L-2/T-2 B. Sc. Engineering Examinations 2019-2020
Sub : CHE 205 (Fluid Mechanics)
Full Marks : 210 Time : 3 Hours
USE SEPARATE SCRIPTS FOR EACH SECTION
The figures in the margin indicate full marks.
Assume reasonably if any additional data is required. Symbols indicate their usual meanings.

SECTION - A

There are FOUR questions in this section. Answer any THREE.

1. (a) Classify the fluids on the basis of shear stress and shear rate relationship. Elaborate the importance of the study of rheology in fluid mechanics.
(b) Water flows downward in a pipe at 45°, as shown in Fig. 1(b). The mercury manometer reads a 6-in height. The pressure drop $P_{2}-P_{1}$ is partly due to friction and partly due to gravity. Determine the total pressure drop and also the part due to friction only. Which part does the manometer read? Why?
2. (a) Derive the equation of steady motion along a stream line (energy equation) for a real fluid.
(b) Figure 2(b) shows a pump delivering $840 \mathrm{~L} / \mathrm{min}$ of crude oil ($\mathrm{SG}=0.85$) from an underground storage drum to the first stage of a processing system.
(i) If the total energy loss in the system is $4.2 \mathrm{~N} . \mathrm{m} / \mathrm{N}$ of oil flowing, calculate the power delivered by the pump.
(ii) If the energy loss in the suction pipe is $1.4 \mathrm{~N} . \mathrm{m} / \mathrm{N}$ of oil flowing, calculate the pressure at the pump inlet.
3. (a) Why is the concept of hydraulic radius more important than normal radius? Two pipes, one circular and one square, have the same cross-sectional area. Which has the larger hydraulic radius?
(b) With laminar flow in a circular pipe, find the velocities at $0.1 \pi, 0.3 \pi, 0.5 \pi, 0.7 \pi$, and 0.9π. Plot the velocity profile with hand drawing.
(c) How much power is lost per meter of pipe length when oil with a viscosity of 0.20 . N.s $/ \mathrm{m}^{2}$ flows in a 20 -cm-diameter pipe at $0.50 \mathrm{~L} / \mathrm{s}$? The oil has density of $840 \mathrm{~kg} / \mathrm{m}^{3}$.
4. (a) Water at $80^{\circ} \mathrm{F}$ is being supplied to an irrigation ditch from an elevated storage reservoir as shown in Fig. 4(a). Calculate the volume flow rate of water into the ditch.
(b) Explain series and parallel branching of pipes.

$$
=2=
$$

ChE 205

SECTION - B

There are FOUR questions in this Section. Answer any THREE.

5. (a) A certain submerged body is to move horizontally through oil ($\rho=52 \mathrm{lb} / \mathrm{ft}^{3}, \mu=0.0006$ $\mathrm{lb}-\mathrm{s} / \mathrm{ft}^{2}$) at a velocity of 45 fps . To study the characteristics of this motion, an enlarged model of body is tested in $60^{\circ} \mathrm{F}$ water. The model ratio λ is $8: 1$. Determine the velocity at which this enlarged model should be pulled through the water to achieve dynamic similarity. If the drag force on the model is $0.8 \mathrm{lb}_{\mathrm{f}}$, predict the drag force on the prototype.
(b) Describe characteristic curves for a typical mixed flow centrifugal pump.
6. (a) A Z-in circular tube orifice at the end of the 3-in diameter pipe shown in Fig. for Q . 6(a) discharges into the atmosphere, a measured flow of 0.6 cfs of water when the pressure in the pipe is 10 psi . The jet velocity is determined by a pitot tube to be 39.2 fps . Find the values of the coefficients $\mathrm{C}_{\mathrm{v}}, \mathrm{C}_{\mathrm{c}}$ and C_{d}. Find also the head loss from inlet to vena contracta.
(b) With a clear schematic diagram, explain the operation of Saybolt Viscometer. Derive necessary equations.
7. Two immiscible incompressible liquids are flowing in the z direction in a horizontal thin slit of length L and with width W under the influence of a horizontal pressure gradient $\left(\frac{P_{0}-P_{L}}{L}\right)$.

The fluid flow rates are adjusted so that the slit is half filled with fluid I (the more dense phase) and half filled with fluid II (the less dense phase). The fluids are flowing sufficiently slowly that no instabilities occur-that is, the interface remains exactly planar. Determine:
(i) Velocity distribution
(ii) Average velocities
(iii) Momentum flux
8. (a) Describe different types of centrifugal pumps with diagrams.
(b) Explain different types of multi phase flow regimes.
(c) Derive a cavitation parameter for pumps.

Fig. 1 (b)

Fig2(b)

Fig.4(a)

Table for 8.4((a)

$$
=4=
$$

Fig. for. Q.6(a)

Fig. For $Q .7$.

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2019-2020

Sub : ME 243 (Mechanics of Solids)
Full Marks : 210
Time : 3 Hours
USE SEPARATE SCRIPTS FOR EACH SECTION
The figures in the margin indicate full marks.

SECTION - A

There are FOUR questions in this section. Answer any THREE questions. Symbols have their usual meanings.

1. (a) The simply supported beam shown in Fig. 1.(a) supports the triangular distributed loading. Determine its maximum deflection. $E I$ is constant.

Fig. 1a
(b) A cast-iron beam 10 m long m long and supported as shown in Fig. 1(b). carries a uniformly distributed load of intensity w_{0} (including its own weight). The allowable stresses are $\sigma_{\mathrm{bt}} \leq 20 \mathrm{MPa}$ and $\sigma_{\mathrm{bc}} \leq 80 \mathrm{MPa}$. Determine the maximum safe value of w_{0} if $x=1.0 \mathrm{~m}$.

2. (a) For the loaded simple beam shown in Fig. 2(a) use method of sections to derive the shear force and bending moment as functions of x over the entire beam and draw the shear force and bending moment diagrams.

Fig. 10.2 a
(b) A cantilever beam of length l is subjected to a point load P at the free end as shown in Fig. 2(b). Using Castigliano's theorem, determine the deflection at the midpoint of the beam. Neglect the effect of vertical shear.

Fig. for ques no. $2 b$
3. (a) A composite beam is made of wood and reinforced with a steel strap located on its bottom side. It has the cross-sectional area shown in Fig. 3(a). Transform the section into one made entirely of steel and determine the normal stress at points B and C if the beam is subjected to a bending moment of $\mathrm{M}=2 \mathrm{kN} . \mathrm{m}$. Take $E_{\mathrm{w}}=12 \mathrm{GPa}$ and $E_{\mathrm{st}}=200 \mathrm{GPa}$.

(b) A pipe carrying steam at 3.5 MPa has an outside diameter of 450 mm and a wall thickness of 10 mm . A gasket is inserted between the flame at one end of the pipe and a flat plate used to cap the end. How many 40 -mm-diameter bolts must be used to hold the cap on if the allowable stress in the bolts is 80 MPa , of which 55 MPa is the initial stress? What circumferential stress is developed in the pipe?
4. (a) Select the lightest W shape for a fixed ends column of length 6 m that carries an axial load of 145 kN . Use AISC column specifications. Yield strength $=360 \mathrm{MPa}$ and modulus of elasticity $=200 \mathrm{GPa}$ (Use attached table for properties of wide flange sections (W shape).
(b) The aluminum column is fixed at its bottom and is braced at its top by cables so as to prevent movement at the top along the x axis as shown in Fig. 4(b). If it is assumed to be fixed at its base, determine the largest allowable load P that can be applied. Use a factor of safety for buckling of 2.0. Take $\mathrm{E}_{\text {al }}=70 \mathrm{GPa}, \mathrm{A}=7.5\left(10^{-3}\right) \mathrm{m}^{2}, \mathrm{I}_{\mathrm{x}}=23.2\left(10^{-6}\right) \mathrm{m}^{4}$. Discuss the justification of using the Euler's equation for solving this problem.

ME 243

$$
=3=
$$

Fig. for ques no. 4 b

SECTION - B

There are FOUR questions in this section. Answer any THREE.
5. (a) Assume that a $20-\mathrm{mm}$-diameter rivet joins two plates each of which are 110 mm wide. The allowable stresses are 120 MPa for bearing in the plate material and 60 MPa for shearing of rivet. Determine (a) the largest average tensile stress in the plate. And (b) the minimum thickness of each plate. Assume each plate has same thickness.

Fig. for $Q .5(a)$
(b) The rigid bars $A B$ and $C D$ shown in Fig. for Q. 5(b) below are supported by pins at A and C and the two rods BD and EF . Determine the maximum force P that can be applied as shown if its vertical movement is limited to 5 mm . Neglect the weight of all members.

Fig. for $\mathrm{Q} .5(\mathrm{~b})$

$$
=4=
$$

ME 243

6. (a) The assembly in Fig. for Q . 6(a) below consists of a light rigid bar $A B$, pinned at O, that is attached to the steel and aluminum rods. In the position shown, bar $A B$ is horizontal and there is a gap, $\Delta=5 \mathrm{~mm}$, between the lower end of the steel rod and its pin support at C . Compute the stress in the aluminum rod when the lower end of the steel rod is attached to its support.

Fig. For Q. 6 (a)
(b) For assembly shown in the Fig. for Q. 6(b), determine the stress in each of the two vertical rods if the temperature of each rod rises $40^{\circ} \mathrm{C}$ after the load $\mathrm{P}=50 \mathrm{kN}$ is applied. Neglect the deformation and mass of the horizontal bar AB. Use $E_{a}=70 \mathrm{GPa}, \alpha_{a}=23.0$ $\mu \mathrm{m} / \mathrm{m} .{ }^{\circ} \mathrm{C}, A_{a}=900 \mathrm{~mm}^{2}, E_{s}=200 \mathrm{GPa}, \alpha_{s}=11.7 \mu \mathrm{~m} / \mathrm{m} .{ }^{\circ} \mathrm{C}$, and $A_{s}=600 \mathrm{~mm}^{2}$.

Fig. for Q. 6 (b)
7. (a) A compound shaft consisting of an aluminum segment and a steel is acted upon by two torque as shown in the Fig. for Q. 7(a) below. Determine the maximum permissible value of T subjected to the following conditions: $\tau_{s} \leq 100 \mathrm{MPa}, \tau_{a} \leq 70 \mathrm{MPa}$, and the angle of rotation of the free end limited to 12°. Use $G_{s}=83 \mathrm{GPa}$ and $G_{a}=83 \mathrm{GPa}$.

Fig. for Q.Z(a)

ME 243

Contd...Q. No. 7
(b) A rigid bar, hinged at one end, is supported by two identical springs as shown in Fig. for Q. 37(b) below. Each spring consists of 20 turns of $10-\mathrm{mm}$ wire having a mean diameter of 150 mm . Compute the maximum shearing stress in the springs. Neglect the mass of the rigid bar.

Fig. for $Q . \bar{B}(b)$
8. (a) The stress element shown in Fig. for Q. 8(a) has $\sigma_{x}=4800 \mathrm{MPa}, \sigma_{y}=0$, and $\tau_{x y}=-2000$ MPa. Using Mohr's circle, determine the principal stresses, maximum shearing stress and the planes on which stresses act.

Fig. for $\mathrm{Q} \boldsymbol{A}(\mathrm{a})$
(b) Find the diameter of a rod subjected to a bending moment of $3 \mathrm{kN} . \mathrm{m}$ and a twisting moment of $1.8 \mathrm{kN} . \mathrm{m}$ according to the following theories of failure, taking yield strength as 420 MPa and factor of safety as 3.
(i) Normal stress theory
(ii) Shear stress theory

$$
-7=
$$

Table for Question: $4 a$

TABLE B-2 PROPERTIES OF WIDE-FLANGE SECTIONS (W SHAPES): SI UNITS (Continued)

ABLE B-2 PROPERTIES OF WIDE-FLANGE SECTIONS (W SHAPES): SI UNITS (Continued)

[^0]
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2019-2020

Sub: CHEM 221 (Organic Chemistry)
Full Marks: 210
Time: 3 Hours
The figures in the margin indicate full marks
USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE questions. Symbols used have their usual meaning.

1. (a) Give the general method for the synthesis of the three five-membered heterocycles starting from a 1,4 -diketone.
(b) Show with mechanism the electrophilic substitution reactions of the five membered heterocycles.
(c) Explain the difference between sp^{2} hybridization of nitrogen in pyrrole and pyridine.
(d) What happens when thiophene is subjected to mild and catalytic reduction?
2. (a) Write the Fischer-Indole synthesis of indole with reasonable mechanism.
(b) Unlike pyrrole, indole undergoes electrophilic substitution at C-3 rather than C-2 position. Give reasons.
(c) Write with reactions how would you bring out the following conversions.
(i) Octahydroindole from indole
(ii) Isatin from indigo
(iii) N -Methylpyridinium bromide from pyridine
(iv) 2-Aminopyridine from pyridine
(v) Pyridine -2,3-dicarboxylic acid from pyridine
(d) Illustrate the mechanism of vat dying with indigo.
3. (a) What structural features are necessary for a compound to be aromatic?
(b) Friedel-Crafts acylation reaction of benzene is synthetically more valuable than Friedel-Crafts alkylation reaction. Justify with examples.
(c) What happens when toluene is treated with the followings?
(i) Bromine in presence of Lewis acid in the dark
(ii) Chlorine in presence of sunlight
(iii) Alkaline potassium permanganate
(iv) Hydrogen in presence of nickel catalyst
(d) With reference to aromatic disubstitution explain the term ortho-para directors.

CHEM 221/CHE

4. (a) Draw the structures of the following alkaloids and write down their physiological activities. (i) Quinine (ii) Nicotine (iii) Ephedrine
(b) Give the mechanism of biosynthesis of alkaloids in plant materials.
(c) What information do you get about the structure of coniine when it is distilled with zinc dust and then the product is treated with potassium permanaganate?
(d) Name some alkaloidal reagents and mention their functions.

SECTION - B

There are FOUR questions in this section. Answer any THREE questions.
5. (a) Draw the structure of 2,2-dimethylpentane. How will you prepare the compound by Corey-House synthesis? Discuss the mechanism.
(b) Which reaction in each of the following pairs will take place more rapidly? Explain the reasons.
(i) $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Br}^{-}$

$$
\mathrm{CH}_{3} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HBr}
$$

(ii) $\mathrm{CH}_{3} \mathrm{I}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{I}^{-}$

$$
\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Cl}^{-}
$$

(c) Give the major product(s) of the reaction of 1-methylcyclohexene with the following reagents, ignoring stereoisomers.
(i) NBS / Δ /peroxide
(ii) $\mathrm{HBr} /$ peroxide
6. (a) Define "degree of unsaturation". Determine the degree of unsaturation, and then draw possible structures, for compounds with the following molecular formulas:
(i) $\mathrm{C}_{3} \mathrm{H}_{6}$
(ii) $\mathrm{C}_{3} \mathrm{H}_{4}$
(b) For the following reaction, give the major 1,2- and 1,4-addition products and indicate which is the kinetic product and which is the thermodynamic product:

1,3-pentadiene +HCl
(c) Draw the structure of 2,4-dimethylcyclohexene. What would be the major product obtained from the reaction of Br_{2} with the compound if the reactions were carried out in
(i) dichloromethane
(ii) water
(iii) ethyl alcohol?

Discuss the mechanism.

CHEM 221/CHE

7. (a) Draw the structures for each of the following molecules:
(i) (S)-1-bromo-1-chlorobutane
(ii) $(2 R, 3 R)$-2,3-dichloropentane
(iii) Allyl chloride
(iv) trans-1,2-dimethylcyclohexene
(b) Give the product(s) that would be obtained from the reaction of 2-butyne with the following reagents. If the products can exist as stereoisomers, show which stereoisomers are obtained.
(i) H_{2} /Lindlar catalyst
(ii) sodium in liquid ammonia
(iii) $\mathrm{Br}_{2}(1 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(c) How will you synthesize the following compounds?
(i) 2-pentyne from propyne
(ii) Ketone from 2-pentyne

Give the mechanisms.
8. (a) Identify compound (A), $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$, from the following data:
(i) (A) $+\mathrm{Br}_{2} / \mathrm{CCl}_{4} \rightarrow$ No reaction
(ii) (A) $+\mathrm{Na} \rightarrow$ Bubbles
(iii) (A) $+\mathrm{HCl} / \mathrm{ZnCl}_{2} \rightarrow$ Immediate cloudiness
(b) What would be the elimination products of 3,3-dimethyl-2-butanol? Give the mechanism.
(c) How will you synthesize 3,3-dimethy1-2-butanol from 3,3-dimethyl-1-butene?

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2019-2020

Sub: MATH 223 (Numerical Analysis and Statistics)
Full Marks: 210
Time: 3 Hours
The figures in the margin indicate full marks
USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE questions.

1. (a) Use Newton-Raphson method to obtain a real root, correct to five decimal places, of the equation $2 x \cos 2 x-(x-2)^{2}=0$ for $2 \leq x \leq 3$ and $3 \leq x \leq 4$.
(b) Show that $f(x)=x^{3}+4 x^{2}-10=0$ has a root in [1, 2], and use the Bisection method to determine an approximation to the root that is accurate to at least within 10^{-4}.
2. (a) Derive Lagrange's interpolation formula and apply Lagrange's formula to find a cubic polynomial which approximates the following data and find $f(4)$:

$x:$	-2	-1	2	3
$f(x):$	-12	-8	3	5

(b) Derive Newton's forward difference interpolation formula and find the equations of the curve $y=f(x)$ joining the points $(1,24),(3,120),(5,336),(7,720)$ by using Newton's forward difference interpolation formula.
3. (a) Use the following data to approximate the first and second derivative of $f(x)=x e^{x}$ at $x=2.0$. Use the midpoint formula to approximate the second derivative.

$x:$	1.8	1.9	2.0	2.1	2.2
$y:$	10.889365	12.703199	14.778112	17.148957	19.855030

(b) Derive general quadrature formula for equidistant ordinates and hence find Simpson's $1 / 3$ rule as well as Simpson's $3 / 8$ rule.
4. (a) Evaluate $\int_{3}^{5} \frac{1}{\sqrt{x^{2}-4}} d x$ with $\mathrm{n}=8$ using the Composite Trapezoidal rule.
(b) Evaluate $\int_{-2}^{2} \frac{t}{5+2 t} d t$ with $h=0.5$ by Simpson's $1 / 3$ rule. Also compare the result with exact value of integral.

MATH 223/CHE

SECTION - B

There are FOUR questions in this section. Answer any THREE questions.
5. (a) Using three successive approximations of Picard's method, obtain approximate solution of $\frac{d y}{d x}=x^{2}+y^{2}$ satisfying the initial condition $y(0)=0$.
(b) Apply the fourth order Runge-Kutta method to find $u(0,2)$ of the initial value problem $\frac{d u}{d t}=-2 t u^{2}, u(0)=1$ using $\mathrm{h}=0.2$.
6. (a) An analysis of companies resulted in the following distribution:

Profit (Lakhs):	$79-90$	$90-110$	$110-130$	$130-150$	$150-170$
No of Companies:	8	11	18	9	4

Calculate moments about the mean. Also, find Karl Pearson's coefficient of skewness, and kurtosis and comment on the result.
(b) The following is a portion of a classic data set called the "pilot plot data" in Fitting Equations to Data by Daniel and Wood, published in 2021. The response Y is the acid content of material produced by titration, whereas the regressor X is the organic acid content produced by extraction and weighing.

$\mathrm{X}:$	123	55	100	75	159	109	48	138	164	28
$\mathrm{Y}:$	76	62	66	58	88	70	37	82	88	43

(i) Plot the data; does it appear that a simple linear regression will be a suitable model?
(ii) Fit a simple linear regression; estimate a slope and intercept.
(iii) Graph the regression line on the plot in (i).
7. (a) According to Consumer Digest (July/August 2016), the probable location of personal computers (PC) in the home is as follows: Adult bedroom: 0.03, Child bedroom: 0.15 , Other bedroom: 0.14 , Office or den: 0.40 , Other rooms: 0.28 .
(i) What is the probability that a PC is in a bedroom?
(ii) What is the probability that it is not in a bedroom?
(iii) Suppose a household is selected at random from households with a PC; in what room would you expect to find a PC?
(b) It is known by researchers that 1 in 100 people carries a gene that leads to the inheritance of a certain chronic disease.
(i) In a random sample of 1000 individuals, what is the probability that fewer than 7 individuals carry the gene (use a Poisson approximation)?
(ii) Again, using the approximation, what is the approximate mean number of people out of 1000 carrying the gene?

MATH 223/CHE

8. (a) A product developer is interested in reducing the drying time of a primer paint. Two formulations of the paint are tested; formulation-1 is the standard chemistry, and formulation-2 has a new drying ingredient that should reduce the drying time. From experience, it is known that the standard deviation of drying time is 8 minutes, and this inherent variability should be unaffected by the addition of the new ingredient. Ten specimens are painted with formulation-1, and another 10 specimens are painted with formulation-2. The two samples average drying times are $\bar{x}_{1}=121$ minutes and $\bar{x}_{2}=112$ minutes, respectively. What conclusions can the product developer draw about the effectiveness of the new ingredient, using $\alpha=0.05$? (critical value of $z=-1.645$ or 1.645).
(b) An electrical firm manufactures light bulbs that have a life, before burn-out, that is normally distributed with a mean equal to 800 hours a standard deviation of 30 hours. Find the probability that a bulb burns between 776 and 824 hours.
(c) It is conjectured that an impurity exists in 30% of all drinking wells in a certain rural community. In order to gain some insight into the true extent of the problem, it is determined that some testing is necessary. It is too expensive to test all of the wells in the area, so 10 are randomly selected for testing.
(i) Use binomial distribution to find the probability that exactly 3 wells have the impurity, assuming that the conjecture is correct.
(ii) What is the probability that more than 3 wells are impure?

Table 1: Area under the Standard Normal curve from 0 to \mathbf{z}.

For question no 8(b)

Table 2: Binomial Probability Sums $\sum_{x=0}^{r} b(x ; n, p)$

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2019-2020
Sub: HUM 103 (Economics)
Full Marks: 210
Time: 3 Hours
USE SEPARATE SCRIPTS FOR EACH SECTION
The figures in the margin indicate full marks
Symbols indicate their usual meaning
SECTION - A
There are FOUR questions in this section. Answer any THREE from the rest.

1. (a) What do you understand by MRTS? Explain any three characteristics of an isoquant.
(b) Complete the following table and plot the total product (TP), average product (AP) and marginal product (MP) of labour.

Number of workers	Total product (TP)	Average Product (AP)	Marginal Product (MP)
1	3		
2	8		
3	12		
4	15		
5	17		
6	17		
7	16		
8	13		

(c) What is the relation between the AP and MP curves? Use these curves to define three stages of production for labour.
2. (a) How would you measure price elasticity of demand at any point of a straight-line demand curve? Explain graphically.
(b) Define cross elasticity of demand and income elasticity demand.
(c) From the following table calculate elasticity of demand if you move from point A to

C and explain what you understand from the result.

POINT	Y	Q
A	1500	50
B	1600	60
C	1700	70

3. (a) Explain the properties of an indifference curve.
(b) Explain consumer's equilibrium with the help of budget line and indifference curve.
(c) From the following budget line and the utility function, calculate the amount of two commodities that maximizes satisfaction. What is the maximum amount of satisfaction?

$$
\begin{gathered}
5000=45 \mathrm{X}+55 \mathrm{Y} \\
\mathrm{U}=500 \mathrm{X}^{0.6} \mathrm{Y}^{0.7}
\end{gathered}
$$

4. (a) From the following demand function, make a hypothetical demand schedule and plot the curve.

$$
\mathrm{Q}=80-20 \mathrm{P}+\mathrm{P}^{2} .
$$

(b) What are the main causes of shifting of the supply curve? Explain them.
(c) What are the exceptions to the law of demand? Explain.

SECTION - B

There are FOUR questions in this section. Answer any THREE.
5. (a) State the prerequisites for an effective demand. How would you construct market demand and market supply curves using a hypothetical demand and supply schedule? Distinguish between 'change in demand and 'change in quantity demanded'.
(b) Define market equilibrium. How are the price and output of a commodity determined in the open market economy through market equilibrium? The demand and supply functions of a commodity (say) X are given respectively by

$$
\begin{aligned}
& \mathrm{QDx}=1520-70 \mathrm{Px}_{\mathrm{x}} \\
& \mathrm{Q}_{\mathrm{sx}}=750+20 \mathrm{Px}^{2}
\end{aligned}
$$

Find the equilibrium price and quantity of the commodity X. If the Government imposes 15% VAT on unit price, what will be the new equilibrium price and quantity? Calculate the share of tax that would be incurred by the consumers.
6. (a) Define income effect and substitution effect of a price change. Show these effects with graphical presentations.
(b) How would you derive the formula for measuring cross-price elasticity of demand?

Let, the demand function of Igloo Ice-cream is given by

$$
\mathrm{Q}_{\mathrm{dx}}=1575-27 \mathrm{P}_{\mathrm{x}}+0.004 \mathrm{M}+3.5 \mathrm{P}_{\mathrm{y}}
$$

$$
=3=
$$

HUM 103

Contd... Q. No. 6(b)

Where price of Igloo ice-cream, $\mathrm{P}_{\mathrm{x}}=$ tk. 50, price of Polar ice-cream, $\mathrm{Y}, \mathrm{P}_{\mathrm{y}}=\mathrm{tk} .60$ and Income of the consumer, $\mathrm{m}=75000$. Find the income elasticity and cross-price elasticity of Igloo ice-cream. State the implications of the results you have obtained.
7. (a) When does a firm emerge as a monopolist? Explain the short run equilibrium of a firm under monopoly.
(b) What is the relation between marginal revenue (MR), price (P) and price elasticity of demand (e) of a firm under monopoly?
8. Write short notes on any THREE of the following
(i) Fundamental economic problems and their solutions
(ii) Optimal consumption point under ordinal approach to utility analysis
(iii) Applications of elasticity of demand
(iv) 'Law of diminishing marginal utility' and Marginal Rate of Substitution (MRS)'

[^0]: - Produced exclusively by Algoma Steel (Canada).

