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Abstract

This thesis mainly focuses on computational techniques applied to stabilize un-

stable Navier-Stokes models. The models arising from the Navier stokes equation

are an essential aspect in engineering applications and applied mathematics in

fluid mechanics, which is significantly depends on Reynolds number (Re), and if

Re ≥ 300, the corresponding model will be unstable. The computation steps are

designed to approximate the full models with the ROMs, find the reduced-order

feedback matrices, and attain the optimal feedback matrices for stabilizing the

desired Navier-Stokes models. The prime concern is exploring the Riccati-based

boundary feedback stabilization of incompressible Navier-Stokes flow via Krylov

subspace techniques. Since the volume of data derived from the original models

is large, the feedback stabilization process through the Riccati equation is always

infeasible. Therefore, a H2 optimal model-order reduction scheme for reduced-

order modeling, preserving the sparsity of the system, is required. Some conven-

tional methods exist, but they have some adversities, such as the requirement

of high computation time and memory allocation, complex matrix algebra, and

uncertainty of the stability of the reduced-order models. To overcome these draw-

backs, an extended form of Krylov subspace-based Two-Sided Iterative Algorithm

(TSIA) is implemented to stabilize non-symmetric index-2 descriptor systems ex-

plored from unstable Navier-Stokes models. The proposed techniques are sparsity-

preserving and utilize the Wilson condition to efficiently satisfy the reduced-order

modeling approach through the sparse-dense Sylvester equations. To solve the de-

sired Sylvester equations, sparsity-preserving Krylov subspaces are structured via

the system of linear equations with a compact form of matrix-vector operations.

Inverse projections approaches are applied to get the optimal feedback matrix

from reduced-order models. To validate the efficiency of the proposed techniques,

transient behaviors of the target systems are observed, incorporating the tabular

and figurative comparisons with MATLAB simulations. Finally, to reveal the ad-

vancement of the proposed techniques, we compare our work with some existing

results. From the tabular and graphical comparisons of the results of numerical

computations, it is observed that RKSM is not applicable for the target models

due to the non-symmetric structure. In contrast, TSIA can be suitably applied to

solve Sparse-dense Sylvester equations for reduced-order modeling. Furthermore,

by the TSIA, full models can be efficiently approximated by the corresponding

v



ROMs with minimized H2 error norm, and the inverse projection scheme is effec-

tive in computing the optimal feedback matrices from the reduced-order feedback

matrices to stabilize the target models more efficiently than existing methods.

Thus, it can be concluded that by utilizing TSIA, unstable Navier-Stokes models

can be stabilized with better accuracy and less computing time.

vi



Acknowledgements

All praises for Almighty ALLAH, He is the One who has the power to fulfill the

wishes of all, and without his help, nothing would be a success.

I want to express my cordial gratitude and profound honor to my thesis supervisor

Professor Dr. Md. Abdul Hakim Khan, Department of Mathematics, Bangladesh

University of Engineering and Technology (BUET). For his continuous support,

motivation, and guidance throughout my research journey. I am thankful to him

and highly fortunate to have a Thesis under his supervision. I am very grateful

to him for introducing me to this fascinating and applicable research area and

finishing this Thesis successfully. I will remember the memories of working with

him for the rest of my life. I am gratefully indebted to him.

In particular, My Co-supervisor, Dr. Mohammad Monir Uddin, Associate profes-

sor, Department of Mathematics and Physics, North South University. Deserves

my gratitude and indebtedness for his outstanding support, collaboration, and in-

valuable direction during my research collaboration. He shared his knowledge of

subject matter analysis with me while also appreciating my approach to synthe-

sizing such themes. His insightful advice encouraged me to think in new ways, his

critiques strengthened my problem-solving skills, and his encouragement gave me

strength during a difficult period. I consider the information I have gained from

him to be a valuable asset in my life.

I express my gratitude to all my teachers from the Department of Mathematics,

Bangladesh University of Engineering and Technology. Furthermore, I praise my

Departmental head, Professor Dr. Khandker Farid Uddin Ahmed, for allowing

me to use The Departmental computational lab and other facilities during my

research period. Moreover, I am grateful to all of the staff of the Department

of Mathematics for their supportive attitudes and friendly behavior toward me

during any necessity of mine.

I want to show my hearty gratitude to the Bangladesh Bureau of Educational

Information and Statistics (BANBEIS), Dhaka, Bangladesh, for their financial

support under the project ID: MS0419092505 throughout this research work.

I am grateful to Professor Dr. Md Abdul Alim and Professor Dr. Mohammed

Forhad Uddin, Department of Mathematics, BUET, for being on my defense

vii



committee, reading my Thesis, and suggesting improvements. Their treasured

supports were influential in sharping my experiment methods and making me

thoughtful to understand mathematics deeply.

Also, I am deeply indebted to Mahtab Uddin, Assistant Professor in Mathematics

at United International University, for their enthusiastic inspiration throughout

the investigation.

Finally, I would like to express my gratitude to my parents and siblings for their

wise counsel and sympathetic ear and my friends’ unwavering support and moti-

vation. Their genuine feelings for me were crucial in the research.

viii



Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

Contents ix

List of Figures xii

List of Tables xiii

List of Algorithms xiv

Notations and Symbols xv

List of Acronyms xvi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outlines of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 5

2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 State-Space Representations of Control Systems . . . . . . . 5

2.1.2 Standard and Generalized System . . . . . . . . . . . . . . . 8

2.1.3 Descriptor System . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Input-Output Relations . . . . . . . . . . . . . . . . . . . . 10

2.1.5 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.6 System Rank . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.7 Reduced-Order Model . . . . . . . . . . . . . . . . . . . . . 12

2.2 Matrix Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Riccati Equation . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Lyapunov Equation . . . . . . . . . . . . . . . . . . . . . . . 14

ix



2.2.3 Sylvester Equation . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Solution of Sylvester Equation . . . . . . . . . . . . . . . . . 15

2.3 Stability and Related Topics . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Stable and Unstable System . . . . . . . . . . . . . . . . . . 17

2.3.2 Feedback Stabilization . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Riccati Stabilization . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Background of Linear Algebra . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Formation of the Matrices . . . . . . . . . . . . . . . . . . . 21

2.4.2 Sparse and Dense Matrix . . . . . . . . . . . . . . . . . . . 21

2.4.3 Applications of Sparse and Dense Matrices . . . . . . . . . . 21

2.4.4 Matrix pencil . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.5 Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.6 Matrix Definiteness . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.7 Hessenberg matrix . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.8 Projection Matrix . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.9 Matrix Decomposition Techniques . . . . . . . . . . . . . . . 25

2.4.10 Singular-Value Decomposition . . . . . . . . . . . . . . . . . 25

2.4.11 Eigenvalue Decomposition . . . . . . . . . . . . . . . . . . . 26

2.4.12 Schur Decomposition . . . . . . . . . . . . . . . . . . . . . . 27

2.4.13 QR Decomposition . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.14 Cholesky Decomposition . . . . . . . . . . . . . . . . . . . . 27

2.4.15 Arnoldi Decomposition . . . . . . . . . . . . . . . . . . . . . 28

2.5 Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Schur Decomposition Method . . . . . . . . . . . . . . . . . 30

2.5.2 Iterative Rational Krylov Algorithm . . . . . . . . . . . . . 31

2.5.3 Alternative Direction Implicit Method . . . . . . . . . . . . 33

2.5.4 Kleinman-Newton Method . . . . . . . . . . . . . . . . . . . 36

2.5.5 Rational Krylov Subspace Method . . . . . . . . . . . . . . 37

2.6 System norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.2 Vector Norms . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.3 H2-Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.4 H∞-Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Error System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 Shift Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8.1 Adaptive ADI Shifts . . . . . . . . . . . . . . . . . . . . . . 43

2.9 Existing data models . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.9.1 Finite element method . . . . . . . . . . . . . . . . . . . . . 44

2.9.2 Navier–Stokes Model . . . . . . . . . . . . . . . . . . . . . . 44

2.9.3 Stokes Model . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.9.4 Oseen Model . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 TSIA for index-2 descriptor system 50

3.1 Krylov subspace for index-2 descriptor system . . . . . . . . . . . . 50

x



3.1.1 Structure of the incompressible Navier-Stokes model . . . . . 51

3.1.2 Conversion of index-2 descriptor system to generalized system 53

3.1.3 Sparsity-preserving Krylov subspace bases for IRKA . . . . 54

3.2 Two Sided Iterative Algorithm for index-2 descriptor systems . . . . 55

3.2.1 Formulation of the generalized sparse-dense Sylvester equation 56

3.2.2 Solving generalized sparse-dense Sylvester equation . . . . . 57

3.2.3 Two Sided Iterative Algorithm to estimate the optimal feed-
back matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.4 Stabilization of index-2 descriptor system . . . . . . . . . . . 59

3.2.5 H2 - norm of the error system . . . . . . . . . . . . . . . . . 59

4 Numerical result 61

4.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Approximation of the full models with the reduced-order models . . 62

4.2.1 Comparison of the transfer functions . . . . . . . . . . . . . 62

4.2.2 H2-norm of the error system for the ROMs . . . . . . . . . . 64

4.3 Graphical Comparisons of Stabilization of the Unstable Systems . . 64

4.3.1 Stabilization of the eigenvalues . . . . . . . . . . . . . . . . 64

4.3.2 Stabilization of the step-responses . . . . . . . . . . . . . . . 65

4.4 Comparison of the TSIA with IRKA . . . . . . . . . . . . . . . . . 65

5 Conclusion and future research 73

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References 76

xi



List of Figures

2.1 State-space system . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Technique of reduced-order modeling . . . . . . . . . . . . . . . . . 13

2.3 Feedback approach in a system . . . . . . . . . . . . . . . . . . . . 19

2.4 Initial discretization of the von K´arm´an vortex street with coor-
dinates, boundary parts and observation points . . . . . . . . . . . 45

2.5 Mesh structure of a pipe flow . . . . . . . . . . . . . . . . . . . . . 48

2.6 Velocity shape of a pipe flow . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Pressure shape of a pipe flow . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Comparison of full model and ROM of 3-dimensional model for
Re = 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Unstable eigenvalues of 3-dimensional models . . . . . . . . . . . . 66

4.3 Stabilized eigenvalues of 3-dimensional models . . . . . . . . . . . . 67

4.4 Unstable step response for 1st input and 1st output of 3-dimensional
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Stabilized step response for 1st input and 1st output of 3-dimensional
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Unstable step response for 2nd input and 7th output of 3-dimensional
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Stabilized step response for 2nd input and 7th output of 3-dimensional
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xii



List of Tables

2.1 Dimension of Oseen model . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Structure of the target Navier-Stokes models . . . . . . . . . . . . . 62

4.2 H2 error norm of the ROMs of the target models . . . . . . . . . . 64

4.3 Comparison of computation time and H2 error norm of the ROMs
of 3-dimensional models archived by TSIA and IRKA . . . . . . . . 65

xiii



List of Algorithms

1 Solution of the Sparse-Dense Generalized Sylvester Equation. . . . . 17

2 Arnoldi decomposition (Modified Gram-Schimdt). . . . . . . . . . . . 29

3 Schur decomposition method. . . . . . . . . . . . . . . . . . . . . . . 31

4 IRKA for generalized systems. . . . . . . . . . . . . . . . . . . . . . 33

5 LRCF-ADI for generalized systems. . . . . . . . . . . . . . . . . . . . 36

6 Sparsity-preserving IRKA for index-2 descriptor systems. . . . . . . . 56

7 Solution of generalized sparse-dense Sylvester equation. . . . . . . . . 58

8 TSIA for the optimal feedback matrix of index-2 descriptor systems. 58

xiv



Notations and Symbols

R filed of real numbers

C field of complex numbers

C− left complex half-plane

C+ right complex half-plane

Rm×n set of all real matrices of order m× n
Cm×n set of all complex matrices of order m× n
⊂ subset of any matrix

∈ belongs to

aij the i, j-th entry of the matrix A

Re(z) real part of z ∈ C
Im(z) imaginary part of z ∈ C
In n× n identity matrix of order n

AT transpose of A

A∗ complex conjugate transpose of A

A−1 inverse of A

⊆ subset

≈ approximately equal to

� (�) much less (greater)

G(s) transfer function or transfer function matrix

G(jw) frequency response

‖.‖H2 H2-norm

‖.‖H∞ H∞-norm

σi(A) i-th singular value of A

σmax(A) largest singular value of A

Σ diagonal matrix containing singular values

diag(d1, · · · , dk) diagonal matrix with d1, · · · , dk on the diagonal

Λ(A,E) spectrum of the matrix pair (A,E)

λj(A,E) j-th eigenvalue of the matrix pair (A,E)

tr(A)
∑n

i=1 aii, where aii be the diagonal entry of A

ker(A) kernel of the matrix A

Km basis for the m-dimensional Krylov subspace

xv



List of Acronyms

LTI Liner Time Invariant

BIPS Brazilian Interconnected Power System

CALE Continuous Algebraic Lyapunov Equation

CARE Continuous Algebraic Riccati Equation

IRKA Iterative Rational Krylov Algorithm

RKSM Rational Krylov Subspace Method

TSIA Two Sided Iterative Algorithm

LQR Linear Quadratic Regulator

MOR Model Order Reduction

ROM Reduced Order Model

EVP Eigen Value Problem

SPD Symmetric Positive Definite

SVD Singular Value Decomposition

ODE Ordinary Differential Equation

PDE Partial Differential Equation

DAE Differential Algebraic Equation

DoF Degrees of Freedom

FDM Finite Difference Method

FEM Finite Element method

BT Balanced Truncation

TF Transfer Function

SVD singular-value decomposition

SFM Stabilizing Feedback Matrix

HSV Hankel Singular Value

KN Kleinman-Newton

ADI Alternating Direction Implicit

LRCF-ADI Low-Rank Cholesky Factor-ADI

care MATLAB library command for solving CARE

lyap MATLAB library command for solving CALE

xvi



Chapter 1

Introduction

1.1 Motivation

Control theory, system analysis, optimization, signal processing, large-scale space

flexible structures, game theory, and physical system design are all areas where

mathematical modeling is used today. In addition, multi-tasking systems with var-

ious components appear in many engineering applications, such as microelectron-

ics, micro-electro-mechanical systems, aerospace, computer control of industrial

processes, chemical processes, communication systems, etc. [1]. They are created

up of branches of subsystems controlled by extensive mathematical models that

use an interconnected inner mathematical system with enormous dimensions. The

Linear Time-Invariant (LTI) system is closely related to the Continuous-time Al-

gebraic Riccati Equation (CARE). CAREs may be seen in various fields of science

and engineering, particularly in control issues. Modern mathematical models rely

heavily on the quadratic cost functional. The solution matrix CARE is utilized

to optimize the Linear Quadratic Regulator (LQR) issue, which consists of an

optimum control function associated with the LTI continuous-time system, where

the quadratic cost functional reaches its infimum [2]. Engineering applications

need optimization of LQR in conjunction with descriptor systems (unstable in

particular). However, there are no effective computational solutions or analytical

tools [3]. When physical models are transformed into mathematical models, their

dimensions often grow to enormous proportions, and system analysis is compelled

to choose inadequate methodologies. The most significant challenge in storing

CARE matrices in computational tools is their size. Simulation approaches need
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costly time dealing and are plagued by a slow pace of convergence due to large-

scale matrix dimensions. Also, the accuracy of the solution reduces over time for

huge and sparse system-oriented structures descriptor systems [4]. Some conven-

tional methods are compatible with only symmetric systems and exploit the system

structures. A large-scale system needs more excellent memory and significant pro-

cessing effort. They also eliminate the need for regular simulations, common in

many applications. Because of computer memory limitations, the produced sys-

tems are sometimes too vast to store. Therefore, it is unavoidable to reduce the

computational size of the systems. Model order reduction (MOR) is a method for

reducing a higher-dimensional object to a lower-dimensional [5]. The reduction

procedure does not need prior knowledge of the underlying systems, and system

features like stability and passivity are included. However, the method must be

resilient, and the global error bound must be reduced to a specific margin, as

determined by an appropriate norm [6].

1.2 Literature Review

Some Model-Order Reduction (MOR) techniques currently exist. Namely, Singular-

Value Decomposition (SVD) based Balanced Truncation (BT) Krylov subspace-

based Iterative Rational Krylov Algorithm (IRKA). Those techniques are elabo-

rately discussed in [7, 8] and references therein. From the discussion of the BT

method, some obstacles are identified, such as the demands to solve two large

dimensional Lyapunov equations for Controllability and Observability gramians,

which is very costly for computational time and memory requirement. On the

other hand, IRKA is better in simulation time and needs less memory allocation,

but ROM stability is not guaranteed [9]. For solving the Riccati equation with-

out explicit estimation of the ROM, some techniques are available in practice, for

example, Low-Rank Alternative Direction Implicit (LR-ADI) integrated Newton-

Klenman (NK) method and Krylov subspace associated Rational Krylov Subspace

Method (RKSM). Those methods are derived and analyzed in detail in [10, 11]

and references therein. However, a Newton-Klenman process is a very complex

approach, and at each Newton step, LR-ADI iterations need to be executed once,

which is a very time-laborious task. Also, the Newton-Klenman process cannot

ensure the definiteness of the solution of the Riccati equation derived from an

unstable system. On the contrary, RKSM is easy for simulation. Still, the lack of

Page 2 of 83



Chapter 1: Introduction

proper shift parameter selection sometimes makes this method ineffective, and ad-

justing the stopping criteria may encounter the convergence of the plan. An initial

feedback matrix can be a remedy for unstable systems in the RKSM approach, but

this additional step makes the whole process inconvenient in time management.

1.3 Objective

To overcome the troubles mentioned above and complexities, we propose an ex-

tended form of the Krylov subspace-based Two-Sided Iterative Algorithm (TSIA)

[12]. In this strategy, initially, we need to find a ROM of the target model im-

plementing the IRKA approach. Then, two sparse-dense Sylvester equations will

be solved to find the system gramians and hence the required projection matri-

ces constituted by their orthonormalized columns constructed via the generalized

QR-decomposition [13]. The ROM attained by the TSIA approach is stability

preserving, and we will derive the sparsity-preserving form. The rest of the activ-

ities will follow the classical inverse projection scheme discussed previously [14].

The H2 norm optimality will justify the accuracy of the offered strategies. Finally,

the validity of the supplied methodologies will be statistically evaluated using the

target models’ transient behavior.

1.4 Outlines of the Thesis

This thesis consists of 5 chapters, including this introductory Chapter-1. In Chap-

ter 2, the derivation and fundamental concepts of the systems and control theory.

The basic ideas of linear algebra, matrix equations, and instabilities are thor-

oughly narrated. Some existing methods for solving matrix equations and real-

world models are provided briefly. The terms and concepts of this chapter are

used throughout the rest of the branches.

Chapter-3 consists of the principal work of the thesis. We discuss the conversion

of index-2 systems to generalized systems, the sparsity-preserving structure of

Krylov subspace for index-2 systems, the Two-sided iterative algorithm for index-

2 systems, and the particular structure of the H2-norm estimation in detail.

Page 3 of 83
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The numerical computation of the optimal feedback matrices for the in compress-

ible Navier-Stokes models is attained and applied to stabilize the eigenvalues and

step-responses of the target models in Chapter-4. Comparative analysis for out-

puts of the target models is shown. Also, a close discussion of previous work is

provided.

Finally, Chapter-5 contains the conclusions of the thesis. The possibilities for

improvements and future research are highlighted in brief.

Page 4 of 83



Chapter 2

Preliminaries

2.1 Basic Concepts

In control theory, a state-space representation regulates a physical system as a

collection of input, output, and state variables connected by first-order differential

equations or difference equations. State variables are regularized by time and the

values of input variables, whereas state variables can produce output variables.

If the dynamical systems are linear, time-invariant, and finite-dimensional, the

differential and algebraic equations can be written as matrices. The state-space

system is distinguished by significant algebras of general system theory, allowing

Kronecker vector-matrix structures to be utilized. The capacity of these structures

may be successfully employed to investigate systems with or without modification.

More information on state-space systems and control problems may be found in

[15].

2.1.1 State-Space Representations of Control Systems

Consider the following set of ordinary first-order differential equations to represent

a dynamical system:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

x(t) ∈ Rn is the state vector and x(t0) = x0 is the initial state. u(t) ∈ Rp is

the input (control) vector. y(t) ∈ Rm is the output vector. E ∈ Rn×n is the
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differential coefficient matrix. A ∈ Rn×n is the state space matrix. B ∈ Rn×p is

the control multiplier matrix. C ∈ Rm×n is the state multiplier matrix. D ∈ Rm×p

is the direct transmission map. If p = m = 1 the LTI system is called Single-input

Single-output (SISO) system. If p,m > 1 the LTI system is called Multi-input

Multi-output (MIMO) system.

Any physical system’s space-state representation is crucial for analyzing controlla-

bility, observability, and stability. Furthermore, the structure of space-state terms

reveals the pattern of the target systems.

Assume you have a state-space system with integrators, p inputs u1(t), u2(t), · · · , up(t)
and m outputs y1(t), y2(t), · · · , ym(t). Define the integrators’ n outputs as state

variables x1(t), x2(t), · · · , xn(t) [16]. The system may thus be described as follows

e1(t)ẋ1(t) = f1(x1, x2, · · · , xn;u1, u2, · · · , up; t),

e2(t)ẋ2(t) = f2(x1, x2, · · · , xn;u1, u2, · · · , up; t),
...

...
...

en(t)ẋn(t) = fn(x1, x2, · · · , xn;u1, u2, · · · , up; t).

(2.1)

The system’s outputs may be described as follows:

y1(t) = g1(x1, x2, · · · , xn;u1, u2, · · · , up; t),

y2(t) = g2(x1, x2, · · · , xn;u1, u2, · · · , up; t),
...

...
...

ym(t) = gm(x1, x2, · · · , xn;u1, u2, · · · , up; t).

(2.2)
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If we define the matrices below, we can see that

E(t) =


e1(t)

e2(t)
...

en(t)

 , x(t) =


x1(t)

x2(t)
...

xn(t)

 , y(t) =


y1(t)

y2(t)
...

ym(t)

 , u(t) =


u1(t)

u2(t)
...

up(t)

 ,

f(x, u, t) =


f1(x1, x2, · · · , xn;u1, u2, · · · , up; t)
f2(x1, x2, · · · , xn;u1, u2, · · · , up; t)

...
...

fn(x1, x2, · · · , xn;u1, u2, · · · , up; t)

 ,

g(x, u, t) =


g1(x1, x2, · · · , xn;u1, u2, · · · , up; t)
g2(x1, x2, · · · , xn;u1, u2, · · · , up; t)

...
...

gm(x1, x2, · · · , xn;u1, u2, · · · , up; t)

 .

(2.3)

Then equations (2.1) and (2.2) as if it were a pair of equations

E(t)ẋ(t) = f(x, u, t),

y(t) = g(x, u, t),
(2.4)

where (2.4) is the state equation and (2.4) is the output equation. A time-invariant

system in which the functions f and g do not explicitly include the time t. If the

equations in (2.4) are linearized around the operational state.Then the linear time-

invariant state-space system with input-output equations follows.

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(2.5)

Where E,A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n and D ∈ Rm×p , with extremely

big n and p,m � n; respectively, represent mass matrix, system matrix, control

multiplier matrix, state multiplier matrix, and direct transmission map (gain).

x(t) : R → Rn and u(t) : R → Rp are the state and control (input) vectors,

respectively, in the system (2.5), and y(t) : R → Rm is the output vector, with

x(t0) = x0 as the starting state. Direct transmission is missing in the majority

of state-space systems, and as a result, D = O. The state vector x(t) has a
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dimension of n. However, it will be represented as a compact pair of input and

output equations for ease of manipulation.

Figure. 2.1. State-space system

2.1.2 Standard and Generalized System

For invertible and symmetric positive definite matrix E, the system (2.5) is said

to be generalized.

The system (2.5) is classed as standard if E = In, is the n-dimensional identity

matrix. Because E is invertible, the generalized system may be reduced to the

conventional technique of the following form.

ẋ(t) = Āx(t) + B̄u(t),

y(t) = Cx(t) +Du(t),
(2.6)

where Ā = E−1A and B̄ = E−1B. are the two variables. The conversion (2.6) is

not appropriate for real-time practice due to the time-consuming inversion proce-

dure.

2.1.3 Descriptor System

Descriptor systems arise from various physical models and are a particular type of

generalized space-state systems with singular matrix E, i.e., det(E) = 0, in current

control theory. Singular LTI systems or Differential-Algebraic Equations are other
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names for descriptor systems (DAE) [17]. In the modeling of power systems,

chemical engineering, and mechanical systems, such methods are regulated .

If the associated matrix pencil is regular,, i.e., det(λE − A) 6= 0. a descriptor

system is solvable. According to matrix algebra, non-singular (invertible) trans-

formation matrices TL and TR exist for the regular matrix pencil, such that the

matrices E and A have the Weierstrass canonical form as follows percent.

E = TL

[
Inf

O

O N

]
TR and A = TL

[
A1 O

O In∞

]
TR, (2.7)

where N is nil-potent with nil-potency v, i.e., N v−1 6= O but N v = O, and

nf + n∞ = n. The number v is referred as the algebraic index. The details of the

descriptor systems and their derivation is narrated in [18].

This thesis aims to look into specific structured descriptor systems and their appli-

cations in engineering. The following are the block matrix form descriptor methods

that we are interested in:[
E11 E12

O O

]
︸ ︷︷ ︸

E

[
ẋ1(t)

ẋ2(t)

]
︸ ︷︷ ︸

ẋ(t)

=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

A

[
x1(t)

x2(t)

]
︸ ︷︷ ︸

x(t)

+

[
B1

B2

]
︸ ︷︷ ︸
B

u(t),

y(t) =
[
C1 C2

]
︸ ︷︷ ︸

C

[
x1(t)

x2(t)

]
+Du(t),

(2.8)

Model reduction of a class of structured index-2 descriptor systems of the form[
E11 0

O O

]
︸ ︷︷ ︸

E

[
ẋ1(t)

ẋ2(t)

]
︸ ︷︷ ︸

ẋ(t)

=

[
A11 A12

A21 0

]
︸ ︷︷ ︸

A

[
x1(t)

x2(t)

]
︸ ︷︷ ︸

x(t)

+

[
B1

B2

]
︸ ︷︷ ︸
B

u(t),

y(t) =
[
C1 C2

]
︸ ︷︷ ︸

C

[
x1(t)

x2(t)

]
+Du(t),

(2.9)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 with n1+n2 = n are state vectors andA11, A12, A21, A22

are A block matrices with the correct dimensions.E11 and A11 have full rank in

this case. The system (2.8) is termed semi-explicit descriptor system [19]. if the

block matrix E12 6= O, In some instances, the descriptor system (2.8). must make

the assumption that E12 = O.
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Based on physical properties and transitory behavior, the corresponding math-

ematical models may be developed in various methods. The descriptor systems

(2.8) are divided into two categories.

• index-1, if det(A22) 6= 0,

• index-2, if A22 = O and det(A21A1) 6= 0, and

• index-3, if A22 = O and det(A21A12) = 0.

2.1.4 Input-Output Relations

In time domain analysis, the step response and frequency response are the two

most frequent inputs. The Laplace transformation 1, the state-space system (2.5)

may be represented in the frequency domain.

The system then generates the following form for the complex variable s :

sEX(s)− x0 = AX(s) +BU(s),

Y (s) = CX(s) +DU(s).
(2.10)

The Laplace transformations of x(t),u(t) and y(t), are X(s), U(s) and Y (s)

respectively. The system (2.10) may be expressed as for x0 = 0,

X(s) = (sE − A)−1BU(s),

Y (s) = G(s)U(s).
(2.11)

where G(s) = C(sE − A)−1B + D. G(s) is the p ×m matrix in MIMO systems,

and it may be described as

G(s) =


G11(s) G12(s) · · · G1m(s)

G21(s) G22(s) · · · G2m(s)
...

... · · · ...

Gp1(s) Gp2(s) · · · Gpm(s)

 (2.12)

1The Laplace transformation of the function is used to convert data. For anyt ≥ 0 ∈ R, the
Laplace transformation of the function f(t) is defined as F (s) = L[f(t)] =

∫∞
0

f(t)e−stdt for the
number s ∈ C.
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where Gij = C(i, :)(sE − A)B(:, j) + D(i, j) with the indices i = 1, 2, · · · , p and

j = 1, 2, · · · ,m .

2.1.5 Transfer Function

The transfer function of the system (2.5). is defined by the function G(s) =

C(sE − A)−1B + D, which was introduced in (2.11) and defined in (2.12). The

input-output relationship of state-space systems is represented by the transfer

function. The error bound of the reduced order model is established using the

transfer function in control theory. If limx→∞G(s) < ∞ the transfer function

G(s) is termed proper, and rigorously proper if limx→∞G(s) = 0, otherwise G(s)

is called improper. The pole of the system is the point sp where G(sp)→∞

2.1.6 System Rank

The number of leading entries in a row lowered from R for A is the rank of a

matrix A. In R, this is also the number of non-zero rows. The number of leading

variables is rank[A] for any system with A as a coefficient matrix. A matrix’s rank

is one of its most fundamental characteristics [20]. The rank is commonly denoted

by rank(A). If the maximum conceivable rank for a matrix of the same size is

smaller than the number of rows and columns, the matrix is said to be full rank.

If a matrix does not have a full rank, it is a rank deficiency. The limited number

of rows and columns and the discrepancy in rank cause a matrix to insufficiency

rank. The rank of a linear map or operator Φ is defined as the dimension of its

image rank(Φ) = dim(image(Φ)), where dim is the dimension of a vector space,

and image is the image of a map.

The numeral of solutions to a system of linear equations is one practical use of

computing the rank of a matrix. If the position of the augmented matrix is larger

than the rank of the coefficient matrix, the system is inconsistent, according to

the Rouché–Capelli theorem. If the rankings of these two matrices, on the other

hand, are equal, the system must have at least one solution. If the rank equals the

number of variables, the solution is unique. Otherwise, there are k free parameters

in the general solution, where k is the difference between the number of variables

and the rank. The system of equations has an endless number of solutions in this

scenario (provided the equations are supernatural or complex numbers). The rank
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of a matrix can be used in control theory to assess if a linear system is controllable

or observable.

The rank of a function’s communication matrix limits the amount of communica-

tion required for two persons to compute the process in the field of communication

complexity.

2.1.7 Reduced-Order Model

Large-scale space-state systems are regulated by complicated three-dimensional

real-world engineering models with sophisticated components. The dimensions of

the differential coefficient and system matrices become pretty significant in this

circumstance. Simulation methods for these systems necessitate extremely costly

time-dealing and are plagued with an infeasible rate of convergence.

In large-scale state-space systems, the size of the matrices is the most challenging

component to store in computational tools. Despite the availability of quicker

technology and effective modeling methodologies for extensive dimensional sys-

tems, The computations are infeasible due to computational complexity and many

memory requirements.

As a result, large-scale real-world models must be transformed to Reduced-Order

Models (ROM) using iterative approaches such as ADI, RKSM, and IRKA [21],

which have numerous applications in engineering systems.

The ROM for the system (2.5) may be calculated as follows:

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂ u(t),
(2.13)

The reduced-order matrices may be produced using the appropriate transformation

of the simulation techniques. However, the system design is preserved as invariant

as feasible in the methods, and the size of the ROMs should be allocable in terms

of memory and time .

The method must be resilient, and the global error bound must be reduced to a

given margin, as by an appropriate norm. Also, (2.6) and (2.13) must have the

same transfer functions.
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Figure. 2.2. Technique of reduced-order modeling

2.2 Matrix Equations

Some linear and quadratic matrix equations, which have significant applications

in control theory, will be introduced in this section. In addition, The problem of

a linear quadratic regulator will be briefly discussed.

2.2.1 Riccati Equation

An algebraic Riccati equation is a nonlinear equation that arises in infinite-horizon

optimal control theory problems in Discrete or Continuous:

The generalized continuous-time algebraic Riccati equation (CARE) can be writ-

ten as

ATXE + ETXA− ETXBBTXE + CTC = 0. (2.14)

Here, E, A, B, C are known real coefficient matrices defined by (2.5) , while

X ∈ Rn×n is an unknown symmetric matrix. When a solution is used to regulate

the related LQR system, the closed-loop system becomes stable. Using the solution

X of the CARE (2.14) purpose of finding the feedback gain K0 as

K0 = BTXE, (2.15)

and the closed-loop system is

A1 −B1K0 = A1 −B1B
TXE, (2.16)

Which is stable for the eigenvalues have a strictly negative real part.
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Finding the eigen-decomposition of a big system can also be used to locate the

solution [22]. The Hamiltonian matrix is defined for the CARE as

Z =

[
A −BBT

−CTC −AT

]
(2.17)

Let U is comfortably partitioned into four n× n blocks as

U =

[
U11 U12

U21 U22

]
, (2.18)

Because Z is a Hamiltonian, half of its eigenvalues have a negative real component

if there are no eigenvalues on the imaginary axis. In block matrix notation, 2n×n
whose columns constitute the basis of the appropriate subspace is denoted as[

U11

U21

]
(2.19)

where U11 and U21 result from the decomposition

X =

[
U11 U12

U21 U22

][
Λ11 Λ12

0 Λ22

][
U11

T U12
T

U21
T U22

T

]
(2.20)

Hence we get X= U21U
−1
11 is a Riccati equation solution. Moreover, the eigenvalues

of (A1 −BBTX) are the eigenvalues of Z with a negative real component.

2.2.2 Lyapunov Equation

Lyapunov equations are the fundamental instruments for large scale state-space

systems in MOR approaches. Controllability and observability analysis depend

heavily on the Continuous-time Algebraic Lyapunov Equations (CALE) [23].

The generalized CALEs can be organized in the following way:

APET + EPAT +BBT = 0 (2.21)

ATQE + ETQA+ CTC = 0. (2.22)
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Here P and Q are the controllability and observability Gramians, respectively, and

can be defined as

P =

∫ ∞
0

eAtBBT eA
T tdt (2.23)

Q =

∫ ∞
0

eA
T tCTCeAtdt (2.24)

Lyapunov equations are the essential part of controllability and observability anal-

ysis.

2.2.3 Sylvester Equation

The efficient solution of specially structured Sylvester equations is a crucial in-

gredient for our H2 -model order reduction algorithm. Therefore we will discuss

a strategy that exploits the particular structure of these equations. We call a

Sylvester equation as follows.

AXF + EXH +M = 0, (2.25)

where A ∈ Rn×n, E ∈ Rn×n, and F ∈ Rr×r, H ∈ Rr×r, M ∈ Rn×r. We assume

that all requirements for the unique solvability of Equation (2.25) are met in the

works [24]. The Sylvester equation defined in (2.25) is of generalized case, which

will be used to find the solution in the next section.

2.2.4 Solution of Sylvester Equation

We design an approach that uses this structure after recognizing the need for an

efficient solution for sparse-dense Sylvester equations. The resolution of shifted

linear systems (A+ pE) and the matrix-vector product are permissible operations

on matrix A; element-wise access is prohibited. Furthermore, the eigenvectors and

eigenvalues are unknown [25]. Sorensen and Antoulas presented the main idea of

solving the desired shifted linear system in [26]. Still, it was rejected because the

authors considered the (direct) solution of large-scale linear systems and complex

arithmetics to be infeasible.

We can not handle the generalized equation (2.25) directly as it requires more

complex approaches with complicated matrix-vector operations. Since the matrix
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F is to the right of the first X in the equation (2.25), the generalized case does

not operate directly in this fashion (2.25). To solve this problem, we use their

generalized Schur decomposition (QF̂ZH ;QĤZH) to replace F and H. The QZ

algorithm [27]. By useing this in (2.25), we have

AXQF̂ZH + EQĤZH +M = 0 (2.26)

We get a comparable form to the conventional equation by multiplying the equa-

tion (2.26) from the right with Z. It gives

A XQ︸︷︷︸
X̃

F̂ + E XQ︸︷︷︸
X̃

Ĥ +MZ︸︷︷︸
M̃

= 0
(2.27)

The fact that F̂ and Ĥ are upper triangular matrices leads to the following ex-

pression forẊ’s first column:

Ax̃1F̂11 + Ex̃1Ĥ11 + M̃1 = 0

(F̂11A+ Ĥ11E)x̃1 = −M̃1.
(2.28)

All other columns may be generated using a substitution strategy similar to the

usual case, but modifying the linear combinations with A and F is necessary. As

a result, for each column j of X̃, we find

A(X̃F̂jj +

j−1∑
i=1

F̂ijX̃i) + E(X̃Ĥjj +

j−1∑
i=1

ĤijX̃i) + M̃j = 0 (2.29)

which can be rearranged to

(F̂jjA+ ĤjjE)X̃j = −M̃j −
j−1∑
i=1

(F̂ij AX̃i︸︷︷︸
X̂A

i

+Ĥij EX̃i︸︷︷︸
X̂E

i

) (2.30)

We must multiply X̃ with QH from the right to get the original system’s answer.

If we precompute the matrix-vector products, X̂A
i and X̂E

i , as soon as we compute

column i of X̃. We can more quickly evaluate the linear combination on the right-

hand side. The estimation of complexity is the same as in the usual case. Even

though we require more operations in general, even though we need more functions

in general, Algorithm 1 is dominated by the solution of the linear system.
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Algorithm 1: Solution of the Sparse-Dense Generalized Sylvester Equation.

Input : A ∈ Rn×n, E ∈ Rn×n, F ∈ Rr×r, H ∈ Rr×rand M ∈ Rn×r, defining
(2.25),

Output: X ∈ Rn×r solution of (2.25).
1 Compute the Schur decomposition (F,H) = (QF̂ZH ;QĤZH).

2 Define M̃ := MZ
3 for j := 1, . . . , r do

4 Compute M̂j = −M̃j −
∑j−1

i=1 (F̂ijX̂
A
i + ĤijX̂

E
i )

5 Solve (F̂jjA+ ĤjjE)X̃j = M̂j.
6 if j < p then

7 X̂A
j := AX̂j

8 X̂E
j := EX̂j

9 end if

10 end for

11 X = X̃QH

2.3 Stability and Related Topics

Stability is another important characteristic of the LTI system. It has many

applications in control theory. For example, in the solution of matrix equation and

model reduction of the large-scale, In this Thesis, we will exploit this characteristic

of some of the basic concepts of stability of a system are discussed elaborately

below [28].

2.3.1 Stable and Unstable System

If the output of a system is under control, it is considered stable. It is thought to

be unstable otherwise. Stability is defined in control theory as the tendency of a

system’s response to revert to zero after being perturbed. For example, if all of

the matrix pair (A,E) eigenvalues are in the open left half of the complex plane,

i.e., C, it is stable; otherwise, it is unstable. The matrix pair (A,E) is semi-stable

if a few eigenvalues of the matrix pair (A,E) reside in the open right half of the

complex plane yet are highly near the imaginary axis.

A system’s reaction to inputs or shocks determines its stability. Stability is a

system that remains in a constant state until it is impacted by an external action

and returns to that condition when the external activity is eliminated.
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In control theory, stability is defined as a measure of the tendency of a system’s

response to return to zero after being disturbed. The stability of a control system

is an indicator of the ability of any system to provide a bounded output when

a bounded input is involved in it. Stability is an important characteristic of the

LTI system. Therefore, it can be utilized to investigate the characteristics in the

solution of matrix equations and model reduction of large-scale systems.

Stability permits the system to reach the steady-state and remain in that state for

that particular input even after variation in the system’s parameters.

As it is a crucial characteristic thus, the control system’s performance shows a

high dependency on stability. A stable routine gives your life structure and makes

you feel in control. It is considered Hurwitz-stable if all of the eigenvalues of the

matrix pair (A;E) are equal. Furthermore, it moreover, it is stated to be in the

open left half of the complex plane, i.e., λ∈C−. On the other hand, the system is

unstable if one of the eigenvalues of the matrix pair (A;E) is in the open right half,

i.e., λ∈C+, in the complex plane. Similarly, the system’s stability is determined

according to the matrix pairs stability (A;E). Furthermore, the matrix pair (A;E)

is said to be semi-stable if a few eigenvalues of the matrix pair (A;E) are in the

open right half of the complex plane but exceptionally near to the imaginary axis

while the rest of the eigenvalues lie in the open left half of the complex plane [29].

The idea of detectability is the same as that of stabilized. For example, if the

matrix triple (AT ;CT ;E) is stabilized, the matrix triple (C;A;E) is said to be

detectable. In short, the following theorems show the stability and detectability

requirements [30].

Theorem 2.1 (Stability theorem [28]). For a given system (2.5) with x(0) =

x0, the systems trajectory (i.e., solution) is x(t) → 0 as t → ∞.If all of the

matrix’s eigenvalues are penciled P (λ) = (λE − A).

Theorem 2.2 (Characterization of Stability). The statements below are equiv-

alent,

• (A,B;E) is stabilizable,

• Rank
[
λE − A,B

]
= n for all Re(λ) ≥ 0,

• For all λ and x 6= O such that x∗A = λx∗E and Re(λ) ≥ 0, provided

x∗B 6= O.
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Theorem 2.3 (Characterization of Detect-ability). The statements below are

equivalent,

• (C,A;E) is detectable,

• The matrix

[
A− λE
C

]
for all columns has sufficient column rank Re(λ) ≥ 0,

• For all λ and x 6= O such that Ax = λEx and Re(λ) ≥ 0, provided Cx 6= O,

• (AT , CT ;E) is stabilizable.

2.3.2 Feedback Stabilization

When constructing a control system, this is a frequent and powerful technique.

Feedback stabilization is a notion that includes a feedback element that provides

information on the system’s current condition and subsequently makes changes

to the system’s everyday functioning, as shown in Figure 2.3. The output of any

control system is impacted by changes in ambient circumstances or any disruption.

As a result, the feedback element changes from the output regularly and returns

to the input [31]. However, the essential argument remains because feedback’s

ability to resist uncertainty makes it so helpful for control purposes.

Figure. 2.3. Feedback approach in a system
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2.3.3 Riccati Stabilization

In large-scale system simulations, Riccati-based feedback stabilization is the most

used technique for stabilization. Determination the convergence of the computa-

tionally obtained feedback matrix for the real models is given in [32]. The sta-

bilization of unstable systems around a stationary solution using a Riccati-based

feedback matrix has received a lot of interest in recent study, both in terms of con-

trol theory and numerical techniques. The challenge in using the LQR method for

the target model under consideration is calculating the feedback matrix Kf in such

a way that the stabilized system takes on some specified forms. The most diffi-

cult job in the Riccati-based feedback stabilization approach is to solve the CARE

(2.14) originating from the large-scale model. As a result, the LQR method will be

used to compute an approximation to the optimum feedback matrix of the whole

system using the reduced-order model (2.13)

The generalized CARE can be expressed in the form (2.13), based on the ROM .

ÃT X̃Ẽ + ẼT X̃Ã− ẼT X̃B̃R−1B̃T X̃Ẽ + C̃T C̃ = O, (2.31)

In terms of matrix dimensions, the generalized CARE (2.31) is feasible and may

be solved efficiently for X̃ using any standard solver, such as the MATLAB care

command.

The stabilizing feedback matrix for the ROM (2.13) may then be calculated using

the formula K̃f = R−1B̃T X̃Ẽ [33].The full order model’s ROM-based approxi-

mation to the stabilizing feedback matrix is now Kf = K̃fV
TE, where V is the

transformation matrix used to construct the ROM (2.13).

2.4 Background of Linear Algebra

Basic concepts of linear algebra are required to comprehend the theoretical notion

of system and control theory. We will go over some basic linear algebra concepts

in this part.
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2.4.1 Formation of the Matrices

The matrix’ structure has a significant influence on system adaptability and com-

putational convergence. Different sorts of matrix structures can be generated by

the governing models. The matrices of a target system can be transformed to a

user-defined form to use handy simulation techniques [34].

2.4.2 Sparse and Dense Matrix

If several of a matrix’s coefficients are zero and there is no memory allocation

for those coefficients, the matrix is sparse. Because its exploitation can result in

substantial computing savings, interest in sparsity emerges.

The matrix is dense if the majority of the entries are nonzero. For the non-

informative sections, this is a waste of memory resources.

2.4.3 Applications of Sparse and Dense Matrices

If several of a matrices coefficients are zero and there is no memory allocation for

those coefficients, the matrix is sparse. The fascination in sparsity stems from

the fact that its use can result in considerable computational savings, as well as

the fact that many major matrix issues encountered in engineering applications

are sparse. Most big matrices are sparse in practice, meaning that virtually all of

the entries are zeros. The sparsity of a matrix is defined as the number of zero

values in the matrix divided by the total number of elements in the matrix, which

is useful in combinations and application fields such as network theory [35].

Large sparse matrices are common in practical machine learning, such as in neural

networks.Counts, data encoding that maps categories to counts, and even whole

sub-fields of machine learning like natural language processing all contain counts.

On computer simulations, sparse matrices are practical for memory allocation and

calculation performance. Using specific algorithms and data structures that take

use of the sparse structure of the matrices is helpful and frequently required. If a

matrix is not sparse, it is said to be dense. In other terms, the matrix is dense if the

majority of the entries are nonzero. Many members in dense matrices have zero
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values, which is a waste of memory because such zero values carry no information.

Standard dense matrix methods are unable to manage some large matrix systems.

2.4.4 Matrix pencil

Let, A,E ∈ Cn×n the expression (A − λE) with in-determinant , where λ ∈ C is

called matrix pencil (or eigen pencil). We denote this by P (λ). The terms matrix

pair or matrix pencil are used more or less interchangeably, i.e., if any non-zero

vector x is an eigenvector of the pencil (A − λE), it is also called an eigenvector

of the pair (A;E) [36]. Note that, λ ∈ C is an eigenvalue of (A;E) for (A− λE)

is singular that is to say

det(A− λE) = 0. (2.32)

This is known as the characteristic equation of the pair (A;E), where the function

∆(λ) = λE−A is the characteristic polynomial with a degree equal to or less than

n.

2.4.5 Eigenvalue Problem

For the matrix pair (A,E), where A,E ∈ Cn×n, an eigenvalue λ ∈ C and its right

eigenvector x ∈ Cn \ {0} and the left eigenvector y ∈ Cn \ {0} together form

an eigen-triple (λ,x,y) of the matrix pair (A,E), which satisfies the generalized

Eigenvalue Problem (EVP) [37] is defined as

Ax = λEx, y∗A = λy∗E. (2.33)

The eigenvalues are the roots of the characteristic polynomial p(λ) = det(A−λE)

and the spectrum is the set of all eigenvalues λ1, λ2, · · · , λn corresponding to the

matrix pair (A,E), denoted by Λ(A,E) [38]. If E is singular, Λ(A,E) contains

eigenvalues at infinity and the finite spectrum Λf (A,E) denotes the set of all finite

eigenvalues of the matrix pair (A,E).

A matrix pair (A,E) is called singular if A−λE is singular for all λ ∈ C, otherwise

it called regular [39].
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Theorem 2.4 (Eigenvalue Criteria). Let the matrix pair (A,E) with A,E ∈
Cn×n and λ ∈ C. Then the following statements are equivalent,

• λ is an eigenvalue of (A,E) if and only if 1
λ

is an eigenvalue of (E,A),

• ∞ is an eigenvalue of (A,E) if and only if E is singular matrix,

• ∞ is an eigenvalue of (A,E) if and only if 0 is an eigenvalue of (E,A),

• If E is non-singular, the eigenvalues of (A,E) are exactly the eigenvalues of

AE−1 and E−1A.

The algebraic multiplicity α(λ) of a particular eigenvalue is the number of times

λ appears as the root of p(λ). The number of linearly independent right and left

eigenvectors x, y associated to λ is called the geometric multiplicity and denoted

by ζ(λ), which satisfies 1 ≤ ζ(λ) := dim{ker(A − λE)} ≤ α(λ). If ζ(λ) = α(λ)

then λ is called the simple eigenvalue and the corresponding matrix pair (A,E)

is called diagonalizable. The following lemmas illustrate the properties of the

diagonalizable matrix pair.

Lemma 2.5. A matrix pair (A,E) with A,E ∈ Cn×n is diagonalizable if and

only if there exists a non-singular matrix X ∈ Cn×n and λ1, λ2, · · · , λn are the

eigenvalues of the matrix pair (A,E) such that X−1AX = diag(λ1, λ2, · · · , λn),

where the columns of X are eigenvectors of the matrix pair (A,E).

Lemma 2.6. Let the matrix pair (A,E) with A,E ∈ Cn×n be diagonalizable having

distinct eigenvalues Λ(A,E) = {λ1, λ2, · · · , λn̂} with n ≤ n̂. Then for the all

i = 1, 2, · · · , n̂, the relation ζ(λi) = α(λi) holds.

A matrix pair (A,E), where A,E ∈ Cn×n with non-singular E, is called normal

matrix pair if it is diagonalizable and its left eigenvectors coincide with the right

eigenvectors. The following theorem depicts the properties of the normal matrix

pair [40].

2.4.6 Matrix Definiteness

If the scalar zTMz is strictly positive for every non-zero column vector z of n

real numbers, the symmetric matrix M ∈ Rn×n is said to be positive definite. z
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is acting on an input. when interpreting Mz as the output of an operator M .

Positive definiteness refers to the fact that the product always has a positive inner

effect with the input, as seen in many physical processes.

A Hermitian matrix M ∈ Cn×n is said to be positive definite if the scalar z ∗Mz

is strictly positive for any non-zero column vector z of n complex numbers, where

z∗ represents the conjugate transpose of z.

Positive semi-definite matrices are defined identically to negative semi-definite

matrices, except that the scalars zTMz or z∗Mz must be non-negative. The

definitions of negative definite and negative semi-definite matrices are the same.

Indefinite refers to a matrix that is neither positive nor negative semi-definite [41].

2.4.7 Hessenberg matrix

A Hessenberg matrix is a kind of square matrix that is ”almost” triangular into

linear algebra. A lower Hessenberg matrix has zero entries preceding the first

super diagonal, whereas an upper Hessenberg matrix has zero entries under the

first sub diagonal [42]. When applied to triangular matrices, many linear algebra

procedures require substantially less computing effort, and this benefit frequently

extends to Hessenberg matrices as well. If the restrictions of a linear algebra issue

prevent a general matrix from being reduced to a triangular one, the next best

thing is generally reduction to Hessenberg form. Any matrix may be decreased

to a Hessenberg form in a limited number of steps. Iterative approaches, such

as shifting QR-factorization, can then be used to reduce the Hessenberg matrix

to a triangular matrix. Regarding eigenvalue algorithms, Shifted QR-factorization

paired with deflation stages can further decrease the Hessenberg matrix to a trian-

gular matrix. Instead of immediately reducing an accessible matrix to a triangular

matrix, reducing a general matrix to a Hessenberg matrix and then lowering fur-

ther to a triangular matrix typically saves arithmetic in the QR approach for

eigenvalue issues. A tridiagonal matrix is both upper and lower Hessenberg, of

which symmetric or Hermitian Hessenberg matrices are instances.

Page 24 of 83



Chapter 2: Preliminaries

2.4.8 Projection Matrix

The projection on a vector space V is a linear operator P : V 7→ V with the

property P 2 = P . The projection matrix [43]. is thus the square matrix P . If

P 2 = P = P T for a real matrix and P 2 = P = P ∗ for a complex matrix, the

projection matrix P is termed an orthogonal projection matrix. P ∗ represents the

Hermitian transpose of P . A projection matrix P is idempotent by definition,

and its eigenvalues must be 0 or 1. The qualities of an orthogonal projector are

represented by the lemma .

Lemma 2.7. When a projector projects onto a subspace S1 along a subspace S2,

it is said to be an orthogonal projector if and only if S1, S2 ∈ Cn are orthogonal

sub-spaces such that S1 ∩ S2 = {0} and S1 + S2 = Cn, where S1 + S2 represents

the span of S1 and S2, i.e., the set of vectors s1 + s2 with s1 ∈ S1 and s2 ∈ S2,

respectively.

If P is a projector, I − P is a complementary projector that fulfills the condition

(I − P )2 = I − P .

2.4.9 Matrix Decomposition Techniques

Matrix decomposition (factorization) is a computational method used in control

theory to derive ROMs for large-scale systems. There are many ways to matrix

decomposition, and some of the most popular will be covered in this section.

2.4.10 Singular-Value Decomposition

One of the most helpful matrix decomposition methods used in control systems,

signal processing, and statistics is Singular-Value Decomposition (SVD). It’s a

powerful tool for creating ROMs. It is an extension of the polar decomposi-

tion.That extends the eigenvalue decomposition of a positive semi-definite stan-

dard matrix to any m× n matrix.

The SVD of A as the matrix factorization may be defined as A ∈ Cm×n;m,n ∈ R,

A = UΣV ∗, (2.34)
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where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and Σ ∈ Rm×n is a diagonal

matrix The singular values of A, which are non-negative and in decreasing order,

are represented by the diagonal elements σj; j = 1, 2, · · · , k of Σ i.e., σ1 ≥ σ2 ≥
· · · ≥ σk ≥ 0, where k = min(m,n).

The SVD obtained by taking only the first m singular values of A is the thin SVD.

The following theorem represents the properties of the SVD [44].

Theorem 2.8 (Properties of SVD). The following assertions are valid for the

singular-value decomposition of a matrix A:

• The square roots of the eigenvalues of the symmetric positive semi-definite

matrix ATA, are the singular-values σj of A

• The eigenvectors of the matrix AAT , are the right singular-vectors, while the

eigenvectors of the matrix ATA, are the left singular-vectors.

• Is the rank of A is r, the number of non-zero singular values, and Ais the

sum of rank-one matrices,

• IfA = A∗, then the singular-values of A are the absolute values of the eigen-

values ofA,

• For A ∈ Cn×n, det(A) =
∏n

j=1 σj,

• ‖A‖2 = σ1 and ‖A‖F =
√∑r

k=1 σ
2
k.

2.4.11 Eigenvalue Decomposition

Eigenvalue decomposition is the process of factoring a matrix into a canonical form,

and the matrix is characterized using eigenvalues and eigenvectors .Eigenvalue

decomposition is also known as spectral decomposition.

The eigenvalue decomposition of a square matrix A may be described as if the

columns V ∈ Cn×n contain linearly independent eigenvectors of a square matrix

A ∈ Cn×n,

A = V ΛV −1 (2.35)

where Λ ∈ Cn×n is a diagonal matrix whose elements are the eigenvalues of A.
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2.4.12 Schur Decomposition

The Schur decomposition permits an arbitrary matrix to be represented as uni-

tarily equivalent to an upper triangular matrix with diagonal components equal

to the original matrix’s eigenvalues [45]. Another name for it is the Schur trian-

gulation. For a square matrix A ∈ Cn×n, the Schur decomposition can be fined

as

A = UTU∗, (2.36)

Where U ∈ C,n×n is a unitary matrix, and T is an upper triangular matrix, often

known as the Schur form of A. T has the same spectrum as A since it is triangular

and similar, and the eigenvalues of A are the diagonal elements of T .

2.4.13 QR Decomposition

QR decomposition is a technique for determining an orthogonal matrix with a set

of matrices. QR decomposition is the foundation for a specific eigenvalue method

and is frequently used to solve linear least square problems.

A QR decomposition is when a matrix A ∈ Cm×n is factored into a matrix product

defined as

A = QR (2.37)

where Q is an upper triangular matrix and R is an orthogonal matrix,i.e., QQT =

I = QTQ. The factorization is unique for an invertible matrix A, and the diagonal

elements of R are positive .

The modified Gram-Schmidt process and Householder transformations are two

techniques to compute QR decomposition.

2.4.14 Cholesky Decomposition

The factorization of a Hermitian, positive-definite matrix into the product of a

lower triangular matrix and its conjugate transpose is known as Cholesky decom-

position, and it is useful in many computer applications.including Monte-Carlo

simulations [46].
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Let A ∈ Cm×n be a Hermitian, positive definite matrix. The decomposition of A

by Cholesky is defined as

A = LL∗ (2.38)

where L∗ is the conjugate transpose of a lower triangular matrix L with definite

and positive diagonal elements, Every positive-definite Hermitian matrix has its

Cholesky decomposition .

Cholesky decomposition may be used to solve the linear system of equations Ax =

b, The real symmetric and positive-definite matrix A is used here.

2.4.15 Arnoldi Decomposition

The Arnoldi decomposition is a useful iterative solution [47] for constructing the

basis for the Krylov subspace. It’s usually an effective sparse matrix method that

uses the matrix map vectors instead of directly executing the matrix components.

The Krylov-based Arnoldi method is one of the most powerful tools for computing

the eigenvalues of huge sparse matrices.

Choose an orthogonal projector V ∈ Rn×p and a A ∈ Rn×n. The m-th-dimensional

Krylov matrix based on A and V is therefore defined as

Km(A, V ) =
[
V,AV,A2V, · · · , Am−1V

]
. (2.39)

Matrix-vector products play the key role in generating the Krylov subspace (2.39)

by a recursive technique. The orthogonal columns of the matrix Vm+1 =
[
Vm, vm+1

]
the Krylov subspace has an orthogonal basis Km. Also, there exists an unreduced

upper Hesenberg matrix Ĥm ∈ R(m+1)×m such that AVm = Vm+1Ĥm . By a suitable

partition of Ĥm, we can write

AVm =
[
Vm vm+1

] [ Hm

hm+1,me
T
m

]
,

= VmHm + hm+1,mvm+1e
T
m.

(2.40)

Here, Hm can be obtained from Ĥm by removing the last row and em in the matrix

of the last p columns of the mp-th order identity matrix Im×p and after m steps

hm+1,m will be vanished. So that, after a certain number of iterations, the second
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Algorithm 2: Arnoldi decomposition (Modified Gram-Schimdt).

Input : A,C, orthogonal matrix Vm.
Output: Matrix Zm ∈ Rn×m such that Xm ≈ ZmZ

T
m.

1 Compute CT = QR (QR factorization);
2 Assume V1 = Q = v1;
3 for j ← 1 to m do
4 Compute wj = Avj;
5 for i← 1 to j do
6 Compute hi,j = vi

Twj;
7 Update wj = wj − hi,jvi;
8 end for
9 Compute hj+1,j = ‖Wj‖2;

10 Update vj+1 =
wj

hj+1,j
;

11 Compute Hj =

[
Hj−1 hj
O hj+1,j

]
;

12 Update Vj+1 =
[
Vj, vj+1

]
;

13 Partition Ĥj =

[
Hj

hj+1,je
T
j

]
;

14 end for

term of (2.40) will be converted to zero. Thus, by the orthogonality property of

vm+1, (2.40) provides the following projection

Hm = V T
mAVm. (2.41)

Hence, the termHm represents the projectionA onto the Krylov subspaceKm(A, V )

[48]. The Arnoldi decomposition is summarized in the Algorithm-2.

The eigenvalues λi of a projection matrix Hm in the Krylov subspace Km(A, V ),

are known as the Ritz values and if χ is an eigenvector of Hm associate with λ

[49]. then Vmχ is called the Ritz vector belong to λ

2.5 Existing Methods

The CARE is a crucial component in analyzing system stability and structural

phenomena in control theory. The solution of CAREs regulated by the matrices

of the relevant systems is necessary to study the transient behaviors of various

disciplines of engineering professions [50]. Simulation approaches improve over

time due to the steady growth in system size and complexity. For large-scale
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systems, projection-based iterative techniques have shown to be highly successful

since they allow for sparsity patterns and offer low-rank approximated systems

while retaining the characteristics of the original systems [51]. The Galerkin pro-

jection technique is used in several iterative approaches to obtain a viable solution

for the CAREs. This section will offer several basic and newly found techniques

for dealing with CAREs.

2.5.1 Schur Decomposition Method

Schur decomposition method based on Real Schur Factorization (RSF) of the

Hamiltonian matrix for the CARE is one of the fundamental and oldest methods

[52]. Consider the converted to the standard system (2.6) and corresponding

CARE can be defined as

ĀTX +XĀ−XB̄B̄TX + CTC = O, (2.42)

where Ā ∈ Rn×n, B̄ ∈ Rn×p, C ∈ Rm×n and R ∈ Rp×p.

Assuming (A,B) is a stabilizable pair and (C,A) is detectable pair, whereas both

of the pairs have full rank. So, the CARE (2.42) has a unique non-negative definite

solution X. For the CARE (2.42) the Hamiltonian matrix can be written as

H =

[
Ā −B̄B̄T

−CTC −ĀT

]
∈ R2n×2n. (2.43)

To find the finite solution X of (2.42), it should be ensured that H has no pure

imaginary eigenvalues [53]. Thus an orthogonal transformation matrix U ∈ R2n×2n

need to be found that puts H in ordered RSF as

S = UTHU =

[
S11 S12

O S22

]
, (2.44)

where Sij ∈ Rn×n. The eigenvalues of H with negative real parts have been stacked

in S11 and those with positive real parts are stacked in S22. Let U is comfortably

partitioned into four n× n blocks as

U =

[
U11 U12

U21 U22

]
, (2.45)
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Algorithm 3: Schur decomposition method.

Input : Ā, B̄, and C.
Output: The unique stabilizing solution X of the CARE.

1 Form the Hamiltonian matrix H =

[
Ā −B̄B̄T

−CTC −ĀT
]
;

2 Transform H to the RSF S = UTHU =

[
S11 S12

O S22

]
;

3 Partition U comformably U =

[
U11 U12

U21 U22

]
;

4 Compute X = U21U
−1
11 .

where the following relation is true

H

[
U11

U21

]
=

[
U11

U21

]
S11. (2.46)

Then, X = U21U
−1
11 is the unique stabilizing solution of the CARE (2.42). The

Schur decomposition method is summarized in the Algorithm-3.

2.5.2 Iterative Rational Krylov Algorithm

Iterative Rational Krylov Algorithm (IRKA) can be applied to construct an r-

dimensional (r � n) reduced-order model

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t),
(2.47)

such that its transfer function Ĝ(s) = Ĉ(sÊ− Â)−1B̂+ D̂ interpolates the original

one, G(s), at selected points in the complex plane along with selected directions.

The points are called interpolation points and the directions are called tangential

directions. We use the procedure illustrated in [54]. to make this problem more

precisely as follows.

Initially, we consider a set of ad-hoc interpolation points {αi}ri=1, right tangential

directions {bi}ri=1 and left tangential directions {ci}ri=1 to construct two n × r
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projection matrices

V =
[
(α1E − A)−1Bb1, · · · , (αrE − A)−1Bbr

]
,

W =
[
(α1E − A)−TCT c1, · · · , (αrE − A)−TCT cr

]
.

(2.48)

Then the interpolation points and those tangential directions need to be updated

until the reduced transfer function interpolates the original transfer function rea-

sonably. Since the continuous updates of the interpolation points gradually match

the eigenvalues of the system, the initial ad-hoc consideration will not affect the

convergence of the approach.

By the Petrov-Galerkin condition [55] we can construct the reduced-order matrices

in (2.47) as

Ê := W TEV, Â := W TAV, B̂ := W TB, Ĉ := CV, D̂a := Da. (2.49)

For i = 1, 2, . . . , r, the following Hermite bi-tangential interpolation conditions are

satisfies by the the above reduced-order model.

G(αi)bi = Ĝ(αi)bi, (2.50)

cTi G(αi)bi = cTi Ĝ(αi)bi, (2.51)

cTi G′(αi)bi = cTi Ĝ
′
(αi)bi. (2.52)

Using the reduced-order matrices defined in (2.49), the reduced-order CARE can

be attained as

ÂT X̂Ê + ÊX̂Â− ÊX̂B̂B̂T X̂Ê + ĈT Ĉ = 0. (2.53)

Thus, the reduced-order CARE (2.53) can be solved for X̂ by the MATLAB library

command care. Then, the stabilizing feedback matrix K̂ = B̂T X̂Ê corresponding

to the ROM (2.13) can be estimated, and hence for stabilizing the full model (2.5)

the approximated optimal feedback matrix Ko can be retrieved by the scheme of

reverse projection as

Ko = (B̂T X̂Ê)V TE = K̂V TE. (2.54)

The Iterative Rational Krylov Algorithm (IRKA) introduced in [56] resolves the

problem by iteratively correcting the interpolation points and the directions as

summarized in Algorithm 4.
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Algorithm 4: IRKA for generalized systems.

Input : E,A,B,C,Da.
Output: Â, B̂, Ĉ, D̂a := Da.

1 Make the initial selection of the interpolation points {αi}ri=1 and the tangential
directions {bi}ri=1 and {ci}ri=1.

2 Construct

V =
[
(α1E − A)−1Bb1, · · · , (αrE − A)−1Bbr

]
,

W =
[
(α1E

T − AT )−1CT c1, · · · , (αrET − AT )−1CT cr
]
.

3 while (not converged) do

4 Compute Ê = W TEV , Â = W TAV , B̂ = W TB and Ĉ = CV .

5 Compute Âzi = λiÊzi and y∗i Â = λiy
∗
i Ê

6 αi ← −λi, b∗i ← −y∗i B̂ and c∗i ← Ĉz∗i , for i = 1, · · · , r.
7

V =
[
(α1E − A)−1Bb1, · · · , (αrE − A)−1Bbr

]
,

W =
[
(α1E

T − AT )−1CT c1, · · · , (αrET − AT )−1CT cr
]
.

8 Construct the reduced-order matrices Ê = W TEV, Â = W TAV, B̂ = W TB

and Ĉ = CV .
9 i = i+ 1.

10 end while

11 Construct the reduced-order matrices Ê = W TEV, Â = W TAV, B̂ = W TB and

Ĉ = CV .

2.5.3 Alternative Direction Implicit Method

Peaceman et al. developed the Alternative Direction Implicit (ADI) iteration

in 1955 for solving the linear system MX = b, where the matrix M = M1 +M2 ∈
Rn×n is symmetric, positive definite, and arises in the numerical solution of partial

differential equations. If M is a centered finite difference discretization in two-

dimensional space, then M1 and M2 are finite difference dicretizations in the x

and y directions, respectively.i = 1, 2, · · · (when converges) is the iteration for

ADI (when converges) As a percentage, it’s calculated in double steps.

(M1 + µiIn)Xi− 1
2

= (µiIn −M2)Xi−1 + b,

(M2 + µiIn)Xi = (µiIn −M1)Xi− 1
2

+ b,
(2.55)

where µi ∈ R+ are the shift parameters required for the above ADI iteration to

converge at a super-linear rate .

Page 33 of 83



Chapter 2: Preliminaries

Consider the ADI model issue with a generalized CALE [57] defined as

ATXE + ETXA = −CTC, (2.56)

The original ADI scheme (2.55) for generalized continuous-time LTI system (2.5)

can then be redefined as follows:

(AT + µiE
T )Xi− 1

2
= −CTC −Xi−1(A− µiE),

(AT + µiE
T )XT

i = −CTC −XT
i− 1

2
(A− µiE),

(2.57)

The shift parameters µi ∈ C− are acceptable, and the starting iteration is X0 =

X0
T ∈ Rn×n. The single-step ADI scheme may be obtained as (2.57) after the

equations in (2.57) have been eliminated and simplified.

Xi = (AT + µiE
T )−1(AT − µ̄iET )Xi−1(A

T − µ̄iET )T (AT + µiE
T )−T

− 2Re(µi)(A
T + µiE

T )−1CTC(AT + µiE
T )−T .

(2.58)

Let ZI ∈ Rn×ip be a low-rank Cholesky-factor of XI ∈ Rn×n with the property

Xi = ZiZ
T
i [58]. The matrix Zi does not have to be a square matrix or have a

lower triangular structure. The low-rank ADI scheme may then be determined

using Cholesky factorization in (2.58).

Z0 = On×p,

ZiZ
T
i = {(AT + µiE

T )−1(AT − µ̄iET )Zi−1}{((AT + µiE
T )−1(AT − µ̄iET )Zi−1}T

− 2Re(µi){(AT + µiE
T )−1CT}{(AT + µiE

T )−1CT}T ∈ Rn×ip.

(2.59)

So, on the left side of (2.58) Zi may be derived by combining two elements on the

right as follows:

Zi =
[√
−2Re(µi)(A

T + µiE
T )−1CT (AT + µiE

T )−1(AT − µ̄iET )Zi−1

]
. (2.60)

As a result, the ADI technique may be rewritten in terms of the Cholesky factor

Zi of Xi, with no need to estimate or store Xi at each iteration because only

Zi is required [59]. The initial Cholesky-factor version of low-rank ADI, which
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computes the Cholesky-factor Zi of Xi as

Z1 =
√
−2Re(µ1)(A

T + µ1E
T )−1CT ∈ Rn×p,

Zi =
[√
−2Re(µi)(A

T + µiE
T )−1CT (AT + µiE

T )−1(AT − µ̄iET )Zi−1

]
∈ Rn×ip.

(2.61)

Consider the following statement :

γi =
√
−2Re(µi),

Fi = (AT + µiE
T )−1CT ,

Gi = (AT + µiE
T )−1(AT − µ̄iET ),

Hi,j = (AT − µ̄iET )(AT + µiE
T )−1.

(2.62)

Then, under the preceding method, the low-rank Cholesky-factor Zi may be ex-

pressed as

Zi =
[
γiFi, γi−1GiFi−1, γi−2GiGi−1Fi−2, · · · , γ1GiGi−1 · · ·G1F1

]
. (2.63)

Using the commutative identities in GiFi = Hi,jFi, GiGj = Hi,jHj,i,∀i, j, the

equation (2.63) can be re-written as

Zi =
[
γiFi, γi−1Hi−1,iFi, γi−2Hi−2,i−1Hi−1,iFi, · · · , γ1H1,2 · · ·Hi−1,iFi

]
. (2.64)

Reversing the order of the shift parameters provides the LRCF-ADI iterations as

for i ≥ 1.

V1 = (AT + µ1E
T )−1CT ,

Z1 = γ1V1 =
√
−2Re(µ1)(A

T + µ1E
T )−1CT ,

Vi = Hi−1,iVi−1 = Vi−1 − (µi + µ̄i−1)(A
T + µiE

T )−1ETVi−1,

Zi =
[
Zi−1 γiVi

]
=
[
Zi−1

√
−2Re(µi)Vi

]
.

(2.65)

The above procedure is summarized in Algorithm-(5).
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Algorithm 5: LRCF-ADI for generalized systems.

Input : E,A,C, imax (number of iterations) and shift parameters {µj}imax
j=1 .

Output: Low-rank Cholesky-factor Z such that X ≈ ZZT .
1 Consider Z0 = [ ];
2 for i← 1 to imax do
3 if i = 1 then
4 Solve V1 = (AT + µ1E

T )−1CT .
5 else
6 Compute Vi = Vi−1 − (µi + µ̄i−1)(A

T + µiE
T )−1ETVi−1.

7 end if

8 Update Zi =
[
Zi−1

√
−2Re(µi)Vi

]
.

9 end for

2.5.4 Kleinman-Newton Method

The solution of CARE equations, particularly those originating from large-scale

control systems, is a time-consuming and challenging process. The well-known

Kleinman-Newton technique is frequently used to solve the CARE. Iterative solu-

tions for the solution of linear systems happening at each Newton step are apparent

to minimize simulation time. Controlling the accuracy of linear system solutions

and increasing efficiency without sacrificing convergence rate are key achievements

of approximation in computing [60]. The Kleinman-Newton iterative technique

achieves the necessary results while maintaining the appropriate inner iteration

termination, which is time consuming .

The generalized CARE (2.14) must be transformed to the following generalized

CALE in the Klenman-Newton technique.

ÂTXE + ETXÂ = −WW T , (2.66)

where Â = A− BBTXE and W =
[
CT ETXB

]
. The generalized CALE (2.66)

can be solved by any existing Lyapunov solvers, i.e., Bartels-Stewart’s method

[61].

The simulations of the generalized CALE (2.66) are not cheap for direct solvers

due to the constantly increasing size of the control system matrices. As a result,

iterative solvers with MOR methods must be implemented . The ADI approach

is one of the most commonly used iterative strategies for solving the generalized

CALE (2.66).
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2.5.5 Rational Krylov Subspace Method

The eminent Russian naval engineer and applied mathematician A. N. Krylov

(1863–1945) [62]. developed the Krylov subspace and the methods based on it.

This approach aims to approximate a large-scale system with a lower-dimensional

system that is invariant when compared to the original system. The ROMs can

replace the original system or as a component of more significant in real-time

simulations [63]. The Rational Krylov Subspace Method (RKSM) is one of the

most efficient MOR algorithms for state-space systems recently created.

RKSM is a projection-based iterative method using the block Arnoldi or Lanczos

processes. Due to recent advancements and expansions, this iterative approach is

now competitive with ADI-based techniques. In compared to traditional methods

for solving linear matrix equations.

RKSM has superior results with the flexibility of interpolation point selection in

real-world applications [64].

For X ∈ Rn×m, V ∈ Rn×m, an acceptable solution to the CARE is derived in the

form of X ≈ V X̃V T . The columns of V , which span an orthonormal basis for the

mp-dimensional Krylov subapace described by, must first be identified.

Km(A,B) = span
(
B,AB,A2B, · · · , Am−1B

)
. (2.67)

The Arnoldi method, which is based on a modified Gram-Schimdt process de-

scribed in Algorithm-(2), can calculate the orthogonal basis Vm = [v1, v2, · · · , vm]

from the Krylov subspace Km. The primary goal now is to derive a Riccati equa-

tion with a lower order.

HT
mYmGm +GT

mYmHm −GT
mYmV

T
mBB

TVmYmGm + V T
mC

TCVm = O, (2.68)

It has a unique solution if and only if λi+λj 6= 0 for any combination of eigenvalues

λi and λj for the real matrix Hm.

If A is sparse, the most challenging component of the algorithm is finding the

orthogonal columns of Vm using modified Gram-Schmidt. The residual Rm corre-

sponding determines the Arnoldi method’s convergence for solving CARE to Ym
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which is defined by

Rm = ATVmYmV
T
mE + ETVmYmV

T
mA− ETVmYmV

T
mBB

TVmYmV
T
mE + CTC.

(2.69)

The solution Ym of (2.68) may be calculated using RKSM methods, ensuring that

the Galerkin condition V T
mRmVm = O is satisfied.

2.6 System norms

The norms of vectors and matrices are helpful in the stability analysis and appli-

cations of iterative techniques, such as halting criteria and convergence analysis.

To justify the accuracy of desired computations, we need to apply suitable system

norms. There are several system norms to define, measure, and imply the system

properties. Out of those system norms H2 and H∞ norm are well established and

widely implemented. In the model reduction of large-scale dynamical systems,

both of the norms are instrumental. The H2 and H∞ norms are used to calculate

the deviation of the original and reduced-order models. These two standards are

briefly introduced in the subsections that follow.

2.6.1 Matrix Norms

If A = [aij] ∈ Rn×n, then the matrix norm ‖.‖ : Rn×n → R is defined as induced

by a vector p-norm.

‖A‖p = sup
x6=O

‖Ax‖p
‖x‖p

. (2.70)

The matrix norms induced by vector p-norms are sometimes called generated p-

norms satisfying the properties of the vector norm. In particular, the column-sum
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norm, spectral norm, and row-sum norm [65] can be defined as

‖A‖1 = max
j

n∑
i=1

|aij|;

‖A‖2 =
√
λmax(A∗A),

‖A‖∞ = max
i

n∑
j=1

|aij|.

The Frobenius norm is an essential matrix norm that is not induced by a vector

norm. The Frobenius norm of a matrix A = [aij] ∈ Rn×n is defined as‖A‖F

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 =
√

tr(AA∗) =
√

tr(A∗A). (2.71)

2.6.2 Vector Norms

Let X ∈ Rn be a vector space. A real valued function ‖.‖ : Rn → R is said to be

norm of X if for any x,y ∈ X and α ∈ R it satisfies the following properties

• ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = O,

• ‖ x + y‖ ≤ ‖x‖+ ‖y‖,

• ‖αx‖ = |α|‖x‖.

The vector p-norm of x ∈ C is defined as

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

; 1 ≤ p ≤ ∞ (2.72)
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In particular, when p = 1, 2, · · · ,∞, the norm can be defined as

‖x‖1 =
n∑
i=1

|xi|,

‖x‖2 =

√√√√ n∑
i=1

|xi| =
√
xTx,

‖ x‖∞ = max
1≤i≤n

|xi|.

2.6.3 H2-Norm

The H2 norm is frequently referred to as the system’s energy derived from the

impulse input [66]. The H2 norm is defined as for an asymptotically stable system

‖G‖H2 =

√
1

2π

∫ ∞
−∞

tr(G(jw∗)G(jw))dw, (2.73)

where G(jw) is the frequency response of an LTI system. This relation can be

obtained from (2.83) by applying parseval’s theorem.

Rewriting relation above equation we attained

‖G‖H2 =
√

tr(BTQB) =
√

tr(CPCT ), (2.74)

where Q is the solution of the observability Lyapunov equation

ATQE + ETQA+ CTC = 0, (2.75)

and P as the solution of the controllability Lyapunov equation

APET + EPAT +BBT = 0. (2.76)

2.6.4 H∞-Norm

The highest feasible output of a stable system may be measured by |G(jw)| for a

given sinusoidal input with a certain frequency w and unit magnitude. Over the

whole range of frequencies of a single sinusoidal input, the H∞ norm effectively
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gives the highest feasible amplification of a stable system [67]. As a result, the

H∞ norm defined as follows

‖G‖H∞ = sup
w∈R

αmax(G(jw)), (2.77)

with αmax denoting the maximum singular value of G(jw). To compute the H∞

norm we can follow the procedure given below.

Pick a set of frequencies w1, w2, w3 · · · , wN , then for k = 1, 2, 3, · · · , N calculate

Nk = αmax(G(jwk)). Here αmax expresses the maximum singular value, and λmax

represents the maximum eigenvalue. Estimate the H∞ norm as

‖G‖H∞ = max
1≤k≤N

Nk. (2.78)

2.7 Error System

The disparity between the desired and actual value of a system output in the

limit as time advances to infinity is known as state error (i.e., when the control

system’s response has reached steady-state). The state error of a linear system is

a characteristic of the input-output response. A sound control system, in general,

will have a low steady-state error. A variety of circumstances can cause control

system errors. For example, during the transient phase, changes in the reference

input will produce an inevitable error and may also induce steady-state error. At

a steady state, mistakes are caused by imperfections in the system components

such as static friction, backlash (a sudden strong response or reaction), amplifier

drift, and aging or degradation. H2-norm of the error system Now, by preserving

the form (2.1.1), the error system connected with the ROM (2.13) of the subjected

system (2.5) has the condition.

Gerr = G(s)− Ĝ(s)− Cerr(sEerr − Aerr)−1Berr (2.79)

where the transfer functionsG(s) and ˆG(s) are respectively coupled to systems

(2.5) and (2.13). The designed error system (2.79) are formed with the matrices

Eerr =

[
E 0

0 Ê

]
,Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
Cerr =

[
C −Ĉ

]
, (2.80)
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The controllability and observability Lyapunov equations corresponding to the

Graminans Perr and Qerr, respectively, connecting to the error system (2.79) are

AerrPerrE
T
err + EerrPerrA

T
err +BerrB

T
err = 0,

ATerrQerrEerr + ET
errQerrAerr + CT

errCerr = 0.
(2.81)

In the previous work an efficient way to estimate the H2-norm for the error system

(2.79) is introduced as

‖G‖H2 =
√

trace(BT
errQerrBerr)

=
√
‖G(s)‖2H2

+ ‖G(s)‖2H2
+ 2trace(BTQsB̂)

(2.82)

Here, ‖G(s)‖H2 is the H2 norm of the full model which must to assess at once

in the total computing, but this is not possible by any direct solvers due to the

system structure of large-scale systems. Suppose Zq is the low-rank Gramian factor

that can be attained by rearranging the LRCF-ADI technique as provided in [68],

resulting in Q = ZqZ
T
q then ‖G(s)‖H2 can be written as

‖G(s)‖2H2
= trace(BTQB) = trace)((BTZq)(B

TZq)
T ). (2.83)

Again, ‖ ˆG(s)‖H2 is the H2-norm of the ROM (2.13), can be enumerated by the

Gramian Q̂ of the low-rank Lyapunov equation

ÂT Q̂Ê + ÊT Q̂Â+ ĈT Ĉ = 0. (2.84)

that consists of reduced-order matrices. Due to the small size of these matrices,

the following Lyapunov equation is solvable by the MATLAB library command

lyap.

Finally, trace(BTQsB̂) can be measured by the low-rank Gramian Qs of the sparse-

dense Sylvester equation

ATQsÊ + ÊTQsÂ+ CT Ĉ = 0. (2.85)

that can be efficiently solved by a modified form of the techniques presented in

Algorithm 1.
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2.8 Shift Parameters

The numerical weapon for compensating for system disturbances is shift param-

eters. They are the random constants that have been pre-conditioned and are

system-oriented. Adjustable shift selection is critical for the simulation process’s

rapid and smooth convergence. Traditional Penzl’s heuristic shifts and Wachs-

press’s optimum shifts are widely employed for large-scale descriptor systems. For

advanced and more significant descriptor systems, the adaptive ADI shift [69]

selection method is now used. The ADI min-max problem is the most crucial

instrument for producing shift parameters, as stated by.

min
µ1,...,µj∈C−

(
max
1≤l≤n

∣∣∣∣∣
J∏
i=1

µi − λl
µi + λl

∣∣∣∣∣
)

; λl ∈ Λ(A,E), (2.86)

where Λ(A,E) represents the spectrum of the matrix pencil λE − A. We’ll go

through some of the methods for locating relevant shift parameters in this section.

2.8.1 Adaptive ADI Shifts

The eigenvalues of the matrix pencil λE − A projected to the span of CT are

initially examined in the situation of adaptive shifts, where E, A and C are sparse

and of acceptable dimensions. Once all of the shifts in the set have been utilized,

the pencil must be projected throughout the current basis Vi with the current

eigenvalues serving as the next set of shifts. The procedure had to be recursive,

and at each step, the subspace to all the bases V i produced with the current

setting of shifts had to be extended [70]. It should be noted that the presence

of all predicted eigenvalues in C−. cannot be guaranteed. Consider W to be the

extended subspace’s orthogonal basis, and calculate the eigenvalues of (λW TEW−
W TAW ). By solving the min-max issue (2.86) in a similar way to the heuristic

procedure, select several optimum shifts {µi}Ji=1. The iterative process will be

repeated until the algorithm reaches the specified tolerance.
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2.9 Existing data models

Generating real-world data from the physical model one of the toughest part of the

branches of system and control theory. In general, the physical models are sparse

and of the types of descriptor systems. In this thesis, In-compressible Naviar-

Stokes model is mainly adapted for the validation of the proposed techniques.

2.9.1 Finite element method

A mathematical model is created to characterize an engineering system to study

it. Some assumptions are used for simplification while building the mathematical

model. Finally, the system’s behavior is described using the controlling mathe-

matical statement. Differential equations with provided conditions are commonly

used in mathematical expressions. The solutions to these differential equations

that explain the behavior of the given engineering system are frequently quite

challenging to come by. Solving such differential equations has become achievable

with the introduction of high-performance computers. To discover approximate

solutions to various engineering issues, many numerical solution approaches have

been developed and implemented [71]. The finite element approach, in particular,

has become a critical numerical solution technique. One of the most significant

advantages of the finite element technique is the ease with which general-purpose

computer software can be created to examine various issues. The limited element

approach, in particular, can handle any complicated shape of the problem domain

with defined constraints. The finite element approach divides the problem domain

into numerous sub-domains, each of which is referred to as a finite element. As a

result, the problem domain comprises a lot of finite element patches.

2.9.2 Navier–Stokes Model

To discuss diverse fluid dynamics issues and engineering applications. Large-scale

structural index-2 descriptive systems are produced by spatial dissociation of such

equations utilizing finite differences or finite material approaches. Because of the

computational complexity and storage needs, controller design, simulation, and

design optimization work with these large-scale systems can be difficult. Because
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the Naiver-Stokes equation is parabolic, it has more excellent analytical charac-

teristics but a less mathematical structure (e.g., they are never fully integrated).

Because they represent the mathematics of numerous phenomena of scientific and

engineering interest, the Naiver-Stokes equations are effective.Weather, ocean cur-

rents, and airflow over a wing may all be modeled using these. In their full and

simplified version, the Naiver-Stokes equations aid in the design of airplanes and

vehicles, the research of blood flow, the construction of power plants, the analysis

of pollution, and much more. They are may be used to simulate and investigate

magneto-hydrodynamics when combined with Maxwell’s equations.

(0,1)

(0,0)

(5,1)

(5,0)

Γin Γfeed1 Γfeed2 Γwall Γout Pobs,i

Figure. 2.4. Initial discretization of the von K´arm´an vortex street with coor-
dinates, boundary parts and observation points

According to the linearization principle, a generic nonlinear model can be stabilized

by a linear quadratic regulator (LQR) for linearization of itself in the region of the

linearization point. The underlying assumption is that if the regulator functions

effectively, the area where linearization is a good approximation of the nonlinear

system is never left. The authors used this idea to create a Navier-Stokes model

for the von K’arm’an vortex street in . The linearized Navier-Stokes equations

that developed there, and which we analyze in this study, are as follows

∂v

∂t
− 1

Re

∇v + (w · ∇)v + (v · ∇)w +∇p = 0,

∇ · v = 0,

(2.87)

where, v, w signify velocity vectors, p denotes pressure, and Re indicates Reynolds

number. The vector ~w represents the stationary solution of the in-compressible

nonlinear Naiver-Stokes equations. The divergence of the initial state from the

fixed solution is represented by the vector v gives the boundary and beginning

conditions and the model’s derivation. A mixed finite element approach based on

the well-known Taylor-Hood finite elements is used to find desired LTI systems
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[72]. The algebraic differential equations are the result of this

E1 · v(t) = A1v(t) + A2p(t) +B1u(t),

AT2 v(t) = 0
(2.88)

where, v(t) ∈ Rn1 is the nodal vector of discretized velocity deviations, p(t) ∈ Rn2

is the discretized pressure, u(t) ∈ Rm are the inputs, and E1, A1 ∈ Rn1×n1 A2 ∈
Rn1×n2 , B1 ∈ Rn1×m are all sparse matrices.

Additionally, the vertical velocities in the observation nodes depicted in Figure 2.4

in the domain are modeled by the output equation

y(t) = C1v(t) (2.89)

with the output y(t) ∈ Rp and the output matrix C1 ∈ Rp×n1

2.9.3 Stokes Model

Let us consider a measure approaching thorough numerical processing of the Le

ray projection, which is the key to proper implementations of optimal control for

flow problems. We consider a symmetric and linear approaches for stationary,

in-compressible flow problems, i.e., the Stokes equations

∂v(t, x)

∂t
− v∆v(t, x) +∇p(t, x) = 0

∇ ·∆v(t, x) = 0

}
On (0,∞)× Ω (2.90)

including the time t(0,∞), these spatial variable x ∈ Ω, the velocity field v(t, x) ∈
R2, the pressure p(t, x) ∈ R, and some viscosity v ∈ R+. Additionally, we become

Ω ⊂ R2 as a bounded and relevant domain with boundary = ∆Ω, some Dirichlet

boundary conditions, which define an inflow outflow problem. and suitable initial

conditions.

We implement the system of lines to the Stokes equations, as is usual in in station-

ary control problems. which involves we discretize (2.90) in space using a mixed
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finite element method. and get the following system of differential-algebraic equa-

tions

M
∂z(t)

∂t
= Az(t) +Gp(t) + f(t)

GT z(t) = 0

(2.91)

with the discretized velocity z(t) ∈ Rnv , and pressure p(t) ∈ Rnp the symmetric

positive definite mass matrix M = MT � 0 ∈ Rnv×nv and the symmetric negative

definite system matrix A = AT ≺ 0 ∈ Rnv×nv .

Since, in general, one can recognize the velocity only in members of the domain,

we compute the output equation

y(t) = Cz(t) (2.92)

The output y(t) ∈ Rna and the output operator C ∈ Rna×nb that picks the part

of the domain where we require to measure the velocity, which is a part of the

outflow boundary.

There are several special forms of the Navier-Stokes models. Among them some

are very important for the real-life engineering purposes, namely, Oseen model

and Stokes model.

2.9.4 Oseen Model

Oseen model is a particular type of data model directed by the Stokes equation

[73] written for in compressible fluid flow as

∂v

∂t
= ∆v−∇p+ f

∆v = 0

(2.93)

with initial and boundary situations

v(x,0) = v0(x), x ∈ Ω

v(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, tf )
(2.94)

where, v is the velocity vector, p is the fluid pressure, f is the external force, Ω is

a bounded open domain with boundary ∂Ω and tf is the final time interval.
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This model is related to the simple channel flow of an in-compressible fluid like

water, whose meshing structure can be represented by Figure 2.5. Figure 2.6 and

Figure 2.7 sequentially represent velocity and pressure profiles of simple channel

flow must initial velocity and pressure as zero with no-slip boundary condition.

We get a specific sort of descriptor system of the form (2.9) after extracting the

data model of the oseen equation from the physical model, which is known as

the index-II descriptor system. After completing a comprehensive investigation

utilizing the data models given above, the analytical outcomes of this thesis were

identified.

Table. 2.1. Dimension of Oseen model

Model size Differential variables Algebraic variables Inputs Outputs
2804 1904 900 4 4

Figure. 2.5. Mesh structure of a pipe flow
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Figure. 2.6. Velocity shape of a pipe flow

Figure. 2.7. Pressure shape of a pipe flow
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Chapter 3

Two Sided Iterative Algorithm

for the CARE Arising from

Index-2 Descriptor System

The main outcome of this thesis is included in this chapter. Furthermore, conver-

sion of index-2 systems to generalized systems, the sparsity-preserving structure of

Krylov subspace for index-2 systems, the Two-sided iterative algorithm for index-2

systems, and the particular configuration of the H2-norm estimation are discussed

in this chapter in detail.

3.1 Krylov subspace for index-2 descriptor sys-

tem

In general Krylov subspace is defined and structured for the generalized systems

and because of that an initial conversion from index-2 systems to generalized

systems is required. But converted generalized systems will be dense and structure

destroying. So, explicit converted form is prohibited. Thus, we will not imply the

converted generalized systems in practice, instead we will come back to the sparse

form of the index-2 systems and accordingly construct the Krylov subspace as the

combination of linear systems in sparse forms.



Chapter 3: TSIA for index-2 descriptor system

3.1.1 Structure of the incompressible Navier-Stokes model

Incompressible Navier-Stokes flow is one of the most impressive content of the

interest of the researchers. It has prominent impact in fluid mechanics, naval

engineering,oceanography, and water resource scientists. The the analysis of fluid

properties and attributes of undersea atmospheres, incompressible Navier-Stokes

flow is one of the prominent issue for the naval architects. It is an essential part

of the investigation of the sea-route analysts.

Details of the Navier-Stokes equations with the discretization can be found in [4].

Linearizing the Navier-Stokes equations in space and time variable by mixed finite

element method without altering the time variable converts them to the linear

time-invariant systems . The incompressible Navier-Stokes flow can be written as

the following differential-algebraic equations

Mv̇(t) = A1v(t) + A2p(t) +B1u(t),

0 = A3v(t) +B2u(t),

y(t) = C1v(t) + C2p(t) +Du(t),

(3.1)

where v(t) ∈ Rnv is the nodal vector of the discretized velocity with v(0) = v0,

p(t) ∈ Rnp is the discretized pressure, and u(t) ∈ Rnu is the input with the output

y(t) ∈ Rny . The symmetric positive definite matrix M ∈ Rnv×nv represents the

mass, whereas the matrices A1 ∈ Rnv×nv , A2 ∈ Rnv×np , and A3 ∈ Rnp×nv are for

system components including discretized gradient. C1 ∈ Rny×nv and C2 ∈ Rny×np

are the output matrices, which quantify the velocity pattern at the inner nodes.

D ∈ Rny×nu is the direct transform matrix [74]. Considering M is invertible, A2

and A3 have both full column rank and A3M
−1A2 is non-singular. Hence the

system (3.1) is of the index-2 differential-algebraic system having the dimension

nv+np [75]. A system equivalent to the system (3.1) can be written in the following

form
Ēẋ(t) = Āx(t) + B̄u(t),

y(t) = C̄x(t) + D̄u(t),
(3.2)

where x(t) =

[
v(t)

p(t)

]
, Ē =

[
M 0

0 0

]
, Ā =

[
A1 A2

A3 0

]
, B̄ =

[
B1 B2

]
, C̄ =

[
C1

C2

]
,

and D̄ = D with appropriate dimensions. The matrix pencil corresponding to the

system is defined as (Ā, Ē), where the matrix Ē is singular and the matrix pencil
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(Ā, Ē) has nv − np number of non-zero finite complex eigenvalues and 2np infinite

eigenvalues.

Reynolds number (Re) is one of the key features that instigate the system char-

acteristics. For Re ≥ 300, the Navier-Stokes flow turns into unstable and analysis

of the flow attributes becomes troublesome [76]. Optimal feedback stabilization of

the Navier-Stokes flow is indispensable and Riccati-based boundary feedback sta-

bilization is the best apparatus in this situation .Riccati equation corresponding

to system (3.2) is of the form

ĀTXĒ + ĒTXĀ− ĒTXB̄B̄TXĒ + C̄T C̄ = 0. (3.3)

The solution X of the Riccati equation (3.3) is symmetric positive definite and

called stabilizing for a stable closed-loop matrix Ā− (B̄B̄T )XE.The optimal feed-

back matrix Ko can be computed as Ko = B̄TXĒ and can be implemented

for optimally stabilized the target system by replacing Ā by Ās = Ā − B̄Ko

by Ās = Ā− B̄Ko [77]. The stabilized system can be written as

Ēẋ(t) = Āsx(t) + B̄u(t),

y(t) = C̄x(t) + D̄u(t).
(3.4)

With the increasing number of flow components and finer meshes in the discretiza-

tion process, dimensions of the matrices in the system (3.1) become very large.

Due to the size of the system matrices, Riccati-based boundary feedback stabiliza-

tion of the system (3.1) is infeasible as the associated Riccati equation cannot not

be solved by the usual matrix equation solvers [78]. To overcome this adversity, a

suitable Model-Order Reduction (MOR) technique needs to be applied . A com-

putationally convenient Reduced-Order Model (ROM) of the system (3.2) can be

written as
ˆ̄E ˙̂x(t) = ˆ̄Ax̂(t) + ˆ̄Bû(t),

ŷ(t) = ˆ̄Cx̂(t) + ˆ̄Dû(t),
(3.5)

where ˆ̄E = W T ĒV , ˆ̄A = W T ĀV , ˆ̄B = W T B̄, ˆ̄C = C̄V , ˆ̄D = D̄. The projector V

and W can be found from any compatible MOR technique . Using the reduced-

order matrices given in (3.5), the reduced-order form of Riccati equation (3.3) can

be attained as
ˆ̄AT X̂ ˆ̄E + ˆ̄EX̂ ˆ̄A− ˆ̄EX̂ ˆ̄B ˆ̄BT X̂ ˆ̄E + ˆ̄CT ˆ̄C = 0. (3.6)
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Now, the optimal feedback matrix for the system (3.2) can be approximated by

applying the ROM (3.5). The reduced-order Riccati equation (3.6) is to solved for

symmetric positive-definite matrix X̂ by the MATLAB library command care.

Then, the stabilizing feedback matrix K̂ = ˆ̄BT X̂ ˆ̄E corresponding to the ROM

(3.5) can be estimated, and hence the approximated optimal feedback matrix

Ko = K̂V T Ē [79]. Finally, utilizing Ko stabilization of the system (3.2) can be

done as the system (3.4).

3.1.2 Conversion of index-2 descriptor system to general-

ized system

Let us Assume M is non-symmetric positive definite and AT2 6= A3. Initially, we

consider B2 = 0. According to the Section 3 of [80], from the algebraic part

of system (3.1), p(t) can be expressed as v(t). Then by proper elimination and

substitution, system (3.1) can be converted to an equivalent form

E ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) +Du(t),
(3.7)

where the converted matrices are structured as

x : = x1, E : = ΠlMΠr, A : = ΠlA1Πr, B : = ΠlB1,

C : = (C1 − C2(A3M
−1A2)

−1A3M
−1A1)Πr,

D : = D − C2(A3M
−1A2)

−1A3M
−1B1,

(3.8)

with ΠT
l v(0) = ΠT

l v0. The projectors Πl and Πr are composed as

Πl : = I −M−1A2(A3M
−1A2)

−1A3,

Πr : = I − A2(A3M
−1A2)

−1A3M
−1.

(3.9)

For the general case, we assume B2 6= 0. According to the Section 6 of [36], we

consider the velocity v(t) can be decomposed as

v(t) = v0(t) + vg(t), (3.10)

where v0(t) satisfies A3v0(t) = 0 and vg(t) = M−1A2(A3M
−1A2)

−1B2u(t).
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Thus, the required converted system can be formed as

x : = x1, E ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) +Du(t)− C2(A3M
−1A2)

−1B2u̇(t),
(3.11)

with ΠT
l v(0) = ΠT

l (v0 − vg(0)) and the converted matrices as

x : = x1, E : = ΠlMΠr, A : = ΠlA1Πr,

B : = Πl(B1 − A1M
−1A2(A3M

−1A2)
−1B2),

C : = (C1 − C2(A3M
−1A2)

−1A3M
−1A1)Πr,

D : = D − C2(A3M
−1A2)

−1A3M
−1B1.

(3.12)

In addition, if both B2 = 0 and C2 = 0, the converted system will be as the same

as system (3.11) but converted matrices will have the form

x : = x1, E : = ΠlMΠr, A : = ΠlA1Πr,

B : = ΠlB1, C : = C1, D : = D.
(3.13)

3.1.3 Sparsity-preserving Krylov subspace bases for IRKA

For the converted generalized system derived in the previous section, desired pro-

jection matrices can be formed as

V =
[
(α1E − A)−1Bb1, · · · , (αrE − A)−1Bbr

]
,

W =
[
(α1E − A)−TCT c1, · · · , (αrE − A)−TCT cr

]
.

(3.14)

Here the matrices utilized to form the projection matrices V and W are dense and

it will exploit the feasibility of the computation. Since keeping the system structure

invariant is one of the prime concerns, the dense form of the system matrices is

contradictory to the aim of the work. As the remedy of this inconvenience we

must not construct the bases of the Krylov subspace explicitly with those dense

matrices. Instead, we will generate the bases of the Krylov subspace by solving

the following linear systems

(αiE − A)−1Bbi = Vi,

(αiE − A)−TCT ci = Wi,
(3.15)
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into the sparse forms as[
αiM − A1 −A2

−A3 0

][
Vi

Λv

]
=

[
B1

B2

]
bi,[

αiM
T − AT1 −AT3
−AT2 0

][
Wi

Λw

]
=

[
CT

1

CT
2

]
ci.

(3.16)

where Λv and Λw are the truncated parts of the basis vectors. Accordingly, the

ROM corresponding to system (3.1) or equivalent systems can be formed as

Ẽ ẋ(t) = Ãx(t) + B̃u(t),

y(t) = C̃x(t) + D̃u(t),
(3.17)

where the sparsity-preserving reduced-order matrices

Ẽ : = W TMV, Ã : = W TA1V,

B̃ : = W TB1 − (W TA1)M
−1A2(A3M

−1A2)
−1B2,

C̃ : = C1V − C2(A3M
−1A2)

−1A3M
−1(A1V ),

D̃ : = D − C2(A3M
−1A2)

−1A3M
−1B1.

(3.18)

Details of the above formulation is derived in the Section 4.4.1 and Section 4.4.1

of [54]. Sparsity-preserving Iterative Rational Krylov Algorithm (IRKA) for the

index-2 descriptor systems is summarized in Algorithm 6.

3.2 Two Sided Iterative Algorithm for index-2

descriptor systems

This section includes the main tasks of this work. We derive an improved version

of the Two Sided Iterative Algorithm (TSIA) for index-2 descriptor systems for

stabilize the incompressible Navier-Stokes flow.
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Algorithm 6: Sparsity-preserving IRKA for index-2 descriptor systems.

Input : M,A1, A2, A3, B1, B2, C1, C2, D.
Output: Optimal feedback matrix Ko.

1 Make the initial selection of the interpolation points {αi}ri=1 and the tangential
directions {bi}ri=1 and {ci}ri=1.

2 Utilizing the sparse linear systems in (3.16), construct the projection matrices as
equation (3.14).

3 while (not converged) do
4 Compute the reduced-order matrices as (3.18).

5 Compute Ãzi = λiẼzi and y∗i Ã = λiy
∗
i Ẽ for αi ← −λi, b∗i ← −y∗i B̃ and

c∗i ← C̃z∗i , for i = 1, · · · , r.
6 Repeat step 2.
7 Repeat step 4.

8 Solve the Riccati equation (3.6) for X̂.

9 Compute K̂ = B̃T X̂Ê and hence Ko = K̂V TM .

10 end while

3.2.1 Formulation of the generalized sparse-dense Sylvester

equation

Initially, we assume a makeshift ROM with the desired dimension in the form

(3.17) employing any classical iterative method accomplishing a few iterations.

But due to the use of minimum number of iterations, the attained ROM cannot

efficiently approximate the original system. So, quality of the ROM needs to be

improved by the further techniques such that it satisfies the Wilson conditions for

H2 optimality [81].

Now, we are to construct two generalized sparse-dense Sylvester equations. To do

this, we need to compute the following matrices

Bn =

[
M A2

A3 0

]−1 [
B1

B2

]
,

Cn =

[
MT AT3

AT2 0

]−1 [
CT

1

CT
2

]
.

(3.19)
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Assuming Pn = MBnB̃T and Qn = −MCnC̃ the required sparse-dense Sylvester

equations can be formed as

AXẼ + EXÃ+ Pn = 0,

AY Ẽ + EY Ã+Qn = 0.
(3.20)

3.2.2 Solving generalized sparse-dense Sylvester equation

Sylvester equations formed in (3.20) can be solved by the techniques given in the

Section 3.2 of [82]. Since the simulations of the Sylvester equations in (3.20) are

analogous, we will derive the method for the computing X only. To generate

the Krylov subspace QZ-decomposition of Ẽ and Ã is to be computed, such that

Ẽ = QSZT and Ã = QTZT , respectively . Here, S and T are the upper triangular

matrices. As the techniques provided in the dense form, we have to re-write the

basis vector in the sparse form as[
SjjA1 + TjjM

T SjjA2

SjjA3 0

]
X̃j = −P̂n

(j)
, (3.21)

and the successive columns for the solution matrix X can be generated as

P̂n
(j)

= −P̃n
(j) −

j−1∑
i=1

FijX̃i, (3.22)

where P̃n
(j)

= P
(j)
n Z and Fij =

[
SijA1 + TijM

T SijA2

SijA3 0

]
. The updated sparse

form of the desired techniques are provided in Algorithm 7.

3.2.3 Two Sided Iterative Algorithm to estimate the opti-

mal feedback matrix

At first, an iterative method with minimum iterations needs to be utilized to find

initial makeshift ROM with desired dimension. With the required matrix-vector

algebraic operations Sylvester equations defined in (3.20) need to be solved for X

and Y , respectively. Then the approximated projector matrices Ṽ and W̃ can be

computed by the QR-decomposition of the matrices X and Y , respectively. Those

Page 57 of 83



Chapter 3: TSIA for index-2 descriptor system

Algorithm 7: Solution of generalized sparse-dense Sylvester equation.

Input : M,A1, A2, A3, B1, B2, Ẽ , Ã, B̃, jmax (number of iterations).
Output: Approximate solution X of the Sylvester equation (3.20).

1 Compute the QZ-decomposition Ẽ = QSZT and Ã = QTZT .

2 Construct Bn according to equation (3.19) and compute Pn = MBnB̃T .

3 Compute P̃n = PnZ.
4 while j ≤ jmax do

5 Compute P̂n
(j)

by equation (3.22).

6 Solve the linear system (3.21) for X̃j.

7 end while

8 Compute X = X̃QT .

Algorithm 8: TSIA for the optimal feedback matrix of index-2 descriptor systems.

Input : M,A1, A2, A3, B1, B2, C1, C2, Ẽ , Ã, B̃, C̃.
Output: Ẽ , Ã, B̃, C̃ satisfying the Wilson conditions.

1 Construct the Sylvester equations defined in (3.20) and solve for X and Y ,
respectively.

2 Compute the QR decomposition X = Ṽ βv and Y = W̃βw.

3 Compute V = Ṽ and W = W̃−1(Ṽ TMT W̃ ).
4 Construct Wilson conditions satisfying reduced-order matrices defined in (3.18).

5 Form the reduced-order Riccati equation (3.23) and solve for X̃.
6 Approximate the optimal feedback matrix from equation (3.24).

crude projector matrices need to be refined as V = Ṽ and W = W̃ (Ṽ TMT W̃ )−1,

respectively. Implementing V and W the ROM (3.17) can be acquired with the

reduced-order matrices defined in (3.18) and hence the reduced-order Riccati equa-

tion can be formed as

ÃT X̃Ẽ + ẼT X̃Ã− ẼT X̃B̃B̃T X̃Ẽ + C̃T C̃ = 0, (3.23)

which can be solved for X̃ by MATLAB care command and then reduced-order

feedback matrix can be estimated as K̃ = B̃T X̃Ẽ. Finally, the optimal feedback

matrix for the system (3.1) can be approximated as

Ko = (B̃T X̃Ẽ)V T Ẽ = K̃V TM. (3.24)

The whole process is summed up in Algorithm 8.
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3.2.4 Stabilization of index-2 descriptor system

Plugging the optimal feedback matrix Ko, the unstable incompressible Navier-

Stokes flow given by (3.1) can be optimally stabilized as

Mv̇(t) = (A1 −B1K
o)v(t) + A2p(t) +B1u(t),

0 = A3v(t) +B2u(t),

y(t) = C1z(t) + C2p(t) +Du(t).

(3.25)

3.2.5 H2 - norm of the error system

Let us consider G(s) and G̃(s) are the transfer functions of the converted general-

ized system (3.11) and (3.17), respectively. Then the associated error system can

be formatted as

Gerr = G(s)− G̃(s) = Cerr(sEerr −Aerr)−1Berr, (3.26)

where we have taken the reduced-order matrices of (3.18) into account and the

system matrices are formed as

Eerr =

[
E 0

0 Ẽ

]
, Aerr =

[
A 0

0 Ã

]
, Berr =

[
B
B̃

]
, and Cerr =

[
C −C̃

]
. (3.27)

Rahman et al. [83] derived the way of estimating H2 norm of the error system

(3.26) as

‖Gerr‖H2 =
√
‖G(s)‖2H2

+ ‖G̃(s)‖2H2
+ 2trace(BTQsB̂). (3.28)

Here, H2 norm of the full model is defined as ‖G(s)‖H2 and needs to be evaluate

for once, which is inconvenient for the conventional simulation solvers. Assuming

Zq is the low-rank Gramian factor of the Gramian Q that needs to be determined.

In [9], a practically feasible technique is derived to overcome this situation. Then

‖G(s)‖H2 can be written as

‖G(s)‖2H2
= trace((BT

1 Zq)(B
T
1 Zq)

T + (BT
2 Zq)(B

T
2 Zq)

T ). (3.29)
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Again, ‖G̃(s)‖H2 is theH2 norm of the ROM that can be evaluated by the Gramian

Q̂ of the low-rank Lyapunov equation

ÃT Q̃Ẽ + ẼT Q̃Ã+ C̃T C̃ = 0, (3.30)

due to involvement of the reduced-order matrices, the Lyapunov equation (3.30)

is solvable by the MATLAB library command lyap.

Finally, trace(BTQsB̃) can be computed by the Gramian Qs of the sparse-dense

Sylvester equation

ATQsẼ + ETQsÃ+ CT C̃ = 0, (3.31)

that can be conveniently solved by reforming the techniques provided in Algo-

rithm 7.
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Numerical Result

In this chapter, justification of the adaptability and efficiency of the proposed

techniques will be discussed. Computations are done through the MATLAB sim-

ulations to observe the betterment of the proposed techniques in comparison to

the present methods. The investigation involves both the graphical and tabular

approaches. Computation time and accuracy of the approximation, and robust-

ness of the stabilization of the transient behaviors will be the prime concern of

this discussion. we have implemented the proposed techniques to the real-world

Navier-Stokes models of unstable type.

All the results have been achieved using the MATLAB 8.5.0 (R2015a) on a Win-

dows machine having Intel-Xeon Silver 4114 CPU 2.20 GHz clock speed, 2 cores

each, and 64 GB of total RAM.

4.1 Model description

In this work, we have considered some unstable Navier-Stokes models with Reynolds

number Re = 300, 400, 500, respectively. Dimension of the models varies from 1

to 5. Each of the models are non-symmetric having 2 inputs with 7 outputs. For

the target models, in the conventional first-order index-2 descriptor system the

sub-matrices B2 and C2 both are the sparse zero matrices. The full specifications

of the target models are given in Table 4.1.
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Table. 4.1. Structure of the target Navier-Stokes models

Dimension
Reynolds

Number (Re)
States

Algebraic
variables

Input Output

1
300

3142 453

2 7

400
500

2
300

8568 1123400
500

3
300

19770 2615400
500

4
300

44744 5783400
500

5
300

98054 12566400
500

4.2 Approximation of the full models with the

reduced-order models

The accuracy of the approximation of the full models with the ROMs will be

validated here. We will verify the level of approximation graphically and then

evaluate the H2-norm of the error systems for the objective models.

4.2.1 Comparison of the transfer functions

A graphical comparison between the full models and ROMs will be depicted. Since

the Navier-Stokes models of various dimensions have the same system structure

and transitional properties, in the graphical analysis we will show only the prop-

erties of the 3-dimensional model.

In Figure 4.1, the sub-figure Figure 4.1a shows the comparison of the transfer func-

tion (sigma plot) of the full model and corresponding ROM, whereas sub-figures

Figure 4.1b and Figure 4.1c evince the absolute and relative errors, respectively, of

this reduced-order approximation. From the above-mentioned figures, it can evi-

dent that the by the proposed techniques the objective full models can be properly

approximated by the ROMs with a reasonable level of accuracy.
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(a) Sigma plot

(b) Absolute error

(c) Relative error

Figure. 4.1. Comparison of full model and ROM of 3-dimensional model for
Re = 500
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4.2.2 H2-norm of the error system for the ROMs

Here,H2-norm of the error system for the ROMs of the target models will be

provided.

Table. 4.2. H2 error norm of the ROMs of the target models

Reynolds Number Dimension H2 error norm

300

1 2.11× 10−03

2 7.52× 10−04

3 7.90× 10−04

4 8.12× 10−04

5 8.49× 10−04

400

1 1.55× 10−02

2 3.25× 10−03

3 3.57× 10−03

4 3.95× 10−03

5 4.15× 10−03

500

1 2.62× 10−01

2 1.22× 10−02

3 1.74× 10−02

4 1.88× 10−02

5 9.46× 10−03

Table 4.2 conveys the desired H2 error norm of the ROMs. From the measured H2

error norm of the ROMs, it is evident that the level of the approximation process

is suitably robust and confirms the compatible scale of the accuracy.

4.3 Graphical Comparisons of Stabilization of the

Unstable Systems

In this section, stabilization of the unstable Navier-Stokes models will be graphi-

cally illustrated. For the compactness of this thesis, we will only demonstrate the

stabilization of the transient behaviors of the 3-dimensional model.

4.3.1 Stabilization of the eigenvalues

In the sub-figures of the Figure 4.2 exhibit the eigenvalues of the original (unstable)

3-dimensional systems with Reynolds number Re = 300, 400, 500, respectively. In
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contrast, the sub-figures of the Figure 4.3 exhibit the stabilized eigenvalues of that

of the systems. From those figures, it can be concluded that the eigenvalues of the

desired models are properly stabilized.

4.3.2 Stabilization of the step-responses

In the sub-figures of the Figure 4.4 and Figure 4.6 display the step-responses of

the 1st-input/1st-output and 2nd-input/7th-output relations, respectively, of the

above-mentioned original (unstable) systems. On the contrary, the sub-figures

of the Figure 4.4 and Figure 4.6 display the stabilized step-responses of the 1st-

input/1st-output and 2nd-input/7th-output relations, respectively, of that of the

systems. The scenario of the step-response stabilization duly confirms the effi-

ciency of the proposed techniques.

4.4 Comparison of the TSIA with IRKA

In this section, we are going to compare the proposed algorithm with the IRKA

approach for reduced-order modelling. Initially, we have aimed to compare with

the RKSM approach as well. But due to the non-symmetric structure of the

Navier-Stokes models, the RKSM approach is applicable for here. In this com-

parative analysis, we will investigate both of the computation time and the H2

error norm of the ROMs of selected 3-dimensional models. Table 4.2 reveals the

required information of computation time and H2 error norm.

Table. 4.3. Comparison of computation time and H2 error norm of the ROMs
of 3-dimensional models archived by TSIA and IRKA

Reynolds Number
Time H2 error norm

TSIA IRKA TSIA IRKA
300 6.81× 103 9.83× 103 7.90× 10−04 9.97× 10−04

400 6.86× 103 9.65× 103 3.57× 10−03 6.30× 10−03

500 6.94× 103 9.68× 103 1.74× 10−02 5.13× 10−02

It to be noted that stabilization of the eigenvalues and step-responses by the

TSIA and IRKA via the reduced-order modelling are very identical. Thus, we

have ignored their graphical comparisons and chosen the tabular comparisons.
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(a) Unstable eigenvalues Reynolds number 300

(b) Unstable eigenvalues Reynolds number 400

(c) Unstable eigenvalues Reynolds number 500

Figure. 4.2. Unstable eigenvalues of 3-dimensional models
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(a) Stabilized eigenvalues Reynolds number 300

(b) Stabilized eigenvalues Reynolds number 400

(c) Stabilized eigenvalues Reynolds number 500

Figure. 4.3. Stabilized eigenvalues of 3-dimensional models
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(a) Unstable step response Reynolds 300

(b) Unstable step response Reynolds 400

(c) Unstable step response Reynolds 500

Figure. 4.4. Unstable step response for 1st input and 1st output of 3-dimensional
models
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(a) Stabilized step response Reynolds 300

(b) Stabilized step response Reynolds 400

(c) Stabilized step response Reynolds 500

Figure. 4.5. Stabilized step response for 1st input and 1st output of 3-
dimensional models
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(a) Unstable step response Reynolds 300

(b) Unstable step response Reynolds 400

(c) Unstable step response Reynolds 500

Figure. 4.6. Unstable step response for 2nd input and 7th output of 3-
dimensional models
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(a) Stabilized step response Reynolds 300

(b) Stabilized step response Reynolds 400

(c) Stabilized step response Reynolds 500

Figure. 4.7. Stabilized step response for 2nd input and 7th output of 3-
dimensional models
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From the above table, it is apparent that in case of computation time TSIA al-

gorithm requires about two-thirds of that of IRKA. Also, comparison of H2 error

norm of the ROMs manifests the betterment of TSIA over IRKA.
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Conclusion

In this chapter, a summary of the thesis work will be included consisting of findings

in the current research, limitations in the computational activities, and a proposal

for future research.

5.1 Summary

The thesis is mainly compacted with the approximation of the full models with

the ROMs, finding the reduced-order feedback matrices and deriving the optimal

feedback matrices for the unstable Navier-Stokes models.

We have introduced a two-sided projection-based sparsity-preserving reduced-

order modeling approach for the stabilization of non-symmetric index-2 descriptor

systems explored from unstable Navier-Stokes models with H2 optimality. Re-

quired Reduced-order models are derived by the two-sided projection techniques

implementing the sparse-dense Sylvester equations to minimize the computation

time, ensure the requirement of less memory allocation, and enhance the stability

of the reduced-order models by satisfying the Wilson conditions. Modified struc-

tures of sparsity-preserving Krylov subspaces are introduced to solve the desired

Sylvester equations, involving a simplified form system of linear equations solvable

by the direct matrix solvers. Reduced-order feedback matrices are estimated from

reduced-order models. Finally, the classical inverse projection scheme is deployed

to attain the optimal feedback matrices of the full models and stabilize them.



Chapter 5: Conclusion and future research

From the numerical analysis, it is ascertained that the proposed techniques can be

proficiently applied to stabilize the target models through reduced-order modeling.

From the tabular and graphical comparisons of the results of numerical computa-

tions, the findings for the proposed techniques are as follows:

• RKSM is not applicable for the target models due to the non-symmetric

structure, whereas TSIA can be suitably applied.

• Sparse-dense Sylvester equations can be implemented to find the projection

matrices in the reduced-order modelling.

• Full models can be efficiently approximated by the corresponding ROMs

with minimized H2 error norm.

• Inverse projection scheme is effective in computing the optimal feedback

matrices from the reduced-order feedback matrices.

• Eigenvalues and step-responses of the target models can be properly stabi-

lized.

• The techniques involved in TSIA outplayed that of the IRKA in both the

saving computation time and H2 error norm.

Thus, the bottom line of the thesis is that the proposed techniques can be uti-

lized to stabilize the unstable Navier-Stokes models with better accuracy and less

computing time.

5.2 Limitations

In this thesis, two Sylvester equations is required to find the projector matrices at

which initial makeshift ROMs are required, which may exploit the robustness of the

computation. A inverse projection technique is used to find the optimal feedback

matrices from the reduced-order feedback matrices, this dependency on the ROMs

is sometimes infeasible due to the less robustness of the projector matrices.
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5.3 Future Research

The research of the thesis can be extended to find the ROMs of the second-order

state-space systems.

In future research, we will try to overcome the requirement of the makeshift ROMs.

Also, instead inverse projection technique a straight-forward eigen-decomposition

technique will be tried to find the optimal feedback matrices. Further investigation

is required to enhance the rapid convergence. Moreover, apply TSIA for unstable

index-3 descriptor systems will be tried.
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[82] P. Benner, M. Köhler, and J. Saak, “Sparse-dense sylvester equations in h2-

model order reduction,” 2011.

[83] M. M. Rahman, M. M. Uddin, L. S. Andallah, and M. Uddin, “Interpola-

tory projection techniques for H2 optimal structure-preserving model order

reduction of second-order systems,” Advances in Science, Technology and En-

gineering Systems Journal, vol. 5, no. 4, pp. 715–723, 2020.

Page 83 of 83


	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Notations and Symbols
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Literature Review
	1.3 Objective
	1.4 Outlines of the Thesis

	2 Preliminaries
	2.1 Basic Concepts
	2.1.1 State-Space Representations of Control Systems
	2.1.2 Standard and Generalized System
	2.1.3 Descriptor System
	2.1.4 Input-Output Relations
	2.1.5 Transfer Function
	2.1.6 System Rank
	2.1.7 Reduced-Order Model

	2.2 Matrix Equations
	2.2.1 Riccati Equation
	2.2.2 Lyapunov Equation
	2.2.3 Sylvester Equation
	2.2.4 Solution of Sylvester Equation

	2.3 Stability and Related Topics
	2.3.1 Stable and Unstable System
	2.3.2 Feedback Stabilization
	2.3.3 Riccati Stabilization

	2.4 Background of Linear Algebra
	2.4.1 Formation of the Matrices
	2.4.2 Sparse and Dense Matrix 
	2.4.3 Applications of Sparse and Dense Matrices
	2.4.4 Matrix pencil
	2.4.5 Eigenvalue Problem
	2.4.6 Matrix Definiteness
	2.4.7 Hessenberg matrix
	2.4.8 Projection Matrix
	2.4.9 Matrix Decomposition Techniques
	2.4.10 Singular-Value Decomposition
	2.4.11 Eigenvalue Decomposition
	2.4.12 Schur Decomposition
	2.4.13 QR Decomposition
	2.4.14 Cholesky Decomposition
	2.4.15 Arnoldi Decomposition

	2.5 Existing Methods
	2.5.1 Schur Decomposition Method
	2.5.2 Iterative Rational Krylov Algorithm
	2.5.3 Alternative Direction Implicit Method
	2.5.4 Kleinman-Newton Method
	2.5.5 Rational Krylov Subspace Method

	2.6 System norms
	2.6.1 Matrix Norms
	2.6.2 Vector Norms
	2.6.3 H2-Norm
	2.6.4 H-Norm

	2.7 Error System
	2.8 Shift Parameters
	2.8.1 Adaptive ADI Shifts

	2.9 Existing data models
	2.9.1 Finite element method
	2.9.2 Navier–Stokes Model
	2.9.3 Stokes Model
	2.9.4 Oseen Model


	3 TSIA for index-2 descriptor system
	3.1 Krylov subspace for index-2 descriptor system
	3.1.1 Structure of the incompressible Navier-Stokes model
	3.1.2 Conversion of index-2 descriptor system to generalized system
	3.1.3 Sparsity-preserving Krylov subspace bases for IRKA

	3.2 Two Sided Iterative Algorithm for index-2 descriptor systems
	3.2.1 Formulation of the generalized sparse-dense Sylvester equation
	3.2.2 Solving generalized sparse-dense Sylvester equation
	3.2.3 Two Sided Iterative Algorithm to estimate the optimal feedback matrix
	3.2.4 Stabilization of index-2 descriptor system
	3.2.5 H2 - norm of the error system


	4 Numerical result
	4.1 Model description
	4.2 Approximation of the full models with the reduced-order models
	4.2.1 Comparison of the transfer functions
	4.2.2 H2-norm of the error system for the ROMs

	4.3 Graphical Comparisons of Stabilization of the Unstable Systems
	4.3.1 Stabilization of the eigenvalues
	4.3.2 Stabilization of the step-responses

	4.4 Comparison of the TSIA with IRKA

	5 Conclusion and future research
	5.1 Summary
	5.2 Limitations
	5.3 Future Research

	References



