

M.Sc. Engg. (CSE) Thesis

A PRIVACY-ENHANCED APPROACH FOR PLANNING

SAFE ROUTES WITH CROWDSOURCED DATA AND

COMPUTATION

Submitted by

Fariha Tabassum Islam

1018052029

Supervised by
Dr. Tanzima Hashem

Submitted to

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

Dhaka, Bangladesh

in partial fulfillment of the requirements for the degree of Master

of Science in Computer Science and Engineering

Acknowledgement

Foremost, I am eternally grateful to Allah SWT. the most gracious and the most merciful.

I would like to express my sincerest gratitude, deep respect and admiration to my supervisor,

Professor Dr. Tanzima Hashem, who taught me how to do research. I have been extremely lucky

to have her as my supervisor. I am indebted to her for her constant supervision, clear guidance,

great encouragement and motivation and all the efforts she put on me. This thesis would never be

completed without her guidance, directions and help in every aspect. She spent numerous valuable

hours of her busy schedule addressing the problems I faced promptly and correcting the

manuscript. Her immense wisdom and experience have helped me in all the time of my research

life.

I am grateful to Dr. Rifat Shahriyar for his guidance and valuable suggestions and for reviewing the

draft. I also want to express my gratitude to the members of my thesis committee for their valuable

suggestions. I thank Dr. A.K.M. Ashikur Rahman, Dr. A.B.M. Alim Al Islam, Mr. Sukarna Barua, and

specially the external member Dr. Mohammad Nurul Huda.

I gratefully acknowledge the fellowship I received from the ICT Division, Bangladesh

(56.00.0000.028.33.108.18). I thank the Department of CSE, BUET, for providing resources

during the thesis work.

I remain ever grateful to my beloved parents and my beloved husband Tareq who always

inspired me and provided unlimited support in every success and failure.

Dhaka Fariha Tabassum Islam

June 28, 2021 1018052029

iii

Contents

Candidate’s Declaration i

Board of Examiners ii

Acknowledgement iii

List of Figures vi

List of Tables vii

Abstract viii

1 Introduction 1

2 Problem Formulation 4

 2.1 Preliminaries . 4

 2.2 Privacy model . 6

3 Related Works 7

 3.1 Safe Route Planners . 7

 3.1.1 Problem Setting . 7

 3.1.2 Privacy . 8

 3.1.3 Efficiency . 9

 3.2 Shortest Path Algorithms . 9

 3.3 Other Route Planners . 10

 3.4 Indexing . 10

 3.4.1 KD-tree . 11

 3.4.2 Quadtree . 11

 3.4.3 R-tree . 12

 3.5 Crowdsourcing . 13

4 Our Approach 15

 4.1 System Overview . 15

 4.2 Quantification of Safety . 16

iv

 4.2.1 Limitations of Existing Models . 17

 4.2.2 Our Model . 17

 4.3 Indexing User Knowledge . 19

 4.3.1 Local Indexing. 19

 4.3.2 Centralized Indexing . 22

 4.4 Query Evaluation . 22

 4.4.1 Query-relevant Area and Group . 23

 4.4.2 Direct Optimal Algorithm (Dir OA)................... 24

 4.4.3 Iterative Optimal Algorithm (It OA)................... 25

 4.4.4 Complexity Analysis . 26

 4.4.5 Simulation . 27

 4.5 Privacy Analysis . 42

 4.5.1 Privacy Guarantee . 43

 4.5.2 Privacy-Enhancing Measures . 44

5 Experiments 45

 5.1 Experiment Setup . 46

 5.1.1 Datasets . 46

 5.1.2 Parameters . 47

 5.2 Comparison of Query Evaluation Algorithms 47

 5.2.1 Choosing the default value of Xit . 48

 5.2.2 Comparison of Dir OA and It OA 48

 5.3 Comparison with the Centralized Model . 50

 5.3.1 Accuracy . 52

 5.3.2 Confidence Level . 52

 5.4 Safest Route versus Shortest Route . 56

 5.5 Effect of Different Datasets . 56

6 Conclusion 58

References 61

v

List of Figures

2.1 R3 is the SR between s and d with SS = 2, = 18 5

3.1 A KD-tree . 11

3.2 An point region quadtree . 12

3.3 An R-tree . 13

4.1 System architecture . 16

4.2 A user’s pSSs is stored in a modified R-tree 20

4.3 Necessary MBRs for updating a supercell . 21

4.4 A small road network and an SR query for showing the simulations of Dir OA

 and It OA 27

4.5 Simulation of Dir OA............................... 28

4.6 Simulation of Dir OA (continued) . 33

4.7 Simulation of It OA................................ 40

4.8 Simulation of Xit . 42

5.1 Choosing default value Xit = 50 based on the effects of Xit 48

5.2 Dir OA vs. It OA in terms of privacy (#pSSs revealed) and computation cost

 (comm. freq. and runtime) for varying , dq and dG 49

5.3 Accuracy loss in the centralized model for missing data. C50 means 50% of

 actual data is present. . 51

5.4 Confidence level for our system is higher than that of the centralized model

 (Chicago dataset). 53

5.5 Confidence level for our system is higher than that of the centralized model

 (Beijing dataset). . 54

5.6 Confidence level for our system is higher than that of the centralized model

 (Philadelphia dataset). 55

vi

List of Tables

2.1 Notations and their meanings . 5

3.1 A comparative analysis with existing safe route planners 8

5.1 Datasets . 45

5.2 Parameter settings . 47

5.3 The percentage of query samples for which top-K shortest routes include the

 respective SRs . 56

5.4 The actual distance constraint ratio of the lengths between the SR and the shortest

 route . 56

vii

Abstract

In this thesis, we introduce a novel safe route planning problem and develop an efficient

solution to ensure the travelers’ safety on roads. Though few research attempts have been

made in this regard, all of them assume that people share their sensitive travel experiences

with a centralized entity for finding the safest routes, which is not ideal in practice for privacy

reasons. As a result, existing systems cannot provide safest routes with high accuracy due to

the lack of data related to travel experiences. Furthermore, existing works formulate the safe

route planning query in ways that do not meet a traveler’s need for safe travel on roads. Our

approach finds the safest routes within a user-specified distance threshold based on the

personalized travel experience of the knowledgeable crowd without involving any centralized

computation. We develop a privacy preserving model to quantify the travel experience of a

user into personalized safety scores. Our algorithms for finding the safest route further

enhance user privacy by minimizing the exposure of personalized safety scores with others.

Specifically, we develop two efficient algorithms, direct and iterative, to evaluate the safest

route queries. The direct and the iterative algorithms offer trade-offs among the computation

overhead, communication cost and privacy. We run extensive experiments using three real

datasets to show the effectiveness and efficiency of our approach. Our iterative algorithm

finds the safest route with 50% less exposure of personalized safety scores compared to that

of direct algorithm. On the other hand, the computation overhead and the communication

overhead for the direct algorithm are lower compared to those of the iterative algorithm.

Although the direct algorithm is faster than the iterative algorithm, both of our algorithms take

less than a second to process a query. Our experiments also show that lack of data for privacy

issues can reduce the answer quality significantly. Our safe route planning system ensures the

quality of the safest routes by protecting the privacy of the travel experiences of the users.

viii

Chapter 1

Introduction

Location-based services, especially the journey planners like Google or Bing Maps, have become an

integral part of our life for moving on roads with convenience. Existing services mainly consider distance

and traffic while planning the routes for the travelers. However, the shortest or the fastest route is not

always the best choice. While travelling on roads, people face many inconveniences like theft and pick-

pocketing; women face harassment like eve-teasing and unwanted physical touch. People would like to

travel a little bit longer on a safer route that avoids those inconveniences. During the outbreak of an

infectious disease like COVID-19, a pedestrian may want to avoid a crowded road to keep herself safe from

infection. The chance for a virus to exist on the air and road surface increases with the increase of the

number of pedestrians. Road safety in such a pandemic period can be measured based on the level of road

crowdedness. To meet the traveler’s need on roads, we introduce a safe route planner that finds the safest

route (SR) between a source-destination pair within a distance constraint.

The data needed for computing the SRs may come from official crime reports and personal

travel experiences of the crowd. The latter is more valuable than the former one due to its

recency and adequacy. However, travel experiences are often sensitive and private data, and

people, especially women, do not feel comfortable sharing their detailed travel experiences

and harassment data with others [1]. These factors have inspired us to develop a privacy-

enhanced safe route planning system by not sharing the personalized travel experiences of the

crowd with a centralized entity or others.

Our approach personalizes the safety score (SS) of a user’s travel experience (both safe and unsafe) with

respect to the user’s travel pattern. If two users face the same crime on two roads, then these roads may

have different SSs considering the frequency and recency of the users’

1

2

visits on those roads. Ignoring the personal travel pattern of the users would reduce the quality of data and

the accuracy of the query answer. We develop a model to quantify a user’s travel experience for a visited

area into a personalized safety score (pSS) based on frequency and recency of the user’s visits, location,

time, and type of inconveniences faced. Users store their pSSs of their known areas on their own device or

any other private storage (e.g., cloud storage) and use them to find the SRs for others. The transformation

of a user’s travel experience into a pSS is a one-way mapping. From the revealed pSS of a user, it is not

possible to pinpoint the type of incident faced by the user. It may only allow an adversary to infer high-

level information on a user’s travel experience (e.g., a user faced a crime event without knowing the crime

type).

To further enhance user privacy, we minimize the amount of pSS information shared to evaluate the SR

query. We develop efficient query processing algorithms that find the SRs from the refined search space

and minimize the exposure of pSS information. Since the number of possible routes between a source-

destination pair is extremely high, a naive algorithm cannot find the SRs in real-time. Our search space

refinement techniques allow our query processing algorithms to find the SRs with significantly reduced

processing overhead.

Every user is not familiar with all roads, and it is also not feasible to involve a user for all queries. For a

specific SR query, we identify the users who are familiar with the query-relevant area and select them as

group members. The trustworthiness of the query answer depends on the overall knowledge of the selected

group members. To show the credibility of the answer, we present a new measure called confidence level

[2, 3] in the context of the SR query.

Existing safe route planners involve a centralized entity to find the SRs using crime data

collected from reports [4] or crowd [5] or both [6–8]. They have major limitations:

• Ignore the privacy issues of the crowd harassment and incident data and thus suffer

from data scarcity problem. Missing incident data can cause a system to return a route

that is not actually safe and put a traveler at risk.

• Do not personalize the crowd’s travel experiences by considering a user’s travel pattern,

which is essential to improve the accuracy of the query answer.

• Do not consider individual distances associated with different SSs for ranking the routes.

For example, if two routes have the same lowest SS, then the route for which a user has

to travel less distance with the lowest SS is the safest one, though its total distance might

be greater than that of the other route.

• Do not show any measure to represent the trustworthiness of the identified SRs.

3

In recent years, the increase of computational power and storage in smartphones has enabled

researchers to envision crowdsourced systems [2, 3, 9]. To the best of our knowledge, we

propose the first privacy-enhanced and personalized solution for the SR queries with

crowdsourced data and computation. Our solution overcomes the limitations of existing route

planners. Our contributions are as follows:

• We present a model to quantify a user’s travel experiences into irreversible pSSs and

modify the indexing technique, R-tree to store pSSs. Based on pSSs, we design a

privacy-enhanced crowd-enabled solution for the SR queries.

• We select the users who have the required knowledge in a query-relevant area, and we

guarantee the credibility of the query answer evaluated based on the data of the selected

group members in terms of the confidence level.

• We develop optimal algorithms, direct and iterative, to efficiently evaluate the SRs. The

direct algorithm reveals group members’ pSSs only for the query-relevant area. The

iterative one further reduces the amount of shared pSSs at the cost of multiple

communications per group member.

• We run extensive experiments with real datasets and evaluate the effectiveness and

efficiency of our approach.

This thesis is organized as follows. First, we formulate our problem in Chapter 2. Then, we discuss

previous works related to our problem in Chapter 3. In Chapter 4, we elaborate our safe route planning

system by providing an overview of our system, our personalized safety quantification model, our indexing

techniques, the algorithms and the privacy-preserving aspects of our work. In Chapter 5, we evaluate the

effectiveness and efficiency of our algorithms through extensive experiments. Finally, we conclude our

work with future directions in Chapter 6.

Chapter 2

Problem Formulation

We define basic terminologies and notations, explain the ranking of routes based on safety and

formulate our problem for finding the safest route in this chapter. We also describe our privacy

model. In Section 2.1, the necessary notations, definitions, and terminologies are given. Then in

Section 2.2, we elaborately discuss our privacy model.

2.1 Preliminaries

The road network N = (V; E) consists of a set of vertices V and a set of road segments E. The vertices

represent the start or the end or the intersection points of roads. An edge eij 2 E connects the vertex vi

to the vertex vj, where vi; vj 2 V . A route R consists of a sequence of vertices R = (vi1 ; vi2 ; : : : ; vijRj),

where eik 1ik 2 E. The total distance dist(R) of R is the summation of distances of all edges in R. Table

2.1 shows the notations used in this thesis.

The total space is divided into grid cells. The knowledge score (KS), the pSS and the SS are

computed for each grid cell area, which are defined as follows:

Definition 1. A knowledge score (KS): The KS of a user for a grid cell area represents

whether the user has visited the area of a grid cell. This KS is 0 if the user has not visited the

area in the last w days, 1 otherwise.

Definition 2. A personalized safety score (pSS): Given the safety score bound [S; S], the pSS of a grid cell

area represents a user’s travel experience in the area and is quantified between

S pSS S.

4

2.1. PRELIMINARIES 5

s

4, 9

4, 9 R3 -2, 4
5, 4

 R2
-2, 8

R1

-5,4
3, 4

5, 4 d

1, 9

 R4 3, 8

7, 4

Figure 2.1: R3 is the SR between s and d with SS = 2, = 18

 Table 2.1: Notations and their meanings

Notation Meaning

N(V; E) A road network

s; d Source and destination vertices

 Distance constraint

SR Safest route

pSS Personalized safety score

SS Safety score

KS KS

[S;S] SS or pSS range

Definition 3. A safety score (SS): Given a set of pSSs 1

;
2; : : : ; n of n users for a grid cell

area, the SS of the grid cell area is computed as

1
+

+:::+ n

.

2

 n

To make the SS measure independent of the number of users who know about an area, we take the average

of the pSSs instead of adding them together. The number of users whose pSSs are used to find the SS is

considered to determine the credibility of the safest route (Section 5.3.2).

SS based route ranking. The SS of route R is the minimum of all SSs associated with the edges of R. The

intuition behind considering the minimum SS instead of the average SS of the route is that even a small

distance of road with a bad SS may put a traveler at risk. The route that has the

2.2. PRIVACY MODEL 6

largest minimum SS among all possible routes between a source-destination pair is considered as the SR. If

two routes have the same largest minimum SS, then we consider the smallest SS for which associated

distances of two routes differ. The route that has the smallest associated distance for the considered SS, is

the SR. We formally define the SR query below:

Definition 4. A safest route (SR) query: Given a road network N(V; E), distances and SSs of road

segments, a source location s, a destination location d and a distance constraint , the safest route

query returns a route SR between s and d such that dist(SR) and SR is at least as safe as R, where

R is any other route between s and d having dist(R) .

In Fig. 2.1, assume that = 18. The distance of R1, R2, R3 and R4 are 12, 17, 17, 21 respectively.

R4 does not satisfy . The smallest SSs associated with R1, R2 and R3 are -5, -2 and -2,

respectively. Though both R2 and R3 have the largest minimum SS, R3 is the SR because R3 has

the smallest distance associated with the smallest SS -2.

2.2 Privacy model

We assume a semi-honest setting, where participants follow the system protocol but are curious to

infer sensitive data from the shared information. In the semi-honest setting, the participants do not

send false queries (e.g. unnecessary queries) or wrong pSSs and they do not collude with each other or

any centralized entity. In our system, the unsafe event types (e.g., pick-pocketing or harassment) are

considered as private data. We assume that anyone can play the role of an adversary for a user. The

adversary knows the model to compute the pSSs but does not have any background knowledge about

the time and frequency of a user’s visits to an area. A user shares the KSs and pSSs for the purpose of

the query evaluation. Our solution refrains an adversary from inferring the unsafe event type that a

user encounters from the shared information of the user. Since a pSS can reveal high-level information

like a user faced an unsafe event but not the type, our solution also aims to minimize the number of

revealed pSSs for enhancing a user’s privacy.

Chapter 3

Related Works

We address the problem of finding the safest route in a crowdsourced manner in this research.

Therefore, this problem is closely related to the research works on route planning and

crowdsourcing. This chapter provides elaborate discussions on existing research works relevant to

our thesis. In Section 3.1, we focus on the existing works on the safe route planners. We compare

those works with ours based on the problem setting (Section 3.1.1), privacy (Section 3.1.2), and

efficiency (Section 3.1.3). In Section 3.2, we discuss the shortest path algorithms, in Section 3.3,

we focus on other route planners, and in Section 3.4, we detail various indexing techniques that are

used to store data in an organized way. Finally in Section 3.5, we present the existing works on

crowdsourcing.

3.1 Safe Route Planners

Though researchers attempted to solve the safe route planning problem, the works have major

limitations. Table 3.1 shows the problem settings and other features of existing works.

3.1.1 Problem Setting

None of the existing works considers individual distances associated with different SSs for ranking the

routes after maximizing the minimum SS. Thus, the problem settings of existing works are not suitable

for safe travel on roads. Furthermore, instead of considering the total

7

3.1. SAFE ROUTE PLANNERS 8

 Table 3.1: A comparative analysis with existing safe route planners

 Problem Settings
Privacy

Efficiency

Safety
pSS Objective

Level

 [4] Multiple Provide multiple routes with a X

 trade-off between SS and total

 distance

 [5] Safe/Unsafe Minimize the travel in unsafe

 regions

 [6, 7] Multiple Minimize the weighted

 combination of SS and total

 distance

 [10] Safe/Unsafe Minimize the travel in unsafe X

 regions

 ours Multiple Maximize the minimum SS of X X X

 the route and then minimize the

 individual distances associated

 with the SSs in the increasing

 order of SSs

distance constraint, selecting appropriate weights in [6, 7] is not easy since it is not intuitive to

determine which weights would meet a user’s preferred trade-off between safety and distance for

a specific source-destination pair. Again, there is no guarantee that the returned routes in [4]

satisfy a user’s required preference for safety and distance.

3.1.2 Privacy

The crime data for safe route planners may come from crime reports [4, 8, 11] or directly from

crowds [5–8]. Crime reports are not regularly updated, and incomplete because many crimes go

unreported. Though the crowd knows more and recent information compared to the crime reports,

they would not share their incident and harassment data with a centralized service provider, if the

privacy of their data is not ensured. Thus, one major limitation of existing works is that they suffer

from data scarcity issues for privacy reasons and do not have enough data to provide accurate

answers.

3.2. SHORTEST PATH ALGORITHMS 9

3.1.3 Efficiency

None of the existing safe route planning systems except [4, 10] developed efficient algorithms

for large road networks. However, as already mentioned, the problem settings of [4, 10]

cannot meet a traveler’s requirement on roads.

3.2 Shortest Path Algorithms

Researchers have proposed many algorithms to solve the shortest path problem or its variant

[12–18] over the last few decades. Research on this topic is still ongoing [19–21]. The

shortest path problems can be divided into three types:

1. All-pair shortest path problem

2. Single-source shortest path problem

3. Single-pair shortest path problem

The all-pair shortest path problem can be solved using Floyd–Warshall algorithm [22], Johnson

Algorithm [23]. The single-source shortest path problem can be solved by Dijkstra’s algorithm

[12], Bellman-Ford algorithm [24]. The single-pair shortest path can be solved using the

algorithms for the single-source shortest path problem. We can also use A* searching [25] for the

single-source shortest path problem. Many improvements have been proposed in these core

algorithms for finding the shortest path [26, 27]. Many variants [28–33] of the shortest path

problem exist, such as the shortest path with constraints [28,29] and multi-objective shortest path

problem [30]. Meta-heuristic algorithms have been also applied to solve these problems [34, 35].

Some researchers have maintained privacy while computing the shortest path for navigation [17,

36]. The authors of [18] used the Bellman-Ford algorithm to plan energy-efficient driving routes.

For this research, we have used the single-pair shortest path algorithm to refine the search space in Section

4.4.2. Furthermore, in Section 5, we have defined the distance constraint for an SR query based on the

shortest road network distance to simplify its implication to users.

3.3. OTHER ROUTE PLANNERS 10

3.3 Other Route Planners

Variants of orienteering and scheduling problems [37, 38] have been studied for route planning.

An orienteering problem finds a route between a source-destination pair that maximizes the total

score within a budget constraint, where a score is obtained when the route goes through a vertex.

The scheduling problems focus on incorporating temporal constraints in route planning (e.g.,

visiting locations to perform services in a timely manner). The problem settings of orienteering

and scheduling problems are different from an SR query. Furthermore, their solutions do not

consider search space refinement [39] and are not scalable for large road networks. For example,

the exact solution of an orienteering problem can be found for a graph of up to 500 vertices [38],

whereas the real road networks that we use in our experiments have on average 24 thousand

vertices.

An SR query can be transformed to a multilevel optimization problem for solving it with a

commercial optimization tool like IBM CPLEX: (L1) identify all routes that have the largest

minimum SS within , (L2) consider the smallest SS for which the associated length of the

identified routes differs and find the routes that have the smallest length associated with the

considered SS, (L3) repeat L2 until the remaining route(s) have the same length associated

with every SS. However, IBM CPLEX is not effective in terms of time and memory when a

problem requires finding multiple answers like multiple routes with the same largest

minimum SS in the SR query [40].

3.4 Indexing

We need to store KSs and pSSs in our system. These are spatial data. Indexing techniques for storing

spatial data have been studied extensively in the literature [41–43]. Spatial data can be two dimensional or

multidimensional. Spatial data includes points, lines, polygons etc. The number of samples can be huge.

We need to store, access and manipulate them efficiently for a variety of applications. Specially, we need to

perform range queries in spatial data frequently to access data near or within a particular area. Using a list

or map can be costly storage-wise and is not efficient for range queries. Therefore, many indexing

techniques for spatial data exploit the tree-based structure to store and access data efficiently. Following we

describe some of them.

3.4. INDEXING 11

3.4.1 KD-tree

The KD-tree [44] is essentially a multidimensional binary search tree that stores multidimensional

points. A new point is inserted in a leaf node. Each internal node of the tree divides a particular plane.

For a k dimensional tree, a level l divides the (l mod k)-th plane (if (l mod k) is 0, it divides the kth

plane). Figure 3.1 shows an example of a KD-tree. A KD-tree has some limitations because its shape

depends on the order of input, and in the worst case, it may contain n levels [42]. Variations of the KD-

tree has been proposed to overcome these limitations, such as an adaptive KD-tree [45], KDB-tree

[46]. However, these variations also have their limitations; e.g. the adaptive KD-tree is not dynamic.

(a) A KD-tree (b) Plane division by a KD-tree

Figure 3.1: A KD-tree

3.4.2 Quadtree

A quadtree recursively decomposes a space into four quadrants. There are different types of

quadtree, such as point quadtree, point region quadtree, region quadtree and polygonal map

quadtree [42]. The point quadtree is similar to KD-tree, except the fact that each internal node has

exactly four children. The point region quadtree is slightly different from the point quadtree. It

divides the space into four equal quadrants and does not use the data points for plane

decomposition. An example of this type of tree is given in Figure 3.2. A region quadtree generally

stores an approximation of a polygon. Finally, a polygon map quadtree is used to store a set of

polygons [47].

3.4. INDEXING 12

(a) A quadtree

(b) Decomposition of space by the quadtree

Figure 3.2: An point region quadtree

3.4.3 R-tree

An R-tree is a spatial indexing structure proposed in 1984 by Antonin Guttman [48]. Figure 3.3 shows

an example of an R-tree that stores rectangles. An R-tree is a multiway tree whose leaf node contains

the spatial objects, such as point, line, polygon etc. The internal nodes group nearby objects together

using a minimum bounding rectangle (MBR). There is a limit on how many entries each node can

have. If that limit is exceeded when inserting data, then that node is split. The R-tree allows the overlap

among MBRs of the internals nodes of the same level (e.g. MBR F and G in Figure 3.3) and

frequently, the internal nodes cover some empty spaces. Fewer overlaps and empty spaces increase the

R-tree’s efficiency.

Multiple variations of the R-tree have been proposed including R+-tree [49], R*-tree [50] and Hilbert

R-tree [51]. The R+-tree is an efficient version of the R-tree that avoids the overlap

3.5. CROWDSOURCING 13

(a) Two-dimensional rectangles (A, B, C, D, E) in (b) An R-tree constructed from those rectangles a

plane

Figure 3.3: An R-tree

among MBRs. However, this comes at the price of more nodes and space [42, 43]. Also, the construction

and modification are more complex. R+-tree is more efficient for the point query search, however, range

queries can be costly [43]. The R*-tree differs from the R-tree in terms of the insertions. When a node

becomes overfull while inserting data, instead of splitting that node immediately, some entries are tried to

be reinserted in that tree first. The Hilbert R-tree organizes the data based on Hilbert value, which is

efficient but might not always be realistic [42].

For storing the pSSs in a user’s personal device, we chose to modify an R-tree because we need to perform

the range queries for retrieving pSSs by utilizing the low computational power and low space capacity of

mobile devices. Its variants are either too complex or require more space. Instead of using the R-tree

directly, we modified it because we wanted to reduce space consumption by keeping the same pSS

information of nearby grid cells together.

3.5 Crowdsourcing

Crowdsourcing has been widely used for route finding and recommendation [52–62], trip

planning [63–65], POI search [2, 3, 66], POI summarization [67], package delivery [68, 69],

sensing [70–72], traffic monitoring [73, 74], vehicular network [75], indoor mapping and

localization [76–78] and many other tasks [79].

3.5. CROWDSOURCING 14

The works in [3,9] eliminate the location-based central service provider to protect users’ sensitive location

data and divided the query evaluation task among the selected group. While evaluating a query, those

works preserve privacy through data imprecision. In [2], the authors considered protecting the privacy of a

user’s POI knowledge by minimizing the shared POI information with others. Compared to the static POI

data, crime data are more complex and challenging to hide from others. We develop a quantification model

to hide the type of incident data using pSS and search space refinement techniques to minimize the shared

pSS information.

Chapter 4

Our Approach

In this chapter, we explain in detail our approach for finding the safest route in a privacy-

preserving manner. We provide our system overview in Section 4.1. Then, in Section 4.2, we

establish a practical safety quantification model. Next, we discuss our indexing techniques for

pSSs and KSs in Section 4.3. After that, in Section 4.4, we propose two efficient algorithms to

compute the safest route and analyze their complexity. Finally, in Section 4.5, we explain in detail

the privacy-preserving aspects of our work.

4.1 System Overview

We develop a privacy-enhanced, personalized, and trustworthy solution for safe route planning with

crowdsourced data and computation. Fig. 4.1 shows the architecture of our system. Users in our system

store their pSSs of their visited areas on their own devices. In the case of storage constraints, users can also

consider alternative private storage (cloud storage). The users share their KSs with the centralized server

(CS). A KS only provides the information that a user has visited the area. A user can also hide the

information of her visit on a sensitive area by not setting corresponding KS to 1 as the user has the control to

decide on what the user shares with the CS.

In our system, we set a default ratio between the lengths of the safest and the shortest routes for the distance

constraint. To initiate an SR query, the query requestor (QR) provides the source and the destination

locations for the query. The QR can also specify the distance constraint as an absolute value or as a ratio

between the lengths of the safest and the shortest routes. If the QR specifies the distance constraint, our

system replaces the default distance constraint with the

15

4.2. QUANTIFICATION OF SAFETY 16

 u 1

 knowledge

-1

5

score

A sample user

Users' knowledge
about different area

u
1

u1 u
3 u2 u

3

u u

 2 u

4

 3
4

u
 4

u u 1

3. select

group

Centralized Server

 u u
2

 u
3

 5. u
4

 of

1)

 id 4 request
 scores

personalized . send 6. of
2

requestor

.

4 return relevent

area

safety

query

 personalized

(

,

)

 scores -
 4.1. return group u u 1

1

 (
2

3

 u

2. forward query

Query

Requestor

7. compute

answer

u4

1. initiate

a query

Figure 4.1: System architecture

QR provided distance constraint. It is not realistic to use the computation power of all users for all

queries and asking them whether they know any query-relevant area. The availability of KSs allows

CS to address this issue. When the CS receives a query from a QR, it selects a group based on the

query parameters and the stored KSs of the users. Then the CS returns the IDs of the group members

to the QR and sends the identity of the QR to the group members. The QR evaluates the query in

cooperation with the group members without involving the CS. The QR retrieves pSSs of the query-

relevant area from the group members, computes the SSs of each road using the pSSs of the group

members, and finds the SR. Note that the QR communicates with the group members in parallel to

retrieve the pSSs. Therefore, the communication with multiple group members does not increase the

query processing time significantly. However, in case of the resource constraint in the QR’s device, a

subset of the group members’ pSSs can be retrieved.

4.2 Quantification of Safety

We utilize the personal travel experiences of the crowd to evaluate the SR queries. For this reason, we

need to model the diverse travel experiences of each user into a personalized quantifiable metric of

safety. In this section, we discuss our model for quantification of safety. We discuss the existing

models that have quantified safety and their limitations in Section 4.2.1, and explain our safety

quantification model in Section 4.2.2.

4.2. QUANTIFICATION OF SAFETY 17

4.2.1 Limitations of Existing Models

Existing researches on safe routes have modeled safety in a variety of ways. The authors of [6, 7] quantify

the safety of a road network edge by simply considering the number of crimes in the particular distance

buffer area of that edge. They do not consider the recency and the severity of crimes, the ratio between the

unsafe visits and the safe visits by an individual user, and the fact that the impact of a crime decays with

distance. Thus, the quantified SSs of roads in [6, 7] fail to model the real-scenarios. The work in [4]

improves the way to find the SS of a road network edge by considering the crime events of the last few

days and weighting the crime events based on their distances from the road. None of the above works [4, 6,

7] allow the SS to vary in different parts of a road network edge, which is possible for long roads.

In [8], the authors provide a more elaborate model of safety. However, the model suffers from the

following limitations: (i) stores historical data and cannot address the constraint of the limited storage

of the personal devices, (ii) does not differentiate the weights of crime events based on the frequency

of the user’s visits, (iii) only considers that the effect of a crime spreads to its nearby places only if no

crime occurs there, (iv) does not provide a smooth decay of the effect of older events, rather takes the

moving average of the events of the last few days, and discards the impact of previous events, (v) does

not consider the severity of a crime event, and (vi) does not allow the SS to vary in different parts of

an edge.

4.2.2 Our Model

We develop a model that overcomes the limitations of existing models. In our model, the

travel experiences of users are converted into pSSs and then aggregated to infer the SSs of

different areas. When a user visits an area, an event occurs. If the user faces a crime, then that

event is unsafe; otherwise, it is safe.

Model Properties

Our model has the following properties:

1. The safety of an area depends on the frequency of the users’ visits.

4.2. QUANTIFICATION OF SAFETY 18

• If a user visits an area twice and faces unsafe events both times, then intuitively,

that area is riskier than another area where a user visits 10 times and faces unsafe

events two times among those visits.

• If a user visits an area 5 times safely, then that area is safer than another area that

is visited once safely.

2. The safety of an area also depends on the safety of its nearby places. Therefore, if a user

visits an area, the impact of the event is distributed to nearby areas.

3. The safety of an area depends on the recency of the safe and unsafe events. If a user faces an unsafe

event in an area, then the crime’s effect decays with time. If a user visits an area safely, then the

perception of safety due to the safe visit also decays with time.

4. The safety of an area depends on the type and severity of an unsafe event.

5. The pSSs are not allowed to grow indefinitely. They are bounded within a maximum

and a minimum value so that while aggregating, a single user’s experience does not

dominate the SS of an area.

6. A road network edge may go through multiple grid cells and thus, can have different SSs.

An important advantage of our model is that it is storage efficient as it does not store the

historical visit data of a user.

Model Computation

Let the impact of a safe event in the occurring area be + and the impact of an unsafe one be ,

where +; 2 N. + is the same for all safe events. varies with the type and the intensity of the

crime or inconvenience faced.

The impact (= +=) of an event reduces exponentially in nearby areas and becomes 0 as per the

following equation: 0
 = e dist

2h2
2
 , where the constant h controls the spread of the event. dist

represents the distance of the event location from the grid cell. This equation is inspired by the

Gaussian kernel density estimation [4].

The pSS, of an area is bounded within [S; S] and 2 N and 0 < + < S and S < < 0. If an event

occurs in a place for the first time then = . If another event occurs there, then = + . If an event

occurs nearby, whose effect is 0 here, then = + 0. If > S then = S and if < S then = S. Initially, is

set to unknown.

 4.3. INDEXING USER KNOWLEDGE 19

A pSS decays every d days. If the decay rate is rd and 6= 0, then after every d days,

becomes = rd, where 0 < rd < 1 and rd 2 R. Therefore, the decay of older events’ impacts is

smooth. For example, if rd = 0:8 and d = 2, then = 3 becomes 2.4 after two days, and becomes

1.92 after two more days.

The values of parameters +, , S+, S , d and rd are the same for all users and decided centrally.

For each grid cell, our model stores only two values: the pSS and when that pSS was last

updated. Therefore, this model is storage-efficient and suitable for smart devices. The SS of

an area is computed from the shared pSSs of the users (Definition 3).

4.3 Indexing User Knowledge

In this section, we elaborate on how we store the pSSs and KSs in our system. A user stores the

pSS for every visited grid cell in the local storage and accesses it for evaluating the SR query. The

CS stores the KSs of users for every grid cell and uses them for computing query-relevant groups.

For efficient retrieval of pSSs and KSs, we use indexing techniques: local and centralized,

respectively. In Section 4.3.1, we explain the local indexing mechanism in detail, and in Section

4.3.2, we elaborate the global one.

4.3.1 Local Indexing.

Storing pSSs for the whole grid in a matrix would be storage-inefficient because a user

normally knows about some parts of the grid area. We adopt a popular indexing technique R-

tree [48] for storing pSSs of the visited grid cells. The underlying idea of an R-tree is to group

nearby spatial objects into minimum bounding rectangles (MBRs) in a hierarchical manner

until an MBR covers the total space.

For every visited grid cell, a user stores its pSS and the time of its last update. The last update time is

required for decaying the pSS. To reduce the storage overhead, we combine nearby adjacent grid cells with

an MBR, where the grid cells have the same SS and the difference between the last update times of two

cells does not exceed a small threshold. We call this MBR as a supercell and each leaf node of an R-tree

represents a supercell. Each leaf node stores the information of the coordinates of MBR, the pSS, and the

average of the last update time of the considered grid cells of a supercell. The supercells are recursively

combined into MBRs.

4.3. INDEXING USER KNOWLEDGE 20

The intermediary nodes of the R-tree store the coordinates of the MBR. The MBR of the root node

of the R-tree represents the total grid area. Fig. 4.2 shows an example of a grid and the

corresponding R-tree. For the sake of clarity, we do not show the last update times in the figure.

Note that while creating supercells, there will be a small data loss due to the merging of grid cells

for which the differences of their last update times are within a small threshold (e.g. in our

experiment we set it to 12 hours).

yaxis

4

3

2

 2 2 -1

 3 -1

3

-2

 -2

 (0, 0)

 (4, 4)

(0, 0) (2, 0)

(2, 4) (4, 4)

1

 3 3 3

0 1 2

3

4 x axis

(0,3)

(2,4)

2

A

(1,0)

(2,3)

3

B

(2,0)

(4,1)

3

C

(2,1)

(4,2)

-2

D

(2,2)

(3,4)

-1

E

(a) The pSSs for a 4x4 grid is stored in a modified R-tree

yaxis

4

3

2

 2 2 -1

 3 -1

 -2 -2 -2

 (0, 0)

 (4, 4)

(1, 0) (0, 2)

(4, 2) (3, 4)

1

 3 3 3

0 1 2

3

4 x axis

(1,0)

(4,1)

3

C'

(1,1)

(4,2)

-2

D'

(0,3)

(2,4)

2

A

(2,2)

(3,4)

-1

E

(1,2)

(2,3)

3

F

(b) A pSS changed from 3 to -2 and is updated in the R-tree

Figure 4.2: A user’s pSSs is stored in a modified R-tree

4.3. INDEXING USER KNOWLEDGE 21

Supercell Generation

A traditional R-tree only considers the location of the spatial objects for grouping, whereas we consider

the location, the pSS and the last update time of the grid cells for grouping them into supercells. To

compute the non-overlapping supercells, we scan the grid cells twice: row-wise and column-wise. For

row-wise (or column-wise) scan, we maximize the number of grid cells included in a supercell row-

wise (column-wise) and then take the supercells of the scan (row-wise or column-wise) that generates

the minimum number of supercells. After computing the supercells for the leaf nodes, we insert them

into a traditional R-tree.

Supercell Update

Path cells

Affected cells

Temporary MBR

Overlaps with

temporary MBR

Working MBR

Figure 4.3: Necessary MBRs for updating a supercell

To update the pSSs of grid cells for a visited route R, the following steps are performed:

• Compute route cells and affected cells. Compute the grid cells that overlap with R as route cells.

The affected cells include the route cells and their nearby cells (Fig. 4.3).

• Compute temporary MBR. Find the temporary MBR that includes the affected cells and one

extra grid cell besides each affected cell in the boundary (Fig. 4.3). The reason behind

considering an extra grid cell is to identify the adjacent existing supercells later.

• Find overlapping supercells. Find existing supercells that intersect with the temporary

MBR. There are four overlapping supercells in Fig. 4.3.

4.4. QUERY EVALUATION 22

• Compute working MBR. Find the working MBR that includes these overlapping

supercells and the affected cells (Fig. 4.3).

• Generate new supercells. By considering the location, the pSS and the last update time of

the grid cells included in the working MBR, generate the new supercells.

• Update R-tree. Remove those overlapping supercells from R-tree and add the new

supercells. Update the intermediary nodes based on the change in the leaf nodes. Fig.

4.2b shows the updated R-tree for the change of the pSS from 3 to -2 in a grid cell

(shown with a red circle).

4.3.2 Centralized Indexing

The KSs are accessed when the query-relevant groups are computed and updated when a user visits a

new area. Since the probability is high that at least a user knows a grid cell area, we store each grid

cell’s data in a hash-map with the grid cell’s coordinates as a key. For each grid cell, we store the user

ids whose KS is 1 for the corresponding grid cell area.

4.4 Query Evaluation

We elaborate our approach for finding the answer of an SR query in this section. We provide two optimal

algorithms for computing an SR query. In Section 4.4.1, we calculate the query-relevant area and the query-

relevant group for an SR query. This part is the same for both optimal algorithms. Then, in Sections 4.4.2

and 4.4.3, we describe two optimal algorithms, direct and iterative, respectively. After that, in Section 4.4.4,

we analyze the complexity of our proposed algorithms. Next, in Section 4.4.5, we show the simulation of

our algorithms for an SR query. Finally, in Section 4.5, we explain in detail the privacy-preserving aspects

of our work.

In our system, a query requestor (QR) retrieves the required pSSs from relevant users and

evaluates the SR query. We develop direct and iterative algorithms to find the SR for a source-

destination pair s and d within a distance constraint .

The number of possible routes between a source-destination pair can be huge. Retrieving the pSSs for all

grid cells that intersect the edges of all possible routes and then identifying the SR would be prohibitively

expensive. Our algorithms refine the search space and avoid exploring all

4.4. QUERY EVALUATION 23

routes for finding the SR. We present two optimal algorithms:

1. Direct Optimal Algorithm (Dir OA)

2. Iterative Optimal Algorithm (It OA)

Dir OA aims at reducing the processing time, whereas It OA increases privacy in terms of the

number of retrieved pSSs. Though a pSS does not reveal a user’s travel experience (Chapter

4.5) with certainty, the user’s privacy is further enhanced by minimizing the number of shared

pSSs with the QR.

4.4.1 Query-relevant Area and Group

Query-relevant area Aq.

Our algorithms exploit the elliptical and Euclidean distance properties to find the query-relevant area Aq.

We refine the search area using an ellipse where the foci are at s and d of a query and the length of the

major axis equals . According to the elliptical property, the summation of the Euclidean distances of a

location outside the ellipse from two foci is greater than the length of the major axis. On the other hand, the

road network distance between two locations is greater than or equal to their Euclidean distance. Thus, the

road network distance between two foci, i.e., s and d through a location outside the ellipse, is greater than .

The refined search area Aq includes the grid cells that intersect with the ellipse. Aq enables us to select a

query-relevant group and mitigate unnecessary processing and communication overheads and data

exposure.

Query-relevant group Gq.

A query-relevant group Gq consists of the users whose KS is 1 for at least one grid cell in Aq.

After receiving a query, the centralized server sends Gq and the list Mq of knowledgeable

group members for every grid cell in Aq to the QR.

4.4. QUERY EVALUATION 24

Algorithm 1: Dir OA(s, d, , N)

compute query area(s; d; ; N);

retrieve query group(Aq);

compute SS(Gq; Mq; Aq);

4 N
00

 refine query area(s; d; ; N
0
; SSq);

5 SR compute safest route(s; d; ; N
00

; SSq);

6 return SR;

4.4.2 Direct Optimal Algorithm (Dir OA)

One may argue that we can simply apply an efficient shortest route algorithm (e.g., Dijkstra) for finding the

SR by considering the SS instead of the distance as the optimizing criteria. However, it is not possible

because the SR identified in this way in most of the cases may exceed .

Algorithm 1 shows the pseudocode for Dir OA. The algorithm starts by computing the query-

relevant area Aq and the query-relevant road network N
0
 that is included in Aq. The edges in N

that go through grid cells in Aq but those cells have not been visited by any user are not included

in N
0
. Then the algorithm retrieves the query-relevant group Gq and the list Mq of grid cell wise

knowledgeable group members from the centralized server. In the next step, the algorithm

retrieves the pSSs from the group members and aggregates them to compute the SSs of the grid

cell in Aq using Function compute SS.

After having the SSs for the grid cells in Aq, the algorithm further refines N
0
 to N

00
 by pruning

the edges that are guaranteed to be not part of the SR (Line 4). The idea of this pruning comes

from [4], where edges with the lowest SSs are incrementally removed until s and d become

disconnected. To reduce the processing time, we exploit binary search for finding N
00

.

Specifically, we compute the mid-value mid of the lowest and the highest SSs, i.e., S and S, and

remove all edges that have SS lower than or equal to mid. Note that an edge can have more than

one associated SSs as it can go through multiple grid cells. For binary search, we consider the

minimum of these SSs as the SS of the edge. After removing the edges, we find the shortest route

between s and d and check if the length of the shortest route satisfies . If no such route exists, then

the removed edges are again returned to N
00

, and the process is repeated by setting the highest SS

to mid. On the other hand, if such a route exists, the process is repeated by setting the lowest SS to

mid + 1. The repetition of the process ends when the lowest SS exceeds the highest one.

Finally, Dir OA searches for the SR within in N
00

 using Function compute safest route.

3 SSq

2 Gq; Mq

1 N
0
; Aq

4.4. QUERY EVALUATION 25

Dir OA starts the search from s and continuously expands the search through the edges in the

road network graph N
00

 until the SR is identified. The algorithm keeps track of all routes

instead of the safest one from s to other vertices in N
00

 as it may happen that expanding the

SR from s exceeds before reaching d.

The compute safest route function uses a priority queue Qp to perform the search. Each entry of

Qp includes a route starting from s, the road network distance of the route, the distance associated

with each SS in the route. The entries in Qp are ordered based on the safety rank, i.e., the top entry

includes the SR among all entries in Qp. Initially, routes are formed by considering each outgoing

edge of s. Then the routes are enqueued to Qp. Next, a route is dequeued from Qp and expanded

by adding the outgoing edges of the last vertex of the dequeued route. The formed routes are again

enqueued to Qp. The search continues until the last vertex of the dequeued route is d. While

expanding the search we prune a route if it meets any of the following two conditions:

1. If the summation of the road network distance of the route and the Euclidean distance

between the last vertex of the route and d exceeds .

2. If the road network distance of the route exceeds the current shortest route distance of

the last vertex from s.

Both pruning criteria guarantee that the pruned route is not required to expand for finding the SR. The

current shortest route in the second pruning condition for a vertex v from s is determined based on the

distances of the dequeued routes whose last vertex is v. Since the dequeued routes to v are safer than a

route that has not been enqueued yet, the route can be safely pruned if its length is greater than the

current shortest route’s distance.

4.4.3 Iterative Optimal Algorithm (It OA)

It OA enhances user privacy by reducing the shared pSSs with the QR as it does not need to

know the SSs of all grid cells in Aq. Algorithm 2 shows the pseudocode for It OA. Similar to

Dir OA, It OA computes N
0
, Aq, Gq, and Mq. It OA does not apply the binary search to

further refine N
0
 as it avoids retrieving the pSSs of all grid cells in Aq. It OA gradually

retrieves the pSSs from the group members only for the grid cells that are required for finding

SR. Another advantage of It OA is that it only involves those group members who know

about the required grid cells.

 4.4. QUERY EVALUATION 26

 Algorithm 2: It OA(s, d, , N)

1

N

0
; Aq compute

query

area(s; d; ; N);

2
 Gq; Mq retrieve query group(Aq);

3 SSq ;, Qp ;, v s;
4 while v! = d do

5 Aq
0

find required cells(v; N
0
; Aq; SSq);

6 SSq SSq
S

 compute

SS(Gq; Mq; Aq

0
);

7 SR get safest route(v; N
0
; SSq; Qp);

8 v get last vertex(SR);

9 return SR;

It OA iteratively searches for the SR in N
0
 using a priority queue Qp like Dir OA. It OA expands the search

by exploring the outgoing edges of v. Initially v is s and later v represents the last vertex of the dequeued

route from Qp. In each iteration, It OA identifies the grid cells in Aq
0
 through which those outgoing edges

pass (Function find required cells), and computes their SSs by retrieving pSSs from the group members

(Function compute SS). Next, using Function

get safest route, It OA forms the new routes by adding the outgoing edges of v at the end of the last

dequeued route, and enqueues them into Qp if they are not pruned using the conditions stated for Dir

OA. At the end, the function dequeues a route from Qp for using that in the next iteration. The search

for SR ends if the last vertex of the dequeued route is d.

It OA increases the communication frequency of the QR with the relevant group members. To mitigate this

issue, we introduce a parameter Xit that trades off between the communication frequency and the number

of pSSs shared with the QR. For Xit = 1, the algorithm considers only the outgoing edges of the last vertex

v of the dequeued route for identifying the grid cells for which the pSSs will be retrieved. For Xit > 1, the

algorithm repeats the process Xit times by considering the outgoing edges of the last vertices of the newly

formed routes. While doing

so, the algorithm applies the first and second pruning techniques where applicable. We decide the

value of Xit in experiments. Please note that the algorithm do not collect the pSSs of nearby edges

if the SSs of the immediate edges to be expanded are known.

4.4.4 Complexity Analysis

The compute safest route function in Dir OA algorithm can be drawn as a tree where the source node is the

root and the destination node is in the last level. If the average branching factor is b

4.4. QUERY EVALUATION 27

and the average depth of a route from s to d is p, then Qp will be dequeued 1 + b + b
2
 + : : : + b

p
 times. The

maximum possible number of elements at a time in Qp is b
p
. Therefore, if a binary min heap is used for Qp,

the runtime complexity will be O(b
p
 log(b

p
)) which is O(b

p
 p log b). Since we utilize two pruning

techniques due to which the average depth reduces, the complexity becomes O(b
p=r pr log b), where r = r1 +

r2. The factors r1 and r2 represent the effects of our first and second pruning techniques, respectively. In It

OA, edges are expanded till Xit depth along with the two pruning techniques in Function find required cells,

whose runtime complexity is O(b
X

it

=r0
). Here, r

0
 = r1

0
 + r2

0
; r1

0
 and r2

0
 represent the effect of our first and

second pruning techniques in Function find required cell, respectively. Thus, the runtime complexity of It

OA is

p +
X

it p

O(br r
0
 r log b).

4.4.5 Simulation

In this section, we go through the simulations of Dir OA and It OA algorithms in detail. We

exhibit the simulations for the same small road network and the same SR query. The road

network and the SR query both are shown in Figure 4.4. The source and destination locations

of the SR query for the simulation are highlighted in blue. We assume the distance constraint

is 36 km.

Figure 4.4: A small road network and an SR query for showing the simulations of Dir OA and

It OA

4.4. QUERY EVALUATION 28

(a)

(b)

(c)

Figure 4.5: Simulation of Dir OA

4.4. QUERY EVALUATION 29

(d)

(e)

(f)

Figure 4.5: Simulation of Dir OA

4.4. QUERY EVALUATION 30

(g)

(h)

(i)

Figure 4.5: Simulation of Dir OA

4.4. QUERY EVALUATION 31

(j)

Figure 4.5: Simulation of Dir OA

Simulation of Dir OA

The simulation of computing the given SR query using Dir OA is demonstrated in detail

through Figures 4.5 and 4.6. In Figure 4.5, we simulate up to Line 4 of Algorithm 1, and we

simulate the details of Line 5 in Figure 4.6.

In Dir OA, the query is forwarded to the central server. The query-relevant area for the given SR query

is computed by the central server. For this, the road network is refined via an ellipse where the foci are

at s and d, and the length of the major axis is 36 km, which is the distance constraint. The ellipse is

shown in Figure 4.5a. We only include the edges of the road networks that fall inside the ellipse into

the query-relevant area. This query-relevant area is shown in Figure 4.5b. The grid cells of the query-

relevant area must include at least one edge of the query-relevant area. Those grid cells are shown in

Figure 4.5c.

After computing the query-relevant area, the query-relevant group for this query is computed. The query-

relevant group includes the users who know about the grid cells included in the query-relevant area. The ids

of the group members who know about each grid cells included inside the query-relevant area are shown in

Figure 4.5c. For example, users u1 and u2 know about the grid cell that includes the source. From the

Figure, it is evident that the query-relevant group for this query includes four users: u1, u2, u3, and u4. The

central server sends the ids of the group members to the QR. After that, all computations take place inside

the QR’s device.

To compute the SSs of the grid cells of the query-relevant area, the QR collects the pSSs of the query-

relevant group members. The computed SSs are illustrated in Figure 4.5d. To keep

4.4. QUERY EVALUATION 32

the simulation simple, we set S = 2. We represent five levels of safety with five colors in the figure. The

number against each edge represents the length of the edge. The SSs of the edges are symbolized through

colors in Figure 4.5e. Please note that one edge can have multiple SSs.

After computing the SSs, the search space is refined through the binary search. For this binary search-based

refinement, Dir OA first computes the shortest path from s and d shown in Figure 4.5f through a dotted red

line. The length of the shortest path is 28 km. This information means that there is at least one route from

source to destination within the distance constraint. After that, it computes the mid-value mid of the safety

score range: [low; high]. Here, low = 2,

high = +2, therefore, mid = = 0. It removes all edges with SSs less than zero. The

resulting graph is shown in Figure 4.5g. It again computes the shortest path from s to d in the

resultant graph and finds the shortest path of length 28 km as shown in Figure 4.5h. The shortest

path length is less than the distance constraint, 36 km. From this, we can infer that the source and destinations are still connected. Therefore, it updates low to 0 and recompute mid =

0+2
2 = +1. It removes all the edges with SSs less than +1 and gets the resulting graph shown in Figure 4.5i. When Dir OA computes the shortest path from s to d in this graph, it cannot find any path. It means that the source and destination are disconnected now.

Therefore, it brings back the edges that were removed last time and updates high to +1. Figure 4.5j exhibits the updated graph after bringing back the removed edges. We recompute mid = = 0 which is equal

to low. Therefore, Dir OA terminates the binary search-based pruning. It has removed all the

unnecessary edges at this point. The safest route is computed in this refined graph as shown in

Figure 4.5j.

After refining the search space, Dir OA computes the SR. To compute the SR from the refined

graph, it starts exploring from the source and continues until it reaches the destination. A safety-

based priority queue is utilized for storing the formed routes; thus, the safest route is always on the

top of the queue. In Figure 4.6, the details of this exploration are shown. In the figure, the

enqueued routes are shown based on the order of the safety inside the queue for clarity. The

currently dequeued route is made bold and the last vertex of that route is circled red. The edges’

colors represent the safety levels shown in Figure 4.5j. Following, we describe the detailed steps

sequentially:

1. First, Dir OA enqueues the source s in a queue. When it removes the top of the queue, s

is dequeued. The algorithm forms new routes with the outgoing edges of s (s ! a) and

enqueues them (Figure 4.6a).

2. Then, this algorithm dequeues the route s ! a from the top of the queue. It keeps track of the fact that

a can be reached from s with a safe route of length 5 km. It forms new routes

0+1

2

2+2

2

4.4. QUERY EVALUATION 33

s ! a ! b and s ! a ! c. The route s ! a ! b is enqueued. The route s ! a ! c of length 11 km

is pruned as 11 + euclidean dist(c; d) = 11 + 26 = 37 km, which is greater than the

distance constraint, 36 km (pruning condition 1) (Figure 4.6b).

3. After that, Dir OA dequeues s ! a ! b from the top of the queue and keep track of this

route’s length, 6 km. It forms two new routes s ! a ! b ! e and s ! a ! b ! f, and enqueues

them (Figure 4.6c).

4. Next, the top of the queue is removed, and the route s ! a ! b ! f is dequeued. The length,

8 km, is tracked in vertex f. The algorithm forms two routes s ! a ! b ! f ! g and s ! a ! b !

f ! h and enqueues them (Figure 4.6d).

5. Again, the top of the queue is removed, and the route s ! a ! b ! f ! g is dequeued. The length of

this dequeued route, 13 km, is tracked in vertex g. Dir OA forms two new

(a)

(b)

Figure 4.6: Simulation of Dir OA (continued)

4.4. QUERY EVALUATION 34

(c)

(d)

(e)

Figure 4.6: Simulation of Dir OA (continued)

4.4. QUERY EVALUATION 35

(f)

(g)

(h)

Figure 4.6: Simulation of Dir OA (continued)

4.4. QUERY EVALUATION 36

(i)

(j)

(k)

Figure 4.6: Simulation of Dir OA (continued)

4.4. QUERY EVALUATION 37

(l)

(m)

(n)

Figure 4.6: Simulation of Dir OA (continued)

4.4. QUERY EVALUATION 38

(o)

(p)

Figure 4.6: Simulation of Dir OA (continued)

routes s ! a ! b ! f ! g ! e and s ! a ! b ! f ! g ! i and enqueues them (Figure 4.6e).

6. Dir OA removes the top of the queue over again, and the route s ! a ! b ! f ! h is dequeued. It

tracks the dequeued route’s length, 13 km, in vertex h. It forms two new

routes s ! a ! b ! f ! h ! j and s ! a ! b ! f ! h ! l, and enqueues them (Figure 4.6f).

7. Furthermore, the route s ! a ! b ! f ! h ! j is dequeued from the top of the route, and its

length, 14 km, is tracked in vertex j. The algorithm forms two new routes

s ! a ! b ! f ! h ! j ! i and s ! a ! b ! f ! h ! j ! m and enqueues them (Figure 4.6g).

8. Following that, Dir

OA dequeues s ! a ! b ! f ! g ! i from the top

of the queue, and tracks its length, 19 km, in vertex i. It forms two new routes

4.4. QUERY EVALUATION 39

s ! a ! b ! f ! g ! i ! g and s ! a ! b ! f ! g ! i ! j. The first newly formed route is pruned

because it is not a simple route. Moreover, the second one is also pruned; because the

length of the second newly formed route is 24 km, however, we observe that vertex j

has been reached by a safer route of a smaller length, 14 km, already (pruning condition

2) (Figure 4.6h).

9. Dir OA removes the top of the queue again and retrieves s ! a ! b ! f ! h ! j ! i. It prunes

the newly formed route s ! a ! b ! f ! h ! j ! i ! g of length 25 km because vertex g has

been reached by a safer route of length 13 km (Figure 4.6i).

10. The algorithm dequeues s ! a ! b ! f ! g ! e from the top of the queue and tracks the

length 15 km in the vertex e. However, it cannot enqueue the newly

formed route s ! a ! b ! f ! g ! e ! c of length 17 km because 17 + euclidean dist(c; d) =

17 + 26 = 43 km exceeds the distance constraint 36 km (Figure 4.6j).

11. The algorithm dequeues s ! a ! b ! e from the top of the queue and updates the tracked

length to 11 km in vertex e. It cannot enqueue the newly formed route

s ! a ! b ! e ! c due to pruning condition 1, and s ! a ! b ! e ! g due to pruning condition 2

(Figure 4.6k).

12. After that, s ! a ! b ! f ! h ! l is dequeued from the top of the queue and the tracked

length is set to 19 km in vertex l. Dir OA cannot enqueue the newly formed route s ! a !

b ! f ! h ! l ! p because of pruning condition 1 (Figure 4.6l).

13. After that, it dequeues s ! a ! b ! f ! h ! j ! m from the top of the queue and sets the

tracked length to 21 km in vertex m. It enqueues the two newly formed route

s ! a ! b ! f ! h ! j ! m ! d and s ! a ! b ! f ! h ! j ! m ! k (Figure 4.6m).

14. Next, it dequeues s ! a ! b ! f ! h ! j ! m ! k from the top of the queue and sets the tracked

length to 24 km in vertex k. Dir OA enqueues the newly formed route s ! a ! b ! f ! h ! j

! m ! k ! n to the queue (Figure 4.6n).

15. Then, it dequeues s ! a ! b ! f ! h ! j ! m ! k ! n from the top of the queue and sets the

tracked length to 31 km in vertex n. It enqueues the newly formed route s ! a ! b ! f ! h !

j ! m ! k ! n ! d to the queue (Figure 4.6o).

16. Finally, this algorithm dequeues the route s ! a ! b ! f ! h ! j ! m ! k ! n ! d of 34 km from

the top of the queue and observes that we have reached destination d within distance

constraint. Therefore, this is the SR of the given query (Figure 4.6p). The computation

ends here.

4.4. QUERY EVALUATION 40

Simulation of It OA

(a)

(b)

(c)

Figure 4.7: Simulation of It OA

4.4. QUERY EVALUATION 41

(d)

Figure 4.7: Simulation of It OA

We shall simulate It OA to compute the SR of the given query here. Line 1 and 2 of Algorithm 2

are demonstrated through Figures 4.5a- 4.5c. Like the direct algorithm, the iterative algorithm

refines the search space elliptically (same as Figures 4.5a and 4.5b) and computes the query-

relevant group u1; u2; u3; u4 (same as Figure 4.5c). However, it does not retrieve pSSs at once.

That is also why it does not perform the binary search-based pruning; it avoids collecting

unneeded pSSs. In Line 3 to 8, It OA expands the search from the source using a priority queue

based on safety. We illustrate this expansion of search in detail through Figure 4.7 and describe it

in the following.

1. The search starts from the source s. First, s is enqueued in the queue. After that, the top of the queue

is removed, and s is dequeued. To expand from s, we need to know the SSs

of the edge s ! a. Therefore, It OA retrieves the pSSs of the grid cells that intersects

with the edge s ! a and computes the SSs (Figure 4.7a). After that, the route s ! a (Figure

4.7b) is enqueued.

2. The top of the queue is removed again, and thus, the route s ! a is dequeued. To expand

from vertex a, It OA needs to know the SSs of the edges a ! b and a ! c. However,

according to pruning condition 1, s ! a ! c will be pruned; thus, it only retrieves the pSSs

of grid cells of the edge a ! b and computes the SSs (Figure 4.7c). Next, this algorithm

enqueues the route s ! a ! b (Figure 4.7d).

3. This process continues until the destination is reached.

Computing the safest route in this way can incur high communication costs. Therefore, while

expanding a vertex v, It OA computes the SSs of the outgoing edges of v up to depth Xit to

4.5. PRIVACY ANALYSIS 42

Figure 4.8: Simulation of Xit

reduce the communication cost. This has been illustrated in Figure 4.8, where the edges whose

SSs are computed are colored in shades of blue and pink. When expanding from vertex v, if

Xit = 1, then the algorithm computes the SSs of the edge s ! a. If Xit = 2, then it computes the

SSs of the edges s ! a, a ! b, a ! c. If Xit = 3, then it computes the SSs of the edges s ! a, a ! b, a

! c, b ! d, b ! e, and c ! e. And if Xit = 4, then it computes the SSs of the edges s ! a, a ! b, a ! c,

b ! d, b ! e, c ! e, d ! f, d ! g and e ! g. However, if some of the edges can be exempted from

expanding due to pruning conditions 1 and 2, then those edges’ SSs are not computed.

4.5 Privacy Analysis

In this section, we empirically prove that our system preserves privacy. We also highlight the

privacy-preserving features of our safe route planning system. Section 4.5.1 provides the proof

that our system maintains privacy. We discuss other privacy-enhancing measures that we have

taken to protect the sensitive data of users in Section 4.5.2.

4.5. PRIVACY ANALYSIS 43

4.5.1 Privacy Guarantee

Our solution ensures that an unsafe event type that a user faces cannot be inferred from the user’s pSSs and KSs.

A KS does not reveal the frequency and the time of the user’s visits (event) in an area. It only discloses whether

the user visited an area or not. Thus, even if the adversary knows that an unsafe event occurs at a grid cell, the

user’s KS for the grid cell does not provide any clue for the adversary to associate the unsafe event with the user

and reverse engineer the user’s pSS.

Quantification model parameters like the impact of an event type (), recency (rd and d),

frequency, and the distance between the grid cell location and the event location (dist)

contribute to the computation of pSSs based on the events that a user has encountered (please

see Section 4.2). The following lemma shows the condition required for hiding an unsafe

event type that a user encounters from others.

Lemma 1. Given a user’s revealed pSS for a grid cell and the values for quantification model

parameters: , rd and d, the unsafe event type that a user encounters cannot be inferred from

if (i) more than one event combinations cause the model to result in and (ii) every unsafe

event type is not included in at least one event combination that result in .

Proof. The contributing factors of the model parameters in computing a pSS change with the type, location,

time and frequency of an event in an event combination, where an event combination consists of any

number of events. Since an adversary does not know about any unsafe event faced by the user, the

adversary cannot identify the actual event combination that results in for the user and cannot infer the user’s

unsafe event type from the combination. Again, if an unsafe event type is included in all possible event

combinations that result in then the adversary can easily identify the user’s unsafe event type. However, the

second condition ensures that an unsafe event type is not included in at least one event combination that

results in and thus, does not allow the adversary to infer the user’s unsafe event type from .

Thus, our system can refrain others from knowing the unsafe event type that a user encounters

by selecting the values for the model parameters in a way that satisfies the condition of

Lemma 1 for every possible pSS in the range [S; S].

Empirical method. We show an empirical method that can validate whether the chosen values for the model

parameters are appropriate for ensuring privacy. Since an adversary does not know a user’s events, it is

sufficient to validate for any event setting. Without loss of generality, we consider the events of 3 days,

where one event occurs per day in a grid cell. We allow dist

4.5. PRIVACY ANALYSIS 44

for an event to be either 0 or 1. For every pSS, we compute the possible event combinations that result

in the pSS and checks whether the lemma condition is satisfied. For simplicity, we assume that there

are three event types with impact f 3; 5; +2g, rd = 0:5 and d = 1. For the above-mentioned event setting

and parameter values, we find that the condition of Lemma 1 is satisfied for every pSS, and the number

of event combinations per pSS is in the range [304k, 4724k] and the average is 2869k. We leave the

detailed study for generating the rules for selecting the parameter values that satisfy Lemma 1 as our

future work.

4.5.2 Privacy-Enhancing Measures

In our system, the following measures further enhance the privacy of user data related to the

user’s travel experience.

• We refine the search space and minimize the number of shared pSSs with the QR. Since

a negative pSS reveals that a user faced an unsafe event (not the type), reducing the

number of shared pSSs enhances user privacy.

• In our system, a user shares pSSs with the QR instead of a centralized server (CS). A

CS is fixed and thus, a user would not feel comfortable to share all pSSs with the CS,

whereas a QR changes with a query and the user only shares limited query-relevant

pSSs with the QR.

• The user can choose not to share her KSs for sensitive areas with the CS.

• The system restricts a QR if the QR shows suspicious behaviours, such as sending

queries frequently or queries with source and destination locations distributed far apart

in the road network.

Our solution does not need to store the event data. It transforms a user’s events to pSSs and

stores them on the local device. Thus, an adversary can only retrieve a user’s pSSs by

applying a malicious attack on the local device. It is not possible to infer the unsafe event type

that the user encounters from the pSSs.

Chapter 5

Experiments

We evaluate our safe route planner on real datasets with experiments in both simulated and real

environments. Since there is no solution that can find the SRs in our problem setting (please see

Chapter 3), we evaluate the performance of our query processing algorithms by varying a wide

range of parameters. Finally, We compare our solution with the centralized model and show the

impact of the missing data on the quality of the SRs.

We discuss the datasets and parameters in Section 5.1. We evaluate the performance of our query processing

algorithms in Section 5.2. In Section 5.3, we compare our work with the centralized model. Then, we evaluate

the effectiveness of the SRs with respect to the shortest routes in Section 5.4. Finally, in Section 5.5, we discuss

the effects of datasets on the experiment result.

Table 5.1: Datasets

Dataset

#Users #Checkins #Crimes

Road Network

(30 days) #Nodes #Edges

Chicago (C) 3554 60922 30843 28468 74751

Beijing (B) 87 - - 33923 75131

Philadelphia (P) 2275 26923 82363 24800 59987

45

5.1. EXPERIMENT SETUP 46

5.1 Experiment Setup

5.1.1 Datasets

We use datasets of three cities: Chicago (C), Philadelphia (P) and Beijing (B). To simulate the

environment, for each dataset, we need the road network data, the crime data, and the users’ visit data

to different areas. We use OpenStreetMap [80] to download the road networks. We use the real crime

data of Chicago [81] and Philadelphia [82]. For Beijing, instead of crime data, only the locations of

crime hotspots [83].

For the users’ visit data to different areas, we use the day-to-day Foursquare check-in dataset [84,

85] for Chicago and Philadelphia, and real trajectory data of users for Beijing [86]. We use crime

and check-in data of the same 6 months for Chicago and Philadelphia and one year trajectory data

of 87 users for Beijing. To increase the number of events, we map these data to one month (30

days), otherwise, their effects will not be visible due to decay. All of the experiments are run on

the 31st day. The details of these datasets are summarized in Table 5.1. We use datasets of three

cities to show the performance of our solution irrespective of the variation in the number of users,

check-in and crime data.

From check-in data, we generate the users’ visits. Specifically, we take two consecutive check-ins of a user

in a day and generate an elliptical area, where the foci of the ellipse are located at the check-in locations and

the length of the major axis equals to 1.25 times the distance between two check-in locations. We consider

that the user visited the grid cells in the elliptical area. On the other hand, the user trajectories in Beijing

directly provide the grid cell area visited by the users. Since most of the trajectory data is located around the

center of Beijing city, we consider the area ([39.7, 40.12, 116.1, 116.6]) around the center of Beijing for our

experiments.

We normalize the crime count in the range [0,1] per grid cell for each day. This count represents

the crime probability of each grid cell. For each grid cell, according to the crime probability, we

randomly associate the crime events with the visits of the users. Thus, the probability of

experiencing crime in a grid cell increases for a user who visits the cell multiple times. The visits

of the users that are not associated with any crime are considered safe events. The pSSs are

calculated based on the model of Chapter 4.2. We choose the model parameters in a way that

satisfies Lemma1 for every pSS.

5.2. COMPARISON OF QUERY EVALUATION ALGORITHMS 47

 Table 5.2: Parameter settings

 Metric Range Default

 Query Distance, dq (km) 1,2,3,4,5 5

 Grid Size, dG 300, 500, 800 500

 Distance Constraint, 1.1, 1.2, 1.3, 1.4, 1.5 1.2

 Confidence Level Parameter, z (%) 25, 50, 75, 100 50

5.1.2 Parameters

We show the parameters’ default values and ranges in Table 5.2. Similar to [4], we vary the query

distance dq, the Euclidean Distance between s and d, from 1 to 5. The parameter dG represents the grid

size: dG dG. The range of dG changes the grid cell area within 30x30 to 150x150 square meters and we

vary dG to show the impact of the grid resolution (and the grid cell area) on our solution performance.

The distance constraint = R distshortest, where distshortest represents the shortest road network distance

from s to d and R represents the ratio of the allowed road network distance of the safest route and the

road network distance of the shortest route from s to d. We keep R at most 1.5 as a user may not feel

comfortable travelling longer than 1.5 times of the shortest distance. The parameter z is used for

confidence level (Section 5.3.2). For each experiment, we set S = 10 because a smaller S does not

capture the variation of safety and a large S increases the computation cost by adding insignificant

detail. We generate 100 safest route queries randomly and take the average performance. Our system is

written in Java. We run our experiments on an Intel Core i7-7770U 3.60 GHz CPU and 16GB RAM

machine.

5.2 Comparison of Query Evaluation Algorithms

We provide two optimal query processing algorithms, Dir OA and It OA, respectively. We compare the

algorithms based on runtime, communication frequency per involved group member (comm. freq.), and the

total number of revealed pSSs. The runtime of a query consists of the time to calculate the distance

constraint from R and the steps shown in the pseudocodes (Algorithm 1 or 2). We assume the pSSs are

retrieved parallely from the group members. The KSs and pSSs are updated in offline (i.e., when a user’s

device is idle), not during query evaluation. Therefore, they do not affect the query response time. In

addition, note that the fewer the number of revealed pSSs, the better the privacy is. We append the initial

letter of the dataset

5.2. COMPARISON OF QUERY EVALUATION ALGORITHMS 48

after the algorithm name with a hyphen in Figure 5.2.

5.2.1 Choosing the default value of Xit

Runtime (sec.)
Comm. Freq.

%pSSs Revealed

Runtime (sec.)
Comm. Freq.

%pSSs Revealed

Runtime (sec.)
Comm. Freq.

%pSSs Revealed
 100

200
80

150
60

100 40

50 20

0 0

1 30 50 80 100 150

 300

 250

 200

 150

 100

 50

 0

1 30 50 80 100 150

1 30 50 80 100 150

X
it

X
it

X
it

(a) Chicago (b) Beijing (c) Philadelphia

Figure 5.1: Choosing default value Xit = 50 based on the effects of Xit

The parameter Xit significantly impacts the performance of It OA. Figure 5.1 shows clear trade-offs among

performance metrics for Chicago. The runtime decreases (desirable), the communication frequency

decreases (desirable) and more pSSs are revealed (undesirable) with the increase of Xit. Thus, we have to

carefully choose a value for Xit so that the communication frequency is low, and the runtime and the

number of revealed pSSs are reasonable. From the figure, it is clear that there is a saturation point after

which all three performance metrics do not change much. Therefore, we choose Xit = 50 as the default

value for all datasets because we see a sharp decrease in the communication frequency and then for Xit >=

50 there is not much change. Please note that Xit can be used as a regulator to control the runtime,

communication frequency and data exposure. In scenarios where privacy matters more, we can choose a

lower value for Xit and in scenarios where the communication frequency matters, we should choose the

value of Xit for which communication frequency reaches a saturated value.

5.2.2 Comparison of Dir OA and It OA

Figures 5.2a- 5.2c show that It OA reveals around 50% of the revealed pSSs in Dir OA. The number

of revealed pSSs increases with an increase of and dq because the length of SR

5.2. COMPARISON OF QUERY EVALUATION ALGORITHMS 49

 Dir OA-C It OA-C
 Dir OA-B It OA-B

10
6 Dir OA-P It OA-P

 2:5

 2

R
ev

ea
le

d

1:5

R e v e a l e d

#p
SS

s 1

p S S s
0:5

 0

 1:1 1:2 1:3 1:4 1:5

 R
 (a)

 Dir OA-C It OA-C
 Dir OA-B It OA-B

10
6 Dir OA-P It OA-P

 3

1:4
2:5

1:2

R
ev

ea
le

d

1 2

0:8 1:5

0:6

p S S s

1
0:4

0:2 0:5

0 0

1 2 3 4 5
 dq

 (b)

 Dir OA-C It OA-C
 Dir OA-B It OA-B

6

Dir OA-P It OA-P

10

300 500 800

 dG

 (c)
It OA-C
It OA-B
 It OA-P

It OA-C
It OA-B
 It OA-P

It OA-C
It OA-B
 It OA-P

40
 35

30

F
re

q.

30

F r e q .

25

20

C
om

m
.

C o m m .

20 15

10

 10 5

 0

 1:1 1:2 1:3 1:4 1:5

 R

 (d)

 40

 F
re

q.

30

C
om

m
.

 20

 10

1 2 3 4 5 300 500 800

 dq dG

 (e) (f)

2

1:8

1:6

1:4

1:2

1

0:8

0:6

0:4

0:2

0

Dir OA-C It OA-C Dir OA-C It OA-C Dir OA-C It OA-C
Dir OA-B It OA-B Dir OA-B It OA-B Dir OA-B It OA-B
Dir OA-P It OA-P Dir OA-P It OA-P Dir OA-P It OA-P

 1:2 2

 1

(s e c .)

0:8

(s
ec

.

)

1:5

R u n t i m e

R
un

tim e

 0:4
 0:6 1

0:2

 0:5

 0 0

1:1 1:2 1:3 1:4 1:5 1 2 3 4 5 300 500 800

 R dq dG

(g) (h) (i)

Figure 5.2: Dir OA vs. It OA in terms of privacy (#pSSs revealed) and computation cost

(comm. freq. and runtime) for varying , dq and dG

5.3. COMPARISON WITH THE CENTRALIZED MODEL 50

increases. The number of revealed pSSs also increases for large dG because the number of

grid cells through which the route passes increases. Please note that the number of revealed

pSSs increases more rapidly for Dir OA than that of It OA.

Figures 5.2d- 5.2f compare Dir OA and It OA in terms of communication frequency. The communication

frequency is always 1 for Dir OA as the group-members are requested once to provide pSSs. For It OA, the

communication frequency is on average 15 times; it can be as high as 45:2 times (Philadelphia dataset). To

check how reasonable this is, we ran an experiment: a message is sent from one device to another using the

Firebase Cloud Messaging service and a reply from the recipient is received. This is a cycle, and we ran 500

such cycles which took a total of 86641 ms, so on average, 173:28 milliseconds per cycle. Therefore, 45:2

communications take 45:2 173:28 milliseconds 8 seconds, which is acceptable. The communication

frequency for It OA increases with the increase of , dq and dG. For and dq, the reason behind the increased

communication frequency is that the route length increases, whereas, for dG, the reason is that the number

of required grid cells to compute the SR increases.

Figure 5.2g- 5.2i compare Dir OA and It OA in terms of runtime. The runtime of Dir OA is

very low (on average 0:3 second) for all datasets. Though the runtime of It OA increases with

the increase in , dq and dG, they are reasonable (on average 0:54 second). Therefore, we

conclude that both Dir OA and It OA provide practical solutions for the SR queries and show

a trade-off between runtime and privacy.

5.3 Comparison with the Centralized Model

A centralized architecture assumes that users share their travel experiences with a centralized

server (CS) without considering privacy issues. However, in reality, this does not happen and

the centralized solution has missing data. We investigate the impact of missing data on the

quality of SRs.

As mentioned before, there exists no solution for finding SRs in our problem setting. Thus, for this

experiment, we adopt our solution for the centralized model, where users share pSSs with the CS. We

compare the accuracy and confidence level of our system with the centralized architecture. We vary the

percentage of available data for the centralized model as 50%, 60%, 70%, 80%, and 90% and denote them

with C50, C60, C70, C80, and C90, respectively.

5.3. COMPARISON WITH THE CENTRALIZED MODEL 51

 C50 C60 C70 C50 C60 C70 C50 C60 C70

 C80 C90 C80 C90 C80 C90

 45 80 50

 40 70
40

A
cc

ur
ac

y

35
 A

cc

ur
a

cy

 A
c

cu ra cy

 60

 30
50

30

25

20

 40
20

 15 30

10

20
 10

 1:1 1:2 1:3 1:4 1:5 1 2 3 4 5 300 500 800

 R
d

q dG
(a) Chicago (b) Chicago (c) Chicago

 C50 C60 C70

 C80 C90

 50

A
cc

u
ra

cy
 40

A
c

cu
r

ac y

30

 20

 10

 1:1 1:2 1:3 1:4 1:5

 R

C50 C60 C70 C50 C60 C70

C80 C90 C80 C90

90 60

80
50

70

A
cc

ur

ac
y

60 40

50
30

40

30 20

20
10

10

1 2 3 4 5

300 500 800

 dq dG
(d) Beijing (e) Beijing (f) Beijing

 C50 C60 C70

 C80 C90

 80

 50
70

A
cc

ur
ac

y 40

A c c u r a c y

60

30
 50

 40

 20
30

 1:1 1:2 1:3 1:4 1:5

 R

 C50 C60 C70

 C80 C90

 40

 35

A
cc

ur
ac

y 30

 25

 20

 15

1 2 3 4 5
10

 dq

 C50 C60 C70

 C80 C90

300 500 800

 dG
(g) Philadelphia (h) Philadelphia (i) Philadelphia

Figure 5.3: Accuracy loss in the centralized model for missing data. C50 means 50% of actual

data is present.

5.3. COMPARISON WITH THE CENTRALIZED MODEL 52

5.3.1 Accuracy

In our system, users do not hesitate to share their pSSs as there is no fear of privacy violation. Thus, our

system always provides the actual SR. We measure the accuracy as the percentage of the answers that are

within the top-5 SRs. Figure 5.3 show that the average accuracy increases with an increase in user data

(25.4% for C50 and 49.9% for C90). Even 10% missing data causes significant (50.1%) accuracy loss.

Hence it is important to adopt privacy-preserving solution to find the SRs. For the same amount of available

data, the accuracy decreases with the increase of

and dq, because the number of possible routes from s to d increases. The accuracy does not

depend on dG (Figures 5.3c, 5.3f, 5.3i).

5.3.2 Confidence Level

The confidence level of a query answer expresses its reliability from the viewpoint of a QR. In our

case, the more the number of users supports an answer, the more reliable it is to the QR. For a

route R, its confidence level CL(R) is expressed as follows.

 z P ()

CL(R) = 100
c

i

l
i

m
ci

 dist R m

Here, li is the length of R that crosses grid cell ci and mci is the number of group members who

know ci. Intuitively, the confidence level indicates the average percentage of query-relevant group

members who know each unit length of the route. The QR might be satisfied when on average z%

members among the m query-relevant group members know about each unit length. Thus, we

include z in the definition of the confidence level. The parameter z is varied within f25; 50; 75;

100g to cover the full range.

Figures 5.4, 5.5 and 5.6 show that the confidence level for our system is always the highest (on

average 75.7%). Since both Dir OA and It OA provide optimal solutions, their confidence level is the

same. In the centralized model, confidence level predictably decreases with the increase of missing

data. confidence level decreases when the SRs become longer (for and dq). No particular trend is

visible for dG. Philadelphia dataset shows same trends as Chicago. The CL decreases with the increase

in dG as the SR contains more cells and ensuring on average 50% (the default value of z is 50)

knowledgeable users per cell becomes more difficult. For an increase in z, the CL decreases as

expected.

5.3. COMPARISON WITH THE CENTRALIZED MODEL 53

Dir OA C50
C60 C70

C80 C90

 80

 70

C
L

 (
%

)

60

50

 40

 30
 1:1 1:2 1:3 1:4 1:5

 R
(a) Chicago

Dir OA C50
C60 C70

C80 C90

100

 80

(%
)

60

C
L

 40

 20

 25 50 75 100
 z

(c) Chicago

Dir OA C50
C60 C70

C80 C90
100

 90

 80

(%
)

70

C
L

 60

 50

 40

 1 2 3 4 5

d

q
(b) Chicago

Dir OA C50
C60 C70

C80 C90
80

75

70

65

(%)60

C L

55

50

45

40

300 500 800

 dG
(d) Chicago

Figure 5.4: Confidence level for our system is higher than that of the centralized model

(Chicago dataset).

5.3. COMPARISON WITH THE CENTRALIZED MODEL 54

Dir OA C50
C60 C70

C80 C90
 70

 65

 60

 55

C
L

 (
%

) 50

45

 40

 35

 30

 1:1 1:2 1:3 1:4 1:5

 R
(a) Beijing

Dir OA C50
C60 C70

C80 C90

 90

 80

 70

(%
) 60

C
L

50

 40

 30

 20

 10
50 75 100 25

 z
(c) Beijing

Dir OA C50
C60 C70

C80 C90

 90

 80

(%
)

70

60

C
L

 50

 40

 30
 1 2 3 4 5

 dq

(b) Beijing

Dir OA C50
C60 C70

C80 C90

 80

 70

 60

(%
)

50

C
L

 40

 30

 300 500 800

d

G
(d) Beijing

Figure 5.5: Confidence level for our system is higher than that of the centralized model

(Beijing dataset).

5.3. COMPARISON WITH THE CENTRALIZED MODEL 55

Dir OA C50
C60 C70

C80 C90

 80

 70

C
L

 (
%

) 60

50

 40

 30

 1:1 1:2 1:3 1:4 1:5

 R
(a) Philadelphia

Dir OA C50
C60 C70

C80 C90
 100

 80

(%
)

60

C
L

 40

 20

 25 50 75 100
 z

(c) Philadelphia

Dir OA C50
C60 C70

C80 C90
 100

 90

 80

(%
)

70

C
L

60

 50

 40

 1 2 3 4 5

 dq

(b) Philadelphia

Dir OA C50
C60 C70

C80 C90
 80

 75

 70

 65

C
L

 (
%

) 60

55

 50

 45

 40

 300 500 800

 dG
(d) Philadelphia

Figure 5.6: Confidence level for our system is higher than that of the centralized model

(Philadelphia dataset).

5.4. SAFEST ROUTE VERSUS SHORTEST ROUTE 56

5.4 Safest Route versus Shortest Route

Dataset K = 1 K=10 K=50 K=100 K=250 K=500

Chicago 1.02 3.06 3.06 3.06 3.06 3.06

Beijing 4.76 11.90 13.10 19.05 25.00 27.38

Philadelphia 2.27 2.27 2.27 2.27 2.27 3.41

Table 5.3: The percentage of query samples for which top-K shortest routes include the

respective SRs

Dataset R=1:1 R=1:2 R=1:3 R=1:4 R=1:5

Chicago 1.08 1.18 1.27 1.35 1.44

Beijing 1.07 1.15 1.21 1.29 1.36

Philadelphia 1.08 1.19 1.28 1.37 1.45

Table 5.4: The actual distance constraint ratio of the lengths between the SR and the shortest

route

In this set of experiments, we evaluate the effectiveness of the SRs with respect to the shortest routes. To

show that, we run an experiment for 100 queries on default setting (Section 5.1). For each query, we

compute the top-K shortest routes and among those routes, whose lengths are within distance constraint are

considered. We compute the safety score of each of those considered routes and match with the safety score

of SR. Then we check whether any of the top-K shortest routes has the same safety score as that of the

safest routes. Table 5.3 shows the results of this experiment. When we consider the shortest route (K = 1),

only 2.7% among them are the SRs. As we increase the value of K, the percentage increases slightly. Even

for the high value of K = 500, it is only 27%. This is because the consecutive shortest routes (e.g., the third

and the fourth ones) normally have very small differences in terms of the included roads in the routes. Table

5.4 shows the actual ratio of the lengths between the SR and the shortest route. Note that this ratio cannot

exceed the distance constraint ratio R.

5.5 Effect of Different Datasets

The datasets in our experiments provide variation in the number of users and road network structure

and size. The runtime (Figures 5.2g-5.2i) increases for Chicago (3554 users) and Philadelphia (2275

users) due to more users compared to Beijing (87 users) even though the

5.5. EFFECT OF DIFFERENT DATASETS 57

runtime is still reasonable. Both communication frequency and the number of revealed pSSs are the

highest for Philadelphia (Figure 5.2), which does not have the highest number of users or road network

size (Table 5.1). Therefore, these two metrics might have been affected by the road network structure.

The confidence level is less for Beijing than other datasets (Figure 5.4, 5.5 and 5.6), which shows its

dependency on the number of users.

Chapter 6

Conclusion

In this thesis, we have developed a novel journey planner for finding SRs with crowdsourced

data and computation. For this purpose, we developed a realistic safety quantification model,

provided efficient indexing techniques to store our SSs and KSs, proposed two optimal

algorithms to find the SRs, and validated the effectiveness and efficiency of our solution

through extensive experiments.

We proposed the first privacy-preserving system architecture for computing the SRs which enhances

the privacy of travelers’ sensitive travel information. Our quantification model for transforming a

user’s travel experience into safety scores is personalized based on the user’s travel parameters like

frequency and recency of visits. The evaluation of the SR queries using the pSSs of the users improves

the quality of the query answer. The quantification model is also storage efficient and does not allow

an adversary to reverse engineer the personalized SS of a user and identify the user’s precise travel

data. One of our two indexing techniques modifies the R-tree for the efficient storage and fast retrieval

of pSSs. The other indexing technique also identifies the efficient way to store KSs.

Both of our proposed algorithms: direct and iterative, find the optimal answer to the SR queries.

Experiments show that our approach can evaluate a query in less than a second. Although the search space

for finding the SR is huge, our refining techniques enable this faster processing of the SR queries. Both of

our algorithms aim to protect user privacy by minimizing the number of shared pSSs with others. Our

iterative query processing algorithm enhances user privacy by not revealing, on average, 50% of the pSSs

revealed by the direct query processing algorithm. The direct one is better than the iterative algorithm in

terms of the processing time and communication frequency. To show the credibility of the query answers,

the query answers in our system come

58

59

with a personalized confidence level parameter and make the system trustworthy for the users.

In experiments, we observe that the data scarcity problem can have a significant impact on lowering

the quality of SRs. For example, the actual SR is only identified for on average 34% and 38% times

when a centralized route planner has 30% and 20% missing data, respectively. Thus, protecting the

privacy of a user’s travel experience is essential to solve the data scarcity problem and ensure the

quality of the SRs. Our privacy-enhanced solution encourages more users to share their data and

improves the quality of the SRs.

In the future, this work can be extended by addressing the following issues:

• An extension of this work could be the safe route planning for flexible destinations and the safe route

planning for group. In the case of safe route planning for flexible destinations, the user wants to

reach any one of a set of specified destinations (e.g., a number of branches of a bank or a superstore)

within distance constraints. In the case of the safe route planning for group, a group of users want to

meet at a fixed or flexible destination locations within distance constraints. One can use our provided

direct and iterative algorithms to solve these two problems straightforwardly. However, that would

require exploring the search space multiple times and incur high processing cost. In the future, more

efficient algorithms can be designed to solve these two problems in a privacy-preserving way.

• Another extension of this work can adopt a tuning parameter that provides a trade-off

between safety and length of the route within a distance constraint. The users (e.g.

vulnerable group) can prioritize safety over length or vice versa by setting the value of

this parameter.

• In our safety quantification model, we only considered regular events. Future researches

could incorporate the effects of temporary events (e.g., cricket matches, political public

meetings etc.) that affect the safety of an area for a limited time in our model. Moreover,

further studies are needed to analyze the effects of varying the values of the model

parameters, like S, in different aspects of the SR query and choose the appropriate values

for these model parameters. Moreover, future studies can be conducted on the feasibility of

adopting our safety quantification model for the law agency’s safety data, which is not

personalized.

• Peer-to-peer anonymous communication protocols [87–89] can be utilized to prevent a query

requestor from collecting pSSs of a single user using multiple queries. However, further

investigation is needed in the selection of this anonymous protocol.

• We considered the semi-honest adversary model in this thesis. In the future, the safe route

60

planning system for the malicious adversary model can be explored, where the participants

can send wrong pSSs and collude with each other or the central entity. In addition, existing

models can be adopted to detect suspicious behaviours of the users and decrease the

security vulnerabilities of our safe route planning system.

• In the future, a working prototype of our safe route planner can be implemented and its

usability can be tested in the real environment. This will also allow the measurement of

the real query processing overhead for finding the SRs.

References

[1] S. I. Ahmed, S. J. Jackson, N. Ahmed, H. S. Ferdous, M. R. Rifat, A. S. M. Rizvi, S.

Ahmed, and R. S. Mansur, “Protibadi: a platform for fighting sexual harassment in urban

bangladesh,” in CHI, pp. 2695–2704, 2014.

[2] T. Hashem, R. Hasan, F. D. Salim, and M. T. Mahin, “Crowd-enabled processing of

trustworthy, privacy-enhanced and personalised location based services with quality

guarantee,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies, vol. 2, no. 4, pp. 167:1–167:25, 2018.

[3] M. T. Mahin, T. Hashem, and S. Kabir, “A crowd enabled approach for processing nearest

neighbor and range queries in incomplete databases with accuracy guarantee,” Pervasive

and Mobile Computing, vol. 39, pp. 249–266, 2017.

[4] E. Galbrun, K. Pelechrinis, and E. Terzi, “Urban navigation beyond shortest route: The case

of safe paths,” Information Systems, vol. 57, pp. 160–171, 2016.

[5] J. Kim, M. Cha, and T. Sandholm, “Socroutes: safe routes based on tweet sentiments,” in

International World Wide Web Conference, Companion Volume, pp. 179–182, ACM, 2014.

[6] S. Shah, F. Bao, C. Lu, and I. Chen, “CROWDSAFE: crowd sourcing of crime incidents

and safe routing on mobile devices,” in International Symposium on Advances in

Geographic Information Systems, pp. 521–524, ACM, 2011.

[7] K. Fu, Y. Lu, and C. Lu, “TREADS: a safe route recommender using social media

mining and text summarization,” in International Conference on Advances in

Geographic Information Systems, pp. 557–560, ACM, 2014.

[8] N. Goel, R. Sharma, N. Nikhil, S. D. Mahanoor, and M. K. Saini, “A crowd-sourced

adaptive safe navigation for smart cities,” in International Symposium on Multimedia,

pp. 382–387, IEEE Computer Society, 2017.

61

REFERENCES 62

[9] T. Hashem, M. E. Ali, L. Kulik, E. Tanin, and A. Quattrone, “Protecting privacy for group

nearest neighbor queries with crowdsourced data and computing,” in ACM International Joint

Conference on Pervasive and Ubiquitous Computing, pp. 559–562, ACM, 2013.

[10] S. Aljubayrin, J. Qi, C. S. Jensen, R. Zhang, Z. He, and Z. Wen, “The safest path via

safe zones,” in International Conference on Data Engineering, pp. 531–542, IEEE

Computer Society, 2015.

[11] A. M. de Souza, L. C. Botega, and L. A. Villas, “Fns: Enhancing traffic mobility and public

safety based on a hybrid transportation system,” in International Conference on Distributed

Computing in Sensor Systems, pp. 77–84, IEEE, 2018.

[12] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,” Numerische

mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[13] K. Mehlhorn, J. Orlin, and R. Tarjan, “Faster algorithms for the shortest path problem,”

tech. rep., Technical Report CS-TR-154-88. Princeton University, Department of

Computer Science, 1987.

[14] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network

optimization algorithms,” Journal of the ACM (JACM), vol. 34, no. 3, pp. 596–615, 1987.

[15] G. Gallo and S. Pallottino, “Shortest path algorithms,” Annals of operations research,

vol. 13, no. 1, pp. 1–79, 1988.

[16] A. V. Goldberg, “Scaling algorithms for the shortest paths problem,” SIAM Journal on

Computing, vol. 24, no. 3, pp. 494–504, 1995.

[17] Y. Xi, L. Schwiebert, and W. Shi, “Privacy preserving shortest path routing with an

application to navigation,” Pervasive Mobile Computing, vol. 13, pp. 142–149, 2014.

[18] A. Schambers, M. Eavis-O’Quinn, V. Roberge, and M. Tarbouchi, “Route planning for

electric vehicle efficiency using the bellman-ford algorithm on an embedded gpu,” in

International Conference on Optimization and Applications, pp. 1–6, 2018.

[19] S. Saunders and T. Takaoka, “Improved shortest path algorithms for nearly acyclic graphs,”

Theoretical Computer Science, vol. 293, no. 3, pp. 535–556, 2003.

[20] Y. Han, “Improved algorithm for all pairs shortest paths,” Information Processing

Letters, vol. 91, no. 5, pp. 245–250, 2004.

[21] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano, “A new gpu-

based approach to the shortest path problem,” in International Conference on High

Performance Computing & Simulation, pp. 505–511, 2013.

REFERENCES 63

[22] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM, vol. 5, no. 6,

p. 345, 1962.

[23] D. B. Johnson, “Efficient algorithms for shortest paths in sparse networks,” Journal of

the ACM (JACM), vol. 24, no. 1, pp. 1–13, 1977.

[24] B. Richard, “On a routing problem,” Quarterly Applied Mathematics, vol. 16, no. 1,

pp. 87–90, 1958.

[25] N. Hart, “Raphael; a formal basis for the heuristic determination of minimum cost path,” IEEE

Transactions on Systems Science and Cybernetics SSC4, vol. 4, no. 2, 1968.

[26] W. Shu-Xi, “The improved dijkstra’s shortest path algorithm and its application,”

Procedia Engineering, vol. 29, pp. 1186–1190, 2012.

[27] M. Xu, Y. Liu, Q. Huang, Y. Zhang, and G. Luan, “An improved dijkstra’s shortest path

algorithm for sparse network,” Applied Mathematics and Computation, vol. 185, no. 1,

pp. 247–254, 2007.

[28] J. E. Beasley and N. Christofides, “An algorithm for the resource constrained shortest

path problem,” Networks, vol. 19, no. 4, pp. 379–394, 1989.

[29] G. Y. Handler and I. Zang, “A dual algorithm for the constrained shortest path problem,”

Networks, vol. 10, no. 4, pp. 293–309, 1980.

[30] E. Q. V. Martins, “On a multicriteria shortest path problem,” European Journal of

Operational Research, vol. 16, no. 2, pp. 236–245, 1984.

[31] Y. Deng, Y. Chen, Y. Zhang, and S. Mahadevan, “Fuzzy dijkstra algorithm for shortest

path problem under uncertain environment,” Applied Soft Computing, vol. 12, no. 3, pp.

1231– 1237, 2012.

[32] M. Randour, J.-F. Raskin, and O. Sankur, “Variations on the stochastic shortest path

problem,” in International Workshop on Verification, Model Checking, and Abstract

Interpretation, pp. 1–18, 2015.

[33] S. Broumi, A. Bakal, M. Talea, F. Smarandache, and L. Vladareanu, “Applying dijkstra

algorithm for solving neutrosophic shortest path problem,” in International Conference on

Advanced Mechatronic Systems, pp. 412–416, 2016.

[34] A. W. Mohemmed, N. C. Sahoo, and T. K. Geok, “Solving shortest path problem using particle

swarm optimization,” Applied Soft Computing, vol. 8, no. 4, pp. 1643–1653, 2008.

REFERENCES 64

[35] Y. Marinakis, A. Migdalas, and A. Sifaleras, “A hybrid particle swarm optimization–

variable neighborhood search algorithm for constrained shortest path problems,” European

Journal of Operational Research, vol. 261, no. 3, pp. 819–834, 2017.

[36] D. J. Wu, J. Zimmerman, J. Planul, and J. C. Mitchell, “Privacy-preserving shortest path

computation,” CoRR, vol. abs/1601.02281, 2016.

[37] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov, “A survey of scheduling

problems with setup times or costs,” European Journal of Operational Research, vol.

187, no. 3, pp. 985–1032, 2008.

[38] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden, “The orienteering problem: A survey,”

European Journal of Operational Research, vol. 209, no. 1, pp. 1–10, 2011.

[39] R. Jahan, T. Hashem, F. D. Salim, and S. Barua, “Efficient trip scheduling algorithms

for groups,” Information Systems, vol. 84, pp. 145–173, 2019.

[40] How to enumerate all solutions, Accessed: 2020-09-11.

[41] V. Gaede and O. Gunther,¨ “Multidimensional access methods,” ACM Computing

Surveys (CSUR), vol. 30, no. 2, pp. 170–231, 1998.

[42] P. van Oosterom, “Spatial access methods,” Geographical information systems, vol. 1,

pp. 385–400, 1999.

[43] Y. Manolopoulos, Y. Theodoridis, V. J. Tsotras, and J. Vassilis, “Spatial indexing

techniques.,” 2009.

[44] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”

Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[45] J. L. Bentley and J. H. Friedman, “Data structures for range searching,” ACM

Computing Surveys (CSUR), vol. 11, no. 4, pp. 397–409, 1979.

[46] J. T. Robinson, “The kdb-tree: a search structure for large multidimensional dynamic

indexes,” in Proceedings of the 1981 ACM SIGMOD international conference on

Management of data, pp. 10–18, 1981.

[47] H. Samet, “The quadtree and related hierarchical data structures,” ACM Computing

Surveys (CSUR), vol. 16, no. 2, pp. 187–260, 1984.

[48] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in SIGMOD’84,

pp. 47–57, 1984.

REFERENCES 65

[49] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The r+-tree: A dynamic index for multi-

dimensional objects.,” tech. rep., 1987.

[50] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An efficient and robust

access method for points and rectangles,” in Proceedings of the 1990 ACM SIGMOD

international conference on Management of data, pp. 322–331, 1990.

[51] I. Kamel and C. Faloutsos, “Hilbert r-tree: An improved r-tree using fractals,” tech. rep.,

1993.

[52] A. Efentakis, D. Theodorakis, and D. Pfoser, “Crowdsourcing computing resources for

shortest-path computation,” in International Conference on Advances in Geographic

Information Systems, pp. 434–437, 2012.

[53] H. Su, K. Zheng, J. Huang, H. Jeung, L. Chen, and X. Zhou, “Crowdplanner: A crowd-

based route recommendation system,” in International Conference on Data Engineering,

pp. 1144–1155, IEEE Computer Society, 2014.

[54] C. J. Zhang, Y. Tong, and L. Chen, “Where to: Crowd-aided path selection,”

Proceedings of the VLDB Endowment, vol. 7, no. 14, pp. 2005–2016, 2014.

[55] A. Jain, D. Das, J. K. Gupta, and A. Saxena, “Planit: A crowdsourcing approach for

learning to plan paths from large scale preference feedback,” in IEEE International

Conference on Robotics and Automation, pp. 877–884, 2015.

[56] B. Nushi, A. Singla, A. Gruenheid, E. Zamanian, A. Krause, and D. Kossmann, “Crowd access

path optimization: Diversity matters,” in AAAI Conference on Human Computation and

Crowdsourcing (E. Gerber and P. Ipeirotis, eds.), pp. 130–139, 2015.

[57] T. Hultman, A. Boudjadar, and M. Asplund, “Connectivity-optimal shortest paths using

crowdsourced data,” in International Conference on Pervasive Computing and

Communication Workshops, pp. 1–6, IEEE Computer Society, 2016.

[58] X. Fan, J. Liu, Z. Wang, and Y. Jiang, “Navigating the last mile with crowdsourced

driving information,” in IEEE Conference on Computer Communications Workshops,

pp. 346–351, IEEE, 2016.

[59] G. Delnevo, A. Melis, S. Mirri, L. Monti, and M. Prandini, “Discovering the city: Crowdsourcing

and personalized urban paths across cultural heritage,” in International Conference on Smart

Objects and Technologies for Social Good, vol. 233, pp. 132–141.

[60] G. Josse,´ M. Franzke, G. Skoumas, A. Zufle,¨ M. A. Nascimento, and M. Renz, “A

framework for computation of popular paths from crowdsourced data,” in ICDE, pp.

1428– 1431, 2015.

REFERENCES 66

[61] F. A. Santos, D. O. Rodrigues, T. H. Silva, A. A. F. Loureiro, R. W. Pazzi, and L. A.

Villas, “Context-aware vehicle route recommendation platform: Exploring open and

crowdsourced data,” in ICC, pp. 1–7, 2018.

[62] D. Sun, K. Xu, H. Cheng, Y. Zhang, T. Song, R. Liu, and Y. Xu, “Online delivery route

recommendation in spatial crowdsourcing,” World Wide Web, vol. 22, no. 5, pp. 2083–

2104, 2019.

[63] C. Chen, D. Zhang, B. Guo, X. Ma, G. Pan, and Z. Wu, “Tripplanner: Personalized trip planning

leveraging heterogeneous crowdsourced digital footprints,” IEEE Transactions on Intelligent

Transportation Systems, vol. 16, no. 3, pp. 1259–1273, 2015.

[64] Z. Yu, H. Xu, Z. Yang, and B. Guo, “Personalized travel package with multi-point-of-

interest recommendation based on crowdsourced user footprints,” IEEE Transactions on

Human-Machine Systems, vol. 46, no. 1, pp. 151–158, 2016.

[65] Y. He, J. Ni, B. Niu, F. Li, and X. S. Shen, “Privbus: A privacy-enhanced crowdsourced

bus service via fog computing,” Journal of Parallel and Distributed Computing, vol. 135,

pp. 156–168, 2020.

[66] Y. Cui, L. Deng, Y. Zhao, B. Yao, V. W. Zheng, and K. Zheng, “Hidden POI ranking with

spatial crowdsourcing,” in Proceedings of the 25th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pp. 814–824, ACM, 2019.

[67] X. Qian, C. Li, K. Lan, X. Hou, Z. Li, and J. Han, “POI summarization by aesthetics

evaluation from crowd source social media,” IEEE Transactions on Image Processing,

vol. 27, no. 3, pp. 1178–1189, 2018.

[68] C. Chen, D. Zhang, X. Ma, B. Guo, L. Wang, Y. Wang, and E. H. Sha, “crowddeliver: Planning

city-wide package delivery paths leveraging the crowd of taxis,” IEEE Transactions on

Intelligent Transportation Systems, vol. 18, no. 6, pp. 1478–1496, 2017.

[69] X. Fan, J. Liu, Z. Wang, Y. Jiang, and X. S. Liu, “Crowdnavi: Demystifying last mile

navigation with crowdsourced driving information,” IEEE Transactions on Industrial

Informatics, vol. 13, no. 2, pp. 771–781, 2017.

[70] Z. Wang, J. Hu, R. Lv, J. Wei, Q. Wang, D. Yang, and H. Qi, “Personalized privacy-

preserving task allocation for mobile crowdsensing,” IEEE Transactions on Mobile

Computing, vol. 18, no. 6, pp. 1330–1341, 2019.

[71] G. Singh, D. Bansal, S. Sofat, and N. Aggarwal, “Smart patrolling: An efficient road

surface monitoring using smartphone sensors and crowdsourcing,” Pervasive and Mobile

Computing, vol. 40, pp. 71–88, 2017.

REFERENCES 67

[72] X. Kong, F. Xia, J. Li, M. Hou, M. Li, and Y. Xiang, “A shared bus profiling scheme for

smart cities based on heterogeneous mobile crowdsourced data,” IEEE Transactions on

Industrial Informatics, vol. 16, no. 2, pp. 1436–1444, 2020.

[73] X. Kong, X. Song, F. Xia, H. Guo, J. Wang, and A. Tolba, “Lotad: long-term traffic

anomaly detection based on crowdsourced bus trajectory data,” World Wide Web, vol.

21, no. 3, pp. 825–847, 2018.

[74] A. Karakaya, J. Hasenburg, and D. Bermbach, “Simra: Using crowdsourcing to identify

near miss hotspots in bicycle traffic,” Pervasive Mobile Computing, vol. 67, p. 101197,

2020.

[75] A. Rahim, K. Ma, W. Zhao, A. Tolba, Z. Al-Makhadmeh, and F. Xia, “Cooperative data

forwarding based on crowdsourcing in vehicular social networks,” Pervasive Mobile

Computing, vol. 51, pp. 43–55, 2018.

[76] M. Abdelaal, D. Reichelt, F. Durr,¨ K. Rothermel, L. Runceanu, S. Becker, and D.

Fritsch, “Comnsense: Grammar-driven crowd-sourcing of point clouds for automatic

indoor mapping,” Proceedings of the ACM on Interactive, Mobile, Wearable and

Ubiquitous Technologies, vol. 2, no. 1, pp. 1:1–1:26, 2018.

[77] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee: zero-effort

crowdsourcing for indoor localization,” in International Conference on Mobile Computing
¨

and Networking (O. B. Akan, E. Ekici, L. Qiu, and A. C. Snoeren, eds.), pp. 293–304,

ACM, 2012.

[78] S. H. Jung, S. Lee, and D. Han, “A crowdsourcing-based global indoor positioning and

navigation system,” Pervasive Mobile Computing, vol. 31, pp. 94–106, 2016.

[79] S. Manen, M. Gygli, D. Dai, and L. V. Gool, “Pathtrack: Fast trajectory annotation with

path supervision,” in IEEE International Conference on Computer Vision, pp. 290–299,

2017.

[80] OpenStreetMap contributors, “Planet dump retrieved from https://planet.osm.org .” https:

//www.openstreetmap.org, 2017.

[81] “Chicago Data Portal: Crimes - 2001 to present.” https://data.cityofchicago. org/Public-

Safety/Crimes-2001-to-present-Dashboard/ 5cd6-ry5g. Accessed: 2021-06-08.

[82] “OpenDataPhilly: Crime Incidents.” https://www.opendataphilly.org/

dataset/crime-incidents. Accessed: 2021-06-08.

https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present-Dashboard/5cd6-ry5g
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present-Dashboard/5cd6-ry5g
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present-Dashboard/5cd6-ry5g
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present-Dashboard/5cd6-ry5g
https://www.opendataphilly.org/dataset/crime-incidents
https://www.opendataphilly.org/dataset/crime-incidents

REFERENCES 68

[83] “Beijing maps 19 crime hot spots.” http://www.ecns.cn/cns-wire/2013/ 07-

12/72886.shtml. Accessed: 2021-06-08.

[84] D. Yang, D. Zhang, and B. Qu, “Participatory cultural mapping based on collective

behavior data in location-based social networks,” ACM Transactions on Intelligent

Systems and Technology, vol. 7, no. 3, pp. 30:1–30:23, 2016.

[85] D. Yang, D. Zhang, L. Chen, and B. Qu, “Nationtelescope: Monitoring and visualizing

large-scale collective behavior in lbsns,” Journal of Network and Computer Applications,

vol. 55, pp. 170–180, 2015.

[86] Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li, Geolife GPS trajectory dataset - User

Guide, 1.1 ed., July 2011.

[87] P. Mittal, N. Borisov, C. Troncoso, and A. Rial, “Scalable anonymous communication with provable

security,” in 5th USENIX Workshop on Hot Topics in Security, HotSec’10, Washington, D.C., USA,

August 10, 2010 (W. Z. Venema, ed.), USENIX Association, 2010.

[88] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S. Wallach, “AP3:

cooperative, decentralized anonymous communication,” in Proceedings of the 11st ACM

SIGOPS European Workshop, Leuven, Belgium, September 19-22, 2004 (Y. Berbers

and M. Castro, eds.), p. 30, ACM, 2004.

[89] H. Peng, S. Lu, J. Li, A. Zhang, and D. Zhao, “An anonymity scheme based on pseudonym in

P2P networks,” in Forensics in Telecommunications, Information, and Multimedia - Third

International ICST Conference, e-Forensics 2010, Shanghai, China, November 11-12, 2010,

Revised Selected Papers (X. Lai, D. Gu, B. Jin, Y. Wang, and H. Li, eds.), vol. 56 of Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, pp. 287–293, Springer, 2010.

http://www.ecns.cn/cns-wire/2013/07-12/72886.shtml
http://www.ecns.cn/cns-wire/2013/07-12/72886.shtml
http://www.ecns.cn/cns-wire/2013/07-12/72886.shtml

Generated using Postgraduate Thesis L
A

TEX Template, Version 1.03. Department of

Computer Science and Engineering, Bangladesh University of Engineering and

Technology, Dhaka, Bangladesh.

This thesis was generated on Wednesday 30
th

 June, 2021 at 7:38am.

69

