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Abstract

Parallel programming has emerged preeminence as an efficient paradigm for
designing and solving complex problems. In recent years, the usage of Graphics
Processing Units (GPUs) with parallel approaches has scaled up the computational
speed of the traditional CPU-based algorithms. Therefore, developing a parallel
adaptation of the fundamental algorithms has become essential to harness the
advantages of modern multi-core processors. This thesis describes the first
variant, which exploits parallelism from a well-known Artificial Intelligence (AI)
searching algorithm (Recursive Best First Search, RBFS) using GPU. It proposes a
methodology to convert a sequential RBFS algorithm to a parallel algorithm that
provides enhanced solutions. Furthermore, the proposed algorithm has been studied
thoroughly in centralized and distributed optimization contexts. The performance
analysis on sliding puzzles illustrates the superiority gained by using GPU, resulting
in excelled performances and scalability. The proposed parallel GPU-based RBFS
can achieve significant computational speed-up for large-scale search problems
compared to the traditional sequential CPU-based RBFS. Moreover, different
approaches of GPU programming have been considered, showing the impact of
using a naı̈ve framework (Aparapi) for Java based implementation and CUDA
based implementation using Python. In addition, the proposed model will be
effective in any non-GPU based parallel system as it is not solely focused to enhance
performance on GPU based architecture.

x



Chapter 1

Introduction

It is widely foreseen that in future, the modern microprocessors will have more computing cores;
hence, the computation tasks without parallel adaptation will become less effective according to
the system performance. At present, the world is evolving around modern Artificial Intelligence
advances and heuristic search is one of the most widely used problem solving pathways.

Recursive Best First Search (RBFS) is a well-known heuristic based searching algorithm in
Artificial Intelligence, which resembles the best first search algorithm using linear search space.
It performs similar to recursive depth-first search (DFS), however instead of going down to the
current path; it remembers the best alternative path from the ancestors of the current path. One of
the outstanding parts of this algorithm is that it solves the memory issues of A* search algorithm.
Intrinsically, RBFS is a recursive algorithm, which efficient parallelization is quite challenging.
The central challenge in parallelizing recursive best-first search is avoiding contention between
threads when accessing the function several times due to its recursive approach. There are very
few studies focused on this algorithm and only few possible approaches have been shown.

Recently, the Graphics Processing Unit (GPU) has been used to accelerate various traditional
CPU-based computational tasks. GPUs manage tasks differently than CPUs; usually CPUs
perform well in sequential execution whereas GPUs perform better handling parallel executions.

This thesis aims at inheriting the advantages of both GPUs’ powerfulness with the recursive best-
first search scheme. It proposes the first parallel variant of RBFS, which is able to execute in GPU
in an immense parallel manner that surpasses the computational speed of the traditional sequential
RBFS algorithm. Moreover, the proposed parallel RBFS algorithm can be implemented in
any device without GPU that supports parallelization techniques and will provide compelling
solutions.

1
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1.1 Problem Statement

In recent years, there has been a developing interest with GPU programming to accelerate the
computational speed of the traditional algorithms. Typically, a GPU contains thousands of cores
that can handle different data at the same time very efficiently, whereas a CPU contains advanced
cores to handle sequential execution. There have been many different approaches of GPU in
different algorithms to accelerate its computational speed showing that efficient re-design of
traditional sequential algorithms to parallel algorithms can enhance performance using GPUs.

Recursive best-first search (RBFS) is one of the heuristic search algorithms, which belongs to
Artificial Intelligence algorithms. In this algorithm, the nodes are expanded in best-first order,
which is chosen based on the specific environment of the problem and uses a backtracking
condition to expand only the required node based on a cost function finding the most optimal
path with least expansion possible.

GPU has been used for developing different Artificial Intelligence algorithms such as Genetic
programming, A* search algorithm or best-first search as well as traditional algorithms such as
breadth first search and shows a notable increase in performance. There have been several studies
on performance of GPUs to understand its performance over CPUs, which shows significant
results. However, the integration of GPU hardware with algorithms remains challenging and
only efficient remodel of the sequential algorithms can provide excellence results.

We claim that designing an efficient parallel version of the sequential RBFS algorithm will speed
up its computational speed significantly employing GPUs for large-scale search problems.

1.2 Motivation

Parallel programming is blooming as a new technology nowadays and with the availability of
multiple cores in the modern devices, GPU based computing is denominating the current world.
The computational power of GPU is an impressive driver for further progress in different sectors
such as data science or machine learning.

However, designing parallel algorithms that will work on GPUs efficiently has remained a
challenge. Hence, the study of design of the traditional sequential algorithms to parallel
algorithms for GPU hardware has immense significance.

There have been several studies about different traditional searching algorithms such as A*
search, breadth first search, genetic algorithms, etc. However, none of the studies has focused on
parallelization of RBFS to increase its computation speed using GPU architecture.

RBFS is a recursive algorithm, which parallelization is quite challenging due to its recursive
nature. There are not enough studies that have been focused on extensive analysis of
the performance of this algorithm. Moreover, there have been very limited studies of the
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parallelization of this algorithm that makes it an interesting topic to study.

Considering all the possible outcomes of GPU programming, this study has focused its interest
on integrating the modern technology advances with a well-known algorithm (RBFS) that will
provide insight on the design of parallel algorithms, which will enhance the computational speed
of the sequential algorithms. This research will provide a rigorous study on the behavior of the
parallel algorithms on heuristic based search problems.

1.3 Scope and Contributions

This research work focuses on the design of the parallel approach of RBFS algorithm, which will
increase the computational speed of the sequential RBFS algorithm using the latest technology
employing GPUs. Researchers have proposed very few approaches of parallelization of the
RBFS algorithm and there are very limited studies about increasing its computational speed.
Most prior studies only focus on improvement of the sequential RBFS algorithm but none of
those concentrates on parallelization of it using GPU. The proposed parallel RBFS algorithm
increases significantly the computational speed compared to the sequential RBFS algorithm.

It proposes a parallel architecture for remodeling the sequential algorithms that can perform
efficient on the GPU hardware.

An experimental analysis on CPU platform as well as GPU platform in a large-scale optimization
problem has shown on both sequential and parallel RBFS algorithm.

Furthermore, this research paper studied several approaches of GPU programming using two
high-level languages (Java and Python) and trade-off their computational speed in large-scale
optimization problems.

1.3.1 Major Contributions

The contributions made by this thesis work are as follows:

• This thesis proposes a new parallel approach that can parallelize sequential algorithms.

• This research study proposes a new parallel approach to parallelize recursive algorithms.

• There are no parallel approaches of RBFS algorithm until this thesis, which shows a naı̈ve
way to implement parallel algorithm for RBFS.

• Prior studies have not focused on RBFS algorithm on a GPU platform; hence, this study
illustrates an extensive analysis of RBFS on a GPU device.

• The proposed algorithm enhances the performance of the RBFS algorithm trading off the
constraint between time and memory.
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• The proposed model shows that the computational speed of the RBFS algorithm on GPU
decrease while increasing the difficulty level of the problem compare to the traditional
RBFS approach.

• This study also demonstrates several possible GPU implementations. It determines the
unsuitability of the Aparapi framework for the proposed model and it shows that Aparapi
does not perform well for any algorithm.

1.4 Objectives and Outcomes

The objectives of this thesis are as follows:

1. To design a parallel version of the RBFS algorithm, which provides a faster solution than
the existing sequential algorithm.

2. To implement the parallelized version of the RBFS algorithm on a server and a GPU.

3. To study the comparative performance of the sequential and parallel versions of the RBFS
algorithm on a server and a GPU for different heuristic-based search problems.

The possible outcomes of this thesis are as follows:

1. A new parallel version of RBFS algorithm, which provides a faster solution than the
existing sequential algorithm by minimizing the computation time.

2. Two separate implementations of the parallel RBFS algorithm (server and GPU).

3. Comprehensive performance analysis of the sequential and parallel versions of RBFS
algorithm in different heuristic-based search problems.

1.5 Thesis Outline

This thesis has been structured in four critical sections outlined below. Chapter 2 provides an
overview on different artificial intelligence searching algorithms, including uninformed searches
and informed searches. As well as, different parallelization techniques with GPUs are mentioned.
In addition, a detailed background on previous studies on parallelization of searching algorithms
is given. Chapter 3 insights the experimental methodology of the proposed parallel RBFS
algorithm including the algorithm as well. Chapter 4 discusses the simulation results of the
proposed algorithm. Finally, Chapter 5 presents the contributions of the research work addressing
the challenges faced in order to parallelize a recursive algorithm and achieve high performance
from it using GPUs. Furthermore, it identifies the future directions of this research work.



Chapter 2

Literature Review

This chapter provides background information on the Artificial Intelligence searching techniques
and the basics of parallel programming and GPU architecture to place the research contributions
in context. This chapter starts with a brief introduction to different searching techniques. Section
2.1 describes the background details, including basic parallel programming concepts CPU
and GPU architecture, as well as outlines the sequential RBFS algorithm. Section 2.3 provides
detailed background on studies of parallel approaches and RBFS algorithm performance analysis.

2.1 Background

2.1.1 Searching in Artificial Intelligence

Artificial Intelligence (AI) is a computer science branch. Mainly concerned with providing
human-mind behaviors in machines, i.e., it focuses on making intelligent machines that can
perform similar functions to human beings.

One of the most prominent areas of AI is search. An example of a search problem containing
several states, stating the start point to the target point, is shown in Figure 2.1. The solution to
search problems needs to be determined in a systematic way (trial-and-error approach). There
are many problem variations such as chess, sliding puzzle, and even medical diagnosis where
searching is required [1]. Any searching algorithm consists of the following parts:

• Problem search space/state space refers to the environment in which the searching will
take place.

• Initial state referring to the state where the searching begins.

• Goal State refers to the state where the searching should stop.

5
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• A solution will be achieved by using the search algorithms, which will follow some
defined steps to get the result if possible, otherwise will return failure.

2.1.2 Different Searching Techniques

There are several search algorithms in AI. In this below section, the most fundamental search
algorithms will be discussed. These can be categorized broadly into two types:

• Uninformed Search - often called brute-force search or blind search. These types of
algorithms do not have or need any additional information about the search space. An
uninformed search only knows how to traverse the search space identify the goal state and
leaf states. Therefore, it will examine all the states of the search tree until the solution is
found if it exists. There are mainly five types:

– Breadth-first search (BFS)

– Depth-first search (DFS)

– Uniform cost search

– Iterative deepening depth-first search

– Bidirectional search

• Informed Search - also called heuristic search [2]. These types of algorithms have
domain-specific knowledge to increase the performance of the techniques. These
algorithms have information about the closeness of the goal state from a given state,

Figure 2.1: Search Problem
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which is defined by a property known as heuristic. A heuristic is a function defined as
h(n), which determines the closeness of the goal state. Each state is selected based on the
value of the heuristic function. There are various types of informed search:

– Greedy Best-first search

– A* search

– Iterative Deepening A* (IDA*) search

– Recursive Best First Search (RBFS)

There is another type of searching approach in AI known as local search algorithms, which
starts from an acceptable solution and then moves to another solution (looking at the neighboring
solution). These types of algorithms can give an approximation solution anytime even if these
are interrupted before ends; those also may lead to a not optimal solution. Most commonly
known as hill-climbing search and simulated annealing search.

2.1.3 Recursive Best First Search (RBFS)

A straightforward algorithm that imitates the technique of best-first search. The highlighted
feature of this algorithm is that it uses simply linear space while performing the search.

The evaluation function f(n) used is

f(n) = g(n) + h(n) (2.1)

where g(n) is the path cost from the source state to the current state and h(n) is the estimated
cheapest cost from the current state to the goal state.

Hence, f(n) defines the estimated cheapest solution to the goal state traversing through the
current state (n). In each step, it calculates f(n) and decides which state to choose.

The approach is quite similar to Recursive DFS; however, instead of going to the maximum
depth of the current state, it keeps track of the fitness value (commonly known as f-value) of
the best alternate path. There is a limit set while choosing a state; if the current state surpasses
the limit, the recursion backtracks and determines the alternate best state. The f-values of every
state of the current path change with the best f-value of its children states while backtracking.
By updating f-values, the RBFS algorithm can decide if it is worth re-expanding the forgotten
sub-tree sometime afterward. It uses the given evaluation function in 2.1, which refers to the
path cost from the source state to the current state and refers to the estimated cheapest cost from
the current state to the goal state to expand the state or not.

In Figure 2.2 the state expansion of the RBFS algorithm with backtracking is shown. Starting
from the source state S1, the nodes are expanded according to the lowest fitness values of the
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successors, while a state expanding it remembers the second-best fitness value of the successors.
From the state S1, it expands to S3, then S7 till S8. When the expanded node n sees its child
states’ fitness are not better than the backup state’s fitness value, then it does not expand further
and start backtracking to the backup state S5 denominating as n′ from where the algorithm
continues the search to the goal state. The backup stored parent is defined using k, whereas k′ is
used to represent the discarded sub-tree whose fitness value gets updated with fitness value to
the best successor state of k′.

The space complexity of the algorithm is O(bd). The time complexity is difficult to measure as
it depends on the accuracy of the heuristic function and the frequency of the change in paths.
However, in the worst case, an asymptotic time complexity can be O(bd). Here, b is the branching
factor, and d is the maximum search depth. The pseudocode of the traditional sequential RBFS
algorithm is shown in given in Section A of the Appendix.

2.1.4 A* search and RBFS algorithm

A* search is a widely renown heuristic algorithm closely related to RBFS. It starts from the
source state and finds the route to the goal state having the minimal cost possible. It uses the
same fitness function as RBFS and maintains a tree of the paths that it has expanded. While
implementing this algorithm, it considers two different lists to store the expanded nodes: an
open list, which contains the states to expand, and a closed list, which stores the visited states to
prevent unnecessary re-expansion of the same state.

The main advantage of RBFS over the A* search algorithm is the memory usage. The RBFS
algorithm remembers only the next best favorable state, whereas, in A* search, it keeps track of
all the visited states. Consequently, A* search becomes impractical for large-scale problems due
to enormous memory requirements.

Figure 2.2: RBFS Algorithm Mechanism
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Both Algorithms work well in finding solutions to searching problems. These are complete and
optimal algorithms if the heuristics are admissible and consistent. However, RBFS has a linear
space complexity, whereas A* search is exponential like any graph-search algorithm.

2.1.5 Multi-threading

A thread is the smallest single sequential instruction within a program that the processor
can manage independently. Multiple threads operating in a single process are known as
multi-threading. The difference in the execution mode of single-threaded and multi-threaded
applications is shown in Figure 2.4. Threads enhance the possibility of managing a program
more efficiently by executing multiple tasks simultaneously. These threads share the resources
and run concurrently, making them suitable for parallel processing.

Multi-threaded processors can execute several threads concurrently by controlling those in
a single pipeline. To fulfill this operation, these processors must be able to control various
threads in parallel by using independent program counters, internal tagging mechanisms that
differentiate different threads instructions, and context-switching capability. The overhead of
context switching must be minimal to gain higher performance [3].

The advantages of multi-threading is that it enables the processor to utilize effectively its resources
which enhance performance within the limitation of the processor. Multi-threading applications
demand has increased over the years due to the expansion of multi-core processors, however
developing such programs is still challenging. The basic multi-core processor architecture is
shown in Figure 2.5. Several issues arise while designing a concurrent application such as
concurrency errors that include deadlocks and race conditions. As the execution of threads are
non-deterministic, several executions of the same multi-threaded application can lead to different
results [4].

Different high-level languages support thread implementations and provide the necessary
mechanism to develop multi-threaded applications efficiently. As there are possibilities of
concurrency problems several lock and release mechanisms are available now to enhance
parallel processing. Currently, several programming languages such as Java’s ExecutorService

Figure 2.3: Sequential and Parallel execution
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or Python’s Threading module, provides an easier platform to handle threads.

2.1.6 Sequential and Parallel Algorithms

Sequential algorithms execute the instructions steps in consecutive order to solve the problem
whereas parallel algorithms divide the problem into smaller parts that are executed in parallel
producing individual output that are merged together to produce the final result. The difference
in execution mode is shown in Figure 2.3.

Dividing large-scale problems in smaller sub problems is difficult as they might have data
dependency. Parallelization of sequential algorithms is sometimes challenging as many
sequential algorithms depend on some calculations done in the previous step, which needs
to be remembered to process further. Any sequential algorithm’s structure modifies a lot while

Figure 2.4: Single Threaded and Multiple Threaded Execution

Figure 2.5: A basic architecture diagram of a multi-core processor
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applying parallelization techniques. However, without parallelization of algorithms, the benefits
of using resources of Graphics Processor Units (GPUs) cannot be achieved. Some parallelization
techniques have shown in [5]. An example of parallel matrix multiplication has been shown to
demonstrate how parallelization can be done in a sequential algorithm. Besides, the experimental
results have presented significant improvement over the sequential approach.

Usually the complexity of the algorithms is measured by its execution time and memory
allocations. However, in parallel programming there are two other concerns:

• Communication: As parallel programming involves several processors, the communi-
cation between the processors need to be optimized to make an efficient parallel design.
There are two ways of communication: shared memory (uses locks on the data to ensure
correct message transference between processors) and message passing (uses channels
and message boxes, which occupy additional memory) Both mechanisms involve extra
overhead that need to be addressed carefully in order to get a good parallel algorithm.

• Load Balancing: the overall work/load needs to be balanced, so that all processors
involved can get the almost the same amount of work without burdening some processors
with excessive processing whereas making others sit idle.

2.1.7 Central Processing Unit (CPU) and Graphics Processing Unit (GPU)

Graphics Processor Units (GPUs) are many-core processors that can process large-scale data quite
efficiently [6]. It is designed especially for executing data in a parallel manner very efficiently.
Thus, using GPUs may reduce the computational time of many algorithms and can improve
the performance given by the traditional Computer Processor Units (CPUs) [7]. Nowadays,
practically every computer or laptop device has integrated GPUs to enhance user usability, which
influences its usage due to its higher performance. Previously, it was used for accelerating the
performance of video games that needed a high level of computational tasks. Observing the
possibility that the GPUs provide, more researchers have been interested in it in order to improve
the performance of the traditional algorithms. There have been quite a number of research works
where GPUs have been used to increase the efficiency of the traditional algorithms in recent years.
There are several frameworks as well to facilitate the GPU implementation such as Aparapi [8]
or Tornado VM for Java language binding to OpenCL [9].

CPU (Central Processing Unit) is a hardware device that acts as the brain structure of any
embedded system. It contains an ALU (Arithmetic Logic Unit) for storing data temporarily,
performing operations, and for sequencing and branching instructions it has a CU (Control Unit).
CPU also interacts with memory, input and output units for executions. Usually it contains
several cores, which are highly optimized for execution of sequential instructions. CPU is
dedicated for the performance of the operating systems and applications. It emphasizes low
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latency. CPU performs more effectively if sequential instructions are involved and requires more
memory.

GPU (Graphics Processing Unit) is hardware designed to compute using displays. It contains
thousands of cores that are more efficient than the CPU’s cores, which can handle various data at
the same time. GPU mainly handled display related data operations; used previously to render
images for video games. It emphasizes on high throughputs and performs more effectively with
parallel instructions; as well as the memory requirement is low.

In comparison with the small number of cores available in the CPUs, the thousands of cores in
GPUs provide an enormous capability of parallel programming for scientific computation.

The architecture of CPU and GPU is shown in Figure 2.6.

2.1.8 Computation Offloading

Computation offloading is an emerging research area, which mainly focuses on addressing the
limitations of the resources. The basic idea is to transfer highly intensive computational tasks to
a different processor such as a hardware accelerator (GPU) or external platform (cluster, grid or
cloud). There are several benefits of using offloading such as efficient power management, less
storage requirements and improvement on application performance.

CPUs computational tasks are executed using elementary arithmetic, control logic and
input/output operations and their performance is dependent on the instructions per seconds.
GPUs contain numerous low-performance cores and it is highly efficient than CPUs, which
contain a limited amount of cores. Keeping the CPU or main memory available to perform
different tasks without loading with highly intensive tasks and executing those in the secondary
memory or GPU have shown acceleration in the performance. There are many applications of
offloading nowadays in mobile computing, video games and cloud servicing providing enhanced
performance.

Figure 2.6: CPU and GPU Architecture
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2.1.9 CUDA and OpenCL

CUDA (Compute Unified Device Architecture) and OpenCL (Open Computing Language) are
software frameworks that allow performing general purpose computations on GPUs.

CUDA is a parallel computing platform developed by NVIDIA for programming on graphical
processing units (GPUs). Mainly, it is a programming model that utilizes GPU to speed up
different computational tasks. It provides the developers the ability to speed up highly intensive
computer programs by harnessing GPUs’ power. It is a recent technology, which was launched
in 2006 by NVIDIA developers for commercial use. It has shown significant boost up of several
applications over the years. The execution model is a GPU device is shown in Figure 2.7.

Its close competitor is OpenCL, which was launched in 2009 by Apple and the Khronos
Group. However, CUDA is still leading the performance of GPUs on highly extensive computer
applications. It can give up to 50x performance improvements over CPUs applications.

OpenCL is a cross-platform solution; OpenCl codes can be executed in any operating system
whereas CUDA codes can only be executed in a NVIDIA hardware.

At present NVIDIA technologies are stronger in the market than OpenCL. NVIDIA has provided
several resources to developers such as toolkits, libraries, etc. that make the integration of CUDA
to the programming environment more efficient. Whereas the resources of OpenCL are quite
limited compared to the existing CUDA resources.

CUDA with NVIDIA GPUs are reaching different sectors due to its high performance. Areas
such as computational finance, climate modeling, data science, deep learning and machine
learning, defense and intelligence, medical imaging are few of the significant sectors where
notable performance has achieved due to GPU usages.

Numba is a very popular library of Python that enables developers to accelerate their code and
provide features to exploit GPU architecture for parallel processing. A sample code using Numba
library’s CUDA feature is shown in in the Section B.1 of the Appendix.

2.1.10 Aparapi Framework

Aparapi (“A PARallel API”) is a parallel API build for Java language, which provides Java
binding to OpenCL. The developers of Aparapi provide a high-level API to translate parallel
works in Java without being concerned with GPU implementation details required in the backend.
However, it requires having some basic notions of GPU hardware in order to gain performance
with this API, as well as there is no need to know OpenCL language. This API will translate
the Java bytecode to OpenCL kernel dynamically at runtime that will run on GPU. Aparapi’s
source code was released with a GPL license and supported by AMD. A sample Aparapi Code
for summation of two arrays in given in n in the Section B.2 of the Appendix. There are several
studies that insights the performance enhancements achieved using Aparapi [10, 11].
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2.1.11 Tornado VM

Tornado VM [12] is a virtual machine for Java applications that exploits high-performance
heterogeneous hardware. It is a programming and execution framework that enhances java
based applications performance using multi-core CPUs, GPUs and FPGAs. It is a backend
platform for OpenCL and extends Graal JIT compiler. It allows developers to increase Java
applications performance while decrementing the consumption of energy. The idea of Tornado
VM was opted to find solutions of contemporary development problems and started as a research
project of University of Manchester. It allows Java developers execute their applications on
heterogeneous hardware without the necessity of having knowledge of parallel computing
or heterogeneous programming models. It is an open-source framework intended to support
developers to accelerate their Java programs and get the benefit of GPU hardware. The overall
execution mode is shown in Figure 2.8 and a sample code of matrix multiplication is shown in in
the Section B.3 of the Appendix.

Figure 2.7: CUDA Execution Mode

Figure 2.8: Tornado Execution
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2.1.12 JOCL

JOCL is an API that provides Java binding for OpenCL that enables developers to execute Java
applications in heterogeneous platforms containing multi-core CPUs or GPUs. It is quite similar
to the original OpenCL API. A sample JOCL code for summation of two arrays in shown in in
the Section B.2 of the Appendix, where the syntax has similarity with C language as JOCL is
just the binding to OpenCL and do not provide high level language implementation like Aparapi
or Tornado VM.

2.2 Related Works

Parallel search approaches for combinatorial optimization problems have been thoroughly studied
in [13]. In this research, different algorithms such as genetic algorithms, simulated annealing,
tabu search, and greedy randomized adaptive search procedures have been explored. Parallel
approaches as well as new heuristics for combinatorial optimization problems have been shown
that can be implemented in multi-core processors, which will reduce the computational time of
NP-hard problems.

Heuristic search algorithms have been emerging over recent years and the application of these
searches has established new areas [14]. However, some associated issues need to be dealt with
in order to expand and re-expand the states. The first problem is that the heuristics must be
admissible and consistent to minimize the expanded states. The second issue is that the tree
search algorithms grow exponentially with increasing search depth. Concerned with these issues,
an improvement framework called IBEX has been proposed in [15], which can tackle both issues
and has shown competent outcomes for A* search. There have been other works in order to
solve memory issues of A* search and proving the inconsistency of heuristic functions as well
as a proposed approach of a memory bounded A* search algorithm, which shows significant
improvement [16, 17].

A* search has been implemented using GPU and the results have shown a significant
improvement. The parallelization of this technique is achieved by using parallel queues and
for storing the states, the Cuckoo Hashing scheme has been applied. In this study, they have
shown the comparison of the sequential and parallel versions of A* search. In addition, they
have covered different areas of search such as path finding or protein design [18]. Moreover,
there are different techniques to parallelize A* search queues which have been studied in [19].

Recursive Best First Search (RBFS) has focused on in recent years. There are several works
related to RBFS. The memory limitation of the Best-first search can be solved using RBFS and
there are few different approaches related to it. Using an AND/OR search, the performance
of the traditional RBFS can be improved [20]. Recursive Best First AND/OR Search with
Overestimation (RBFAOO) defines such a possible combination in order to improve the sequential
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RBFS approach. In these algorithms, the re-expansion of internal states has been improved using
a caching scheme to avoid expanding entirely previously visited states instead of reuse partially
visited states’ information.

RBFS with Controlled Re-expansion is another approach to control the regeneration of the state
of RBFS by using a histogram to store the currently explored path for every state, which is also
propagated to the parent states while backtracking [21]. Searching for the nearest neighbor in a
query set is one of the major concerns for data analytic studies due to the large-scale data present
in the query set. Therefore, a massive parallel calculation may accelerate this process. Having
this concern, in [22] some researchers have studied the use of GPUs for finding nearest neighbor
queries. Their approach consists of combining k-d trees and GPUs for searching the nearest
neighbor; the basic idea is to process the same leaf queries in batches. The results of this study
have shown improvement in computational time besides their proposed methodology can be
applied for different type tree structures as well. Using heap structure for k-nearest neighbor
(kNN) search has been also studied in [23] by using both CPU and GPU architectures which
have shown significant performance. Another study on kNN using the brute-force approach has
been shown in [24].

Uninformed searches also benefit from using parallel techniques. The scalability of random
graphs with more than one billion edges and vertices has been shown using parallel distributed
breadth-first search (BFS). This approach uses 2D (edge) partitioning of the graph and has been
tested in IBM BlueGene/L, which has demonstrated extensibility in very large-scale random
graphs [25, 26].

Constraints Optimization Problems using Dynamic Programming exploring massive in a parallel
manner have been studied in paper [27]. In this study, the constraints optimization problems have
been solved by combining Bucket Elimination and Distributed Constraint Optimization Problems
to achieve parallelism such that the use of GPU resources can be maximized. The experimental
results have shown that using GPUs shows notable advantages in computational time. Another
constraint optimization problem, Large Neighborhood Search using GPUs has been studied
in [28]. In this study, both CPU and GPU versions of four problems (the transportation problem,
the traveling salesman problem, the knapsack problem, and the coins grid problem) have been
thoroughly explored, which have shown a notable speed up in the computational time while
increasing the input size of the problem.

In paper [29], the researchers have compared CPU implementation with GPU implementation of
traveling salesman problem using 2-opt and 3-opt local search heuristics. Their study shows a
notable increment in the computation of the searching problem using GPU resources. Also, it
demonstrated a different level of parallelization techniques in order to maximize the use of GPU
resources.

Genetic Programming is another area where using GPUs has shown great results. Many genetic
programming applications can use GPUs in order to solve real-life problems [30, 31]. The
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crossover, mutation, and fitness calculation will be running in a parallel manner where the
selection process will be the main executor, which will synchronize the rest of the running
parallel executions. This scheme is known as the Master-slave model, where the selection
process is the master process, and the rest are slave processes.

Game theory is another crucial area of AI, which mainly focuses on reinforcement learning in
multi-agent systems. Parallel approaches can be applied in game theory as well. Alpha-beta
algorithm is one of the oldest known AI algorithms used in search game trees. There have been
various attempts to speed up the searching process of the Alpha-beta pruning algorithm, and it
has shown that parallel approaches are more beneficial in strongly ordered trees. Using Principal
Variation (PV) – splitting algorithm with Alpha-beta purring has shown notable efficiency in
searching among all the parallel versions [32].

There are many other applications of GPU in varieties of fields, such as a novel approach
of Concurrent Constraint Programming on GPU has been shown in [33], which exploits the
parallelism offered by GPUs for concurrent programming, which was principally designed
for sequential computation. Moreover, IoT (Internet of Things) devices have also shown a
performance gain using GPUs. In paper, [34], a solution for cryptographic operations for secure
communications and authentications between edge computing nodes on embedded GPU devices
has shown notable performance.

Another notable GPU computation achievement on domain propagation has been shown in the
paper [35]. The proposed GPU-based algorithm for mixed-integer programming (MIP) problem
for sparse matrices demonstrated significant performance results.



Chapter 3

Proposed Model

This section presents the proposed model, methodologies, and parallel algorithm used in this
research work. In addition, some implementation details along with some properties of the
parallel algorithm have been described.

3.1 Problem Formulation

To formulate the problem, we assume that the RBFS algorithm will have a source state S from
which a goal state G needs to be reached. It can have multiple ways to reach the goal state but
there will be only one optimal path. There will always be multiple states from where to choose
to continue the search, however the selected one will always have the minimum fitness value
possible. The fitness will be based on two different parameters: an estimated value from the
current node to the goal state, known as h(n) and the current traversed path, known as g(n),
where n is the corresponding node. The amount of time required for the search depends on the
state’s displacements; the further the state’s values are from its positions of the goal state values,
the more time will be needed.

Considering the enormous powerfulness of GPUs, it has been one of the most pioneer
technologies for modern science. GPUs are used nowadays to minimize the task load of
several algorithms in different sectors. In this research work, the main objective is achieving the
increment in the computational speed of the RBFS algorithm using parallel computation through
the GPU.

The proposed model is a shared memory based algorithm and it uses multithreading in the
parallel approach for non-GPU based architectures. Multithreading is better than multiprocessing
because threads have light overhead which runs faster than processes which makes those more
efficient. RBFS is an algorithm that relies on the searching path states values and these values
needs to be taken in count in order to progress the search, which means it requires a sort of
communication using some kind of shared memory. In order to gain performance, it must

18
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ensure that the selected nodes for exploration are not determined without checking the previous
explored states. Overall, RBFS is an algorithm that cannot run independently without having the
knowledge of the previous states; it cannot choose the next one and requires knowledge from
the environment for successful completion. Therefore, without independent parts a distributed
algorithm will not be a great approach to consider.

3.2 System Model

The flow chart of the proposed system is shown in Figure 3.1. The proposed model is designed
in such a way that the computational speed of the RBFS algorithm can be increased. In addition,
it proposes a parallel approach of designing a sequential algorithm.

At the beginning, the RBFS function is called with a particular source state, goal state and a
bound value. Subsequently, children of the source state will be generated, whose fitness value
will be calculated using parallel processing. That is, different threads will be generated according
to the number of branches a particular source state has (i.e., considering each child node as a
new source state of the problem to reach the goal state).

Consequently, median value will be calculated based on the fitness values of the children as well
as duplicate nodes will be removed from the children list. Among all the children, those who
are most fitted according to the median value will be selected for being the new source and the
RBFS algorithm will be called again in a parallel way using most fitted children as sources.

3.3 Methodology

This section outlines the methodology to design the proposed parallel RBFS has been explained
in detail. Overall, the proposed parallel RBFS consists of four essential parts:

• Parallel Heuristic Calculation

• Duplicate State Pruning

• Choosing Best-Fitted States

• Parallel RBFS Calling

3.3.1 Parallel Computation of the Heuristics Functions

Calculating the heuristic functions is sometimes expensive in different applications and becomes
the overall barrier for the algorithm performance. Independent calculation of the heuristic
functions can overcome this issue. Therefore, for parallelizing the RBFS algorithm and being
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Figure 3.1: Flow Diagram of the Proposed System Model.

able to use GPU resources, the first step to consider is the parallel calculation of the heuristic
function. As the calculation of the heuristic function is mutually independent for each state of
the problem, its parallelization is unequivocal. In Figure 3.2 shows the fitness calculation of a
source state having three child states in which their heuristic values are calculated in parallel
manner.

3.3.2 Pruning Duplicate States

In the parallel RBFS algorithm, it is possible that it will try to visit the same state several times.
If the duplicate state does not have better fitness value than the backup value then it is not worthy
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Figure 3.2: Parallel Fitness Calculation

to expand the state. To avoid the expansion of already explored states, these are pruned in such a
way that the algorithm can speed up its computation.

Depending on different applications of the algorithm, the node duplication techniques might
vary. However, in RBFS algorithm all the explored nodes are not necessarily kept in memory
like A* search instead of that only the next best state fitness value is remembered as backup
value, which is passed along the explored tree path and unwinds to the backup state if the limit
condition breaks.

Figure 3.3: Exponential Search Space

Running the RBFS in a parallel way in GPU is required to call the RBFS function several times
which may lead to try to expand the same state more than once, that is, leading to unnecessary
expansions. Therefore, it is necessary to identify the states already explored, which can be easily
achieve by storing the states in a data structure. However, for problems with exponential search
space shown in Figure 3.3 which will not be feasible to have a pre-allocated structure.

Node duplication technique requires having a data structure that will support both insert, search
and delete operations. The insert operation appends a state to the data structure. The search
operation finds out if a particular state has been stored or not in the data structure, it returns true
if the state exists in the data structures, otherwise returns false. The delete operation simply
removes a state from the data structure when its fitness value becomes infinity, which indicates
an unreachable state condition.
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As the RBFS algorithm does not store all the possible nodes to expand in memory, there is no
issue with the memory constraint on this algorithm. The duplicate nodes can be managed simply
by using an array list or hash structure. However, handling insert, delete and search operations in
GPU for parallel processing can be difficult. Since RBFS algorithm does not suffer of memory
constraint like A* search algorithm, the parallelization of this operation is not needed for the
majority of problems. However, if the parallelization is needed, Parallel Cuckoo Hashing can be
used [Pagh and Rodler 2001]. This parallelization technique will ensure that all duplicate nodes
are detected correctly and can be implemented in GPU even though its implementation is a bit
difficult due to the architectures of GPU devices.

In Figure 3.4 few duplicate states pruning are shown. In the first diagram (a), S1 is a duplicate
state from S4, therefore, this path is not considered and entire sub-tree after S4 is pruned. In the
diagram (b), S9 has been already explored by S2. Hence, S9 will be pruned and it will not be
expanded from S7. In the last diagram (c), S4 will be pruned from S5 as it has already been
explored from S1.

Figure 3.4: Pruning Duplicate States

3.3.3 Choosing Best Fitted Child States

Each source state generates several child states each having different paths that can lead to the
desired goal state. However, not all the paths are suitable to follow and some may lead to a dead
end, which will imply wastage of the resources. Choosing the best state is already difficult and
where we have several options then it has become a puzzle for the algorithm. Finding the best
ones among all the generated child states is very important, as it will be one of the performance
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keys of the algorithm. In the traditional RBFS algorithm, the best state is the state that contains
the lowest fitness value among all the child states. In the parallel approach, there is a need to
choose more than one child to call RBFS several times concurrently. This approach needs to be
handled carefully as it is possible to choose all the states in a parallel way, which may not need
to be considered for expansion. There are several reasons that can be considered in terms of not
choosing all the child states; some child states can be a misleading path and it cannot reach the
goal state as well as some might have higher fitness value than the allowed limit. Moreover, the
device resources will be unmanageable for larger search space of a problem in addition to the
waste involved in exploring unreachable states.

Focusing on all these constraints, to choose the best-fitted child states median approach has been
used. There are several reasons for using the median approach. Firstly, extreme outliers of the
data do not affect the median value, thus, the states containing larger fitness values will not be
selected automatically. Secondly, the median value ensures that at least one case will remain
optimal and that state will lead to the goal state. In addition, it is a robust estimator that cannot
lead to wrong selection as it will always provide a sub-optimal set of states.

There is a possibility to choose the best-fitted states using the mean value of the children’s fitness
values. However, there is a chance that it will choose more states than the median approach as
the mean value is highly affected by outliers, thus, it might lead to unnecessary state expansions
which might not lead to improve the performance significantly.

Some states have heuristic values that adding to the path values may give smaller fitness values
while looking at the current state however in the searching process it may not lead to the goal
state, thus, potential states must be also considered for expansion. The potential states among all
the states can be chosen by using the median function. The median is calculated in such a way
that only the potential states are chosen for expansion. For finding the median value, the fitness
values of the children are sorted in ascending order and the median of these values are calculated.
The child states that have fitness value less than the median value are considered to be the most
fitted child, that is, the potential states to be explored.

Some of the best-fitted states selection are shown in the Figure 3.5. The states are chosen based
on their fitness values and median value. If the fitness of the state is less than the median value
then it is selected as best fitted state. The median value of the successors of S1 is 13 as only S2
has fitness lower value than the median value, only that particular state has chosen as the fitted
one. The median value of the successors of S3 is 15.5, therefore S5, S6 and S7 are chosen as
best fitted ones as they have lower value than the median value. Consequently, the median of S7
is 16, so states S11, S12, S15, S18 and S20 are chosen.
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Figure 3.5: Best-fitted states

3.3.4 Parallel RBFS Execution

By incorporating parallel fitness calculation, a simple parallel algorithm is achieved, which does
not significantly increase the computational speed of the RBFS algorithm. The main issue with
the parallel fitness calculation is that it has a limitation as it depends on the outer degree of each
state in the search tree. Moreover, in many applications the outer degree of states is quite low,
thus fitness calculations, cannot be benefited by the GPU execution. As GPUs contain thousands
of cores, by doing simple fitness calculations on GPU, its performance is inefficient. This simple
algorithm has not been parallelized fully; there are too many sequential parts on it, which can
break down the GPU architecture performance. Sequential operations are highly inefficient on
GPU hardware and might perform worse in comparison with CPU executing single threaded
applications. In order to increase the degree of parallelism in the RBFS algorithm, multiple
calling of the recursive algorithm can be done using different sources in such a way that it will
boost up its searching performance. By executing multiple states with different sources will
increase the parallelism degree of the fitness calculation as multiple states will concurrently
calculate the fitness value of their child states.

However, executing all the possible states may lead to unnecessary expansion creating wastage of
the computational resources. Therefore, each time only the most fitted states will be used as new
sources for parallel calling of the recursive algorithm. To gain the maximum performance, most
promising states are selected according to the median value obtained from all the child states’
fitness values. Each state will be treated as a new parallel execution of RBFS independently with
limit value infinite as if it was the first call of the algorithm. Few states selection as new sources
is shown in Figure 3.6.

In the proposed algorithm (GRBFS), each time multiple child states will be selected for being
the new source of execution of the parallel GRBFS, thus, parallelizing the traditional algorithm.



3.3. METHODOLOGY 25

In addition, it increases the number of states expansion, improving the degree of parallelism of
fitness calculation of child states. The overall proposed model has been depicted in Figure 3.7,
where initial three algorithm calling state has been taken in count to show the degree of parallelism
of the model.

Figure 3.6: Parallel GRBFS sources

Figure 3.7: Parallel Approach

3.3.5 Algorithm: GRBFS

In this section the algorithm of the proposed parallel RBFS (GRBFS) model has been described;
highlighting the parallel calculations that accelerate the performance of the model over the
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traditional sequential RBFS algorithm. The overall space complexity of the algorithm remains
the same as the sequential RBFS algorithm and time complexity with the parallel approach
will depend on the number of parallel execution with branching factor b alogn with the
maximum search depth d. The probabilistic time complexity of the proposed GRBFS is
O(lognumber of parallel execution or threads b

d)
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Algorithm 1 Parallel RBFS on GPU
1: Let tree be the data container containing the created states
2: Let vs be the data container containing the expanded states
3: procedure GRBFS(s, g, b) ▷ Find the shortest path from s to g with b bound value
4: if s = g then return the path (solution)
5: end if
6: add source to the tree if it doesn’t exist already
7: create child states from the source state
8: for each child of the source do
9: add the child to the tree if it doesn’t exist already

10: if child already exists then
11: Ignore
12: end if
13: end for
14: Let F be the data container containing fitness values
15: for each child of the source do
16: calculate fitness value ▷ Call in parallel
17: store the values in F
18: end for
19: median← median value among all the fitness values
20: for each child i of the source do
21: if fitness value of the child i < median then
22: if the child i is not in vs then ▷ Checking for duplicate states
23: add it the vs
24: GRBFS(i, g, infinity) ▷ Call in parallel (source is the child)
25: end if
26: end if
27: end for
28: loop
29: if children size is ≥ 2 then
30: min← best state from all the child states
31: first← best child fitness value
32: second← second best child fitness value
33: if first > limit then
34: source fitness value← first return failure
35: else
36: lim← minimum value between second and limit
37: GRBFS(i, g, lim)
38: end if
39: else if children size is = 1 then
40: if fitness value of child > limit then
41: source fitness value← child fitness value return failure
42: else
43: GRBFS(child, goal, limit)
44: end if
45: else
46: source fitness value← infinity return failure
47: end if
48: end loop
49: end procedure
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Simulation Results

In this section, we have analyzed the proposed method from various aspects to evaluate its
performance. At first, all the problem domain is defined along with the required constraints.
Then, the simulation process is described. At last, the evaluation of the results are analyzed.

4.1 Sliding Puzzle

Sliding puzzle or N-puzzle problem is one of the classical problems that has been used to
test search techniques. It has been used mostly to test the performance of heuristic search
algorithms. There have been several researches focused on the evaluation of the sliding puzzle
performance using traditional sequential algorithms as well as artificial intelligence algorithms
such as breadth-first search and A* search. The number of states in an N-puzzle is equal to
the factorial of the number of tiles. Sliding puzzle consists of a square board with numbers in
tiles. There are different types of N-puzzles: 8-puzzle, which consists of 3x3-board size with 1
to 8 numbers, 15-puzzle that consists of 4x4-board size with 1 to 15 numbers, and 24-puzzle,
which consists of 5x5-board size. The board also contains a blank tile for sliding the tiles. In this
puzzle, a tile is slid to the blank tile position at each step until it reaches to the goal state. The
possible movements for the tiles are UP, DOWN, RIGHT and LEFT, that is, it can be moved
horizontally or vertically to the blank tile position but not diagonally. Solving these puzzles
manually is quite challenging and its state space is large. For 8-puzzles the state space is more
than 105 nodes, for 15-puzzles is about 1013 nodes and lastly, for 24-puzzles is about 1025 nodes.
The larger the board size turns into, the solution of the puzzle becomes more complicated and
challenging. Figure 4.1 shows an arbitrary 8-puzzle instance and Figure 4.4 shows an arbitrary
8-puzzle instance solution, which can be found in 3 steps using an heuristic search algorithm.
Figure 4.2 shows an arbitrary 15-puzzle problem instance with its corresponding goal state.

There are several heuristics used for solving N-puzzles, however the performance of the solution
highly depends on the heuristic applied. The admissibility of the heuristic must also be accounted.

28
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Figure 4.1: 8-Puzzle State

Figure 4.2: 15-Puzzle State

A heuristic function h(n) is admissible only if h(n) is never larger than h ∗ (n), particularly h(n)

is always less or equal to true minimum cost from any node n to the goal state.

Most of the implementations of sliding puzzles use misplaced tiles or hamming distance (count
the number of tiles that are not in the correct position) as heuristic given in Equation 4.1.
However, this heuristic failed to solve the puzzle in a reasonable amount of time, as it’s execution
is significantly slow.

h1(n) = number of misplaced tiles (4.1)

The most sophisticated heuristic is Manhattan Distance (MD), which is the sum of the vertical
and horizontal distance in absolute terms between the current tile to the goal state position
given in Equation 4.2. This heuristic is far better than misplaced tiles because it provides
greater execution speed as it can choose the states more accurately and in addition to that state
exploration rate is less than hamming distance.

h2(n)+ = abs(xvalue − xgoal) + abs(yvalue − ygoal) (4.2)

LC =

1, linear conflict exists

0, otherwise
(4.3)
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Figure 4.3: 8-Puzzle Heuristics

fi =
N−1∑
i=1

MD(ti) + 2× LC(ti) (4.4)

Even though Manhattan Distance heuristic is the most commonly used due to its admissibility.
However, to gain speed-up in the searching performance it is combined with another permissible
heuristic known as linear conflict heuristic [36]. This heuristic considers that if two tiles are
misplaced in the same row and their positions in the goal state is the same row, it will add two
moves to the Manhattan Distance between these two tiles; the function is given in Equation 4.3
and 4.4 where N refers to the size of the puzzle and ti is ith tile. An arbitrary 8-puzzle heuristic
calculation according to given goal state is shown in Figure 4.3.

4.2 Experimental Setup

The RBFS algorithm has been evaluated in 20 different instances of 8-puzzle using Manhattan
Distance Heuristic and 13 different instances of 15-puzzle using Manhattan Distance with Linear
Conflict Heuristics in three different approaches: sequential approach, parallel approach without
GPU and parallel approach with GPU for their performance shown in the simulation results
section. The puzzle instances have been collected from several research works [37, 38] and some
online puzzle solvers.

The problem has been solved using two different languages: Java and Python. For parallel
approach concurrent threads have been used in both languages. For GPU implementation, in Java
Aparapi framework has been considered and for python implementation CUDA programming
with JIT has been used from the Numba library.

Simulations of Java were tested on Intel Core i7 with 16 GB RAM NVIDIA GeForce GT 710
with 10 GB RAM 192 CUDA cores has been used.

Python simulations were executed on Intel(R) Xeon(R) CPU @ 2.20GHz with 13 GB RAM and
NVIDIA Tesla K80 GPU with 13 GB RAM and 4992 cores has been used.
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Figure 4.4: 8-Puzzle Solution

4.3 Experimental Results

In this section, we have analyzed the proposed method in the sliding puzzle using three different
implementations: sequential or traditional RBFS, parallel RBFS without GPU and parallel RBFS
with GPU and compare their performances.

In addition, GPU performance has been evaluated using two different approaches: CUDA for
python based implementation and Aparapi framework for Java based implementation.

In these experiments, GPU architecture has been fully exploited due to multiple degrees of
parallelism of the designed algorithm.

4.3.1 Sequential RBFS Algorithm Performance

Table 4.1 and Table 4.2 show the time and memory required for the traditional recursive best first
search to reach the goal state from the given source state for 8-puzzle and 15-puzzle respectively.
The time is shown in milliseconds (ms) and memory details are given in Megabytes (MB). In
addition, the specific source and goal states are given along with the optimal steps required
to solve these sliding puzzles. For all 15-puzzle instances the goal state used is given in the
Figure 4.2.
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Table 4.1: Sequential 8 Puzzle RBFS results

Sl. Source State Goal State Number
of Steps

Time (ms) Memory
Required (MB)

1 123046758 123456780 3 6.59 815
2 283104765 123804765 4 5.84 789
3 283164705 123804765 5 7.25 808
4 134862705 123804765 5 10.92 780
5 134805726 123804765 6 4.49 779
6 281043765 123804765 9 37.12 821
7 162573048 123456780 10 25.66 816
8 035428617 012345678 10 21.35 778
9 281463075 123804765 12 51.54 794
10 328451670 012345678 12 142.34 788
11 231708654 123804765 14 332.13 820
12 641302758 012345678 14 1245.30 788
13 725310648 012345678 15 854.41 818
14 231804765 123804765 16 3843.50 815
15 412087635 123456780 17 1526.34 816
16 102754863 012345678 23 212877.43 824
17 876105234 012345678 28 1196691.58 827
18 567408321 123804765 30 44543.67 832
19 806547231 012345678 30 5503295.74 841
20 867254301 123456780 31 4676010.36 860

Table 4.2: Sequential 15 Puzzle RBFS results

Sl. Source State Number
of Steps

Time (ms) Memory
Required (MB)

1 1 2 3 4 5 6 7 8 0 10 11 12 9 13 14 15 4 6.39 813
2 1 2 3 4 5 10 6 7 9 11 0 8 13 14 15 12 6 24.7 823
3 1 3 4 8 6 2 7 0 5 10 11 12 9 13 14 15 10 87.37 812
4 1 3 4 8 6 2 0 7 5 10 11 12 9 13 14 15 11 165.51 811
5 1 3 4 8 6 0 2 7 5 10 11 12 9 13 14 15 12 227.97 814
6 1 3 4 8 6 10 2 7 5 0 11 12 9 13 14 15 13 263.88 813
7 5 1 2 4 6 10 3 7 0 14 12 8 9 13 11 15 14 263.72 813
8 1 7 2 0 9 5 3 4 6 10 12 8 13 14 11 15 15 510.87 813
9 0 2 11 3 1 6 7 4 5 9 12 8 13 10 14 15 16 621.69 813
10 1 2 6 0 5 10 4 3 14 7 11 8 9 13 15 12 17 1292.66 821
11 1 6 2 3 5 12 7 4 10 13 15 8 9 0 14 11 20 1038.96 817
12 5 1 4 8 2 6 7 3 13 9 11 0 10 14 15 12 21 143796.1 823
13 5 1 0 4 7 3 2 8 9 15 14 11 6 13 10 12 22 197998.38 822



4.3. EXPERIMENTAL RESULTS 33

Table 4.3: Parallel 8 Puzzle RBFS without GPU

Sl. Source State Goal State Number
of Steps

Time (ms) Memory
Required (MB)

1 123046758 123456780 3 11.13 787
2 283104765 123804765 4 8339.87 812
3 283164705 123804765 5 11.66 811
4 134862705 123804765 5 12.48 796
5 134805726 123804765 6 5.64 795
6 281043765 123804765 9 58.86 811
7 162573048 123456780 10 42.91 787
8 035428617 012345678 10 15.47 795
9 281463075 123804765 12 250.06 794
10 328451670 012345678 12 10585.37 808
11 231708654 123804765 14 508.35 812
12 641302758 012345678 14 4697.18 806
13 725310648 012345678 15 74.97 803
14 231804765 123804765 16 450.5 811
15 412087635 123456780 17 1658.18 790
16 102754863 012345678 23 4215.85 810
17 876105234 012345678 28 4786.15 811
18 567408321 123804765 30 35022.16 810
19 806547231 012345678 30 134470.85 816
20 867254301 123456780 31 7452.98 791

4.3.2 Parallel RBFS Algorithm without GPU Performance

The Table 4.3 and Table 4.4 show the time and memory required for the parallel recursive best
first search to execute using multiple threads in a CPU platform to reach the goal state from the
given source state for 8-puzzle and 15-puzzle respectively. The time is shown in milliseconds
(ms) and memory details are given in Megabytes (MB). In addition, the specific source and goal
states are given along with the optimal steps required to solve these sliding puzzles. For all
15-puzzle instances the goal state used is given in the Figure 4.2.

4.3.3 Parallel RBFS Algorithm with GPU Performance

The Table 4.5 and Table 4.6 show the time and memory required for the parallel recursive best
first search to execute using multiple cores in a GPU platform to reach the goal state from the
given source state for 8-puzzle and 15-puzzle respectively. The time is shown in milliseconds
(ms) and memory details are given in Megabytes (MB). In addition, the specific source and goal
states are given along with the optimal steps required to solve these sliding puzzles. For all
15-puzzle instances the goal state used is given in the Figure 4.2.
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Table 4.4: Parallel 15 Puzzle RBFS without GPU

Sl. Source State Number
of Steps

Time (ms) Memory
Required (MB)

1 1 2 3 4 5 6 7 8 0 10 11 12 9 13 14 15 4 478.9 786
2 1 2 3 4 5 10 6 7 9 11 0 8 13 14 15 12 6 647.72 794
3 1 3 4 8 6 2 7 0 5 10 11 12 9 13 14 15 10 178.67 790
4 1 3 4 8 6 2 0 7 5 10 11 12 9 13 14 15 11 835.2 801
5 1 3 4 8 6 0 2 7 5 10 11 12 9 13 14 15 12 2537.12 791
6 1 3 4 8 6 10 2 7 5 0 11 12 9 13 14 15 13 768.94 788
7 5 1 2 4 6 10 3 7 0 14 12 8 9 13 11 15 14 2894.4 789
8 1 7 2 0 9 5 3 4 6 10 12 8 13 14 11 15 15 495.21 795
9 0 2 11 3 1 6 7 4 5 9 12 8 13 10 14 15 16 136.56 787
10 1 2 6 0 5 10 4 3 14 7 11 8 9 13 15 12 17 1291.11 793
11 1 6 2 3 5 12 7 4 10 13 15 8 9 0 14 11 20 330.58 796
12 5 1 4 8 2 6 7 3 13 9 11 0 10 14 15 12 21 25605.76 798
13 5 1 0 4 7 3 2 8 9 15 14 11 6 13 10 12 22 12488.43 794

Table 4.5: Parallel 8 Puzzle RBFS in GPU

Sl. Source State Goal State Number
of Steps

Time (ms) Memory
Required (MB)

1 123046758 123456780 3 29.19 969
2 283104765 123804765 4 10970.8 969
3 283164705 123804765 5 43.7 975
4 134862705 123804765 5 49.13 960
5 134805726 123804765 6 26.06 960
6 281043765 123804765 9 158.17 976
7 162573048 123456780 10 124.54 969
8 035428617 012345678 10 58.47 946
9 281463075 123804765 12 553.44 961
10 328451670 012345678 12 13947.53 953
11 231708654 123804765 14 864.97 977
12 641302758 012345678 14 6732.16 953
13 725310648 012345678 15 174.37 965
14 231804765 123804765 16 770 976
15 412087635 123456780 17 2386.98 972
16 102754863 012345678 23 4967.63 972
17 876105234 012345678 28 6103.33 973
18 567408321 123804765 30 36716.5 955
19 806547231 012345678 30 137243.61 974
20 867254301 123456780 31 8750.51 987
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Table 4.6: Parallel 15 Puzzle RBFS in GPU

Sl. Source State Number
of Steps

Time (ms) Memory
Required (MB)

1 1 2 3 4 5 6 7 8 0 10 11 12 9 13 14 15 4 733.1 939
2 1 2 3 4 5 10 6 7 9 11 0 8 13 14 15 12 6 968.36 971
3 1 3 4 8 6 2 7 0 5 10 11 12 9 13 14 15 10 332.86 940
4 1 3 4 8 6 2 0 7 5 10 11 12 9 13 14 15 11 1215.26 938
5 1 3 4 8 6 0 2 7 5 10 11 12 9 13 14 15 12 3550.5 938
6 1 3 4 8 6 10 2 7 5 0 11 12 9 13 14 15 13 1162.67 939
7 5 1 2 4 6 10 3 7 0 14 12 8 9 13 11 15 14 3816.53 937
8 1 7 2 0 9 5 3 4 6 10 12 8 13 14 11 15 15 781.83 937
9 0 2 11 3 1 6 7 4 5 9 12 8 13 10 14 15 16 254.31 940
10 1 2 6 0 5 10 4 3 14 7 11 8 9 13 15 12 17 1846.21 950
11 1 6 2 3 5 12 7 4 10 13 15 8 9 0 14 11 20 552.61 947
12 5 1 4 8 2 6 7 3 13 9 11 0 10 14 15 12 21 28615.11 952
13 5 1 0 4 7 3 2 8 9 15 14 11 6 13 10 12 22 15107.66 970

4.3.4 States Expanded in Sequential and Parallel RBFS Algorithm

In parallel approach, the number of nodes expanded is comparatively lesser than the sequential
approach. The most potential states are explored in a parallel manner by selecting several states
at the same time among which the most successful states are determined faster in the parallel
version; whereas in the sequential approach after successive backtracking it go to the desired
states and it requires more time and longer exploration as reaching to the successful state which
can lead to the goal state as the selection varies depending on the heuristic function and explored
path. Moreover, in a sequential approach only one state is explored at a time whereas in a parallel
approach several states are considered simultaneously.

The Table 4.7 and Table 4.8 show the number of nodes expanded by the traditional recursive best
first search and parallel recursive best first search to reach the given goal state from a specific
source state as well as illustrates the optimal steps required to reach the goal state for 8-puzzle
and 15-puzzle instances respectively.

4.3.5 Aparapi Performance on Parallel RBFS

The Table 4.9 shows the time and memory required for the parallel recursive best first search
execution in a CPU platform using Java and parallel recursive best first search using Aparapi
framework to execute using multiple cores in a GPU platform to reach the goal state from the
given source state. The time is shown in milliseconds (ms) and memory details are given in
Megabytes. In addition, the specific source and goal states are given along with the optimal steps
required to solve these sliding puzzles. Only 8-puzzle instances have been tested in Aparapi due
to its slow performance no further testing was continued.
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Table 4.7: 8 Puzzle States expansion

Sl. Source State Goal State Number
of Steps

Total Nodes
(Sequential)

Total Nodes
(Parallel)

% improvement

1 123046758 123456780 3 21 21 No improvement
2 283164705 123804765 5 20 26 -30%
3 134862705 123804765 5 19 30 -57.89%
4 134805726 123804765 6 16 16 No improvement
5 281043765 123804765 9 62 83 -33.87%
6 162573048 123456780 10 49 69 -40.82%
7 035428617 012345678 10 45 35 22.22%
8 281463075 123804765 12 87 202 -132.18%
9 231708654 123804765 14 218 279 -27.98%
10 725310648 012345678 15 319 94 70.53%
11 231804765 123804765 16 682 255 62.61%
12 102754863 012345678 23 5325 862 83.81%
13 876105234 012345678 28 13046 913 93%
14 567408321 123804765 30 2879 2401 16.6%
15 806547231 012345678 30 30848 4977 83.87%
16 867254301 123456780 31 30848 1224 96.03%

Table 4.8: 15 Puzzle States expansion

Sl. Source State Number
of Steps

Total Nodes
(Sequential)

Total Nodes
(Parallel)

% improvement

1 1 2 3 4 5 6 7 8 0 10 11 12 9 13 14 15 4 25 229 -816%
2 1 2 3 4 5 10 6 7 9 11 0 8 13 14 15 12 6 75 270 -260%
3 1 3 4 8 6 2 7 0 5 10 11 12 9 13 14 15 10 125 123 1.6%
4 1 3 4 8 6 2 0 7 5 10 11 12 9 13 14 15 11 157 328 -108.92%
5 1 3 4 8 6 0 2 7 5 10 11 12 9 13 14 15 12 150 644 -329.33%
6 1 3 4 8 6 10 2 7 5 0 11 12 9 13 14 15 13 166 322 -93.98%
7 5 1 2 4 6 10 3 7 0 14 12 8 9 13 11 15 14 261 697 -167.1%
8 1 7 2 0 9 5 3 4 6 10 12 8 13 14 11 15 15 292 232 20.55%
9 0 2 11 3 1 6 7 4 5 9 12 8 13 10 14 15 16 440 99 77.5%
10 1 2 6 0 5 10 4 3 14 7 11 8 9 13 15 12 17 396 403 -1.77%
11 1 6 2 3 5 12 7 4 10 13 15 8 9 0 14 11 20 410 185 54.88%
12 5 1 4 8 2 6 7 3 13 9 11 0 10 14 15 12 21 6058 1988 67.18%
13 5 1 0 4 7 3 2 8 9 15 14 11 6 13 10 12 22 1994 1392 30.19%

4.4 Analysis and Comparison of results

To analyze and compare the effectiveness of the proposed model, it has been tested with state of
art from various aspects. At the beginning, we compared the computational time of different
sliding puzzles, incrementing gradually the required number of steps to solve those between three
different implementations: sequential, parallel in CPU platform and parallel in GPU platform.
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Table 4.9: Aparapi Performace

Sl. Source Goal Number Parallel Aparapi
State State steps Time (ms) Memory (MB) Time (ms) Memory (MB)

1 123046758 123456780 3 3.74 0.6 810.36 3.36
2 283164705 123804765 5 4.56 0.61 831.8 3.36
3 725310648 012345678 15 6.92 0.68 31927 4.06
4 231804765 123804765 16 16.56 0.91 122736 5.46
5 876105234 012345678 28 355.15 2.79 928461.33 14.32
6 867254301 123456780 31 328.94 2.65 1663163.56 13.82

Figure 4.5: Computation Time of 8-Puzzle instances with small optimal steps

Even though, it is impractical to port an algorithm designed for CPU to a GPU platform, as GPU
architecture is quite different and operates in a different way than CPU. The parallel approach in
CPU will be similar to parallel approach in GPU even though GPUs require some initial setup,
which consumes some time; however, for large-scale calculations it will definitely outperform
the CPU performance.

The Table 4.10 summarizes the different computational times of the same puzzle instances
executing in various platforms. It can be visualized that increasing the number of steps required
to solve the puzzle instances, the sequential approach required time is significantly higher that
parallel approaches in both CPU and GPU platform even though for small steps the parallel
approach do not perform well compare to the sequential approach.

In the Figure 4.5 shows the computational time required for different approaches to solve the
8-puzzle instances whose optimal required steps are quite low, thus the sequential approach is
performing a way better than the parallel approaches.
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Table 4.10: Computation Time Analysis

Sl. Puzzle
Size

Number
of Steps

Sequential
Time (ms)

Parallel in
CPU Time
(ms)

Parallel in
GPU Time
(ms)

speed-up of
parallel in
CPU over
sequential

speed-up of
parallel in
GPU over
sequential

1 8 3 6.59 11.13 29.19 0.6x 0.21x
2 8 10 25.66 42.91 124.54 0.21x 0.09x
3 8 12 51.54 250.06 553.44 0.21x 0.09x
4 8 14 332.13 508.35 864.97 0.65x 0.38x
5 8 15 854.54 74.97 174.37 11.4x 4.9x
6 8 16 3843.5 450.49 770 8.53x 4.99x
7 8 23 212877.43 4215.85 4967.63 50.49x 42.85x
8 8 28 1196691.58 4786.15 6103.33 250.03x 196.07x
9 8 31 4676010.36 7452.98 8750.51 627.40x 534.37x
10 15 4 6.39 478.9 733.1 0.01x 0.01x
11 15 10 87.37 178.67 332.86 0.49x 0.26x
12 15 11 165.51 835.20 1215.26 0.20x 014x
13 15 13 263.88 768.94 1162.67 0.34x 0.23x
14 15 15 510.87 495.21 781.83 1.03x 0.65x
15 15 17 1292.66 1291.11 1846.21 1x 0.7x
16 15 20 1038.96 330.58 552.61 3.14x 1.88x
17 15 21 143796.1 25605.7 28615.11 5.62x 5.03x
18 15 22 197998.38 12488.43 15107.66 15.85x 13.11x

In the Figure 4.6 shows the computational time required for different approaches to solve the
8-puzzle instances which optimal required steps are higher. Hence, the difficulty of the puzzle is
increasing. Here, the sequential approach is performing worse than the parallel approaches on
GPU and without GPU maintaining a steady computational time.

In the Figure 4.7 shows the computational time required for different approaches to solve the
5-puzzle instances which required steps are increasing. Hence, the difficulty of the puzzle is
higher. Here, the sequential approach is performing worse than the parallel approaches on GPU
and without GPU maintaining a steady computational time.

GPU devices trade off high performance with the memory requirement whereas CPU focuses on
low latency. In Table 4.11 summarizes the different memory requirements of the same puzzle
instances executing in various platforms. It can be visualized that by increasing the number of
steps required to solve the puzzle instances, the sequential and parallel approach executing in a
CPU requires less memory than the GPU platform. GPU requires to copy the entire data to the
virtual memory in order to perform the parallel calculation that consumes some time; however,
in the long run, it can be seen that CPU memory is increasing while increasing the difficulty
level of the puzzles whereas GPU memory remains constant. In the Figure 4.8 and Figure 4.9, it
can be visualized the memory requirements of some tested puzzle instances.
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Figure 4.6: Computation Time of 8-Puzzle instances with larger optimal steps

Figure 4.7: Computation Time of 15-Puzzle instances

In Table 4.7 and Table 4.8, the required number of expanded nodes between CPU approach
and parallel approach is given. In Figure 4.10 and Figure 4.11, some puzzle instances of node
expansion are visualized, it can be seen that the number of expansions are increasing with the
difficulty level of the puzzles. The main reason behind is due to the less computational time as
the parallel approach reaches the goal states faster than the sequential approach, the unnecessary
nodes are not expanded and gradually the expansion rate decreases.
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Table 4.11: Memory Requirement of RBFS

Sl. Puzzle
Size

Number
of Steps

Sequential
Memory (MB)

Parallel in CPU
Memory (MB)

Parallel in GPU
Memory (MB)

1 8 3 815 787 969
2 8 10 816 787 969
3 8 12 794 794 961
4 8 14 820 812 977
5 8 15 818 803 965
6 8 16 815 811 976
7 8 23 824 810 972
8 8 28 827 811 973
9 8 31 860 791 987
10 15 4 813 786 939
11 15 10 812 790 940
12 15 11 811 801 938
13 15 13 813 788 939
14 15 15 813 795 936
15 15 17 821 793 950
16 15 20 817 796 947
17 15 21 823 798 952
18 15 22 822 794 970

Figure 4.8: Memory requirement of 8-Puzzle instances

Aparapi is a very popular framework that facilitates the execution of Java based applications in
GPU without the requirement of the knowledge of heterogeneous model and parallel computing
concepts and has been demonstrated to show great results in different studies. Due to its
popularity, we chose to evaluate our parallel GPU based algorithm in Aparapi. In Figure 4.12 and
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Figure 4.9: Memory requirement of 15-Puzzle instances

Figure 4.10: 8 Puzzle States expanded in RBFS

Figure 4.13, the comparison between CPU parallel approach and GPU parallel approach using
Aparapi framework is shown. Both time and memory constraints using Aparapi are higher than
the threaded parallel approach. Increasing the difficulty level of the puzzles, Aparapi performs
a lot worse than the threaded parallel approach. The memory requirement of Aparapi is also
significantly higher which makes it unsuitable to use for the GPU performance evaluation. This
results notably indicate, this framework is not suitable for searching algorithms and does not
always perform well for any algorithms even it might perform a way worse.
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Figure 4.11: 15 Puzzle States expanded in RBFS

Figure 4.12: Aparapi computational time



4.5. PERFORMANCE EVALUATION 43

Figure 4.13: Aparapi memory requirement

4.5 Performance Evaluation

Prior studies have not compared or analyzed the recursive best first search in both CPU and GPU
platforms. Moreover, no other parallel approaches of RBFS exist until the current study. The
design of a parallel algorithm that outperforms the sequential algorithm of RBFS has shown in
this study. In order to analyze the performance of the proposed algorithm, the sliding puzzle
problem has been chosen as it has an exponential tree growth while increasing the puzzle
difficulty level and it can be compared between different implementations showing notable
results.

Because of exponential search space, the proposed GPU-based RBFS algorithm was much more
efficient than the single-thread CPU-based RBFS algorithm in solving sliding puzzle problems.
From the analysis of the previous section, it shows clearly that increasing the difficulty level of the
sliding puzzles, CPUs computational time increases significantly whereas GPUs computational
time decreases. Figure 4.14 and Figure 4.15 shows the comparison between CPU-based RBFS
and GPU-based RBFS on different instances of 8-puzzle and 15-puzzle. The memory required is
steady for both platforms even though CPUs show increment with the difficulty level whereas
GPU is steadier. Moreover, the expansion of states is less in parallel approach than the sequential
approach.

Our proposed model shows significant gain in performance; about 99.81% in 8-puzzles and
92.37% in 15-puzzles reduction in the computational speed. While performing the experiments,
the number of states fluctuates in GPU, showing that expansion rate is lesser than the CPU
approach. Around 67% in 15-puzzles and 96% in 8-puzzles reduction in the expansion rate in
the parallel approach than sequential approach. All the experiment items are averaged values
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Figure 4.14: 8 puzzle Performance Evaluation CPU-based RBFS with GPU-based RBFS

Figure 4.15: 15 puzzle Performance Evaluation CPU-based RBFS with GPU-based RBFS

over five runs in each inputted source and goal state of the sliding puzzle.
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4.6 Discussion

Recursive best first search is a recursive algorithm that is hard to parallelize. There have been
very few studies that attempted to explore the possibility of parallelizing the RBFS algorithm
and almost none of studies has focused on GPU platforms to our knowledge. Because of that,
the comparison of the RBFS algorithm cannot directly compare our work with state of the art.

In this paper, we propose a parallel technique to parallelize RBFS that has benefited by GPU
execution. An innovative and new parallel approach is shown in this study that reduces the
computational time of the RBFS algorithm for problems with large-scale search space. In
addition, it shows a naı̈ve technique to parallelize a sequential algorithm which is challenging
due to its recursive nature.

Our main objective is to design a parallel technique that can parallelize the sequential RBFS
algorithm, which can execute on a GPU machine in order to accelerate the performance of this
searching technique by exploiting the GPU architecture.

Computation offloading is a technique to optimize resource usage. It has several advantages such
as efficient power management, less storage utilization and improvement in the performance
of the application. Therefore, offloading several tasks to GPU can substantially provide
improvements in the computational speed of large-scale problems as GPU can execute tasks
faster than CPU and enhance overall algorithm performance.

Our experimental results of the sliding puzzle demonstrates that GPU-based parallel RBFS
algorithms can have a significant speedup compared to the traditional sequential RBFS algorithm
with exponential search space and benefited by offloading.

In this paper, also the renowned framework Aparapi using Java for GPU execution has been
studied and the results show that GPU execution of the parallel RBFS using Aparapi does
not speedup the computational time of the parallel algorithm, instead its performance is quite
disappointing compared to other GPU implementations. Even though, it can smoothly execute
the different problem instances, its execution time is slower than the actual multi-threaded
parallel RBFS algorithm without GPU as well as the parallel GPU based CUDA implementation
in python.



Chapter 5

Conclusion and Future Works

In this chapter, we conclude the thesis work by detailing the significant contributions of this
research work along with some future directions of this study.

5.1 Conclusion

This paper shows that RBFS is amenable to parallelization and can provide efficient execution
on GPUs. The RBFS algorithm has never been parallelized, and its parallelization is quite
challenging due to its recursive calling. None of the prior studies has offered any parallelization
approach that can be efficient for RBFS. Neither has any studies focused on the speed-up of
the computation execution of RBFS algorithm using GPUs. We are proposing the first variant
of RBFS in a parallel manner that can be executed on GPUs devices as well in any other
devices that can perform parallelism. Moreover, it shows a novel approach of parallelization
technique for sequential algorithms, which can be applied to parallelize recursive algorithms.
Extensive performance analyses of three different RBFS implementations (sequential RBFS,
parallel RBFS without GPU, and parallel RBFS on GPU) have been shown. The experimental
results show performance enhancement on parallel approaches of RBFS trading off the constraint
between time and memory. It also demonstrates that the computational speed of the RBFS
algorithm on GPU decreases while increasing the difficulty level of the problem compared to the
sequential CPU-based RBFS approach. In addition, several different GPU implementations have
been studied. A well-known framework for Java language for GPU computation, Aparapi was
used for the proposed parallel approach. Its performance shows that it is not suitable for GPU
computations of any parallel algorithm.

5.2 Future Directions of Further Research

In future, this thesis can have several directions listed below:
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• The parallel RBFS can applied in different problem domains such as pathfinding, protein
design, etc.

• In this thesis, the fitness function uses Manhattan distance heuristic, which ensures an
optimal solution of the problem and performs better significantly. In future, better fitness
functions can be used such as pattern database to gain more efficiency.

• In this study, an extensive performance analysis on 8-puzzle and 15-puzzle have shown. It
can be further experimented with larger scale puzzle such as 24-puzzle.

• Moreover, the possibility of using parallel RBFS on a multi-core environment can be
explored.
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Appendix A

PseudoCodes

A.1 Sequential RBFS pseudocode

This is the pseudocode of the traditional sequential RBFS

1 function RECURSIVE-BEST-FIRST-SEARCH(problem)

2 returns a solution, or failure

3

4 return RBFS(problem,MAKE-NODE(problem.INITIAL-STATE),infinity)

5

6 function RBFS(problem,node,f_limit) returns a solution,

7 or failure and a new f-cost limit

8

9 if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)

10 successors <- []

11 for each action in problem.ACTIONS(node.STATE) do

12 add CHILD-NODE(problem,node,action) into successors

13

14 if successors is empty then return failure,infinity

15 for each s in successors do

16 /* update f with value from previous search, if any */

17 s.f <- max(s.g + s.h, node.f)

18 loop do

19 best <- lowest f-value node in successors

20 if best.f > f_limit then

21 return failure,best.f

22 alternative <- the second-lowest f-value

23 among successors
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24 result,best.f <- RBFS(problem,best,

25 min(f_limit,alternative))

26 if result != failure then

27 return result



Appendix B

Sample GPU Codes

B.1 Matrix multiplication with GPU

This is the python implementation for matrix multiplication on GPU using Numba library

1 """

2 Matrix multiplication example via ‘cuda.jit‘.

3 Reference: https://stackoverflow.com/a/64198479/13697228 by

4 @RobertCrovella

5 Contents in this file are referenced from the sphinx-generated docs.

6 "magictoken" is used for markers as beginning and ending of example text.

7 """

8 import unittest

9 from numba.cuda.testing import CUDATestCase, skip_on_cudasim

10 from numba.tests.support import captured_stdout

11 @skip_on_cudasim("cudasim doesn’t support cuda import at non-top-level")

12 class TestMatMul(CUDATestCase):

13 """

14 Text matrix multiplication using simple, shared memory/square,

15 and shared memory/nonsquare cases.

16 """

17 def setUp(self):

18 # Prevent output from this test showing up

19 # when running the test suite

20 self._captured_stdout = captured_stdout()

21 self._captured_stdout.__enter__()

22 super().setUp()

23
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24 def tearDown(self):

25 # No exception type, value, or traceback

26 self._captured_stdout.__exit__(None, None, None)

27 super().tearDown()

28

29 def test_ex_matmul(self):

30 """Test of matrix multiplication on various cases."""

31 # magictoken.ex_import.begin

32 from numba import cuda, float32

33 import numpy as np

34 import math

35 # magictoken.ex_import.end

36

37 # magictoken.ex_matmul.begin

38 @cuda.jit

39 def matmul(A, B, C):

40 """Perform square matrix multiplication of C = A * B."""

41 i, j = cuda.grid(2)

42 if i < C.shape[0] and j < C.shape[1]:

43 tmp = 0.

44 for k in range(A.shape[1]):

45 tmp += A[i, k] * B[k, j]

46 C[i, j] = tmp

47 # magictoken.ex_matmul.end

48

49 # magictoken.ex_run_matmul.begin

50 x_h = np.arange(16).reshape([4, 4])

51 y_h = np.ones([4, 4])

52 z_h = np.zeros([4, 4])

53

54 x_d = cuda.to_device(x_h)

55 y_d = cuda.to_device(y_h)

56 z_d = cuda.to_device(z_h)

57

58 threadsperblock = (16, 16)

59 blockspergrid_x = math.ceil(z_h.shape[0] / threadsperblock[0])

60 blockspergrid_y = math.ceil(z_h.shape[1] / threadsperblock[1])

61 blockspergrid = (blockspergrid_x, blockspergrid_y)
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62

63 matmul[blockspergrid, threadsperblock](x_d, y_d, z_d)

64 z_h = z_d.copy_to_host()

65 print(z_h)

66 print(x_h @ y_h)

67 # magictoken.ex_run_matmul.end

68

69 # magictoken.ex_fast_matmul.begin

70 # Controls threads per block and shared memory usage.

71 # The computation will be done on blocks of TPBxTPB elements.

72 # TPB should not be larger than 32 in this example

73 TPB = 16

74

75 @cuda.jit

76 def fast_matmul(A, B, C):

77 """

78 Perform matrix multiplication of C = A * B

79 using CUDA shared memory.

80 Reference: https://stackoverflow.com/a/64198479/13697228

81 by @RobertCrovella

82 """

83 # Define an array in the shared memory

84 # The size and type of the arrays

85 # must be known at compile time

86 sA = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

87 sB = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

88

89 x, y = cuda.grid(2)

90

91 tx = cuda.threadIdx.x

92 ty = cuda.threadIdx.y

93 bpg = cuda.gridDim.x # blocks per grid

94

95 # Each thread computes one element in the result matrix.

96 # The dot product is chunked into

97 # dot products of TPB-long vectors.

98 tmp = float32(0.)

99 for i in range(bpg):
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100 # Preload data into shared memory

101 sA[ty, tx] = 0

102 sB[ty, tx] = 0

103 if y < A.shape[0] and (tx + i * TPB) < A.shape[1]:

104 sA[ty, tx] = A[y, tx + i * TPB]

105 if x < B.shape[1] and (ty + i * TPB) < B.shape[0]:

106 sB[ty, tx] = B[ty + i * TPB, x]

107

108 # Wait until all threads finish preloading

109 cuda.syncthreads()

110

111 # Computes partial product on the shared memory

112 for j in range(TPB):

113 tmp += sA[ty, j] * sB[j, tx]

114

115 # Wait until all threads finish computing

116 cuda.syncthreads()

117 if y < C.shape[0] and x < C.shape[1]:

118 C[y, x] = tmp

119 # magictoken.ex_fast_matmul.end

120

121 # magictoken.ex_run_fast_matmul.begin

122 x_h = np.arange(16).reshape([4, 4])

123 y_h = np.ones([4, 4])

124 z_h = np.zeros([4, 4])

125

126 x_d = cuda.to_device(x_h)

127 y_d = cuda.to_device(y_h)

128 z_d = cuda.to_device(z_h)

129

130 threadsperblock = (TPB, TPB)

131 blockspergrid_x = math.ceil(z_h.shape[0] / threadsperblock[0])

132 blockspergrid_y = math.ceil(z_h.shape[1] / threadsperblock[1])

133 blockspergrid = (blockspergrid_x, blockspergrid_y)

134

135 fast_matmul[blockspergrid, threadsperblock](x_d, y_d, z_d)

136 z_h = z_d.copy_to_host()

137 print(z_h)
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138 print(x_h @ y_h)

139 # magictoken.ex_run_fast_matmul.end

140

141 # fast_matmul test(s)

142 msg = "fast_matmul incorrect for shared memory, square case."

143 self.assertTrue(np.all(z_h == x_h @ y_h), msg=msg)

144

145 # magictoken.ex_run_nonsquare.begin

146 x_h = np.arange(115).reshape([5, 23])

147 y_h = np.ones([23, 7])

148 z_h = np.zeros([5, 7])

149

150 x_d = cuda.to_device(x_h)

151 y_d = cuda.to_device(y_h)

152 z_d = cuda.to_device(z_h)

153

154 threadsperblock = (TPB, TPB)

155 grid_y_max = max(x_h.shape[0], y_h.shape[0])

156 grid_x_max = max(x_h.shape[1], y_h.shape[1])

157 blockspergrid_x = math.ceil(grid_x_max / threadsperblock[0])

158 blockspergrid_y = math.ceil(grid_y_max / threadsperblock[1])

159 blockspergrid = (blockspergrid_x, blockspergrid_y)

160

161 fast_matmul[blockspergrid, threadsperblock](x_d, y_d, z_d)

162 z_h = z_d.copy_to_host()

163 print(z_h)

164 print(x_h @ y_h)

165 # magictoken.ex_run_nonsquare.end

166

167 # nonsquare fast_matmul test(s)

168 msg = "fast_matmul incorrect for shared memory, non-square case."

169 self.assertTrue(np.all(z_h == x_h @ y_h), msg=msg)

170

171 if __name__ == ’__main__’:

172 unittest.main()
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B.2 Array Summation using Aparapi

This is the java based implementation for array addition using Aparapi Framework

1 package com.aparapi.examples.add;

2 import com.aparapi.Kernel;

3 import com.aparapi.Range;

4

5 public class Main{

6 public static void main(String[] _args) {

7 final int size = 512;

8 final float[] a = new float[size];

9 final float[] b = new float[size];

10 for (int i = 0; i < size; i++) {

11 a[i] = (float) (Math.random() * 100);

12 b[i] = (float) (Math.random() * 100);

13 }

14 final float[] sum = new float[size];

15 Kernel kernel = new Kernel(){

16 @Override public void run() {

17 int gid = getGlobalId();

18 sum[gid] = a[gid] + b[gid];

19 }

20 };

21 kernel.execute(Range.create(size));

22 for (int i = 0; i < size; i++) {

23 System.out.printf("%6.2f + %6.2f = %8.2f\n", a[i], b[i], sum[i]);

24 }

25 kernel.dispose();

26 }

27 }

B.3 Matrix multiplication using Tornado VM

This is the java based implementation for matrix multiplication using Tornado VM Framework

1 class Compute {

2 public static void matrixMultiplication(final float[] A,

3 final float[] B, final float[] C, final int size) {
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4 for (@Parallel int i = 0; i < size; i++) {

5 for (@Parallel int j = 0; j < size; j++) {

6 float sum = 0.0f;

7 for (int k = 0; k < size; k++)

8 sum += A[(i * size) + k] * B[(k * size) + j];

9 C[(i * size) + j] = sum;

10 }

11 }

12 }

13 }

14

15 //Creation of a task-schedule for the matrix-multiplication execution:

16 TaskSchedule t = new TaskSchedule("s0").task("t0",

17 Compute::matrixMultiplication, matrixA, matrixB,

18 result, size).streamOut(result);

B.4 Array Summation using JOCL API

This is the java based implementation for array addition using JOCL API

1 public class ArrayGPU {

2 /**

3 * The source code of the OpenCL program

4 */

5 private static String programSource =

6 "__kernel void "+

7 "sampleKernel(__global const float *a,"+

8 " __global const float *b,"+

9 " __global float *c)"+

10 "{"+

11 " int gid = get_global_id(0);"+

12 " c[gid] = a[gid] + b[gid];"+

13 "}";

14

15 public static void main(String args[])

16 {

17 int n = 10_000_000;

18 float srcArrayA[] = new float[n];
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19 float srcArrayB[] = new float[n];

20 float dstArray[] = new float[n];

21 for (int i=0; i<n; i++)

22 {

23 srcArrayA[i] = i;

24 srcArrayB[i] = i;

25 }

26 Pointer srcA = Pointer.to(srcArrayA);

27 Pointer srcB = Pointer.to(srcArrayB);

28 Pointer dst = Pointer.to(dstArray);

29

30

31 // The platform, device type and device number

32 // that will be used

33 final int platformIndex = 0;

34 final long deviceType = CL.CL_DEVICE_TYPE_ALL;

35 final int deviceIndex = 0;

36

37 // Enable exceptions and subsequently

38 // omit error checks in this sample

39 CL.setExceptionsEnabled(true);

40

41 // Obtain the number of platforms

42 int numPlatformsArray[] = new int[1];

43 CL.clGetPlatformIDs(0, null, numPlatformsArray);

44 int numPlatforms = numPlatformsArray[0];

45

46 // Obtain a platform ID

47 cl_platform_id platforms[] = new cl_platform_id[numPlatforms];

48 CL.clGetPlatformIDs(platforms.length, platforms, null);

49 cl_platform_id platform = platforms[platformIndex];

50

51 // Initialize the context properties

52 cl_context_properties contextProperties =

53 new cl_context_properties();

54 contextProperties.addProperty(CL.CL_CONTEXT_PLATFORM, platform);

55

56 // Obtain the number of devices for the platform
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57 int numDevicesArray[] = new int[1];

58 CL.clGetDeviceIDs(platform, deviceType, 0, null, numDevicesArray);

59 int numDevices = numDevicesArray[0];

60

61 // Obtain a device ID

62 cl_device_id devices[] = new cl_device_id[numDevices];

63 CL.clGetDeviceIDs(platform, deviceType,

64 numDevices, devices, null);

65 cl_device_id device = devices[deviceIndex];

66

67 // Create a context for the selected device

68 cl_context context = CL.clCreateContext(

69 contextProperties, 1, new cl_device_id[]{device},

70 null, null, null);

71

72 // Create a command-queue for the selected device

73 cl_command_queue commandQueue =

74 CL.clCreateCommandQueue(context, device, 0, null);

75

76 // Allocate the memory objects for the input and output data

77 cl_mem memObjects[] = new cl_mem[3];

78 memObjects[0] = CL.clCreateBuffer(context,

79 CL.CL_MEM_READ_ONLY | CL.CL_MEM_COPY_HOST_PTR,

80 Sizeof.cl_float * n, srcA, null);

81 memObjects[1] = CL.clCreateBuffer(context,

82 CL.CL_MEM_READ_ONLY | CL.CL_MEM_COPY_HOST_PTR,

83 Sizeof.cl_float * n, srcB, null);

84 memObjects[2] = CL.clCreateBuffer(context,

85 CL.CL_MEM_READ_WRITE,

86 Sizeof.cl_float * n, null, null);

87

88 // Create the program from the source code

89 cl_program program = CL.clCreateProgramWithSource(context,

90 1, new String[]{ programSource }, null, null);

91

92 // Build the program

93 CL.clBuildProgram(program, 0, null, null, null, null);

94
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95 // Create the kernel

96 cl_kernel kernel = CL.clCreateKernel(program,

97 "sampleKernel", null);

98

99 // Set the arguments for the kernel

100 CL.clSetKernelArg(kernel, 0,

101 Sizeof.cl_mem, Pointer.to(memObjects[0]));

102 CL.clSetKernelArg(kernel, 1,

103 Sizeof.cl_mem, Pointer.to(memObjects[1]));

104 CL.clSetKernelArg(kernel, 2,

105 Sizeof.cl_mem, Pointer.to(memObjects[2]));

106

107 // Set the work-item dimensions

108 long global_work_size[] = new long[]{n};

109 long local_work_size[] = new long[]{1};

110

111 // Execute the kernel

112 CL.clEnqueueNDRangeKernel(commandQueue, kernel, 1, null,

113 global_work_size, local_work_size, 0, null, null);

114

115 // Read the output data

116 CL.clEnqueueReadBuffer(commandQueue, memObjects[2], CL.CL_TRUE,

117 0, n * Sizeof.cl_float, dst, 0, null, null);

118

119 // Release kernel, program, and memory objects

120 CL.clReleaseMemObject(memObjects[0]);

121 CL.clReleaseMemObject(memObjects[1]);

122 CL.clReleaseMemObject(memObjects[2]);

123 CL.clReleaseKernel(kernel);

124 CL.clReleaseProgram(program);

125 CL.clReleaseCommandQueue(commandQueue);

126 CL.clReleaseContext(context);

127 }

128

129 private static String getString(cl_device_id device, int paramName) {

130 // Obtain the length of the string that will be queried

131 long size[] = new long[1];

132 CL.clGetDeviceInfo(device, paramName, 0, null, size);
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133

134 // Create a buffer of the appropriate size and

135 // fill it with the info

136 byte buffer[] = new byte[(int)size[0]];

137 CL.clGetDeviceInfo(device, paramName, buffer.length,

138 Pointer.to(buffer), null);

139

140 // Create a string from the buffer (excluding the

141 // trailing \0 byte)

142 return new String(buffer, 0, buffer.length-1);

143 }

144 }
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