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ABSTRACT

A parametric studﬁ has been performed on natural
convection heat transfer and flow characteristics in a s8quare
enclosure with V-corrugated vertical walls. The vorticity atream
function formulation with the Control Volume based Finite Element
Method (CVFEM) was used to analyze the effects of corrugation
frequency and Grashof numbers on heat ir&nsfer and flow
behaviour. The results show that the overal; heat transfer
through the enclosure decreases with increasing corrugationr
frequency for large Grashof numbers but the trend is reversed for
low Grashof numbers. This behaviour can be explained as a
manifestation of two competing effects : The increase of wall
surface area versus the retardation of flow dué to increasé in
corrugation frequency; Specifically the increase in wall surface
area tends to enhance the overall heat £ransfer while the
retardation of flow due to increased wavinesé tends to reduce the

convective transport of energy.
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CHAPTER 1I

INTRODUCTION

A, _Natural Convection Of Fluid.

¥

The fluid flow in "free" or "natural" convection arises
as a result of density variations_caused by thermal expansion of
the fluid in a non—uniform‘temperature ‘distribution. Free
convection curéenté ﬁransfer internal‘enefgy stored in fluid
elements in the same manner as forced convection currents.
However, the intensity of the mixing of the fluid is generally
less in natural convection and consequently the heat transfer
coefficients in natural convectién are lower than those in forced
convection. Since the temperature disfribution is itself
dependent on the movement of the fluid, the transport equations
of motion and thermal energy are couﬁled. Further, the
development of the flow is influenced by the shape of the heat

transfer surfaces.

L]

Both numerical ‘and experimental methods have been used to
obtain the soclutions of heat transfer and fluid flow problems.
Though experimental methods are more realistic, they are costly

and time consuming due to the necessity of expensive prototypes



~and instrumentation. On the other hand, numerical methods can
offer considerable savings in design time and costas. Of course,
the validity of any numerical approach must be established by
comparison with existing experimental data and other established
numerical solutions before using it for simﬁlating new problems;
However, once tested and found to be reliable, it becomes a
powerful tool for investigdting a wide range of fluid flow and

heat transfer problems. As a preliminary step, the work

contained in this 'thesis consists of a numerical investigation of

natural convection heat transfer and fluid flow within a sgquare

enclsure with V-corrugated vertical walls.

B. Background

This section is composed of two parts. In the first part,
the studies that have been performed experimentally are discussed
and the second contains a brief review of numerical

investigations.

Experimental Invesgtigations,

‘ Several investigators have carried out their research on
-natural convection heat transfer and fluid flow with corrugated
surfaces. First, experiments were performed for plane surfaces

with different boundary conditions [1-8]; and for corrugated

i
.'; u



surfaces [9-12). Dropkin and Somercales [1] performed an
experimental investigation on natural convection heat transfer in
liquids confined by two parallel plateé and inclined at various
angles with respect to the horizontal. The range of Rayleigh
numbers covered in these expe—riments was.5 X 10% to 7.17 X 108
and the Pran&tl number was varied from 0.02 to 11560.
Experiments were carried out in rectangular and circular
containers having copper plates and insulating walla. The liquids

used were water, ailicon ¢il and mercury.

Imbergér [2] made an experimental study on the natural
convection heat transfer and fluid flow in closed cavities and
obtained the-solutioq of the Navier-Stokes equation with
differentially heated end walls of-the cavities of samall aspect
ratio and showed the strong agreement with the results of the
same problem cbtained numerically by Cormack et al. [4]. Ozoe
et al. [8)] performed a set of experiments'for laminar flow in
silicon o0il and air along a rectangular channel. The channel was
heated from below and cooled from above while the other two sides

were insulated.

There have also been a number of investigations carried
out on heat transfer problems with V-corrugated surfaces.
Chinnapp# (9] carried out an experimental investigatian on
natural convection heat transfer from a horizontal iower hot V-

corrugated plate to an upper cold flat plate. He tock data for a



range of Grashof numbers from 104 to 108, The author noticed a
change in the flow pattern at Gr = 8 X 104, which he concluded as
a transition point from laminar to turbulent flow. In His work,
Chinnappa found that for horizontal air layers the enclosure ends
had no effect on heat transfer within the range of expérimental

variables.

Elsherbiny et al. [10] investigated free convection heat
transfer for air layer§ bounded by a lower hot V-corrugated plate
and an upper cold flat plate. A single correlation equation in
terms of Nusselt number, Rayleigh number, tilt angle, aspect
ratio.was developed for aspect ratio ranging from 1 to 4, angle
of inclination ranging from 0 to 60 degrees and Ra}leigh number
ranging from 10 to 4 X 106, They claimed that the convective heat
transfer across air layers bounded by V-cofrugated and flat
plates was greater than those for two parallel flat plates by a

maximum of 40%.

Randall et al. [11] studied local and average heat
transfer coefficients for natural convection between ?l VA
corrugated plate (60° V-angle) and a parallel flat plate using
interferometric technidues to find the temperature distribution
in the enclosed air space. From this temperature distribution

they wused the wall temperature'gradient to estimate the local



heat transfer coefficient. Local values of heat transfer
coefficient were investigated over the entire V-corrugated
surface area. The author recdmmended a correlation in which the

heat flux of 10% is higher than that for parallel flat plates.

An experimental investigation of heat transfer by natural
convection from an inclined hot sinuscidal corrugated blate at
the bottom to an inclined cold flat plate ét the top in a bounded
rectangular region was carried out by Kabir {12]. The vertical
side walls of the enclosure were plane and adiabatié. By
comparing with other related works it was concluded that for the
same plate spacing the heat transfer rates across air layers
bounded by the corrugated and flat p;ate were greater than those

for two parallel flat plates by a maximum of 40%.

Numerical Investigations

/ Natural con?ection heat transfer from a p;ané surface with
different boundary conditions has been studied numeridally by
several researchers. Zhong et al. [13] carried out a finite-
difference study to determine the effects of variable properties
" on the temperature and velocity fields and the heat transfer
rate in a differentially heated, two dimensiocnal square

enclosure,.



Nayak et al. [14] considered the problem of free and
forced convection in a fully developed laminar.steady flow
through vertical ducts under the conditions of constant heat flux
and uniform peripheral wall temperature. Chenoweth et al. {15]
_obtained steady~state, two dimensional results from the
transient Navier-Stokes equations given for laminar convective
motion of a gas in an enclosed vertical slot with large
horizontal temperature differences. Sofir Uddin et al.[16]
investigated the natural convection heat transfer and fluid flow
behaviour for vertical sinusoidal walls. The regsults showed that
for corrugation frequency=3 with different Grashof numbers‘the
total heat flux becomes lower than that for straight wall with
corresponding Grashof numbers and for corrugation frequency=1 the

total heat flux becomes higher than that for straight one.

C. Motivation of the Present Investigation.

The study of Natural Cpnvectién effects is important in
numerous engineering applications. In designing nuclear reactors,
solar collectors, electrical and microelectronic equipﬁent
containers and in many other designing problems, natural

convection heat transfer is prominent. Thus, for different



boundary conditions and shapgs the analysis of the effects of
natural convection is necessary to ensure efficient berformance
of the various heat transfer equipment. Several investigators [8-
10,12] performed their stﬁdies on convection heat transfer with
corrugated walls experimentally, but they considered a horizontal
lower hot corrugated to an upper cold flat plate oﬁly. None of
them performed an experiment on convection heat transfef with
vertical hot and cold'corrugated plates. However, there is no
. knowledge of numerical gsimulation of natural convection heat
transfer and fluid flow with V-corrugated vertical walls, which

forms the basis for the motivation behind the present study.

D. Objectives of the Study.

The main objective of this thesis is to numerically
simulate heat transfer and fluid flow behaviour inside a square
enclosure with V-porrugated vertical ;alls and insulated
horizontal walls. Speéifically, the coupled momentum and energy

transport equations will be solved with the Grashof number and



corrugation freqﬁency as parameters. The effects of corrugation
frequency_and Grashof number on local and overall‘héat trangfer
rates, velocity and temperature distribution will be examined
both qualitatively and guaﬁtitatively. The effect of increasing
the corrugation frequency will lead to a greater heat transfer
surface but whether the o#erall heat transfer rate will increase
or decrease is an important question whic%_will be addressed in

the analyses of the results.



CHAPTER 11

NATURAL CONVECTION IN A SQUARE DUCT WITH VERTICAL
V-CORRUGATED WALLS.

A. Problem Statement

The Problems of Natural Convection Heat Transfer and Fluid
Flow in a square enclosure are consideped in this analysis. The
fluid flow is caused by the buoyant force which is the
consequence of temperature gradients inside the enclosure. The
temperature field itself is described by the transport equation
"for energy. The problem is therefore described by a coupled set

of momentum and energy equations.

The problem schemetic is shown in Fig.l.'The top and bottom
walls of the enclosure are insulated and the left and right
vertical walls are V-corrugated; The left and right walls are
kept at constant temperature. The temperature of the left wall is

Th and that of the right wall is Te¢, where Th > Tec¢. The

characteristic length of the square enclosure is L. The origin-

of the X-Y coordinate system is located at the left-bottom corner

of the cavity.

s



B. Governing Equations and Boundary Conditions.

Governing Eguations

The Navier-Stokes equations for two-dimensional,
incompressible flow with constant properties in cartesian

coordinates can be written as follows:

Continuity equation,

U L 2v _ ‘
9x+3, e . (1)

x-momentum equation,

DU 1.9 w
U teg =28 e (Thr THY 4 o

y-momentum equation,
5y T P By T oy
In the above equations, u and v represent the velocity components
in the x and y directions respectively and P is the pressure.
The source terms s" and sV consider:the other body and surface
forces in the x and y directions respectively and » is the

kinematic viscosity.

By differentiating equations (2) and (3) with respect to

Yy and x respectively and then subtracting the results of the



former from the latter, a single vorticity trdnsport egquation can

be obtained:

w 2% .;.\9360 'a ( 98“‘) (4)
2% ')9( 28 + ) 25— 22,

2

where ¢ is the vorticity defined as

3 2
6—'2%—.,1"53' (5)
Upon defining the streamfunction, Y as
2¥
gy-“—‘-u- (6)
2V¥ —
= B S (7)

the Poisson equation relating €9 to ¥ may be obtained by
substituting (6) and (7) into (5):
~
27¥, 2 ¥ L0 =0 | (8)
'ax" ay
The equations (4) and (8) are equivalent to equations (1), (2)°
and (3) where instead of two momentum equations, a single

transport equation for vorticity is revealed and the pressure

gradient terms are absent.

Assuming the properties to be constant other than the
density variation in the buoyant fordes, the Boussinesgq

approximation [18] may be used on equation {4) which results in

w2% +1993( :v(%‘;’_ + agv)-!—gf-’* (9)



The energy tfansport equation for two dimensional incompressible

. flow with constant properties can be written as

?T AT ot 2T 4. 20T (10)
w2l sodl ~ee(Th - SF

where a is the thermal diffusivity of the fluid.

Equations {4} to (10) can be normalised by introducing the-

following non dimensional quantities:

_ x’
X = L (11
.
Yy = <
L (12)
_owl
U =5 (13)
vl
v = 22 |
> (14)
o Wby
2 =~y (15)
T
t?:"'—"—'"]) (16)
o = T-Te 17
S M- o
to yield
U 22 1y 2 o %0 4 20
U 28 +V 26 _ ( 276 19
ox Y x> Eﬁﬂ) | o

- 12 -



where Gr and Pr are the Grashof and Prandtl numbers,

respectively, and defined as

Gr = gB(Thn - Tc)L3/ VY C20)

Pr = VP /a ' (21)

The dimensionless auxiliary equations are

AV _ 22U
LN = -5;(‘ ':a—Y-' (22)

U= %%’* _ (23)
V = — 2% :

22X : (24)
Here, the parameters g, B and « represent the acceleration

due to gravity, the coefficient of thermal expansion, and the

thermal diffusivity of the fluid respectively.

Boundary Conditions

The boundary conditions of the problem are as follows :

(i) U =V =0 at all walls
(ii) P =0 at all walls
(iii) 8 =1 | at left wall
6 =0 at right wall

v

[9._9. = o

(iv) (@_Q.)Y % Y:lﬂ

=0



C. Method of Solution.

The calculation domain is first divided into

quadrilaterals by a number of vertical and horizeontal grid lines.’

These in turn are sub-divided into triangular elements { an
example of discretization of the domain is shown in Fig.2). On
each element, links are constructed by joining the mid-points of
the sides to the centroid. These links comé into contact with
other adjacent elements to form closed regions called control

volumes ( shown in Fig.3}.

Following the domain discretization, thé integral
‘formulation of the relevant transport equation is imposed on each
.control volume of the ovgrall region. This is done by prescribing
Va suitable shape function within each element which is used to
express the combined convective-diffusive flux variation élong
the links of same. These fluxes are integrated and the
contributions of the links to the control volume portions are
assembled in a systematic manner. This pracedure is repeated for
all the elements in the calculatioﬁ domain. The net outcome is a

set of nodal equations for the transported variable

¢, which may be written as:

ap® gp + ﬁ%ﬁnb” gny = bp? 25)
n

where nb denotes the neighbour nodes of the node p, a are the

- 14 -



coefficients of the Nodal Equation Matrix (NEM) for node p, and
b is the Global Load Vector {GLV) component corresponding to ncde
p. The details involved in obtaining equation (25)_are available

in [17].

The solution of the system of equations (25) is obtained
iteratively in as much that ﬁhe'coefficients (a) themselves
depgnd on the values of ¢, where ¢ can represent either the
vorticity, streamfunction, or temperature. The procedﬁre
adopted in this investigation is due to [19] and is summarized as

follows

1. Compile the coefficients for the poisson equation (8)
for the stream function. These coefficients dornot
change from one iteration to the next.

2. " Guess the distribution of streamfunction ¥ and compile
the coefficients of the vorticity transport equation.

3. Solve for the vorticity @ and update the values as
proposed in [17] and [19].

4. Using the values of Q_obtained in step{3), compile the
GLV for the Poisson equétion for Y. |

"5, Solve for streamfunction using the coefficients from (1)

6. Check the convergence as per suggestion in [19].
7. If not converged, go to step (2).
8. If converged, perform post processing tasks such as heat

transfer calculation.



Once convergence of the governing equation has been

achieved, the following quantities are calculated

(i) The local Nusselt number along the hot wall, Nuf.

(‘1"1_'
Nuy = —1- (26)
k(Th-Tc) 2

(ii) The dimensionless total heat flux at the hot wall,

Ya1 . ,
= - 2
Q fy_o”?‘_’“ dSs(Y) (27)

where S is the dimensionless distance measured along the
corrugation of the wall and N 1is the dimensionless distance

measured normal to same.

In eguations (26) and (27), q" is the heat flux
rate per unit length at the hot wall and k is the thermal
conductivity.

1]
O



CHAPTER I1I

RESULTS AND DISCUSSION

A parametric study was conducted to analyze the effects of
corrugation frequency and Grashof number on natural convection
heat transfer and fluid flow inside a square enclosure with V-
corrugated vertical walis. The discussion of the results that
follows are those obtained by using a 31 X 31 mesh. A grid
refinement study was made using a 49 X 49 mesh for the highest
érashof number and corrugation frequency (Gr = 105, C.F.= 3) and
it was found that the results from the 31 X 31 grid runs was
accurate to within about 3 percent. The comparison of the flow
fields can be made by referring to Fig. (4-8) and the overall
heat transfer to Table-3 where it is seen that the 31.K 31

mesh results agree quite well with those of the 49 X 49 mesh.

In this investigation the total heat transfer through the
enclosure, vertical velocity and temperature distributions at the
horizontal mid-plane and local Nusselt number along the hot wall
were examined with respect to Grashof numbers 103, 104, 105 and
corrugation frequencies 1.2,3; The corrugation amplitude was
fixed at 5 percent_of the enclosure height for all runs, where
the amplitude " A " 1is defined as half the horizontal distance,
measured from the left extremity of the left wall to its right
extremity (see Fig. 1). Henceforth, the left and right

extremities of the hot wall will be referred to as the "trough"

- 17 -



and "peak", respectively. The local and total heat flux with
respect to corrugated and straight walls and flow characteristics
_ with respect to grid refinement were also compared. The summary
of computational runs has been shown in Table-1. All results are

represented in dimensionless form.

TABLE - 1.

Summary of Computational Runs

Corrugation Frequency Grashof numbers Grid Size
( C.F.) '
T e 31 x 31
0 104 Do
(Straight Wall)
i03 Do
T e T T T T ek
1 104 Do
105 Do
T e T a1 x 31
2 104 Do
105 Do
T e 31 x a1
3 104 Do
103 Do
T e 19 X 49
3 104 Do
105 Do

—— . —— T — e W T T e e e e e Ml N BN S S S S e M A e S e e e e Al A L



IA. Effect Of Corrugation Frequency.

Table-2 shows the effects of Corrugation Frequency (C.F.)
on total heat flux with different Grashof numbers. In Table-2,
the increase of C.F. from O to 1 leads to higher'value of Qq
for all Grashof numbers which may be attributed to the
enhancement of surface area. However, for Grashof number ( Gr )
104 and 1053, Q decreases with increase in C.F. from 1 to 3,
but inéreases continuously for‘Gr = 103. This behaviour may be
explained by asserting that at high Grashof numbers the fluid
velocity increases near the peaks but drops near the troughs as
ﬁhe boundary layer tends to Sepafate. Thps the fluid fails to
maintain close contact near the troughs of the corrugation,
resulting in decreased convection heat transfer,-whereas for Gr =
103, the low vertical velocities thus generated enable the fluid
to maintain better contact with the corrugated wall. Thus with
increasing C.F. the corresponding enhancement of heat transfer
surface afea léaas to increased -total heat flux at low Gr, but
for the case of high Gr.lthe lower velocities and consequent
decrease in convective heat transfer at the troughs more than
of fsets the increased surface area. This decrease in convection
heat transfer is evident upon referring to Fig. 9 and Fig. 10,
where it may be observed that the local Nusselt number .attain

minimum values at the troughs of the corrugation.



Fig. 9 Fig. 10 and Fig. 11 indicate the effects of C.F.
on local Nusselt number along the hét wall with the Grashof
number as parameter. The local Nusselt number is identical to the
diménsionless local heat flux. It can be noted from these figures
that there is a significaﬁt inérease in local Nusselt number at
the peaks of the corrugation and decrease of the same at the
troughs. The reason for this is that the peaks cause the fluid to
come in contact more intimately with the surface pesulting in
-large convection heat transfer and consequently the local Npsselt
number increases. Another observation that may be made in table-2
is that at C.F.=3, Q@ is less than that for C.F.=0 with Gr =
104 and 105. This indicates that vertical V-corrugation can be
used to- reduce the heat transfer through the enclosure, provided

that sdthe corrugation frequency is sufficiently large.

Referring to Figures 9,10,11 again, it is seen that the
peak values of ﬁur decreases with increasing verﬁical distance
along the corrugated wall. This may be explained by the fact that
the colder fluid collects at the bottom-left corner of thé
enclosure creating a large temperature gradient with the hot
wall,-which is the main dri&ing force for heat transfer at the
wall and as %t moves up and receives heat, the temperature

gradient decreases, causing the decrease in local Nusselt number.

_ 90 -



ng. 12 aﬁd Fig. 13 reveal the effect of C.F. on vertical
velocity distribution at the horizontal mid-plane for Grashof
number 10% and 103 respectively. Fig. 12 indicates that the peak
value of the vertical velocity decreases with increase in C.F.
This trend can. be explainéd by examining Fig. 14, which
indicapes thaf the tgmperature grédient is lower for higher C.F.,
cauéing a lower buoyant force and hence a lower vertical
velocity. Because of this lower velocit}, the strength of
convection heat transfer decreases with increasing C.F. which is
shown in Table~2. But in Fig. 13 the vertical velocity increases

with C.F., which leads to an increase in overall heat transfer.

The Variation of the Total Heat Flux for Corrugated

and Straight Walls with Different Grashof Number.

Corrugation C.F=1. C.F=2. C.F=3. Straight
Frequency (C.F.) . wall
Grashof

number (Gr)

Gr = 103 1.126 1.132 1.135 1.121
Gr = 10¢ 2.295 : 2.271 2.238 2.270
Gr = 105 4.837 4.753 " 4.573 4.724
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- B. Effect of Grashof Number o .
Fig. 15 - shows the variation of Q as a function of Gr
with C.F. as the parameter. It may be S‘e-en here that the
variation of @ with C.F. is greater for higher Gr. Further, the
different curves for Q vs. Gr ‘cross" at around Gr = 103
indicating a trend reversal which was discussed earlier. In this
connection, attention is drawn to Fig.16,17 and 18 which show the
variation of temperature along the hofizontal mid-plane for
different Grashof numbers. It is clearly evident frqm these
figures that for Gr=1023, the temperature decreases linearly as
one proceeds from the left to the rlght wall of the enclosure,
which 1nd1cates that the heat transfer is prlmarlly dominated by
conduction. This further substantiates the trend of increasing @
with C.F. for low Grashof numbers by conduction from the
increased surface aréa, where fluid flow retardation by

increasing corrugation is not significant.

TABLE-3.

Total ‘Heat Flux for Grids 31 X 31 and 49 X 49
Corrugation Frequency = 3.

Grashof number (Gr) Gr=103 Gr=104 - Gr=105

—— Sy . ————

Grid Size

31 X 31 1.1347 2.2376 4.5724

49 X 49 ' 1.1345 2.2222 4.4765
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CHAPTER IV

CONCLUSIONS
A. Summary of Results

In this investigation the effects of corrugation frequency
and Grashof number on the local and total heat flux and flow
'icharapteriétics have been observed and discussed. The total heat
=flux for different corrugation frequency with Grashof number has
:been compared with the straight wall. The overall heat transfer
rate through the enclosure was found to vary little with change
in corrugation frequency, but the locai heat flux rate displayed
lapge changes along the corrugated walls. In particular, for low
Grashof number, the overall heat flux rate increased continuously
with éorrugation frequency whereas the trend was reversed for
higher Grashof numbers. It can therefore be concluded that there
are two competing phenomena that give rise to the variation in
total heat flux: (1) The enhancement of Q due to increasing
surface area and (2) The decrease of @ due torflow retardation
by increasing corrugation. Specifically, at low Gr, the

conduction mode prevails and as C.F. increases, Q is enhanced,

.whereas for high Gr, the fluid fails to collect heat by

transport due to increasing corrugation. This trend may find
application in practical situations where heat transfer reduction

is desired across large temperature differences by increasing the

corrugation of the vertical wall to the point wheré Q@ 18 less

than that for the straight wall case.
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B. Proposal of Further Work.

Thié has been a preliminary study and experimental results
are necessary to corroborate the numericaihresults presented
herein. Furthermore, due to computational limitations the effects
of higher C.F, corrugation amplitﬁde and vari;tion of enclosure
aspect ratio were not looked into. Also, the transient nature of
the flow can be investigated. It is possible that at very high
Grashof number, éhe system may become‘tgmporall& oscillatory,and
a transient solution can help predict this'behaviour. Another
extension that may be made is to calculate the flow field for

very large Grashof numbers and turbulent flow using a two

equation turbulence transport model, such as the K-f model.

Further, only two dimensional heat transfer and fluid flow
problem has been  analyzed in this thesis. So this deliberation
may be extended to three dimensional analysis to investigate the

effects of the end surfaces on heat tranasfer and flow field. In

addition, the problem of heat transfer and fluid flow along =a

corrugated surface in an infinite fluid may be studied to examine

the boundary layer behaviour.
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APPENDIX - B

I. DISCRETIZATION OF THE GENERAL
TRANSPORT EQUATION

A, The Fundamental Transport Equation.

The basic equation.describing the transport of a conserved

variable may be stated in a general form as
- ->
V.- (PYP) = J.(IrVg)+ S (B-1)

where ¢ is the intensive property(property per unit mass)
undergoing transport by a fluid of density and possessing a
velocity vector field V. Here, ¥ is the gradient operator

defined as

-
v

i

5 2 2. 2.

o
By applying the Gauss Divergence theorem to equation (B-1) the

following integral formulation may be obtéined:

fff(ﬁ@;ﬂ—f"?@.‘ﬁdd’ =ffv8dv | (B-2)

where V¢ is the volume enclosed by the surface o and 3 is the

outward unit normal vector at o .
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By rewriting

j=p0Bs-rig

equation (B-2) becomes

JI 3 Ads = [f s dv

 (B-3)

- (B-4)

Thus, the term I repreasents the totdl flux vector due to

convection and diffusion of\p .

B. The Shape Function

. ) P ' P g s - .
Consider an element with nodal velocitiea ?1, ?z, and v3 in

terms of a global (fixed) coordinate system (x,y).

the average as follows,

Vavg

\
with thé}components given
i

Uavyg

Vavg

by

(Vi + V2 + ¥V3)/3

(ur + uz + us)/3
{vi + v2 + va)/3

- 46 -

Upon taking

(B-5)

(B-6)

(B-7)

Tl



a new elemental ({(local) coordinate system (X,Y) may be
established with the X-direction chosen along the unit vector of
VYavg in equation (B-5). Fig.(B-1) ig the result of such an

operation.

Fig. (B-1) Element with local coordinates defined
in terms of nodal velocities.

The origin of this new coordinate system is fixed at the
centroid of the element o. It is easily seen that with (xo,¥o0)
as the origin of the global coordinates, the transformations
between (X,Y) and (x,y) are given by the following equations:

X
Uavg =\/ u?;'vg + Va'vg (B-8)
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cos8 = uava/Uavg (B-9)
8in8 = vavg/Uavyg (B-10)
X = (x - x0) cosB + (y - yo) sin® (B;l;)
Y = -(x - x0) sin® + (y - yo) cos8 . (B-12)
U=ucosf® + v sinbd ' (B-lﬁ)
V ==u sin® l+ v cbsq . (B-14)

Based on the work of Baliga and Patankar [23] the shape

function for ¢ in the (X,Y) coordinate system is given by
g = A exp{f Uavg X ) + BY + C (B-15)
' r

where A, B, and C are the parameters to be determined from the
‘ N

constraints

®
il

(8
n

This choice for the shape function is made for the following

reasons:

1) The exponential term allows upstream weighting of g .
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Specifically, ¢ at any point in the element is strongiy
dependent on the values of phe upstream points when Uavg is
sufficiently large. This is a very desirable feature because
the exponeﬁtial function in equation (B-15) describes the
exact rsolution of the convection-diffusion problem in one

dimension without source terms.

2) Equation (B-15) is based on the local coordinates, which are

3)

aligned with the average flow velocity within the -element.
Therefore, this shape function accounts for the two
dimensionality of the flow field and thus reduces false

{numerical) diffusion considerably.
Let Peclet number Pep be defined as

Pea E/OUavg AX /T

where AX is a characteristic element dimension. Then, as Pe,

approaches zero, the shape function (B-15) reduces to a linear

form in (X,Y) or (x,y). This type of function is commonly used in

the finite element method.

The determination of the constants A, B, and C now follows. Let

the following definitions be made:

Xmax 5 largest of Xi,X2,X3- {(B-17)
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Xmwin = smallest of X1,X2,X3 {B-18)

and

in

fo U‘“’z Xmax = Xmin

.

7 r -[exp[peo(x—x'maz)] _l] -(3_19)

Now, based on equation.(B-19), equation (B-15) may be rewritten

as

g = AZ + BY + C (B-20)

and based on the requirement of (B-16) it follows that

A= Ligs (B-21)

B = Migs {B-22)

C = Nigi : (B-23)
where repeated subscripts imply summation i = 1....3. In
particular,

L1 = (Yz - Ya}/DET

Lz = (Ys - Y1)/DET _ (B-24)

Ls = (Y1 - Y2)/DET

M1 = (23 - Z2:2)/DET

M2 {(Z1 - Z3)/DET (B-25)

My = {Z2 - Z1)/DET



s

and

(Z2Y3 - Z3Y2)/DET

N1 =
N2 = {(Z3Y1 - Z1Y3)/DET (B-26)
Na = (Zi1Yz - Z2Y1)/DET

where DET is the determinant
DET = Zi1{Yz - Y3)+Z2(Ys - Y1)+23(Y1 - Y2) (B-27)

- Upon substituting equations(B-21,B-22,and B-23) into (B-20),the

result is

g = Figi (B-28)
where Fi = Li1Z + M1Y + Ni are the shape functions.
C. - Flux Calculation

Equation (B-3) may be written in terms of its components as

Jx = fua - rg—g’- (B-29)
Jy = PvVg - rg—g{— ' (B-30)
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Using equations (B-19) through (B-23), (B-29) and (B-30) may be

rewritten as

Jx = (ffi - I'Li) @1 {B-31)
Jy = (fgi - FM1)l¢1 (B-32)
where
£f1 = (U-Uavg)LiZ + U(MiY+Ni) i =1...3 (B-33)
gi E i=

V(LiZ + M1Y + Ni) 1....3 _ {B-34)

The expressions for‘ﬁhe flux vector components are now
available. The integral formulation of the basic equation (B-4)
involves flux calculations across each control volume boundary as
per its left hand term. On viewing Fig. 3 (See APPENDIX - A), it
is evident that the internal control volume surrounding node P
possessés a surface that is composed of links, pairs of which
belong to elements sharing the node. Moreover, each element is
made up of three portions of three distinct control volumes. It
is therefore convenient to visit each element and calculate the
fluxes across its three links and follow up with an assembly
brocess. The assembly process essentially involves taking into
account in a gsystematic manner the elemental flux contributions
to the associated control volume portions. Once all the elements
in the domain are visited and their contributions assembled, the
flux calculations for all the control volumés are complete. The

particulars for the elemental flux contributions now follows.



Fig. (B-2) Element with quadrature points and
link unit normal vectors.

A typiqal element is shown in Fig.(B-2) in detail. It may be
noted that the vertices of the element are numbered in a
" counterclockwise fashion. If all elements follow the same local
numbering convention, the flux calculation scheme that is to be
presented appiies without any modifications. The claculation of
fluxes of the general variable ¢ across each link is performed
by means of Simpson's quadrature rule. The integration‘points are
a,b,c,r,s,t, and o, as shown. Thus, it is clear that the three
links within the element contain the groups a-r-o, b-s-o, and c-
t-0o. Moreover, the arrows drawn on\eacﬁ link denofe the
corresponding normal unit vectors. Upon defining the following
radius vectors

A A

Poa = Xal + Yad 7 (B-35)



. A
?ob =4 Xuf + Ynd

~ -~
?‘oc BE Xel + Yeld

it follows that

where

normal

normal

normal

unit

unit

unit

———

vector to

vector to

vector to

link oa

link ob

link oc

(B-36)

(B-37)

(B-38)

(B-39)

(B—40)_



With the link normal unit vectors established, the fluxes are as

follows:
jed |
.-Ad = a a ~-41
Link oqj noae '[D [JxY JYX]o(_[ (B-41)
f j';!‘al.d‘zfaal Y—J x]au 42
link ob ) A [Jx b Y b (B-42)
[oc]

jli-nk ocj. " do :fo [Jx Ye = Jy Xc_] L 1 (B-43)

The application of Simpson’s rule to equations (B-41) through

(B-43) yields

=

AT.8 do=[(J% + 4J% + J% )Ya - (JT + 437 + J¥ )Xal/6  (B-44)

limk oL

=i
-]

3 A b » ] -
J&.n do=[{Jx + 4J + Jx J)Yo - (Jy + 4Jy + Jy )Xwl/6 (B-45)

LinkK ob

>
jJ.ﬁ do=[(J% + 4J% + J2 )Ye - (JF + 435 4+ 3§ )Xc1/6  (B-46)
Link pe

Substituting equations (B-31) and (B-32) into (B-44) and
simplifying, the flux across link oa may be expressed {with

repeated subscripts implying summation) as,
-» A o
J- J-nde = A P (B-47)
link oo

where

o '
A; =£.[(f‘i“ +4fY +£% )Ya-(g% +4g% +g7 )Xal-P[L1Ya-MiXal  (B-48)
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It may be pointed out that in equation (B-48) the subscripts a,r,
and o imply the evaluation of equations (B-31) and (B-32) qt the
corresponding locations in conjunction with (B-33) and (B-34).

The relations for the links ob and oc can be deduced analogously

and stated. Thus, for link ob,
A : Db . .
f j nde = A; ¢; (B-49)
link 0b

with

ob : ‘
l;:%{(f? +4£5 +£2 )Yo-(gd +4g5 +89 )Xp]-F[LiYb-MiXb)  (B-50)

and for link oc,
> A [ YA
f J- " de = A #i (B-51)
link o )

with

o c t o e t c .
;\i=£;[(f1 +4f1 +f1 }Ye—{(g1 +4g1 +g1 }Xel-TM[LiYe-Mi1Xcl {B-52)

With the formulations for the flux across the links
available, the elemental contributions to its control volume
' portions are constructed hext. This leads to an element flux
matrix which facilitates the assembly process. This is described

next.

Attention is again drawn to Fig. (B-2). Let the control
volume segment containing node i{i=1...3) be referred to as CVi.

For example, it méy be observed that the elemental flux
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contribution to CVi1 is effected via links oa and oc. Moreover,
the unit normal for oa points "into" CVi1 whereas that for link oc

points "

out" from same. This is so due to the choice of a right-
handed coordinate system and the resultingAvector products given
in equations (B-38) through (B-40). With these points in mind, it

is easy to see that the net efflux & of ¢ from CV1 via links oa

and oc may be written as
ol (-1 5 .
=, = C?\i ~ A )¢, (B-53)

In a similar manner it follows that the net effluxesfu—_c,"z_and'd_:‘.a"s

concerning CvVz and CVa, respectively, are expressed as

[
I

()Lo.'a'-* R‘:'b) ¢  (B-54)

ob af) )
=, = (A~ At ¢ (B-55)
Upon making the following definitions,

oo '
Az A ~ A (B-55b)

Az;i = A ~ A (B-55¢)



Equations (B-53), (B-64), and (B-55) may be recast in matrix form

as
oy (a11 Arz AISW g1
3ol = [Az1 . A2z Az g 2 (B-56)
=, LASI_ A3z A”. -63

The 3 X 3 matrix above is called the Element Flux Matrix (EFM) .

For reasons to be explained later, certain modifications to the

coefficients A11, A2z and A33 are made in what follows.

It is seen that the equation for the conservation of mass

is obtained through equation {B-2) when ¢ is set to unity.

let the mass flow rates out of cvi, CVz,-and CV3 via

Further,
their associated link pairs be denoted by ITi1,ILz and IT3,
respectively. It therefore follows immediately that

=1 ... 3

ITig1 = (A11L + Arz + AL11)@i, i =

If the above indical equations are subtracted from the egquation

set (B-56) the following result is obtained:

pu

Eﬁi- II1g1 All A1z A13 g1
=, - Il292 = | Az1 A2z A23 g2 (B-57)
EB_ I13g3 LASI A3zz A3l 83




where the diagonal coefficients of the EFM are redefined. as,
A1l = - (A12 + A13)

A22 - {(Az21 + Az3)

n

A3z = - (A31 + A3z)

Ht

Even though the expressions for the fluxes are now changed, these
will not affect the final solution when convergence is reached
because the velocity fields will obey continuity which, in turn
will cause the gssembled values of IIi to vanish. Furthermore,
this feature of the EFM will result in the point coefficient in
the nodal equation for ¢ to equal magnitude of the sﬁm of its
corresponding neighbor coefficients, which is an important
requirement for iterative stability as discussed by Patankar

[19] .

Attention may now be drawn to the right hand term of
equation (B-4) which is a volume integral. Since only 2-
dimensional problems are being considered, it is strictly an aréa
integral. As per the assertion made earlier that the source term

S in (B—4) is constant over any particular element, this integral

becomes

-I.S d(Aej = S5 A® (B-58)
A :

4



where A¢ denotes the area of the element under considgration. The
structure of the links within a triangular element assure that
each control volume portion has an area equal to one-third of the
total elemental area. Therefore, the contribution of the integral
in equation (B-58) to each portion is given in terms of an
Element Load Vector (ELV):

e . e 1 :
S A i _ (B-59)

{ELV} =

Based on the setup of both the EFM and ELV, and with
respect to equation {B-4), it is possible to combine the two to

yield the elemental conservation equation in a compact form:
[EFM] { & } = {ELV} {B-60)

where

g1

{ ¢} g2
g3
it is emphasized here that equation (B-60) is only a partial set
which when combined in an appropriate manner via the assembly
proceés with those of othér elements yields the complete control

volume conservation equations that are to be solved for. This

assembly procedure is detailed in the following section.

—~—



D. The Assembly

The solution of fluid flow problems by numerical methods
essentially involves the solution of a system of nominally linear

equations which may be stated in matrix form as

-

Cl11l €12 “eeese Cln | (}1\ ri
cz1 c22 c e C2n g2 rz

. .. . 4 r= (B-61)
Cnl Cna R Cnn QI’IJ r'n

where {clanxn is known as the Global Stiffness Matrix (GSM),
{r}nx1 the Global Load Vector (GLV}), and n is the number of nodes
in the domain. Frequently, the GSM is 5 sparse matrix, that is,
many of its components are zero. The extent of sparseness depends
largely on the domain discretization scheﬁe and the manner in
which the equgtions are formulated. If the GSM is sufficiently
sparse, the form of storage as shown above becomes wastéful and
an alternative substructuring becomes more desirable. This
. substructuring technigue leads to a considerable reduction 1in
storage requirements at the cost of limiting the freedom of
domain discretizatien. For the problems considéred, a rectangul#r

domain discretization is adopted which is described next.

An example of a rectangular domain discretization is

depicted in Fig. (B-3a}. The domain itself need not be of a



1-1,)41

VT i+1,d+1

i-0,d-1

(b)

Fig. (B-4) Some examples of triangulation of quadrilaterals.
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rectangular shape. It may be observed that the region is
subdivided into quadrilaterals by a family of horizontal and
vertical line segments. Fig. (B-3b) focuses on a subregion of
the domain in detail where the horizontal line segments are
denoted by the index j and the vertical by the index i. A typical
node in the domain is then identified by the index pair (i,Jj).

Its right hand neighbor is specified by (i+l,j),etc.

Next, the elements are obtained by subdividing each
quadrilateral by a diagonal, Some examples of this triangulation
are shown in Fig. (B-4). It is ciear that node P has at most
eight neighbors as exemplified in Fig. (B*4b), which are
A,B,C,D,E,F,G, and H. This is a direct conseqﬁence of the
rectangular discretization process. Because of this condition, a

Nodal Equation Matrix, (NEM) may be defined as follows:
AP(i,j,m) i,j=1...3

where m denotes the global node number and i, j the locations of
its neighbors. This matrix is used to form the coeffipients of
the equations for each node in the domain instead of the sparse
GSM. For example, AP(2,2,m) is the coefficient of the node m
(i,j) itself while AP(3,1,m) denotes the neighbor coefficient at
the top left (i-1,j+1) of the nodal equation for m. Prior to the
assembly, both the GSM and GLV are iﬁitialized to zero. To.
proceed further with details, let us consider Fig. (B-4d) as an

example.
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Fig. (B-5) Element breakup of Fig.(B-4d).

Taking guidance from Fig. (B-4d), the element group forming
the control volume around node P is fragmen;ed and shown in Fig.
{B~5). It may be observed here that the elements (1),(2),(3) and
(4) possess local node numbers that correspond to the global ones

as shown in Table (B-1). Suppose that the EFM and ELV for

F650L,

element (1) are available. With reference to Table (B-1), it is
seen that the element flux contribution to CV: (portion of
control volume around node L ) is given by
Al11gL + A128p + Al3gk
Similarly, for CVz ( portion around P) the flux contribution is
A21p1 + Az2dp + A23dk
while that for CV3 (portion surrounding K} is

Al1dL + Aazzge + A3agx
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Table (B-1). Local-global node correspondence for Fig. (B-4d) .

ELEMENT LOCAL NODE GLOBAL NODE

1 L
1 2 2
3 N
1 L
2 2 Q
3 P
1 P
3 2 s
3 N
1 P
4 2 Q
3 S

In a like manner, the ELV contributions of elements (1) are added
on to the GLV at riL, re, and rx. Thus, the elemental flux and
load contributions for (1) may be summarized in Table (B-2). The

other elements (2),(3) and (4) are handled in exactly the same
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e

Table (B-2). Element matrix and load vector assembly.

Element ‘Coefficient —_—ere—p= NEM Coefficient

A1l AP(2,2,L)
A1z AP(2,3,L)
! Al3 ' AP(3,3,L)
Az21 : AP(2,1,P)
Az22 AP(2!2IP)
A23 AP(3,2,P)
A3l ‘ AP{1,1,N)
A3z AP(1,2,N)
Aas AP(2,2,N)
ELV1a TL
ELV2 rp
ELV3 N

manner. This procedure then yields the complete coefficients for

the nodal equation concerning P

AP(i,j,P) i,jg =1...3
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and the corresponding global load component rep. It is therefore
clear that by visiting all the elements, the NEM and GLV may be
constructed completely. For the sake of convenience, the nodal

equation for an arbitrary point p may be expressed as
ap #p +=.anb #nb = Tp ' (B-62)
mMb

where (nb) indicates the summation over the neighbor nodes of p,
a are the corresponding coefficients obtgined from the NEM, and
the term rp denoctes the effective source term or the global load

component.

Fig. (B-6) A typical boundary control volume shown shaded.

E. Boundary Conditions

When all the elements hafe been visited and assembled, the
resulting equations are immediately available for solution "only"
for the internal nodes. This 1is because all interior nodes are

surrounded by complete control volumes. On the other hand, all



boundary nodes are enclosed by incomp%ete or "half" control
volumes as shown in Fig. {(B-6), where it is seen that thef are
bounded at the bottom by links consisting of element sides. Based
on what has been discussed, it is clear that the flux through
these boundary surfaces have yet to be accounted for. These

boundary conditions may be categorized into three-classes:

1) Specified ¢ boﬁndary: Here, the nodal equation (B-62) is
replaced by one with neighbor coefficients set to zero, the
point coefficient to unity, and-the global load componént to
the specified value. The replaced equation coefficients may
be stored elsewhere and retrieved later to calculate the
flux across the control volume boundary. For example, the
heat transfer and shear stresses at the boundaries may - be
ocbtained where velocities and temperatures, respectively, are

specified.

2) Specified diffusion boundary: In this case, the specified
diffusion efflux is integrated across the boundary links by
the trapezoidal rule and appropriately appended to the
partially assembled nodal equation. As an example, lét us
consider the boundary node p and its associated control
volume (shaded). Further, let the integrated diffusion efflux
of ¢ at the boundary links 1 and m be prescribed

asEEP= h(gp - ¢=») where go is some reference value. Then,

-



3)

the available partial nodal equation for the node P i8s

modified as follows:
(h + ap)gp + S.anb gnb = rp + h ge (B-63)
Nb

It ﬁay be noted that without any modifications, the boundary
nodal equations default to a flux free bpundar& cendition.
This is precisely the case when symmetry boundaries {(channel
centerlinef or, in the case of the energy transport,

insulated walls are encountered.

Exit Boundafy : This type of boundary is present where flow
is leaving the domain. Since there is no knowledge of
conditions downstream of this boundary, it is assigned a
convéction—only condition. Referring to Fig. (B-6) again;
the efflux across the control volume boundary links 1 and m
are given by -mpgp where mp is the mass flow ratelinto the
domain. It is to be recalled now that the Element Flux Matrix
for ¢ was obtained iﬁ slightly modified forﬁ, To maintain
this consistency one would subtract from the left side of the
available nodal equatioﬁ at node p the term -mpgp. The
convection—qnly boundaryvcondition would next be implemented
By adding to the right side of the resulting egquation the

term -mp#op, which represents the influx of ¢ through the

boundary links 1 and m. The net result is clearly a do-



Sk

nothing process. It is therefore obvious that with the
procedure described for obtaining the EFM and the nature of
the assembly process, no modifications to the exit boundary

nodal equations are needed.

Once the  boundary condition modifications are complete, the
nodal equation set is ready for solution. In a fluid flow problem
where several of such sets, each representing different variables

(e.g. velocity, enthalpy) undergo solution an iterative approach

is preferred. This is because the velocity fields, which play a

.key role in calculating the equation coefficients themselves are

not known. Basically, each field variable distribution is solved

for in turn until the coeff;cients of the relevant nodal

equations cease varying beyond a certain tolerance. The overall

procedure may be outlined aﬁ follows:

1) Guess the distribution of the various ¢ in the domain, such
as velocity, enthalpy, pressure,etc.

2) Obtain nodal equations and apply necessary boﬁndary
conditions.

3} Solve these equations and check for convergence. If
convergence has been reached, stop computation. If wvalues
still changing, go back to step (2) with the currently

available values of ¢g.



It may be mentioned here that the a?tual solution of any
particular nodal equation set during éhe overall iteration
process (step (3) abové) need not be car?ied to extreme accuracy
because the coefficients themselves are %emporary. Moreover, as
the coefficients approach convergence, 1e48 effort is required to
obtain scolution of a set. It is for %hesé feasons that an
iterative technique such as the line-by-line tridiagonal matrix
algorithm technique is adopted. Often, during the overall
iteraticn process, the updating of ] needs to undergo _

relaxation to maintain stability. These details may be found in

Patankar [19].



1I. PROGRAM LISTING
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COMVORT . BLK

parameter(im=49, jm=49,nmx=im*xjm,n1t=2*%{im-1)*(jm-1),

#
COMMON
COMMON
COMMON

WK =

COMMON
1
COMMON
COMMON
1

2
COMMON
COMMON
1

~ COMMON
COMMON
1
COMMON

mxb=2%(im+jm-2})
JARRAY/ VOR(nmx),PP{nmx),UFLX(nmx)
/ARRA2/ RHP(nmx)},SU(nmx),DU(nmx)
/CONST/ GRAV,BLK,IMAXC,JMAXC,IPM,JPM,1PMM, JPMM,
IPMT ,JPMT,IPMTM,JPMTM,JTL,JTR, IM1,JM1,IM2,JM2,NODT,
NODC,NELTC,NUMELC,NELTOT,UTOP,UBOT,VTOP,VBOT ,ULEF,URIT,
VLEF,VRIT,RHO,HGT,VIS,CONST,NELEF,NERIT,NBOTOP,
IBOTOP, ILEFT,IRIGHT,NB1,NB2,NB3,NBMAX, THETA
/DXDY/ DX(jm-1),DY{(im—1) ,MAP(im+2,jm+2),
PHI(im+2,Jm+2),UIN(im)

JELEM/ NCA(Nn1t,3),SUEL(Nn1t),SVEL(n1t),UuOUT(im)
/NODL/ GAM(2,nmx),Sv(nmx},U{nmx),v(nmx),Ud{nmx),
VH(nmx),DV(nmx},P{(nmx),PSI{im,jm),

SMASS(nmx ), VFLX(nmx) '
JGRID/ NP{im,jim},X{(nmx),Y{(nmx)},RH{nmx)
/MATRX/ A(3,3,nmx),AP(3,3,nmx),vOL(nmx),AREA3(n1t),
ALPHA(N1t,3),BETA(Nn1t,3),APSI(3,3,nmx)

/BELE/ NBND(mxb)
/MISC/ XT(3),YT(3),XN(3),YN(3),XTD(3),YTD(3),DCU(3),
DCV(3),ESM(3,3),EFMP(3,3),H(3)
DUDY, BURG, EXPX, EXPY

LOGICAL DUDY

COMMON

RE

LOGICAL NCLRNC,UNIFRM,UV2,BV2,VCALC,PLOTY,BURG,READ,WRITE
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000000000 D0

Program main

This is the CVFEM code that uses the Streamfunction
-=vorticity formulation of the N.S. equations. This
program solves the test problem, "Natural Convection
Heat Transfer in a Square Duct with V-Corrugated
Vertical Walls"”. Relaxation factor for wall vorticity
of 0.5 and that for vorticity of 0.5 are recommended.
For temperature, also use 0.8.

include’'comvort.blk’

nclrnc=.true.
open(13,file='in,.dat’,status="unknown’)
read(13,%*) unifrm,vcalc,uv2,bv2,burg,gr,relt,crit,dudy
read(13,%) read,write

read(13,*) ngr,ipm,jpm,maxit,bvrel,relv,re,ploty,expx,expy
read(13,x} ampl, freq

close(13)
open(11,file='out.dat’,status="unknown')
nodc=1ipmx*jpm :
neltc=2*%(ipm-1)*(jpm-1)

numelc=neltc

ipmp=ipm+1

Jpmp=jpm+1

ithalf=1ipmp/2

jhalf=jpmp/2

imaxc=ipm+2

Jjmaxc=jpm+2

ipmt=56

Jjpmt=56

jtl=4

Jjtr=8

ipmm=ipm-1

Jpmm=jpm-1

ipmtm=ipmt-1

Jpmtm=jpmt-1

rho=1.0 '

imi=imaxc-1
im2=1imaxc-~2
Jmi=jmaxc-1
Jjm2=jmaxc-2

C *xxXxxxx gset double density grid at the boundaries xxxkxxx

7120

7123

continue

prody=expy
ipend=ihalf-3

do 7123 ip=1, ipend
prody=(prody+1.0)*expy
dy(1)=0.5/(1.+prody)
dy (ipmm)=dy(1)
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je=1ipmm
do 7124 ip=2,ihalf-1
ie=ie-1
dy(ip)=dy(ip-1)*expy

7124 dy(ie)=dy{ip)

7003 continue

c kxxx%x%x% jnitialize the nodal arrays XK kA kK

do 1111 nd=1,nodc
su{nd)=0.0
sv(nd) 0.0

I nu uo-
OO

smass{nd)=0.0
ufix(nd)=0.0
vor{nd)=1.0
vol(nd}=0.0

gam(1,nd)=1 .0
gam(2,nd)=1.0
do 8313 i=1,3
do 8312 j=1,3
a(i,jJ,nd)=1.0

9312 continue
9313 continue
1111 continue
C
call geot(ampl,freq)
C Xkkx¥x%x% set the wall velocities ki kkkkkkkkikx
utop=re
vtop=0.
“ubot=0. h
vbot=0.
ulef=0.
vief=0,
urit=0.
vrit=0,
vor(np(1,1))=0.
vor(np(1,jpm))=0.
vor(np(ipm,1))=0.
vor{np(ipm, jpm))=0.
do 1112 j=2,jpmm
u(np(1,j))=ubot
v{np(1,j))=vbot
u(np(ipm,j))=utop
1112 v(np(ipm,Jj))=vtop
do 1113 i=1,ipm
u(np(i,1})=0.
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1113

1114

1116

u(np(i,Jjpm))=0,.
vinp(i,1))=0.
v(np(i,Jpm))=0.
if(burg) goto 11156
do 1114 1i=1,ipm
uflx(np(i,1))=1.0
uflix{(np(i,jpm))=0.0
blk=gr

continue

call asmpsi

call svor.

call 1solve(3,1.0e0,0,3,im2,3,jm2,5,1,1)

C KoK 3K 3K 3K K K 3K 3K K 3K 3 3K K K K 3K o 3 K 2K 3K K K 3K 3 3K 3 3 3 3 2 A 3 K 3K 3K 3K 3K K3 5K K K 3K KK 3 3K K 3 K 3 5K K K K KK K

2451

W -

9315
9316

2033

comp=1.0

if(read) then
open(15,file="raw.dat’,status="'0l1d"')
do 2451 n=1,nodc

read(15,x) vor(n),pp{(n),ufix(n)
close(1i5)

endif

do 9000 iterg=0,maxit

call bvt(bvrel)

call cofsrt(1)

if(burg) goto 1116

call 1solve(b,relt,1,2,im!,3,jm2,2,1,1)
call tsorc .

continue

call l1solve(i,relv,1,3,im2,3,jm2,2,1,1)

——————————————————— convergence check —--—--====~m=r~—=——e—r————-

if(mod(iterg,1).eq.0) then
resid=0.0
do 9316 i=2,ipm-1
do 9315 j=2,jpm-1
n=np(i,j) _
res=za(1,1,n)xvor(np(i~1,j-1))+a(1,2,n}xvor(np(i-1 J
a(1,3,n)*xvor(np(i-1,3+1))+a(2,1,n)*xvor(np(i v J—1
a(2,2,n)xvor(np(i , J))+a(2,3,n)xvor(np(i ,j+t
a(3,1,n)xvor(np(i+1,j-1))+a(3,2,n)*vor(np(i+1, J
a(3,3,n)xvor(np(i+1,j+1))- rhp(np(1,J))
resid= res1d+res*res
continue
continue -
write(11,9210) iterg,resid,vor{np(ihalf, jhalf)),
1pp(np(1ha1f Jhalf)) ufo(np(1ha1f jhalf))
endif
if(resid.lt.crit) goto 900t
call svor
call 1so1ve(3 1.0e0,0,3,im2,3,jm2,2,1,1)
do 2033 i=1,ipm
do 2033 j=1,Jjpm
Dsi(i,j)=pp(np(i,j))
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C Xxkkkx¥%x write unformatted values of vor,psi,u,v ®Exkkkkx
if(mod{iterg,50).eq.0) then .
call uvclc4
open(10,file="chk.dat’,status="unknown’)
do 7136 Jj=1,jpm
do 7136 i=1,ipm
n=np(i,Jj)
wr1te(10 7140) j,i,x(n),y(n),u(n),v(n), uf]x(n) vor(n),pp(n)
7136 continue
close(10) .
if(write .eq. .true.)} then
open{t4,file="raw.dat’ ,status="unknown’)
do 2452 n=1,nodc
2452 write(14,x) vor(n),pp(n), uflx(n)
close(14)
endif
endif
© AKOR KK K K 3 o K 3K oK 2 K 3 R B 3K o 3K 3 2 3K 3 8 3K 3 3k 3 3K 3K 20 K 3 8 30K 3 3K K K 2 8 3 K 30 K K KK
8000 continue
9001 continue .
call uvclc4
write(11,%) 'xxxxxxxx t e s t . for skksdokkkxx’
write(11,2440) ngr,ipm,jpm,bvrel,relv,relt
if(ngr.eq.3) write(11,2441) expx,expy

write(11,%) 'burg is: ’',burg
write(11,%*) ’unifrm is: ',unifrm
write(11,x) 'the grashof # is: ’,gr
call flux

write(11,7141)

do 7135 j=1,Jipm

do 7135 i=1,1ipm

n=np(i,J)

wr1te(11 7140) j,i,x{(n),y(n},u(n),v(n),ufix(n),vor{n), pp(n)
7135 continue
7141 format(//,1x,'J’,2x,"4i",7x,"'x’,10x,’y’,13x,'u’,10x,"’ ,10x,

+’t’,10x,’o’,10x,’z',/,('—’))

7140 format(i2,1x,i2,"!",1x,2(1x,1pe10.3),'!!1’ ,1x,5(1x,1pe10.3))

close(11) :
stop

c **********x***x**************xx***xx**x****************

2440 format(3x,’'ngr’,2x,’'ipm’,2x,'jpm’,7x, 'bvrel’,
12x,’ relv’,2x,”’ re]t’,/,3x,’--—',2x,'——-’,2x.’———’,7x,’ ————— ’
22X, T ————— 'L 2X, e ',/,4%x,11,3x,13,2x,13,7x,f5.2,2x,f56.2,2x,
3f5.2)

2441 format(//, 10x, expansion coeffs. in x and y’,/,10x,28('-"'),/,

112x,f5.2,3x,f6.2) :
9210 format(1x,i4,4x,4(1pd11.4,2x))

end

c .
subroutine geot(ampl,freq) .
include’comvort.blk’ :
dimension yh(20)



c

nodc=1ipm*jpm
numelc=neltc
neltc=numelc

c¥x*x%x number the nodes first *x%x*

Cc

800

802

600

do 800 i=1,1ipm

do 800 j=1,jpm
np(i,3)=(j-1)*ipm+i
pi=3.1415926536
ttheta=(1./(4.%freq))/amp]
trm=1.0

do 802 j=1,jpmm/2-1
trm=trmxexpx+1

mz=4%freq

mz2=mz+1

do 600 n=3,mz2,2

ny=n-2

i=(n-1)/2
vyh(i)=float(ny)/float(mz)
continue

x(1)=0.0

y(1)=0.0

dxal=.5-ampl

dxaz2=.5+ampl

do 801 1i=1,ipm

if(i.eq.1)then

yy=0.0"

x(np(i,1))=yy/ttheta

dx(1)=.5/trm :
Xx(np(i,1))=0.0

go to 520

go to 400

endif

yy=y(np(i-1,1))+dy(i-1)
if(yy.gt.0.0.and.yy.le.yh(1)) then
x(np(i,1))=yy/ttheta
dx(1)=(.5-x{np(i,1)))/trm

go to 520 '

endif
if(yy.gt.yh(i1).and.yy.le.yh(2)) then
yyl=yy-yh(1)

x(np(i,1))=yy1/ttheta
dx(1)=(dxat+x(np(i,1)})/trm
x(np(i,1))=-x(np(i,1)}+ampl

go to 520

endif
if(yy.gt.yh(2).and.yy.le.yh(3)) then
yy2=yy-yh(2)

x{np(i,1))=yy2/ttheta
dx(1)=(dxa2—x(np(i,1)))/trm
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x(np(i,1))=x(np(i,1))-ampl
go to 520
endif
if(yy.gt.yh(3).and.yy.le.yh(4)) then
yy3=yy-yh(3)
x{(np(i,1))=yy3/ttheta
dx(1)=(dxat+x{np(i,1)))/trm
x(np(i,1))=-x(np(i,1))+ampl
go to 520
endif
if(yy.gt.yh(4).and.yy.le.yh(5)) then
yy4=yy-yh(4)
x(np(i,1))=yy4/ttheta
dx(1)=(dxa2-x(np(i,1)))/trm
x(np(i,1))=x(np(i,1))-amp?
go to 520
endif :
if(yy.gt.yh(5).and.yy.le.yh(6))}) then
yy5=yy-yh(5)
x(np(i1,1))=yy5/ttheta
dx(1)=(dxat+x(np(i,1)))}/trm
x(np(i,1))==-x(np(i,1))+ampl
go to 520
endif .
if(yy.gt.yh(6).and.yy.le.1.0) then
yy6=yy-yh(6)
x{np(i,1))=yy6/ttheta
dx(1)=(dxaz-x(np(i,1}))/trm
x(np(i,1))=x(np(i,1)}-ampl
go to 520
endif
520 dx(jpmm)=dx(1)
y(np(i,1))=yy
do 804 j=2,3jpmm/2
dx(j)=dx(j-1)*expx
804 dx(jpmm-j+1)=dx())
do 805 j=2,Jjpm
y{np(i,jl)l=yy
805 x(np(i,J))=x(np(i,j-1))+dx(j-1)
801 continue
Cck*% now setup the nodal connection array **x
nb=0
do 2121 i=1,1ipm
nb=nb+1
2121 nbnd(nb)=i
nb1=nb
do 2122 j=2,Jpm
nb=nb+1
2122 nbnd(nb)znp(ipm,Jj)
nb2=nb
do 2123 i=ipmm,1,—-1
nb=nb+1
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2123

2124

nbnd(nb)=np(i,Jjpm)
nb3=nb

do 2124 j=jpmm,2,-1
nb=nb+1
nbnd{(nb)=np{1,j)
nbmax=nb

nel=0
do 9319 1ig=1,ipmm
do 9320 jg=1,jpmm

- nel=nel+1

9320
9319

2100

nca(nel,1)=np(iq, jq)
nca(nel,2)=np{(iq,Jjq+1)
nca(nel,3)=np(iq+1,jg+1)
nel=nel+1

nca(nel, 1)=np{iq,jq)
nca(nel,2)=np(ig+1,jg+1)
nca(nel,3)=np(ig+1,jq)
continue

continue

nel=2%1ipmm
nca(nhel,1)=np{(ipm,1)
nca(nel,2)=np(ipmm,2)
nca(nel,3)=np(ipm,2)
nel=nel-1
nca(nel,1)=np(ipm,1)
nca(nel,2)=np(ipmm,1)
nca(nel,3)=np(ipmm,2)
nel=neltc-2%ipmm+1
nca(nel,1)=np(2,jpmm)
hca(nel,2)=np(1,Jjpmm)
nca(nel,3)=np(1,Jjpm)
nel=nel+1
nca(nel,1)=np(2,jpmm)
nca(nel,2)=np(1,jpm)
nca(nel,3)=np(2,jpm)

do 2000 nel=1,neltc

do 2100 node=1,3
xt(node)=x(nca(nel,ncde))
yt(node)=y{(nca(nel,node))

det=xt(1)*yt(2)+xt(2)*xyt(3}+xt(3)*xyt(1)-
& yt(1)*xt(2)—yt(2)*xt(3)-yt(3)*xt(1}

area3(nel)=abs(det/2.0)/3.0

5\

alpha(nel,1)=(yt(3)-yt(2))/det
alpha(netl,2)=(yt(1)-yt(3))/det
alpha(nel,3)=(yt(2)-yt(1))}/det
beta(nel, 1)= (xt(2)-xt(3))/det
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beta(nel,2)= (xt(3)-xt(1))/det
beta(nel,3)= (xt(1)-xt(2))/det
c
2000 continue
c *xxkxx* the nodal volumes are assembled here x¥¥kkkx
c
do 2500 nel=1,neltc
do 2501 n=1,3
c *xxxx%x%x here dv is used to assemble inverse areas for each node xx
dv(nca(nel,n))=dv(nca(nel,n)}+1.0/area3(nel)
2501 vol(nca(nel,n))=vol(nca(nel,n))+area3(nel)
2500 continue
c Xxxxxxxkx the map for the general phi variable Xxkxxxixx
jmi=jmaxc=1 :
imi=zimaxc-1
do 9009 j=2,3jm1
do 9009 i=2,1im1
9009 map(i,Jj)=np(i-1,j-1)

c
return
end
c
subroutine uvclc4d
include’comvort.blk’
c
dimension 1i(3),jj(3)
c

do 2500 n=1,nodc
uh(n)=u(n)

2500 vh(n)=v(n)
do 2000 n=1,nodc
u{n)=0.0

2000 v(n)=0.0

c .

: do 1000 nel=1,neltc
psi=pp(nca(nel,1))
ps2=pp(nca(nel,2))
ps3=pp(nca(nel,3))

c !
vez=alpha(nel,1})}xpsi+alpha(nel,2)*ps2+alpha(nel,3)*ps3
ue=(-1.)*x(beta(nel, 1 )xpsi+beta(nel,2)xps2+beta(nel,3)xps3)

c

do 300 n=1,3 .
u{nca(nel,n))=u(nca(nel,n}))+ue/(area3(nel )*dv{nca{nel,n)))
300 v(nca(nel,n))=v(nca(nel,n})+ve/(area3d3(nel)*dv(nca{nel,n)))
c
1000 continue
C
C *%xxXXxx%x reimpose the boundary velocitias #ikkkkikkiorkk kK kKkk
do 3000 j=1,ipm
u(np(1,3))=uh(np(1,3))
vinp(1,3))=vh(np(1,3)})
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3000

3001

2000

1000

2000

100

u(np(ipm, j))=uh(np(ipm,J))
v(np(ipm,3j))=vh(np(ipm,j))
continue

do 3001 i=2,ipmm
u(np(i,jpm))=uh{np(i,jpm))
u(np(i,1))=uh{np(i,1))
v(np(i,1))=vh(np(i,1))
v(np(i,Jdpm))=vh(np(i,jpm))
continue

return
end

subroutine svor
include’comvort.blk’

do 2000 n=1,nodc
su(n)=0.0e0

do 1000 nel=1,neitc

nt=nca(nel,1)

n2=nca(nel,2)

n3=nca(nel, 3)
su(nt)=su(nt)+area3(nel)x(22xvor(ni)+7xvor(n2)+7*xvor(n3))/36
su(n2)=su(n2)+area3(nel}x(7xvor(n1)+22%xvor(n2)+7xvor(n3))/36
su(n3)=su(n3)+area3(nel)}x(7xvor{ni)+7%xvor(n2)+22xvor(n3))/36
continue

return
end

subroutine asmpsi
include’'comveort.blk’

dimension 1i1(3),3j(3)
do 2000 n=1,nodc

do 2000 i=1,3

do 2000 j=1,3
apsi(i,j,n)=0.0e0

do 1000 nel=1,neltc
do 100 n=1,3

xn{n)=x{nca(nel,n))
yn(n)=y(nca(nei,n))

deti=xn{1)*xyn{2}+xn{2)%xyn(3)+xn(3)*xyn(1)-
yn{1)xxn{2}-yn(2)xxn(3)-yn(3)*xxn(1)

y23=yn(2)-yn(3)
y31=yn(3)-yn(1)
yl2=yn(1)-yn(2)
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x32=xn{3)-xn{2)
X13=xn(1)-xn{3)
x21=xn(2)-xn(1)

esm{1,1)=y23%y23+x32%x32
esm(1,2)=y23*%y31+x32*%x13
esm(1,3)=y23*%y12+x32*x21
esm(2,2)=y31*y31+x13%x13
esm(2,3}=y31ky12+x13%x21
esm(3,3)=y12%xy12+x21%x21

c *kxk%xxxx statement of symmetry *¥xi¥kix

C

101

120

122
121

esm(2,1)=esm(1,2)
esm(3,1)=esm(1,3)
esm(3,2)=esm(2,3)

=1,3
do 101 j=1,3
esm(i,j)=0.5%esm(1i,j)/dett

C *%x*xxxx the assembly process onto the apsi matrix x¥xkXkxx

do 120 nc=1,3

Jjilnec)= (nca(ne] nc)-1)/ipm+1
di(nc)=nca(nel, nc)—1pm*(JJ(nc)-1)
do 121 1i=1,3

nd=np(ii(i),jj(i))

do 122 j=1,3

ig=2-(11(i)-11(J))
Jg=2-(3j(i)-3i(3))
apsi(ig,jg,nd)= aps1(1g Ja,nd)+asm(i,j)
continue

continue

© %K oK KK K K ok ok K K A0k K % K K K end assembly ************************
1000 continue

c

c

return
end

subroutine tsorc ‘
include’'comvort.bik’

dimension ii(3),3j(3)
pi=3.141592654
theta=0.0

do 2000 n=1,nodc

2000 rhp{(n)=0.0

do 1000 nel=1,neltc

ci=(alpha(nel,1}xuflix(nca(nel,1})+alpha(nel,2)x*
+ufix(nca(nel,2))+alpha{(nel, 3)xufix{(nca(nel,3)))*area3(nel)
c2=(beta(nel, 1)*xufix(nca(nel,1))+beta(nel,2)*xufix{nca(nel,2))
1+beta(nel,3)*ufix(nca(nel,3)))*area3(nel)
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300

1000

sortc=blk*(sin(theta*pi/180.0)*c2-cos(theta*pi/180.0)*c1)
do 300 n=1,3

rhp(nca(nel,n}))=rhp(nca(nel,n))+sortc

continue

continue
return
end

subroutine l1solve{nvar,rl,ncoef,ists, inds,jsts, jnds,

insweep,nNswpXx, Nswpy)

include’comvort.blk’

dimension aa(50),bb(50),cc{50),rhs(50)
nf1=0 '
imx=inds~ists+1

Jmx=jnds—-jsts+1

crel=(1.0-r1)/rl

C kk¥xkkkk set phi to 0.0 FKKIRKKKKKKIKKKKKKKKK KKK

4999

do 48999 1i=1,imaxc

do 4999 j=1,jmaxc
phi(i,j)=0.0
if(nvar.eq.3) goto 500

C X¥XRXXKRXX CcOpy a matrix onto amt XEXXKKKKXKK

5000

5001

500

do 5000 n=1,nodc
do 5000 1i=1,3

do 5000 j=1,3
ap(i,j,n)=a(i,j,n)

do 5001 n=1,nodc
coef=2.x(amax1(0.0e0,-a(2,2,n)))*xfloat(ncoef) .
doef=coef+a(2,2,n)

ap{2,2,n)=decef/r1l

if(nvar.eq.1) rh{n)=rhp(n)+{(doefxcrel+coef)}*xvor(n)
if{nvar.eq.5) rh(n)=(doefxcrel+coef )*xuflix(n)+du(n)
continue .

goto 550

continue

C kXxkkkkxxkk copy the apsi matrix onto amt Xxkokkkikxk

5002

550

do 5002 n=1,nodc

do 5002 1i=1,3

do 5002 j=1,3
rhin)=su(n)
ap(i,j,n)=apsi(i,j,n)

continue

do 5004 i=2,im1

do 5004 j=2,jml

if{nvar.eq.1) phi(i,3}=vor(map(i,Jj))
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o000

if(nvar.eq.5) phi(i,j)=uflix(map(i,j))
if(nvar.eq.3) phi(i,j)=pp(map(i,Jj))

5004 continue

RAKKRKKAR Start the sweeping FxkXkkkkkkdkkkkkkk

10
100
1000

do 2000 nt=1,nsweep

do 1000 ns=1,nswpx

ifl=—1

j=jsts

do 100 nct=1,2

J=Jj+ifl

ifl=—1%if1

do 10 jc=1,imx

J=j+ifl

i=ists~1 _

do 1 ic=1,imx

i=i+1

n=map(i,Jj)

aa(ic)=ap(1,2,n)

bb(ic)=ap(2,2,n)

ccl(ic)=ap(3,2,n)
rhs(ic)=rh{n)-ap(1,1,n)xphi(i-1,j-1)-ap(1,3,n)xphi(i-1,j+1)
1-ap(2,1,n)*phi(i,j-1)-ap(2,3,n)*phi(i,j+1)
2-ap(3,1,n)Yxphi(i+1,J-1)-ap(3,3,n)*xphi(i+t1,j+1)
continue
rhs(1)=rhs(1)-ap(1,2,map(ists,j))*phi{ists-1,3)
rhs(imx)=rhs(imx)-ap(3,2,map(inds,j))*phi{inds+1,J)
call tri(aa,bb,cc,rhs,1,imx)

izists-1

do 2 ii=1,imx

i=i+1

phi(i,j)=aa(ii)

continue

continue

continue

do 1001 ns=1,nswpy
ifl=-1

i=zists

do 101 nct=1,2
izi+ifl
ifl==1%if1

do 11 1i¢c=1,1imx
izi4ifl

Jj=Jjsts-1

do 3 jc=1,jmx
J=Jj+1

n=map(1i,Jj)
aa(jc)=ap(2,1,n)
bb(jc):ap(zlzsn)'
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1
10V
1001

2000

C XXX

3000

10

20

cc(jc)=ap(2,3,n)
rhs(jc)=rh(n)-ap(1,1,n)*phi(i-1,j-1)-ap(3,1,n)*phi(i+1,j-1)
1—ap(1,2,n)*phi(1'—1,j)—ap(3,2,n)*ph‘i(1'+1 !J)
2-ap(1,3, n)*phi(i-1 J+1)-ap(3,3,n)xphi(i+1,J+1)
cont1nue

rhs(1)=rhs(1)- ap(2 1,map(i,jsts))*phi(i,Jjsts-1)
rhs(jmx)=rhs{(jmx)- ap(2 3, map(1 jnds) yxphi(i,Jjnds+1)
call tri(aa,bb,cc,rhs,1,jmx)

Jj=Jjsts-1

do 4 jj=1,Jmx

J=Jj+1

phi(i,j)=aa(jj)

continue

continue

continue

continue

if(phi(56,5).ge.1.0d10) then
write(11,%) ’bombing out in nvar=’,nvar
stop

endif
xxkxx* resubstitute phi back 1nto the appropriate variable XK
do 3000 i=ists, inds

do 3000 j=Jjsts, jnds

if(nvar.eq.1) vor(map(i,j}))=phi(i,J)
if(nvar.eq.5) uflx(map(i,j))=phi(i,J)
if(nvar.eq.3) pp(map(i,j))=phi(i,J)
continue

return
end

subroutine tri(a,b,c,d,m,n)

dimension a(50),b(50),c(50),d(50),e(50),f(560),g9(50)
gauss elimination

e(m)=b(m)

f(m)=d(m)

mi=m+1

do 10 i=mi,n

g(i)=a(i)/e(i-1)

e(i)=b{i)-g(i)*xc(i-1)
fli)=d(i)-g(i)xf(i-1)

back substitution. answer stored in a(i)
a(n)=f(n)/e(n)

do 20 j=mi,n

i=zn+mi-1-j

a(i)=(f(i)- 0(1)*a(1+1))/e(1)

return

end
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‘subroutine shear
include'comvort.blk’
dimension shr(100)
data shr/100%0./
do 10 j=1,jpmm
nb=np{ipm,Jj)
nbp=np(ipm,j+1)
elzsqrt((x(npCipm,j+1))-x{np(ipm,j) ) )**2+(y(np(ipm,J+1))
+-y(np(ipm,j)))**2)/2
shr(j)=shr(j)+dx(j)*(vor{nbp)+3.*vor(nb))/8.
shr(j+1)=shr(j+1)+dx(Jj)*{(3.*xvor(nbp)+vor(nb))/8.
10 continue
sum=0.,
do 11 j=1,Jipm
11 . sum=sum+shr(j)
sum=abs(2xsum/(utop*x*2))
write(11,*) ’'drag coefficient =',sum
write(11,%) ’'shear array follows'
do 12 j=1,jpm
12 . write(11,13) j,shr(j)
13 ° format(4x,id4,3x,d11.4)
return
end

subroutine print{ph)
include’comvort.blk’

dimension ph(nodc)

jst=-5

Klip=jpm/6+1

Jjrem=mod(jpm,6)

do 7800 k=1,klip

Jst=jst+6

jnd=jst+5

if(k.eq.klip) then

Jjnd=jpm

Jst=jnd-jrem+1

endif .

write{11,7900) (x(np(1,J)),J=jst, Jnd)

write{(11,7903)

do 7801 i=ipm,1,-1
7801 write(11,7901) y(np(i,1)),{ph(np(i,i)),J=jst,jnd)
7800 continue
7900 format(//,6x, ' xz=———->"
7901 format{('y="',1pe10.3,"'!
7903 format(79(’'-'))

return

end

,6(1pe10.3,1x))
',6(1pe10.3,1x))

subroutine flux
include’comvort.blk’
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do 1 1:1,1maxc

do 1 j=1,Jjmaxc
1 phi(i,3)=0

do 2 i=2, 1m1

do 2 j=2,jmi
, phi(i,j):uf1x(np(i~1,j—1))
2 continue
do 4 n=1,nodc
4 rh{n)=du(n)
sum=0.0
do 3 n=1,1ipm
ji=n
JJ=1
1=11+1
J=ji+1
fix=a(2,2,n)*phi(i,j)+a(1,1,n)*phi(i-1,j-1)+a(1,2,n)x*
1phi(i-1,j)+a(1,3,n)*phi(i-1,j+1)+a(2,1,n)*phi(i,j-1)+a(2,3,n)x*
2phi(i, J+1)+a(3 1 n)*ph1(1+1,3 1)+a(3 2,n)*phi(i+1,j)+a(3,3,n)x
3ph1(1+1 J+1)- rh(n)
sum=sum+f 1x
write(11,2000) n,fl1x
if(n.gt.1 .and. n.1t.ipm) then
elisg=(x(n)-x(n=-1))**2+(y(n)-y(n-1))*x2
el2sq=(x(n)-x(n+1))xx2+(y(n)-y(n+1) ) **2
el=(sqrt(elisqg)+sqrt(el2sq))/2
else if(n.eq.1)then
al=sqrt(x(2)**2+y(2)*x%x2)/2
else if (n.eq.ipm)then
el=sgrt((x(n)-x(n=1))xx2+(y(n)-y(n-1))*%2)/2
endif
uin(n)=f1x/el
write(11,%x} 'loc. nuss. no. ’',n,uin(n)
3 continue
write(11,%) "net flux=',sum
2000 format(Bx i4,2x,d11. 4)
' return
end
subroutine bvt(bvrel) _ .
incliude’comvort.blk’ c

do 1 i
do 1 j
1 phi(i, 0.
do 2 i1=2,imi
do 2 j=2,jmi
phi(i,j)=pp{np(i-1,j-1))
2 continue
do 3 nb=1,nbmax
n=nbnd(nb)
Ji=(n-1)/ipm+1
1i=n—-ipm%{(jij—1)

1, imaxc
1, jmaxc
)=

J
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2000

9300

i=ii+i
j=jj+1 v [ ¥ > . 1] 3 [
vhs=apsi(2,2,n)*phi(i,j)+apsi(1,1,n)xphi(i-1,J-1)+

1apsi(1,2,n)*phi(i-1,j)+apsi(1,3,n)*xphi(i-1,j+1)+apsi(2,1,n)*
2phi(i,j-1)+apsi(2,3,n)xphi(i,j+1)+apsi(3,1,n)*phi(i+1,j-1)+.
3apsi(3,2,n)xphi(i+1,j)+apsi(3,3,n)xphi(i+1,j+1)

vh=vns/vol(n)
vor(n)=(vn-vor(n))*bvrel+vor(n)
continue '
return

end

subroutine cofsrt(kde)

include’'comvort.blk’

dimension 1i1(3),3Jj(3),xu{(3),yu(3),z(10),xb(10),yb{(10),

f(10,3),9(10,3),yfxg(3,3),uf(3),vf(3),
ut(10),vt{10)

do 2000 n=1,nodc

do 2000 i=1,3

do 2000 j=1,3

a(i,j,n)=0.0do

do 1000 nl=1,neltc

ni=nca(nl,1)

n2=nca(nl,2)

n3=nca{nl,3) )

vezalpha(nl,1)xpp(nt1)+alpha(nl,2)*pp{n2)+alpha(nl,3)*xpp(n3)

ue=-1.%(beta(nl,1)*pp(nt)+beta(nl,2)*pp(n2)+beta(nl,3)xpp(n3))

ul=ue

uz2=-ue

u3z=ue

vi=ve

v2=ve

v3=ve

xo=(x(n1)+x(n2)+x(n3))/3.0

yo=(y(n1)+y(n2)+y(n3))/3.0

gamma=(gam(1,n1)+gam(1,n2)+gam(1,n3))/3.0

uav=(u1+u2+u3)/3.0

vav=(vi+v2+v3)/3.0 :

ubav=sqrt(uavxuav+vav*vav)

cost=uav/ubav

sint=vav/ubav

do 9300 i=1,3

xb(i)=(x(nca{nl,i))-xo)*cost+
(y(nca(nl,i))-yo)xsint

yb(i)=(y(nca(nl,i))-yo)*cost-
(x({nca{nl,i))-xo)xsint

continue '

xb(10)=0.0

yb(10)=0.0

xb(4)=(xb(1)+xb(2))/2.

xb(5)=(xb(2)+xb(3))/2.

xb(6)=(xb(3)+xb(1))/2.
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9301

9302

9311

xb(7)=xb(4)/2.

xb(8)=xb(5)/2.

xb(9)=xb(6)/2.

yb(4)=(yb(1)+yb(2))/2.
yb(5)=(yb(2)+yb(3))/2.
yb(6)=(yb(3)+yb(1))/2.

yb(7)=yb(4)/2.

yb(8)=yb(5)/2.

yb(9)=yb(6}/2.

cst=rhoxubav/gamma
xmx=amax1(xb(1),xb(2),xb(3))

do 9301 i=1,3

pe=cstx(xmx—xb(i))
big=amax1(0.,(1.-.1%pa)*x5)
z{(i)=big/(pe+big)

z(i)=(z(i)-1)/cst

continue

pe=cst*xmx

big=amax1(0.,{(1.-.1*%pe)*x*5)
2(10}=big/(pe+big)

z(10)=(z(10)-1)/cst

y12=yb(1)-yb(2)

y31=yb(3)-yb(1)

y23=yb(2)-yb(3)

z32=z(3)-2(2)

z13=z(1)-2(3)

z21=2(2)-2(1)

cl=z(2)*yb(3)-z(3)*xyb(2)
c2=2(3)*yb(1)-z(1)*xyb(3)
c3=z(1)*xyb(2)-z(2)*yb(1)
d=z(1)xy23+z(2)*y31+z(3)*y12
if(d.le.1.00e~-08)then

d=1.00

endif
x111~(y23*xb(1)+y31*xb(2)+y12*xb(3))/d
ximi=(z32%xb(1)+z13*xb(2)+z21%*xb(3))/d
xini=( ci*xb(1)+ c2xxb(2)+ c3*xb(3))/d
rav=rho*ubav

do 9302 1=z4,10
f(i,1)=(ravx(z32%xyb(i)+c1)-gammaxy23)/d
f(i,2)=(ravx(z13xyb{(i)+c2)-gammaxy31)/d
f(i,3)=(ravx(z21*yb(i)+c3)- gamma*y12)/d
g(i,1)=(-gammaxz32)/d
g(i,2)=(-gammaxz13)/d
9(1,3)=(-gamma*221)/d

continue

do 9310 j=1,3

do 9311 1=1,3
yfxg(J,i)=((f(j+3,1)+4.%f(j+6,3)}+Ff(10,1))*yb(j+3)
# -(g(J+3,1)+4.%g(j+6,1)+g(10,1i))*xxb(j+3))/6.
continue

9310 continue
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9320

120

122
121
1000

do 9320 i=1,3
esm(1,i)=yfxg(3,1)-yfxg(1,1)
esm(2,4)=yfxg(1,i)-yfxg(2,1i)
esm(3,1)=YFX9(2,1)-YFX9(3,i)
continue

do 120 nc=1,3
jil(nc)=(nca(ni,nc)-1)/ipm+1
ii(nc)=nca(nl,nc)-ipm¥x(jj(nc)=~1)
do 121 1i=1,3 .
nd=np(ii(i),Jjj(i))

do 122 j=1,3

ig=2-(ii(i)=-i1i(3))
Jg=2-(3Jj(i)-3jj(i)}
a(ig,jg,nd)=a(ig,jg,nd)+esm(i,J)
continue
continue
continue
return
end
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