𝒁𝒊

𝒎𝒆𝒂𝒏, 𝒎𝒆𝒅𝒊𝒂𝒏, 𝒐𝒑𝒕𝒊𝒎𝒂𝒍 𝒂𝒗𝒓𝒂𝒈𝒆

𝒔

𝒊=𝒓+𝟏

 

https://www.investopedia.com/terms/m/mean.asp
https://www.investopedia.com/terms/m/median.asp
https://www.investopedia.com/terms/m/mode.asp
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3.5.1 Arithmetic mean technique 

Arithmetic Mean: The arithmetic mean of a set of observed data is defined as being equal to 

the sum of the numerical values of each and every observation divided by the total number 

of observations. 

If any data set consisting of the values 𝑥1, 𝑥2, … , 𝑥𝑛   then the arithmetic mean A.M is defined 

as: 

A.M = (Sum of all observations)/ (Total number of observation)  

     = 1

𝑛
 ∑   𝑥𝑖 =  

𝑥1+𝑥2+⋯+𝑥𝑛

𝑛

𝑛
𝑖=1  

Properties of Arithmetic Mean 

 The sum of deviations of the items from their arithmetic mean is always zero. 

 The sum of the squared deviations of the items from Arithmetic Mean (A.M) is 

minimum, which is less than the sum of the squared deviations of the items from any 

other values. 

 If each item in the arithmetic series is substituted by the mean, then the sum of these 

replacements will be equal to the sum of the specific items. 

Merits of Arithmetic Mean 

 The arithmetic mean is simple to understand and easy to calculate. 

 It is influenced by the value of every item in the series. 

 A.M is rigidly defined. 

 It has the capability of further algebraic treatment. 

 It is a measured value and not based on the position in the series. 

Demerits of Arithmetic Mean 

 It is changed by extreme items such as very small and very large items. 

 It can rarely be identified by inspection. 
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 In some cases, A.M. does not represent the original item. For example, average 

patients admitted to a hospital are 10.7 per day. 

 The arithmetic mean is not suitable in extremely asymmetrical distributions. 

In order to convert multi objective function in equation (3.4) into single objective function, 

we can use arithmetic mean technique (AMT) as follows:  

             (AMT)                      𝑀𝑎𝑥  𝑍 = ∑
𝑍𝑖

𝐴.𝑀1

𝑟
𝑖=1 − ∑

𝑍𝑖

𝐴.𝑀2

𝑠
𝑖=𝑟+1  

Where 𝐴. 𝑀1 = 𝐴. 𝑀(|𝜑1|, |𝜑2|, … . . |𝜑𝑟|)  &  𝐴. 𝑀2 = 𝐴. 𝑀(|𝜑𝑟+1|, |𝜑𝑟+2|, … . . |𝜑𝑠|) and 

A.M  is arithmetic mean. 

3.5.2 Geometric mean technique 

Geometric Mean: The geometric mean is defined as the nth root of the product of n numbers. 

The Geometric Mean (G.M) of a series containing n observations is the nth root of the 

product of the values. 

Consider, if 𝑥1, 𝑥2, … , 𝑥𝑛  are the observation, then the G.M is defined as: 

G.M = √Product of all observations
Total number of observation  

        = √∏ 𝑥𝑖
𝑛
𝑖=1

𝑛 =  (𝑥1 × 𝑥2 × … × 𝑥𝑛)
1

𝑛 

Properties of Geometric Mean  

 The G.M for the given data set is always less than the arithmetic mean for the data 

set 

 If each object in the data set is substituted by the G.M, then the product of the objects 

remains unchanged. 

 The ratio of the corresponding observations of the G.M in two series is equal to the 

ratio of their geometric means 

 The products of the corresponding items of the G.M in two series are equal to the 

product of their geometric mean. 
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Merits of geometric mean 

 It is rigidly determined. 

 The calculation is based on all the terms of the sequence. 

 It is suitable for further mathematical analysis. 

 Fluctuation in sampling will not affect the geometric mean. 

 It gives relatively more weight to small observations. 

Demerits of geometric mean 

 One of the main drawbacks of the geometric mean is that if any one of the 

observations is negative, then the geometric mean value will be imaginary despite 

the quantity of the other observations. 

 Due to complex numerical character, it is not easy to understand and to calculate for 

a non-mathematics person. 

In order to convert multi objective function in equation (3.4) into single objective function, 

we can use geometric mean technique (GMT) as follows:  

           (GMT)               𝑀𝑎𝑥  𝑍 = ∑
𝑍𝑖

𝐺.𝑀1

𝑟
𝑖=1 − ∑

𝑍𝑖

𝐺.𝑀2

𝑠
𝑖=𝑟+1  

Where 𝐺. 𝑀1 = 𝐺. 𝑀(|𝜑1|, |𝜑2|, … . . |𝜑𝑟|)  &  𝐺. 𝑀2 = 𝐺. 𝑀(|𝜑𝑟+1|, |𝜑𝑟+2|, … . . |𝜑𝑠|) and    

G.M  is geometric mean. 

 

3.5.3 Harmonic mean technique 

Harmonic Mean: Harmonic mean of a set of observations is defined as the reciprocal of the 

arithmetic average of the reciprocal of the given values. If 𝑥1, 𝑥2, … , 𝑥𝑛 are n observations 

then 

  H.M = Total number of observation

∑
1

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑠
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            = 𝑛

∑ (
1

𝑥𝑖
)𝑛

𝑖=1

=
𝑛

1

𝑥1
+⋯+

1

𝑥𝑛

 

Properties of Harmonic Mean  

 If all the observations taken are constant say c, then the harmonic mean of the 

observation is also c. 

 The harmonic mean has the least value as compared to the geometric and the 

arithmetic mean. i,e; AM>GM>HM.    

Merits of Harmonic Mean 

 It is rigidly defined.  

 It is defined on all observations.  

 It is amenable to further algebraic treatment.  

 It is the most suitable average when it is desired to give greater weight to smaller 

observations and less weight to the larger ones.  

Demerits of Harmonic Mean 

 It is not easily understood.  

 It is difficult to compute.  

 It is only a summary figure and may not be the actual item in the series  

 It gives greater importance to small items and is therefore, useful only when small 

items have to be given greater weightage.  

 It is rarely used in grouped data. 

In order to convert multi objective function in equation (3.4) into single objective function, 

we can use harmonic mean technique (HMT) as follows:  

           (HMT)               𝑀𝑎𝑥  𝑍 = ∑
𝑍𝑖

𝐻.𝑀1

𝑟
𝑖=1 − ∑

𝑍𝑖

𝐻.𝑀2

𝑠
𝑖=𝑟+1  

Where 𝐻. 𝑀1 = 𝐻. 𝑀(|𝜑1|, |𝜑2|, … . . |𝜑𝑟|)  &  𝐻. 𝑀2 = 𝐻. 𝑀(|𝜑𝑟+1|, |𝜑𝑟+2|, … . . |𝜑𝑠|) and    

H.M  is harmonic mean.  
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Example: Consider from previous example (Example-1 and Table 3.4), with these values, a 

single objective function is developed by using Statistical average techniques (AMT, GMT, 

HMT) as follows: 

Using Arithmetic average technique (AMT), from table 3.4 we get 

𝐴. 𝑀1 = (10,4) = 7,      𝐴. 𝑀2 = (17,3) = 10  

Using Geometric average technique (GMT), 

𝐺. 𝑀1 = √10 × 4 = 6.324,      𝐺. 𝑀2 = √17 × 3 = 7.1414  

Using Harmonic average technique (HMT), 

𝐻. 𝑀1 = (10,4) = 5.7143,      𝐻. 𝑀2 = (17,3) = 5.1  

By AMT, GMT and HMT, the multi objective optimization problem is converted into single 

objective problem. Thus we obtain, 

 

            AMT:                𝑀𝑎𝑥  𝑍 = ∑
𝑍𝑖

𝐴.𝑀1

2
𝑖=1 − ∑

𝑍𝑖

𝐴.𝑀2
=

1

7
 (𝑍1 + 𝑍2) −

1

10
(𝑍3 + 𝑍4)4

𝑖=3  

                                                                 = 0.4857 𝑥1+ 0.6857 𝑥2 

            GMT:                  𝑀𝑎𝑥  𝑍 = ∑
𝑍𝑖

𝐺.𝑀1

2
𝑖=1 − ∑

𝑍𝑖

𝐺.𝑀2

4
𝑖=3 = 0.5963𝑥1 + 0.8763 𝑥2  

 

           HMT:               𝑀𝑎𝑥  𝑍 = ∑
𝑍𝑖

𝐻.𝑀1

2
𝑖=1 − ∑

𝑍𝑖

𝐻.𝑀2

4
𝑖=3 = 0.7421𝑥1 + 1.1342 𝑥2  

After solving, we get the optimal solution, 

                                              

AMT:        𝑍𝑚𝑎𝑥 = 3.9999  𝑤𝑖𝑡ℎ 𝑥1 = 4  𝑎𝑛𝑑  𝑥2 = 3. 

GMT:        𝑍𝑚𝑎𝑥 = 5.0141  𝑤𝑖𝑡ℎ 𝑥1 = 4  𝑎𝑛𝑑  𝑥2 = 3. 

HMT:        𝑍𝑚𝑎𝑥 = 6.37103 𝑤𝑖𝑡ℎ 𝑥1 = 4  𝑎𝑛𝑑  𝑥2 = 3. 
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3.6 Modified Statistical Average Technique  

Modified statistical average technique (MSAT) is an updated version of statistical average 

technique. Some operation researcher has been discussed about it and they have applied 

modified technique to get better solution than statistical average technique. 

Modified Statistical average technique can be classified as: 

1. Modified Arithmetic Average Technique 

2. Modified Geometric Average Technique 

3. Modified Harmonic Average Technique 

3.6.1 Modified arithmetic mean technique 

Consider the multi-objective optimization problem in equation (3.4) and solve it by using 

the modified arithmetic mean technique (MAMT), 

Let, 𝑚1 = min(|𝜑1|, |𝜑2|, … . . |𝜑𝑟|); for maximization,  

                                                     𝜑𝑖 is maximum value of  𝑍𝑖 , 𝑖 = 1, . . , 𝑟 

     𝑚2 = min(|𝜑𝑟+1|, |𝜑𝑟+2|, … . . |𝜑𝑠|), for minimization,  

                                                     𝜑𝑖 is minimum value of  𝑍𝑖, 𝑖 = 𝑟 + 1, . . , 𝑠 

Modified Arithmetic Mean technique:   𝐴𝑀. 𝐴𝑉 = (𝑚1 + 𝑚2)/2 

                                                             𝑀𝑎𝑧  𝑍 =
1

𝐴𝑀.𝐴𝑉
  [∑ 𝑍𝑖 −𝑟

𝑖=1 ∑ 𝑍𝑖
𝑠
𝑖=𝑟+1 ] 

3.6.2 Modified geometric mean technique 

Consider the multi-objective optimization problem in equation (3.4) and solve it by using 

the modified geometric mean technique (MGMT), 

Let, 𝑚1 = min(|𝜑1|, |𝜑2|, … . . |𝜑𝑟|); for maximization,  

                                                     𝜑𝑖 is maximum value of  𝑍𝑖 , 𝑖 = 1, . . , 𝑟 

     𝑚2 = min(|𝜑𝑟+1|, |𝜑𝑟+2|, … . . |𝜑𝑠|), for minimization,  
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                                                     𝜑𝑖 is minimum value of  𝑍𝑖, 𝑖 = 𝑟 + 1, . . , 𝑠 

Modified Geometric Mean technique:   𝐺𝑀. 𝐴𝑉 = √𝑚1𝑚2 

𝑀𝑎𝑧  𝑍 =
1

𝐺𝑀. 𝐴𝑉
[∑ 𝑍𝑖 −

𝑟

𝑖=1

∑ 𝑍𝑖

𝑠

𝑖=𝑟+1

] 

3.6.3 Modified harmonic mean technique 

Consider the multi-objective optimization problem in equation (3.4) and solve it by using 

the modified Harmonic mean technique (MHMT), 

Let, 𝑚1 = min(|𝜑1|, |𝜑2|, … . . |𝜑𝑟|); for maximization,  

                                                     𝜑𝑖 is maximum value of  𝑍𝑖 , 𝑖 = 1, . . , 𝑟 

     𝑚2 = min(|𝜑𝑟+1|, |𝜑𝑟+2|, … . . |𝜑𝑠|), for minimization,  

                                                     𝜑𝑖 is minimum value of  𝑍𝑖, 𝑖 = 𝑟 + 1, . . , 𝑠 

Modified Harmonic Mean technique:     𝐻𝑀. 𝐴𝑉 =
2

1

𝑚1
+

1

𝑚2

 

                                                      𝑀𝑎𝑧  𝑍 =
1

𝐻𝑀.𝐴𝑉
[∑ 𝑍𝑖 −𝑟

𝑖=1 ∑ 𝑍𝑖
𝑠
𝑖=𝑟+1 ]   

 

Example: Consider the same example, a single objective function is developed by using 

modified statistical average techniques (MAMT, MGMT, MHMT) as follows: 

Using Arithmetic average technique (MAMT), from table 3.4 we get 

𝑚1 = min{10,4} = 4,      𝑚2 = {17,3} = 3  

𝐴𝑀. 𝐴𝑉 =
𝑚1 + 𝑚2

2
= 3.5 

Using Geometric average technique (MGMT), 

𝐺𝑀. 𝐴𝑉 = √𝑚1𝑚2 = 3.4641 

Using Harmonic average technique (MHMT), 
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𝐻𝑀. 𝐴𝑉 =
2

1
𝑚1

+
1

𝑚2

= 3.4483 

By MAMT, MGMT and MHMT, the multi objective optimization problem is converted into 

single objective problem. Thus we obtain, 

            MAMT:                𝑀𝑎𝑥  𝑍 =
1

𝐴𝑀.𝐴𝑉
  [∑ 𝑍𝑖 −2

𝑖=1 ∑ 𝑍𝑖
4
𝑖=3 ] =

1

3.5
[𝑍1 + 𝑍2 − 𝑍3 − 𝑍4] 

                                                                 = 1.142 𝑥1+ 1.714 𝑥2 

            MGMT:                  𝑀𝑎𝑥  𝑍 =
1

𝐺𝑀.𝐴𝑉
[∑ 𝑍𝑖 −2

𝑖=1 ∑ 𝑍𝑖
4
𝑖=3 ] = 1.1547𝑥1 + 1.732 𝑥2  

 

           MHMT:               𝑀𝑎𝑥  𝑍 =
1

𝐻𝑀.𝐴𝑉
  [∑ 𝑍𝑖 −2

𝑖=1 ∑ 𝑍𝑖
4
𝑖=3 ] = 1.1599𝑥1 + 1.7399 𝑥2  

 

After solving, we get the optimal solution, 

                                              

MAMT:        𝑍𝑚𝑎𝑥 = 9.7141  𝑤𝑖𝑡ℎ 𝑥1 = 4  𝑎𝑛𝑑  𝑥2 = 3. 

MGMT:        𝑍𝑚𝑎𝑥 = 9.8142  𝑤𝑖𝑡ℎ 𝑥1 = 4  𝑎𝑛𝑑  𝑥2 = 3. 

MHMT:        𝑍𝑚𝑎𝑥 = 9.8593 𝑤𝑖𝑡ℎ 𝑥1 = 4  𝑎𝑛𝑑  𝑥2 = 3
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CHAPTER-4 

Advanced Transformation Technique 
 

The aim of this chapter is to present a new method for finding an optimal solution to quadratic 

programming problems.  

4.1 Preamble 

The principle of the method is based on calculating the value of average point. It should be noted 

here that the objective function may be convex or non-convex. Moreover, the search for the 

optimal solution is to find the hyper plane separating the convex and the critical point. Notice that 

one does not need to transform the quadratic problem into an equivalent linear one as in the 

numerical methods; the method is purely analytical and avoids the usage of initial solution. An 

algorithm computing the optimal solution of the convex function has given. It also can be applied 

on linear programming problems. In reality a manager meets problems involving simultaneous 

changes in several variables. Quadratic programming is used to meet these problems. Dynamic 

programming is used to solve sequential problems. 

Multi objective optimization problem can be defined as: 

𝑀𝑎𝑥 /𝑀𝑖𝑛[𝑧1, 𝑧2, … . , 𝑧𝑠] 

                    Subject to                      𝐴𝑥{≥, =, ≤} 𝑏,   𝑥 ≥ 0                                                                          

Multi-objective programming is used in application for many real world problems including 

problems in the fields of engineering, industrial and finance. In multi-objective programming there 

are multiple conflicting objectives whereby improving one objective will reduce the value of 

others, leading to a trade-off between solutions.  

It is assumed that no single solution will optimize all objectives simultaneously because this would 

be a trivial case. The main aim of multi-objective programming is to assist a decision maker (DM) 

to choose a preferred solution among all the trade-offs. In this case, it is not necessary to generate 

all solutions when the DM is involved in the process since some solutions may be eliminated at 

each stage. However, we will focus on non-interactive exact methods that do not involve the DM 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=numerical+method
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in order to generate the entire solution set. Multi-objective problems take the form of linear, 

quadratic, integer (MOIP), and mixed integer (MOMIP) which have continuous, discrete, and both 

continuous and discrete solutions respectively.  

4.2 Feature Of The Technique  

The proposed technique has following features: 

(a) This technique is prescriptive in nature. 

(b) The technique looks at the whole problem. 

(c) It makes use of a wide range of techniques. They based on quantitative data to develop 

mathematical model as the logical presentation of the problem. 

(d) The technique facilitates rapid evaluation by helping the management to know how a given 

process will respond to select changes in the factors. 

(e) It facilitates in the development of alternatives. 

(f) It makes use of new techniques. 

(g) Its objective is to achieve optimum utilization of resources. 

(h) It is an inter-disciplinary approach to problem solving. 

(j) It studies the problem at actual working conditions. 

 

4.3 Formulation 

This is a process of building, testing, and operating commercial world phenomena through the use 

of mathematical relationships that exist among critical factors. 

The steps involved in formulation are:  

i. To define a problem 

ii. Construction of a model. 

iii. Specify the values of the variables and the boundaries. 
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This is basically a technique which has a wide range of applications. This can be applied both 

inside and outside the factory. This is used in complicated waiting lines, arrangement of offices, 

physical distribution systems, alternate corporate strategies and product demand patterns. 

Multi objective optimization problem: 

𝑀𝑎𝑥 /𝑀𝑖𝑛[𝑧1, 𝑧2, … . , 𝑧𝑠] 

                    Subject to                      𝐴𝑥{≥, =, ≤} 𝑏,   𝑥 ≥ 0                                                                          

Suppose we optimize all the objective functions individually and obtain the values 

                                                                           𝑀𝑎𝑥  𝑧1 = 𝛼1 

                                                                         𝑀𝑎𝑥  𝑧2 = 𝛼2 

                                                                                     ... 

                                                                                    … 

                                                                        𝑀𝑎𝑥  𝑧𝑟 = 𝛼𝑟 

                                                                     𝑀𝑖𝑛  𝑧𝑟+1 = 𝛼𝑟+1 

                                                                                   … 

                                                                          𝑀𝑖𝑛  𝑧𝑠 = 𝛼𝑠 

                      Subject to                      𝐴𝑥{≥, =, ≤} 𝑏,   𝑥 ≥ 0                                                                          

 

Where 𝛼𝑖 are the values of objective functions. 

We require the common set of decision variables to be the best compromising optimal solution. 

Here we can determine the common set of decision variables from the following combined 

objective function. By our proposed Advanced transformation technique, we can obtain the single 

objective function as follows: 

𝑀𝑎𝑥 𝑍 =  
∑ 𝑧𝑖

𝑟
𝑖=1 − ∑ 𝑧𝑖

𝑠
𝑖=𝑟+1

𝑂𝐴𝑇
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Where                                 𝑂𝐴𝑇 =
1

(1/𝑚)
    and    𝑚 = min  {𝑚1, 𝑚2}  

 and   𝑚1 = min{𝛼𝑖} , ∀   𝑖 = 1, … , 𝑟  &     𝑚2 = min{𝛼𝑖} , ∀   𝑖 = 𝑟 + 1, … , 𝑠. Subject to the 

same constraints. 

  

4.4 Advantages, Disadvantages 

Advantages  

1. Enhanced productivity 

It helps in improving the productivity of the organizations. Operations controls provide significant 

information to the DM before making an important decision. Effective and accurate decision 

making helps in improving the productivity of the organization. 

2. Improved coordination 

It improves the coordination between different fields. 

3. Lower risks of failure 

It lowers the chances of failure as with the help of less calculation and get to know about all the 

alternative solutions for a single problem. 

4. Less time consuming 

This technique saves time. It needs comparatively less time for calculation.  

 

Disadvantages 

1. Unquantifiable factors 

The effectiveness of solutions developed by using the technique largely depends on the various 

factors. It is easy to measure quantifiable factors but the problem arises when important factors are 

in unquantifiable form. Unquantifiable factors result in inaccurate solutions. 

2. Difficult to implement 
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The solutions obtained from this technique are difficult to implement as most of them are usually 

unrealistic. Some modifications are required to make to implement the solutions which hamper the 

effectiveness of the solution. 

3. Restricted 

It perfectly works on mixed type of multi-objective optimization problems. In case of single type 

(only maximization or only minimization) of MOOP it does not have any effect. 

  

4.5 Algorithm 

Step 1: Find the value of each objective function which is to be maximize or minimize. 

Step 2: Solve the first objective function by mathematical programming language AMPL or by  

             any other solution method. 

Step 3: Check the feasibility of the solution in step 2. If it is feasible then go to step 4. Otherwise,      

             use different methods to remove infeasibility. 

Step 4: Assign a name to the optimum value of first objective function 𝑧1 by  𝛼1. 

Step 5: Repeat step -2 for 𝑖 = 2,3, … , 𝑠. 

Step 6: Select   𝑚1 = min{𝛼𝑖} , ∀   𝑖 = 1, … , 𝑟 𝑎𝑛𝑑 𝑚2 = min{𝛼𝑖} , ∀   𝑖 = 𝑟 + 1, … , 𝑠. 

Step 7: Select 𝑚 = min  {𝑚1, 𝑚2} and calculate 𝑂𝐴𝑇 =
1

(1/𝑚)
. 

Step 8: Optimize the combined objective function as    𝑀𝑎𝑥 𝑍 =  
∑ 𝑧𝑖

𝑟
𝑖=1 −∑ 𝑧𝑖

𝑠
𝑖=𝑟+1

𝑂𝐴𝑇
 

              Under the same constraints by repeating steps 2 & 3. 
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4.6 Flow Chart 

 
 

                                                              
                                                                  
 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                          

 

 No                                                   Yes 

                                          

 

 

 

 

 

 

 

 

                              Figure 4.6: Flow chart of the proposed technique

Start 

Input 

   𝑀𝑎𝑥 𝑧1, … , 𝑀𝑎𝑥 𝑧𝑟  
𝑀𝑖𝑛 𝑧𝑟+1, … , 𝑀𝑖𝑛 𝑧𝑠 

s/t   𝐴. 𝑥 < = > 𝑏, 𝑥 ≥ 0 

For i=1,2,…,s 

Solve  𝑧i by AMPL 

𝛼𝑋𝑖 = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑀𝑎𝑥 𝑧𝑖 

𝛼𝑌𝑖 = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑀𝑖𝑛 𝑧𝑖 

𝐴𝑋𝑖 = | 𝛼𝑋𝑖|, 𝐴𝑌𝑖 = | 𝛼𝑌𝑖| 

 

 

 

 

 

 

 

 

𝐼𝑓 𝑖 < 𝑟 
𝑆𝑌 = ∑ 𝑧𝑖

𝑠

𝑖=𝑟+1

 

𝑚2 = min {𝐴𝑌𝑖} 

𝑆𝑋 = ∑ 𝑧𝑖

𝑟

𝑖=𝑟

 

𝑚1 = min {𝐴𝑋𝑖} 

𝑚 = min {𝑚1, 𝑚2} 

 

 

 

 

 

 

 

 

𝑂𝐴𝑇 = 1/( 1/𝑚) 

𝑍 = 1/𝑂𝐴𝑇(𝑆𝑋 − 𝑆𝑌) 

 

 

End 
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CHAPTER-5 

Example and Analysis 
 

We use numerical example to solve MOQPP.  

Example 1: Solve the following MOQPP by using Pareto optimality, Chandra Sen’s techniques, 

Statistical average techniques, Modified average techniques and Advanced transformation 

technique. 

Consider the following Multi Objective Quadratic Programming problem with linear constraints:  

                                                             𝑀𝑎𝑥  𝑍1 = 4𝑥1 + 2𝑥2 − 𝑥1
2 − 𝑥2

2 + 5 

                                                            𝑀𝑎𝑥  𝑍2 = 2𝑥1 + 𝑥2 − 𝑥1
2 

                         𝑀𝑖𝑛  𝑍3 = 6 − 6𝑥1 + 2𝑥1
2 − 2𝑥1𝑥2 + 2𝑥2

2 

𝑀𝑖𝑛  𝑍4 = 2𝑥1 + 3𝑥2 − 2𝑥1
2 

                                        

                                              𝑠/𝑡                 𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

         𝑥1, 𝑥2 ≥ 0 

5.1 Using Pareto Optimality 

Convert the system into convex MOQPP: 

                𝑀𝑖𝑛  𝑍1 = −4𝑥1 − 2𝑥2 + 𝑥1
2 + 𝑥2

2 − 5 

                                                          𝑀𝑖𝑛  𝑍2 = −2𝑥1 − 𝑥2 + 𝑥1
2                                               

                                                           𝑀𝑖𝑛  𝑍3 = 6 − 6𝑥1 + 2𝑥1
2 − 2𝑥1𝑥2 + 2𝑥2

2                    (5.1)           

                                                           𝑀𝑖𝑛  𝑍4 = 2𝑥1 + 3𝑥2 − 2𝑥1
2 
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                                                      𝑠/𝑡      𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

𝑥1, 𝑥2 ≥ 0 

Now we will find Pareto optimal solution of this system by using Norm-Ideal Point method and 

Membership Function Method: 

 Using Norm-Ideal Point method 
For convenience, the feasible region of the given problem is: 

   

                       
Figure 5.1: Graph of feasible region for Norm-Ideal point method 

 

The feasible region is 0ABCD. The vertices of feasible region formed by constraints are 

0(0,0), 𝐴(2.6,0), 𝐵(2,1), 𝐶(1,2), 𝐷(0,2.25) and the function values of the objective functions 

in vertices are given in the following table I: 

Table I: function values at vertices 

 𝑍1 𝑍2 𝑍3 𝑍4 

0(0,0)        -5          0           6           0 

𝐴(2.6,0)        -8.64         1.56          3.92          -8.32 

𝐵(2,1)        -10         -1           0          -1 

𝐶(1,2)        -8         -3           6           6 

𝐷(0,2.25)        -4.4       -2.25        16.12          6.75 



 Chapter-5, Example and Analysis
  
 

 
 

69 
 

It can easily say that, 𝑀𝑖𝑛 { 𝑍1} = −10, 𝑀𝑖𝑛 { 𝑍2} = −3, 𝑀𝑖𝑛 { 𝑍3} = 0, 𝑀𝑖𝑛 { 𝑍4} = −8.32. 

All Pareto optimal solutions of problem (5.1) is : 𝐴(2.6,0), 𝐵(2,1), 𝐶(1,2) 

The Ideal point method is used to solve the given MOQPP and illustrate that there exists weights 

𝒘 such that each Pareto optimal solution of (5.1) is the optimal solution of corresponding single 

objective function. In the Ideal point method, we take the Ideal point  �̅� = (𝑝1̅̅̅, 𝑝2̅̅ ̅, 𝑝3̅̅ ̅, 𝑝4̅̅ ̅) where 

 

            𝑝1̅̅̅ = min
𝑥∈𝑋

{−4𝑥1 − 2𝑥2 + 𝑥1
2 + 𝑥2

2 − 5} = −10,       𝑝2̅̅ ̅̅ = min
𝑥∈𝑋

{−2𝑥1 − 𝑥2 + 𝑥1
2} = −3,  

           𝑝3̅̅ ̅ = min
𝑥∈𝑋

{6 − 6𝑥1 + 2𝑥1
2 − 2𝑥1𝑥2 + 2𝑥2

2} = 0, 𝑝4̅̅ ̅ = min
𝑥∈𝑋

{2𝑥1 + 3𝑥2 − 2𝑥1
2} = −8.32 

 

So the MOQPP (5.1) can be turned into the following single objective programming problem: 

𝑀𝑖𝑛    𝑤1[𝑧1 + 10] + 𝑤2[𝑧2 + 3] + 𝑤3[𝑧3 − 0] + 𝑤4[𝑧4 + 8.32] 

 

⇒     𝑀𝑖𝑛    𝑤1[−4𝑥1 − 2𝑥2 + 𝑥1
2 + 𝑥2

2 − 5 + 10] + 𝑤2[−2𝑥1 − 𝑥2 + 𝑥1
2 + 3] + 𝑤3[6 − 6𝑥1 +

2𝑥1
2 − 2𝑥1𝑥2 + 2𝑥2

2 − 0] + 𝑤4[2𝑥1 + 3𝑥2 − 2𝑥1
2 + 8.32] 

                  

                                s/t                               𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

                                                                                  𝑥1, 𝑥2 ≥ 0                                                                 (5.2) 

The objective function can be written as: 

𝑥1[−4𝑤1 − 2𝑤2 − 6𝑤3 + 2𝑤4] + 𝑥2[−2𝑤1 − 𝑤2 + 3𝑤4] + 𝑥1
2[𝑤1 + 𝑤2 + 2𝑤3 − 2𝑤4]

+ 𝑥2
2[𝑤1 + 2𝑤3] − 2𝑤3𝑥1𝑥2 + [5𝑤1 + 3𝑤2 + 6𝑤3 + 8.32𝑤4] 
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In order to take Minimum in point   𝐵(2,1) according to the characteristic of linear programming, 

the slope of objective function only need to satisfy  

               −4𝑤1 − 2𝑤2 − 6𝑤3 + 2𝑤4 > 0  & 
4𝑤1+2𝑤2+6𝑤3−2𝑤4

−2𝑤1−𝑤2+3𝑤4
< −1                                               (5.3) 

      Or                    −4𝑤1 − 2𝑤2 − 6𝑤3 + 2𝑤4 > 0  & 
4𝑤1+2𝑤2+6𝑤3−2𝑤4

−2𝑤1−𝑤2+3𝑤4
< −3/2                           (5.4) 

Taking, 𝑤1 =
1

4
, 𝑤2 =

1

4
, 𝑤3 =

1

4
, 𝑤4 =

1

4
 

The multi objective programming problem (5.2) can be converted into the following single 

objective programming problem: 

𝑀𝑖𝑛 −
5

2
𝑥1 +

1

2
𝑥1

2 +
3

4
𝑥2

2 −
1

2
𝑥1𝑥2 +

279

50
 

                                                 𝑠/𝑡            𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

                                                                                  𝑥1, 𝑥2 ≥ 0                                                                     (5.5) 

After solving we get, 𝑥1 = 2.29  &   𝑥2 = 0.9 

The optimal solution of single objective programming problem (5.5) is (2.29, 0.9) which is also 

the Pareto optimal solution (approximately) of problem (5.2). So there exist weights   

                                        𝑤1 =
1

4
, 𝑤2 =

1

4
, 𝑤3 =

1

4
, 𝑤4 =

1

4
   

such that 𝐵(2,1) is the optimal solution of the corresponding single objection programming 

problem (5.5). 

  

In order to take Minimum in point   𝐶(1,2) according to the characteristic of linear programming, 

the slope of objective function only need to satisfy  

                          −4𝑤1 − 2𝑤2 − 6𝑤3 + 2𝑤4 > 0  & 
4𝑤1+2𝑤2+6𝑤3−2𝑤4

−2𝑤1−𝑤2+3𝑤4
< −1                               (5.6)                              
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      Or                  −4𝑤1 − 2𝑤2 − 6𝑤3 + 2𝑤4 > 0  & 
4𝑤1+2𝑤2+6𝑤3−2𝑤4

−2𝑤1−𝑤2+3𝑤4
< −1/4                           (5.7) 

Taking, 𝑤1 =
2

5
, 𝑤2 =

1

5
, 𝑤3 =

1

5
, 𝑤4 =

1

5
 

The multi objective programming problem (5.2) can be converted into the following single 

objective programming problem: 

𝑀𝑖𝑛 − 2.8𝑥1 − 0.4𝑥2 + 0.6𝑥1
2 + 0.8𝑥2

2 − 0.4𝑥1𝑥2 + 5.46 

                                               𝑠/𝑡              𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

                                                               3𝑥1 + 2𝑥2 ≤ 8 

                                                                                𝑥1, 𝑥2 ≥ 0                                                                     (5.8) 

 

After solving we get, 𝑥1 = 2.23  &   𝑥2 = 0.91 

The optimal solution of single objective programming problem (5.8) is (2.23, 0.91) which is also 

the Pareto optimal solution (approximately) of problem (5.2). So there exist weights    

                                               𝑤1 =
2

5
, 𝑤2 =

1

5
, 𝑤3 =

1

5
, 𝑤4 =

1

5
 

such that 𝐵(2,1) is the optimal solution of the corresponding single objection programming 

problem (5.8). 

So for both cases, the Pareto optimal solution is (2,1). 

For all Pareto optimal solutions of multi objective programming problem, there exists weights such 

that the Pareto optimal solution is the optimal solution of the corresponding single objective 

programming problem.  

 

 Using Membership Function method: 

For convenience, the feasible region of the given problem is: 
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                   Figure 5.2: Graph of feasible region for Membership-Function method 
 
For convenience denote that, 𝑓1 = −4𝑥1 − 2𝑥2 + 𝑥1

2 + 𝑥2
2 − 5,   𝑓2 = −2𝑥1 − 𝑥2 + 𝑥1

2 

 𝑓3 = 6 − 6𝑥1 + 2𝑥1
2 − 2𝑥1𝑥2 + 2𝑥2

2,    𝑓4 = 2𝑥1 + 3𝑥2 − 2𝑥1
2 

The feasible region is 0ABCD. The vertices of feasible region formed by constraints are 

0(0,0), 𝐴(2.6,0), 𝐵(2,1), 𝐶(1,2), 𝐷(0,2.25) and the function values of the objective functions 

in vertices are given in the following table II: 

Table II: function values at vertices 

 𝑓1 𝑓2 𝑓3 𝑓4 

0(0,0)        -5          0           6           0 

𝐴(2.6,0)        -8.64         1.56          3.92          -8.32 

𝐵(2,1)        -10         -1           0          -1 

𝐶(1,2)        -8         -3           6           6 

𝐷(0,2.25)        -4.4       -2.25        16.12          6.75 
 

Due to the particularity of linear programming, it is obvious that,  

𝑀𝑖𝑛 𝑓1 =  −10,      𝑀𝑎𝑥  𝑓1 = −4.4 

𝑀𝑖𝑛 𝑓2 =  −3,      𝑀𝑎𝑥  𝑓2 = 1.56 

𝑀𝑖𝑛 𝑓3 =  0,      𝑀𝑎𝑥  𝑓3 = 16.12 

𝑀𝑖𝑛 𝑓4 =  −8.32,      𝑀𝑎𝑥  𝑓4 = 6.75 

For each objective function, membership function can be structured as follows: 



 Chapter-5, Example and Analysis
  
 

 
 

73 
 

𝛼1(𝑓1) =
−𝑓1 − 4.4

5.6
, 𝛼2(𝑓2) =

−𝑓2 + 1.56

4.56
, 𝛼3(𝑓3) =

−𝑓3 + 16.12

16.12
, 𝛼4(𝑓4) =

−𝑓4 + 6.75

15.07
  

The membership function values in vertices are given in the following table III: 

Table III: Membership function values at vertices 
 𝛼1(𝑓1)          𝛼2(𝑓2) 𝛼3(𝑓3) 𝛼4(𝑓4) 

0(0,0) 3/28 13/38 253/403 675/1507 

𝐴(2.6,0) 53/70 0 305/403 1 

𝐵(2,1) 1 32/57 1 775/1507 

𝐶(1,2) 9/14 1 253/403 75/1507 

𝐷(0,2.25) 0 127/152 0 0 

 
From the definition of M-Pareto optimal solution, The M-Pareto optimal solutions of problem (5.1) 

are:  0(0,0), 𝐴(2.6,0), 𝐵(2,1), 𝐶(1,2), 𝐷(0,2.25). 

Next, membership function method is used to solve the multi objective programming problem 

(5.1) and illustrates that there exist weights 𝒘 such that the M-Pareto optimal solution of problem 

(5.1) is the optimal solution of the corresponding single objective programming problem. 

According to model  (𝑆𝛼), the multi objective programming problem (5.1) is converted to the 

single objective programming problem: 

𝑀𝑎𝑥       𝑤1𝛼1(𝑓1) + 𝑤2𝛼2(𝑓2) + 𝑤3𝛼3(𝑓3) + 𝑤4𝛼4(𝑓4) 

                                                        𝑠/𝑡       𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

                                                                                  𝑥1, 𝑥2 ≥ 0                                                                      (5.9)          
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Due to the way of structuring membership function of objective functions  𝑓1, 𝑓2 𝑎𝑛𝑑  𝑓3, the above 

method can be written as: 

                       𝑀𝑎𝑥                        𝑤1 (
−𝑓1−4.4

5.6
) + 𝑤2 (

−𝑓2+1.56

4.56
) + 𝑤3 (

−𝑓3+16.12

16.12
) + 𝑤4(

−𝑓4+6.75

15.07
) 

                                              𝑠/𝑡                    𝑥1  + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

                                                                                  𝑥1, 𝑥2 ≥ 0                                                                            (5.10) 

This can be written as,  

 𝑀𝑎𝑥           𝑥1 [
4

5.6
𝑤1 +

2

4.5
𝑤2 +

6

16.12
𝑤3 −

2

15.07
𝑤4] + 𝑥2 [

2

5.6
𝑤1 +

1

4.56
𝑤2 −

3

15.07
𝑤4] +

𝑥1
2 [−

1

5.6
𝑤1 −

1

4.56
𝑤2 −

2

16.12
𝑤3 +

2

15.07
𝑤4] + 𝑥2

2 [−
1

5.6
𝑤1 −

2

16.12
𝑤3] +

2

16.12
𝑥1𝑥2𝑤3 +

[
.6

5.6
𝑤1 +

1.56

4.5
𝑤2 + 𝑤3 +

6.75

15.07
𝑤4] 

 

              
                         

                                    𝑠/𝑡                𝑥
1

 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

                                                                                  𝑥1, 𝑥2 ≥ 0                                                                           (5.11)                              

 

In order to take maximum in point 𝐵(2,1), the slope of objective function only need to satisfy  

                 4

5.6
𝑤1 +

2

4.5
𝑤2 +

6

16.12
𝑤3 −

2

15.07
𝑤4 > 0    𝑎𝑛𝑑      −

4

5.6
𝑤1+

2

4.5
𝑤2+

6

16.12
𝑤3−

2

15.07
𝑤4

2

5.6
𝑤1+

1

4.56
𝑤2−

3

15.07
𝑤4

< −1      

Or              4

5.6
𝑤1 +

2

4.5
𝑤2 +

6

16.12
𝑤3 −

2

15.07
𝑤4 > 0    𝑎𝑛𝑑     −

4

5.6
𝑤1+

2

4.5
𝑤2+

6

16.12
𝑤3−

2

15.07
𝑤4

2

5.6
𝑤1+

1

4.56
𝑤2−

3

15.07
𝑤4

< −
3

2
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If we take,  𝑤1 =
1

2
, 𝑤2 =

1

4
, 𝑤3 =

1

8
, 𝑤4 = 1/16, the multi-objective programing problem (5.1) 

can be converted into single objective programming problem (5.11) and putting values we get, 

𝑀𝑎𝑥                 0.5064 𝑥1 + 0.2209  𝑥2 − 0.1513 𝑥1
2 − 0.3126 𝑥2

2 + 0.015 𝑥1𝑥2 + 0.692 

 

                                    𝑠/𝑡                              𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

                                                                                   𝑥1, 𝑥2 ≥ 0                                                                           (5.12) 

After solving we get, 𝑥1 = 2  𝑎𝑛𝑑  𝑥2 = 1. 

The optimal solution of (5.12) is 𝑥1 = 2 𝑎𝑛𝑑 𝑥2 = 1, which is also the M-Pareto optimal solution 

of problem (5.1). So there exist weights       𝑤1 =
1

2
, 𝑤2 =

1

4
, 𝑤3 =

1

8
, 𝑤4 = 1/16, such that 

𝐵(2,1)  is the optimal solution of the corresponding single objective programming problem (5.12). 

Similarly, we can show that for point  𝐶(1,2). 

Therefore, for all M-Pareto optimal solution of multi objective programming problem (5.1), there 

exist weights , such that  M-Pareto optimal solution is the optimal solution of the corresponding 

single objective programming problem. 

For both case Norm-Ideal method and Membership function method, the Pareto optimal solution 

is  

                                                             𝑥1 = 2 𝑎𝑛𝑑 𝑥2 = 1    

5.2 Using AMPL 

After finding the value of each of individual objective functions of example (1) by using AMPL 

software, the numerical results are given below in table 5.2: 
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Table 5.2 

𝑖 𝑍𝑖 𝑥𝑖 𝜑𝑖 𝑂𝐴𝑖 𝑂𝐿𝑖 
1 10 (2,1) 10 10  
2 3.0156 (.875, 2.0313) 3.0156 3.0156  
3 15 (0,2.25) 15  15 
4 6.9453 (0.3125, 2.1719) 6.9453  6.9453 

 

To convert multi-objective function into single objective function we apply different types of 

techniques such as Chandra Sen’s technique, statistical average techniques, modified statistical 

average techniques. Also the proposed technique can be applied. 

 

5.3 Using Chandra Sen’s Technique 

By Chandra Sen’s Approach, 

                           𝑀𝑎𝑥  𝑍 = ∑
𝑍𝑘

|𝜑𝑘|
𝑟
𝑘=1 − ∑

𝑍𝑘

|𝜑𝑘|
𝑠
𝑘=𝑟+1  

                    𝑀𝑎𝑥  𝑍 =  
𝑍1

𝜑1
+

𝑍2

𝜑2
−

𝑍3

𝜑3
−

𝑍4

𝜑4
 

          = 4𝑥1+2𝑥2−𝑥1
2−𝑥2

2+5

10
+

2𝑥1+𝑥2−𝑥1
2

3.0156
−

6−6𝑥1+2𝑥1
2−2𝑥1𝑥2+2𝑥2

2

15
−

2𝑥1+3𝑥2−2𝑥1
2

6.9453
 

                   = 1.1734𝑥1 + 0.0968𝑥2 − 𝑜. 2751𝑥1
2 − 0.2333𝑥2

2 + 0.1333𝑥1𝑥2 + 0.1  

Using Chandra Sen’s Approach, the system becomes,  

                        𝑀𝑎𝑥   𝑍 = 1.1734𝑥1 + 0.0968𝑥2 − 𝑜. 2751𝑥1
2 − 0.2333𝑥2

2 + 0.1333𝑥1𝑥2 + 0.1 

    Subject to       𝑥1 + 4𝑥2 ≤ 9 

                           𝑥1 + 𝑥2 ≤ 3 

                           3𝑥1 + 2𝑥2 ≤ 8 

                           𝑥1, 𝑥2   ≥ 0  

  



 Chapter-5, Example and Analysis
  
 

 
 

77 
 

5.4 Using Statistical Average Techniques 

Here three types of statistical average techniques have been discussed. Such as- Arithmetic mean 

technique (AMT), Geometric mean technique (GMT), Harmonic mean technique (HMT). 

Applying AMT,  

𝐴. 𝑀1 (10, 3.0157) = 6.5,    𝐴. 𝑀2 (15, 6.9) = 10.95 

Now  𝑀𝑎𝑥  𝑍 =
1

6.5
(𝑍1 + 𝑍2) −

1

10.95
(𝑍3 + 𝑍4) 

                            = 1.288𝑥1 + 0.1876𝑥2 − 0.3077𝑥1
2 − 0.6105𝑥2

2 + 0.1826𝑥1𝑥2 + 0.2213 

 

Using Arithmetic Mean Technique, the system becomes,  

                   𝑀𝑎𝑥   𝑍 = 1.288𝑥1 + 0.1876𝑥2 − 0.3077𝑥1
2 − 0.6105𝑥2

2 + 0.1826𝑥1𝑥2 + 0.2213 

   Subject to       𝑥1 + 4𝑥2 ≤ 9 

                           𝑥1 + 𝑥2 ≤ 3 

                           3𝑥1 + 2𝑥2 ≤ 8 

                           𝑥1, 𝑥2   ≥ 0 

Using GMT,  

𝐺. 𝑀1(10,3.0156) = √10 × 3.0156 = 5.4914 

𝐺. 𝑀2(15, 6.9) = √15 × 6.9 = 10.1735 

Now  𝑀𝑎𝑥  𝑍 =
1

5.4914
(𝑍1 + 𝑍2) −

1

10.1735
(𝑍3 + 𝑍4) 

               = 1.4858𝑥1 + 0.2514𝑥2 − 0.3642𝑥1
2 − 0.6735𝑥2

2 + 0.1966𝑥1𝑥2 + 0.3207 

 

Using Geometric Mean Technique, the system becomes,  

      𝑀𝑎𝑥  𝑍 = 1.4858𝑥1 + 0.2514𝑥2 − 0.3642𝑥1
2 − 0.6735𝑥2

2 + 0.1966𝑥1𝑥2 + 0.3207  

Subject to       𝑥1 + 4𝑥2 ≤ 9 
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                           𝑥1 + 𝑥2 ≤ 3 

                           3𝑥1 + 2𝑥2 ≤ 8 

                           𝑥1, 𝑥2   ≥ 0 

Using HMT,  

𝐻. 𝑀1(10, 3.0156) =  
2

1
10 +

1
3.0156

= 4.6338 

𝐻. 𝑀2(15, 6.9) =  
2

1
15

+
1

6.9

= 9.4521 

𝑀𝑎𝑥  𝑍 =
1

4.6338
(𝑍1 + 𝑍2) −

1

9.4521
(𝑍3 + 𝑍4) 

= 1.718𝑥1 + 0.33𝑥2 − 0.4316𝑥1
2 − 0.7448𝑥2

2 + 0.2116𝑥1𝑥2 + 0.4442 

 

Using Harmonic Average Technique, the system becomes, 

𝑀𝑎𝑥   𝑍 = 1.718𝑥1 + 0.33𝑥2 − 0.4316𝑥1
2 − 0.7448𝑥2

2 + 0.2116𝑥1𝑥2 + 0.4442 

Subject to           𝑥1 + 4𝑥2 ≤ 9 

                           𝑥1 + 𝑥2 ≤ 3 

                           3𝑥1 + 2𝑥2 ≤ 8 

                           𝑥1, 𝑥2   ≥ 0 

5.5 Using Modified Statistical Average Techniques 

Here three types of modified statistical average techniques have been discussed. Such as- modified 

arithmetic mean technique (MAMT), modified geometric mean technique (MGMT), modified 

harmonic mean technique (MHMT). 

Applying MAMT, 

From table 5.2, we consider       𝑚1 = 3.0156  &  𝑚2 = 6.9 
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Then                                 𝐴𝑀. 𝐴𝑉 =
𝑚1+𝑚2

2
= 4.9578 

𝑀𝑎𝑥 𝑍 =  
1

𝐴𝑀. 𝐴𝑉
(𝑍1 + 𝑍2 − 𝑍3 − 𝑍4) 

= 2.017𝑥1 − 0.4034𝑥1
2 − 1.2102𝑥2

2 + 0.4034𝑥1𝑥2 − 0.2017 

Thus the QPP becomes, 

𝑀𝑎𝑥  𝑍 = 2.017𝑥1 − 0.4034𝑥1
2 − 1.2102𝑥2

2 + 0.4034𝑥1𝑥2 − 0.2017 

Subject to           𝑥1 + 4𝑥2 ≤ 9 

                           𝑥1 + 𝑥2 ≤ 3 

                           3𝑥1 + 2𝑥2 ≤ 8 

Using MGMT, 

𝐺𝑀. 𝐴𝑉 = √𝑚1𝑚2 = √3.0156 × 6.9 = 4.5615 

𝑀𝑎𝑥 𝑍 =  
1

𝐺𝑀. 𝐴𝑉
(𝑍1 + 𝑍2 − 𝑍3 − 𝑍4) 

= 2.1923𝑥1 − 0.4385𝑥1
2 − 1.3154𝑥2

2 + 0.4358𝑥1𝑥2 − 0.2192 

Thus the QPP becomes, 

𝑀𝑎𝑥  𝑍 = 2.1923𝑥1 − 0.4385𝑥1
2 − 1.3154𝑥2

2 + 0.4358𝑥1𝑥2 − 0.2192 

Subject to           𝑥1 + 4𝑥2 ≤ 9 

                           𝑥1 + 𝑥2 ≤ 3 

                           3𝑥1 + 2𝑥2 ≤ 8 

Using MHMT, 

𝐻𝑀. 𝐴𝑉 =
2

1
𝑚1

+
1

𝑚2

=
2

1
3.0156

+
1

6.9

= 4.1969 
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𝑀𝑎𝑥 𝑍 =  
1

𝐻𝑀. 𝐴𝑉
(𝑍1 + 𝑍2 − 𝑍3 − 𝑍4) 

= 2.3827𝑥1 − 0.4765𝑥1
2 − 1.4296𝑥2

2 + 0.4765𝑥1𝑥2 − 0.2383 

Thus the QPP becomes,   

𝑀𝑎𝑥  𝑍 = 2.3827𝑥1 − 0.4765𝑥1
2 − 1.4296𝑥2

2 + 0.4765𝑥1𝑥2 − 0.2383 

Subject to           𝑥1 + 4𝑥2 ≤ 9 

                           𝑥1 + 𝑥2 ≤ 3 

                           3𝑥1 + 2𝑥2 ≤ 8 

 

5.6 Advanced Transformation Technique  

Using proposed technique, select 

 𝑚1 = min{10, 3.0156} = 3.0156   𝑎𝑛𝑑  𝑚2 = min{15, 6.9453} = 6.9453 

                                then    𝑚 = min{𝑚1, 𝑚2} = 3.0156 

Now, we get,  𝑂𝐴𝑇 =
1

(1/𝑚)
=  3.0156 

Thus the QPP becomes, 

𝑀𝑎𝑥 𝑍 =  
1

𝑂𝐴𝑇
(𝑍1 + 𝑍2 − 𝑍3 − 𝑍4) 

= 3.3𝑥1 − 0.66𝑥1
2 − 0.99𝑥2

2 + 0.66𝑥1𝑥2 − 0.33 

The system,  

                    𝑀𝑎𝑥 𝑍 = 3.3𝑥1 − 0.66𝑥1
2 − 0.99𝑥2

2 + 0.66𝑥1𝑥2 − 0.33 

Subject to                   𝑥1 + 4𝑥2 ≤ 9 

                           𝑥1 + 𝑥2 ≤ 3 

                                  3𝑥1 + 2𝑥2 ≤ 8 
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5.7 Graphical Method 

The single objective quadratic programming problems with same constraints which are achieved 

by using Chandra Sen’s technique, Statistical Average technique, Modified Statistical Average 

technique and Advanced Transformation technique can be solved by using Graphical method.  

Consider the constraints of the system as: 

𝑀1 ∶  𝑥1 + 4𝑥2 ≤ 9 

 𝑀2 ∶  𝑥1 + 𝑥2 ≤ 3 

        𝑀3 ∶   3𝑥1 + 2𝑥2 ≤ 8 

According to Graphical Method, the feasible region of the system is as follows: 

Figure 5.7: Feasible region for given MOQPP 

Corner points are  𝑨(𝟎, 𝟎), 𝑩(𝟐. 𝟔, 𝟎), 𝑪(𝟐, 𝟏), 𝑫(𝟏, 𝟐), 𝑬(𝟎, 𝟐. 𝟐𝟓). 

By Chandra Sen’s Technique, the objective function of the system is, 

𝑀𝑎𝑥   𝑍 = 1.1734𝑥1 + 0.0968𝑥2 − 𝑜. 2751𝑥1
2 − 0.2333𝑥2

2 + 0.1333𝑥1𝑥2 + 0.1
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By Graphical method, corner points are used to get maximum value of Z. 

Corner point Z value 

𝑨(𝟎, 𝟎) 0.1 

𝑩(𝟐. 𝟔, 𝟎) 1.29 

𝑪(𝟐, 𝟏) 1.47 

𝑫(𝟏, 𝟐) 0.5253 

𝑬(𝟎, 𝟐. 𝟐𝟓) -0.86 

So, 𝑍𝑚𝑎𝑥 = 1.47  𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 (2,1).

Similarly, using Graphical method, the maximum value of the respective objective functions for 

different techniques can be found.  

By Modified Harmonic Average Technique, the objective function of the system is, 

𝑀𝑎𝑥  𝑍 = 2.3827𝑥1 − 0.4765𝑥1
2 − 1.4296𝑥2

2 + 0.4765𝑥1𝑥2 − 0.2383

Corner point Z value 

𝑨(𝟎, 𝟎) -0.2383 

𝑩(𝟐. 𝟔, 𝟎) 2.1445 

𝑪(𝟐, 𝟏) 2.7355 

𝑫(𝟏, 𝟐) 1.1913 

𝑬(𝟎, 𝟐. 𝟐𝟓) -7.475 

By Advanced Transformation Technique, the objective function of the system is, 

𝑀𝑎𝑥 𝑍 = 3.3𝑥1 − 0.66𝑥1
2 − 0.99𝑥2

2 + 0.66𝑥1𝑥2 − 0.33

Corner point Z value 

𝑨(𝟎, 𝟎) -0.33 

𝑩(𝟐. 𝟔, 𝟎) 3.78 

𝑪(𝟐, 𝟏) 3.96 
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𝑫(𝟏, 𝟐) -0.33 

𝑬(𝟎, 𝟐. 𝟐𝟓) -5.34 

  5.8 Comparison Table 

This table summarizes the solutions of the MOQPP using different approaches: 

Table 5.8 (a): Comparison Table I 

Using 
Chandra 
Sen’s 
Approach 

Using 
Arithmetic 
Ave. 
Technique 

Using 
Geometric 
Ave. 
Technique 

Using 
Harmonic 
Ave. 
Technique 

Using 
Modified 
Arithmetic 
Ave. 
Technique 

Using 
Modified 
Geometric 
Ave. 
Technique 

Using 
Modified 
Harmonic 
Ave. 
Technique 

Using  
Advanced  
Transformation 
Technique 

𝑍 = 1.47 
𝑥1 = 2
𝑥2 = 1

𝑍 = 1.51 
𝑥1 = 2
𝑥2 = 1

𝑍 = 1.81 
𝑥1 = 2
𝑥2 = 1

𝑍 = 2.16 
𝑥1 = 2
𝑥2 = 1

𝑍 = 2.32 
𝑥1 = 2
𝑥2 = 1

𝑍 = 2.52 
𝑥1 = 2
𝑥2 = 1

𝑍 = 2.74 
𝑥1 = 2
𝑥2 = 1

𝑍 = 3.96 
𝑥1 = 2
𝑥2 = 1

It shows that the solution of the objective functions improved when we used the proposed 

Advanced transformation technique. 

We are going to compare different techniques with Pareto Optimality. In case of statistical average 

technique and modified statistical average technique, we consider only harmonic average 

technique. Then we obtain comparison table II.     

Table 5.8 (b): Comparison Table-II 

Using Pareto 
Optimality 

Using Chandra 
Sen’s 

Approach 

Using Harmonic 
Average 

Technique 

Using 
Modified 
Harmonic 
Average 

Technique 

Using 
Advanced 

Transformation 
Technique 

𝑍 = 0.91 
𝑥1 = 2
𝑥2 = 1

𝑍 = 1.47 
𝑥1 = 2
𝑥2 = 1

𝑍 = 2.16 
𝑥1 = 2
𝑥2 = 1

𝑍 = 2.74 
𝑥1 = 2
𝑥2 = 1

𝑍 = 3.96 
𝑥1 = 2
𝑥2 = 1

Pareto optimality provides a weak but widely accepted standard outcome. This comparison table 

shows that the results obtained by different techniques are approximately near that of Pareto 

solutions. After comparing we can easily say that, Advanced transformation technique is more 

appropriate to solve MOQPP.  
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5.9 Physical Interpretation 

In this optimization problem, a process is going to search a better procedure to find maximum 

value of a given MOQPP. 

Figure shows that, how the optimized results has improved after applying different techniques. 

Physical interpretation of the given MOQPP after applying different techniques are shown below: 

Figure 5.9 (a): Physical interpretation of the given MOQPP after applying different techniques 
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For more convenience, it can be shown as follows: 

 

Figure 5.9 (b): Bar diagram of the given MOQPP comparing different techniques 

 

5.10 Data Analysis 

The main purpose of data analysis is to find meaning in data so that the derived knowledge can be 

used to make informed decisions. In simple words, data analysis is the process of collecting and 

organizing data in order to draw helpful conclusions from it. The process of data analysis uses 

analytical and logical reasoning to gain information from the data. 

Consider, Mixed type Multi-objective linear programming problem (MOLPP):   

Example 2. 

max 𝑧1 = 𝑥1 + 2𝑥2 

max 𝑧2 = 𝑥1 

min 𝑧3 = −2𝑥1 − 3𝑥2 

min 𝑧4 = −𝑥2 

                               s/t                  6𝑥1 + 8𝑥2 ≤ 48 
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𝑥1 + 𝑥2 ≥ 3 

𝑥1 ≤ 4 

                                                                𝑥2 ≤ 3 

                                                           𝑥1, 𝑥2 ≥ 0 

Solving the example by using Chandra Sen’s technique, harmonic 

average technique, modified harmonic average technique and Advanced 

transformation technique we get the following table: 

      Techniques 

 

Example 

Chandra         
Sen’s 

technique 

Harmonic 
average 

technique 

Modified 
harmonic 
average 

technique 

Advanced 
transformation 

technique 

2 𝑧𝑚𝑎𝑥 =3.99 

𝑥1 = 4 
𝑥2 = 3 

𝑧𝑚𝑎𝑥 = 6.37 

𝑥1 = 4 
𝑥2 = 3 

𝑧𝑚𝑎𝑥 = 9.86 

𝑥1 = 4 
𝑥2 = 3 

𝑧𝑚𝑎𝑥 = 11.32 

𝑥1 = 4 
𝑥2 = 3 

 

Again consider, Single type Multi-objective linear programming problem (Maximization): 

Example 3. 

max 𝑧1 = 𝑥1 

max 𝑧2 = 2 + 𝑥1 + 2𝑥2 

max 𝑧3 = 3 + 𝑥2 

                               s/t                              2𝑥1 + 3𝑥2 ≤ 6 

                𝑥1 + 2𝑥2 ≤ 2 

                            𝑥1 ≤ 4 

                                                                          𝑥1, 𝑥2 ≥ 0 

After solving by different techniques, we obtain the table: 
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      Techniques 

 

Examples 

Chandra         
Sen’s 

technique 

Harmonic 
average 

technique 

Modified 
harmonic 
average 

technique 

Advanced 
transformation 

technique 

3 𝑧𝑚𝑎𝑥 =2.75 

𝑥1 = 2 
𝑥2 = 0 

𝑧𝑚𝑎𝑥 = 3.01 

𝑥1 = 2 
𝑥2 = 0 

 

𝑧𝑚𝑎𝑥 = 4.5 

𝑥1 = 2 
𝑥2 = 0 

 

𝑧𝑚𝑎𝑥 = 4.5 

𝑥1 = 2 
𝑥2 = 0 

 

Integrating results of example 1 (MOQPP), example 2 (Mixed type 

MOLPP) and example 3 (Single type MOLPP), the following table can 

be obtained:  

  Table 5.10: Comparison Table-III 

      Techniques 

 

Examples 

Chandra         
Sen’s 

technique 

Harmonic 
average 

technique 

Modified 
harmonic 
average 

technique 

Advanced 
transformation 

technique 

1 (MOQPP) 𝑧𝑚𝑎𝑥 =1.5 𝑧𝑚𝑎𝑥 =2.35 𝑧𝑚𝑎𝑥 = 2.85 𝑧𝑚𝑎𝑥 = 4.3 

2 (MOLPP-
Mixed type) 

𝑧𝑚𝑎𝑥 =3.99 𝑧𝑚𝑎𝑥 = 6.37 𝑧𝑚𝑎𝑥 =9.86 𝑧𝑚𝑎𝑥 = 11.32 

3 (MOLPP- 
Max. type) 

𝑧𝑚𝑎𝑥 = 2.75 𝑧𝑚𝑎𝑥 =3.01 𝑧𝑚𝑎𝑥 = 4.5 𝑧𝑚𝑎𝑥 = 4.5 

 

Analysis: 

Applying different techniques on MOQPP, mixed type MOLPP and 

maximization type MOLPP, we reach in a conclusion. After analyzing, 

the result can be synthesized as: 

1. For different techniques applied on MOLPP, the result variation is 

approximately same whereas for MOQPP, the variation is more for 

applying Advanced transformation technique. 
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2. For single type MOLPP, modified harmonic average technique and 

advanced transformation technique give identical output. 
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CHAPTER-6 

Practical Aspects 
 

Real world examples demonstrate the complexity and unpredictability of real issues and as such, 

can stimulate critical thinking. They also highlight the need for an inter- and multi-disciplinary 

approach to problem solving. Further, using examples from the real world demonstrates that, 

oftentimes, there is no perfect solution to a given problem. But, in doing so, we think more about 

solutions, rather than just focusing on problems. 

Any kind of real life problems can be model as a mathematical formulation by following step: 

     

                                                   

                                           Figure 6: Mathematical model approach 
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In Bangladesh, there are many textile industries. Several buyers purchase different kinds of 

products from them. The company produces different types of products such as t-shirt, ladies-tops, 

jeans etc. They use several raw materials like cotton, silk, wool, polyester, viscous etc.   

 

Example: Consider a textile factory, one of their buyer purchases only Polo t-shirt and Ladies tops. 

To provide that two products the factory needs raw materials, mainly cotton, polyester and viscous. 

Estimate for the material according to their monthly order from that buyer. 

Table 6.1: Raw material list 

 

 

 

 

Finance report of respective 3 months: 

Table 6.2: Monthly Finance Report 

Month Product Quantity (pc) Profit/pc (tk) 

January t-shirt 70,000 1 

ladies-tops 50,000 2 

February t-shirt 68000 1 

ladies-tops 55000 4 

March t-shirt 71000 2.5 

ladies-tops 53000 3 

 

Formulate the quadratic programming model to find the maximum profit and optimization output 

according to buyer’s requirement based on product and price. 

Raw Material Yarn 

(ton) 

Finished fabric(ton) 

(after processing) 

Cotton 50   16  

Polyester 7   5  

Viscous 10  7  
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Solution: 

Monthly, average quantity of t-shirt = (70000+68000+71000)/3 ≅ 70000 

and average quantity of tops = (50000+55000+53000)/3 ≅53000 

These quantities have been produced from finished fabric. For each piece of t-shirt, cotton 

required= 16/70000= .00029 (ton) 

Similarly, the amount of raw materials to produce per piece t-shirt and tops are given below: 

(multiplied by 1000) 

Table 6.3: Converted list 

 Cotton (in ton) Polyester(in ton) Viscous(in ton) 

t-shirt (per pc) 0.29 0.07 0.1 

tops(per pc) 0.3 0.09 0.13 

 

Quadratic Formulation: 

Let,         the quantity of t-shirt= 𝑥1  

                                   and tops = 𝑥2 

For maximum profit,   

              profit per piece of t-shirt =𝑃1 

                                        and tops =𝑃2 

The demand functions are based on the three sets of data. 

 The actual quantities of product, say 𝑥1̃, 𝑥2̃. 

 Their average profit per piece say 𝑃1̃, 𝑃2̃. 

 Price elasticity say 휀. 
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These values have been based on existing studies of consumer’s behavior. The functions are 

assumed to be linear. For large positive deviation from the equilibrium prices, this will probably 

imply an underestimation of demand and hence revenue.  

𝑥1 − 𝑥1̃

𝑥1̃
= −휀 

𝑃1 − 𝑃1̃

𝑃1̃

 

                                                                𝑥2−𝑥2̃

𝑥2̃
= −휀 

𝑃2−𝑃2̃

𝑃2̃
                                           (6.1) 

For the price elasticity, let the value is specified as follows: 휀 = 0.3 

For month 1:  

Given  𝑥1̃ = 70000, 𝑃1̃ = 1   𝑎𝑛𝑑  𝑥2̃ = 50000, 𝑃2̃ = 2 

Consider as, 𝑥1̃ = 70, 𝑃1̃ = .001   𝑎𝑛𝑑  𝑥2̃ = 50, 𝑃2̃ = .002 

Using (6.1) 

                           𝑥1−70

70
= −3 × 10−4 ×

𝑃1−.001

.001
 

                              ⇒ 𝑃1 = 3.5 − 0.5 𝑥1                                                                                                  (6.2)                                                       

 

Also,                   𝑥2−50

50
= −3 × 10−4 ×

𝑃2−.002

.002
 

                             ⇒ 𝑃2 = 6.5 − 0.13 𝑥2                                                                                      (6.3) 

Now the function to be maximized is ∑ 𝑃𝑖𝑥𝑖. 

Thus the objective function for this case is,  

                            𝑀𝑎𝑥   𝑍1 = 𝑃1𝑥1 + 𝑃2𝑥2 

                                              = −0.5𝑥1
2 − 0.13𝑥2

2 + 3.5𝑥1 + 6.5𝑥2                                                (6.4)                    

 

For month 2:  

Given  𝑥1̃ = 68000, 𝑃1̃ = 2   𝑎𝑛𝑑  𝑥2̃ = 55000, 𝑃2̃ = 4 
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Consider as, 𝑥1̃ = 68, 𝑃1̃ = .002   𝑎𝑛𝑑  𝑥2̃ = 55, 𝑃2̃ = .004 

Using (6.1)  

                           𝑥1−68

68
= −3 × 10−4 ×

𝑃1−.002

.002
 

                             ⇒ 𝑃1 = 6.12 − 0.09 𝑥1                                                                                     (6.5)                                                       

Also,                   𝑥2−55

55
= −3 × 10−4 ×

𝑃2−.004

.004
 

                             ⇒ 𝑃2 = 13.204 − 0.24 𝑥2                                                                               (6.6)                                                         

 

Now the function to be maximized is ∑ 𝑃𝑖𝑥𝑖. 

Thus the objective function for this case is,  

                            𝑀𝑎𝑥   𝑍2 = 𝑃1𝑥1 + 𝑃2𝑥2 

                                      = −0.09𝑥1
2 − 0.24𝑥2

2 + 6.12𝑥1 + 13.204𝑥2                                           (6.7)              

For month 3:  

Given  𝑥1̃ = 71000, 𝑃1̃ = 2.5   𝑎𝑛𝑑  𝑥2̃ = 53000, 𝑃2̃ = 3 

Consider as, 𝑥1̃ = 71, 𝑃1̃ = .0025   𝑎𝑛𝑑  𝑥2̃ = 53, 𝑃2̃ = .003 

Using (6.1)  

                           𝑥1−71

71
= −3 × 10−4 ×

𝑃1−.0025

.0025
 

                             ⇒ 𝑃1 = 8.5 − 0.12 𝑥1                                                                                    (6.8)                                                          

Also,                   𝑥2−53

53
= −3 × 10−4 ×

𝑃2−.003

.003
 

                             ⇒ 𝑃2 = 10.073 − 0.19 𝑥2                                                                              (6.9)                                                          

Now the function to be maximized is ∑ 𝑃𝑖𝑥𝑖. 

Thus the objective function for this case is,  

                            𝑀𝑎𝑥   𝑍3 = 𝑃1𝑥1 + 𝑃2𝑥2 
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                                      = −0.12𝑥1
2 − 0.19𝑥2

2 + 8.5𝑥1 + 10.73𝑥2                                              (6.10)               

Finally using (6.4), (6.7) and (6.10) we get MOQPP with some constraints: 

𝑀𝑎𝑥   𝑍1 = −0.5𝑥1
2 − 0.13𝑥2

2 + 3.5𝑥1 + 6.5𝑥2 

                                           𝑀𝑎𝑥   𝑍2 = −0.09𝑥1
2 − 0.24𝑥2

2 + 6.12𝑥1 + 13.204𝑥2          

        𝑀𝑎𝑥   𝑍3 = −0.12𝑥1
2 − 0.19𝑥2

2 + 8.5𝑥1 + 10.73𝑥2 

Subject to                                               .29𝑥1 + 0.3𝑥2 ≤ 16000 

. 07𝑥1 + 0.09𝑥2 ≤ 5000 

. 1𝑥1 + 0.13𝑥2 ≤ 7000 

                                                                              𝑥1, 𝑥2  ≥ 0     

After solving by AMPL software, we obtain the result as: 

Table 6.4 

𝑖 𝑥𝑖 𝑍𝑖 ⃓𝜑𝑖⃓ 

1 (4, 25) 87.38 87.38 

2 (34, 27.5) 285.54 285.54 

3 (35, 28.2) 302.01 302.01 

 

Using Chandra Sen’s Technique: 

The multi objective function is converted into single objective function by this technique, 

                                  𝑀𝑎𝑥 𝑍 =
𝑍1

𝜑1
+

𝑍2

𝜑2
+

𝑍3

𝜑3
 

               = 1

87.38
[−0.5𝑥1

2 − 0.13𝑥2
2 + 3.5𝑥1 + 6.5𝑥2] +

1

285.54
[−0.09𝑥1

2 − 0.24𝑥2
2 +

                           6.12𝑥1 + 13.204𝑥2] +
1

302.01
[−0.12𝑥1

2 − 0.19𝑥2
2 + 8.5𝑥1 + 10.73𝑥2] 

= −0.00643 𝑥1
2 − 0.00296 𝑥2

2 + 0.089 𝑥1 + 0.156 𝑥2 

The system becomes, 
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𝑀𝑎𝑥 𝑍 = −0.00643 𝑥1
2 − 0.00296 𝑥2

2 + 0.089 𝑥1 + 0.156 𝑥2 

 

Subject to                                              .29𝑥1 + 0.3𝑥2 ≤ 16000 

. 07𝑥1 + 0.09𝑥2 ≤ 5000 

. 1𝑥1 + 0.13𝑥2 ≤ 7000 

                                                                               𝑥1, 𝑥2  ≥ 0 

After solving we get,  

                                         𝑍 = 2.36  𝑤𝑖𝑡ℎ 𝑥1 = 6.9, 𝑥2 = 26.3 

Using modified harmonic mean technique: 

𝐻𝑀. 𝐴𝑉 =
2

1
𝑚1

+
1

𝑚2

 

Here,  𝑚1 = 302.01  𝑎𝑛𝑑  𝑚2 = 87.38 

Then                                     𝐻𝑀. 𝐴𝑉 = 135.54 

Thus,                                   𝑀𝑎𝑥 𝑍 =
1

𝐻𝑀.𝐴𝑉
[𝑍1 + 𝑍2 + 𝑍3] 

= −0.00524 𝑥1
2 − 0.00413 𝑥2

2 + 0.134 𝑥1 + 0.225 𝑥2 

 

The system becomes, 

𝑀𝑎𝑥 𝑍 = −0.00524 𝑥1
2 − 0.00413 𝑥2

2 + 0.134 𝑥1 + 0.225 𝑥2 

Subject to                         .29𝑥1 + 0.3𝑥2 ≤ 16000 

. 07𝑥1 + 0.09𝑥2 ≤ 5000 

. 1𝑥1 + 0.13𝑥2 ≤ 7000 

                                                       𝑥1, 𝑥2  ≥ 0 
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After solving we get,  

                                         𝑍 = 3.9  𝑤𝑖𝑡ℎ 𝑥1 = 12.78,  𝑥2 = 27.24 

Using Advanced transformation technique: 

𝑚 = min{𝑚1, 𝑚2} = 87.38 

We get,                         𝑂𝐴𝑇 =
1

(1/𝑚)
=  87.38 

Thus,         𝑀𝑎𝑥 𝑍 =
1

𝑂𝐴𝑇
[𝑍1 + 𝑍2 + 𝑍3] 

=
1

87.38
[−0.71 𝑥1

2 − 0.559 𝑥2
2 + 18.16 𝑥1 + 30.49 𝑥2 

                = −0.008 𝑥1
2 − 0.006 𝑥2

2 + 0.208 𝑥1 + 0.349 𝑥2 

The system becomes, 

𝑀𝑎𝑥 𝑍 = −0.008 𝑥1
2 − 0.006 𝑥2

2 + 0.208 𝑥1 + 0.349 𝑥2 

Subject to                                                .29𝑥1 + 0.3𝑥2 ≤ 16000 

. 07𝑥1 + 0.09𝑥2 ≤ 5000 

. 1𝑥1 + 0.13𝑥2 ≤ 7000 

                                                                              𝑥1, 𝑥2  ≥ 0 

After solving we get,  

                                         𝑍 = 6  𝑤𝑖𝑡ℎ 𝑥1 = 13,  𝑥2 = 29 

Table 3 summarizes the solutions of the MOQPP:  

Table-6.5 

Chandra Sen’s Approach Modified Harmonic Average 

Technique 

Advanced transformation 

technique 

𝑍 = 2.36 

𝑥1 = 7, 𝑥2 = 26 

𝑍 = 3.9 

𝑥1 = 13,  𝑥2 = 27 

𝑍 = 6 

𝑥1 = 13,  𝑥2 = 29 
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The result gives an assumption about the ratio of the production and expresses maximum profit 

for each product.  

Therefore, it can easily be seen that the maximum profit is ensured by using the proposed 

technique. 
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Result and Discussion 
 

A survey has been presented on the use of quadratic programming in solving business planning 

problem.  

We carried out two Pareto optimal methods to solve a multi objective optimization problem and 

found approximately same results. MOQPP is given to illustrate that for any Pareto optimal 

solution there exist weights such that Pareto optimal solution is the optimal solution of the 

corresponding single objective programming problem. Since weights are not unique, all Pareto 

optimal solution and M- Pareto optimal solution can be obtained through taking out different 

weights. Results obtained by Pareto optimality are compared with different solution techniques.  

It has been seen that the optimization result using proposed advanced transformation technique is 

better than that of other techniques. In case of statistical average technique and modified statistical 

average technique, we consider only harmonic mean technique. As among them, harmonic mean 

technique gives more effective solution.  

The quadratic programming formulations are more realistic than is linear programming. Here, a 

real life problem is converted into quadratic programming problem. The optimization model 

discussed here is more consistent with the decision maker’s preference postulates. Finally, for 

maximum profit (per piece product), the ratio of quantities of products can be fixed with the help 

of advanced transformation technique.   

Limitations: 

In each case, we obtain different single objective functions and observe variations in each single 

objective function although derived from same set of data. The optimal values are obtained at the 

same optimum point and the difficulty arise by having a set of optimal solutions instead of a single 

optimum solution. The result variation occurs due to coefficient varies which may lead 

complication.  

The solutions obtained from this technique is difficult to implement as most of them are usually 

unrealistic. It is only summary figure which may not be the actual item in the series as these 

solutions vary more than Pareto optimal solutions. The effectiveness of this technique is 

conflicting. 
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Future Study: 

Many real world search and optimization problems are naturally posed as nonlinear programming 

problems having multiple objectives. Due to the lack of suitable solution techniques, such 

problems are artificially converted into a single objective problem and solved. 

The complexity arose because such problems give rise to a set of trade-off optimal solutions 

instead of single optimum solution. 

Our next target is to discuss on different Pareto optimality such as NSGA-I, NSGA-II, 

Evolutionary Algorithm etc. and will check which one suits the problem best. 

The goal may be to find a representative set of Pareto optimal solutions, quantify the trade-offs in 

satisfying the different objectives and finding a single solution that satisfies the subjective 

preferences of human decision maker (DM). 
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Conclusion 
 

In this research, we have defined and discussed a number of techniques which we have used in 

order to get optimal solution of the MOQPP. This paper performed structural analysis of Pareto 

optimal solution and M- Pareto optimal solution for convex MOQPP. Two methods discussed here 

are very effective to obtain Pareto optimal solution. It is observed that to solve MOQPP the 

statistical average techniques result better than Chandra Sen’s approach. We have introduced a 

modified statistical (A.M, G.M, H.M) average technique. From the analysis, it has been found that 

MOQPP are best optimized using modified harmonic average technique. Also we have formulated 

a new quadratic formulation that can be added a new dimension for industrial aspects. We have 

proposed a new technique to solve MOQPP named Advanced transformation technique. 

This research paper discusses the importance of the proposed advanced transformation techniques 

to solve multi objective optimization problems. This is a quick safe technique which makes large 

and complex problems more tractable and accurate. The structural analysis of three different 

techniques for finding a basic feasible solution are compared throughout performed numerical test 

examples. The study shows that the proposed method has better performance than other methods. 

Different data analysis and visual presentation ensure its perfection.     
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