L-2/T-2/ChE

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2019-2020

Sub : CHE 205 (Fluid Mechanics)

Full Marks: 210

Time: 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks.

Assume reasonably if any additional data is required. Symbols indicate their usual meanings.

SECTION - A

There are FOUR questions in this section. Answer any THREE.

1. (a) Classify the fluids on the basis of shear stress and shear rate relationship. Elaborate the importance of the study of rheology in fluid mechanics. (7+6=13)

(b) Water flows downward in a pipe at 45°, as shown in Fig. 1(b). The mercury manometer reads a 6-in height. The pressure drop P_2-P_1 is partly due to friction and partly due to gravity. Determine the total pressure drop and also the part due to friction only. Which part does the manometer read? Why?

2. (a) Derive the equation of steady motion along a stream line (energy equation) for a real fluid. (15)

(b) Figure 2(b) shows a pump delivering 840 L/min of crude oil (SG = 0.85) from an underground storage drum to the first stage of a processing system. (20)

(i) If the total energy loss in the system is 4.2 N.m/N of oil flowing, calculate the power delivered by the pump.

(ii) If the energy loss in the suction pipe is 1.4 N.m/N of oil flowing, calculate the pressure at the pump inlet.

3. (a) Why is the concept of hydraulic radius more important than normal radius? Two pipes, one circular and one square, have the same cross-sectional area. Which has the larger hydraulic radius? (10)(b) With laminar flow in a circular pipe, find the velocities at 0.1π , 0.3π , 0.5π , 0.7π , and 0.9π . Plot the velocity profile with hand drawing. (12)(c) How much power is lost per meter of pipe length when oil with a viscosity of 0.20. N.s/m² flows in a 20-cm-diameter pipe at 0.50 L/s? The oil has density of 840 kg/m³. (13)4. (a) Water at 80°F is being supplied to an irrigation ditch from an elevated storage reservoir as shown in Fig. 4(a). Calculate the volume flow rate of water into the ditch. (30)

(b) Explain series and parallel branching of pipes.

Contd P/2

Date : 21/03/2022

(22)

(5)

SECTION - B

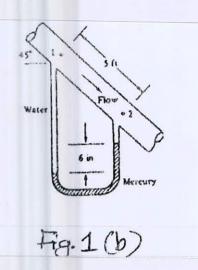
There are FOUR questions in this Section. Answer any THREE.

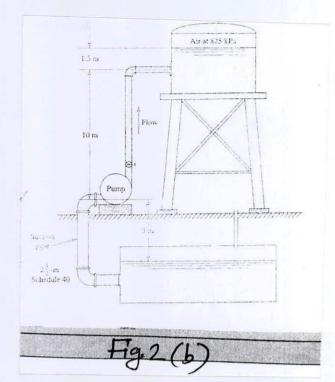
5. (a) A certain submerged body is to move horizontally through oil ($\rho = 52 \text{ lb/ft}^3$, $\mu = 0.0006 \text{ lb-s/ft}^2$) at a velocity of 45 fps. To study the characteristics of this motion, an enlarged model of body is tested in 60°F water. The model ratio λ is 8 : 1. Determine the velocity at which this enlarged model should be pulled through the water to achieve dynamic similarity. If the drag force on the model is 0.8 lb_f, predict the drag force on the prototype. (20)

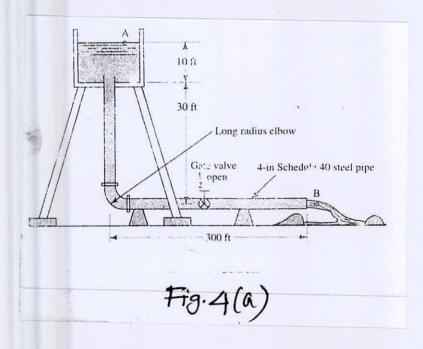
(b) Describe characteristic curves for a typical mixed flow centrifugal pump.

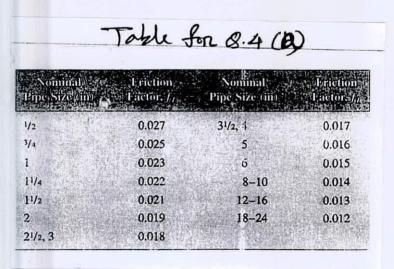
(15)

- 6. (a) A Z-in circular tube orifice at the end of the 3-in diameter pipe shown in Fig. for Q. 6(a) discharges into the atmosphere, a measured flow of 0.6 cfs of water when the pressure in the pipe is 10 psi. The jet velocity is determined by a pitot tube to be 39.2 fps. Find the values of the coefficients C_v, C_c and C_d. Find also the head loss from inlet to vena contracta. (20) (b) With a clear schematic diagram, explain the operation of Saybolt Viscometer. Derive necessary equations. (15)
- 7. Two immiscible incompressible liquids are flowing in the z direction in a horizontal thin slit of length L and with width W under the influence of a horizontal pressure gradient

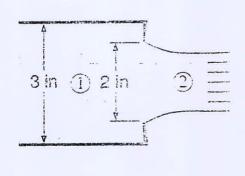

$$\left(\frac{P_0 - P_L}{L}\right).$$

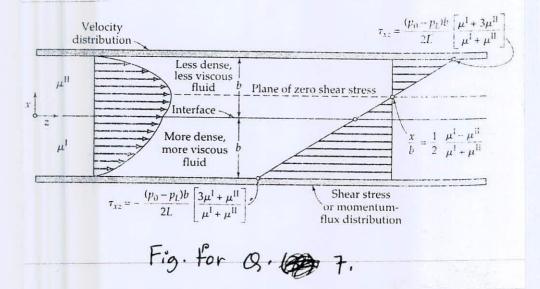

8.


The fluid flow rates are adjusted so that the slit is half filled with fluid I (the more dense phase) and half filled with fluid II (the less dense phase). The fluids are flowing sufficiently slowly that no instabilities occur-that is, the interface remains exactly planar. Determine:


(i) Velocity distribution	(15)
(ii) Average velocities	(10)
(iii) Momentum flux	(10)
(a) Describe different types of centrifugal pumps with diagrams.	(15)
(b) Explain different types of multi phase flow regimes.	(10)
(c) Derive a cavitation parameter for pumps.	(10)

= 3 =





TypeDimeterGlobe valve—fully open340Angle valve—fully open150Gate valve—fully open83/4 open35-1/2 open160-1/4 open900Check valve—swing type100Check valve—ball type150Butterfly valve—fully open45Foot valve—bille open7500° standard elbow3000° street elbow5045° standard elbow1645° street elbow26		
Globe valve—fully open340Angle valve—fully open150Jate valve—fully open8—3/4 open35—1/2 open160—1/2 open900Check valve—swing type100Check valve—swing type100Check valve—ball type150Butterfly valve—fully open45Foot valve—hinged disc type7590° standard elbow2090° street elbow5045° street elbow26		<u>Equivalent i</u> in Pipe Diam <u>ete</u>
Shobe valveInfly openAngle valvefully openSate valvefully openSate valvefully open35-1/2 open-1/2 open160-1/4 open900Check valveswing typeCheck valveswing typeCheck valveball typeButterfly valvefully open45Foot valveFoot valvepoppet disc type7590° standard elbow90° long radius elbow2090° street elbow5045° street elbow26	type r	
Jate valve—fully open 8	Globe valve—fully open	340
3/4 open 35 -1/2 open 160 -1/2 open 160 -1/4 open 900 Check valve—swing type 100 Check valve—ball type 150 Butterfly valve—fully open 45 Foot valve—poppet disc type 420 Poot valve—hinged disc type 75 90° standard elbow 30 90° street elbow 20 45° street elbow 26	Angle valve—fully open	150
1/2 open1601/2 open900Check valve—swing type100Check valve—ball type150Butterfly valve—fully open45Foot valve—poppet disc type420Foot valve—hinged disc type7500° standard elbow3090° long radius elbow2090° street elbow5045° street elbow26	Gate valve-fully open	8
1/4 open900Check valveswing type100Check valveball type150Butterfly valvefully open45Foot valvepoppet disc type420Poot valvehinged disc type7590° standard elbow3090° long radius elbow2090° street elbow5045° street elbow26		35
Check valve—swing type100Check valve—ball type150Butterfly valve—fully open45Foot valve—poppet disc type420Foot valve—hinged disc type7590° standard elbow3090° long radius elbow2090° street elbow5045° street elbow26	—1/2 open	160
Check valve—ball type150Butterfly valve—fully open45Foot valve—poppet disc type420Foot valve—hinged disc type7500° standard elbow3090° long radius elbow2090° street elbow5045° standard elbow1645° street elbow26	—1/4 open	900
Butterfly valve—fully open 45 Foot valve—poppet disc type 420 Poot valve—hinged disc type 75 90° standard elbow 30 90° long radius elbow 20 90° street elbow 50 45° street elbow 16 45° street elbow 26	Check valve-swing type	100
Foot valve—poppet disc type 420 Foot valve—hinged disc type 75 90° standard elbow 30 90° long radius elbow 20 90° street elbow 50 45° street elbow 16	Check valve—ball type	150
Foot valve—hinged disc type 75 90° standard elbow 30 90° long radius elbow 20 90° street elbow 50 45° standard elbow 16 45° street elbow 26	Butterfly valve-fully open	45
20° standard elbow3020° long radius elbow2020° street elbow5045° standard elbow1645° street elbow26	Foot valve—poppet disc type	420
90° strictular cook 20 90° long radius elbow 20 90° street elbow 50 45° standard elbow 16 45° street elbow 26	Foot valve—hinged disc type	75
90° street elbow5045° standard elbow1645° street elbow26	90° standard elbow	30
45° standard elbow 16 45° street elbow 26	90° long radius elbow	20
45° street elbow 26	90° street elbow	50
45 SUCCODOM	45° standard eibow	16
Close return bend 50	45° street elbow	26
	Close return bend	50
Standard tee—with flow through run 20	-with flow through branch	60

= 4 =

•

L-2/T-2/ChE

Date : 07/04/2022

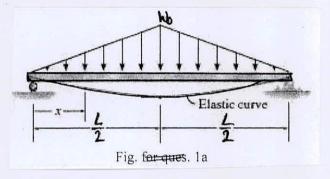
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2019-2020

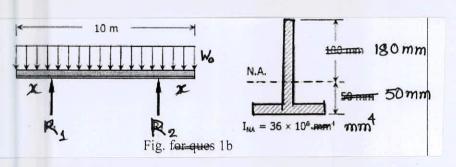
Sub : ME 243 (Mechanics of Solids)

Full Marks : 210

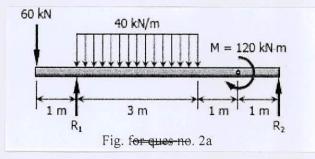
Time : 3 Hours


USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks.

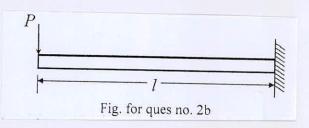

<u>SECTION – A</u>

There are **FOUR** questions in this section. Answer any **THREE** questions. Symbols have their usual meanings.

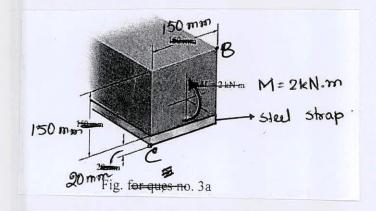

(a) The simply supported beam shown in Fig. 1.(a) supports the triangular distributed loading. Determine its maximum deflection. *EI* is constant. (20)

(b) A cast-iron beam 10 m long m long and supported as shown in Fig. 1(b). carries a uniformly distributed load of intensity w_0 (including its own weight). The allowable stresses are $\sigma_{bt} \leq 20$ MPa and $\sigma_{bc} \leq 80$ MPa. Determine the maximum safe value of w_0 if x = 1.0 m.

(a) For the loaded simple beam shown in Fig. 2(a) use method of sections to derive the shear force and bending moment as functions of x over the entire beam and draw the shear force and bending moment diagrams.


Contd P/2

(15)


(25)

$\frac{\text{ME 243}}{\text{Cont} \quad 0 \text{ No}}$

(b) A cantilever beam of length *l* is subjected to a point load P at the free end as shown in Fig. 2(b). Using Castigliano's theorem, determine the deflection at the midpoint of the beam.Neglect the effect of vertical shear.

3. (a) A composite beam is made of wood and reinforced with a steel strap located on its bottom side. It has the cross-sectional area shown in Fig. 3(a). Transform the section into one made entirely of steel and determine the normal stress at points B and C if the beam is subjected to a bending moment of M = 2 kN.m. Take $E_w = 12$ GPa and $E_{st} = 200$ GPa.

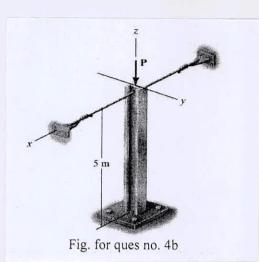
(b) A pipe carrying steam at 3.5 MPa has an outside diameter of 450 mm and a wall thickness of 10 mm. A gasket is inserted between the flame at one end of the pipe and a flat plate used to cap the end. How many 40-mm-diameter bolts must be used to hold the cap on if the allowable stress in the bolts is 80 MPa, of which 55 MPa is the initial stress? What circumferential stress is developed in the pipe?

4. (a) Select the lightest W shape for a fixed ends column of length 6 m that carries an axial load of 145 kN. Use AISC column specifications. Yield strength = 360 MPa and modulus of elasticity = 200 GPa (Use attached table for properties of wide flange sections (W shape). (20)

(b) The aluminum column is fixed at its bottom and is braced at its top by cables so as to prevent movement at the top along the x axis as shown in Fig. 4(b). If it is assumed to be fixed at its base, determine the largest allowable load P that can be applied. Use a factor of safety for buckling of 2.0. Take $E_{al} = 70$ GPa, $A = 7.5(10^{-3})$ m², $I_x = 23.2(10^{-6})$ m⁴. Discuss the justification of using the Euler's equation for solving this problem.

Contd P/3

(10)

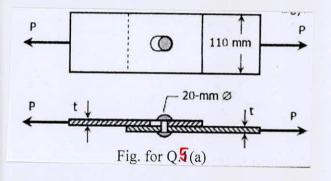

(20)

(15)

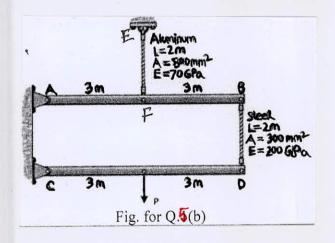
(15)

= 2 =

<u>ME 243</u>



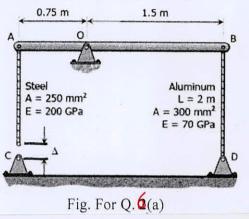
= 3 =


SECTION - B

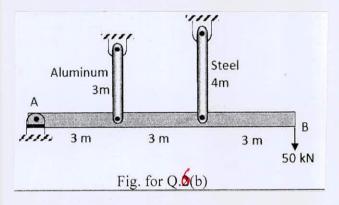
There are FOUR questions in this section. Answer any THREE.

5. (a) Assume that a 20-mm-diameter rivet joins two plates each of which are 110 mm wide. The allowable stresses are 120 MPa for bearing in the plate material and 60 MPa for shearing of rivet. Determine (a) the largest average tensile stress in the plate. And (b) the minimum thickness of each plate. Assume each plate has same thickness.

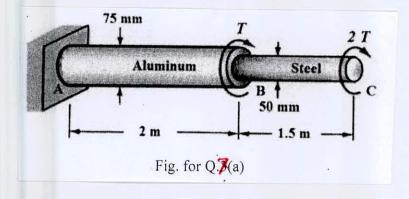
(b) The rigid bars AB and CD shown in Fig. for Q. 5(b) below are supported by pins at A and C and the two rods BD and EF. Determine the maximum force P that can be applied as shown if its vertical movement is limited to 5 mm. Neglect the weight of all members.


Contd P/4

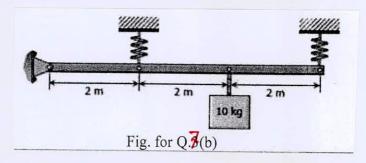
(15)

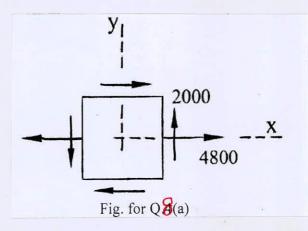

(20)

<u>ME 243</u>


6. (a) The assembly in Fig. for Q. 6(a) below consists of a light rigid bar AB, pinned at O, that is attached to the steel and aluminum rods. In the position shown, bar AB is horizontal and there is a gap, $\Delta = 5$ mm, between the lower end of the steel rod and its pin support at C. Compute the stress in the aluminum rod when the lower end of the steel rod is attached to its support.

(b) For assembly shown in the Fig. for Q. 6(b), determine the stress in each of the two vertical rods if the temperature of each rod rises 40°C after the load P = 50 kN is applied. Neglect the deformation and mass of the horizontal bar AB. Use $E_a = 70$ GPa, $\alpha_a = 23.0$ µm/m.°C, $A_a = 900$ mm², $E_s = 200$ GPa, $\alpha_s = 11.7$ µm/m.°C, and $A_s = 600$ mm². (18)


7. (a) A compound shaft consisting of an aluminum segment and a steel is acted upon by two torque as shown in the Fig. for Q. 7(a) below. Determine the maximum permissible value of T subjected to the following conditions: $\tau_s \leq 100$ MPa, $\tau_a \leq 70$ MPa, and the angle of rotation of the free end limited to 12°. Use $G_s = 83$ GPa and $G_a = 83$ GPa.


(18)

(17)

(b) A rigid bar, hinged at one end, is supported by two identical springs as shown in Fig. for Q. 37(b) below. Each spring consists of 20 turns of 10-mm wire having a mean diameter of 150 mm. Compute the maximum shearing stress in the springs. Neglect the mass of the rigid bar.

8. (a) The stress element shown in Fig. for Q. 8(a) has σ_x = 4800 MPa, σ_y = 0, and τ_{xy} = -2000 MPa. Using Mohr's circle, determine the principal stresses, maximum shearing stress and the planes on which stresses act.

(b) Find the diameter of a rod subjected to a bending moment of 3 kN.m and a twisting moment of 1.8 kN .m according to the following theories of failure, taking yield strength as 420 MPa and factor of safety as 3.

(i) Normal stress theory

(ii) Shear stress theory

(15)

(17)

=6 = Table for question 4a)

TABLE B-2 PROPERTIES OF WIDE-FLANGE SECTIONS (W SHAPES): SI UNITS (Continued)

						3		Axis X-X			Axis Y-Y	
	Theoretical			F	lange	Web	1	1		1	1	
Designation	mass (kg/m)	Area (mm²)	Depth (mm)	Width (mm)	Thickness (mm)	thickness (mm)	(10 ⁶ mm⁴)	$S = \frac{1}{c}$ (10 ³ mm ³)	$r = \sqrt{I/A}$ (mm)	(10 ⁶ mm ⁴)	$S = \frac{1}{c}$ (10 ³ mm ³)	r = √1/4 (mm)
W360 ×262	262,7	33 500	387	398	33.3	21.1	894	4 620	163	350	1 760	102
×237	236.3	30 100	380	395	30.2	18.9	788	4 150	162	310	1 570	101
×216	216.3	27 600	375	394	27.7	17.3	712	3 790	161	283	1 430	101
×196	196.5	25 000	372	374	26.2	16.4	636	3 420	159	229	1 220	95.7
×179	179.2 .	22 800	368	373	23.9	15.0	575	3 120	159	207	1 1 10	95.3
×162	162.0	20 600	364	371	21.8	13.3	516	2 830	158	186	1 000	95.0
×147	147.5	18 800	360	370	19.8	12.3	463	2 570	157	167	904	94.2
×134	134.0	17 100	356	369	18.0	11.2	415	2 330	156	151	817	94.0
×122	121.7	15 500	363	257	21.7	13.0	365	2 010	153	61.5	478	63.0
×110	110.2	14 000	360	256	19.9	11.4	331	1'840	154	55.7	435	63.1
×101	101.2	12 900	357	255	18.3	10.5	302	1 690	153	50.6	397	62.6
×91	90.8	11 600	353	254	16.4	9.5	267	1 510	152	44.8	353	62.1
×79	79.3	10 100	354	205	16.8	9.4	227	1 280	150	24.2	236	48.9
×72	71.5	9 1 1 0	350	204	15.1	8.6	201	1 1 50	149	21.4	210	48.5
×64	63.9	8 140	347	203	13.5	7.7	178	1 030	148	18.8	186	48.1
×57	56.7	7 220	358	172	13.1	7.9	161	897	149	11.1	129	39.2
×51	50.6	6 4 5 0	355	171	11.6	7.2	141	796	148	9.68	113	38.7
×45	45.0	5 730	352	171	9.8	6.9	122	691	146	8.18	95.7	37.8
×39	39.1	4 980	353	128	10.7	6.5	102	580	143	3.75	58.6	27.4
×33	32.8	4 170	349	127	8.5	5.8	82.7	474	141	2.91	45.8	26.4

88.1
86.9
86.0
84.8
84.2
83.3
82.7
81.7
80.9
80.2
79.5
78.9
78.8
.77.8
77.5
77.3
77.0
63.6
62.9
49.7
49.3
49.1
39.3
38.8
38.4
21.4
20.9
19.5
19.1

(continues)

= 7 = Table for Question: 4a

TABLE B-2 PROPERTIES OF WIDE-FLANGE SECTIONS (W SHAPES): SI UNITS (Continued)

			14					Axis X-X			Axis Y-Y	
	Theoretical			.' F	lange	Web	1	s = <u>1</u>		1	$S = \frac{I}{2}$	
Designation	mass (kg/m)	Area (mm²)	Depth (mm)	Width (mm)	Thickness (mm)	thickness (mm)	(10 ⁶ mm ⁴)	(10 ³ mm ³)	$r = \sqrt{I/A}$ (mm)	(10 ⁶ mm ⁴)	c (10 ³ mm ³)	r = √I/A (mm)
W360 ×262	262.7	33 500	387	398	33.3	21.1	894	4 620	163	350	1 760	102
×237	236.3	30 100	380	395	30.2	18.9	788	4 150	162	310	1 570	101
×216	216.3	27 600	375	394	27.7	17.3	712	3 790	161	283	1 4 30	101
×196	196.5	25 000	372	374	26.2	16.4	636	3 420	159	229	1 220	95.7
×179	179.2	22 800	368	373	23.9	15.0	575 .	3 1 2 0	159	207	1 1 10	95.3
×162	162.0	20 600	364	371	21.8	13.3	516	2 830	158	186	1 000	95.0
×102 ×147	147.5	18 800	360	370	19.8	12.3	463	2 570	157	167	904	94.2
×147 ×134	134.0	17 100	356	369	18.0	11.2	415	2 330	156	151	817	94.0
×122	121.7	15 500	363	257	21.7	13.0	365	2 010	153	61.5	478	63.0
×122 ×110	110.2	14 000	360	256	19.9	11.4	331	1.840	154	55.7	435	63.1
	101.2	12 900	357	255	18.3	10.5	302	1 690	153	50.6	397	62.6
×101	90.8	11 600	353	254	16.4	9.5	267	1 510	152	44.8	353	62.1
×91		10 100	354	205	16.8	9.4	227	1 280	150	24.2	236	48.9
×79	79.3	9 110	350	203	15.1	8.6	201	1 150	149	21.4	210	48.5
×72	71.5	8 140	347	204	13.5	7.7	178	1 030	148	18.8	186	48.1
×64	63.9		358	172	13.1	7.9	161	897	149	11.1	129	39.2
×57	56.7	7 220	355	172	11.6	7.2	141	796	148	9.68	113	38.7
×51	50.6	6 450	355	- 171	9.8	6.9	122	691	146	8.18	95.7	37.8
×45	45.0	5 730		128	10.7	6.5	102	580	143	3.75	58.6	27.4
×39 ×33	39.1 32.8	4 980 4 170	353 349	128	8.5	5.8	82.7	474	141	2.91	45.8	26.4

500.4	63 700	427	340	75.1	45.1	1 690	7.910	163	494	2 910	88.1
454.0	57 800 .	415	336	68.7	41.3						86.9
415.1	52 900	403	334	62.7	38.9						86.0
374.3	47 700	391	330								84.8
343.3	43 700	382	328								84.2
313.3	39 900	374	325								83.3
283.0	36 000	365	322		26.9	787					82.7
252.9	32 200	356	319	39.6							81.7
226.8	28 900	348	317	35.6							80.9
202.6	25 800	341	315	31.8							80.2
178.8	22 800	333									79.5
157.4	20 100	327									78.9
143.1	18 200	323									78.8
129.6	16 500	318									.77.8
117.5	15 000	314									77.5
106.9	13 600	311									77.3
96.8	12 300	308									77.0
86.4	11 000	310									63.6
78.9		306							· · · · · · · · · · · · · · · · · · ·		62.9
74.5	9 490	310	and the second second								49.7
66.8	8.510	306									49.3
59.6	7 590	303									49.1
52.3	6 670	317							-		39.3
44.6	5 690	313	166	11.2	6.6	99.2	634	132	8.55	103	38.8
38.7	4 940	310	165	9.7	5.8	85.1	549	131	7.27	88.1	38.4
32.8	4 180	313					The second s				21.4
28.4	3 610	309	102								20.9
23.8	3 040	305	101								19.5
21.1	2 690	303	101	5.7	5.1	37.0	244	117	0.983	19.5	19.1
	454.0 415.1 374.3 343.3 313.3 283.0 252.9 226.8 202.6 178.8 157.4 143.1 129.6 117.5 106.9 96.8 86.4 78.9 74.5 66.8 59.6 52.3 44.6 38.7 32.8 28.4 23.8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	454.0 $57\ 800$ $415\ 336\ 68.7$ 415.1 $52\ 900\ 403\ 334\ 62.7$ 374.3 $47\ 700\ 391\ 330\ 57.1$ 343.3 $43\ 700\ 382\ 328\ 52.6$ 313.3 $39\ 900\ 374\ 325\ 48.3$ $283.0\ 36\ 000\ 365\ 322\ 44.1$ $252.9\ 32\ 200\ 356\ 319\ 39.6$ $226.8\ 28\ 900\ 348\ 317\ 35.6$ $202.6\ 25\ 800\ 341\ 315\ 31.8$ $178.8\ 22\ 800\ 333\ 313\ 28.1$ $157.4\ 20\ 100\ 327\ 310\ 25.1$ $143.1\ 18\ 200\ 323\ 309\ 22.9$ $129.6\ 16\ 500\ 318\ 308\ 20.6$ $117.5\ 15\ 000\ 314\ 307\ 18.7$ $106.9\ 13\ 600\ 311\ 306\ 17.0$ $96.8\ 12\ 300\ 308\ 305\ 15.4\ 86.4\ 11\ 000\ 310\ 254\ 16.3$ $78.9\ 10\ 100\ 306\ 254\ 14.6$ $74.5\ 9\ 490\ 310\ 205\ 16.3$ $66.8\ 8\ 510\ 306\ 204\ 14.6$ $59.6\ 7\ 590\ 303\ 203\ 13.1$ $52.3\ 6\ 670\ 317\ 167\ 13.2$ $44.6\ 5\ 690\ 313\ 102\ 10.8$ $23.8\ 4\ 180\ 313\ 102\ 10.8$ $23.8\ 3\ 040\ 305\ 101\ 6.7$	454.0 $57\ 800$ $415\ 336\ 68.7$ $41.3\ 41.3$ 415.1 $52\ 900\ 403\ 334\ 62.7\ 38.9$ 374.3 $47\ 700\ 391\ 330\ 57.1\ 35.4$ $343.3\ 43\ 700\ 382\ 328\ 52.6\ 32.6$ $313.3\ 39\ 900\ 374\ 325\ 48.3\ 30.0$ $283.0\ 36\ 000\ 365\ 322\ 44.1\ 26.9$ $252.9\ 32\ 200\ 356\ 319\ 39.6\ 24.4$ $226.8\ 28\ 900\ 348\ 317\ 35.6\ 22.1$ $202.6\ 25\ 800\ 341\ 315\ 31.8\ 20.1$ $178.8\ 22\ 800\ 333\ 313\ 28.1\ 18.0$ $157.4\ 20\ 100\ 327\ 310\ 25.1\ 15.5$ $143.1\ 18\ 200\ 323\ 309\ 22.9\ 14.0$ $129.6\ 16\ 500\ 318\ 308\ 20.6\ 13.1\ 117.5\ 15\ 000\ 314\ 307\ 18.7\ 11.9$ $106.9\ 13\ 600\ 311\ 306\ 17.0\ 10.9$ $96.8\ 12\ 300\ 308\ 305\ 15.4\ 9.9$ $86.4\ 11\ 000\ 310\ 254\ 16.3\ 9.1\ 79.9$ $86.4\ 11\ 000\ 310\ 254\ 16.3\ 9.1\ 79.9$ $86.4\ 11\ 000\ 310\ 254\ 16.3\ 9.1\ 75.5$ $74.5\ 9\ 490\ 310\ 205\ 16.3\ 9.4\ 46\ 8.8$ $74.5\ 9\ 490\ 310\ 205\ 16.3\ 9.4\ 46\ 8.8$ $74.5\ 9\ 490\ 310\ 205\ 16.3\ 9.4\ 46\ 8.5\ 59.6\ 7\ 590\ 303\ 203\ 13.1\ 7.5\ 52.3\ 6\ 670\ 317\ 167\ 13.2\ 7.6\ 44.6\ 5\ 690\ 313\ 106\ 11.2\ 6.6\ 38.7\ 4\ 9.9\ 5.8\ 32.8\ 4\ 180\ 313\ 102\ 10.8\ 6.6\ 28.4\ 3\ 610\ 309\ 102\ 8.9\ 6.0\ 23.8\ 3\ 040\ 305\ 101\ 6.7\ 5.6\ 5.6\ 5.6\ 5.6\ 5.6\ 5.6\ 5.6\ 5.6$	454.057 800 415 336 68.7 41.3 1480 415.1 $52 900$ 403 334 62.7 38.9 1300 374.3 $47 700$ 391 330 57.1 35.4 1130 343.3 $43 700$ 382 328 52.6 32.6 1010 313.3 $39 900$ 374 325 48.3 30.0 896 283.0 $36 000$ 365 322 44.1 26.9 787 252.9 $32 200$ 356 319 39.6 24.4 682 226.8 $28 900$ 348 317 35.6 22.1 596 202.6 $25 800$ 341 315 31.8 20.1 520 178.8 $22 800$ 333 313 28.1 18.0 445 157.4 $20 100$ 327 310 25.1 15.5 386 143.1 $18 200$ 323 309 22.9 14.0 348 129.6 $16 500$ 318 308 20.6 13.1 308 117.5 $15 000$ 314 307 18.7 11.9 275 106.9 $13 600$ 311 306 17.0 10.9 248 96.8 $12 300$ 308 305 15.4 9.9 222 86.4 $11 000$ 310 254 16.3 9.1 199 78.9 $10 100$ 306 254 14.6 8.8 177	454.0 $57\ 800$ 415 336 68.7 41.3 $1\ 480$ $7\ 130$ 415.1 $52\ 900$ 403 334 62.7 38.9 $1\ 300$ $6\ 450$ 374.3 $47\ 700$ 391 330 57.1 35.4 $1\ 130$ $5\ 760$ 343.3 $43\ 700$ 382 328 52.6 32.6 $1\ 010$ $5\ 260$ 313.3 $39\ 900$ 374 325 48.3 30.0 896 $4\ 790$ 283.0 $36\ 000$ 365 322 44.1 26.9 787 $4\ 310$ 252.9 $32\ 200$ 356 319 39.6 24.4 682 $3\ 830$ 226.8 $28\ 900$ 348 317 35.6 22.1 596 $3\ 420$ $202.6\ 25\ 800$ 341 315 31.8 20.1 520 $30\ 50$ 178.8 $22\ 800$ 333 313 28.1 18.0 445 $2\ 680$ 157.4 $20\ 100$ 327 310 25.1 15.5 386 $2\ 360$ 143.1 $18\ 200$ 323 309 22.9 14.0 348 $2\ 150$ 129.6 $16\ 500$ 318 308 20.6 13.1 308 1940 117.5 $15\ 600$ 314 307 18.7 11.9 275 $1\ 750$ 106.9 $13\ 600$ 311 306 17.0 10.9 248 $1\ 590$ 96.8 $12\ 300$ 308	454.0 $57\ 800$ 415 316 68.7 41.3 140.0 110.0 110.0 415.1 $52\ 900$ 403 334 62.7 38.9 $1\ 300$ $6\ 450$ 157 374.3 $47\ 700$ 391 330 57.1 35.4 $1\ 130$ $5\ 760$ 154 343.3 $43\ 700$ 382 328 52.6 32.6 $1\ 010$ $5\ 260$ 152 313.3 $39\ 900$ 374 325 48.3 30.0 896 $4\ 790$ 150 283.0 $36\ 000$ 365 322 44.1 26.9 787 $4\ 310$ 148 252.9 $32\ 200$ 356 319 39.6 24.4 682 $3\ 830$ 146 226.8 $28\ 900$ 348 317 35.6 22.1 596 $3\ 420$ 144 202.6 $25\ 800$ 341 315 31.8 20.1 520 3050 142 178.8 $22\ 800$ 333 313 28.1 18.0 445 $2\ 680$ 140 157.4 $20\ 100$ 327 310 25.1 15.5 386 $2\ 360$ 139 143.1 $18\ 200$ 323 309 22.9 14.0 348 $2\ 150$ 138 129.6 $16\ 500$ 318 308 20.6 13.1 308 1940 137 117.5 $15\ 000$ 314 307 18.7 1.9 275 $1\ 750$	454.0 $57\ 800$ 415 336 68.7 41.3 $1\ 480$ $7\ 130$ 160 436 415.1 $52\ 900$ 403 334 62.7 38.9 $1\ 300$ $6\ 450$ 157 391 374.3 $47\ 700$ 391 330 57.1 35.4 $1\ 130$ $5\ 760$ 154 343 343.3 $43\ 700$ 382 328 52.6 32.6 $1\ 010$ $5\ 260$ 152 310 313.3 $39\ 900$ 374 325 48.3 30.0 896 $4\ 790$ 150 277 283.0 $36\ 000$ 365 322 44.1 26.9 787 $4\ 310$ 148 246 252.9 $32\ 200$ 356 319 39.6 24.4 682 $3\ 830$ 146 215 226.8 $28\ 900$ 348 317 35.6 22.1 596 $3\ 420$ 144 189 202.6 $25\ 800$ 341 315 31.8 81.1 18.0 455 2680 140 144 157.4 $20\ 100$ 327 310 25.1 15.5 386 $2\ 360$ 139 125 143.1 $18\ 200$ 323 309 22.9 14.0 348 2150 138 113 129.6 $16\ 500$ 314 307 18.3 0.6 13.1 308 1940 137 100 117.5 $15\ 000$ 314 307 18.3 <	454.057 80041533668.741.3148071301604362600415.152 90040333462.738.9130064501573912340374.347 70039133057.135.4113057601543432080313.343 70088232852.632.610105 2661523101890313.339 90037432548.330.08964 7901502771700283.036 00036532244.126.97874 3101482461 530226.828 90034831735.622.15963 4201441891 190202.625 80034131531.820.15203 0501421661 050178.822 80033331328.118.04452 680140144919157.420 10032731025.115.53862 360139125805143.118 20032330922.914.03482 150138113729129.616 50031830820.613.13081940137100652117.515 00031430718.711.92751 75013590.2588106.913 60031130615.49

(continues)

A REAL PROPERTY AND A REAL		, =8= ,	
3	lable	for question	4(a)
ABLE B-2 PROPERTIES OF WIDE	-FLANGE SECTIONS (W SI	HAPES): SI UNITS (Continued)	. /

				F	lange			Axis X-X			Axis Y-Y	
Designation	Theoretical mass (kg/m)	Area (mm²)	Depth (mm)	Width (mm)	Thickness (mm)	Web Thickness (rnm)	/ (10 ⁶ mm ⁴)	$S = \frac{l}{c}$ (10 ³ mm ³)	$r = \sqrt{I/A}$ (mm)	/ (10 ⁶ mm ⁴)	$S = \frac{I}{c}$ (10 ³ mm ³)	$r = \sqrt{I/4}$ (mm)
W250 ×167	167.4	21 300	289	265	31.8	19.2	300	2 080	119	98.8	746	<u> </u>
×149	148.9	19 000	282	263	28.4	17.3	259	1 840	117	86.2	656	68.1 67.4
×131	131.1	16 700	275	261	· 25.1	15.4	221	1 610	115	74.5	571	66.8
×115	114.8	14 600	269	259	22.1	13.5	189	1 410	114	64.1	495	66.3
×101	101.2	· 12 900	264	257	19.6	11.9	164	1 240	113	55.5	432	65.6
×89	89.6	11 400	260	256	17.3	10.7	143	1 100	112	48.4	378	
×80	80.1	10 200	256	255	15.6	9.4	126	982	111	43.1	338	65.2
×73	72.9	9 280	253	254	14.2	8.6	113	891	110	38.8	306	65.0
×67	67.1	· 8 550	257	204	15.7	8.9	104	806	110	22.2		64.7
×58	58.2	7 420	252	203	13.5	8.0	87.3	693	108		218	51.0
×49	49.0	6 2 5 0	247	202	11.0	7.4	70.6	572		18.8	186	50.3
×45	44.9	5 720	266	148	13.0	7.6	71.1		106	15.1	150	49.2
×39	38.7	4 920	262	147	11.2			534	111	7.03	95.1	35.1
×33	32.7	4 170.	258	146	9.1	6.6	60.1	459	111	5.94	80.8	34.7
×28	28.5	3 630	260			6.1	48.9	379	108	4.73	64.7	33.7
×25	25.3	3 230		102	10.0	6.4	40.0	307	105	1.78	34.8	22.1
×22			257	102	8.4	6.1	34.2	266	103	1.49	29.2	21.5
×18	22.4	2 850	254	102	6.9	5.8	28.9	227	101	1.23	24.0	20.8
~10	17.9	2 270	251	101	5.3	4.8	22.4	179	99.3	0.913	18.1	20.1
W200 ×100	99.5	12 700	229	210	23.7	14.5	113	989	04.2	200		
×86	86.7	11 100	222	209	20.6	13.0	94.7		94.3	36.6	349	53.7
×71	71.5	9 1 1 0.	216	206	17.4	10.2		853	92.4	31.4	300	53.2
×59	59.4	7 560	210	205	14.2	9.1	76.6	709	91.7	25.4	246	52.8
×52	52.3	6 660	206	204			61.1	582	89.9	20.4	199	51.9
×46	46.0	5 860	203	204	12.6	7.9	52.7	512	89.0	17.8	175	51.7
×42	100.24	5 310	205		11.0	7.2	45.5	448	88.1	15.3	151	51.1
×36		4 580	203	166 165	11.8 10.2	7.2 6.2	40.9 34.4	399	87.7	9.00	108	41.2
								342	86.7	7.64	92.6	40.8
un en an an				Alulis and		- <u>1-1-1-1-1-</u>	en martera	and the second			<u></u> .	
×31	31.4	4 000	,10	134	10.2	6.4	31.4	299	99.6			
×27	26.6	3 390	207	133	8.4	5.8	25.8	299	88.6	4.10	61.1	32.0
×22	22.4	2 860	206	102	8.0	6.2	20.0		87.2	3.30	49.6	31.2
×19	19.4	2 480	203	102	6.5	5.8		194	83.6	1.42	27.8	22.3
×15	15.0	1 900	200/	100	5.2	4.3	16.6	163	81.8	1.15	22.6	21.5
W150 ×37				1.4	5.2	ч. у	. 12,7	127	81.8	0.869	17.4	21.4
	37.1	4 730	162	154	11.6	8.1	22.2	274	68.5	7.07	91.8	70 7
×30	29.8	3 790	157	153	9.3	6.6	17.2	219	67.4	5.56		38.7
×22	22.3	2 850	152	152	6.6	5.8	12.1	159	65.2	3.87	72.6	38.3
×24	24.0	3 060	160	102	10.3	6.6	13.4	168	66.2		50.9	36.8
×18	18.0	2 290	153	102	7.1	5.8	9.16	120		1.83	35.8	24.5
×14	13.6	1 730	150	100	5.5	4.3	6.87	91.5	63.2	1.26	24.7	23.5
W130 ×28	. 20 1	2 600	16				0.07	91.5	63.0	0.918	18.4	23.0
×24	28.1	3 580	131	128	10.9	6.9	10.9	167	55.2	3.81	59.6	32.6
~24	23.6	3 010	127	127	9.1	6.1	8.80	139	54.1	3.11	49.0	32.0
W100 ×19	19.4	2 470	106	103	8.8	7.1						52.1
			100	101	A A		4.76	89.9	43.9	1.61	31.2	25.5

Produced exclusively by Algoma Steel (Canada).

L-2/T-2/CHE

Date: 16/4/2022

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2019-2020

Sub: CHEM 221 (Organic Chemistry)

Full Marks: 210

Time: 3 Hours

The figures in the margin indicate full marks

USE SEPARATE SCRIPTS FOR EACH SECTION

$\underline{SECTION} - \underline{A}$

There are FOUR questions in this section. Answer any THREE questions.

Symbols used have their usual meaning.

1.	(a) Give the general method for the synthesis of the three five-membered heterocycle	s								
	starting from a 1, 4-diketone.	(9)								
	(b) Show with mechanism the electrophilic substitution reactions of the five									
	membered heterocycles.	(10)								
	(c) Explain the difference between sp ² hybridization of nitrogen in pyrrole an	d								
	pyridine.	(10)								
	(d) What happens when thiophene is subjected to mild and catalytic reduction?	(6)								
2.	(a) Write the Fischer-Indole synthesis of indole with reasonable mechanism.	(6)								
	(b) Unlike pyrrole, indole undergoes electrophilic substitution at C-3 rather than C-	2								
	position. Give reasons.	(9)								
	(c) Write with reactions how would you bring out the following conversions.	(5×3=15)								
	(i) Octahydroindole from indole	(
	(ii) Isatin from indigo									
	(iii) <i>N</i> -Methylpyridinium bromide from pyridine									
	(iv) 2-Aminopyridine from pyridine									
	(v) Pyridine -2,3-dicarboxylic acid from pyridine									
	(d) Illustrate the mechanism of vat dying with indigo.	(5)								
3.	(a) What structural features are necessary for a compound to be aromatic?	(8)								
	(b) Friedel-Crafts acylation reaction of benzene is synthetically more valuable than	n								
	Friedel-Crafts alkylation reaction. Justify with examples.	(10)								
	(c) What happens when toluene is treated with the followings?	(4×3=12)								
	(i) Bromine in presence of Lewis acid in the dark									
	(ii) Chlorine in presence of sunlight									
	(iii) Alkaline potassium permanganate									
	(iv) Hydrogen in presence of nickel catalyst									
	(d) With reference to aromatic disubstitution explain the term ortho-para directors.	(5)								

Contd P/2

CHEM 221/CHE

4.	(a) Draw the structures of the following alkaloids and write down their physiologica	ıl
	activities. (i) Quinine (ii) Nicotine (iii) Ephedrine	(4×3=12)
	(b) Give the mechanism of biosynthesis of alkaloids in plant materials.	(8)
	(c) What information do you get about the structure of coniine when it is distille	d
	with zinc dust and then the product is treated with potassium permanaganate?	(10)
	(d) Name some alkaloidal reagents and mention their functions.	(5)

<u>SECTION – B</u>

There are FOUR questions in this section. Answer any THREE questions.

5.	(a) Draw the structure of 2,2-dimethylpentane. How will you prepare the compound	
	by Corey-House synthesis? Discuss the mechanism.	(13)
	(b) Which reaction in each of the following pairs will take place more rapidly?	
	Explain the reasons.	(12)
	(i) $CH_3Br + OH^- \rightarrow CH_3OH + Br^-$	
	$CH_3Br + H_2O \rightarrow CH_3OH + HBr$	
	(ii) $CH_3I + OH^- \rightarrow CH_3OH + I^-$	
	$CH_{3}Cl + OH^{-} \rightarrow CH_{3}OH + Cl^{-}$	
	(c) Give the major product(s) of the reaction of 1-methylcyclohexene with the	
	following reagents, ignoring stereoisomers.	(10)
	(i) NBS/Δ/peroxide	
	(ii) HBr/ peroxide	
6.	(a) Define "degree of unsaturation". Determine the degree of unsaturation, and then	
	draw possible structures, for compounds with the following molecular formulas:	(10)
	(i) C_3H_6 (ii) C_3H_4	
	(b) For the following reaction, give the major 1,2- and 1,4-addition products and	
	indicate which is the kinetic product and which is the thermodynamic product:	(10)
	1,3-pentadiene + HCl	
	(c) Draw the structure of 2,4-dimethylcyclohexene. What would be the major product	
	obtained from the reaction of Br ₂ with the compound if the reactions were carried out	
	in	(15)
	(i) dichloromethane	
	(ii) water	

(iii) ethyl alcohol?

Discuss the mechanism.

CHEM 221/CHE

7.	(a) Draw the structures for each of the following molecules:	(8)						
	(i) (S)-1-bromo-1-chlorobutane							
	(ii) (2R, 3R)-2,3-dichloropentane							
	(iii) Allyl chloride							
	(iv) trans-1,2-dimethylcyclohexene							
	(b) Give the product(s) that would be obtained from the reaction of 2-butyne with the							
	following reagents. If the products can exist as stereoisomers, show which							
	stereoisomers are obtained.	(12)						
	(i) H ₂ /Lindlar catalyst							
	(ii) sodium in liquid ammonia							
	(iii) Br ₂ (1 mol) in CH ₂ Cl ₂							
	(c) How will you synthesize the following compounds?							
	(i) 2-pentyne from propyne							
	(ii) Ketone from 2-pentyne							
	Give the mechanisms.							
8.	(a) Identify compound (A), $C_4H_{10}O$, from the following data:	(10)						
	(i) (A) + Br ₂ / CCl ₄ \rightarrow No reaction							
	(ii) (A) + Na \rightarrow Bubbles							
	(iii) (A) + HCl/ZnCl ₂ \rightarrow Immediate cloudiness							
	(b) What would be the elimination products of 3,3-dimethyl-2-butanol? Give the							
	mechanism.							
	(c) How will you synthesize 3,3- dimethy1-2-butanol from 3,3- dimethyl-1-butene?	(10)						

L-2/T-2/CHE

Date: 27/03/2022

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2019-2020

Sub: MATH 223 (Numerical Analysis and Statistics)

Full Marks: 210

Time: 3 Hours

The figures in the margin indicate full marks

USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION – A

There are FOUR questions in this section. Answer any THREE questions.

- (a) Use Newton-Raphson method to obtain a real root, correct to five decimal places, 1. of the equation $2x \cos 2x - (x-2)^2 = 0$ for $2 \le x \le 3$ and $3 \le x \le 4$. (17)(b) Show that $f(x) = x^3 + 4x^2 - 10 = 0$ has a root in [1, 2], and use the Bisection method to determine an approximation to the root that is accurate to at least within 10^{-4} . (18)
- (a) Derive Lagrange's interpolation formula and apply Lagrange's formula to find a 2. cubic polynomial which approximates the following data and find f(4): (17)

<i>x</i> :	-2	-1	2	3
f(x):	-12	-8	3	5

(b) Derive Newton's forward difference interpolation formula and find the equations of the curve y = f(x) joining the points (1, 24), (3, 120), (5, 336), (7, 720) by using Newton's forward difference interpolation formula.

3. (a) Use the following data to approximate the first and second derivative of $f(x) = xe^{x}$ at x = 2.0. Use the midpoint formula to approximate the second derivative.

<i>x</i> :	1.8	1.9	2.0	2.1	2.2
<i>y</i> :	10.889365	12.703199	14.778112	17.148957	19.855030

(b) Derive general quadrature formula for equidistant ordinates and hence find Simpson's 1/3 rule as well as Simpson's 3/8 rule. (17)

(a) Evaluate $\int_{3}^{5} \frac{1}{\sqrt{x^2 - 4}} dx$ with n = 8 using the Composite Trapezoidal rule. 4. (17)

(b) Evaluate
$$\int_{-2}^{2} \frac{t}{5+2t} dt$$
 with $h = 0.5$ by Simpson's 1/3 rule. Also compare the result

with exact value of integral.

Contd P/2

(18)

(18)

(18)

MATH 223/CHE

SECTION - B

= 2 =

There are FOUR questions in this section. Answer any THREE questions.

- 5. (a) Using three successive approximations of Picard's method, obtain approximate solution of dy/dx = x² + y² satisfying the initial condition y(0) = 0. (17)
 (b) Apply the fourth order Runge-Kutta method to find u (0, 2) of the initial value problem du/dt = -2tu², u(0) = 1 using h = 0.2. (18)
- 6. (a) An analysis of companies resulted in the following distribution:

Profit (Lakhs):	79-90	90-110	110-130	130-150	150-170
No of Companies:	8	11	18	9	4

Calculate moments about the mean. Also, find Karl Pearson's coefficient of skewness, and kurtosis and comment on the result.

(b) The following is a portion of a classic data set called the "pilot plot data" in Fitting Equations to Data by Daniel and Wood, published in 2021. The response Y is the acid content of material produced by titration, whereas the regressor X is the organic acid content produced by extraction and weighing.

X:	123	55	100	75	159	109	48	138	164	28
Y:	76	62	66	58	88	70	37	82	88	43

- (i) Plot the data; does it appear that a simple linear regression will be a suitable model?
- (ii) Fit a simple linear regression; estimate a slope and intercept.
- (iii) Graph the regression line on the plot in (i).

(a) According to Consumer Digest (July/August 2016), the probable location of personal computers (PC) in the home is as follows: Adult bedroom: 0.03, Child bedroom: 0.15, Other bedroom: 0.14, Office or den: 0.40, Other rooms: 0.28.

- (i) What is the probability that a PC is in a bedroom?
- (ii) What is the probability that it is not in a bedroom?
- (iii) Suppose a household is selected at random from households with a PC; in what room would you expect to find a PC?

(b) It is known by researchers that 1 in 100 people carries a gene that leads to the inheritance of a certain chronic disease.

- (i) In a random sample of 1000 individuals, what is the probability that fewer than 7 individuals carry the gene (use a Poisson approximation)?
- (ii) Again, using the approximation, what is the approximate mean number of people out of 1000 carrying the gene?

Contd P/3

(18)

(17)

(18)

(17)

MATH 223/CHE

8. (a) A product developer is interested in reducing the drying time of a primer paint. Two formulations of the paint are tested; formulation-1 is the standard chemistry, and formulation-2 has a new drying ingredient that should reduce the drying time. From experience, it is known that the standard deviation of drying time is 8 minutes, and this inherent variability should be unaffected by the addition of the new ingredient. Ten specimens are painted with formulation-1, and another 10 specimens are painted with formulation-2. The two samples average drying times are $\bar{x}_1 = 121$ minutes and $\bar{x}_2 = 112$ minutes, respectively. What conclusions can the product developer draw about the effectiveness of the new ingredient, using $\alpha = 0.05$? (critical value of z = -1.645 or 1.645).

(b) An electrical firm manufactures light bulbs that have a life, before burn-out, that is normally distributed with a mean equal to 800 hours a standard deviation of 30 hours. Find the probability that a bulb burns between 776 and 824 hours.

(c) It is conjectured that an impurity exists in 30% of all drinking wells in a certain rural community. In order to gain some insight into the true extent of the problem, it is determined that some testing is necessary. It is too expensive to test all of the wells in the area, so 10 are randomly selected for testing.

- Use binomial distribution to find the probability that exactly 3 wells have the impurity, assuming that the conjecture is correct.
- (ii) What is the probability that more than 3 wells are impure?

(10)

(13)

(12)

MATH 223

page-04

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81321
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.8389
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.8829
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.9014
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.9440
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.9544
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.9632
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.9706
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.9767
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.9816
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.9857
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.9889
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.9915
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.9936
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.9952
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.9964
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.9973
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.9980
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.9986
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.9990

Table 1: Area under the Standard	d Normal curve from 0 to z.
----------------------------------	-----------------------------

For question no 8(b)

MATH 223

n 8

p											
	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	
-	0.4305	0.1678	0.1001	0.0576	0.0168	0.0039	0.0007	0.0001	0.0000		
	0.8131	0.5033	0.3671	0.2553	0.1064	0.0352	0.0085	0.0013	0.0001		
	0.9619	0.7969	0.6785	0.5518	0.3154	0.1445	0.0498	0.0113	0.0012	0.0000	
	0.9950	0.9437	0.8862	0.8059	0.5941	0.3633	0.1737	0.0580	0.0104	0.0004	
	0.9996	0.9896	0.9727	0.9420	0.8263	0.6367	0.4059	0.1941	0.0563	0.0050	
	1.0000	0.9988	0.9958	0.9887	0.9502	0.8555	0.6846	0.4482	0.2031	0.0381	
		0.9999	0.9996	0.9987	0.9915	0.9648	0.8936	0.7447	0.4967	0.1869	
		1.0000	1.0000	0.99999	0.9993	0.9961	0.9832	0.9424	0.8322	0.5695	
				1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
	0.3874	0.1342	0.0751	0.0404	0.0101	0.0020	0.0003	0.0000			
	0.7748	0.4362	0.3003	0.1960	0.0705	0.0195	0.0038	0.0004	0.0000		
	0.0470	0 7000	0.0007	0.4000	0.0010	0.0000	0.00=0	0.0049	0 0000	0.0000	

page-05

n	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
8	0	0.4305	0.1678	0.1001	0.0576	0.0168	0.0039	0.0007	0.0001	0.0000	
	1	0.8131	0.5033	0.3671	0.2553	0.1064	0.0352	0.0085	0.0013	0.0001	
	2	0.9619	0.7969	0.6785	0.5518	0.3154	0.1445	0.0498	0.0113	0.0012	0.0000
	3	0.9950	0.9437	0.8862	0.8059	0.5941	0.3633	0.1737	0.0580	0.0104	0.0004
	4	0.9996	0.9896	0.9727	0.9420	0.8263	0.6367	0.4059	0.1941	0.0563	0.0050
	5	1.0000	0.9988	0.9958	0.9887	0.9502	0.8555	0.6846	0.4482	0.2031	0.0381
	6		0.9999	0.9996	0.9987	0.9915	0.9648	0.8936	0.7447	0.4967	0.1869
	7		1.0000	1.0000	0.9999	0.9993	0.9961	0.9832	0.9424	0.8322	0.5695
	8				1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	0	0.3874	0.1342	0.0751	0.0404	0.0101	0.0020	0.0003	0,0000		
	1	0.7748	0.4362	0.3003	0.1960	0.0705	0.0195	0.0038	0.0004	0.0000	
	2	0.9470	0.7382	0.6007	0.4628	0.2318	0.0898	0.0250	0.0043	0.0003	0.0000
	3	0.9917	0.9144	0.8343	0.7297	0.4826	0.2539	0.0994	0,0253	0.0031	0.0001
	4	0.9991	0.9804	0.9511	0.9012	0.7334	0.5000	0.2666	0.0988	0.0196	0.0009
	5	0.9999	0.9969	0.9900	0.9747	0.9006	0.7461	0.5174	0.2703	0.0856	0.0083
	6	1.0000	0.9997	0.9987	0.9957	0.9750	0.9102	0.7682	0.5372	0.2618	0.0530
	7		1.0000	0.9999	0.9996	0.9962	0.9805	0.9295	0.8040	0.5638	0.2252
	8			1.0000	1.0000	0.9997	0.9980	0.9899	0.9596	0.8658	0.6126
	9					1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	0	0.3487	0.1074	0.0563	0.0282	0.0060	0.0010	0.0001	0.0000		
	1	0.7361	0.3758	0.2440	0.1493	0.0464	0.0107	0.0017	0.0001	0.0000	
	2	0.9298	0.6778	0.5256	0.3828	0.1673	0.0547	0.0123	0.0016	0.0001	
	3	0.9872	0.8791	0.7759	0.6496	0.3823	0.1719	0.0548	0.0106	0.0009	0.0000
	4	0.9984	0.9672	0.9219	0.8497	0.6331	0.3770	0.1662	0.0473	0.0064	0.0001
	5	0.9999	0.9936	0.9803	0.9527	0.8338	0.6230	0.3669	0.1503	0.0328	0.0016
	6	1.0000	0.9991	0.9965	0.9894	0.9452	0.8281	0.6177	0.3504	0.1209	0.0128
	7		0.9999	0.9996	0.9984	0.9877	0.9453	0.8327	0.6172	0.3222	0.0702
	8		1.0000	1.0000	0.9999	0.9983	0.9893	0.9536	0.8507	0.6242	0.2639
	9				1.0000	0.9999	0.9990	0.9940	0.9718	0.8926	0.6513
	10					1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

For question no 8(c)

.

L-2/T-2/CHE

Date: 31/03/2022

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2019-2020

Sub: HUM 103 (Economics)

Full Marks: 210

Time: 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks

Symbols indicate their usual meaning

SECTION - A

There are FOUR questions in this section. Answer any THREE from the rest.

(a) What do you understand by MRTS? Explain any three characteristics of an isoquant.

(b) Complete the following table and plot the total product (TP), average product (AP) and marginal product (MP) of labour.

Number of	Total product	Average Product	Marginal Product
workers	(TP)	(AP)	(MP)
1	3		
2	8		
3	12		
4	15		
5	17		
6	17		
7	16		
8	13		

(c) What is the relation between the AP and MP curves? Use these curves to define three stages of production for labour.

- (a) How would you measure price elasticity of demand at any point of a straight-line demand curve? Explain graphically.
 - (b) Define cross elasticity of demand and income elasticity demand.
 - (c) From the following table calculate elasticity of demand if you move from point A to
 - C and explain what you understand from the result.

POINT	Y	Q	
А	1500	50	
В	1600	60	
C	1700	70	

Contd P/2

(10)

(15)

(10)

(10)

(10)

(15)

HUM 103

\$

3. (a) Explain the properties of an indifference curve.

> (b) Explain consumer's equilibrium with the help of budget line and indifference curve. (10)(c) From the following budget line and the utility function, calculate the amount of two commodities that maximizes satisfaction. What is the maximum amount of (10)satisfaction?

$$5000 = 45 X + 55Y$$
$$U = 500 X^{0.6} Y^{0.7}$$

(a) From the following demand function, make a hypothetical demand schedule and 4. plot the curve.

$$Q = 80 - 20P + P^2$$
.

(b) What are the main causes of shifting of the supply curve? Explain them. (15)

(c) What are the exceptions to the law of demand? Explain.

SECTION - B

There are FOUR questions in this section. Answer any THREE.

5. (a) State the prerequisites for an effective demand. How would you construct market demand and market supply curves using a hypothetical demand and supply schedule? (20)Distinguish between 'change in demand and 'change in quantity demanded'. (b) Define market equilibrium. How are the price and output of a commodity determined in the open market economy through market equilibrium? The demand and supply functions of a commodity (say) X are given respectively by (15)

 $Q_{DX} = 1520 - 70P_X$

 $Q_{SX} = 750 + 20P_X$

Find the equilibrium price and quantity of the commodity X. If the Government imposes 15% VAT on unit price, what will be the new equilibrium price and quantity? Calculate the share of tax that would be incurred by the consumers.

6. (a) Define income effect and substitution effect of a price change . Show these effects with graphical presentations. (20)(b) How would you derive the formula for measuring cross-price elasticity of demand? Let, the demand function of Igloo Ice-cream is given by (15)

 $Q_{dx} = 1575 - 27P_x + 0.004 M + 3.5 P_y$

(10)

(10)

(15)

HUM 103

Contd... Q. No. 6(b)

Where price of Igloo ice-cream, $P_x = tk$. 50, price of Polar ice-cream, Y, $P_y = tk$. 60 and Income of the consumer, m = 75000. Find the income elasticity and cross-price elasticity of Igloo ice-cream. State the implications of the results you have obtained.

(a) When does a firm emerge as a monopolist? Explain the short run equilibrium of a firm under monopoly. (25)

(10)

(b) What is the relation between marginal revenue (MR), price (P) and price elasticity of demand (e) of a firm under monopoly?

8. Write short notes on any THREE of the following (35)

(i) Fundamental economic problems and their solutions

- (ii) Optimal consumption point under ordinal approach to utility analysis
- (iii) Applications of elasticity of demand

(iv) 'Law of diminishing marginal utility' and Marginal Rate of Substitution (MRS)'

= 3 =