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Abstract 

Functionally graded materials (FGMs) are an advanced type of composite material 

having varying material distribution from one to another surface, for which these 

FGMs become nonhomogeneous in the case of both material characteristics and 

microstructures. The present study considers a thin circular rotating disk of 

functionally graded material with a concentric circular hole. The disk is subjected to 

a thermal load and an inertial force due to the rotation of the disk. The analysis is 

carried out under plane stress condition. Material properties of the FGM disk are 

assumed to vary along the radial direction only. In this study, an optimization model 

is developed for evaluating optimum material distributions in a rotating FGM 

circular disk corresponding to minimum/prescribed stresses. Further, a mathematical 

model of direct problem is also developed to calculate stresses and displacements 

induced in the FGM disk corresponding to a prescribed material distribution. Based 

on two-dimensional thermoelasticity theories, the problem is formulated in terms of a 

second-order differential equation. Since a close-form solution of the differential 

equation is not possible, a standard finite element approach is adopted for the 

solution of the optimization and direct problems. The models developed in the 

present study are validated by comparing the results with those available in literature. 

To demonstrate the developed models, numerical results are obtained for an FGM 

disk consisting of Al and AlଶOଷ. From the numerical results of direct problem, it is 

found that the stresses are greatly influenced by material distribution. The results of 

optimization model ensure that an FGM disk can be designed with optimum material 

distribution realizing the minimum/prescribed stress profile in the disk. It is also 

revealed that the stress profile, temperature field, angular speed, and radial thickness 

of the disk all have significant effects on optimum material distribution of the FGM 

disk.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The daily advancement of materials improves material qualities, limiting the usage of 

accessible materials such as pure metals, alloys, and traditional composites, which 

cannot be regulated to reach the required properties for many applications [1,2]. Due 

to the limitations of using standard homogeneous materials such as pure metals, 

ceramics, alloys, and conventional composites, it was required to design new 

materials with opposing properties and a graded structure to fulfill the demands of 

industrial development applications [3 – 7]. Functionally graded materials (FGMs) 

exhibit multi-functional features due to progressive changes in their composition or 

structure, making them ideal for engineering applications needing contradictory 

properties in a single component [8,9]. Thus, FGMs can be utilized to produce novel 

properties and/or functionalities that are impossible to obtain with traditional 

homogeneous materials, as well as a variety of additional industrial uses [10].  

Functionally graded materials (FGM) are advanced composite materials that differ 

from traditional composite materials in that the transition zone, which is a sharp 

visible interface in laminated composites, is replaced by a graduated interface that 

changes gradually from one material to the next, preventing the common debonding 

failure that is associated with traditional composite materials [11]. In the early 1980s, 

the FGM was introduced in Japan with the objective of lowering thermal stresses 

within the traditional laminated composites designed for rocket engines [12 – 15]. 

Japan’s researchers were confronted with a challenge: they needed any sort of 

material for the fuselage exterior and engine components that could tolerate a large 

temperature difference in order to build space planes that could take off like planes. 

In the atmosphere, cruise at Mach 5 to 25 while being subjected to intense frictional 

heating from the wind. As a result, the body of the rocket needed to be made of a 

substance that could sustain a difference in temperature of around 1000 K between 

the interior and exterior of the spacecraft. Traditional composite materials and 
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laminated composites were both used to endure working conditions; however, none 

was successful. Because of the mismatch in the characteristics of the two materials, 

the failure frequently happened at the same location where the two materials were 

linked together. This composite material was subjected to thermal stress, which 

resulted in a thermal mismatch, and led to the separation of the two components due 

to their distinct expansion properties, resulting in the composite material’s failure. 

The project’s Japanese researchers concluded that the problem might be remedied by 

eliminating the abrupt contact between the two components that make up the 

composite material. Nevertheless, the formation of FGM is accomplished by 

substituting the sharp contact with a gradient interface that combines both 

components [16]. As a result of the fact that FGMs are a form of novel composite 

material that undergoes a progressive structure or compositional change in relation to 

location, the sharp interface is replaced by the gradient interface [17,18]. Thus, FGM 

was initially suggested in Japan for these excellent thermal, mechanical, and 

tribological properties in the 1980s for a space aircraft project. 

Figs. 1.1 (a) and Fig. 1.1 (b) illustrate the schematic diagrams of the functionally 

graded material and the standard laminated composite material, respectively. 

 

 

 

 

 

 

 

 

 

 

An FGM’s structural unit is called a material ingredient or an element [19 – 20]. In 

addition, it is the basis for producing an FGM, which encompasses different 

characteristics of its physical condition, chemical composition, as well as 

Fig. 1.1: Schematic illustration of (a) functionally graded composite and (b) typical 

laminated composite [9]. 
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geometrical arrangement, and the name “material component” best reflects the 

complete notion [21]. The material constituents that can be utilized to fabricate 

FGMs are listed in Table 1.1. 

Two distinct material characteristics might gradually vary from one another or in an 

abrupt manner, such as stepwise gradation, as shown in Fig. 1.2 (a) and Fig. 1.2 (b), 

respectively. 

Table 1.1: Types of material constituents involved in the fabrication of FGM 

Physical dipole moment, ionic state, magnetic moment bandgap, 

barrier, electronic state, potential well, crystalline state 

Biological cell, complex macromolecule, tissue, organelle 

Geometrical fiber, granule, platelet rod, sheet pore, orientation, needle, 

texture 

Chemical metal, ceramic, polymer, organic, inorganic 

 

 

 

 

 

 

 

Despite the fact that the FGM was originally developed for providing a thermal 

barrier to the materials involved in fusion reactors and aircraft structural applications, 

its applications have since been expanded to include other areas, such as harsh wear-

resistant environments [22,23]. Moreover, FGMs are being utilized in a variety of 

sectors right now, and they have a lot of promise for future uses [24]. The 

functionally graded materials’ application ranges are depicted in Fig. 1.3. 

Fig. 1.2: (a) Continuous and (b) Stepwise distribution [21]. 
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Gradients of composition FGM is a sort of functionally graded material in which the 

chemical composition of a substance that may exist as either a single or a multi-

phase structure gradually changes according to its geographical location. However, 

composition in an FGM of single-phase is uncommon, but materials having a 

multiphase chemical composition are the most widely designed and utilized 

functionally graded materials [25,26]. Furthermore, the cylinder’s outermost portion 

would cool more slowly in the microstructural gradient FGM shown in Fig. 1.4 (a), 

which would facilitate the creation of an even more balanced microstructure and 

generate a substantially equiaxed microstructure, both of which are ideal for usage in 

turbine applications, cams or ring gear, case-hardened steel, bearings or shafts, and 

also in the defence and armoury applications [24,27]. Lastly, the porosity gradient 

FGM is a type where the porosity of the material changes in response to changes in 

the bulk material’s spatial location, as shown in Fig.  1.4 (b). 

 

 

 

Fig. 1.3: Variety of applications of Functionally Graded Materials [24]. 
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Despite the fact that the first use of FGM was in Japanese spacecraft, this technology 

currently has a wide range of applications, some of which are described below, 

Automobile: Engine cylinder liners, diesel engine pistons, combustion chambers, 

flywheels, shock absorbers, leaf springs, driveshafts, racing car brakes, etc. 

Aerospace: The space shuttle, turbine wheels (operating above 40,000 rpm), rocket 

nozzle, solar panels, spacecraft truss structure, nosecaps and the leading edge of 

missiles, camera housing, heat exchange panels, reflectors, etc. 

Defence: The capacity to suppress fracture development is one of the essential 

properties of functionally graded materials. This feature makes it valuable in defense 

applications, such as armor plates and bullet-proof vests, as a penetration-resistant 

material.  

Energy: Energy conversion devices take advantage of FGM. In addition to this, they 

serve as a barrier to thermal stress and are applied as a coating for protection on the 

blades of gas turbines.  

Medicine: Living tissues, such as bones and teeth, are functionally graded materials 

found in nature. To replace these tissues, a suitable material that fulfills the original 

Fig. 1.4: (a) Schematic depiction of graded microstructure and (b) porosity gradient 

FGM [25]. 
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bio-function tissue is required. Functionally graded material is the best choice for this 

job. For tooth and bone replacement, FGM offers a wide variety of applications in 

dentistry and orthopedics.  

Commercial and Industrial: Cutting tool inserts, drilling motor shafts, fuel tanks, 

firefighting air bottles, pressure vessels, helmets, laptop cases, musical instruments, 

MRI scanner cryogenic tubes, X-ray tables, eyeglass frames, wind turbine blades, 

etc.  

1.2 Fabrication Processes of FGMs 

The production of an FGM was difficult and expensive in the beginning. Various 

researchers have created a variety of manufacturing processes in recent years, some 

of which are now employed in mass production in the industry. Fig. 1.5 demonstrates 

some of the most typical FGM fabrication processes. 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1.5: FGMs fabrication techniques [28]. 
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Thermal spray is one of the most promising approaches for creating coating of FGM 

with materials having a high melting point and precise material distribution control 

among the various coating technologies discussed above. Fig. 1.6 illustrates the 

fundamental characteristics of a thermal spray approach. The coating's unprocessed 

components are melted, which is accomplished with the help of the heat source. Then 

by processing with gases followed by spraying on the base material, the molten or 

liquid substances are pressured until they solidify to form a solid layer. [29].  

Thermal spraying involves introducing feedstock (such as wire, rods, or powder) 

with a heat sources like combustion plasma, laser beams or arcs. The electrically 

conductive wire is used as a feedstock in arc spray techniques, whereas powder or 

wire is used in combustion techniques. Plasma or laser beam spraying is done using 

powders. The particles melt as they travel and collide with the substrate, flattening, 

rapidly solidifying, and depositing by consecutive impingement. The use of thermal 

spraying is most often utilized in the production of protective coatings made of 

metal, ceramic, or polymer; however, this technique may also be utilized to produce 

bulk ceramics [30 – 32]. When constructing FGMs by thermal spraying, their 

comparatively large porosity should be taken into mind. 

 

 

 

 

 

 

 

 

 

Fig. 1.6: Schematic illustration of Thermal Spray Method. 
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Nonetheless, another efficient method for fabricating bespoke material compositions 

using premixed powders is laser metal deposition (LMD). The deposited material 

should have a comparable or identical composition to the powder combination that 

was delivered. To guarantee a correct composition, the regulation of mixing should 

be examined. A single nozzle may provide powders of several materials that have 

been premixed. In the presence of a flow of argon gas, pre-mixed powders, however, 

can induce particle separation and a considerable divergence from the predicted 

composition due to differences in material density, powder size, and powder shape. 

Fig. 1.7 exemplifies this point. The as-deposited part’s true composition may differ 

from the initial particle A/B ratio [33]. Powders manufactured from various materials 

can be given separately by several nozzles in addition to premixed powders [34]. 

Distinct powders in different hoppers allow for greater composition control and 

prevent segregation [35]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7: Schematic diagram of fabricating FGM by LMD [33]. 
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In spite of being one of the oldest approaches to manufacturing components, powder 

metallurgy is being used in the production of FGMs in recent days [10] and is 

currently one of the most often used methods in this sector [36] due to its numerous 

advantages. Additionally, it is one of the most important solid-state procedures for 

the production of bulk FGMs that have continuous gradient features [37,38]. Mixing, 

stacking, pressing, and sintering are the four fundamental processes in this approach 

for producing FGMs, as shown in Fig. 1.8 [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.8: Steps involved in powder metallurgy to produce FGM. 
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1.3 Statement of the Problem 

In the present study, a disk made of functionally graded material (FGM) is analyzed, 

and the problem’s analytical model is presented in Fig. 1.9. The outer radius of the 

disk is b, and there is a concentric hole with a radius of a. Moreover, the disk rotates 

at an angular velocity specified by the equation 𝜔 = 2𝜋𝑁/60, where N is the 

number of revolutions per minute (rpm). The FGM disk is assumed to be made up of 

two materials, A and B, whose volume fractions are represented by 𝑉஺ and 𝑉஻, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.9: Analytical model of the FGM disk. 
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The material distribution of the FGM disk is assumed to change from the inner to the 

outer surface only. For instance, the inner surface of the disk is made up of 100% A, 

while the outer surface is made up of 100% B, thus 𝑉஺ decreasing from 1 to 0, as 

demonstrated in Fig. 1.9. The current work is developed an optimization model to 

compute the optimum material distribution for the FGM disk based on the minimum 

or prescribed stress. Therefore, it is not mandatory that the inner and outer surfaces 

be entirely comprised of A and B, respectively, and the variation in volume fraction 

may also be nonlinear. The mathematical model of the inverse problem determines 

the material distribution profile in the FGM disk corresponding to the 

minimum/prescribed stress. 

Fig. 1.9 depicts a polar coordinate system 𝑟 − 𝜃 with its origin at the center of the 

hole in the disk. Therefore, all of the properties of the FGM disk are functions of r 

only. As a result, along the radial distance r, all properties of the disk vary 

continually from the inner to outer surfaces. Hence the current model is simplified to 

an axisymmetric problem. Nonetheless, the properties of the FGM disk at a point are 

considered to be the same in all directions at that point. Thus, the FGM disk has been 

considered isotropic. In addition, due to the disk’s modest constant thickness, the 

study is performed under plane stress conditions. 
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1.4 Objectives 

The present work focuses on the inverse problem of evaluating optimum material 

distributions in a rotating circular FGM disk subjected to a thermal load and an 

inertia force due to rotation of the disk for the minimization of stresses. The specific 

aims of the present work are, 

i. To develop a mathematical model of inverse problem for evaluating 

optimum material distributions corresponding to minimum/prescribed 

stresses in rotating circular FGM disks under thermal and inertia loads. 

ii. To validate the mathematical model by applying it to simplified problems 

of three references available in the literature. 

iii. To apply the model for evaluating optimum material distributions 

corresponding to minimum stresses. 

iv. To apply the model for evaluating material distributions corresponding to a 

prescribed stress distribution. 

v. To analyze the effects of temperature field, angular speed, and aspect ratio 

of the disk on material distributions and corresponding stress fields.  
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1.5 Motivation of the Present Work 

The excellent benefits of FGMs over traditional monolithic and composite materials 

encouraged researchers to investigate the practical and prospective uses of FGM 

beams, plates, cylinders, disks, shells, and pipes as structural components. 

Chakraborty et al. [40] developed a novel beam element to investigate the 

thermoelastic behavior of functionally graded beam structures, taking into account 

both exponential and power-law variations in material property distribution to 

investigate various stress variations. Likewise, Kiani et al. [41] hypothesized that 

material nonhomogeneous properties vary uniformly over the beam thickness when 

analyzing the buckling analysis of functionally graded material (FGM) beams with 

surface-bonded piezoelectric layers that are exposed to both heat loading and 

constant voltage. For evaluating displacement and stress fields, Ben-Oumrane et al. 

[42] studied an elastic, rectangular, and simply supported sigmoid functionally 

graded material (S-FGM) beam of substantial thickness that was exposed to evenly 

distributed transverse loads. Şimşek [43] evaluated the buckling of beams with 

various boundary conditions using two-dimensional functionally graded materials, 

with the assumption that the material characteristics of the beam fluctuate in both the 

axial and thickness directions according to the power-law form. In addition, under 

various forms of thermal stress, Kiani and Eslami [44] looked into the buckling of 

functionally graded material beams, assuming that the mechanical and thermal 

nonhomogeneous properties of the beam vary gradually by the distribution of power-

law over only the thickness of the beam. Stresses were analyzed by Jabbari et al. [45 

– 47] in a thick hollow cylinder comprised of functionally graded material, in which 

material characteristics change throughout the radius according to a power-law 

distribution. Furthermore, power-law material distribution was also used by Shao 

[48] to investigate the temperature, displacements, and thermal/mechanical stresses 

in a functionally graded circular hollow cylinder. Abbas [49] considered 

temperature-dependent material properties defined by power-law distribution to 

compute the thermal stresses in a thick-walled FGM cylinder, whereas the 

computational method of Awaji and Sivakumar [50] assessed the temperature and 

stress distribution with temperature-independent material properties.  
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FGM beams, plates, and cylinders were used to determine thermoelastic properties 

such stress, strain, and displacement along with buckling of the FGM beam, where 

researchers adopted an assumed or prescribed material distribution according to 

power-law function, as is clear from the preceding literature survey. Nevertheless, 

specific power-law variations, such as exponential and sigmoid functions, were 

sometimes used to vary the material properties throughout the FGM.  

To investigate stresses and displacements, Bayat et al. [51] characterized material 

properties based on the shape of the power-law distribution in axisymmetric spinning 

disks formed of functionally graded material with varying thickness. Durodola and 

Attia [52] likewise utilized numerous variations of prescribed distribution of material 

properties to predict stresses and displacements in functionally graded rotating disks. 

In addition, for investigating the distribution of stresses and displacement, Zenkour 

[53] exploited functionally graded material (FGM) solid disks with properties that 

change exponentially in the radial direction. Nikbakht et al. [54] presented research 

on FG beams, plates, and shells, as well as different structures such as tubes, 

implants, revolving disks, sports instruments, and so on, where the FGM’s prescribed 

thermo-mechanical characteristics were expressed using various functions: power-

law, piece-wise cubic interpolation function, B-Spline Basis Function, exponential 

function, Mori-Tanaka Scheme, etc.  

It is obvious from the aforementioned literature that FGM beams, plates, cylinders, 

disks, shells, and pipes were investigated for thermo-mechanical characteristics 

corresponding to the prescribed exponential or power function or other relevant 

variation of material distributions. Thus, the properties of two distinct materials in 

FGM change progressively from one to the other in accordance with an assumed 

profile in each instance. However, while minimum or prescribed thermo-mechanical 

characteristics are required in an FGM for any specific application, it is nearly 

impossible to predict the desired thermo-mechanical characteristics based on an 

assumed variation of material distribution because no exponential function, power 

function, sigmoid function, or even other relevant function can reveal all types of 

variations of material distribution required to ensure the desired characteristics. In 
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addition, a circular cutter or grinding disk fabricated from FGMs with a minimum 

stress profile can have superior efficacy and endurance, and in some cases, a desired 

stress field may be required in these cutters or grinding disks for a specific purpose. 

Because FGM disks are comparable to cutters and grinding disks, and their stress 

profile substantially influences their durability and efficiency, comprehending the 

minimum/prescribed stress profile in FGM disks may be a very significant concern 

for designers. As a result, the minimum/prescribed stress profile in FGM disks is 

more tangible and essential to estimate than other stress profiles in FGM disks. 

Moreover, in real-world applications, the cutters and grinding disks are always 

subjected to thermal load. Because of the preceding reasons, the author was 

motivated to consider the problem of stress minimization in a rotating circular FGM 

disk subjected to a thermal load and an inertia force due to disk rotation by 

evaluating optimum material distribution. This can be achieved by developing an 

inverse problem that predicts the optimum material distributions corresponding to the 

minimum/prescribed stress. 
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CHAPTER 2 

LITERATURE REVIEW 

In the literature, a number of works to determine the thermo-mechanical and 

thermoelastic properties of functionally graded material (FGM) cylinders, plates, 

shells, pipes, and disks have been presented in which the material characteristics are 

considered to vary according to an exponential function or power functions.  

2.1 Different FGM Bodies 

A power-law distribution was considered by Reddy and Chin [55] to alter the volume 

percentage of a ceramic and metal when studying the dynamic thermoelastic 

response of functionally graded cylinders and plates exposed to thermal stress. Chi 

and Chung [56,57] utilized a rectangular, simply supported, functionally graded 

material (FGM) plate of medium thickness subjected to transverse loading with 

young’s moduli varying continuously throughout the thickness direction according to 

the volume fraction of constituents defined by power-law as well as sigmoid, or 

exponential function, in order to determine developed stress, strain, and 

displacement. Tutuncu [58] obtained the results for stresses and displacements in 

functionally graded cylindrical vessels subjected to internal pressure alone, where the 

material was considered to have an exponentially changing elastic modulus 

throughout the thickness. To carry out the thermo-mechanical study, Shao and Ma 

[59] also used an exponential material distribution of functionally graded hollow 

circular cylinders subjected to mechanical loads and a linearly rising boundary 

temperature. To explore the effect of material characteristics, shell geometry, and 

thermomechanical loading on the stress field, Woo and Meguid [60] used shallow 

shells built of functionally graded materials (FGMs) under transverse mechanical 

loads and a temperature field. Woo and Meguid [60] also adopted a prescribed 

distribution of material properties of the functionally graded shells, which were 

expected to change continuously along the thickness of the shell, according to a 

power-law distribution of the volume fraction of the components, just like the 
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previous investigations. In order to predict the critical mechanical buckling stresses 

of the FGM cylindrical shells encased in elastic media, a similar distribution of 

material properties was considered by Bagherizadeh et al. [61]. Arshad et al. [62] 

calculated natural frequencies for a circular cylindrical shell made of functionally 

graded material (FGM) with simply supported edge conditions, using algebraic 

polynomial, exponential, and trigonometric volume fraction laws to specify the 

material characteristics. Considering temperature variations for different distributions 

of material properties, Dai et al. [63] studied several critical flow velocities of axially 

functionally graded material (FGM) pipe conveying fluid. Variations in properties of 

materials were developed throughout the pipe using a power-law distribution of the 

volume fraction of the components, as well as exponential and sigmoid functions 

[64]. In addition, the effect of the volume fraction exponent, fluid velocity, internal 

pressure, and internal damping on the stability of FGM pipes transporting fluid was 

explored by Deng et al. [64,65].  

2.2 FGM Disks 

Kordkheili and Naghdabadi [66] measured stress, strain, and displacement in a 

rotating Functionally Graded hollow disk subjected to thermal loading, in which the 

thermomechanical characteristics of the FGM disk’s constituent components were 

represented by power-law variation. For the stress analysis, Hosseini et al. [67] 

employed a revolving nano-disk consisting of functionally graded materials with 

nonlinearly variable thickness, assuming the same material variation as Kordkheili 

and Naghdabadi [66]. Tutuncu and Temel [68] also used the same power-law 

variation to compute corresponding stresses and displacements for functionally 

graded hollow cylinders, disks, and spheres under uniform internal pressure. 

Timoshenko and Goodier [69] carried out a thermoelastic analysis of a rotating 

homogeneous disk without any thermal load. A hollow disk subjected to thermal load 

was considered by Sadd [70] to determine developed stresses in the disk. Madan et 

al. [71] assumed linear variation of material distribution profile in the rotating FGM 

disk subjected to inertial force only due to its rotation in order to calculate the 

stresses, strains, and displacement for different radial thicknesses of the FGM disk. 
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Afsar and Go [72] investigated the influence of the temperature distribution profile, 

radial thickness of the disk, angular speed of the disk, and the difference in 

temperature between the inner and outer surfaces on the thermoelastic field in the 

disk using a rotating FGM disk with an exponential variation of material properties. 

A similar analysis was carried out by Go et al. [73]. Comparable findings were 

obtained by Arnab et al. [74]; however, the study used both power functions and 

exponential variation to predict the mechanical and thermal characteristics of the 

FGM disk. On the contrary, Afsar et al. [75] used an FGM disk with a coating on the 

outer surface for a thermoelastic study of the same type by employing exponential 

material variation. Further research on the elastic field of a functionally graded 

rotating disk is found in [76–80], which took into account power-law [76 – 79] and 

exponential [80] change of material properties. In addition, Madan et al. [81,82] 

implemented the power-law variation for the material parameters to compute stress 

variation in order to achieve correct limit angular speeds. Likewise, utilizing power-

law variation, Bakhshi et al. [83] estimated the radial displacement, radial stress, and 

hoop stress of an FGM disk that was supposed to be under axisymmetric thermal 

shock given to its inner surface in order to examine thermoelastic behavior.  

Damircheli and Azadi [84] and Madan and Bhowmick [85, 86] used FGM disks with 

varying thicknesses to conduct thermal and mechanical stress analyses, assuming that 

the material characteristics vary using a power-law variation [84,85], exponential 

function [85], sigmoid function [85], and trigonometric function [86] to establish 

prescribed material distribution. Also, a thermoelastic study of functionally graded 

non-uniform rotating disks exposed to nonuniform temperature change utilizing the 

same power-law variation was carried out by Tutuncu and Temel [87]. Farimani and 

Mohadeszadeh [88] analyzed the thermoelastic bending characteristics of a solid 

rotating plate having roller supports on the external edge. Moleiro et al. [89] 

analyzed FGM plates under thermo-mechanical loadings to minimize stress, 

deformation, and mass. The material properties of both FGM plates were specified 

using a power-law distribution of metal-ceramic volume fractions. To analyze the 

thermo-mechanical features of plastic limit speed in functionally graded material 
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discs, Farimani and Toussi [90] used the same variation for material characteristics 

as well as thickness. 

The above literature reveals that prescribed material distribution was considered for 

determining thermo-mechanical properties and elastic field of all considered rotating 

FGM disks, assuming material properties to vary according to an exponential 

function, power functions, sigmoid function, and so on. Although it is usual in 

applied mechanics research to deal with FGMs by assuming that their material 

characteristics vary according to various functions, several studies focused on 

designing optimization models incorporating inverse problems to optimize various 

FGM parameters. In the following part of the literature survey, some inverse 

problems for optimizing different parameters of FGM will be addressed. 

2.3 Optimization Models for FGM 

The thermomechanical behavior of FGMs in advanced materials is highly impacted 

by the spatial distribution of the volume fraction. Therefore, for a particular 

requirement and loading situation, determining the volume fraction distribution 

becomes an important aspect of the FGM design. Cho and Ha [91] optimized the 

volume fraction of a simply supported FGM beam and an axisymmetric FGM 

cylinder to reduce steady-state thermal stresses. However, instead of computing the 

temperatures based on the determined distribution of material properties, in this 

inverse study, the temperatures within the beam and cylinder were assumed to fall 

uniformly, fulfilling boundary conditions. Despite the fact that Ootao et al. [92] 

devised an optimization problem for reducing thermal stress distribution in an FGM 

hollow circular cylinder, the model was unable to anticipate all types of material 

distribution since it only included the optimization of the power index of the power-

law variation for material distribution. In addition, Khatir et al. [93] proposed an 

optimization model employing an Artificial Neural Network to examine damage 

detection, localization, and quantification in Functionally Graded Material (FGM) 

plate structures using a power-law distribution of the plate constituents’ volume 

fractions. However, Yasinskyy and Tokova [94] analyzed the temperature and 
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thermal stress distribution in the cylinder by solving an inverse thermoelasticity 

problem that involved just five different types of thermophysical and mechanical 

characteristics of the material. Similarly, Cárdenas-García et al. [95] analyzed an 

FGM infinite plate with a hole, assuming that material characteristics change 

according to a gradation function, and evaluated the gradation function coefficients 

for known thermal load and material behavior to predict the properties. Liu et al. [96] 

provided a computational inverse approach for characterization of the material 

properties of functionally graded materials utilizing the plate’s surface displacement 

response. With an initial prediction of up to 40% off from genuine values, this 

method might predict the material characteristics of an FGM. Nonetheless, in 

actuality, this form of prediction is unfeasible. Furthermore, inverse problems were 

also considered in order to determine optimum material distributions for prescribed 

apparent fracture toughness of FGM bodies of different geometries [97 – 99]. 

The preceding literature reveals that rotating FGM disks with or without a concentric 

hole were considered for the analysis of thermo-mechanical characteristics 

corresponding to prescribed exponential or power function or other relevant 

variations of material distributions. The prescribed material distributions may not be 

suitable to realize desired thermo-mechanical characteristics required for a specific 

application. Furthermore, neither of the aforementioned researchers devised an 

optimization model for the inverse problem to anticipate the material distribution of 

the FGM disk corresponding to the minimum/prescribed stresses. Although various 

researchers constructed optimization models for FGM beams, cylinders, and plates, 

these models failed to predict all types of material distribution in such FGMs. Thus, 

only a limited number of material distributions can be predicted using these models. 

In addition, it is impossible to precisely predict material distribution for desired 

thermo-mechanical properties using these models since they can only predict limited 

distributions, and the prediction must contain significant errors. Therefore, the 

present work availed the unique opportunity to develop this optimization model. To 

achieve this goal, the present study focuses on inverse methods to be employed for 

obtaining a desired characteristic in FGM disks by evaluating an optimum material 

distribution. Finally, the thermoelastic properties of FGMs were determined in the 



Chapter 2: Literature Review 
 

21 
 

majority of the research in the above literature review by considering an assumed 

temperature profile; however, these assumed temperature distributions might not be 

realized in practice for the corresponding material distribution. Thus, in this study, 

the temperature profile of the FGM disk is determined. In other words, the 

temperatures between the FGM disk’s inner and outer surfaces are calculated. 
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CHAPTER 3 

THEORY 

3.1 Effective Properties of FGM 

An adequate and efficient mixing rule model is required to compute the effective 

properties of FGM. The microstructure of FGMs changes with the volume fractions 

of the constituents, and a dispersive phase on one side of FGMs transitions to a 

matrix phase on the other side; therefore, the mixture rule formulated for 

conventional composites cannot be used for FGMs. Furthermore, on one side of 

FGMs, a dispersive phase converts into a matrix phase on the other. Thus, when 

formulating a mixing rule for FGMs, additional care must be taken. As a result, the 

models proposed by Wakashima and Tsukamoto [100] and Nan et al. [101] are used 

in this work to compute the effective characteristics of the FGM disk since they 

appear to be more accurate over a wider range of constituent volume fractions. The 

mixture rule can be summarized as follows for an FGM whose constituents are A and 

B, 

𝐾 = 𝑉஺𝐾஺ + 𝑉஻𝐾஻ + 𝑉஺𝑉஻

(𝐾஺ − 𝐾஻) ቀ
1

𝐾஺
−

1
𝐾஻

ቁ

𝑉஺

𝐾஺
+

𝑉஻

𝐾஻
+

4𝐺஺

3𝐾஺𝐾஻

                                 (3.1) 

𝐺 = 𝑉஺𝐺஺ + 𝑉஻𝐺஻ + 𝑉஺𝑉஻

(𝐺஺ − 𝐺஻) ቀ
1

𝐺஺
−

1
𝐺஻

ቁ

𝑉஺

𝐺஺
+

𝑉஻

𝐺஻
+

9𝐾஺ + 8𝐺஺

6𝐺஺(𝐾஺ + 2𝐺஺)

                        (3.2) 

where V is the volume fraction, K is the bulk modulus, and G is the shear modulus. 

The properties of the constituent materials A and B are denoted by the subscripts A 

and B of a variable, whilst the properties of the FGM formed of the materials A and B 

are represented by the non-subscripted variables. 
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Moreover, the shear modulus of elasticity and the bulk modulus of constituents A and 

B may be obtained using the formulae below. 

𝐾௜ =
𝐸௜

3(1 − 2𝜈)
                                                                                                                   (3.3) 

𝐺௜ =
𝐸௜

2(1 + 𝜈)
                                                                                                                      (3.4) 

where 

𝑖 = 𝐴, 𝐵 

Once the bulk modulus and shear modulus of the FGM are known, the following 

relationships may be used to readily calculate other FGM properties. 

𝐸 =
9𝐾𝐺

(3𝐾 + 𝐺)
                                                                                               (3.5) 

𝛼 = 𝑉஺𝛼஺

𝐾஺(3𝐾 + 4𝐺)

𝐾(3𝐾஺ + 4𝐺)
+ 𝑉஻𝛼஻

𝐾஻(3𝐾 + 4𝐺)

𝐾(3𝐾஻ + 4𝐺)
                                    (3.6) 

E is the Young’s Modulus, and 𝛼 is the coefficient of thermal expansion of FGM. 

However, as a material’s density is independent of its shear and bulk modulus, the 

Reuss Model [102] would be used to compute density variation. Likewise, the Reuss 

Model [102] may also be used to calculate the thermal conductivity of the FGM disk. 

Thermal conductivity, k, and density, 𝜌 are given by, 

𝑘 =
𝑘஺𝑘஻

𝑉஺𝑘஻ + 𝑉஻𝑘஺
                                                                                          (3.7) 

𝜌 =
𝜌஺𝜌஻

𝑉஺𝜌஻ + 𝑉஻𝜌஺
                                                                                          (3.8) 
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3.2 Discretization Scheme 

The domain of the FGM disk is divided radially into N number of elements of equal 

size in accordance with a standard finite element discretization scheme. The 

discretized FGM disk is illustrated in Fig. 3.1, where for the ith element 𝑖 =

1,2, … … … , 𝑁. The inner and outer radii of the ith element are 𝑟௜ and 𝑟௜ାଵ, 

respectively, where 𝑖 = 1,2, … … … , 𝑁. Similarly, for the Nth element, the inner and 

outer radii of the FGM disk are 𝑟ே and 𝑟ேାଵ, respectively. Therefore, 𝑟ଵ and 𝑟ேାଵ can 

be defined as the inner and outer radii of the FGM disk, a and b, respectively. 

In Section 4.1.3, an elaborate discussion of the finite element discretization approach 

as well as the finite element formulation of the FGM disk for the current study is 

mentioned. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Discretization of the FGM Disk. 
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3.3 Temperature Distribution of the FGM Disk 

The present work looks at steady-state heat conduction in the absence of an internal 

heat source. As a result, conduction heat transfer is reduced to 

1

𝑟

𝑑

𝑑𝑟
൤𝑟𝑘

𝑑𝑇

𝑑𝑟
൨ = 0                                                                                           (3.9) 

Here, it should be mentioned that the thermal conductivity k is a function of r only. T 

is the temperature distribution which is also function of r only. The heat conduction 

equation mentioned above satisfies the following boundary conditions, 

𝑇(𝑎) = 𝑇ଵ                                                                                                                            (3.10) 

𝑇(𝑏) = 𝑇ଶ                                                                                                                            (3.11) 

The assumption that material of the FGM is isotropic makes it fairly simple to solve 

this equation utilizing the aforementioned boundary conditions. The thermal 

conductivity at the ith point is denoted by the 𝑘௜. Using local radius variables 𝑟௜, we 

can express the temperature distribution as follows [103]:  

𝑇൫𝑟௝൯ = 𝑇ଵ + 𝐶(𝑇ଶ − 𝑇ଵ) ൮෍
ln ቀ

𝑟௜

𝑟௜ିଵ
ቁ

𝑘௜

௦

௜ୀଶ

+
𝑙𝑛 ቀ

𝑟௝

𝑟௦
ቁ

𝑘௦
൲                         (3.12) 

where 

𝑗 = 2, … … … … … … … … , 𝑁 

𝐶 =
1

∑
𝑙𝑛 ቀ

𝑟௜

𝑟௜ିଵ
ቁ

𝑘௜

ேାଵ
௜ୀଶ

                                                                                    (3.13) 
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𝑎 = 𝑟ଵ < 𝑟ଶ < ⋯ < 𝑟ேାଵ = 𝑏                                                                  (3.14) 

𝑟௦ < 𝑟 ≤ 𝑟௦ାଵ ; 𝑠 = 1, … … … … , 𝑁                                                          (3.15) 

𝑇(𝑟௝) denotes the temperature at any point 𝑟௝. In addition, using the formulae for the 

effective characteristics of FGM, the thermal conductivity k at any nodal point may 

be calculated based on the volume fraction at that point. Therefore, the boundary 

conditions decide the temperatures at the inner and outer surfaces of the FGM disk, 

and the temperatures between the inner and outer surfaces are computed utilizing 

Eqs. (3.7) and (3.10) to (3.15). 

It’s worth mentioning that Eqs. (3.10) to (3.15) may be used for both homogeneous 

and FG materials. In the instance of homogeneous material, a constant value of k will 

be used; however, in the case of FGM, a variation of k corresponding to the material 

distribution will be used.  
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3.4 Thermoelastic Formulation 

Eigenstrains are nonelastic or free expansion strains that emerge in a body for a 

variety of reasons, including phase transition, precipitation, thermal expansion owing 

to temperature change, and so on [104]. Thus, in order to acquire the subsequent 

consequences, the incompatibility of these eigenstrains causes stresses that must be 

taken into consideration along with other loadings. In the present work, the 

eigenstrain is correlated to the thermal expansion of the FGM disk as the temperature 

changes. Moreover, because the FGM disk’s material is considered to be isotropic, 

the thermal eigenstrain at a given point is the same in all directions, as given by  

𝜀∗ = 𝛼(𝑟)𝑇(𝑟)                                                                                             (3.16) 

Here, T(r) denotes the temperature change at any point r. The elastic and eigen 

strains are added to get the overall strain. As a result, the total strain components are 

as follows: 

𝜀௥ = 𝑒௥ + 𝜀∗                                                                                                 (3.17) 

𝜀ఏ = 𝑒ఏ + 𝜀∗                                                                                                (3.18) 

where, 𝜀௥ and 𝜀ఏ are the radial and circumferential components of total strain, 

respectively, whereas 𝑒௥ and 𝑒ఏ are the radial and circumferential components of 

elastic strain. Furthermore, due to the symmetric deformation of the disk, the shear 

strain component does not come into consideration. Hooke’s law describes the 

relationship between elastic strains and stresses for plane stress condition [105,106].  

Therefore, 

𝜀௥ =
1

𝐸
(𝜎௥ − 𝜈𝜎ఏ) + 𝜀∗                                                                             (3.19) 

𝜀ఏ =
1

𝐸
(𝜎ఏ − 𝜈𝜎௥) + 𝜀∗                                                                             (3.20) 
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Here, the radial and circumferential stress components are 𝜎௥ and 𝜎ఏ, respectively. 

Now, the two-dimensional equilibrium equations in polar coordinate may be 

expressed by taking the inertia force owing to the rotation of the disk as the only 

body force [107]. 

𝑑𝜎௥

𝑑𝑟
+

1

𝑟

𝑑𝜏௥ఏ

𝑑𝜃
+

𝜎௥ − 𝜎ఏ

𝑟
+ 𝜌𝜔ଶ𝑟 = 0                                                    (3.21) 

𝑑𝜏௥ఏ

𝑑𝑟
+

1

𝑟

𝑑𝜎ఏ

𝑑𝜃
+

2𝜏௥ఏ

𝑟
= 0                                                                         (3.22) 

The FGM disk is an axisymmetric disk, as previously stated. As a result of the 

symmetry, 𝜏௥ఏ disappears and 𝜎௥ , 𝜎ఏ are independent of 𝜃. Thus, Eq. (3.22) is 

automatically satisfied, and Eq. (3.21) is simplified to  

𝑑𝜎௥

𝑑𝑟
+

𝜎௥ − 𝜎ఏ

𝑟
+ 𝜌𝜔ଶ𝑟 = 0 

⇒
𝑑

𝑑𝑟
(𝑟𝜎௥) − 𝜎ఏ + 𝜌𝜔ଶ𝑟ଶ = 0                                                               (3.23) 

Assuming,  

𝑟𝜎௥ = 𝐹                                                                                                         (3.24) 

Thus, Eq. (3.23) becomes, 

𝑑𝐹

𝑑𝑟
− 𝜎ఏ + 𝜌𝜔ଶ𝑟ଶ = 0 

⇒ 𝜎ఏ =
𝑑𝐹

𝑑𝑟
+ 𝜌𝜔ଶ𝑟ଶ                                                                                 (3.25) 
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Substituting Eq. (3.24) and Eq. (3.25) into Eqs. (3.19) and (3.20), 

𝜀௥ =
1

𝐸
൬

𝐹

𝑟
− 𝜈

𝑑𝐹

𝑑𝑟
൰ −

𝜈𝜌

𝐸
𝜔ଶ𝑟ଶ + 𝜀∗                                                       (3.26) 

𝜀ఏ =
1

𝐸
൬

𝑑𝐹

𝑑𝑟
−

𝜈𝐹

𝑟
൰ +

𝜌𝜔ଶ𝑟ଶ

𝐸
+ 𝜀∗                                                          (3.27) 

The strain–displacement relations are studied for the axisymmetric issue to satisfy 

the compatibility criterion between the strain components [106]. 

𝜀௥ =
𝑑𝑢௥

𝑑𝑟
                                                                                                       (3.28) 

𝜀ఏ =
𝑢௥

𝑟
                                                                                                         (3.29) 

From Eqs. (3.28) and (3.29),  

𝜀௥ =
𝑑

𝑑𝑟
(𝜀ఏ𝑟)                                                                                               (3.30) 

Substituting Eqs. (3.26) and (3.27) into Eq. (3.30), 

𝑑ଶ𝐹

𝑑𝑟ଶ
+ ቌ

1

𝑟
−

𝑑𝐸
𝑑𝑟
𝐸

ቍ
𝑑𝐹

𝑑𝑟
+

1

𝑟
ቌ𝜈

𝑑𝐸
𝑑𝑟
𝐸

−
1

𝑟
ቍ 𝐹

= 𝜌𝜔ଶ𝑟 ቌ

𝑑𝐸
𝑑𝑟
𝐸

𝑟 −

𝑑𝜌
𝑑𝑟
𝜌

𝑟 − 𝜈 − 3ቍ − 𝐸𝛼 ቌ

𝑑𝛼
𝑑𝑟
𝛼

𝑇 +
𝑑𝑇

𝑑𝑟
ቍ  

                                                                                                                        (3.31) 

Eq. (3.31) is the governing second-order differential equation. Once Eq. (3.31) is 

solved for F, the components of stress can readily be obtained from Eqs. (3.24) and 

(3.25). In addition, one also can easily obtain the components of strain and 
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displacement from Eqs. (3.26) to (3.29), respectively. The objective of present work 

is to evaluate the minimum/prescribed stress in the FGM disk. Moreover, in this 

study, Eqs. (3.24) and (3.25) may be used to calculate radial and circumferential 

stress, respectively. 

If the minimum radial or circumferential stress is estimated individually, it will be 

intangible and ineffectual since the yielding or failure of the material is reliant on the 

value of the von Mises stress. The following equation [108] may be used to compute 

the von Mises stress. 

𝜎ᇱ = ඨ
1

2
[(𝜎௭ − 𝜎௥)ଶ + (𝜎௭ − 𝜎ఏ)ଶ + (𝜎ఏ − 𝜎௥)ଶ]                             (3.32) 

Here, 𝜎ᇱ, 𝜎௥, 𝜎ఏ, and 𝜎௭ are von Mises stress, radial stress, circumferential or hoop 

stress, and axial stress, respectively. For plane stress problem, 𝜎௭ = 0. Therefore, Eq. 

(3.32) becomes, 

𝜎ᇱ = ඥ𝜎௥
ଶ − 𝜎௥𝜎ఏ + 𝜎ఏ

ଶ                                                                          (3.33) 

The equivalent von Mises stress may be easily calculated using Eq. (3.33) once the 

radial and circumferential stresses have been determined. 
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CHAPTER 4 

NUMERICAL FORMULATION 

The numerical formulation of the present study consists of two parts: the first is finite 

element formulation, and the second is the development of an optimization model. In 

order to predict the material distribution in the FGM disk for which the 

minimum/prescribed stress is produced, the finite element model is integrated into 

the optimization model to solve the inverse problem. 

4.1 Finite Element Formulation 

4.1.1 Variational Methods 

The Ritz and weighted-residual methods are variational methods that seek an 

approximate solution to a differential equation in the form of a linear combination of 

acceptable approximation functions 𝜑௝ and parameters need to be discretized  

𝑐௝: ෍ 𝑐௝𝜑௝ 

If the parameters 𝑐௝ are unknown, the Ritz approach employs the weak form, whereas 

the weighted-residual technique employs the weighted-integral form. The Ritz 

approach, which is used in order to find a solution to the governing differential Eq. 

(3.31) of the current study, is the major emphasis of the finite element formulation. 

Assuming the differential equation,  

𝐴(𝑢) = 𝑓                                                                                                                               (4.1) 

 

 

 

 Fig. 4.1: Boundary values for an area where a differential equation is valid. 
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In the domain 𝛺 with a boundary 𝜕𝛺, as illustrated in Fig. 4.2, the boundary is 

considered to be divided into two parts, 𝜕𝛺ଵ and 𝜕𝛺ଶ. The boundary conditions on 

these two segments of boundary 𝜕𝛺ଵ and 𝜕𝛺ଶ are thought of as, 

1. 𝐵ଵ(𝑢) = 𝑔; on 𝜕𝛺ଵ and  

2. 𝐵ଶ(𝑢) = ℎ; on 𝜕𝛺ଶ. 

 

 

 

 

 

The dependent variable is u, the linear or nonlinear differential operator is A, the 

provided function in the domain is f, the boundary operators associated with the 

operator A are 𝐵ଵ and 𝐵ଶ, and the given functions on parts 𝜕𝛺ଵ and 𝜕𝛺ଶ of the 

boundary, 𝛺 are g and h. Homogeneous differential equations are those in which f = 

0. A homogeneous boundary condition, on the other hand, is one in which the right-

hand side (for example, g or h) is zero.  

Three main phases are involved in converting a differential equation with boundary 

conditions, such as Eq. (4.1), into variational (weak) form. These are: 

1. Integrate across the provided domain of the problem by multiplying the given 

differential equation by an appropriate test function, w. 

න 𝑤[𝐴(𝑢) − 𝑓]𝑑𝑥 = 0

ఆ

                                                                                        (4.2) 

The function w must be sufficiently differentiable and fulfill the essential boundary 

conditions in their homogeneous form. Natural boundary terms are expressed clearly 

in terms of u, whereas essential boundary terms have the same form as conditions 

Fig. 4.2: Representation of a domain. 
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expressed in terms of the “arbitrary” function w. For instance, essential boundary 

conditions include 𝑢(0) = 𝑑 and natural boundary conditions include 𝐴(𝑢)(𝑙) = 𝑚. 

2. Apply partial integration to Eq. (4.2) to transfer differentiation of u to w, with the 

partial integration’s goal being to weaken the constraints on u. In addition, the 

essential and natural boundary conditions can be recognized in this step. 

3. Boundary terms will appear in the expressions created in the previous step, which 

may now be reduced using the provided boundary conditions. The desired 

variational form will then be the final expression. 

𝐵(𝑤, 𝑢) = 𝑙(𝑤)                                                                                                             (4.3) 

4.1.2 Ritz Method 

The approximation functions, 𝑤 = 𝜑௜, are the weight functions available in the Ritz 

method. The approximate solution is subjected to lower continuity restrictions than 

the original differential equation or its weighted-integral version since it comprises 

both the governing differential equation and the problem’s natural boundary 

conditions. For a linear variational problem, the approach is detailed here (same as 

weak form). 

Discretization in the form of a finite series is attempted by considering the variational 

form deriving from the weak formulation in Eq. (4.3). 

𝑢ே(𝑥) = 𝜑௢(𝑥) + ෍ 𝑐௝𝜑௝(𝑥)

ே

௝ୀଵ

                                                                   (4.4) 

The constants 𝑐௝ are referred to as the “Ritz coefficients.” If 𝑐௝ is unknown after 

discretizing a parameter, it can be determined in such a way that Eq. (4.3) applies for 

each 𝑤 = 𝜑௜ (𝑖 = 1,2, … … … … , 𝑁), i.e., Eq. (4.3) holds for N alternative choices of 

w, resulting in N distinct algebraic relations among 𝑐௝. The “approximate functions” 

𝜑௝ and 𝜑௢ are selected so that 𝑢ே meets the stated necessary boundary conditions. 
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Now, by substituting 𝑤 = 𝜑௜ (𝑖 = 1,2, … … , 𝑁) into Eq. (4.4), for 𝑐௝  (𝑗 =

1,2, … … , 𝑁), a system of N equations may be formed from Eq. (4.3). 

𝐵 ቌ𝜑௜ , 𝜑௢ + ෍ 𝑐௝𝜑௝

ே

௝ୀଵ

ቍ = 𝑙(𝜑௜)                                                                  (4.5) 

Eq. (4.5) yields as B is linear in u, 

෍ 𝐵(

ே

௝ୀଵ

𝜑௜ , 𝜑௝)𝑐௝ = 𝑙(𝜑௜) − 𝐵(𝜑௜ , 𝜑௢)                                                       (4.6) 

⇒ ෍ 𝐾௜௝𝑐௝ = 𝑙௜

ே

௝ୀଵ

                     ; 𝑖 = 1,2, … … , 𝑁                                        (4.7)  

where 

𝐾௜௝ = 𝐵൫𝜑௜ , 𝜑௝൯                                                                                             (4.8) 

𝑙௜ = 𝑙(𝜑௜) − 𝐵(𝜑௜ , 𝜑௢)                                                                                 (4.9) 

In matrix form, the algebraic equations in Eq. (4.7) may be written as, 

[𝐾]{𝑐} = {𝑙}                                                                                                 (4.10) 

4.1.3 Finite Element Formulation of the Present Work 

The finite element approach is used to solve the differential equation (3.31) since a 

close form solution is not attainable. At first, Eq. (3.31) is multiplied by a trial 

function w and integrated across the domain of the problem according to the 

variational approach, yielding: 
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න 𝑤
𝑑ଶ𝐹

𝑑𝑟ଶ
𝑑𝑟 + න 𝑤 ቌ

1

𝑟
−

𝑑𝐸
𝑑𝑟
𝐸

ቍ
𝑑𝐹

𝑑𝑟
𝑑𝑟

௕

௔

௕

௔

+ න 𝑤
1

𝑟
ቌ𝜈

𝑑𝐸
𝑑𝑟
𝐸

−
1

𝑟
ቍ 𝐹𝑑𝑟

௕

௔

= න 𝑤 ቐ𝜌𝜔ଶ𝑟 ቌ

𝑑𝐸
𝑑𝑟
𝐸

𝑟 −

𝑑𝜌
𝑑𝑟
𝜌

𝑟 − 𝜈 − 3ቍ − 𝐸𝛼 ቌ

𝑑𝛼
𝑑𝑟
𝛼

𝑇 +
𝑑𝑇

𝑑𝑟
ቍቑ 𝑑𝑟  

௕

௔

 

(4.11) 

Assuming that, 

𝑓(𝑟) = 𝜌𝜔ଶ𝑟 ቌ

𝑑𝐸
𝑑𝑟
𝐸

𝑟 −

𝑑𝜌
𝑑𝑟
𝜌

𝑟 − 𝜈 − 3ቍ − 𝐸𝛼 ቌ

𝑑𝛼
𝑑𝑟
𝛼

𝑇 +
𝑑𝑇

𝑑𝑟
ቍ                               (4.12) 

Thus, Eq. (4.11) becomes, 

න 𝑤
𝑑ଶ𝐹

𝑑𝑟ଶ
𝑑𝑟 + න 𝑤 ቌ

1

𝑟
−

𝑑𝐸
𝑑𝑟
𝐸

ቍ
𝑑𝐹

𝑑𝑟
𝑑𝑟 + න 𝑤

1

𝑟
ቌ𝜈

𝑑𝐸
𝑑𝑟
𝐸

−
1

𝑟
ቍ 𝐹𝑑𝑟 = න 𝑤𝑓(𝑟)𝑑𝑟  

௕

௔

௕

௔

௕

௔

௕

௔

 

(4.13) 

Integration by parts yields, 

− න
𝑑𝑤

𝑑𝑟

𝑑𝐹

𝑑𝑟
𝑑𝑟 + ൤𝑤

𝑑𝐹

𝑑𝑟
൨

௔

௕௕

௔

+ න 𝑤 ቌ
1

𝑟
−

𝑑𝐸
𝑑𝑟
𝐸

ቍ
𝑑𝐹

𝑑𝑟
𝑑𝑟 + න 𝑤

1

𝑟
ቌ𝜈

𝑑𝐸
𝑑𝑟
𝐸

−
1

𝑟
ቍ 𝐹𝑑𝑟 = න 𝑤𝑓(𝑟)𝑑𝑟

௕

௔

௕

௔

௕

௔

 

(4.14) 
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⇒ න
𝑑𝑤

𝑑𝑟

𝑑𝐹

𝑑𝑟
𝑑𝑟 − න 𝑤 ቌ

1

𝑟
−

𝑑𝐸
𝑑𝑟
𝐸

ቍ
𝑑𝐹

𝑑𝑟
𝑑𝑟 − න 𝑤

1

𝑟
ቌ𝜈

𝑑𝐸
𝑑𝑟
𝐸

−
1

𝑟
ቍ 𝐹𝑑𝑟 = − න 𝑤𝑓(𝑟)𝑑𝑟

௕

௔

௕

௔

௕

௔

௕

௔

+ 𝑤(𝑏)
𝑑𝐹

𝑑𝑟
(𝑏) − 𝑤(𝑎)

𝑑𝐹

𝑑𝑟
(𝑎) 

(4.15) 

The following boundary condition instances are investigated for the current FGM 

rotating disk problem. 

Case I:  

i. 𝐴𝑡 𝑟 = 𝑎, 𝜎௥ = 0, 𝑇 = 𝑇ଵ   

ii. 𝐴𝑡 𝑟 = 𝑏, 𝜎௥ = 0, 𝑇 = 𝑇ଶ  

Both the inner and outer surfaces of the FGM disk are free from any type of load. 

Case II:  

i. 𝐴𝑡 𝑟 = 𝑎, 𝑢௥ = 0, 𝑇 = 𝑇ଵ   

ii. 𝐴𝑡 𝑟 = 𝑏, 𝜎௥ = 0, 𝑇 = 𝑇ଶ 

The inner surface has no radial displacement since it is attached to a shaft. In 

addition, the outer surface of the FGM disk is free from any type of load.  

Therefore, both types of boundary conditions are essential and homogenous. These 

boundary conditions must be satisfied by the function w. 

Now, the disk’s radial domain 𝛺 = (𝑎, 𝑏) is partitioned into N subdomains 𝛺௡ =

(𝑟௡, 𝑟௡ାଵ), where n = 1, 2,...,N. Eq. (4.15) is valid in all subdomains 𝛺௡ since it is 

valid throughout the domain 𝛺. As a result, Eq. (4.15) has the following variational 

form: 

𝐵(𝑤, 𝐹) = 𝑙(𝑤)                                                                                                                 (4.16) 
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where 

𝐵(𝑤, 𝐹) = න
𝑑𝑤

𝑑𝑟

𝑑𝐹

𝑑𝑟
𝑑𝑟 − න 𝑤 ቌ

1

𝑟
−

𝑑𝐸
𝑑𝑟
𝐸

ቍ
𝑑𝐹

𝑑𝑟
𝑑𝑟 − න 𝑤

1

𝑟
ቌ𝜈

𝑑𝐸
𝑑𝑟
𝐸

−
1

𝑟
ቍ 𝐹𝑑𝑟

௥೙శభ

௥೙

௥೙శభ

௥೙

௥೙శభ

௥೙

 

(4.17) 

𝑙(𝑤) = − න 𝑤𝑓(𝑟)𝑑𝑟
௥೙శభ

௥೙

+ 𝑤(𝑟௡ାଵ)
𝑑𝐹

𝑑𝑟
(𝑟௡ାଵ) − 𝑤(𝑟௡)

𝑑𝐹

𝑑𝑟
(𝑟௡) 

(4.18) 

Here, the solution is assumed in the form of, 

𝐹 = ෍ 𝐹௝
௡𝜑௝

௡

ଶ

௝ୀଵ

                                                                                                                    (4.19) 

Furthermore, 𝐸, 𝛼, 𝜌, and 𝑇 must likewise be discretized since their equations are 

dependent of r, where r is the integration’s independent variable. 

𝐸 = ෍ 𝐸௝
௡𝜑௝

௡                                                                                                                    (4.20)

ଶ

௝ୀଵ

 

𝛼 = ෍ 𝛼௝
௡𝜑௝

௡

ଶ

௝ୀଵ

                                                                                                                    (4.21) 

𝜌 = ෍ 𝜌௝
௡𝜑௝

௡

ଶ

௝ୀଵ

                                                                                                                    (4.22) 

𝑇 = ෍ 𝑇௝
௡𝜑௝

௡

ଶ

௝ୀଵ

                                                                                                                    (4.23) 
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where 

𝜑ଵ
௡ =

𝑟௡ାଵ − 𝑟

𝑟௡ାଵ − 𝑟௡
                                                                                                                 (4.24) 

𝜑ଶ
௡ =

𝑟 − 𝑟௡

𝑟௡ାଵ − 𝑟௡
                                                                                                                 (4.25) 

According to the Ritz Method, 𝑤 = 𝜑௜ 

Now, Eq. (4.16) yields when the Ritz Method is used with Eqs. (4.19) to (4.23), 

෍ 𝐾௜௝
௡𝐹௝

௡

ଶ

௝ୀଵ

=  ෍ 𝐿௜௝
௡

ଶ

௝ୀଵ

                                                                                                         (4.26) 

where  

𝑖 = 1,2 

𝐾௜௝
௡ = න

𝑑𝜑௜
௡

𝑑𝑟

𝑑𝜑௝
௡

𝑑𝑟
𝑑𝑟

௥೙శభ

௥೙

− න 𝜑௜
௡ ൮

1

𝑟
−

𝐸௝
௡

𝑑𝜑௝
௡

𝑑𝑟
𝐸௝

௡𝜑௝
௡ ൲

𝑑𝜑௝
௡

𝑑𝑟
𝑑𝑟 − න 𝜑௜

௡ 1

𝑟
൮𝜈

𝐸௝
௡

𝑑𝜑௝
௡

𝑑𝑟
𝐸௝

௡𝜑௝
௡ −

1

𝑟
൲ 𝜑௝

௡𝑑𝑟
௥೙శభ

௥೙

௥೙శభ

௥೙

 

(4.27) 

𝐿௜௝
௡ = න 𝜑௜

௡ ൞ቆ𝐸௝
௡𝜑௝

௡ × 𝛼௝
௡

𝑑𝜑௝
௡

𝑑𝑟
× 𝑇௝

௡𝜑௝
௡ቇ + ቆ𝐸௝

௡𝜑௝
௡ × 𝛼௝

௡𝜑௝
௡ × 𝑇௝

௡
𝑑𝜑௝

௡

𝑑𝑟
ቇ

௥೙శభ

௥೙

− 𝜌௝
௡𝜑௝

௡𝜔ଶ𝑟 ൮
𝐸௝

௡
𝑑𝜑௝

௡

𝑑𝑟
𝐸௝

௡𝜑௝
௡ 𝑟 −

𝜌௝
௡

𝑑𝜑௝
௡

𝑑𝑟
𝜌௝

௡𝜑௝
௡ 𝑟 − 𝜈 − 3൲ൢ 𝑑𝑟 + 𝜑௜

௡(𝑟௡ାଵ)
𝑑𝜑௝

௡

𝑑𝑟
(𝑟௡ାଵ)

− 𝜑௜
௡(𝑟௡)

𝑑𝜑௝
௡

𝑑𝑟
(𝑟௡) 

(4.28) 
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In the RHS of Eq. (4.26), all values of 𝐸௝
௡, 𝛼௝

௡, 𝜌௝
௡, 𝑎𝑛𝑑 𝑇௝

௡ are known. As a result, if 

all values of the RHS of Eq. (4.26) are determined, the RHS is reduced to a vector 𝑳𝒊
𝒏. 

Therefore, Eq. (4.26) may be simplified to,  

෍ 𝐾௜௝
௡𝐹௝

௡

ଶ

௝ୀଵ

= 𝐿௜
௡ ;                                 𝑖 = 1,2                                                                  (4.29) 

Eq. (4.29) is a set of algebraic equations that, by meeting the continuity requirement 

𝐹ଶ
௡ = 𝐹ଵ

௡ାଵ, may be combined to generate a global set of algebraic equations. The 

Gauss elimination method is then utilized for solving the global system of algebraic 

equations. The discrete values of F at the global node points are obtained by solving 

Eq. (4.29). The radial, circumferential, and von Mises stresses can then be calculated 

using Eqs. (3.24), (3.25), (3.29) and (3.33), respectively. 

𝜎௥ =
1

𝑟
෍ 𝐹௝

௡𝜑௝
௡                                                                                                                (4.30)

ଶ

௝ୀଵ

 

𝜎ఏ = ෍ 𝐹௝
௡

𝑑𝜑௝
௡

𝑑𝑟

ଶ

௝ୀଵ

+ ෍ 𝜌௝
௡𝜑௝

௡

ଶ

௝ୀଵ

𝜔ଶ𝑟ଶ                                                                              (4.31) 

𝑢௥ =
𝑟

𝐸௝
௡𝜑௝

௡ ෍ ቈ𝐹௝
௡

𝑑𝜑௝
௡

𝑑𝑟
−

𝜈

𝑟
𝐹௝

௡𝜑௝
௡቉ + ෍

𝜌௝
௡𝜑௝

௡𝜔ଶ𝑟ଷ

𝐸௝
௡𝜑௝

௡

ଶ

௝ୀଵ

ଶ

௝ୀଵ

+ 𝛼௝
௡𝜑௝

௡𝑇௝
௡𝜑௝

௡𝑟               (4.32) 

𝜎ᇱ = ඥ𝜎௥
ଶ − 𝜎௥𝜎ఏ + 𝜎ఏ

ଶ                                                                                                (4.33) 

It is worth noting that, depending on the values of volume fraction of the materials A 

and B throughout the disk, the current finite element model may be used for a 

Functionally Graded Material (FGM) as well as a homogeneous circular rotating 

disk. 
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4.2 Optimization Model 

4.2.1 Inverse Method 

An inverse problem is a special kind of problem in which, instead of having a 

prescribed material distribution, the material distribution is instead calculated 

according to the objective function. The output of the problem is controlled by the 

objective function. In addition, the optimization model for inverse problem allows 

for both the minimization and maximizing of the objective function. If the minimum 

stress profile throughout an object is intended, then the objective function must be set 

accordingly. Next, the optimization model will minimize the objective function and 

deliver the material distribution that corresponds to the objective function's global 

minimum value. Likewise, if the material distribution corresponding to the 

prescribed stress field is required, optimization can also provide the material 

distribution as output if the objective function is properly set.  

Once the values of volume fractions at each node 𝑉஺
௜  (𝑖 = 1, 𝑛) are specified, the 

corresponding values of bulk modulus K and shear modulus G are derived from Eqs. 

(3.1) to (3.4) and used in Eqs. (3.5) and (3.6) to calculate the values of Young’s 

Modulus E and Coefficient of Thermal Expansion 𝛼, respectively, at each nodal 

point. Here n is the number of nodal points and 𝑉஺ is volume fraction of constituent 

“A”. Moreover, utilizing Eq. (3.8) allows for the calculation of the density 𝜌 as well 

as the thermal conductivity k of the FGM disk according to the designated volume 

fraction at each nodal point. For the temperature profile of the FGM disk, the 

temperatures at the inner and outer surfaces of the FGM disk are determined by the 

boundary conditions, and the temperatures that lie in between the inner and outer 

surfaces are estimated with the help of Eqs. (3.7) and (3.10) to (3.15). The details of 

the optimization model’s solution procedure are now provided below. 
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4.2.1.1 Differential Evolution 

The objective function is minimized using a method called differential evolution 

[109,110], which is employed in the optimization model of the present work. 

Differential evolution is an efficient approach to minimizing the value of a function 

[111]. In this method, the algorithm keeps track of a population of m vectors, 

{𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … … … … , 𝑥௝ , … … … . , 𝑥௠} where m>>n, while n is the total number of 

nodal points or variables. Each vector contains the values of n number of variables, 

where all the values are assigned randomly. A new population having m vectors is 

produced at the beginning of the algorithm, which is called initialization. The next 

step is mutation. In mutation, jth new point is formed by selecting three random 

vectors, 𝑥ଵ, 𝑥ଶ, and 𝑥ଷ from the population and generating the equation 𝑥௝
ெ = 𝑥ଵ +

𝑆(𝑥ଶ − 𝑥ଷ), where 𝑆 is a real scaling factor. Here, 𝑥௝
ெ is the mutant vector, and the 

values of j vary from 1 to m. Then, a new vector 𝑥௡௘௪ is generated from 𝑥௝
௉ and 𝑥௝

ெ 

by selecting the ith coordinate from 𝑥௝
ெ with a probability of 50% and otherwise 

selecting the coordinate from 𝑥௝
௉, where 𝑥௝

௉ is the parent vector which is chosen 

randomly from the population, and the values of i vary from 1 to n. This step is 

called recombination and 𝑥௡௘௪ is the offspring vector. In the selection step, when 

𝑓(𝑥௡௘௪) < 𝑓൫𝑥௝
௉൯, then 𝑥௡௘௪ will take the place of 𝑥௝

௉ in the next generation 

population, otherwise 𝑥௝
௉ will remain unchanged in the next generation population. 

Here, f is the objective function. 

The differential evolution method is difficult to implement computationally, but it is 

generally durable and has a tendency to perform well for situations that contain a 

number of local minima and the differential evolution approach guarantees a global 

minimum.  

The flow diagram of initialization, mutation, recombination and selection steps of the 

differential evolution method is mentioned in Fig. 4.3. The steps involved in the 

differential evolution algorithm continue to run until the global minimum value of 

the objective function is obtained. The elaborate flow diagram of the differential 

evolution method is demonstrated in Fig. 4.4. 
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The entire process of the differential evolution method for the present study is 

described in detail in Figs. 4.5 and 4.6 for different objective functions. 

 

Fig. 4.3: Flow diagram of initialization, mutation, recombination and selection steps 

of the differential evolution algorithm. 

Fig. 4.4: Flow diagram of the Differential Evolution algorithm. 
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4.2.1.2 Optimization Model for Minimum Stress 

The objective function is defined by,  

𝑓௢௕௝൫𝑉஺
௜ , 𝑖 = 1,2, … … , 𝑛൯ = ෍ 𝜎௜

ଶ

௡

௜ୀଵ

 

Here 𝜎௜(𝑖 = 1, 𝑛) is any kind of stress at each nodal point of the FGM disk and n is 

the number of nodes. The von Mises stress is the basis for the minimum stress profile 

across the FGM disk since the value of the von Mises stress determines whether or 

not the disk will yield or fail. The Differential Evolution Method is used to minimize 

the objective function, and the corresponding material distribution is achieved for the 

global minimum value of the objective function. The entire procedure is 

demonstrated in Fig. 4.5. 

4.2.1.3 Optimization Model for Prescribed Stress 

This section makes use of the same mathematical model as the previous one; the only 

difference is that the objective function has been modified in order to obtain a new 

output that is matched to the objective of this study. 

The objective function is defined by,  

𝑓௢௕௝൫𝑉஺
௜ , 𝑖 = 1,2, … … , 𝑛൯ = ඩ෍

൫𝜎௜ − 𝜎௜
௣

൯
ଶ

𝜎௜
ଶ

௡

௜ୀଵ

 

Here 𝜎௜(𝑖 = 1, 𝑛) and 𝜎௜
௣

(𝑖 = 1, 𝑛) are calculated and prescribed stresses, 

respectively and the stress may be radial, circumferential, von Mises, or any other 

kind of stress. In addition, n is the number of nodes in the FGM disk. The objective 

function is minimized by utilizing the Differential Evolution Method, and the 

corresponding material distribution is attained for the objective function’s global 

minimum value. A tolerance 𝜖 needs to be chosen for this model in order to achieve 

the purpose of predicting the prescribed stress. The value of 𝜖 is assumed as 0.1 for 

the present study. If the value of the objective function is less than or equal to 𝜖, the 

model will output the optimum material distribution; otherwise, the model will 
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specify that the prescribed stress profile cannot be predicted. Fig. 4.6 illustrates an 

elaborate representation of the complete process. 
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Fig. 4.5: Flowchart for optimization model to realize the minimum stress throughout 

the FGM disk. 
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4.2.2 Direct Method 

The direct method is the most well-known approach for calculating the required 

results for a specified material distribution. Any material distribution can be 

employed in the direct model of present work to evaluate the corresponding stresses, 

strains, and displacements. However, the material distribution obtained from the 

optimization model is considered as prescribed material distribution in the current 

study to compute corresponding stresses and also the radial displacement when 

needed. The entire procedure is demonstrated in Fig. 4.7. 

 

 

Fig. 4.6: Flowchart for optimization model to realize the prescribed stress 

profile across the FGM disk. 
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Fig. 4.7: Flowchart for direct problem to determine von Mises, radial and 

circumferential stresses, and radial displacement throughout the FGM disk. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

The numerical model of inverse and direct problems developed in the present study 

can be used for any materials A and B. However, Al and AlଶOଷ are used in the present 

work for materials A and B, respectively, to demonstrate the models since AlଶOଷ has 

excellent cutting and grinding characteristics. In fact, depending on the design 

requirements, the symbols A and B employed in the theoretical models might be any 

materials. Table 5.1 summarizes the mechanical and thermal characteristics of these 

constituent materials. Poisson’s ratio of AlଶOଷ is approximately 0.26, and for Al, it 

varies from 0.31 to 0.34. Therefore, Poisson’s ratio of the Al/AlଶOଷ FGM disk must 

be between 0.26 and 0.34. Within this range, the Poisson’s ratio is taken as 0.3, and it 

is kept constant throughout the disk. 

 

 

 

 

Table 5.1: Mechanical and thermal properties of Al and AlଶOଷ 

Type Materials 

Properties 

Young’s 

Modulus 

(GPa) 

Coefficient of thermal 

expansion 

(/℃) 

Density 

(g/cmଷ) 

A Al 71 23.1 × 10ି଺ 2.70 

B AlଶOଷ 380 8.0 × 10ି଺ 0.96 
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Mathematica software running on a computer with 16 Gigabytes (GB) of Random 

Access Memory (RAM) is used to solve both the inverse problem and the direct 

problem that is involved with this study. Mathematica is the software that needs 

precise codes to be written in Wolfram Language in order to solve the respective 

problems. For the current study, two Wolfram Language codes are constructed to 

solve the inverse problem and the direct problem, respectively, for which flow charts 

are demonstrated in Figs. 4.5 to 4.7. In this chapter, all results derived from Wolfram 

Language code using Mathematica software are presented graphically and discussed 

elaborately. 
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5.1 Validation of the Finite Element Model 

The present work is validated by applying the finite element model to three distinct 

instances and comparing the determined results to the solutions found by 

Timoshenko and Goodier [69], Sadd [70], and Madan et al. [71], respectively. The 

validated finite element model is subsequently employed in the mathematical model 

of inverse problem.  

5.1.1 Comparison with Timoshenko and Goodier 

The current finite element model is applied to the situation of a simple homogeneous 

isotropic disk of Al to determine the components of stress due to rotation only, 

without considering any thermal load, and the results are compared with the 

analytical solution given by Timoshenko and Goodier [69]. It should be noted that 

the current finite element model can be applied to a homogeneous disk under rotation 

if the volume fraction of any constituent is set to one, and Al is such constituent in 

this case. In addition, 𝜀∗ is set to zero to ignore the thermal load. Fig. 5.1 shows a 

comparison of the stress components for b/a = 10 and angular speed N = 150 rpm, 

where perfect agreement between the current work and Timoshenko and Goodier 

[69] has been found. 

 

 

 

 

 

 

 

 

(a) 
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(b) 

 

 

5.1.2 Comparison with Sadd 

The current finite element model is applied to a homogeneous steel plate that is 

subjected to thermal load only when the temperatures at the plate’s inner and outer 

surfaces are 100℃ and 0℃, respectively. The modulus of elasticity of steel is taken 

as 200 GPa and the coefficient of thermal expansion as 8.0 × 10ି଺ /℃. The 

comparison of the stress components corresponding to b/a = 3 and the angular speed 

N = 0 rpm are presented in Fig. 5.2. It is observed that the results accord well within 

the acceptable range. 

 

 

 

Fig. 5.1: Comparison of (a) radial stress and (b) circumferential stress with 

Timoshenko and Goodier [69] in a homogeneous circular disk under rotation only. 
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5.1.3 Comparison with Madan et al. 

In order to assess the model’s feasibility for dealing with functionally graded 

material (FGM) disks, it is applied in the context of an FGM disk of aluminum and 

silicon carbide to determine the radial, circumferential, and von Mises stresses owing 

to rotation alone, without taking into consideration any thermal load. In this case, 

aluminum and silicon carbide are used as metal and ceramic, respectively, and the 

material distribution across the FGM disk is assumed to be linear. Furthermore, the 

mass density of pure metal and pure ceramic is 2643 and 2130 kg/m3, respectively, 

while the modulus of elasticity is 67 and 302 GPa, respectively. The computed 

radial, circumferential, and von Mises stresses are compared to those found by 

Madan et al. [71]. Fig. 5.3(a) and 5.3(b) illustrate the comparison of the radial, 

circumferential, and von Mises stresses for b/a = 10 and b/a = 20, respectively. The 

results obtained from the present work agree well within the permissible limit with 

Madan et al. [71], as shown in Fig. 5.3(a) and 5.3(b), with the largest difference 

being just 0.53%. 

Fig. 5.2: Comparison of radial and circumferential stress with Sadd [70] in a 

homogeneous circular plate under thermal load only. 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 Fig. 5.3: Comparison of radial, circumferential, and von Mises stresses in a rotating 

FGM circular disk corresponding to (a) b/a = 10 and (b) b/a = 5 with Madan et al.

[71]. 
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5.2 Validation of the Optimization Model 

The FEM model was used to develop an optimization model in which the objective 

function is responsible for the output. The objective function 𝑓௢௕௝൫𝑉஺
௜൯ is simply 

selected as ∑ 𝜎௜
ଶ௡

௜ୀଵ  for obtaining the minimum stress throughout the FGM disk, and 

the model is presented in Fig. 4.5. Likewise, for estimating required or prescribed 

stress across the FGM disk, objective function 𝑓௢௕௝൫𝑉஺
௜൯ is defined as, 

ඨ∑
൫ఙ೔ିఙ

೔
೛

൯
మ

ఙ೔
మ

௡
௜ୀଵ , and the model is illustrated in Fig. 4.6. Here 𝜎 and 𝜎௣ are calculated 

and prescribed von Mises stress, respectively. Both optimization models are identical 

in the sense that the objective function may be modified to produce the intended 

outcome. To verify this optimization model, the von Mises stresses in a rotating 

FGM disk determined by Madan et al. [71] were adopted and assumed as the 

prescribed stress profile across the FGM disk. The FGM disk corresponds to b/a = 5, 

and additional discussions for the disk are stated in the preceding section. The 

optimization model is then used to realize the material distribution over the FGM 

disk corresponding to the prescribed stress profile utilizing ඨ∑
൫ఙ೔ିఙ

೔
೛

൯
మ

ఙ೔
మ

௡
௜ୀଵ  as the 

objective function, and the value of the objective function is obtained as 0.001. In 

Fig. 5.4, the calculated material distribution across the FGM disk using the present 

work’s optimization model is compared to the assumed material distribution of 

Madan et al. [71]. Fig. 5.4 demonstrates excellent agreement within the acceptable 

limit. Therefore, the computed material distribution derived by the optimization 

model of the present work is almost the same as the assumed material distribution of 

Madan et al. [71]. Finally, by using a direct problem, the calculated material 

distribution was utilized to compute the von Mises stress across the FGM disk. Fig. 

4.7 depicts a direct problem. The obtained results agree well within the allowable 

range with Madan et al. [71], as illustrated in Fig. 5.5. 
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Fig. 5.4: Comparison of material distribution in a rotating FGM circular disk 

corresponding to b/a = 5 with Madan et al. [71]. 

Fig. 5.5: Comparison of von Mises stress in a rotating FGM circular disk 

corresponding to b/a = 5 with Madan et al. [71]. 
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The disks have only meshed in the radial direction with uniform distribution and 

equal size of the elements since all of the characteristics of interest are only functions 

of the radial distance of the disk. The length of each element must be specified for 

both finite element models, one of which will be used in the Inverse Problem 

Optimization Problem and another in the Direct Problem. In this situation, the 

optimization model uses the Differential Evolution Method to run a large number of 

iterations in order to find the global minimum value of the specified objective 

function. Until the global minimum is established, all data pertaining to iterations is 

stored in RAM. Therefore, the calculation is computationally extremely expensive 

and requires a large amount of RAM on a computer. As a result, the smallest 

allowable element size for a finite element model used in the optimization model on 

a machine with 16 GB of RAM becomes 5 mm for an FGM disk with b/a = 5. 

Nevertheless, if the optimization model has to go through 1000 iterations in order to 

compute the global minimum of the respective objective function, then it will need 

the amount of RAM memory that is equivalent to having an element that is 0.005 

mm in size. Moreover, if the number of elements is taken into account, then for b = 

100, the number of elements is 16, but after 1000 iterations, the optimization model 

will consume the RAM space equivalent to the number of elements of 16000. Even 

after one thousand iterations, the result of the optimization model for inverse 

problem may not appear. Therefore, a large number of iterations, generally much 

more than 1000, are frequently required to minimize the objective function and 

produce the result. Because of these incredibly mathematically expensive 

calculations, the optimization model takes about half a day to provide an output. 

Nonetheless, such optimization model is able to produce results with the highest 

possible level of accuracy since the model has been validated perfectly in Section 

5.2. Furthermore, in Section 5.2, validation is carried out using the same 

Optimization model as mentioned above, which demonstrates that the calculated 

material distribution model is in perfect agreement with the assumed material 

distribution that Madan et al. [71] presented. Thus, the optimization model of the 

present work is capable of giving results with perfect precision. 
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However, in the case of the Direct Problem, since the results are obtained after just 

one iteration, there is no restriction on either the minimum length or the number of 

elements involved in the finite element model. Therefore, in order to solve the finite 

element model, the mathematical model for the direct problem developed in the 

present work can be used with any length or number of elements. Because radial and 

circumferential stresses are estimated from the parameter F, the convergence test for 

F is performed by solving a direct problem. F has been calculated through a direct 

problem in which the prescribed material distribution is the material distribution 

corresponding to the minimum stress profile across the FGM disk of b/a = 5, 

implementing the first boundary condition. In addition, the optimization model 

developed in this study yields the material distribution corresponding to the minimal 

stress profile over the FGM disk. The von Mises stress is the basis for the minimum 

stress profile across the FGM disk since the value of the von Mises stress determines 

whether or not the disk will yield or fail. It should be noted that the von Mises stress 

is derived from the radial and circumferential stresses, and it is apparent that the 

convergence of F assures the convergence of the von Mises stress.  
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The convergence criterion of F is shown in Fig. 5.6 throughout the full radial 

thickness of the disk, and it is obvious from Fig. 5.6 that the value of F is identical 

for all element sizes. Nevertheless, all of the data reported in this chapter relate to an 

element size of 0.5 mm, which was selected to guarantee greater accuracy of the 

analyses. 

 

 

 

 

 

 

 

Fig. 5.6: The influence of element size on the parameter F. 



Chapter 5: Results and Discussion 
 

61 
 

5.3 Evaluation of Optimum Material Distribution 

Corresponding to Minimum Stress 

5.3.1 Boundary Condition: Case I 

For the inverse problem of determining the minimum stress profile with the first 

boundary condition, an FGM disk with b/a = 5 was investigated. Material 

distribution is calculated for determining minimum von Mises stress because the 

yielding or failing of the material is based on the value of the von Mises stress. The 

FGM disk is configured to rotate at 150 RPM and has an inner surface temperature of 

20℃. The material distribution is determined for three different outer surface 

temperatures, namely 100°C, 200°C, and 300°C and presented in Fig. 5.7. Usually, 

high temperature is induced at the outer surface of circular cutters or grinding disks; 

therefore, different values of high temperature are assumed as the outer surface 

temperature of the FGM disk to analyze the corresponding optimum material 

distributions.  

 

 

 

 

 

 

 

 

 
Fig. 5.7: Effect of outer surface temperature on optimum material distribution of an 

FGM disk under Boundary Condition I. 



Chapter 5: Results and Discussion 
 

62 
 

According to Fig. 5.7, the volume fraction of Al at the inner surface of the FGM disk 

is nearly 100%. For 100°C inner surface temperature, Al gradually approaches 

100%, and from near normalized radius (𝑟 − 𝑎)/(𝑏 − 𝑎) = 0.2, it begins to reduce 

where the reduction rate is modest up to around (𝑟 − 𝑎)/(𝑏 − 𝑎) = 0.3 and then 

begins to decrease nonlinearly to 0% at the outer surface. On the other hand, the 

nonlinear decrease begins at about (𝑟 − 𝑎)/(𝑏 − 𝑎) = 0.47 for 200°C and 300°C. In 

addition, around the inner area, the volume fraction of Al drops to nearly 95% for 

200°C and near 86% for 300°C before returning to 100% near (𝑟 − 𝑎)/(𝑏 − 𝑎) =

0.2. The optimum material distributions suddenly decrease and then again increase 

near the inner surface of the disk, as seen in Fig. 5.7. It occurs because of the 

boundary condition of the inner surface of the disk. Moreover, the outer surface 

temperature and temperature differences between the inner and outer surfaces of the 

disk also have an impact on the optimum material distribution of the disk. The von 

Mises stress, radial stress, and circumferential stress corresponding to the material 

distributions are depicted in Figs. 5.8, 5.9, and 5.10.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8: Effect of outer surface temperature on the minimum von Mises stress 

corresponding to optimum material distribution of an FGM disk under Boundary 

Condition I. 
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Fig. 5.9: Effect of outer surface temperature on the radial stress corresponding to 

minimum von Mises stress and optimum material distribution of an FGM disk under 

Boundary Condition I. 

Fig. 5.10: Effect of outer surface temperature on the circumferential stress 

corresponding to minimum von Mises stress and optimum material distribution of an 

FGM disk under Boundary Condition I. 
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For 300°C outer surface temperature, the peak value of von Mises stress is observed 

to be slightly less than 120 MPa, as shown in Fig. 5.8. The yield stress of Al is 276 

MPa, while that of Alumina is 15.4 GPa. Thus, the FGM disk will begin to yield if 

the von Mises stress is at or above 276 MPa at any point throughout the FGM disk. 

Therefore, even though the temperature difference between two surfaces is large, the 

inverse problem revealed a material distribution that could greatly reduce the 

developed stress, which may be characterized as the minimal stress profile.  

Further inspection of Fig. 5.8 reveals that the von Mises stresses corresponding to the 

normalized radius of 0.15 to 0.56 are considerably less than 60 MPa and 40 MPa for 

outer surface temperatures of 200°C and 300°C, respectively. The stress may be 

stated to be insignificant across the FGM disk, having 100°C outer surface 

temperature when compared to others because of the lower temperature difference 

between the inner and outer surfaces of the disk. Moreover, von Mises stresses 

become minimum at the normalized radius of 0.56 to 0.94, and the lowest values are 

obtained in this area. Finally, von Mises stresses grow towards the outer surface but 

remain below 80 MPa. Fig. 5.9 demonstrates that the radial stresses satisfy the 

boundary condition, and at the normalized radius of 0.5 to 0.6, radial stress becomes 

compressive for 200°C and 300°C, but otherwise stays tensile across the FGM disk 

at all temperatures. Circumferential stress in the FGM disks depicted in Fig. 5.10 

remains tensile across the inner area and compressive towards the outer region. Over 

the remaining portion of the disk, circumferential stress initially becomes 

compressive, then tensile. However, except for the inner and outer regions, the FGM 

disk with 100°C outer surface temperature develops nearly zero circumferential 

stress. 
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To observe the effect of variation of inner surface temperature, the temperature of the 

FGM disk’s outer surface is kept constant at 150°C, while the temperature of the 

inner surface is assumed to be 0°C, 50°C, 75°C, and 100°C. Four different 

temperatures are assumed at the inner surface of the disk because, depending on the 

operating conditions, the inner surface of the circular cutter or grinding disk might be 

at a lower or higher temperature. The calculated material distributions for the 

minimum von Mises stress profiles obtained by utilizing the optimization model of 

the current study are shown graphically in Fig. 5.11. The inner surface is seen to be 

100% Al, while the outer surface is 100% Alumina for 0°C and 50°C inner surface 

temperatures. In addition, the volume fraction of Al at the inner surface of the FGM 

disk begins to decrease as the inner surface temperature rises while it rises at the 

outer surface. Volume fractions fall smoothly and nonlinearly from the inner to the 

outer surface, with the exception of the disk with 0°C inner surface temperature, 

where it declines to almost 80% and then increases to 100%, being Al dominating 

until the normalized radius of 0.58.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.11: Effect of inner surface temperature on optimum material distribution of an 

FGM disk under Boundary Condition I. 
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Fig. 5.11 exhibits that the optimum material distribution near the inner surface of the 

disk has a tendency to sharply decrease and then increase immediately when the 

inner surface temperature is at 0°C. The boundary condition at the inner surface is 

responsible for this behavior. Nevertheless, this behavior is not achieved under the 

same boundary condition in the other three optimum material distributions presented 

in Fig. 5.11 due to different inner surface temperatures and temperature differences 

between inner and outer surfaces. Figs. 5.12 to 5.15 show the von Mises, radial, and 

circumferential stresses associated with the computed material distributions. Fig. 

5.12 exhibits the von Mises stress of an FGM disk with a 0°C inner surface 

temperature, where it is obvious that the value of von Mises stress is less than 30 

MPa across half of the disk and somewhat greater than 30 MPa at the outer surface. 

However, at the inner surface of the disk, the value is around 73 MPa which is 

significantly low when compared to the yield stress of the disk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12: Effect of 0℃ inner surface temperature on the minimum von Mises stress 

corresponding to optimum material distribution of an FGM disk under Boundary 

Condition I. 
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Fig. 5.13: Effect of inner surface temperature on the minimum von Mises stress 

corresponding to optimum material distribution of an FGM disk under Boundary 

Condition I. 

Fig. 5.14: Effect of inner surface temperature on the radial stress corresponding to 

minimum von Mises stress and optimum material distribution of an FGM disk under 

Boundary Condition I. 
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Thus, the current study’s optimization model is capable of projecting such a material 

distribution for which the lowest stress may be attained, which is far below the yield 

strength of the FGM disk. Furthermore, the numerical values of the von Mises stress 

decrease dramatically as the inner surface temperature of the FGM disk increases, as 

seen in Fig. 12 and Fig. 13, because the temperature differences decrease. Fig. 5.13 

indicates that at inner surface temperatures of 75°C and 100°C, the values of von 

Mises stress are almost zero and linear in character. Additionally, values of von 

Mises stress for 50°C inner surface temperature are higher than that of 75°C and 

100°C inner surface temperature of the disk. Nonetheless, in such a situation, the 

maximum von Mises stress is even less than 5 MPa. As the inner surface temperature 

of the disk increases, both radial and circumferential stress fall considerably and 

become nearly linear in nature, as seen in Figs. 5.14 and 5.15. The nature of radial 

and circumferential stresses at lower inner surface temperatures is similar to that 

stated in Figs. 5.9 and 5.10. They are not entirely tensile, however, even when the 

Fig. 5.15: Effect of inner surface temperature on the circumferential stress 

corresponding to minimum von Mises stress and optimum material distribution of an 

FGM disk under Boundary Condition I. 



Chapter 5: Results and Discussion 
 

69 
 

temperature of the inner surface rises. In addition, Fig. 5.14 exhibits that the radial 

stresses fulfill the boundary condition. 

The inner and outer surface temperatures of the FGM disk are now kept at 20°C and 

150°C, respectively, while the rotating speed of the disk is changed to observe the 

effect on optimum material distribution for the lowest stress profile. The optimal 

material distribution is represented in Fig. 5.16, where the nature of the distributions 

is almost identical. However, the numerical values of the optimal volume fraction 

and the point from which it begins to decrease are not the same for all speeds, and as 

the rotating speed of the disk increases, the volume fraction of Al begins to decrease 

earlier along the radial distance of the disk. In addition, the numerical values of the 

volume fraction of Al are observed to be minimal at 15000 RPM. Because all 

distributions are calculated for the first boundary condition, and the temperatures at 

the inner and outer surfaces are constant, the sharp fall and rise nature of the 

distribution over the inner region of the disk is apparent in all distributions, as seen in 

Fig. 5.16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.16: Effect of angular speed on optimum material distribution of an FGM disk

under Boundary Condition I. 
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Figs. 5.17, 5.18, and 5.19 exhibit von Mises, radial, and circumferential stresses that 

correspond to these optimum material distributions, and the nature of the curves is 

similar to that of Figs. 5.8, 5.9, and 5.10. Fig. 5.17 reveals that the numerical value of 

von Mises stress increases with the increase of the rotating speed of the disk over the 

inner region. Moreover, the material distribution properly minimized the stress 

profile, such that von Mises stresses across the FGM disk are remarkably similar 

from low to higher rotating speeds, where the peak value is likewise too low, such as 

around 65 MPa. Unlike at lower rotating speeds, the von Mises stress profile at a 

high rotating speed like 15000 RPM corresponding to the optimum material 

distribution, does not tend to increase over the disk except near the inner and outer 

surfaces. Though the radial stress rises with increasing rotating speed of the disk 

throughout the FGM disk, the value of radial stress becomes lower for 1500 RPM 

than for 150 RPM after about (𝑟 − 𝑎)/(𝑏 − 𝑎) = 0.2, as described in Fig. 5.18. In 

addition, the satisfaction of the boundary condition is also observed. Fig. 5.19 

demonstrates that circumferential stress values are almost identical for all angular 

speeds except the angular speed corresponding to 15000 RPM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.17: Effect of angular speed on the minimum von Mises stress corresponding to 

optimum material distribution of an FGM disk under Boundary Condition I. 
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Fig. 5.18: Effect of angular speed on the radial stress corresponding to minimum von 

Mises stress and optimum material distribution of an FGM disk under Boundary 

Condition I. 

Fig. 5.19: Effect of angular speed on the circumferential stress corresponding to 

minimum von Mises stress and optimum material distribution of an FGM disk under 

Boundary Condition I. 
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Now, an FGM disk has been explored, which rotates at 150 RPM and has inner and 

outer surface temperatures of 20°C and 150°C, respectively. The optimal material 

distributions are obtained using an Optimization model for various aspect ratios, 

namely b/a = 2.5, b/a = 5, and b/a = 10, as shown in Fig. 5.20. The aspect ratio of the 

FGM disk significantly influences the material distribution of the FGM disk, as seen 

in Fig. 5.20. The behavior of the material distribution is identical for all aspect ratios, 

although the numerical values differ along with the point at which the declining 

nature begins. Moreover, the numerical value of the volume percentage of Al drops 

throughout the significant region of the disk as the aspect ratio rises. The nature or 

behavior of the corresponding von Mises, radial, and circumferential stresses is the 

same. However, since their values are different for different radial thicknesses of the 

FGM disk, the positions where the curves rise and fall on the normalized radius are 

also different from each other. The boundary condition causes optimum material 

distributions to rapidly decline and then increase near the inner surface of the disk, 

although this nature of the distribution is insignificant in the FGM disk of radial 

thickness according to b/a = 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5.20: Effect of aspect ratio of disk on optimum material distribution of an FGM 

disk under Boundary Condition I. 
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Figs. 5.21, 5.22, and 5.23 depict von Mises, radial, and circumferential stresses. The 

greatest value of von Mises stress is less than 50 MPa, which is too low relative to 

the yield stress of the FGM disk. The comparatively higher von Mises stress values 

are observed only at the inner and outer surfaces. In contrast, the value across the 

other area is excessively low after the mid-region. Employing optimum material 

distribution, it is evident from Fig. 5.21 that the FGM disk with b/a = 10 has the 

lowest stress profile over the FGM disk among the mentioned aspect ratios over the 

normalized radius of 0 to 0.15 and 0.4 to 0.5. Fig. 5.22 illustrates that radial stress of 

an FGM disk with aspect ratio b/a = 10 is found to be compressive across the mid-

region. However, when b/a = 5, compressive radial stress is measured across a small 

region. The satisfaction of the boundary condition is also observed in Fig. 5.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.21: Effect of aspect ratio on the minimum von Mises stress corresponding to 

optimum material distribution of an FGM disk under Boundary Condition I. 
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Fig. 5.22: Effect of aspect ratio on the radial stress corresponding to minimum von 

Mises stress and optimum material distribution of an FGM disk under Boundary 

Condition I. 

Fig. 5.23: Effect of aspect ratio on the circumferential stress corresponding to 

minimum von Mises stress and optimum material distribution of an FGM disk under 

Boundary Condition I. 
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5.3.2 Boundary Condition: Case II 

For the inverse problem of determining the minimum stress profile with the second 

boundary condition, an FGM disk with b/a = 5 was investigated in this section. 

Material distribution, like the preceding section, is calculated to determine the lowest 

von Mises stress since the yielding or failing of the material is dependent on the 

value of the von Mises stress. The FGM disk is configured to rotate at 150 RPM and 

has an inner surface temperature of 20℃. Like the first boundary condition, the 

material distribution is determined for three outer surface temperatures, namely 

100°C, 200°C, and 300°C, as presented in Fig. 5.24. When Figs. 5.7 and 5.24 are 

compared, and it is clear that the nature of material distributions is similar for 

different outer surface temperatures, but the numerical values of volume fractions of 

constituent A: Al are obviously different at the same normalized radius due to the 

different boundary conditions. The optimum material distribution for the second 

boundary condition, unlike the first, does not have a decreasing-increasing tendency 

near the inner surface because of the different boundary condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.24: Effect of outer surface temperature on optimum material distribution of an 

FGM disk under Boundary Condition II. 
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Figs. 5.25, 5.26, and 5.27 exhibit the von Mises, radial, and circumferential stresses 

associated with the calculated optimum material distributions. As shown in Fig. 5.25, 

the outside surface temperature of 100°C causes the least stress, while increasing the 

outer surface temperature induces the stress to rise, which is the same as the first 

boundary condition. However, because of the different boundary conditions, the 

curves have completely different characteristics. The highest value is a little above 

120 MPa, which is significantly less than half of the yield stress. Therefore, even 

when the temperature difference increased, the optimization model successfully 

estimated the optimum material distribution for which the minimum stress is 

developing, which is far less than the yield stress of the disk. Fig. 5.26 demonstrates 

that the radial stress becomes compressive after the center of the disk’s radial 

distance across a short area at all temperatures; otherwise, it stays tensile. When the 

circumferential stress shown in Fig. 5.27 is studied, it is observed that it is 

compressive across the major part of the disk except for a tiny region near the outer 

surface where it is tensile. However, the von Mises stress profile ensures minimum 

stress across the FGM disk, which is much less than the disk’s yield stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.25: Effect of outer surface temperature on the minimum von Mises stress 

corresponding to optimum material distribution of an FGM disk under Boundary 

Condition II. 
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Fig. 5.26: Effect of outer surface temperature on the radial stress corresponding to 

minimum von Mises stress and optimum material distribution of an FGM disk under 

Boundary Condition II. 

Fig. 5.27: Effect of outer surface temperature on the circumferential stress 

corresponding to minimum von Mises stress and optimum material distribution of an 

FGM disk under Boundary Condition II. 
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Fig. 28 illustrates the radial displacement of the FGM disk corresponding to the 

minimum von Mises stress and optimum material distribution. Fig. 26 and Fig. 28 

show that radial stress and displacement are zero at the outer and inner surfaces of 

the disk, respectively. Thus, the boundary condition is satisfied. 

 

 

 

 

 

 

 

 

 

Fig. 5.28: Effect of outer surface temperature on the radial displacement

corresponding to minimum von Mises stress and optimum material distribution of an 

FGM disk under Boundary Condition II. 
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Now, the temperature of the FGM disk’s outer surface is kept constant at 150°C, 

while the inner surface's temperature varies. The calculated material distributions for 

the minimum von Mises stress profiles obtained by utilizing the optimization model 

of the current study are shown graphically in Fig. 5.29. In contrast to the first 

boundary condition, the inner surface of the FGM disk is made up of about 25% Al 

in the second boundary condition for optimum material distribution at 0°C inner 

surface temperature because of the different boundary condition. In addition, when 

the temperature is raised up to 100°C, percent of volume fraction stays between 90 

and 100. Fig. 5.29 illustrates that the volume fraction of constituent Al declines 

throughout the disk’s radial distance, except when the inner surface is at 0°C, where 

it initially jumps to 100% and then begins to drop at the normalized radius of 0.62. 

Moreover, when the inner surface temperature of the disk is 0°C and 50°C, the 

volume fraction of AlଶOଷ at the outer surface of the disk is found 100%, but it begins 

to reduce as the temperature of the inner surface increases. Thus, significant changes 

in the material distribution have been noticed for varied inner surface temperatures in 

order to achieve the optimum condition via an inverse approach to minimize stress.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.29: Effect of inner surface temperature on optimum material distribution of an 

FGM disk under Boundary Condition II. 
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Figs. 5.30 to 5.33 show the von Mises, radial, and circumferential stresses 

corresponding to the optimum material distribution obtained from the optimization 

model. When the von Mises stress is analyzed at various inner surface temperatures, 

as shown in Figs. 5.30 and 5.31, it is observed that the value of stress is significant 

only when the inner surface temperature is 0°C. The value is about 85 MPa near the 

inner surface, yet it is significantly less than the yield stress of the FGM disk. The 

stress progressively reduces to near zero at the outside surface, and the stress 

fluctuation is quite non-linear near the outer region, but such values of stress cannot 

even impact the effectiveness of the FGM disk since they are small when compared 

to the yield stress. When the inner surface temperature rises, the values of von Mises 

stress fall precipitously, and stress is almost zero across the FGM disk for smaller 

temperature differences between the two surfaces of the disk. However, if the inner 

surface of the disk is at 50°C, the developed stress is now much larger than zero 

throughout the disk, with the stress being greatest towards the inner and outer 

surfaces, as demonstrated in the von Mises stress profile of Fig. 5.31.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.30: Effect of 0℃ inner surface temperature on the minimum von Mises stress 

corresponding to optimum material distribution of an FGM disk under Boundary 

Condition II. 
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Fig. 5.31: Effect of inner surface temperature on the minimum von Mises stress 

corresponding to optimum material distribution of an FGM disk under Boundary 

Condition II. 

Fig. 5.32: Effect of inner surface temperature on the radial stress corresponding to 

minimum von Mises stress and optimum material distribution of an FGM disk under 

Boundary Condition II. 
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In addition, that peak number is around 10 MPa, which is negligible in terms of disk 

yield stress. Fig. 5.31 also illustrates that near the inner part of the disk, more stress 

is developed in comparison to the remainder of the disk region. Fig. 5.32 exhibits 

that for higher inner surface temperatures, radial stress is significant and compressive 

after approximately (𝑟 − 𝑎)/(𝑏 − 𝑎) = 0.55. Furthermore, they are nearly negligible 

for smaller temperature differences and compressive only near the inner surface. 

Likewise, circumferential stress is almost zero when the inner surface temperature is 

50°C, 75°C, and 100°C, as illustrated in Fig. 5.33. When the inner surface 

temperature is 0°C, circumferential stress is compressive up to the normalized radius 

of 0.7 and then becomes tensile, whereas when the inner surface temperature is 

higher, circumferential stress is compressive only near the inner surface and also near 

the outer surface only if the temperature difference is significant.  

 

Fig. 5.33: Effect of inner surface temperature on the circumferential stress 

corresponding to minimum von Mises stress and optimum material distribution of an 

FGM disk under Boundary Condition II. 
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The radial displacement of the FGM disk corresponding to the least von Mises stress 

and optimum material distribution is represented in Fig. 34. Figs. 32 and 34 

demonstrate that radial stress and displacement are zero at the disk’s outer and inner 

surfaces, respectively. As a result, the boundary condition has been satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.34: Effect of inner surface temperature on the radial displacement

corresponding to minimum von Mises stress and optimum material distribution of an 

FGM disk under Boundary Condition II. 



Chapter 5: Results and Discussion 
 

84 
 

The inner and outer surface temperatures of the FGM disk are now set at 20°C and 

150°C, respectively, while the rotating speed of the disk is varied to determine the 

optimum material distribution for the lowest stress profile. The optimum material 

distributions are shown in Fig. 5.35, where all distributions are almost identical 

except the distribution corresponding to 15000 RPM. Unlike the first boundary 

condition, in the case of the second boundary condition, optimum material 

distributions corresponding to the minimum von Mises stress are smooth over the 

inner region of the FGM disk. When Figs. 5.16 and 5.35 are examined, and it is 

apparent that, in contrast to the first boundary condition, the discrepancy between the 

values of volume fractions at various rotational speeds is not noteworthy when the 

second boundary condition is implemented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.35: Effect of angular speed on optimum material distribution of an FGM disk

under Boundary Condition II. 
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Figs. 5.36, 5.37, and 5.38 show von Mises, radial, and circumferential stresses that 

correspond to such optimum material distributions; the nature of the curves is similar 

to Figs. 5.25, 5.26, and 5.27, and Fig. 5.36 show that the numerical value of von 

Mises stress increases with the increase of the rotating speed of the disk over the 

inner region. The von Mises stresses across the FGM disk are remarkably similar 

from low to higher rotating speeds, where the peak value is likewise too low in 

comparison with the yield stress, and the peak stress is about 70 MPa. As shown in 

Figs. 5.37 and 5.38, both the radial and circumferential stresses are almost the same 

for 150 RPM, 1500 RPM, and 3000 RPM, and increase with an increase in the 

rotating speed of the disk throughout the FGM disk only at 15000 RPM. However, 

an exception is observed for the circumferential stress at the normalized radius of 

0.36 to 0.88.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.36: Effect of angular speed on the minimum von Mises stress corresponding to 

optimum material distribution of an FGM disk under Boundary Condition II. 
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Fig. 5.37: Effect of angular speed on the radial stress corresponding to minimum von 

Mises stress and optimum material distribution of an FGM disk under Boundary 

Condition II. 

Fig. 5.38: Effect of angular speed on the circumferential stress corresponding to 

minimum von Mises stress and optimum material distribution of an FGM disk under 

Boundary Condition II. 
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Fig. 39 depicts the radial displacement of the FGM disk corresponding to the 

minimum von Mises stress and optimum material distribution. Figs. 37 and 39 

illustrate that radial stress and displacement are both zero at the outer and inner 

surfaces of the FGM disk, respectively. Therefore, the boundary condition is 

satisfied. 

 

 

 

 

 

 

 

 

Fig. 5.39: Effect of angular speed on the radial displacement corresponding to 

minimum von Mises stress and optimum material distribution of an FGM disk under 

Boundary Condition II. 
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An FGM disk has now been investigated, with inner and outer surface temperatures 

of 20°C and 150°C, respectively. The optimum material distributions corresponding 

to the minimum von Mises stress for different aspect ratios, namely b/a = 2.5, b/a = 

5, and b/a = 10, are determined using the optimization model and shown in Fig. 5.40. 

In contrast to the first boundary condition, the second boundary condition results in 

optimum material distributions that are smooth over the inner region of the FGM 

disk. Nevertheless, the optimum material distribution of the FGM disk of b/a = 10 

has a slight increasing-decreasing trend near the inner surface, which is not seen for 

the first boundary condition. Therefore, boundary condition causes this type 

of variation in the material distribution. Moreover, the material distribution of the 

FGM disk is greatly influenced by the aspect ratio of the FGM disk, as shown in Fig. 

5.40.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.40: Effect of aspect ratio on optimum material distribution of an FGM disk

under Boundary Condition II. 
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As various radial thicknesses of the FGM disk are taken into consideration, the 

numerical values of the optimum material distribution and the point at which the 

material distribution starts to decline are both different. In addition, the numerical 

value of the volume fraction of Al drops throughout the significant region of the disk 

as the aspect ratio rises. Figs. 5.41, 5.42, and 5.43 illustrate von Mises, radial, and 

circumferential stresses. The nature or behavior of the corresponding von Mises, 

radial, and circumferential stresses is similar. However, since the values are different 

for different aspect ratios, the positions where the curves rise and fall with the 

normalized radius are also different from each other. The highest value of von Mises 

stress is around 90 MPa, which is even less than one-third of the yield stress of the 

Al. Utilizing optimum material distribution, it is clear from Fig. 5.41 that the FGM 

disk corresponding to b/a = 10 has the minimum stress profile across the FGM disk 

among the specified aspect ratios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.41: Effect of aspect ratio on the minimum von Mises stress corresponding to 

optimum material distribution of an FGM disk under Boundary Condition II. 
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Fig. 5.42: Effect of aspect ratio on the radial stress corresponding to minimum von 

Mises stress and optimum material distribution of an FGM disk under Boundary 

Condition II. 

Fig. 5.43: Effect of aspect ratio on the circumferential stress corresponding to 

minimum von Mises stress and optimum material distribution of an FGM disk under 

Boundary Condition II. 
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The radial displacement of the FGM disk corresponds to the minimum von Mises 

stress and optimum material distribution, as illustrated in Fig. 44. The radial stress 

and displacement profiles are shown in Fig. 5.42 and Fig. 5.44 confirm that the 

boundary condition is satisfied since the radial stress at the outer surface and radial 

displacement at the inner surface of the FGM disk are zero for all aspect ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.44: Effect of aspect ratio on the radial displacement corresponding to 

minimum von Mises stress and optimum material distribution of an FGM disk under 

Boundary Condition II. 
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5.4 Evaluation of Optimum Material Distribution 

Corresponding to Prescribed Stress 

5.4.1 Boundary Condition: Case I 

The optimization model is used to calculate the optimum material distribution 

corresponding to the prescribed stress profile with the first boundary condition. FGM 

disks that correspond to b/a = 2.5 and b/a = 5 are explored in this study. The value of 

the von Mises stress is considered to be the basis for the specified stress field since 

the yielding or failure of the material is dependent on the value of the von Mises 

stress. The FGM disk is assumed to rotate at 150 RPM and has inner and outer 

surface temperatures of 20°C and 150°C, respectively. The value of the objective 

function acquired from the optimization model must be less than or equal to the 

prescribed small quantity 𝜖, specified in Section 4.2.1, in order to determine the 

optimum material distribution according to the prescribed stress profile. The value of 

𝜖 has been considered 0.1 for the present study. 

At first, the prescribed stress is assumed to decrease from 60 MPa to 20 MPa, where 

the FGM disk corresponds to b/a = 2.5, as shown in Fig. 5.45. Since the optimization 

model yields the value of 𝜖 as 0.05, the material distribution is acceptable and is 

illustrated in Fig. 5.46. It is evident from Fig. 5.46 that the optimum material 

distribution profile decreases significantly near the inner surface of the disk and then 

again starts to increase, which occurs due to the boundary condition. In the case of 

minimum von Mises stress profiles implementing the first boundary condition 

mentioned in Section 5.3.1, this decreasing-increasing nature was also present in the 

optimum material distributions.  

The prescribed stress profile specified in Fig. 5.45 is realized by designing the FGM 

disk having the material distribution shown in Fig. 5.46. 
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Fig. 5.45: Prescribed stress profile with a decreasing nature in an FGM disk 

corresponds to b/a = 2.5 under Boundary Condition I. 

Fig. 5.46: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.45. 
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The prescribed stress is then anticipated to grow from 40 MPa to 60 MPa from the 

inner to the outer surface of the FGM disk of b/a = 2.5, as shown in Fig. 5.47. In this 

scenario, the optimization model calculates 𝜖 as 0.06. As a result, the material 

distribution may be accepted and shown in Fig. 5.48. Though a different prescribed 

stress profile than Fig. 5.45 is realized by the optimum material distribution shown in 

Fig. 5.48, significant decrease-increase behavior over the inner region of the disk is 

also present in the distribution. However, the optimum material distribution of Fig. 

5.48 is totally different from the distribution of Fig. 5.46 because of different 

prescribed stress profiles.  

By designing the FGM disk with the material distribution depicted in Fig. 5.48, it is 

possible to realize the prescribed stress profile shown in Fig. 5.47. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.47: Prescribed stress profile with an increasing nature in an FGM disk 

corresponds to b/a = 2.5 under Boundary Condition I. 
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Finally, the prescribed stress of 60 MPa is maintained constant from the inner to the 

outer surface of the FGM disk with b/a = 2.5. Fig. 5.49 indicates the prescribed stress 

profile for this circumstance. In this instance, 𝜖 equals 0.068, indicating that the 

material distribution is acceptable and graphically shown in Fig. 5.50. The optimum 

material distribution with a significant decreasing-increasing trend over the inner 

region of the disk is obtained because of the first boundary condition.  

The prescribed stress profile shown in Fig. 5.49 is predicted by designing the FGM 

disk having the material distribution illustrated in Fig. 5.50. 

 

 

 

 

 

 

Fig. 5.48: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.47. 
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Fig. 5.49: Prescribed stress profile (Constant) in an FGM disk corresponds to b/a = 

2.5 under Boundary Condition I. 

Fig. 5.50: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.49. 
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The FGM disk having b/a = 5 has now been addressed. Firstly, the prescribed stress 

is predicted to decrease from 60 MPa to 20 MPa from the inner to the outer surface 

of the FGM disk, as depicted in Fig. 5.51. The value of 𝜖 is determined to be 0.04 

using the optimization model, and thus, the calculated material distribution is able to 

realize the prescribed stress. Fig. 5.52 exhibits the corresponding material 

distribution. Optimum material distribution is totally different for the same 

prescribed von Mises stress profile because of the different radial thickness of the 

FGM disk. However, the material distribution decreases significantly and then again 

increases near the inner surface of the disk as the first boundary condition is 

implemented.  

The prescribed stress profile presented in Fig. 5.51 is realized by designing the FGM 

disk having the material distribution shown in Fig. 5.52. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.51: Prescribed stress profile with a decreasing nature in an FGM disk 

corresponds to b/a = 5 under Boundary Condition I. 
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Furthermore, as illustrated in Fig. 5.53, the prescribed stress is projected to increase 

from 60 MPa to 80 MPa from the inner to the outer surface of the FGM disk with b/a 

= 5. The optimization model yields 𝜖 = 0.09 for this instance. The optimum material 

distribution is acceptable as 𝜖 < 0.1 and is shown in Fig. 5.54. Fig. 5.54 exhibits that 

the material distribution drops dramatically and then increases up to the normalized 

radius of 0.5. The first boundary condition is responsible for this behavior of the 

material distribution. Moreover, the radial thickness of the FGM disk also influences 

the optimum material distribution.  

It is possible to predict the prescribed stress profile shown in Fig. 5.53 by designing 

the FGM disk with the material distribution of Fig. 5.54 

 

 

 

 

Fig. 5.52: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.51. 
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Fig. 5.53: Prescribed stress profile with an increasing nature in an FGM disk 

corresponds to b/a = 5 under Boundary Condition I. 

Fig. 5.54: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.53. 
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Lastly, the prescribed stress of 60 MPa is kept constant from the inner to the outer 

surface of the FGM disk, as presented in Fig. 5.55. Now, 𝜖 is estimated as 0.06 for 

this prescribed stress using the inverse problem optimization problem of the present 

work. Therefore, the material distribution may be considered acceptable, as 

demonstrated in Fig. 5.56. The significant decrease-increase nature is again present 

in the optimum material distribution profile because of the boundary condition.  

By designing the FGM disk with the material distribution shown in Fig. 5.56, it is 

possible to realize the prescribed stress profile shown in Fig. 5.55. 

It is evident from Section 5.4.1 that for the similar prescribed stress field, the 

material distribution is considerably modified owing to varying values of b/a of the 

FGM disk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.55: Prescribed stress profile (Constant) in an FGM disk corresponds to b/a = 5 

under Boundary Condition I. 
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5.4.2 Boundary Condition: Case II 

In this section, the optimization model is used to find the optimum material 

distribution for the prescribed stress profile with the second boundary condition. In 

this work, FGM disks with b/a = 2.5 and b/a = 5 are investigated. Moreover, the 

value of the von Mises stress is regarded to be the foundation for the prescribed 

stress field, similar to the preceding section, since the yielding or failure of the 

material is reliant on the value of the von Mises stress. The FGM disk revolves at 

150 RPM and has 20°C and 150°C inner and outer surface temperatures, 

respectively. In order to calculate the best material distribution based on the 

prescribed stress profile, the value of the objective function obtained from the 

optimization model must be less than or equal to the tolerance provided in Section 

4.2.1, as previously noted. In addition, for the purposes of this investigation, the 

value has been set to 0.1. 

Fig. 5.56: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.55. 
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As shown in Fig. 5.57, the prescribed stress is supposed to drop from 70 MPa to 40 

MPa, where the FGM disk corresponds to b/a = 2.5. Because the optimization model 

yields the value of 𝜖 as 0.07, the material distribution is acceptable and is shown in 

Fig. 5.58. Unlike the first boundary condition, optimum material distribution for the 

second boundary condition doesn’t have a significant decrease-increase nature near 

the inner surface of the disk. However, the distribution decreases to the extent that is 

far less than that of the first boundary condition. Thus, the boundary conditions have 

a significant effect on the optimum material distribution.  

The prescribed stress profile specified in Fig. 5.57 is realized by designing the FGM 

disk having the material distribution shown in Fig. 5.58. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.57: Prescribed stress profile with a decreasing nature in an FGM disk 

corresponds to b/a = 2.5 under Boundary Condition II. 
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The increasing nature is now taken into account when determining the prescribed 

stress. As displayed in Fig. 5.59, the prescribed stress is assumed to increase from 40 

MPa to 70 MPa from the inner to the outer surface of the FGM disk of b/a = 2.5. The 

optimization model calculates 𝜖 as 0.09 in this case. Therefore, the material 

distribution may be acceptable, as illustrated in Fig. 5.60. In contrast to the first 

boundary condition, smoother material distribution is obtained for the second 

boundary condition.  

By designing the FGM disk with the material distribution depicted in Fig. 5.60, it is 

possible to realize the prescribed stress profile shown in Fig. 5.59. 

 

 

 

 

 

Fig. 5.58: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.57. 
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Fig. 5.59: Prescribed stress profile with an increasing nature in an FGM disk 

corresponds to b/a = 2.5 under Boundary Condition II. 

Fig. 5.60: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.59. 
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Finally, with b/a = 2.5, the prescribed stress of 50 MPa is assumed to remain 

constant from the inner to the outer surface of the FGM disk. The prescribed stress 

profile for this instance is shown in Fig. 5.61. In this case, 𝜖 = 0.06, confirming that 

the material distribution is suitable to adopt, as represented graphically in Fig. 5.62. 

The optimum material distribution for the second boundary condition, unlike the 

first, has a negligible decreasing-increasing tendency near the inner surface because 

of the different boundary condition. Therefore, optimum material distribution 

corresponding to the similar prescribed von Mises stress profile for the second 

boundary condition is smoother than that of the first boundary condition.  

The prescribed stress profile shown in Fig. 5.61 is predicted by designing the FGM 

disk having the material distribution illustrated in Fig. 5.62. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.61: Prescribed stress profile (Constant) in an FGM disk corresponds to b/a = 

2.5 under Boundary Condition II. 



Chapter 5: Results and Discussion 
 

106 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The FGM disk, which corresponds to b/a = 5, has now been discussed. To begin, the 

prescribed stress is expected to drop from 70 MPa to 40 MPa from the inner to the 

outer surface of the FGM disk, corresponding to b/a = 5, as shown in Fig. 5.63. The 

value of 𝜖 is determined to be 0.06 using the optimization model for the inverse 

problem, and hence the computed material distribution may predict the prescribed 

stress. The optimum material distribution is depicted in Fig. 5.64. It is evident from 

Fig. 5.64 that near the inner surface of the disk, the nature of the optimum material 

distribution is completely different from the first boundary condition as the second 

boundary condition is implemented. In addition, the distribution shown in Fig. 5.64 

is also totally different from the material distribution profile of Fig. 5.58, even 

though the same prescribed von Mises stress distribution is realized. The different 

radial thickness of the disk is responsible for this change.  

The prescribed stress profile mentioned in Fig. 5.63 is realized by designing the 

FGM disk having the material distribution shown in Fig. 5.64. 

Fig. 5.62: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.61. 
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Fig. 5.63: Prescribed stress profile with a decreasing nature in an FGM disk 

corresponds to b/a = 5 under Boundary Condition II. 

Fig. 5.64: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.63. 
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Furthermore, as shown in Fig. 5.65, the prescribed stress is projected to rise from 60 

MPa to 80 MPa from the inner to the outer surface of the FGM disk, corresponding 

to b/a = 5. Using the optimization model, the value of 𝜖 is found to be 0.1 in this 

regard. It is mentioned earlier that the value of 𝜖 is set to 0.1, and because the 

material distribution is only meant to be approved if the value of the respective 

objective function is less than or equal to 𝜖, it is apparent that the calculated material 

distribution for this instance is able to accurately predict the respective prescribed 

stress. Fig. 5.66 exhibits the corresponding material distribution. In contrast to the 

first boundary condition, near the inner surface of the disk, the nature of the optimum 

material distribution is completely different because of the different boundary 

condition, as shown in Fig. 5.66. Furthermore, the radial thickness of the disk also 

influences the optimum material distribution significantly.  

It is possible to achieve the prescribed stress profile shown in Fig. 5.65 by designing 

the FGM disk to have the material distribution depicted in Fig. 5.66. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.65: Prescribed stress profile with an increasing nature in an FGM disk 

corresponds to b/a = 5 under Boundary Condition II. 
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Finally, as shown in Fig. 5.67, the specified stress of 70 MPa is assumed to be 

constant from the inner to the outer surface of the FGM disk, corresponding to b/a = 

5. Using the inverse problem optimization problem of the current study, 𝜖 is now 

calculated as 0.077 for this prescribed stress. As a result, the calculated material 

distribution may predict the prescribed stress profile within the specified tolerance 

limit. Fig. 5.68 illustrates the corresponding optimum material distribution. 

The prescribed stress profile illustrated in Fig. 5.67 is realized by designing the FGM 

disk having the material distribution shown in Fig. 5.68. 

Section 5.4.2 demonstrates that for the same or similar prescribed stress field, the 

material distribution is seriously influenced due to the different radial thicknesses of 

the FGM disk. 

 

 

 

Fig. 5.66: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.65. 
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Fig. 5.67: Prescribed stress profile (Constant) in an FGM disk corresponds to b/a = 5 

under Boundary Condition II. 

Fig. 5.68: Optimum material distribution in an FGM disk corresponding to the 

prescribed stress field of Fig. 5.67. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

An optimization model is developed to calculate optimum material distribution 

corresponding to the minimum/prescribed stress profile in a rotating functionally 

graded material circular disk. To determine stresses for any prescribed material 

distribution, a mathematical model of direct problem is also developed. The second-

order governing differential equation is solved by a standard finite element method in 

both models. The verification of the models is confirmed by comparing the obtained 

numerical results with existing works in the literature. Any two materials A and B 

can be employed in the mathematical models. Numerical results are achieved by 

demonstrating the models for Al and Al2O3 as materials A and B, respectively. The 

following key points can be noted from the numerical results. 

i. Stress profile, temperature field, angular speed, and radial thickness of the 

FGM disk all have significant influence on the optimum material 

distributions 

ii. Stresses developed in an FGM disk is greatly affected by prescribed material 

distribution and vice versa. 

iii. von Mises stress, radial stress, circumferential stress, and radial displacement 

all are dependent on the material distribution.  

The optimization model can pave the way for evaluating the optimum material 

distribution in an FGM disk ensuring the minimum stresses in the disk. This can add 

a new dimension to the process of designing a circular cutter or grinding disk with 

FGMs having higher efficacy and longevity than the cutters or grinding disks of 
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monoclinic materials. In addition, the optimization model of the present work is such 

a powerful mathematical model that it can accomplish the followings. 

 The mathematical model of inverse problem is capable of producing any form 

of output depending on the objective function. Thus, by setting the 

appropriate objective function, the optimization model can provide the 

respective results. 

 The model is able to determine the optimum material distribution 

corresponding to the minimum or prescribed stress field in any FGM disk, 

which is completely impossible if stresses are determined by considering 

prescribed material distribution such as exponential function, power function, 

and sigmoid function, etc. 

 Mathematical models of both the inverse and direct problems of the present 

study can be applied to a rotating functionally graded material (FGM) or a 

homogeneous circular disk subjected to thermal load. 

 

6.2 Recommendations 

Some recommendations for further work are as follows: 

 The current investigation has been carried out with the unit thickness of the 

FGM disk being taken into account. The original shape or geometry of 

grinding disk cutters may be obtained by taking the thickness of the FGM 

into consideration. The optimization model of the current study may then be 

applied for desired output by taking the thickness of the FGM disk into 

consideration. 

 Contact stress is an important factor when designing cutters and grinding 

disks. Thus, the contact stress may be incorporated into the current 

mathematical model for further investigation. 

 Other sophisticated geometries built of FGM, such as human bone, may be 

used in this optimization model to provide an output based on biomedical 

research requirements. 
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