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ABSTRACT

A parametric study has been performed on natural
convection heat transfer and flow characteristics in a square
enclosure with V-corrugated vertical walls. The vorticity stream
function formulation with the Control Volume based Finite Element
Method (CVFEM) was used to analyze the effects of corrugation
frequency and Grashof numbers on heat transfer and flow
behaviour. The results show that the overall heat transfer
through the enclosure decreases with increasing corrugation
frequency for large Grashof numbers but the trend is reversed for
low Grashof numbers. This behaviour can be explained as a
manifestation of two competing effects The increase of wall
surface area versus the retardation of flow due to increase in
corrugation frequency. Specifically the increase in wall surface
area tends to enhance the overall heat transfer while the
retardation of flow due to increased waviness tends to reduce the
convective transport of energy.
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CHAPTER I
INTRODUCTION

A. .Natural Convection Of Fluid.

The fluid flow in "free" or "natural" convection arises
as a result of density variations caused by thermal expansion of
the fluid in a non-uniform temperature distribution. Free
convection currents transfer internal ~nergy stored in fluid
elements in the same manner as forced convection currents.
However, the intensity of the mixing of the fluid is generally
less in natural convection and consequently the heat transfer
coefficients in natural convection are lower than those in forced
convection. Since the temperature distribution is itself
dependent on the movement of the fluid, the transport equations
of motion and thermal energy are coupled. Further, the
development of the flow is
transfer surfaces.

influenced by the shape of the heat

Both numerical and experimental methods have been used to
obtain the solutions of heat transfer and fluid flow problems.
Though experimental methods are more realistic, they are costly
and time consuming due to the necessity of expensive prototypes

- 1 -
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and instrumentation. On the other hand, numerical methods can
offer considerable savings in design time and costs. Of course,
the validity of any numerical .approach must be established by
comparison with existing experimental data and other established
numerical solutions before using it for simulating new problems.
However, once tested and found to be reliable, it becomes a
powerful tool for investigating a wide range of fluid flow and
heat transfer problems. As a preliminary step, the work

contained in this .thesis consists of a numerical investigation of
natural convection heat transfer and fluid flow within a square
enclsure with V-corrugated vertical walls.

B. Background

This section is composed of two parts. In the first part,
the studies that have been performed experimentally are discussed
and the second contains a brief review of numerical
investigations.

Experimental Investigations.

'Several investigators have carried out their research on
natural convection heat transfer and fluid flow with corrugated
surfaces. First, experiments were performed for plane surfaces
with different boundary conditions [1-8], and for corrugated
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surfaces [9-12]. Dropkin and Somercales [1] performed an
experimental investigation on natural convection heat transfer in
liquids confined by two parallel plates and inclined at various
angles with respect to the horizontal. The range of Rayleigh
numbers covered in these experiments was 5 X 10. to 7.17 X 108

and the Prandtl number was varied from 0.02 to 11560.
Experiments were carried out in rectangular and circular
containers having copper plates and insulating walls. The liquids
used were water, silicon oil and mercury.

Imberger [2J made an experimental study on the natural
convection heat transfer and fluid flow in closed cavities and
obtained the solution of the Navier-Stokes equation with.
differentially heated end walls of the cavities of small aspect
ratio and showed the strong agreement with the results of. the
same problem obtained numerically by Cormack et a1. [4J • Ozoe
et al. [8] performed a set of experiments for laminar flow in
silicon oil and air along a rectsngular channel. The channel was
heated from below and cooled from above while the other two sides
were insulated.

There have also been a number of investigations carried
out on heat transfer problems wi th V-corrugated surfaces.
Chinnappa [9] carried out an experimental investigation on
natural convection heat transfer from a horizontal lower hot V-
corrugated plate to an upper.cold flat plate. He took data for a
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range of Grashof numbers from 104 to 106• The author noticed a
change in the flow pattern at Gr = 8 X 104, which he concluded as
a transition point from laminar to turbulent flow. In his work,
Chinnappa found that for horizontal air layers the enclosure ends
had no effec.t on heat transfer within the range of experimental
variables.

Elsherbiny et al. [10] investigated free convection heat
transfer for air layers bounded by a lower hot V-corrugated plate
and an upper cold flat plate. A single correlation equation in
terms of Nusselt number, Rayleigh number, tilt angle, aspect
ratio was developed for aspect ratio ranging from 1 to 4, angle
of inclination ranging from 0 to 60 degrees and Rayleigh number
ranging from 10 to 4 X 106• They claimed that the convective heat
transfer across air layers bounded by V-corrugated and flat
plates was greater than those for two parallel flat plates by a
maximum of 40%.

Randall et al. [11] studied local and average heat
transfer coefficients for natural convection between a V-
corrugated plate (600 V-angle) and a parallel flat plate using
interferometric techniques to find the temperature distribution
in the enclosed air space. From this temperature distribution
they used the wall temperature gradient to estimate the local

- 4 -



heat transfer coefficient. Local v~lues of heat transfer
coefficient were investigated over the entire V-corrugated
surface area. The author recommended a correlation in which the
heat flux of lOX is higher than that for parallel flat plates.

An experimental investigation of heat transfer by natural
convection from an inclined hot sinusoidal corrugated plate at
the bottom to an inclined cold flat plate at the top in a bounded
rectangular region was carried out by Kabir [12]. The vertical
side walls of the enclosure were plane and adiabatic. By
comparing with other related works it was concluded that for the
same plate spacing the heat transfer rates across air layers
bounded by the corrugated and flat plate were greater than those
for two parallel flat plates by a maximum of 40%.

Numerical Investigations

/ Natural convection heat transfer from a plane surface with
different boundary conditions has been studied numerically by
several researchers. Zhong et a!. [.13] carried out a finite-
difference study to determine the effects of variable properties
on the temperature and velocity fields and the heat transfer
rate in a differentially heated, two dimensional square
enclosure.
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Nayak et al. [14] considered the problem of free and
forced convection in a fully developed laminar steady flow
through vertical ducts under the conditions of constant heat flux
and uniform peripheral wall temperature. Chenoweth et a1. [15] I

obtained steady-state, two dimensional results from the
t'rarisientNavier-Stokes equations given for laminar convective
motion of a gas in an enclosed vertical slot with large
horizontal temperature differences. Safir Uddin et al.[16]
investigated the natural convection heat transfer and fluid flow
behaviour for vertical sinusoidal walls. The results showed ~hat
for corrugation frequency=3 with different Grashof numbers the
total heat flux becomes lower than that for straight wall with
corresponding Grashof numbers and for corrugation frequency=1 the
total heat flux becomes higher than that for straight one.

C. Motivation of the Present Investigation.

The study of Natural Convection effects is important in
numerous engineering applications. In designing nuclear reactors,
solar collectors, electrical and microelec,tronic equipment
containers and in many other designing problems, nattiral
convection heat transfer is prominent. Thus, for different

- 6 -



boundary conditions and shapes the analysis of the effects of
natural convection is necessary to ensure efficient performance
of the various heat transfer equipment. Several investigators [8-
10,12] performed their studies on convection heat transfer with
corrugated walls experimentally, but they considered a horizontal
lower hot corrugated to an upper cold flat plate only. None of
them performed an experiment on convection heat transfer with
vertical hot and cold corrugated plates. However, there is no
knowledge of numerical simulation of natural convection heat
transfer and fluid flow with V-corrugated vertical walls, which
forms the basis for the motivation behind the present study.

D. Objectives of the Study.

The main objective of this thesis is to numerically
simulate heat transfer and fluid flow behaviour inside a square
enclosure with V-corrugated vertical walls and insulated
horizontal walls. Specifically, the coupled momentum and energy
transport equations will be solved with the Grashof number and
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corrugation frequency as parameters. The effects of corrugation
frequency and Grashof number on local and overall heat transfer
rates, velocity and temperature distribution will be examined
both qualitatively and quantitatively. The effect of increasing
the corrugation frequency will lead to a greater heat transfer
surface but whether the overall heat transfer rate will increase
or decrease is an important question which will be addressed in~~-

the analyses of the results.
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CHAPTER II
NATURAL CONVECTION IN A SQUARE DUCT WITH VERTICAL

V-CORRUGATED WALLS.

A. Problem Statement
The Problems of Natural Convection Heat Transfer and Fluid

Flow in a square enclosure are considered in this analysis. The
fluid flow is caused by the buoyant force which is the
consequence of temperature gradients inside the enclosure. The
temperature field itself is described by the transport equation
.for energy. The problem is therefore described by a coupled set
of momentum and energy equations. ~

The problem schemetic is shown in Fig.!. The top and bottom
walls of the enclosure are insulated and the left and right
vertical walls are V-corrugated. The left and right walls are
kept at constant temperature. The temperature of the left wall is
Th and that of the right wall is Te, where Th > Te. The
characteristic length of the square enclosure is L. The origin
of the X-V coordinate system is located at the left-bottom corner
of the cavity.

, - 9 -



B. Governing Equations and Boundary Conditions.

Governing Equations

The Navier-Stokes equations for two-dimensional,
incompressible flow with constant properties in csrtesian
coordinates can be written as follows:

Continuity equation,

!

(1)

x-momentum equation,

(2)

y-momentum equation,

In the above equations, u and v represent the velocity components
in the x and y.directions respectively and p is the pressure.
The source terms SU and SV consider the other body and surface
forces in the x and y directions respectively and -»
kinematic viscosity.

is the

By differentiating equations (2) and (3) with respect to
y and x respectively and then subtracting the results of the

- 10 -



former from the latter, a single vorticity transport equation can

be obtained:

(
01 S"+-'(;)'X.

(4)

where G.)is the vortici ty defined as

Upon defining the streamfunction, V as
~::s U.~a'-

_d'f'=~
Ol?<- -

(5)

(6)

(7)

the Poisson equation relating w to may be obtained by

substituting (6) and (7) into (5):

(8)

The equations (4) and (8) are equivalent to equations (I), (2).
and (3) where instead of two momentum equations, a single

transport equation for vorticity is revealed and the pressure

gradient terms are absent.

Assuming the properties to be constant other than the

density variation in the buoyant forces, the Boussinesq

approximation [18] may be used on equation (4) which results in

(9)
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The energy transport equation for two dimensional incompressible

flow with constant properties can be written as

(10)

where a is the thermal diffusivity of the fluid.

Equations (4) to (10) can be normalised by introducing the.

following non dimensional quantities:

x ;;

y -

u -

v ;;

"X-

L
(11)

(12)

(13)

(14)

T-Tc
6----/i..--re.

(15)

(16)

(17)

to yield
U'd..l1.+VP...Q.

OlX o>y
(18)

- ,
- p"f

(19)
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where Gr and Pr are the Grashof and Prandtl numbers I

respectively, and defined as :

Gr = glHTh - Tc)L3/").lY

Pr = Y /a

(20)

(21)

The dimensionless auxiliary equations are

...n.;;;: -aV - -;;,V- (22)';;lX dY
V - a (23)CJY

V - tl (24)OlX

Here, the parameters g I a and a represent the acceleration

due to gravity, the coefficient of thermal expansion, and the

ther~al diffusivity of the fluid respectively.

Boundary Conditions

The boundary conditions of the problem are as follows

(i) U = V = 0 at all walls

(ii) <tt = 0 at all walls

(iii) e = 1 at left wall

e = 0 at right wall

(iv) (W)Y:O= ee ) - 0'~ Y~l-

- 13 -
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C. Method of Solution.

The calculation domain is first divided into

quadrilaterals by a number of vertical and horizontal grid lines.

These in turn are sub-divided into triangular elements an

example of discretization of the domain is shown in Fig. 2). On

each element, links are constructed by joining the mid-points of

the sides to the centroid. These 1inks come into contact wi th

other adjacent elements to form closed regions called control

volumes ( shown in Fig.3).

Following the domain discretization, the integral

formulation of the relevant transport equation is imposed on each

control volume of the overall region. This is done by prescribing

a sui table shape function wi thin each element which is used to

express the combined convective-diffusive flux variation along

the links of same. These fluxes are integrated and the

contributions of the links to the control volume portions are

assembled in a systematic manner. This procedure is repeated for

all the elements in the caiculation domain. The net outcome is a

set of nodal equations for the transported variable

~, which may be written as:

a p ~ ~ p + ~a n b ~ ~ n b = b p ~ (25)

where nb denotes the neighbour nodes of the node p, a are the

- 14 -



coefficients of the Nodal Equation Matrix (NEM) for node p, and

b is the Global Load Vector (GLV) component corresponding to node

p. The details involved in obtaining equation (25) are available

in [17].

The solution of. the system of equations (25) is obtained

iteratively in as much that the coefficients (a) themselves

depend on the values of ~,where ~ can represent either the

vorticity, streamfunction, or temperature. The procedure

adopted in this investigation is due to [19] and is summarized as

follows

1. Compile the coefficients for the poisson equation (8)

for the stream function. These coefficients do not

change from one iteration to the next.

2. Guess the distribution of streamfunction Y and compile

the coefficients of the vorticity transport equation.

3 • Solve for the vorticity

proposed in [17] and [19].

and update the values as

4. Using the values of Q obtained in step(3), compile the

GLV for the Poisson equation for "i'.
5. Solve for streamfunction using the coefficients from (1)

6. Check the convergence as per suggestion in [19J.

7. If not converged, go to step (2).

8. If converged, perform post processing tasks such as heat

transfer calculation.

- 15 -



Once convergence of the governing equation has been

achieved, the following quantities are calculated:

(i) The local Nusselt number along the hot wall, Nuy,

Nuy - :: - (26)

(ii) The dimensionless total heat flux at the hot wall,
Y:::l

Q = - J ~ c:l.s (Y)
y=O dN

(27)

where s is the dimensionless distance measured along the

corrugation of the wall and N is the dimensionless distance

measured normal to same.

In equations ( 26) and ( 27) , ."q is the heat flux

rate per unit length at the hot wall and

conductivity.

- 16 -
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CHAPTER
RESULTS AND

III
DISCUSSION

A parametric study was conducted to analyze the effects of
corrugation frequency and Grashof number on natural convection
heat transfer and fluid flow inside a square enclosure with V-
corrugated vertical walls. The discussion of the results that
follows are those obtained by using a 31 X 31 mesh. A grid
refinement study was made using a 49 X 49 mesh for the highest
Grashof number and corrugation frequency (Gr = 105, C.F.= 3) and
it was found that the results from the 31 X 31 grid runs was
accurate to within about 3 percent. The comparison of the flow
fields can be made by referring to Fig. (4~8) and the overall
heat transfer to Table-3 where it is seen that the 31 X 31
mesh results agree quite well with those of the 49 X 49 mesh.

In this investigation the total heat transfer through the
enclosure, vertical velocity and temperature distributions at the
horizontal mid-plane and local Nusselt number along the hot wall
were examined with respect to Grashof numbers 103, 104, 105 ahd
corrugation frequencies 1,2,3. The corrugation amplitude was
fixed at 5 percent of the enclosure height for all runs, where
the amplitude" A" is defined as half the horizontal distance,
measured from the left extremity of the left wall to its right
extremity (see Fig. 1). Henceforth, the left and right
extremities of the hot wall will be referred to as the "trough"

- 17 -



and "peak", respectively. The local and total heat flux with

respect to corrugated and straight walls and flow characteristics

with respect to grid refinement were also compared. The summary

of computational runs has been shown in Table-I. All results are

represented in dimensionless form.

TABLE - 1.

Summary of Computational Runs

-----------------------------------------------------------------
Corrugation Frequency

( C.F.)
Grashof numbers Grid Size

-----------------------------------------------------------------

o
(Straight Wall)

103

105

31 X 31

Do

Do-----------------------------------------------------------------
31 X 31

1

105.

Do

Do-----------------------------------------------------------------

2

103

104

105

31 X 31

Do

Do-------------------------------------~---------------------------
31 X 31

3

105

Do

Do-----------------------------------------------------------------

3

103

104

105

49 X 49

Do.

Do-----------------------------------------------------------------
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A. Effect Of Corrugation Frequency.

Table-2 shows the effects of Corrugation Frequency (C.F.)

on total heat flux with different Grashof numbers. In Table-2,

the increase of C.F. from 0 to 1 leads to higher value of Q
for all Grashof numbers which may be attributed to the

enhancement of surface area. However, for Grashof number ( Gr )

104 and 105, Q decreases with increase in C.F. from 1 to 3,

but increases continuously for Gr = 103• This behaviour may be

explained by asserting that at high Grashof numbers the fluid

velocity increases near the peaks but drops near the troughs as

the boundary layer tends to ~eparate. Thus the fluid fails to

maintain close contact near the troughs of the corrugation,

resulting in decreased convection heat transfer, whereas for Gr =
103, the low vertical velocities thus generated enable the fluid

to maintain better contact with the corrugated wall. Thus with

increasing C.F. the corresponding enhancement of heat transfer

surface area leads to increased -total heat flux at low Gr, but

for the case of high Gr, the lower velocities and consequent

decrea'se in convective heat transfer at the froughs more than

offsets the increased surface area. This decrease in convection

heat transfer is evident upon referring to Fig. 9 and Fig. 10,

where it may be observed that the local Nusselt number .attain

minimum values at the troughs of the corrugation.

- 19 -



Fig. 9 Fig. 10 and Fig. 11 indicate the effects of'C.F.
on local Nusselt number along the hot wall with the Grashof
number as parameter. The local Nusselt number is identical to the
dimensionless local heat flux. It can be noted from these figures
that there is a significant increase in local Nusselt number at
the peaks of the corrugation and decrease of the same at the
troughs. The reason for this is that the peaks cause the fluid to
come in contact more intimately with the surface resulting in
large convection heat transfer and consequently the local Nusselt
number increases. Another observation that may be made in table-2
is that at C.F.=3, Q is less than that for C.F.=O with Gr =
104 and 105• This indicates that vertical V-corrugation can be
used to reduce the heat transfer through the enclosure, provided
that sdthe corrugation frequency is sufficiently large.

Referring to Figures 9,10,11 again, it is seen that the
peak values of NUT decreases with increasing vertical distance
along the corrugated wall. This may be explained by the fact that
the colder fluid collects at the bottom-left corner of the
enclosure creating a large temperature gradient with the hot
wall, which is'the main driving force for heat transfer at the
wall and as it moves up and receives heat, the temperature
gradient decreases, causing the decrease in local Nusselt number.

- 20 -



Fig. 12 and Fig. 13 reveal the effect of C.F. on vertical

velocity distribution at the horizontal mid-plane for Grashof

number 105 and 103 respectively. Fig. 12 indicates that the peak

value of the vertical veloci ty decreases with increase in C.F.

This trend can. be explained by examining Fig. 14, which

indicates that the temperature gradient is lower for higher C.F.,

causing a lower buoyant force and hence a lower vertical
;

velocity. Because of this lower velocity, the strength of

convection heat transfer decreases with increasing C.F. which is

shown in Table-2. But in Fig. 13 the vertical velocity increases

with C.F., which leads to an increase in overall heat transfer.

TABLE - 2.

The Variation of the Total Heat Flux for Corrugated

and Straight Walls with Different Grashof Number.

Corrugation C.F=l. C.F=2. C.F=3. Straight
Frequency (C.F. ) wall
----------
Grashof
number(Gr)

Gr = 103 1.126 1.132 1.135 1.121

Gr = 104 2.295 2.271 2.238 2.270

Gr = 105 4.837 4.753 4.573 4.724
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B. Effect of Grashof Number
Fig. 15 shows the variation of Q as a function of Gr

with C.F. as the parameter. It may be seen here that the
variation of Q with C.F. is greater for higher Gr. Further, the

different curves for Q vs. Gr "cross" at around. Gr = 103

indicating a trend reversal which was discussed earlier. In this
connection, attention is drawn to Fig.16,17 and 18 which show the
variation of temperature along the horizontal mid-plane for
different Grashof numbers. It is clearly evident from these
figures that for Gr=103, the temperature decreases linearly as
one proceeds from the left to the right wall of the enclosure,
which indicates that the heat transfer is primarily dominated by
conduction. This further substantiates the trend of increasing Q
with C.F. for low Grashof numbers by conduction from the
increased surface area, where fluid flow retardation by
increasing corrugation is not significant.

TABLE-3.

Total'Heat Flux for Grids 31 X 31 and 49 X 49
Corrugation Frequency = 3.

Grashof number (Gr) Gr=103 Gr=10. Gr=10s-------------------
Grid Size

31 X 31 1.1347 2.2376 4.5724

49 X 49 1.1345 2.2222 4.4765
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CHAPTER IV

CONCLUSIONS

A. Summary of Results

In this investigation the effects of corrugation frequency

I., _~

and Grashof number on the local and total heat flux and flow

.characteristics have been observed and disbussed. The total heat

flux for different corrugation frequency with Grashof number has

been compared with the straight wall. The overall heat transfer

rate through the enclosure was found to vary little with change

in corrugation frequency, but the local heat flux rate displayed

large changes along the corrugated walls. In particular, for low

Grashof number, the overall heat flux rate increased continuously

with corrugation frequency whereas the trend was reversed for

higher Grashof numbers. It can therefore be concluded that there

are two competing phenomena that give rise to the variation in

total heat flux: (1) The enhancement of Q due to increasing
surface area and (2) The decrease of Q due to flow retardation
by increasing corrugation. Specifically, at low Gr, the
conduction mode prevails and as C.F. increases, Q is enhanced,
whereas for high Gr, 'the fluid fails to collect heat by

transport due to increasing corrugation. This trend may find

application in practical situations where heat transfer reduction

is desired across large temperature differences by increasing the

corrugation of the vertical wall to the point where Q is less

than that for the straight wall case.
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B. Proposal of Further Work.

This has been a preliminary study and experimental results
are necessary to corroborate the numerical results presented
herein. Furthermore, due to computational limitations the effects
of higher C.F, corrugation amplitude and variation of enclosure
aspect r~tio were not looked into. Also, the transient nature of
the flow can be investigated. It is possible that at very high
Grashof number, the system may become temporally oscillatory,and
a transient solution can help predict this. behaviour. Another
extension that may be made is to calculate the flow field for
very large Grashof numbers and turbulent flow using a two
equation turbulence transport model, such as the K-£ model.

Further, only two dimensional heat transfer and fluid flow
problem has been.analyzed in this thesis. So this deliberation
may be extended to three dimensional analysis to investigate the
effects of ,the end surfaces on heat transfer and flow field. In
addition, the problem of heat transfer and fluid flow along a
corrugated surface in an infinite fluid may be studied to examine
the boundary layer behaviour.
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APPENDIX - A

FIGURES
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Fig. 2. Domain Discretization.

Fig. 3. A Typical Control Volume Shown. Shaded .
. - ..
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APPENDIX - B

I. DISCRETIZATION OF THE GENERAL
TRANSPORT EQUATION

A. The Fundamental Transport Equation.

The basic equation describing the transport of a conserved

variable may be stated in a general form as

(B-1)

where ~ is the intensive property(property per unit mass)

undergoing transport by a fluid of density and posses.sing a

veloci ty vector field

defined as
-v. Here, Q is the gradient operator

By applying the Gauss Divergence theorem to equation (B-1) the

following integral formulation may be obtained:

(B-2)

where V is the volume enclosed by the surface 0 and .-n is the

outward unit normal vector at o.
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By rewriting

(B-3)

equation (B-2) becomes

(B-4)

Thus, the term j represents the total flux vector due to
convection and diffusion of ~ .

B. The Shape Function

Consider an element with nodal velocities ~1, V2, and ~3 in
terms of a global (fixed) coordinate system (x,y). Upon taking
the average as follows,

\
\with thelcomponents given by

Uavg = {UI + U2 + u3)/3

Vavg = {VI + V2 + v3)/3
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a new elemental (local) coordinate system (X, Y) may be
established with the X-direction chosen along the unit vector of
~av8 in equation (B-5).
operation.

Fig.(B-I) is the result of such an

Fig. (B-1) Element with local coordinates defined
in terms of nodal velocities.

The origin of this new coordinate system is fixed at the
centroid of the element o. It is easily seen that with (xo,Yo)
as the origin of the global coordinates, the transformations
between (X,Y) and (x,y) are given by the following equations:

'~-..
Uavg 1-Uavg

- 47 -
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cose = Uayg/Uayg

sine = Vayg/Uayg

x = (x - xo) cose + (y - yo) sine

Y = -(x - xo) sine + (y - yo) cose

U = U cose + v sine

v =-u sine + v cose

(B-9)

(B-IO)

(B-ll )

(B-12)

(B-13)

(B-14)

Based on the work of Baliga and Patankar [23] the shape
function for ~ in the (X,Y) coordinate system is given by

~ = A exp(f Uayg X) + BY + C
r

(B-16)

where A, B, and C are the parameters to be determined from the,
constraints

at X = Xi, Y = Yi i=1 ... 3 (B-16)

This choice for the shape function is made for the following
reasons:

1) The exponential term allows upstream weighting of
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Specifically, II at any point in the element is strongly
dependent on the values of the upstream points when Uavg is
sufficiently large. This is a very desirable feature because
the exponential function in equation (B-15) describes the
exact solution of the convection-diffusion problem in one
dimension without source terms.

2) Equation (B-15) is based on the local coordinates, which are
aligned with the average flow velocity within the. element.
Therefore, this shape function accounts for the two
dimensionality of the flow field and thus reduces false
(numerical) diffusion considerably.

3) Let Peclet number Pe6 be defined as

PeA ;: f U a v g L:i.X / r

where AX is a characteristic element dimension. Then, as P~
approaches zero, the shape function (B-15) reduces to a linear
form in (X,Y) or (x,y). This type of function is commonly used in
the finite element method.

The determination of the constants A, B, and C now follows. Let
the following definitions be made:

(B-17)
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"

X.in _ smallest of XI,XZ,X3 (B-18)

and
.(exp[pe4(X-X7t1~")]_1) (B-19)

X l'tQ.,. - X"U'" '

Now, based on equation.(B-19), equation (B-15) may be rewritten

as

11 = AZ + BY + C

and based on the requirement of (B-16) it f9110ws that

A = Lilli

B = Hilli

C = Nilli

(B-20)

(B-21)

(B-22)

(B-23)

where repeated subscripts imply summation i = 1 •••• 3. In

particular,

LI = (Yz - Y3)/DET

Lz = (Y3 - YI)/DET

L3 = (YI - Yz)/DET

HI = (Z3.- Zz)/DET

Hz = (ZI - Z3)/DET

H3 = (Zz - Zll/DET

- 50-
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and
Nl = (ZZY3 - Z3Yz)/DET
Nz = (Z3Yl - ZlY3)/DET
N3 = (ZlYZ - ZZY1)/DET

where DET is the determinant

DET = Zl(Yz - Y3)+ZZ(Y3 - Yl)+Z3(Yl - Yz)

(B-26)

(B-27)

Upon substituting equations(B-21,B-22,and B-23) into (B-20),the
result is

where Fi = LiZ + MiY + Ni

C. Flux Calculation

are the shape functions.
(B-28)

Equation (B-3) may be written in terms of its components as

J x = f u" - r (}~OlX

Jy = fV" - r~'dY

- 51 -
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Using equations (B-19) through (B-23), (B-29) and (B-30) may be

rewri tt.m as

Jx = (ffl - rLil III

where

fl 5 (U-Uavg)LIZ + U(MIY+Nt) i =1 ••• 3

gl 5 V(LIZ + MIY + Nil i = 1. ••• 3

(B-31)

(B-32)

(B-33)

(B-34)

The expressions for the flux vector components are now

available., The integral formulation of the basic equation (B-4)

involves flux calculations across each control volume boundary as

per its left hand term. On viewing Fig. 3 (See APPENDIX - A), it

is evident that the internal control volume surrounding node P

possesses a surface that is composed of links, pairs of which

belong to elements sharing the node. Moreover, each element is

made up of three portions of three distinct control volumes. It

is therefore convenient to visit each element and calculate the

fluxes across its three links and follow up with an assembly

process. The assembly process essentially involves taking into

account in a systematic manner the elemental flux contributions

to the associated control volume portions. Once all the elements

in the domain are visited and their contributions assembled, the

flux calculations for all the control volumes are complete. The

particulars for the elemental flux contributions now follows.
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3

2

Fig. (B-2) Elementwithquadraturepointsand
linkunitnormalvectors.

A typical element is shown in Fig.(B-2) in detail. It may be
noted that the vertices of the element are numbered in a A

, I

counterclockwise fashion. If all elements follow the same local
numbering convention, the flux calculation scheme that is to be
presented applies without any modifications. The claculation of
fluxes of the general variable ~ across each link is performed
by means of Simpson's quadrature rule. The integration points are
a,b,c,r,s,t, and 0, as shown. Thus, it is clear that the three
links within the element contain the groups a-r-o, b-s-o, and c-
t-o. Moreover, the arrows drawn on each link denote the
corresponding normal unit vectors. Upon defining the following
radius vectors

A "
!!! X.I + Y.J
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it follows that

where

-.-rob

-.roc

••Da =

••nb =

••Dc =

•• ••e Xbl + YbJ

.• ~
e XcI + YcJ

•• A
Yal - XaJ

I ~ I

-.I ob I

.•. .•.
Ycl - XcJ

I ~ I

(B-36)

(B-37)

(B-38)

"

(B-39)

(B-40)

••na = normal unit vector to link oa

••nb E normal unit vector to link ob

~c a normal unit vector to link oc
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With the link normal unit vectors established, the fluxes are as
follows:

J ..n cl..f
oa.

{B-42 )

(B-43)

(B-41)

r ~
j/; J.link ob

J ~J.
li",1<. oe

The application of Simpson's rule to equations (B-41) through
(B-43) yields

(l.ti da=[(J~ + 4J~ + J~ )Ya - (J':"+ 4JT + J~ )Xal/6J l;71/( 0 <\.
(B-44)

i~A b + 4J~ • )Yb - (J~ + 4J~ • )Xbl/6 (B-45)J.n da=[(Jx + Jx + Jy
tint< ob

f~A e t + J~ )Yc - (J~ I: 0 )Xcl/6 (B-46)J.n da=[(Jx + 4Jx + 4Jy + Jy
tinll.oC!.

Substituting equations (B-31) and (B~32) into (B-44) and
simplifying, the flux across link oa may be expressed (with
repeated subscripts implying summation) as,

it ~ A /J. II "'-0
ti 111<. oa.

(B-47 )

where
..•••a.. 0 0- Y •
IIi =L[(ft +4ft +ft )Ya-(g't+4g"ii+g~ )Xal-r[LtYa-MtXal

6
(B-48)
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It may be pointed out that in equation (B-48) the subscripts a,r,
and 0 imply the evaluation of equations (B-31) and (B-32) at the
corresponding locations in conjunction with (B-33) and (B-34).
The relations for the links ob and oc can be deduced analogously
and stated. Thus, for link ob,

r J -n d...o
J Ii." I<. 0 b

(B-49) .

and for link oc,

(B-50)

~ '"J.11 (B-51)

with
'),Ol!.., e ~" e to "
I'\j =t;[(fl +4fl +fl )Yc-(gl +4g1 +gl )Xc]-f'[L1Yc-M1Xc] (B-52)

With the formulations for the flux across the links
available, the elemental contributions to its control volume
portions are constructed next. This leads to an element flux
matrix which facilitates the assembly process. 'This is described
next.

Attention is again drawn to Fig. (B-2). Let the control
volume segment containing node i(i=I .•.3) be referred to as CV1.

For example, it may be observed that the elemental flux
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contribution to eVl is effected via links oa and oc. Moreover,
the unit normal for oa points "into" eVl whereas that for link oc
points "out" from same. This is so due to the choice of a right-
handed coordinate system and the resulting vector products given
in equations (B-38) through (B-40). With these points in mind, it
is easy to see that the net efflux ~ of ~ from eVl via links oa

and oc may be written as
(B-53 )

In a similar manner it follows that the net effluxesS:z..and83

concerning evz and eVa, respectively, are expressed as

(B-54)

(B-55)

Upon making the following definitions,

Ali - A~~- A~a.-

A2.i :: :At- )..,0;'"

(B-55a)

(B-55b)

(B-55c)
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Equations (B-53), (B-54), and (B-55) may be recast in matrix form

as

r= All An A13 III.!:!os
=:i'l A2l A22 A23 112
, •••• ! 'Z. =
.•.....• ' A3l A32 A33 113
"-'"' ~

(B-56)

The 3 X 3 matrix above is called the Element Flux Matrix (EFM).

For reasons to be explained later, certain modifications to the

coefficients All, A22 and A33 are made in what follows.

It is seen that the equation for the conservation of mass

is obtained through equation (B-2) when cp is set to unity.

Further, let the mass flow rates out of CV1, CV2, -and CV3 via

their associated link pairs be denotea by I:I.l,I:t2and 03,

respectively. It therefore follows immediately that

!::rilli = (Ail + Au + Au)1l i, i=1 ••• 3

If the above indical equations are subtracted from the equation

set (B-56) the following result is obtained:

r= IIlIll All A 12 A13.!:!" 1 -
.,..." II21l2 A2l A22 A23o!:!,2. - =

';::r. - II3113 A3l A32 A33
"-'"3

(B-57)

- 58 -



where the diagonal coefficients of the EFM are redefined as,

All ::- (A1Z + Al3)

Azz _ - (An + AZJ)

AJJ _ - (AJl + AJZ)

Even though the expressions for the fluxes are now changed, these
will not affect the final solution when convergence is reached
because the velocity fields will obey continuity which, in turn
will cause the assembled values of III to .vanish. Furthermore,
this feature of the EFM will result in the point coefficient in

the nodal equation for ~ to equal magnitude of the sum of its

corresponding neighbor coefficients, which is an .important
requirement for iterative stability as discussed by Patankar

[19].

Attention may now be drawn to the right hand term of
equation (B-4) which is a volume integral. Since only 2-
dimensional problems are being considered, it is strictly an area
integral. As per the assertion made earlier that the source term
S in (B-4) is constant over any particular element, this integral

becomes
(B-58)
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where Ae denotes the area of the element under consideration. The

structure of the links within a triangular element assure that

each control volume portion has an area equal to one-third of the

total elemental area. Therefore, the contribution of the integral

in equation (B-58) to each portion is given in terms of an

El~ment Load Vector (ELV):

{ELV} = S~lie {i 1 {B-59)

Based on the setup of both the EFM and ELV, and wi th

respect to equation (B-4), it is possible to combine the two to

yield the elemental conservation equation in a compact form:

where

[EFM 1 { t } = {ELV} (B-60)

11 1

{t}= llz

113

It is emphasized here that equation (B-60) is only a partial set

which when combined in an appropriate manner via the assembly

process with those of other elements yields the complete control

volume conservation equations that are to be solved for. This

assembly procedure is detailed in the following section.
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D. The Assembly

The solution of fluid flow problems by numerical methods

essentially involves the solution of a system of nominally linear

equations which may be stated in matrix form as

C11

c 21

C12

C 2 2

...... Cln

C2n

rl

r2

Cnl Cn2

•

Cnn rn

(B-61)

where [c] nxn is known as the Global Stiffness Matrix (GSM),

{r}nxl the Global Load Vector (GLV), and n is .the number of nodes

in the domain. Frequently, the GSM is a sparse matrix, that is,

many of its components are zero. The extent of sparseness depends

largely on the domain discretization scheme and the manner in

which the equations are formulated. If the GSM is sufficiently

sparse, the form of storage as shown above becomes wasteful and

an alternative substructuring becomes more desirable. This

substructuring technique leads to a considerable reduction in

storage requirements at the cost of limiting the freedom of

domain discretization. For the problems considered, a rectangular

domain discretization is adopted which is described next.

An example of a rectangular domain discretization is

depicted in Fig. (B-3a). The domain itself need not be of a
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Fig. (B-3) Rectangular domain discretization.
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Fig. (B-4) Some examples of triangulation of quadrilaterals.
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rectangular shape. It may be observed that the region is
subdivided into quadrilaterals by a family of horizontal and
vertical line segments. Fig. (B-3b) focuses on a subregion of
the domain in detail where the horizontal line segments are
denoted by the index j and the vertical by the index i. A typical
node in the domain is then identified by the index pair (i,j).
Its right hand neighbor is specified by (i+l,j),etc.

Next, the elements are obtained by subdividing each
quadrilateral by a diagonal. Some examples of this triangulation
are shown in Fig. (B-4). It is clear that node P has at most
eight neighbors as .exemplified in Fig. (B-4b), which are
A,B,C,D,E,F,G, and H. This is a direct consequence of the
rectangular discretization process. Because of this condition, a
Nodal Equation Matrix, (NEM) may be defined as follows:

AP(i,j,m) i,j=1. .• 3

where m denotes the global node number and i, j the locations of
its neighbors. This matrix is used to form the coefficients of
the equations for each node in the domain instead of the sparse
GSM. For example, AP(2,2,m) is the coefficient of the node m
(i,j) itself while AP(3,l,m) denotes the neighbor coefficient at
the top left (i-l,j+l) of the nodal equation for m. Prior to the
assembly, both the GSM and GLV are initialized to zero. To
proceed further with details, let us consider Fig. (B-4d) as an
example.
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Fig. (B-5) Element breakup of Fig.(B-4d).

Taking guidance from Fig. (B-4d), the element group forming

the control volume around node P is fragmented and shown in Fig.

(B-5). It may be observed here that the elements (1),(2),(3) and

(4) possess local node numbers that correspond to the global ones

as shown in Table (B-1). Suppose that the EFH and ELV for

element (1) are available. With reference to Table (B-1), it is

seen that the element flux contribution to CVl (portion of

control volume around node L ) is given by

All11L + AIZl!lP + A13l!lK

Similarly, for CVz ( portion around P) the flux contribution is

AZUL + Azzl!lp + AZ3l!lK

while that for CV3 (portion surrounding K) is

A3111L + A3zl!lP + A3311K
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Table (B-1). Local-global node correspondence for Fig. (B-4d).

ELEMENT

1

2

3

4

LOCAL NODE
1

2

3

1

2
3

1

3

1

2

3

GLOBAL NODE
L
p

N

.L

Q
p

p

s

N

p

Q

s

In a like manner, the ELV contributions of elements (1) are added
on to the GLV at rL, rp, and rK. Thus, the elemental flux and
load contributions for (1) may be summarized in Table (B-2). The
other elements (2),(3) and (4) are handled in exactly the same
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Table (B-2). Element matrix and load vector assembly.

I,

Element 'Coefficient

All

Al2

Al3

Az 1

Az z

Az 3

A3l

A3 Z

A33

ELVl

ELVz

ELV3

----------~.- NEH Coefficient

AP(2,2,L)

AP( 2 ,.3, L)

AP(3,3,L)

AP(2,l,P)

AP(2,2,P)

AP(3,2,P)

AP(l,l,N)

AP ( 1 ,2 ,.N)

AP(2,2,N)

rL

rp

manner. This procedure then yields the complete coefficients for

the nodal equation concerning P

AP(i,j,P)
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and the corresponding global load component rp. It is therefore

clear that by visiting all the elements, the NEM and GLV may be

constructed completely. For the sake of convenience, the nodal

equation for an arbitrary point p may be expressed as

ap IlP + ~anb Ilnb = rp
71b

(B-62)

where (nb) indicates the summation over the neighbor nodes of p,

a are the corresponding coefficients obtained from the NEM, and

the term rp denotes the effective source term or the global load

component.

Fig. (B-6) A typicalboundary controlvolume shown shaded.

E. Boundary Conditions

When all the elements have been visited and assembled, the

resulting equations are immediately available for solution "only"

for the internal nodes. This is because all interior nodes are

surrounded by complete control volumes. On the other hand, all

- 66 -



boundary nodes are enclosed by incomplete or "half" control

volumes as shown in Fig. (B-6), where it is seen that they are

bounded at the bottom by links consisting of element sides. Based

on what has been discussed, it is clear that the flux through

these boundary su~faces have yet to be accounted for. These

boundary conditions may be categorized into three'classes:

1) Specified _ boundary: Here, the nodal equation (B-62) is

replaced by one with neighbor coefficients set to zero, the

point coefficient to unity, and the global load component to

the specified value. The replaced equation coefficients may

be stored elsewhere and retrieved later to calculate the

flu~ across the control volume boundary. For example, the

heat transfer and shear stresses at the boundaries may, be

obtained where velocities and temperatures, respectively, are

specified.

-j

2) Specified diffusion boundary: In this case, the speci fied

diffusion efflux is integrated across the boundary links by

the trapezoidal rule and appropriately appended to the

partially assembled nodal equation. As an example, let us

consider the boundary node p and its associated control

volume (shaded). Further, let the integrated diffusion 'efflux

of _ at the boundary links I and m be prescribed

as~p= h(_p - _~) where _~ is some reference value. Then,
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the available partial nodal equation for the node p is

modified as follows:

(h + ap)l!Ip+ :2:anb l!Inb= rp + h l!I-
11b

(B-63)

It may be noted that without any modifications, the boundary

nodal equations default to a .flux free boundary condition.

This is precisely the case when symmetry boundaries (channel

centerline) or, in the case of the energy transport,

insulated walls are encountered.

3) Exit Boundary : This type of boundary is present where flow

is leaving the domain. Since there is no knowledge of

conditions downstream of this boundary, it is assigned a

convection-only condition. Referring to Fig. (B-6) again,

the efflux across the control volume boundary links 1 and m

are given by -mpl!lp where mp is the m~ss flow rate into the

domain. It is to be recalled now that the Element Flux Matrix

for l!I was obtained in slightly modified form. To maintain

this consistency one would subtract from the left side of the

available nodal equation at node p the term

convection-only boundary condition would next be implemented

by adding to the right side of the resulting equation the

which represents the influx of l!Ithrough the

boundary links 1 and m. The net result is clearly a do-
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necessary boundary

nothing process. It is therefore obvious that with the

procedure described for obtaining the EFH and the nature of

the assembly process, no modifications to the exit boundary

nodal equations are needed.

Once the' boundary condition modifications are complete, the

nodal equation set is ready for solution. In a fluid flow problem

where several of such sets, each representing di'fferent variables

(e.g. velocity, enthalpy) undergo solution an iterative approach

is preferred. This is because the velocity fields, which playa

key role in calculating the equation coefficients themselves are

not known. Basically, each field variable distribution is solved

for in turn until the coefficients of the relevant nodal

equations cease varying beyond a certain tolerance. The overall

procedure may be outlined as follows:

1) Guess the distribution of the various ~ in the domain, such

as velocity. enthalpy, pressure,etc.

2) Obtain nodal equations and apply

conditions.

3) Solve these equations and check for convergence. If

convergence has been reached. stop computation. If values

still changing, go back to step (2) with the currently

available values of ~.

- 69 -



-1

It may be mentioned here that the a~tual solution of any
,

particular nodal equation set during the overall iteration

process (step (3) above) need not be carried to extreme accuracy

because the coefficients

the coefficients approach

obtain solution of

ithemselves are femporary. Moreover,

convergence, leJs effort is required
!
ia set. It is for these reasons that
I

as

to
an

iterative technique such as the line-by-line tridiagonal matrix

algori thm technique is adopted. Often, during the oyerall

iteration process, the updating of needs to undergo _

relaxation to maintain stability. These details may be found in

Patankar [19].
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II. PROGRAM LISTING
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COMVORT.BLK

parameter(im=49,jm=49,nmx=im*jm,nlt=2*(im-1)*(jm-1),
mxb=2*( im+jm-2»

/ARRAY/ VOR(nmx),PP(nmx),UFLX(nmx)
/ARRA2/ RHP(nmx),SU(nmx),DU(nmx)
/CONST/ GRAV,BLK,IMAXC,JMAXC,IPM,JPM,IPMM,JPMM,
IPMT,JPMT,IPMTM,JPMTM,JTL,JTR,IM1,JM1,IM2,JM2,NODT,
NODC,NELTC,NUMELC,NELTOT,UTOP,UBOT,VTOP,VBOT,ULEF,URIT,
VLEF,VRIT,RHO,HGT,VIS,CONST,NELEF,NERIT,NBOTOP,
IBOTOP,ILEFT,IRIGHT,NB1,NB2,NB3,NBMAX,THETA
/DXDY/DX(jm-1),DY(im-1),MAP(im+2,jm+2),

PHI(im+2,jm+2),UIN(im)
/ELEM/ NCA(nlt,3),SUEL(nlt),SVEL(nlt),UOUT(im)
/NODL/ GAM(2,nmx),SV(nmx),U(nmx),V(nmx),UH(nmx),
VH(nmx),DV(nmx),P(nmx),PSI(im,jm),
SMASS(nmx),VFLX(nmx)
/GRID/ NP(im,jm),X(nmx),Y(nmx),RH(nmx)
/MATRX/ A(3,3,nmx),AP(3,3,nmx),VOL(nmx),AREA3(nlt),
ALPHA(nlt,3),BETA(nlt,3),APSI(3,3,nmx)
/BELE/ NBND(mxb)
/MISC/ XT(3),YT(3),XN(3),YN(3),XTD(3),YTD(3),DCU(3),
DCV(3),ESM(3,3),EFMP(3,3),H(3)

COMMON DUDY,BURG,EXPX,EXPY
LOGICAL DUDY
COMMON RE
LOGICAL NCLRNC,UNIFRM,UV2,BV2,VCALC,PLOTY,BURG,READ,WRITE

II
COMMON
COMMON
COMMON

1
2
3
4
COMMON

1
COMMON
COMMON

1
2
COMMON
COMMON

1
COMMON
COMMON

1
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Program main
c
c This is the CVFEM code that uses the Streamfunction
c-vorticity formulation of the N.S. equations. This
c program solves the test problem, "Natural Convection
c Heat Transfer in a Square Duct with. V-Corrugated
~ Vertical Walls". Relaxation factor for wall vorticity
c of 0.5 and that for vorticity of 0.5 are recommended.
c For temperature, also use 0.8.
c
c

include'comvort.blk'
nclrnc=.true.
open(13,file='in.dat',status='unknown')
read(13,*) unifrm,vcalc,uv2,bv2,burg,gr,relt,crit,dudy
read(13,*) read,write
read(13,*) ngr,ipm,jpm,maxit,bvrel,relv,re,ploty,expx,expy
read(13,*) ampl, freq
close(13)
open(ll,file='out.dat',status='unknown')
nodc=ipm*jpm
neltc=2*(ipm-1)*(jpm-1)
numelc=neltc
ipmp=ipm+1
jpmp=jpm+1
ihalf=ipmp/2
jhalf=jpmp/2
imaxc=ipm+2
jmaxc=jpm+2
ipmt=5
jpmt=5
jtl=4
jtr=8
ipmm=ipm-1
jpmm=jpm-1
ipmtm=ipmt-1
jpmtm=jpmt-1
rho=1.0

c
im1=imaxc-1
im2=imaxc-2
jm1=jmaxc-1
jm2=jmaxc-2

c ******* set double density grid at the boundaries *******
7120 continue

prody=expy
ipend= iha If-3
do 7123 ip=l,ipend

7123 prody=(prody+1.0)*expy
dy(1)=0.5/(1.+prody)
dy(ipmm)=dy(l)
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ie=ipmm
do 7124 ip=2,ihalf-1
ie=ie-1
dy(ip)=dy(ip-1)*expy

7124 dy(ie)=dy(ip)
7003 continue

c ******* initialize the nodal arrays *******
do 1111 nd=l,nodc
su(nd)=O.O
sv(nd)=O.O
u(nd)=1.0
v(nd)=O.O
uh(nd)=O.O
vh(nd)=O.O
du(nd)=O.O
dv(nd)=O.O
p(nd)=O.O
pp(nd)=O.O
smass(nd)=O.O
uflx(nd)=O.O
vor(nd)=1.0
vo 1(nd) =0.0 .
game l,nd)=1.0
gam(2,nd)=1.0
do 9313 i=l,3
do 9312 j=l,3
a( i ,j ,nd)=1.0

9312 continue
9313 continue
1111 continue

c
call geot(ampl,freq)

c ******* set the wall velocities **************
utop=re
vtop=O .

.ubot=O.
vbot=O.
ulef=O.
vlef=O.
urit=O.
vrit=O.
vor(np( 1,1) )=0.
vor(np(l,jpm»=O.
vor(np(ipm,l»=O.
vor(np(ipm,jpm»=O.
do 1112 j=2,jpmm
u(np( 1 ,j) )=ubot
v(np( 1 ,j) )=vbot
u(np(ipm,j»=utop

1112 v(np(ipm,j»=vtop
do 1113 i= 1 ,ipm
u(np(i,l»=O.
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u(np( i,jpm) )=0.
v(np(i,l»=O.

1113 v(np(i ,jpm»=O.
if(burg) goto 1115
do 1114 i= 1,ipm
uflx(np(i,l»=1.0

1114 uflx(np(i,jpm»=O.O
blk=gr

1115 continue
call asmpsi
call svor.
ca 11 1so 1ve (3, 1.OeO, 0 ,3 ,im2 ,3,jm2, 5, 1,1)

c *****************************************************************
comp=1.0
if(read) then
open(15,file='raw.dat',status='old')
do 2451 n=l,nodc

2451 read(15,*) vor(n),pp(n),uflx(n)
close(15)
endif

c
do 9000 iterg=O,maxit
call bvt(bvrel)
call cofsrt(l)
if(burg) goto 1116
call lsolve(5,relt,l,2,im1,3,jm2,2,l,l)
calltsorc

1116 continue
ca 11 1so 1ve (1,re 1v ,1,3 ,im2 ,3,jm2 ,2 ,1,1)

c ---------------------- convergence check -----------------------if(mod(iterg,l).eq.O) then
resid=O.O

do 9316 i=2,ipm-1
do 9315 j=2,jpm-1

n=np(i,j)
res = a (1,1 ,n)*vo r(np (i-1 ,j- 1))+a (1 ,2 ,n) *vo r(rip(i-1 , j ))+

1 a( 1,3,n)*vor(np( i-1 ,j+1) )+a(2,l,n)*vor(np( i ,j-1»+
2 a(2,2,n)*vor(np(i, j»+a(2,3,n)*vor(np(i ,j+1»+
3 a(3,1 ,n)*vor(np( i+l,j-1) )+a(3,2,n)*vor(np( ;+1, j»+
4 a (3,3, n )*vor (np (i+ 1 ,j+ 1))- rhp (np (i,j ))

resid=resid+res*res
9315 continue
9316 continue

write(11,9210) iterg,resid,vor(np(ihalf,jhalf»,
lpp(np(ihalf,jhalf»,uflx(np(ihalf,jhalf»
endif '

if(resid.lt.crit) goto 9001
call svor
call1solve(3,l.0eO,O,3,im2,3,jm2,2,l,l)
do 2033 i=l,ipm
do 2033 j=l,jpm

2033 psi(i,j)=pp(np(i,j»
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c ******* write unformatted values of vor,psi,u,v *******
if(mod(iterg,50).eq.0) then
call uvclc4
open(10,file='chk.dat',status='unknown')
do 7136 j=l,jpm
do 7136. i=1,ipm

Il;", n=np( i,j) ,
write(10,7140) j,i,x(n),y(n),u(n),v(n),uflx(n),vor(n),pp(n)

7136 continue
close(10)
if(write .eq .. true.) then
open(14,file='raw.dat',status='unknown')
do 2452 n=l,nodc

2452 write(14,*) vor(n),pp(n),uflx(n)
close(14)
endif
endif

c *******************************************************9000 continue
9001 continue.

call uvclc4
write(ll,*) '******** t est. for ********'
write(11.2440) ngr,ipm,jpm,bvrel,relv,relt
if(ngr.eq.3) write(11,2441) expx,expy
write(ll,*) 'burg is: ',burg
write(ll,*) 'unifrm is: ',unifrm
write( 11,*) 'the grashof # is: ',gr
call flux
write (11,7141 )
do 7 135 j = 1 ,j pm
do 7 135 i= 1 , ipm
n=np (i,j)
write(11,7140) j,i,x(n),y(n),u(n),v(n),uflx(n),vor(n),pp(n)

7135 continue
7141 format(//, lx,'j' ,2x,' i',7x, 'x', lOx, 'y', 13x, 'u', lOx, 'v', lOx,

+'t',10x,'o',10x,'z',/,('-'))
7140 format(i2,lx,i2,',',lx,2(lx,lpel0.3),'! ,',lx,5(lx,lpel0.3))

close (11 )
stop

c *******************************************************2440 format(3x,'ngr',2x,'ipm',2x,'jpm',7x,'bvrel',
12x ' relY' 2x ' relt' / 3x '---' 2x '---' 2x '---' 7x ,-----,

I " I" " ,. " ,.22x, ,-----, ,2x, ,-----, ,/,4x, i1,3x,i3,2x, i3, 7x,f5.2,2x,f5.2,2x,
3f5.2)

2441 format(//,10x,'expansion coeffs. in x and y',/,10x,28('-' ),/,
112x,f5.2,3x,f5.2)

9210 format(lx,i4,4x,4(lpdll.4,2x))
end

c
subroutine geot(ampl,freq)
include'comvort.blk'
dimension yh(20)
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nodc=ipm*jpm
numelc=neltc
neltc=numelc

c
c*** number the nodes first ***
c

do 800 i=l,ipm
do 800 j=1,jpm

800 np(i,j)=(j-1)*ipm+i
pi=3.1415926536
ttheta=(1./(4.*freq»/ampl
trm=1.0
do 802 j=1,jpmm/2-1

802 trm=trm*expx+1
mz=4*freq
mZ2=mz+1
do 600 n=3,mz2,2
ny=n-2
i=(n-1)/2
yh(i)=float(ny)/float(mz)

600 continue
x( 1)=0.0
y(l)=O.O
dxa1=.5-ampl
dxa2=.5+ampl
do 801 i=1,ipm
if(i.eq.1)then
yy=O.O'
x(np(i,l»=yy/ttheta
dx(1)=.5/trm
x(np(i,l»=O.O
go to 520

c go to 400
endif
yy=y(np( i-1, 1))+dy( i-1)
if(yy.gt.O.O.and.yy.le.yh(l» then
x(np(i,l»=yy/ttheta
dx( 1)=( .5-x(np( i,1)»/trm
go to 520
endif
if(yy.gt.yh(1).and.yy.le.yh(2» then
yy1=yy-yh( 1)
x(np(i,1»=yy1/ttheta
dx(1)=(dxa1+x(np(i,1»)/trm
x(np(i,l»=-x(np(i,l»+ampl
go to 520
endif
if(yy.gt.yh(2).and.yy.le.yh(3» then
yy2=yy-yh(2)
x(np( i,1))=yy2/ttheta
dx( 1)=(dxa2-x(np( i,1» )/trm
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2122

520

804

805
801

c***

2121

x(np (i,1))=X ( np(i,1))-amp 1
go to 520
endif
if(yy.gt.yh(3).and.yy.le.yh(4» then
yy3=yy-yh(3)
x(np(i,l»=yy3/ttheta
dx(l)=(dxal+x(np(i,l»)/trm
x(np(i,l»=-x(np(i,l»+ampl
go to 520
endif
if(yy.gt.yh(4).and.yy.le.yh(5» then
yy4=yy-yh(4)
x(np(i,l»=yy4/ttheta
dx( 1)=(dxa2-x(np( i,l» )/trm
x(np( i,l) )=x(np( i,l) )-ampl
go to 520
endif
if(yy.gt.yh(5).and.yy.le.yh(6» then
yy5=yy-yh(5)
x(np(i,l»=yy5/ttheta
dx( 1)=(dxa1+x(np( i,l» )/trm
x(np( i,1))=-x(np( i,l) )+ampl
go to 520
endif
if(yy.gt.yh(6).and.yy.le.l.0) then
yy6=yy-yh(6)
x(np(i,l»=yy6/ttheta
dx(l)=(dxa2-x(np(i,I»)/trm
x(np(i,I»=x(np(i,l»-ampl
go to 520
endif
dx(jpmm)=dx(l)
y(np( i,l) )=yy
do 804 j=2,jpmm/2
dx(j)=dx(j-l)*expx
dx(jpmm-j+l)=dx(j)
do 805 j=2,jpm
y(np(i,j»=yy
x(np( i,j) )=x(np( i,j-l) )+dx(j-l)
continue

now setup the nodal connection array ***
nb=O
do 2121 i=1,ipm
nb=nb+l
nbnd(nb)=i
nbl=nb
do 2122 j=2,jpm
nb=nb+l
nbnd(nb)=np(ipm,j)
nb2=nb
do 2123 i=ipmm,l,-1
nb=nb+l
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2123 nbnd(nb)=np(i,jpm)
nb3=nb
do 2124 j=jpmm,2,-1
nb=nb+l

2124 nbnd(nb)=np(l,j)
nbmax=nb

c
nel=O
do 9319 iq=l,ipmm
do 9320 jq=l,jpmm
nel=nel+l
nca(nel,l )=np( iq,jq)
nca(nel,2)=np(iq,jq+1)
nca(nel,3)=np(iq+l,jq+l)
nel=nel+l
nca(nel,l)=np(iq,jq)
nca(nel,2)=np(iq+l,jq+1)
nca(nel,3)=np(iq+l,jq)

9320 continue
9319 continue

nel=2*ipmm
nca(nel,1 )=np( ipm,1)
nca(nel,2)=np(ipmm,2)
nca(nel,3)=np(ipm,2)
nel=nel-1
nca(nel,1 )=np( ipm,1)
nca(nel,2)=np(ipmm,1)
nca(nel,3)=np(ipmm,2)
nel=neltc-2*ipmm+l
nca(nel,1)=np(2,jpmm)
nca(nel,2)=np(l,jpmm)
nca(nel,3)=np(1,jpm)
nel=nel+1
nca(nel,1)=np(2,jpmm)
nca(nel,2)=np(l,jpm)
nca(nel,3)=np(2,jpm)

c
do 2000 nel=1,neltc
do 2100 node=1,3
xt(node)=x(nca(nel,node»

2100 yt(node)=y(nca(nel,node»
c

c

c

c

det=xt(1)*yt(2)+xt(2)*yt(3)+xt(3)*yt(1)-
& yt(1)*xt(2)-yt(2)*xt(3)-yt(3)*xt(1)
area3(nel)=abs(det/2.0)/3.0
alpha(nel,1)=(yt(3)-yt(2»/det
alpha (ne 1,2)=(yt (1)-yt (3 ))/det
alpha(nel.3)=(yt(2)-yt(1»/det
beta(nel,l)= (xt(2)-xt(3»/det
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beta(nel,2)= (xt(3)-xt(1»/det
beta(nel,3)= (xt(1)-xt(2»/det

c
2000 continue

c ******* the nodal volumes are assembled here *******
c

do 2500 nel=l,neltc
do 2501 n=l,3

c ******* here dv is used to assemble inverse areas for each node **
dv(nca(nel,n»=dv(nca(nel,n»+1.0/area3(nel)

2501 vol(nca(nel,n»=vol(nca(nel,n»+area3(nel)
2500 continue

c ******* the map for the general phi variable *******
jml=jmaxc-l
iml=imaxc-l
do 9009 j=2,jml
do 9009 i=2, iml

9009 map(i,j)=np(i-l,j-l)
c

return
end

c
subroutine uvclc4
include'comvort.blk'

c
dimension ii(3),jj(3)

c

do 1000 nel=l,neltc
psl=pp(nca(nel,l»
ps2=pp(nca(nel,2»
ps3=pp(nca(nel,3»

c
ve=alpha(nel,l)*psl+alpha(nel,2)*ps2+alpha(nel,3)*ps3
ue=(-1.)*(beta(nel,1)*psl+beta(nel,2)*ps2+beta(nel,3)*ps3)

c

******* reimpose the boundary
do 3000 j=l,jpm
u(np( 1,j) )=uh(np( 1,j»
v(np( 1,j) )=vh(np( 1,j».

300
c
1000

c
c

do 300 n=l,3
u(nca(nel,n»=u(nca(nel,n»+ue/(area3(nel)*dv(nca(nel,n»)
v(nca(nel,n»=v(nca(nel,n»+ve/(area3(nel)*dv(nca(nel,n»)
continue

velocities *******************
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u(np(ipm,j»=uh(np(ipm,j»
v(np(ipm,j»=vh(np(ipm,j»

3000 continue
c

do 3001 i=2,ipmm
u(np(i,jpm»=uh(np(i,jpm»
u(np(i,l»=uh(np(i,l»
v(np(i,l»=vh(np(i,l»
v(np(i,jpm»=vh(np(i,jpm»

3001 continue
c

return
end

c
subr~Lltine svor
include'comvort.blk'

c
do 2000 n=l,nodc

2000 su(n)=O.OeO
c

do 1000 nel=l,heltc
nl=nca(nel,l)
n2=nca(nel,2)
n3=nca(nel,3)
su(nl)=su(nl)+area3(nel)*(22*vor(nl)+7*vor(n2)+7*vor(n3»/36
su(n2)=su(n2)+area3(nel)*(7*vor(nl)+22*vor(n2)+7*vor(n3»/36
su(n3)=su(n3)+area3(nel)*(7*vor(nl)+7*vor(n2)+22*vor(n3»/36

1000 continue
c

return
end

c
subroutine asmpsi
include'comvort.blk'

c
dimension ii(3),jj(3)
do 2000 n=l,nodc
do 2000 i=l,3
do 2000 j=l,3

2000 apsi(i,j,n)=O.OeO
c

do 1000 nel=l,neltc
do 100 n=l,3
xn(n)=x(nca(nel,n»

100 yn(n)=y(nca(nel,n»
c

c

detl=xn(1)*yn(2)+xn(2)*yn(3)+xn(3)*yn(1)-
& yn(1)*xn(2)-yn(2)*xn(3)-yn(3)*xn(1)

y23=yn(2)-yn(3)
y31=yn(3)-yn(1)
y12=yn( 1)-yn(2)
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c
x32=xn(3)-xn(2)
x13=xn(1)-xn(3)
x21=xn(2)-xn(1)

c
esm(1,1)=y23*y23+x32*x32
esm(1,2)=y23*y31+x32*x13
esm(1,3)=y23*y12+x32*x21
esm(2,2)=y31*y31+x13*x13
esm(2,3)=y31*y12+x13*x21
esm(3,3)=y12*y12+x21*x21

c ******* statement of symmetry *******
esm(2,1)=esm(1,2)
esm(3,1)=esm(1,3)
esm(3,2)=esm(2,3)

c
do 101 i=1,3
do 101 j=1,3

101 esm(i,j)=0.5*esm(i,j)/det1
c
c ******* the assembly process onto the apsi matrix *******

do 120 nc=1,3
jj(nc)=(nca(nel,nc)-1)/ipm+1

120ii(nc)=nca(nel,nc)-ipm*(jj(nc)-1)
do 121 i=1,3
nd=np(ii(i),jj(i»
do 122 j=1,3
ig=2-(ii(i)-ii(j»
jg=2-(jj(i)-jj(j»
apsi(ig,jg,nd)=apsi(ig,jg,nd)+esm(i,j)

122 continue
121 continue

c ****************** end assembly ************************
1000 continue

return
end

c
subroutine tsorc
include'comvort.blk'

c
dimension ii(3),jj(3)
pi=3.141592654
theta=O.O
do 2000 n=1,nodc

2000 rhp(n)=O.O
c

do 1000 nel=1,neltc
c

c1=(alpha(nel,1)*uflx(nca(nel,1»+alpha(nel,2)*
+uflx(nca(nel,2»+alpha(nel,3)*uflx(nca(nel,3»)*area3(nel)
c2=(beta(nel,1)*uflx(nca(nel,1»+beta(nel,2)*uflx(nca(nel,2»

1+beta(nel,3)*uflx(nca(nel,3»)*area3(nel)
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c

300
c
1000

c
c

c

c

sortc=blk*(sin(theta*pi/180.0)*c2-cos(theta*pi/180.0)*cl)
do 300 n=l,3
rhp(nca(nel,n»=rhp(nca(nel,n»+sortc
continue

continue

return
end

subroutine lsolve(nvar,rl,ncoef,ists,inds,jsts,jnds,
lnsweep,nswpx,nswpy)
include'comvort.blk'

dimension aa(50),bb(50),cc(50),rhs(50)
nfl=O
imx=inds-ists+l
jmx=jnds-jsts+l
crel=( 1.O-rl )/rl

c ******* set phi to 0.0 ************************
do 4999 i=l,imaxc
do 4999 j=l,jmaxc

4999 phi(i,j)=O.O
if(nvar.eq.3) goto 500

c ********** copy a matrix onto amt **********
do 5000 n=l,nodc
do 5000 i=l,3
do 5000 j=l,3

5000 ap(i,j,n)=a(i,j,n)
c

do 5001 n=l,nodc
coef=2.*(amaxl(0.OeO,-a(2,2,n»)*float(ncoef)
doef=coef+a(2,2,n)
ap(2,2,n)=doef/rl
if(nvar.eq.l) rh(n)=rhp(n)+(doef*crel+coef)*vor(n)
if(nvar.eq.5) rh(n)=(doef*crel+coef)*uflx(n)+du(n)

5001 continue
goto 550

500 continue
c *********** copy the apsi matrix onto amt **********

do 5002 n=l,nodc
do 5002 i=l,3
do 5002 j=1,3
rh(n)=su(n)

5002 ap(i,j,n)=apsi(i,j,n)
c
550 continue

do 5004 i=2, iml
do 5004 j=2,jml
if(nvar.eq.l) phi (i,j)=vor(map( i,j»
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if(nvar.eq.5) .phi(i,j)=uflx(map(i,j»
if(nvar.eq.3) phi(i,j)=pp(map(i,j»

5004 continue
c
c
c ********* start the sweeping ******************
c

2
10
100
1000

c

1

do 2000 nt=l,nsweep
do 1000 ns=l,nswpx
ifl =-1
j=jsts
do 100 nct=l,2
j=j+ifl
ifl =-1 * ifl
do 10 jC=l,jmx
j=j+ifl
i=ists-l
do 1 ic= 1 , imx
i=i+l
n=map( i ,j)
aa(ic)=ap(l,2,n)
bb(ic)=ap(2,2,n)
cc(ic)=ap(3,2,n)
rhs (ic )= rh (n )-ap (1 ,1 ,n )*ph i(i-1 ,j-1 )-ap (1 ,3 ,n) *ph i(i-1 ,j+ 1 )

l-ap(2,l,n)*phi(i,j-l)-ap(2,3,n)*phi(i,j+l)
2-ap(3,l,n)*phi(i+l,j-l)-ap(3,3,n)*phi(i+l,j+l)

continue
rhs(1)=rhs(1)-ap(l,2,map(ists,j»*phi(ists-l,j)
rhs(imx)=rhs(imx)-ap(3,2,map(inds,j»*phi(inds+l,j)
call tri(aa,bb,cc,rhs,l,imx)
i=ists-l
do 2 i i = 1 , imx
i=i+l
ph i(i ,j )=aa (ii )
continue
continue
continue
do 1001 ns=l,nswpy
if 1=-1
i=ists
do 101 nct=l,2
i=i+ifl
ifl=-1*ifl
do 11 ic=l,imx
i=i+ifl
j=jsts-l
do 3 jc=l,jmx
j =j+ 1
n=map (i ,j )
aa(jc)=ap(2,l,n)
bb(jc)=ap(2,2,n).
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4
1 1
101
1001

c
2000
c

3

cc (jc) =ap (2 ,3,n)
rhs(jc)=rh(n)-ap( 1,1,n)*phi (i-1,j-1 )-ap(3,1,n)*phi (i+1,j-1)

1-ap(1,2,n)*phi(i-1,j)-ap(3,2,n)*phi(i+1,j)
2-ap(1,3,n)*phi(i-1,j+1)-ap(3,3,n)*phi(i+1,j+1)
continue
rhs( 1)=rhs( 1)-ap(2, 1,map( i,jsts) )*phi (i ,jsts-1)
rhs(jmx)=rhs(jmx)-ap(2,3,map(i,jnds»*phi(i,jnds+1)
call tri(aa,bb,cc,rhs,1,jmx)
j=jsts-1
do 4 jj=1,jmx
j=j+1
phi (i,j )=aa (jj )
continue
continue
continue
continue
if(phi(5,5).ge.1.0d10) then
write(11,*) 'bombing out in nvar=',nvar
stop
endif

c ********* resubstitute phi back into the appropriate variable ***
do 3000 i=ists,inds
do 3000 j=jsts,jnds
if(nvar.eq.1) vor(map(i,j»=phi(i,j)
if(nvar.eq.5) uflx(map(i,j»=phi(i,j)
if(nvar.eq.3) pp(map(i,j»=phi(i,j)

3000 cont inue .
c
c

return
end

c
subroutine tri(a,b,c,d,m,n)
dimension a(50),b(50),c(50),d(50),e(50),f(50),g(50)

c gauss elimination
e(m)=b(m)
f(m)=d(m)
m1=m+1
do 10 i=m1 ,n
g( i)=a( i )/e( i-1)
e( i)=b( i)-g( i)*c( i-1)

10 f(i)=d(i)-g(i)*f(i-1)
c back substitution. answer stored in a(i)

a(n)=f(n)/e(n)
do 20 j=m1,n
i=n+m1-1-j

20 a( i)=(f( i )-c( i)*a( i+1) )/e( i)
return
end

- 85 -

/,

c



c

c

c

c

subroutine shear
include'comvort.blk'
dimension shr(1001
data shr/l00*0./
do 10 j=1,jpmm
nb=np( ipm,j I
nbp=np(ipm,j+l1
el=sqrt«x(np(ipm,j+lll-x(np(ipm,jlll**2+(y(np(ipm,j+lII

+-y(np(ipm,jlll**21/2
shr(jl=shr(jl+dx(jl*(vor(nbpl+3.*vor(nbll/8.
shr(j+ll=shr(j+ll+dx(jl*(3.*vor(nbpl+vor(nb»/8.

10 continue
sum=O.
do 11 j=l,jpm

11 sum=sum+shr(jl
sum=abs(2*sum/(utop**211
write(ll,*1 'drag coefficient =',sum
write(ll,*1 'shear array follows'.
do 12 j = 1 , j pm

12 write(11,131 j,shr(jl
13 format(4x,i4,3x,dll.41

return
end
subroutine print(phl
include'comvort.blk'
dimension ph(nodcl
jst=-5
klip=jpm/6+1
jrem=mod(jpm,61
do 7800 k=l,klip
jst=jst+6
jnd=jst+5
if(k.eq.klip) then
jnd=jpm
jst=jnd-jrem+l
endif
write( 11,79001 (x(np( 1,jII,j=jst,jndl
wr ite (11 ,7903 I
do 7801 i=ipm, 1,-1

7801 write( 11,7901 I y(np( i, 1II,(ph(np( i,j II,j=jst,jndl
7800 c6ntinue
7900 format(//,6x,'x=---->',6(lpel0.3,lxll
7901 format (,y=' ,1pe 10. 3, ':',6(1pe 10 .3, 1x II
7903 format(79('-'11

return
end
subroutine flux
include'comvort.blk'
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do 1 i=1,imax c
do 1 j=l,jmaxc

1 phi(i,j)=O.
do 2 i=2,im1
do 2 j=2,jm1
phi (i,j )=pp(np( i-1 ,j-1»

2 continue
do 3 nb=l,nbmax
n=nbnd(nb)
jj=(n-1)/ipm+1
ii=n-ipm*(jj-1)

2000

~'

"

c

1

2

4

3

c

do 1 i=l, imaxc
do 1 j=l,jmaxc
phi(i,j)=O.
do 2 i=2, im1
do 2 j=2, jm1
phi (i ,j)=uflx(np( i-1 ,j-1»
continue
do 4 n=l,nodc
rh(n)=du(n)
sum=O.O
do 3 n= 1 , ipm
i i =n
jj=l
i=ii+1
j=jj+1
flx=a(2,2,n)*phi(i,j)+a(1,1,n)*phi(i-1,j-1)+a(l,2,n)*

1ph i(i-1 ,j )+a (1 ,3 •n )*ph i(i-1 ,j+ 1)+a (2 ,1 ,n)*ph i(i•j-1 )+a (2 ,3 ,n )*
2ph i(i,j+ 1)+a (3 ,1•n )*ph i(i+ 1,j-1 )+a (3 ,2 ,n )*ph i(i+ 1 ,j)+a (3 ,3 •n )*
3phi (i+1 ,j+1 )-rh(n)
sum=sum+flx
write(11,2000) n,flx
if (n. gt. 1 .and. n. 1t. ipm) then
el1sq=(x(n)-x(n-1»**2+(y(n)-y(n-1»**2
e12sq=(x(n)-x(n+1»**2+(y(n)-y(n+1»**2
el=(sqrt(el1sq)+sqrt(e12sq»/2
else if(n.eq.1)then
el=sqrt(x(2)**2+y(2)**2)/2
else if (n.eq.ipm)then
el=sqrt( (x(n)-x(n-1) )**2+(y(n)-y(n-1) )**2)/2
endif
uin(n)=flx/el
write(ll,*) 'loco nuss. no. ',n,uin(n)
continue
write(ll,*) 'net flux=',sum
format(3x,i4,2x,d11.4)
return
end
subroutine bvt(bvrel)
include'comvort.blk'
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subroutine cofsrt(kde)
include'comvort.blk'
dimension ii(3),jj(3),xu(3),yu(3),z(10),xb(10),yb(10),

# f(10,3),g(10,3),yfxg(3,3),uf(3),vf(3),
# ut(10),vt(10) "

do 2000 n=l,nodc
do 2000 i=l,3
do 2000 j=l,3

2000 a(i,j,n)=O.OdO
do 1000 nl=l,neltc
nl=nca(nl,l)
n2=nca(nl,2)
n3=nca(nl,3)
ve=alpha(nl,l)*pp(nl)+alpha(nl,2)*pp(n2)+alpha(nl,3)*pp(n3)
ue=-1.*(beta(nl,l)*pp(nl)+beta(nl,2)*pp(n2)+beta(nl,3)*pp(n3»
ul=ue
u2=ue
u3=ue
vl=ve
v2=ve
v3=ve
xo=(x(nl)+x(n2)+x(n3»/3.0
yo=(y(nl)+y(n2)+y(n3»/3.0
gamma=(gam(l,nl)+gam(1,n2)+gam(l,n3»/3.0
uav=(ul+u2+u3)/3.0
vav=(vl+v2+v3)/3.0
ubav=sqrt(uav*uav+vav*vav)
cost=uav/ubav
sint=vav/ubav
do 9300 i=1,3
xb(i)=(x(nca(nl,i»-xo)*cost+

& (y(nca(nl,i»-yo)*sint"
yb(i)=(y(nca(hl,i»-yo)*cost-

& (x(nca(nl,i»-xo)*sint
9300 continue

xb(10)=0.0
yb(10)=0.O
xb(4)=(xb(1)+xb(2»/2.
xb(5)=(xb(2)+xb(3»/2.
xb(6)=(xb(3)+xb(1»/2.

'.

c

i=ii+l
j=jj+1
vns=apsi(2,2,n)*phi(i,j)+apsi(l,l,n)*phi(i-l,j-l)+

1aps i(1 ,2 ,n )*ph i(i-1 ,j )+aps i(1 ,3,n )*ph i(i-1 ,j+ 1 )+aps i(2 ,1 ,n)*
2phi (i ,j-l )+apsi (2,3,n)*phi (i ,j+l )+apsi (3,l,n)*phi (i+1,j-l)+
3apsi(3,2,n)*phi(i+l,j)+apsi(3,3,n)*phi(i+l,j+l)

vn=vns/vol(n)
vor(n)=(vn-vor(n»*bvrel+vor(n)

3 continue
return
end
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II xb(7)=xb(4)/2.
xb(8)=xb(5)/2.
xb(9)=xb(6)/2.
yb(4)=(yb(1)+yb(2»/2.
yb(5)=(yb(2)+yb(3»/2.
yb(6)=(yb(3)+yb(1»/2.
yb(7)=yb(4)/2.
yb(8)=yb(5)/2.
yb(9)=yb(6)/2.
cst=rho*ubav/gamma
xmx=amax1(xb(1),xb(2),xb(3»
do 9301 i=1,3
pe=cst*(xmx-xb(i»
big=amax1 (0. ,.(1.-.1*pe)**5)
z(i)=big/(pe+big)
z( i)=(z( i)-1 )/cst

9301 continue
pe=cst*xmx
big=amax1(0.,(1.-.1*pe)**5)
z(10)=big/(pe+big)
z( 10)=(z( 10)-1 )/cst
y12=yb( 1)-yb( 2)
y31=yb(3)-yb(1)
y23=yb(2)-yb(3)
z32=z(3)-z(2)
z13=z( 1)-z(3)
z21=z(2)-z( 1)
c1=z(2)*yb(3)-z(3)*yb(2)
c2=z( 3 )*yb( 1)-z( 1)*yb( 3)
c3=z(1)*yb(2)-z(2)*yb(1)
d=z(1)*y23+z(2)*y31+z(3)*y12
if(d.le.1.00e-08)then
d= 1 .00
endif
xili=(y23*xb(1)+y31*xb(2)+y12*xb(3»/d
ximi=(z32*xb(1)+z13*xb(2)+z21*xb(3»/d
xini=( c1*xb(1)+ c2*xb(2)+ c3*xb(3»/d
rav=rho*ubav
do 9302 i=4,10
f(i,1)=(rav*(z32*yb(i)+c1)-gamma*y23)/d
f(i,2)=(rav*(z13*yb(i)+c2)-gamma*y31)/d
f(i,3)=(rav*(z21*yb(i)+c3)-gamma*y12)/d
g(i,1)=(-gamma*z32)/d
g(i,2)=(-gamma*z13)/d
g(i,3)=(-gamma*z21)/d

9302 continue
do 9310 j=1,3
do 9311 i=1,3
yfxg(j,i)=«f(j+3,i)+4.*f(j+6,i)+f(10,i»*yb(j+3)

# -(g(j+3,i)+4.*g(j+6,i)+g(10,i»*xb(j+3»/6.
9311 continue
9310 continue

- 89 -



\
l

9320

120

122
121
.1000

do 9320 i=l,3
esm(l,i)=yfxg(3,i)-yfxg(1,i)
esm(2,i)=yfxg(l,i)-yfx~{2,i)
esm(3,i)=yfxg(2,i)-yfxg(3,i)
continue
do 120 nc=l,3
jj(nc)=(nca(nl,nc)-l )/ipm+1
ii(nc)=nca(nl,nc)-ipm*(jj(nc)-l)
do 121 i=1,3
nd=np(ii(i),jj(i»
do 122 j=1,3
ig=2-(ii(i)-ii(j»
jg=2-(jj(i)-jj(j»
a(ig,jg,nd)=a(ig,jg,nd)+esm(i,j)
continue
continue
continue
return
end
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