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Abstract 
 
 

 

In this thesis, we introduce a novel safe route planning problem and develop an efficient 

solution to ensure the travelers’ safety on roads. Though few research attempts have been 

made in this regard, all of them assume that people share their sensitive travel experiences 

with a centralized entity for finding the safest routes, which is not ideal in practice for privacy 

reasons. As a result, existing systems cannot provide safest routes with high accuracy due to 

the lack of data related to travel experiences. Furthermore, existing works formulate the safe 

route planning query in ways that do not meet a traveler’s need for safe travel on roads. Our 

approach finds the safest routes within a user-specified distance threshold based on the 

personalized travel experience of the knowledgeable crowd without involving any centralized 

computation. We develop a privacy preserving model to quantify the travel experience of a 

user into personalized safety scores. Our algorithms for finding the safest route further 

enhance user privacy by minimizing the exposure of personalized safety scores with others. 

Specifically, we develop two efficient algorithms, direct and iterative, to evaluate the safest 

route queries. The direct and the iterative algorithms offer trade-offs among the computation 

overhead, communication cost and privacy. We run extensive experiments using three real 

datasets to show the effectiveness and efficiency of our approach. Our iterative algorithm 

finds the safest route with 50% less exposure of personalized safety scores compared to that 

of direct algorithm. On the other hand, the computation overhead and the communication 

overhead for the direct algorithm are lower compared to those of the iterative algorithm. 

Although the direct algorithm is faster than the iterative algorithm, both of our algorithms take 

less than a second to process a query. Our experiments also show that lack of data for privacy 

issues can reduce the answer quality significantly. Our safe route planning system ensures the 

quality of the safest routes by protecting the privacy of the travel experiences of the users. 
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Chapter 1 
 
 
 

 

Introduction 
 
 
 
 
 
 

Location-based services, especially the journey planners like Google or Bing Maps, have become an 

integral part of our life for moving on roads with convenience. Existing services mainly consider distance 

and traffic while planning the routes for the travelers. However, the shortest or the fastest route is not 

always the best choice. While travelling on roads, people face many inconveniences like theft and pick-

pocketing; women face harassment like eve-teasing and unwanted physical touch. People would like to 

travel a little bit longer on a safer route that avoids those inconveniences. During the outbreak of an 

infectious disease like COVID-19, a pedestrian may want to avoid a crowded road to keep herself safe from 

infection. The chance for a virus to exist on the air and road surface increases with the increase of the 

number of pedestrians. Road safety in such a pandemic period can be measured based on the level of road 

crowdedness. To meet the traveler’s need on roads, we introduce a safe route planner that finds the safest 

route (SR) between a source-destination pair within a distance constraint. 

 

The data needed for computing the SRs may come from official crime reports and personal 

travel experiences of the crowd. The latter is more valuable than the former one due to its 

recency and adequacy. However, travel experiences are often sensitive and private data, and 

people, especially women, do not feel comfortable sharing their detailed travel experiences 

and harassment data with others [1]. These factors have inspired us to develop a privacy-

enhanced safe route planning system by not sharing the personalized travel experiences of the 

crowd with a centralized entity or others. 

 

Our approach personalizes the safety score (SS) of a user’s travel experience (both safe and unsafe) with 

respect to the user’s travel pattern. If two users face the same crime on two roads, then these roads may 

have different SSs considering the frequency and recency of the users’ 
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visits on those roads. Ignoring the personal travel pattern of the users would reduce the quality of data and 

the accuracy of the query answer. We develop a model to quantify a user’s travel experience for a visited 

area into a personalized safety score (pSS) based on frequency and recency of the user’s visits, location, 

time, and type of inconveniences faced. Users store their pSSs of their known areas on their own device or 

any other private storage (e.g., cloud storage) and use them to find the SRs for others. The transformation 

of a user’s travel experience into a pSS is a one-way mapping. From the revealed pSS of a user, it is not 

possible to pinpoint the type of incident faced by the user. It may only allow an adversary to infer high-

level information on a user’s travel experience (e.g., a user faced a crime event without knowing the crime 

type). 

 

To further enhance user privacy, we minimize the amount of pSS information shared to evaluate the SR 

query. We develop efficient query processing algorithms that find the SRs from the refined search space 

and minimize the exposure of pSS information. Since the number of possible routes between a source-

destination pair is extremely high, a naive algorithm cannot find the SRs in real-time. Our search space 

refinement techniques allow our query processing algorithms to find the SRs with significantly reduced 

processing overhead. 

 

Every user is not familiar with all roads, and it is also not feasible to involve a user for all queries. For a 

specific SR query, we identify the users who are familiar with the query-relevant area and select them as 

group members. The trustworthiness of the query answer depends on the overall knowledge of the selected 

group members. To show the credibility of the answer, we present a new measure called confidence level 

[2, 3] in the context of the SR query. 

 

Existing safe route planners involve a centralized entity to find the SRs using crime data 

collected from reports [4] or crowd [5] or both [6–8]. They have major limitations: 

 

 

• Ignore the privacy issues of the crowd harassment and incident data and thus suffer 

from data scarcity problem. Missing incident data can cause a system to return a route 

that is not actually safe and put a traveler at risk. 

 
• Do not personalize the crowd’s travel experiences by considering a user’s travel pattern, 

which is essential to improve the accuracy of the query answer. 

 
• Do not consider individual distances associated with different SSs for ranking the routes. 

For example, if two routes have the same lowest SS, then the route for which a user has 

to travel less distance with the lowest SS is the safest one, though its total distance might 

be greater than that of the other route. 

 
• Do not show any measure to represent the trustworthiness of the identified SRs. 
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In recent years, the increase of computational power and storage in smartphones has enabled 

researchers to envision crowdsourced systems [2, 3, 9]. To the best of our knowledge, we 

propose the first privacy-enhanced and personalized solution for the SR queries with 

crowdsourced data and computation. Our solution overcomes the limitations of existing route 

planners. Our contributions are as follows: 

 

 

• We present a model to quantify a user’s travel experiences into irreversible pSSs and 

modify the indexing technique, R-tree to store pSSs. Based on pSSs, we design a 

privacy-enhanced crowd-enabled solution for the SR queries. 

 
• We select the users who have the required knowledge in a query-relevant area, and we 

guarantee the credibility of the query answer evaluated based on the data of the selected 

group members in terms of the confidence level. 

 
• We develop optimal algorithms, direct and iterative, to efficiently evaluate the SRs. The 

direct algorithm reveals group members’ pSSs only for the query-relevant area. The 

iterative one further reduces the amount of shared pSSs at the cost of multiple 

communications per group member. 

 
• We run extensive experiments with real datasets and evaluate the effectiveness and 

efficiency of our approach. 

 

 
This thesis is organized as follows. First, we formulate our problem in Chapter 2. Then, we discuss 

previous works related to our problem in Chapter 3. In Chapter 4, we elaborate our safe route planning 

system by providing an overview of our system, our personalized safety quantification model, our indexing 

techniques, the algorithms and the privacy-preserving aspects of our work. In Chapter 5, we evaluate the 

effectiveness and efficiency of our algorithms through extensive experiments. Finally, we conclude our 

work with future directions in Chapter 6. 



 
 
 
 
 
 
 
 
 
 

 

Chapter 2 
 
 
 

 

Problem Formulation 
 
 
 
 
 
 

We define basic terminologies and notations, explain the ranking of routes based on safety and 

formulate our problem for finding the safest route in this chapter. We also describe our privacy 

model. In Section 2.1, the necessary notations, definitions, and terminologies are given. Then in 

Section 2.2, we elaborately discuss our privacy model. 

 
 
 
 

2.1 Preliminaries 
 
 

 

The road network N = (V; E) consists of a set of vertices V and a set of road segments E. The vertices 

represent the start or the end or the intersection points of roads. An edge eij 2 E connects the vertex vi 

to the vertex vj, where vi; vj 2 V . A route R consists of a sequence of vertices R = (vi1 ; vi2 ; : : : ; vijRj), 

where eik 1ik 2 E. The total distance dist(R) of R is the summation of distances of all edges in R. Table 

2.1 shows the notations used in this thesis. 

 

The total space is divided into grid cells. The knowledge score (KS), the pSS and the SS are 

computed for each grid cell area, which are defined as follows: 

 

Definition 1. A knowledge score (KS): The KS of a user for a grid cell area represents 

whether the user has visited the area of a grid cell. This KS is 0 if the user has not visited the 

area in the last w days, 1 otherwise. 

 
Definition 2. A personalized safety score (pSS): Given the safety score bound [ S; S], the pSS of a grid cell 

area represents a user’s travel experience in the area and is quantified between 

S pSS S. 
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Figure 2.1: R3 is the SR between s and d with SS =  2,  = 18 

 Table 2.1: Notations and their meanings 
   

Notation  Meaning 
   

N(V; E)  A road network 
   

s; d  Source and destination vertices 
   

  Distance constraint 
   

SR  Safest route 
   

pSS  Personalized safety score 
   

SS  Safety score 
   

KS  KS 
   

[ S;S]  SS or pSS range 
   

 

Definition 3. A safety score (SS): Given a set of pSSs 1

; 
2; : : : ;  n of n users for a grid cell 

area, the SS of the grid cell area is computed as 

1
+ 

+:::+ n 

. 

2 

 n  
 
To make the SS measure independent of the number of users who know about an area, we take the average 

of the pSSs instead of adding them together. The number of users whose pSSs are used to find the SS is 

considered to determine the credibility of the safest route (Section 5.3.2). 

 

SS based route ranking. The SS of route R is the minimum of all SSs associated with the edges of R. The 

intuition behind considering the minimum SS instead of the average SS of the route is that even a small 

distance of road with a bad SS may put a traveler at risk. The route that has the 
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largest minimum SS among all possible routes between a source-destination pair is considered as the SR. If 

two routes have the same largest minimum SS, then we consider the smallest SS for which associated 

distances of two routes differ. The route that has the smallest associated distance for the considered SS, is 

the SR. We formally define the SR query below: 

 

Definition 4. A safest route (SR) query: Given a road network N(V; E), distances and SSs of road 

segments, a source location s, a destination location d and a distance constraint , the safest route 

query returns a route SR between s and d such that dist(SR) and SR is at least as safe as R, where 

R is any other route between s and d having dist(R) . 

 

 

In Fig. 2.1, assume that = 18. The distance of R1, R2, R3 and R4 are 12, 17, 17, 21 respectively. 

R4 does not satisfy . The smallest SSs associated with R1, R2 and R3 are -5, -2 and -2, 

respectively. Though both R2 and R3 have the largest minimum SS, R3 is the SR because R3 has 

the smallest distance associated with the smallest SS -2. 
 
 
 

 

2.2 Privacy model 
 
 

 

We assume a semi-honest setting, where participants follow the system protocol but are curious to 

infer sensitive data from the shared information. In the semi-honest setting, the participants do not 

send false queries (e.g. unnecessary queries) or wrong pSSs and they do not collude with each other or 

any centralized entity. In our system, the unsafe event types (e.g., pick-pocketing or harassment) are 

considered as private data. We assume that anyone can play the role of an adversary for a user. The 

adversary knows the model to compute the pSSs but does not have any background knowledge about 

the time and frequency of a user’s visits to an area. A user shares the KSs and pSSs for the purpose of 

the query evaluation. Our solution refrains an adversary from inferring the unsafe event type that a 

user encounters from the shared information of the user. Since a pSS can reveal high-level information 

like a user faced an unsafe event but not the type, our solution also aims to minimize the number of 

revealed pSSs for enhancing a user’s privacy. 



 
 
 
 
 
 
 
 
 
 

 

Chapter 3 
 
 
 

 

Related Works 
 
 
 
 
 
 

We address the problem of finding the safest route in a crowdsourced manner in this research. 

Therefore, this problem is closely related to the research works on route planning and 

crowdsourcing. This chapter provides elaborate discussions on existing research works relevant to 

our thesis. In Section 3.1, we focus on the existing works on the safe route planners. We compare 

those works with ours based on the problem setting (Section 3.1.1), privacy (Section 3.1.2), and 

efficiency (Section 3.1.3). In Section 3.2, we discuss the shortest path algorithms, in Section 3.3, 

we focus on other route planners, and in Section 3.4, we detail various indexing techniques that are 

used to store data in an organized way. Finally in Section 3.5, we present the existing works on 

crowdsourcing. 

 
 
 
 

3.1 Safe Route Planners 
 
 

 
Though researchers attempted to solve the safe route planning problem, the works have major 

limitations. Table 3.1 shows the problem settings and other features of existing works. 

 
 

 

3.1.1 Problem Setting 
 
 
 
None of the existing works considers individual distances associated with different SSs for ranking the 

routes after maximizing the minimum SS. Thus, the problem settings of existing works are not suitable 

for safe travel on roads. Furthermore, instead of considering the total 
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   Table 3.1: A comparative analysis with existing safe route planners   
           

     Problem Settings  
Privacy 

 
Efficiency 

 
       

     

Safety 
pSS Objective  

       
   

Level 
    

          
          

        

 [4] Multiple  Provide multiple routes with a    X  

     trade-off between SS and total      

     distance      
          

 [5] Safe/Unsafe  Minimize the travel in unsafe      

     regions      
          

 [6, 7] Multiple  Minimize the weighted      

     combination of SS and total      

     distance      
          

 [10] Safe/Unsafe  Minimize the travel in unsafe    X  

     regions      
           

  ours Multiple  Maximize the minimum SS of X X  X  

     the route and then minimize the      

     individual distances associated      

     with the SSs in the increasing      

     order of SSs      
           

 
 

distance constraint, selecting appropriate weights in [6, 7] is not easy since it is not intuitive to 

determine which weights would meet a user’s preferred trade-off between safety and distance for 

a specific source-destination pair. Again, there is no guarantee that the returned routes in [4] 

satisfy a user’s required preference for safety and distance. 

 
 

 

3.1.2 Privacy 
 
 
 
The crime data for safe route planners may come from crime reports [4, 8, 11] or directly from 

crowds [5–8]. Crime reports are not regularly updated, and incomplete because many crimes go 

unreported. Though the crowd knows more and recent information compared to the crime reports, 

they would not share their incident and harassment data with a centralized service provider, if the 

privacy of their data is not ensured. Thus, one major limitation of existing works is that they suffer 

from data scarcity issues for privacy reasons and do not have enough data to provide accurate 

answers. 
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3.1.3 Efficiency 
 
 
 

None of the existing safe route planning systems except [4, 10] developed efficient algorithms 

for large road networks. However, as already mentioned, the problem settings of [4, 10] 

cannot meet a traveler’s requirement on roads. 

 
 
 
 

3.2 Shortest Path Algorithms 
 
 

 

Researchers have proposed many algorithms to solve the shortest path problem or its variant 

[12–18] over the last few decades. Research on this topic is still ongoing [19–21]. The 

shortest path problems can be divided into three types: 

 

 

1. All-pair shortest path problem 

 
2. Single-source shortest path problem 

 
3. Single-pair shortest path problem 

 
 
 
The all-pair shortest path problem can be solved using Floyd–Warshall algorithm [22], Johnson 

Algorithm [23]. The single-source shortest path problem can be solved by Dijkstra’s algorithm 

[12], Bellman-Ford algorithm [24]. The single-pair shortest path can be solved using the 

algorithms for the single-source shortest path problem. We can also use A* searching [25] for the 

single-source shortest path problem. Many improvements have been proposed in these core 

algorithms for finding the shortest path [26, 27]. Many variants [28–33] of the shortest path 

problem exist, such as the shortest path with constraints [28,29] and multi-objective shortest path 

problem [30]. Meta-heuristic algorithms have been also applied to solve these problems [34, 35]. 

Some researchers have maintained privacy while computing the shortest path for navigation [17, 

36]. The authors of [18] used the Bellman-Ford algorithm to plan energy-efficient driving routes. 

 
For this research, we have used the single-pair shortest path algorithm to refine the search space in Section 

4.4.2. Furthermore, in Section 5, we have defined the distance constraint for an SR query based on the 

shortest road network distance to simplify its implication to users. 
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3.3 Other Route Planners 
 
 

 

Variants of orienteering and scheduling problems [37, 38] have been studied for route planning. 

An orienteering problem finds a route between a source-destination pair that maximizes the total 

score within a budget constraint, where a score is obtained when the route goes through a vertex. 

The scheduling problems focus on incorporating temporal constraints in route planning (e.g., 

visiting locations to perform services in a timely manner). The problem settings of orienteering 

and scheduling problems are different from an SR query. Furthermore, their solutions do not 

consider search space refinement [39] and are not scalable for large road networks. For example, 

the exact solution of an orienteering problem can be found for a graph of up to 500 vertices [38], 

whereas the real road networks that we use in our experiments have on average 24 thousand 

vertices. 

 

An SR query can be transformed to a multilevel optimization problem for solving it with a 

commercial optimization tool like IBM CPLEX: (L1) identify all routes that have the largest 

minimum SS within , (L2) consider the smallest SS for which the associated length of the 

identified routes differs and find the routes that have the smallest length associated with the 

considered SS, (L3) repeat L2 until the remaining route(s) have the same length associated 

with every SS. However, IBM CPLEX is not effective in terms of time and memory when a 

problem requires finding multiple answers like multiple routes with the same largest 

minimum SS in the SR query [40]. 

 
 
 
 

3.4 Indexing 
 
 

 
We need to store KSs and pSSs in our system. These are spatial data. Indexing techniques for storing 

spatial data have been studied extensively in the literature [41–43]. Spatial data can be two dimensional or 

multidimensional. Spatial data includes points, lines, polygons etc. The number of samples can be huge. 

We need to store, access and manipulate them efficiently for a variety of applications. Specially, we need to 

perform range queries in spatial data frequently to access data near or within a particular area. Using a list 

or map can be costly storage-wise and is not efficient for range queries. Therefore, many indexing 

techniques for spatial data exploit the tree-based structure to store and access data efficiently. Following we 

describe some of them. 
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3.4.1 KD-tree 
 
 
 

The KD-tree [44] is essentially a multidimensional binary search tree that stores multidimensional 

points. A new point is inserted in a leaf node. Each internal node of the tree divides a particular plane. 

For a k dimensional tree, a level l divides the (l mod k)-th plane (if (l mod k) is 0, it divides the kth 

plane). Figure 3.1 shows an example of a KD-tree. A KD-tree has some limitations because its shape 

depends on the order of input, and in the worst case, it may contain n levels [42]. Variations of the KD-

tree has been proposed to overcome these limitations, such as an adaptive KD-tree [45], KDB-tree 

[46]. However, these variations also have their limitations; e.g. the adaptive KD-tree is not dynamic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) A KD-tree (b) Plane division by a KD-tree 

 

Figure 3.1: A KD-tree 
 
 

 

3.4.2 Quadtree 
 
 
 

A quadtree recursively decomposes a space into four quadrants. There are different types of 

quadtree, such as point quadtree, point region quadtree, region quadtree and polygonal map 

quadtree [42]. The point quadtree is similar to KD-tree, except the fact that each internal node has 

exactly four children. The point region quadtree is slightly different from the point quadtree. It 

divides the space into four equal quadrants and does not use the data points for plane 

decomposition. An example of this type of tree is given in Figure 3.2. A region quadtree generally 

stores an approximation of a polygon. Finally, a polygon map quadtree is used to store a set of 

polygons [47]. 
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(a) A quadtree  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b) Decomposition of space by the quadtree 
 

Figure 3.2: An point region quadtree 

 

3.4.3 R-tree 
 
 
 

An R-tree is a spatial indexing structure proposed in 1984 by Antonin Guttman [48]. Figure 3.3 shows 

an example of an R-tree that stores rectangles. An R-tree is a multiway tree whose leaf node contains 

the spatial objects, such as point, line, polygon etc. The internal nodes group nearby objects together 

using a minimum bounding rectangle (MBR). There is a limit on how many entries each node can 

have. If that limit is exceeded when inserting data, then that node is split. The R-tree allows the overlap 

among MBRs of the internals nodes of the same level (e.g. MBR F and G in Figure 3.3) and 

frequently, the internal nodes cover some empty spaces. Fewer overlaps and empty spaces increase the 

R-tree’s efficiency. 

 

Multiple variations of the R-tree have been proposed including R+-tree [49], R*-tree [50] and Hilbert 

R-tree [51]. The R+-tree is an efficient version of the R-tree that avoids the overlap 
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(a) Two-dimensional rectangles (A, B, C, D, E) in (b) An R-tree constructed from those rectangles a 

plane 
 

 

Figure 3.3: An R-tree 
 

 

among MBRs. However, this comes at the price of more nodes and space [42, 43]. Also, the construction 

and modification are more complex. R+-tree is more efficient for the point query search, however, range 

queries can be costly [43]. The R*-tree differs from the R-tree in terms of the insertions. When a node 

becomes overfull while inserting data, instead of splitting that node immediately, some entries are tried to 

be reinserted in that tree first. The Hilbert R-tree organizes the data based on Hilbert value, which is 

efficient but might not always be realistic [42]. 

 

For storing the pSSs in a user’s personal device, we chose to modify an R-tree because we need to perform 

the range queries for retrieving pSSs by utilizing the low computational power and low space capacity of 

mobile devices. Its variants are either too complex or require more space. Instead of using the R-tree 

directly, we modified it because we wanted to reduce space consumption by keeping the same pSS 

information of nearby grid cells together. 

 
 

 

3.5 Crowdsourcing 
 
 

 

Crowdsourcing has been widely used for route finding and recommendation [52–62], trip 

planning [63–65], POI search [2, 3, 66], POI summarization [67], package delivery [68, 69], 

sensing [70–72], traffic monitoring [73, 74], vehicular network [75], indoor mapping and 

localization [76–78] and many other tasks [79]. 
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The works in [3,9] eliminate the location-based central service provider to protect users’ sensitive location 

data and divided the query evaluation task among the selected group. While evaluating a query, those 

works preserve privacy through data imprecision. In [2], the authors considered protecting the privacy of a 

user’s POI knowledge by minimizing the shared POI information with others. Compared to the static POI 

data, crime data are more complex and challenging to hide from others. We develop a quantification model 

to hide the type of incident data using pSS and search space refinement techniques to minimize the shared 

pSS information. 



 
 
 
 
 
 
 
 
 
 

 

Chapter 4 
 
 
 

 

Our Approach 
 
 
 
 
 
 

In this chapter, we explain in detail our approach for finding the safest route in a privacy-

preserving manner. We provide our system overview in Section 4.1. Then, in Section 4.2, we 

establish a practical safety quantification model. Next, we discuss our indexing techniques for 

pSSs and KSs in Section 4.3. After that, in Section 4.4, we propose two efficient algorithms to 

compute the safest route and analyze their complexity. Finally, in Section 4.5, we explain in detail 

the privacy-preserving aspects of our work. 

 
 
 
 

4.1 System Overview 
 
 

 
We develop a privacy-enhanced, personalized, and trustworthy solution for safe route planning with 

crowdsourced data and computation. Fig. 4.1 shows the architecture of our system. Users in our system 

store their pSSs of their visited areas on their own devices. In the case of storage constraints, users can also 

consider alternative private storage (cloud storage). The users share their KSs with the centralized server 

(CS). A KS only provides the information that a user has visited the area. A user can also hide the 

information of her visit on a sensitive area by not setting corresponding KS to 1 as the user has the control to 

decide on what the user shares with the CS. 

 
In our system, we set a default ratio between the lengths of the safest and the shortest routes for the distance 

constraint. To initiate an SR query, the query requestor (QR) provides the source and the destination 

locations for the query. The QR can also specify the distance constraint as an absolute value or as a ratio 

between the lengths of the safest and the shortest routes. If the QR specifies the distance constraint, our 

system replaces the default distance constraint with the 
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Figure 4.1: System architecture 
 

 

QR provided distance constraint. It is not realistic to use the computation power of all users for all 

queries and asking them whether they know any query-relevant area. The availability of KSs allows 

CS to address this issue. When the CS receives a query from a QR, it selects a group based on the 

query parameters and the stored KSs of the users. Then the CS returns the IDs of the group members 

to the QR and sends the identity of the QR to the group members. The QR evaluates the query in 

cooperation with the group members without involving the CS. The QR retrieves pSSs of the query-

relevant area from the group members, computes the SSs of each road using the pSSs of the group 

members, and finds the SR. Note that the QR communicates with the group members in parallel to 

retrieve the pSSs. Therefore, the communication with multiple group members does not increase the 

query processing time significantly. However, in case of the resource constraint in the QR’s device, a 

subset of the group members’ pSSs can be retrieved. 

 
 

 

4.2 Quantification of Safety 
 
 

 

We utilize the personal travel experiences of the crowd to evaluate the SR queries. For this reason, we 

need to model the diverse travel experiences of each user into a personalized quantifiable metric of 

safety. In this section, we discuss our model for quantification of safety. We discuss the existing 

models that have quantified safety and their limitations in Section 4.2.1, and explain our safety 

quantification model in Section 4.2.2. 
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4.2.1 Limitations of Existing Models 
 
 
 

Existing researches on safe routes have modeled safety in a variety of ways. The authors of [6, 7] quantify 

the safety of a road network edge by simply considering the number of crimes in the particular distance 

buffer area of that edge. They do not consider the recency and the severity of crimes, the ratio between the 

unsafe visits and the safe visits by an individual user, and the fact that the impact of a crime decays with 

distance. Thus, the quantified SSs of roads in [6, 7] fail to model the real-scenarios. The work in [4] 

improves the way to find the SS of a road network edge by considering the crime events of the last few 

days and weighting the crime events based on their distances from the road. None of the above works [4, 6, 

7] allow the SS to vary in different parts of a road network edge, which is possible for long roads. 

 

In [8], the authors provide a more elaborate model of safety. However, the model suffers from the 

following limitations: (i) stores historical data and cannot address the constraint of the limited storage 

of the personal devices, (ii) does not differentiate the weights of crime events based on the frequency 

of the user’s visits, (iii) only considers that the effect of a crime spreads to its nearby places only if no 

crime occurs there, (iv) does not provide a smooth decay of the effect of older events, rather takes the 

moving average of the events of the last few days, and discards the impact of previous events, (v) does 

not consider the severity of a crime event, and (vi) does not allow the SS to vary in different parts of 

an edge. 

 
 

 

4.2.2 Our Model 
 
 
 

We develop a model that overcomes the limitations of existing models. In our model, the 

travel experiences of users are converted into pSSs and then aggregated to infer the SSs of 

different areas. When a user visits an area, an event occurs. If the user faces a crime, then that 

event is unsafe; otherwise, it is safe. 

 
 

 

Model Properties 
 
 
 

Our model has the following properties: 
 
 

 

1. The safety of an area depends on the frequency of the users’ visits. 
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• If a user visits an area twice and faces unsafe events both times, then intuitively, 

that area is riskier than another area where a user visits 10 times and faces unsafe 

events two times among those visits. 
 

• If a user visits an area 5 times safely, then that area is safer than another area that 

is visited once safely. 

 
2. The safety of an area also depends on the safety of its nearby places. Therefore, if a user 

visits an area, the impact of the event is distributed to nearby areas. 

 
3. The safety of an area depends on the recency of the safe and unsafe events. If a user faces an unsafe 

event in an area, then the crime’s effect decays with time. If a user visits an area safely, then the 

perception of safety due to the safe visit also decays with time. 

 
4. The safety of an area depends on the type and severity of an unsafe event. 

 
5. The pSSs are not allowed to grow indefinitely. They are bounded within a maximum 

and a minimum value so that while aggregating, a single user’s experience does not 

dominate the SS of an area. 

 
6. A road network edge may go through multiple grid cells and thus, can have different SSs. 

 
 

 

An important advantage of our model is that it is storage efficient as it does not store the 

historical visit data of a user. 

 
 

 

Model Computation 
 
 
 

Let the impact of a safe event in the occurring area be + and the impact of an unsafe one be , 

where +; 2 N. + is the same for all safe events. varies with the type and the intensity of the 

crime or inconvenience faced. 

 

The impact (= += ) of an event reduces exponentially in nearby areas and becomes 0 as per the 

following equation: 0
 = e dist

2h2
2
 , where the constant h controls the spread of the event. dist 

represents the distance of the event location from the grid cell. This equation is inspired by the 

Gaussian kernel density estimation [4]. 
 
 

 

The pSS, of an area is bounded within [ S; S] and 2 N and 0 < + < S and S < < 0. If an event 

occurs in a place for the first time then = . If another event occurs there, then = + . If an event 

occurs nearby, whose effect is 0 here, then = + 0. If > S then = S and if < S then = S. Initially, is 

set to unknown. 
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A pSS decays every  d days. If the decay rate is rd and 6= 0, then after every  d days, 

becomes = rd, where 0 < rd < 1 and rd 2 R. Therefore, the decay of older events’ impacts is 

smooth. For example, if rd = 0:8 and d = 2, then = 3 becomes 2.4 after two days, and becomes 

1.92 after two more days. 
 
 

The values of parameters +, , S+, S , d and rd are the same for all users and decided centrally. 

For each grid cell, our model stores only two values: the pSS and when that pSS was last 

updated. Therefore, this model is storage-efficient and suitable for smart devices. The SS of 

an area is computed from the shared pSSs of the users (Definition 3). 

 
 
 

 

4.3 Indexing User Knowledge 
 
 

 

In this section, we elaborate on how we store the pSSs and KSs in our system. A user stores the 

pSS for every visited grid cell in the local storage and accesses it for evaluating the SR query. The 

CS stores the KSs of users for every grid cell and uses them for computing query-relevant groups. 

For efficient retrieval of pSSs and KSs, we use indexing techniques: local and centralized, 

respectively. In Section 4.3.1, we explain the local indexing mechanism in detail, and in Section 

4.3.2, we elaborate the global one. 

 
 

 

4.3.1 Local Indexing. 
 
 
 

Storing pSSs for the whole grid in a matrix would be storage-inefficient because a user 

normally knows about some parts of the grid area. We adopt a popular indexing technique R-

tree [48] for storing pSSs of the visited grid cells. The underlying idea of an R-tree is to group 

nearby spatial objects into minimum bounding rectangles (MBRs) in a hierarchical manner 

until an MBR covers the total space. 

 

For every visited grid cell, a user stores its pSS and the time of its last update. The last update time is 

required for decaying the pSS. To reduce the storage overhead, we combine nearby adjacent grid cells with 

an MBR, where the grid cells have the same SS and the difference between the last update times of two 

cells does not exceed a small threshold. We call this MBR as a supercell and each leaf node of an R-tree 

represents a supercell. Each leaf node stores the information of the coordinates of MBR, the pSS, and the 

average of the last update time of the considered grid cells of a supercell. The supercells are recursively 

combined into MBRs. 



4.3. INDEXING USER KNOWLEDGE 20 
 

 

The intermediary nodes of the R-tree store the coordinates of the MBR. The MBR of the root node 

of the R-tree represents the total grid area. Fig. 4.2 shows an example of a grid and the 

corresponding R-tree. For the sake of clarity, we do not show the last update times in the figure. 

Note that while creating supercells, there will be a small data loss due to the merging of grid cells 

for which the differences of their last update times are within a small threshold (e.g. in our 

experiment we set it to 12 hours). 
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(a) The pSSs for a 4x4 grid is stored in a modified R-tree 
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Figure 4.2: A user’s pSSs is stored in a modified R-tree 
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Supercell Generation 
 
 
 

A traditional R-tree only considers the location of the spatial objects for grouping, whereas we consider 

the location, the pSS and the last update time of the grid cells for grouping them into supercells. To 

compute the non-overlapping supercells, we scan the grid cells twice: row-wise and column-wise. For 

row-wise (or column-wise) scan, we maximize the number of grid cells included in a supercell row-

wise (column-wise) and then take the supercells of the scan (row-wise or column-wise) that generates 

the minimum number of supercells. After computing the supercells for the leaf nodes, we insert them 

into a traditional R-tree. 

 
 

 

Supercell Update  
 
 
 

Path cells  
 

 

Affected cells  
 

 

Temporary MBR  
 

 

Overlaps with 
 

temporary MBR  
 

 

Working MBR 
 
 

 

Figure 4.3: Necessary MBRs for updating a supercell 

 

To update the pSSs of grid cells for a visited route R, the following steps are performed: 
 
 
 

• Compute route cells and affected cells. Compute the grid cells that overlap with R as route cells. 

The affected cells include the route cells and their nearby cells (Fig. 4.3). 

 
• Compute temporary MBR. Find the temporary MBR that includes the affected cells and one 

extra grid cell besides each affected cell in the boundary (Fig. 4.3). The reason behind 

considering an extra grid cell is to identify the adjacent existing supercells later. 

 
• Find overlapping supercells. Find existing supercells that intersect with the temporary 

MBR. There are four overlapping supercells in Fig. 4.3. 
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• Compute working MBR. Find the working MBR that includes these overlapping 

supercells and the affected cells (Fig. 4.3). 

 
• Generate new supercells. By considering the location, the pSS and the last update time of 

the grid cells included in the working MBR, generate the new supercells. 

 
• Update R-tree. Remove those overlapping supercells from R-tree and add the new 

supercells. Update the intermediary nodes based on the change in the leaf nodes. Fig. 

4.2b shows the updated R-tree for the change of the pSS from 3 to -2 in a grid cell 

(shown with a red circle). 

 
 

 

4.3.2 Centralized Indexing 
 
 
 
The KSs are accessed when the query-relevant groups are computed and updated when a user visits a 

new area. Since the probability is high that at least a user knows a grid cell area, we store each grid 

cell’s data in a hash-map with the grid cell’s coordinates as a key. For each grid cell, we store the user 

ids whose KS is 1 for the corresponding grid cell area. 

 
 

 

4.4 Query Evaluation 
 
 

 
We elaborate our approach for finding the answer of an SR query in this section. We provide two optimal 

algorithms for computing an SR query. In Section 4.4.1, we calculate the query-relevant area and the query-

relevant group for an SR query. This part is the same for both optimal algorithms. Then, in Sections 4.4.2 

and 4.4.3, we describe two optimal algorithms, direct and iterative, respectively. After that, in Section 4.4.4, 

we analyze the complexity of our proposed algorithms. Next, in Section 4.4.5, we show the simulation of 

our algorithms for an SR query. Finally, in Section 4.5, we explain in detail the privacy-preserving aspects 

of our work. 

 

In our system, a query requestor (QR) retrieves the required pSSs from relevant users and 

evaluates the SR query. We develop direct and iterative algorithms to find the SR for a source-

destination pair s and d within a distance constraint . 

 

The number of possible routes between a source-destination pair can be huge. Retrieving the pSSs for all 

grid cells that intersect the edges of all possible routes and then identifying the SR would be prohibitively 

expensive. Our algorithms refine the search space and avoid exploring all 
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routes for finding the SR. We present two optimal algorithms: 
 
 

 

1. Direct Optimal Algorithm (Dir OA) 

 

2. Iterative Optimal Algorithm (It OA)  
 
 

 

Dir OA aims at reducing the processing time, whereas It OA increases privacy in terms of the 

number of retrieved pSSs. Though a pSS does not reveal a user’s travel experience (Chapter 

4.5) with certainty, the user’s privacy is further enhanced by minimizing the number of shared 

pSSs with the QR. 
 
 
 

 

4.4.1 Query-relevant Area and Group 
 

 

Query-relevant area Aq. 
 

 

Our algorithms exploit the elliptical and Euclidean distance properties to find the query-relevant area Aq. 

We refine the search area using an ellipse where the foci are at s and d of a query and the length of the 

major axis equals . According to the elliptical property, the summation of the Euclidean distances of a 

location outside the ellipse from two foci is greater than the length of the major axis. On the other hand, the 

road network distance between two locations is greater than or equal to their Euclidean distance. Thus, the 

road network distance between two foci, i.e., s and d through a location outside the ellipse, is greater than . 

The refined search area Aq includes the grid cells that intersect with the ellipse. Aq enables us to select a 

query-relevant group and mitigate unnecessary processing and communication overheads and data 

exposure. 

 
 

 

Query-relevant group Gq. 
 

 

A query-relevant group Gq consists of the users whose KS is 1 for at least one grid cell in Aq. 

After receiving a query, the centralized server sends Gq and the list Mq of knowledgeable 

group members for every grid cell in Aq to the QR. 
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Algorithm 1: Dir OA(s, d,  , N) 
 
 

compute query area(s; d; ; N); 

retrieve query group(Aq); 
 

compute SS(Gq; Mq; Aq); 
  

4  N
00

 refine query area(s; d; ; N
0
; SSq); 

  

5 SR   compute safest route(s; d; ; N
00

; SSq); 
  

6 return SR; 
 
 

 

4.4.2 Direct Optimal Algorithm (Dir OA) 
 
 

 

One may argue that we can simply apply an efficient shortest route algorithm (e.g., Dijkstra) for finding the 

SR by considering the SS instead of the distance as the optimizing criteria. However, it is not possible 

because the SR identified in this way in most of the cases may exceed . 

 

Algorithm 1 shows the pseudocode for Dir OA. The algorithm starts by computing the query-

relevant area Aq and the query-relevant road network N
0
 that is included in Aq. The edges in N 

that go through grid cells in Aq but those cells have not been visited by any user are not included 

in N
0
. Then the algorithm retrieves the query-relevant group Gq and the list Mq of grid cell wise 

knowledgeable group members from the centralized server. In the next step, the algorithm 

retrieves the pSSs from the group members and aggregates them to compute the SSs of the grid 

cell in Aq using Function compute SS. 
 

 

After having the SSs for the grid cells in Aq, the algorithm further refines N
0
 to N 

00
 by pruning 

the edges that are guaranteed to be not part of the SR (Line 4). The idea of this pruning comes 

from [4], where edges with the lowest SSs are incrementally removed until s and d become 

disconnected. To reduce the processing time, we exploit binary search for finding N
00

. 

Specifically, we compute the mid-value mid of the lowest and the highest SSs, i.e., S and S, and 

remove all edges that have SS lower than or equal to mid. Note that an edge can have more than 

one associated SSs as it can go through multiple grid cells. For binary search, we consider the 

minimum of these SSs as the SS of the edge. After removing the edges, we find the shortest route 

between s and d and check if the length of the shortest route satisfies . If no such route exists, then 

the removed edges are again returned to N
00

, and the process is repeated by setting the highest SS 

to mid. On the other hand, if such a route exists, the process is repeated by setting the lowest SS to 

mid + 1. The repetition of the process ends when the lowest SS exceeds the highest one. 

 

Finally, Dir OA searches for the SR within in N
00

 using Function compute safest route. 
 

3  SSq 

2  Gq; Mq 

1  N
0
; Aq 
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Dir OA starts the search from s and continuously expands the search through the edges in the 

road network graph N
00

 until the SR is identified. The algorithm keeps track of all routes 

instead of the safest one from s to other vertices in N
00

 as it may happen that expanding the 

SR from s exceeds before reaching d. 
 

 

The compute safest route function uses a priority queue Qp to perform the search. Each entry of 

Qp includes a route starting from s, the road network distance of the route, the distance associated 

with each SS in the route. The entries in Qp are ordered based on the safety rank, i.e., the top entry 

includes the SR among all entries in Qp. Initially, routes are formed by considering each outgoing 

edge of s. Then the routes are enqueued to Qp. Next, a route is dequeued from Qp and expanded 

by adding the outgoing edges of the last vertex of the dequeued route. The formed routes are again 

enqueued to Qp. The search continues until the last vertex of the dequeued route is d. While 

expanding the search we prune a route if it meets any of the following two conditions: 
 
 
 

 

1. If the summation of the road network distance of the route and the Euclidean distance 

between the last vertex of the route and d exceeds . 

 
2. If the road network distance of the route exceeds the current shortest route distance of 

the last vertex from s. 

 
 
 

Both pruning criteria guarantee that the pruned route is not required to expand for finding the SR. The 

current shortest route in the second pruning condition for a vertex v from s is determined based on the 

distances of the dequeued routes whose last vertex is v. Since the dequeued routes to v are safer than a 

route that has not been enqueued yet, the route can be safely pruned if its length is greater than the 

current shortest route’s distance. 

 
 

 

4.4.3 Iterative Optimal Algorithm (It OA)  
 

 

It OA enhances user privacy by reducing the shared pSSs with the QR as it does not need to 

know the SSs of all grid cells in Aq. Algorithm 2 shows the pseudocode for It OA. Similar to 

Dir OA, It OA computes N
0
, Aq, Gq, and Mq. It OA does not apply the binary search to 

further refine N
0
 as it avoids retrieving the pSSs of all grid cells in Aq. It OA gradually 

retrieves the pSSs from the group members only for the grid cells that are required for finding 

SR. Another advantage of It OA is that it only involves those group members who know 

about the required grid cells. 
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 Algorithm 2: It  OA(s, d,  , N)  
     

1 

  
N

0
; Aq compute 

  
query 

  
area(s; d; ; N); 

 
       

2 
  Gq; Mq retrieve  query  group(Aq);  
     

3   SSq ;, Qp    ;, v   s;  
4 while v! = d do  

5 Aq
0 

find  required  cells(v; N
0
; Aq; SSq); 

  

6 SSq SSq 
S

 compute 
 
SS(Gq; Mq; Aq

0
);  

7 SR   get safest route(v; N
0
; SSq; Qp); 

  
8 v   get last vertex(SR);  
 

9 return SR; 

 

 

It OA iteratively searches for the SR in N
0
 using a priority queue Qp like Dir OA. It OA expands the search 

by exploring the outgoing edges of v. Initially v is s and later v represents the last vertex of the dequeued 

route from Qp. In each iteration, It OA identifies the grid cells in Aq
0
 through which those outgoing edges 

pass (Function find required cells), and computes their SSs by retrieving pSSs from the group members 

(Function compute SS). Next, using Function 
 

get safest route, It OA forms the new routes by adding the outgoing edges of v at the end of the last 

dequeued route, and enqueues them into Qp if they are not pruned using the conditions stated for Dir 

OA. At the end, the function dequeues a route from Qp for using that in the next iteration. The search 

for SR ends if the last vertex of the dequeued route is d. 

 

It OA increases the communication frequency of the QR with the relevant group members. To mitigate this 

issue, we introduce a parameter Xit that trades off between the communication frequency and the number 

of pSSs shared with the QR. For Xit = 1, the algorithm considers only the outgoing edges of the last vertex 

v of the dequeued route for identifying the grid cells for which the pSSs will be retrieved. For Xit > 1, the 

algorithm repeats the process Xit times by considering the outgoing edges of the last vertices of the newly 

formed routes. While doing 
 

so, the algorithm applies the first and second pruning techniques where applicable. We decide the 

value of Xit in experiments. Please note that the algorithm do not collect the pSSs of nearby edges 

if the SSs of the immediate edges to be expanded are known. 
 
 
 

 

4.4.4 Complexity Analysis 
 
 
 

The compute safest route function in Dir OA algorithm can be drawn as a tree where the source node is the 

root and the destination node is in the last level. If the average branching factor is b 
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and the average depth of a route from s to d is p, then Qp will be dequeued 1 + b + b
2
 + : : : + b

p
 times. The 

maximum possible number of elements at a time in Qp is b
p
. Therefore, if a binary min heap is used for Qp, 

the runtime complexity will be O(b
p
 log(b

p
)) which is O(b

p
 p log b). Since we utilize two pruning 

techniques due to which the average depth reduces, the complexity becomes O(b
p=r pr log b), where r = r1 + 

r2. The factors r1 and r2 represent the effects of our first and second pruning techniques, respectively. In It 

OA, edges are expanded till Xit depth along with the two pruning techniques in Function find required cells, 

whose runtime complexity is O(b
X

it

=r0
). Here, r

0
 = r1

0
 + r2

0
; r1

0
 and r2

0
 represent the effect of our first and 

second pruning techniques in Function find required cell, respectively. Thus, the runtime complexity of It 

OA is 
 

p + 
X

it p 

O(br r
0
 r log b).  

 
 

 

4.4.5 Simulation 
 
 
 

In this section, we go through the simulations of Dir OA and It OA algorithms in detail. We 

exhibit the simulations for the same small road network and the same SR query. The road 

network and the SR query both are shown in Figure 4.4. The source and destination locations 

of the SR query for the simulation are highlighted in blue. We assume the distance constraint 

is 36 km. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.4: A small road network and an SR query for showing the simulations of Dir OA and 

It OA 
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(a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(c) 
 

Figure 4.5: Simulation of Dir OA  
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(d)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(e)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(f) 
 

Figure 4.5: Simulation of Dir OA  
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(g)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(h)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(i) 
 

Figure 4.5: Simulation of Dir OA  
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(j) 
 

Figure 4.5: Simulation of Dir OA  
 
 

Simulation of Dir OA  
 
 
 

The simulation of computing the given SR query using Dir OA is demonstrated in detail 

through Figures 4.5 and 4.6. In Figure 4.5, we simulate up to Line 4 of Algorithm 1, and we 

simulate the details of Line 5 in Figure 4.6. 
 

 
In Dir OA, the query is forwarded to the central server. The query-relevant area for the given SR query 

is computed by the central server. For this, the road network is refined via an ellipse where the foci are 

at s and d, and the length of the major axis is 36 km, which is the distance constraint. The ellipse is 

shown in Figure 4.5a. We only include the edges of the road networks that fall inside the ellipse into 

the query-relevant area. This query-relevant area is shown in Figure 4.5b. The grid cells of the query-

relevant area must include at least one edge of the query-relevant area. Those grid cells are shown in 

Figure 4.5c. 
 

 

After computing the query-relevant area, the query-relevant group for this query is computed. The query-

relevant group includes the users who know about the grid cells included in the query-relevant area. The ids 

of the group members who know about each grid cells included inside the query-relevant area are shown in 

Figure 4.5c. For example, users u1 and u2 know about the grid cell that includes the source. From the 

Figure, it is evident that the query-relevant group for this query includes four users: u1, u2, u3, and u4. The 

central server sends the ids of the group members to the QR. After that, all computations take place inside 

the QR’s device. 

 

To compute the SSs of the grid cells of the query-relevant area, the QR collects the pSSs of the query-

relevant group members. The computed SSs are illustrated in Figure 4.5d. To keep 
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the simulation simple, we set S = 2. We represent five levels of safety with five colors in the figure. The 

number against each edge represents the length of the edge. The SSs of the edges are symbolized through 

colors in Figure 4.5e. Please note that one edge can have multiple SSs. 

 

After computing the SSs, the search space is refined through the binary search. For this binary search-based 

refinement, Dir OA first computes the shortest path from s and d shown in Figure 4.5f through a dotted red 

line. The length of the shortest path is 28 km. This information means that there is at least one route from 

source to destination within the distance constraint. After that, it computes the mid-value mid of the safety 

score range: [low; high]. Here, low = 2, 
 
 

high = +2, therefore, mid = = 0. It removes all edges with SSs less than zero. The  

 

resulting graph is shown in Figure 4.5g. It again computes the shortest path from s to d in the 
 

resultant graph and finds the shortest path of length 28 km as shown in Figure 4.5h. The shortest 
 

 

 

 

 

 

 

 

 

 

 

 
path length is less than the distance constraint, 36 km. From this, we can infer that the source and destinations are still connected. Therefore, it updates low to 0 and recompute mid = 

0+2
2 = +1. It removes all the edges with SSs less than +1 and gets the resulting graph shown in Figure 4.5i. When Dir OA computes the shortest path from s to d in this graph, it cannot find any path. It means that the source and destination are disconnected now. 

Therefore, it brings back the edges that were removed last time and updates high to +1. Figure 4.5j exhibits the updated graph after bringing back the removed edges. We recompute mid = = 0 which is equal 

 

to low. Therefore, Dir OA terminates the binary search-based pruning. It has removed all the 

unnecessary edges at this point. The safest route is computed in this refined graph as shown in 

Figure 4.5j. 
 

 

After refining the search space, Dir OA computes the SR. To compute the SR from the refined 

graph, it starts exploring from the source and continues until it reaches the destination. A safety-

based priority queue is utilized for storing the formed routes; thus, the safest route is always on the 

top of the queue. In Figure 4.6, the details of this exploration are shown. In the figure, the 

enqueued routes are shown based on the order of the safety inside the queue for clarity. The 

currently dequeued route is made bold and the last vertex of that route is circled red. The edges’ 

colors represent the safety levels shown in Figure 4.5j. Following, we describe the detailed steps 

sequentially: 
 
 

 

1. First, Dir OA enqueues the source s in a queue. When it removes the top of the queue, s 
 

is dequeued. The algorithm forms new routes with the outgoing edges of s (s ! a) and 

enqueues them (Figure 4.6a). 

 
2. Then, this algorithm dequeues the route s ! a from the top of the queue. It keeps track of the fact that 

a can be reached from s with a safe route of length 5 km. It forms new routes 
 

0+1 

2 

2+2 

2 
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s ! a ! b and s ! a ! c. The route s ! a ! b is enqueued. The route s ! a ! c of length 11 km 

is pruned as 11 + euclidean dist(c; d) = 11 + 26 = 37 km, which is greater than the 

distance constraint, 36 km (pruning condition 1) (Figure 4.6b). 
 
 

3. After that, Dir OA dequeues s ! a ! b from the top of the queue and keep track of this 

route’s length, 6 km. It forms two new routes s ! a ! b ! e and s ! a ! b ! f, and enqueues 

them (Figure 4.6c). 

 
4. Next, the top of the queue is removed, and the route s ! a ! b ! f is dequeued. The length, 

8 km, is tracked in vertex f. The algorithm forms two routes s ! a ! b ! f ! g and s ! a ! b ! 

f ! h and enqueues them (Figure 4.6d). 
 

5. Again, the top of the queue is removed, and the route s ! a ! b ! f ! g is dequeued. The length of 

this dequeued route, 13 km, is tracked in vertex g. Dir OA forms two new 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 
Figure 4.6: Simulation of Dir OA (continued)  



4.4. QUERY EVALUATION 34 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(d)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(e) 
 

Figure 4.6: Simulation of Dir OA (continued)  
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(f)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(g)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(h) 
 

Figure 4.6: Simulation of Dir OA (continued)  
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(i)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(j)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(k) 
 

Figure 4.6: Simulation of Dir OA (continued)  
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(l)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(m)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(n) 
 

Figure 4.6: Simulation of Dir OA (continued)  
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(o)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(p) 
 

Figure 4.6: Simulation of Dir OA (continued)  

 

routes s ! a ! b ! f ! g ! e and s ! a ! b ! f ! g ! i and enqueues them (Figure 4.6e). 
 

 

6. Dir OA removes the top of the queue over again, and the route s ! a ! b ! f ! h is dequeued. It 

tracks the dequeued route’s length, 13 km, in vertex h. It forms two new 

routes s ! a ! b ! f ! h ! j and s ! a ! b ! f ! h ! l, and enqueues them (Figure 4.6f). 
 

 

7. Furthermore, the route s ! a ! b ! f ! h ! j is dequeued from the top of the route, and its 

length, 14 km, is tracked in vertex j. The algorithm forms two new routes 
 

s ! a ! b ! f ! h ! j ! i and s ! a ! b ! f ! h ! j ! m and enqueues them (Figure 4.6g). 
 
 

 

8. Following that, Dir 
 
OA dequeues s ! a ! b ! f ! g  ! i from the top  

of the queue, and tracks its length, 19 km, in vertex i. It forms two new routes 
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s ! a ! b ! f ! g ! i ! g and s ! a ! b ! f ! g ! i ! j. The first newly formed route is pruned 

because it is not a simple route. Moreover, the second one is also pruned; because the 

length of the second newly formed route is 24 km, however, we observe that vertex j 

has been reached by a safer route of a smaller length, 14 km, already (pruning condition 

2) (Figure 4.6h). 

 

9. Dir OA removes the top of the queue again and retrieves s ! a ! b ! f ! h ! j ! i. It prunes 

the newly formed route s ! a ! b ! f ! h ! j ! i ! g of length 25 km because vertex g has 

been reached by a safer route of length 13 km (Figure 4.6i). 

 
10. The algorithm dequeues s ! a ! b ! f ! g ! e from the top of the queue and tracks the 

length 15 km in the vertex e. However, it cannot enqueue the newly 
 

formed route s ! a ! b ! f ! g ! e ! c of length 17 km because 17 + euclidean dist(c; d) = 

17 + 26 = 43 km exceeds the distance constraint 36 km (Figure 4.6j). 

 
11. The algorithm dequeues s ! a ! b ! e from the top of the queue and updates the tracked 

length to 11 km in vertex e. It cannot enqueue the newly formed route 
 

s ! a ! b ! e ! c due to pruning condition 1, and s ! a ! b ! e ! g due to pruning condition 2 

(Figure 4.6k). 

 
12. After that, s ! a ! b ! f ! h ! l is dequeued from the top of the queue and the tracked 

length is set to 19 km in vertex l. Dir OA cannot enqueue the newly formed route s ! a ! 

b ! f ! h ! l ! p because of pruning condition 1 (Figure 4.6l). 
 

13. After that, it dequeues s ! a ! b ! f ! h ! j ! m from the top of the queue and sets the 

tracked length to 21 km in vertex m. It enqueues the two newly formed route 
 

s ! a ! b ! f ! h ! j ! m ! d and s ! a ! b ! f ! h ! j ! m ! k (Figure 4.6m). 
 

 

14. Next, it dequeues s ! a ! b ! f ! h ! j ! m ! k from the top of the queue and sets the tracked 

length to 24 km in vertex k. Dir OA enqueues the newly formed route s ! a ! b ! f ! h ! j 

! m ! k ! n to the queue (Figure 4.6n). 
 

15. Then, it dequeues s ! a ! b ! f ! h ! j ! m ! k ! n from the top of the queue and sets the 

tracked length to 31 km in vertex n. It enqueues the newly formed route s ! a ! b ! f ! h ! 

j ! m ! k ! n ! d to the queue (Figure 4.6o). 
 

16. Finally, this algorithm dequeues the route s ! a ! b ! f ! h ! j ! m ! k ! n ! d of 34 km from 

the top of the queue and observes that we have reached destination d within distance 

constraint. Therefore, this is the SR of the given query (Figure 4.6p). The computation 

ends here. 
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Simulation of It OA  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(c) 
 

Figure 4.7: Simulation of It OA  
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(d) 
 

Figure 4.7: Simulation of It OA  

 

We shall simulate It OA to compute the SR of the given query here. Line 1 and 2 of Algorithm 2 

are demonstrated through Figures 4.5a- 4.5c. Like the direct algorithm, the iterative algorithm 

refines the search space elliptically (same as Figures 4.5a and 4.5b) and computes the query-

relevant group u1; u2; u3; u4 (same as Figure 4.5c). However, it does not retrieve pSSs at once. 

That is also why it does not perform the binary search-based pruning; it avoids collecting 

unneeded pSSs. In Line 3 to 8, It OA expands the search from the source using a priority queue 

based on safety. We illustrate this expansion of search in detail through Figure 4.7 and describe it 

in the following. 
 
 

 
1. The search starts from the source s. First, s is enqueued in the queue. After that, the top of the queue 

is removed, and s is dequeued. To expand from s, we need to know the SSs 

of the edge s ! a. Therefore, It OA retrieves the pSSs of the grid cells that intersects 

with the edge s ! a and computes the SSs (Figure 4.7a). After that, the route s ! a (Figure 

4.7b) is enqueued. 

 
2. The top of the queue is removed again, and thus, the route s ! a is dequeued. To expand 

from vertex a, It OA needs to know the SSs of the edges a ! b and a ! c. However, 

according to pruning condition 1, s ! a ! c will be pruned; thus, it only retrieves the pSSs 

of grid cells of the edge a ! b and computes the SSs (Figure 4.7c). Next, this algorithm 

enqueues the route s ! a ! b (Figure 4.7d). 

3. This process continues until the destination is reached.  
 
 
 
Computing the safest route in this way can incur high communication costs. Therefore, while 

expanding a vertex v, It OA computes the SSs of the outgoing edges of v up to depth Xit to 
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Figure 4.8: Simulation of Xit 
 
 

reduce the communication cost. This has been illustrated in Figure 4.8, where the edges whose 

SSs are computed are colored in shades of blue and pink. When expanding from vertex v, if 

Xit = 1, then the algorithm computes the SSs of the edge s ! a. If Xit = 2, then it computes the 

SSs of the edges s ! a, a ! b, a ! c. If Xit = 3, then it computes the SSs of the edges s ! a, a ! b, a 

! c, b ! d, b ! e, and c ! e. And if Xit = 4, then it computes the SSs of the edges s ! a, a ! b, a ! c, 

b ! d, b ! e, c ! e, d ! f, d ! g and e ! g. However, if some of the edges can be exempted from 

expanding due to pruning conditions 1 and 2, then those edges’ SSs are not computed. 
 
 
 

 

4.5 Privacy Analysis 
 
 

 

In this section, we empirically prove that our system preserves privacy. We also highlight the 

privacy-preserving features of our safe route planning system. Section 4.5.1 provides the proof 

that our system maintains privacy. We discuss other privacy-enhancing measures that we have 

taken to protect the sensitive data of users in Section 4.5.2. 
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4.5.1 Privacy Guarantee 
 
 
 
Our solution ensures that an unsafe event type that a user faces cannot be inferred from the user’s pSSs and KSs. 

A KS does not reveal the frequency and the time of the user’s visits (event) in an area. It only discloses whether 

the user visited an area or not. Thus, even if the adversary knows that an unsafe event occurs at a grid cell, the 

user’s KS for the grid cell does not provide any clue for the adversary to associate the unsafe event with the user 

and reverse engineer the user’s pSS. 

 

Quantification model parameters like the impact of an event type ( ), recency (rd and d), 

frequency, and the distance between the grid cell location and the event location (dist) 

contribute to the computation of pSSs based on the events that a user has encountered (please 

see Section 4.2). The following lemma shows the condition required for hiding an unsafe 

event type that a user encounters from others. 

 

Lemma 1. Given a user’s revealed pSS for a grid cell and the values for quantification model 

parameters: , rd and d, the unsafe event type that a user encounters cannot be inferred from 
 

if (i) more than one event combinations cause the model to result in and (ii) every unsafe 

event type is not included in at least one event combination that result in . 

 

 

Proof. The contributing factors of the model parameters in computing a pSS change with the type, location, 

time and frequency of an event in an event combination, where an event combination consists of any 

number of events. Since an adversary does not know about any unsafe event faced by the user, the 

adversary cannot identify the actual event combination that results in for the user and cannot infer the user’s 

unsafe event type from the combination. Again, if an unsafe event type is included in all possible event 

combinations that result in then the adversary can easily identify the user’s unsafe event type. However, the 

second condition ensures that an unsafe event type is not included in at least one event combination that 

results in and thus, does not allow the adversary to infer the user’s unsafe event type from .  

 

 

Thus, our system can refrain others from knowing the unsafe event type that a user encounters 

by selecting the values for the model parameters in a way that satisfies the condition of 

Lemma 1 for every possible pSS in the range [ S; S]. 

 

Empirical method. We show an empirical method that can validate whether the chosen values for the model 

parameters are appropriate for ensuring privacy. Since an adversary does not know a user’s events, it is 

sufficient to validate for any event setting. Without loss of generality, we consider the events of 3 days, 

where one event occurs per day in a grid cell. We allow dist 



4.5. PRIVACY ANALYSIS 44 
 

 

for an event to be either 0 or 1. For every pSS, we compute the possible event combinations that result 

in the pSS and checks whether the lemma condition is satisfied. For simplicity, we assume that there 

are three event types with impact f 3; 5; +2g, rd = 0:5 and d = 1. For the above-mentioned event setting 

and parameter values, we find that the condition of Lemma 1 is satisfied for every pSS, and the number 

of event combinations per pSS is in the range [304k, 4724k] and the average is 2869k. We leave the 

detailed study for generating the rules for selecting the parameter values that satisfy Lemma 1 as our 

future work. 

 
 

 

4.5.2 Privacy-Enhancing Measures 
 
 
 

In our system, the following measures further enhance the privacy of user data related to the 

user’s travel experience. 

 

• We refine the search space and minimize the number of shared pSSs with the QR. Since 

a negative pSS reveals that a user faced an unsafe event (not the type), reducing the 

number of shared pSSs enhances user privacy. 
 

• In our system, a user shares pSSs with the QR instead of a centralized server (CS). A 

CS is fixed and thus, a user would not feel comfortable to share all pSSs with the CS, 

whereas a QR changes with a query and the user only shares limited query-relevant 

pSSs with the QR. 
 

• The user can choose not to share her KSs for sensitive areas with the CS. 
 

• The system restricts a QR if the QR shows suspicious behaviours, such as sending 

queries frequently or queries with source and destination locations distributed far apart 

in the road network. 

 

Our solution does not need to store the event data. It transforms a user’s events to pSSs and 

stores them on the local device. Thus, an adversary can only retrieve a user’s pSSs by 

applying a malicious attack on the local device. It is not possible to infer the unsafe event type 

that the user encounters from the pSSs. 



 
 
 
 
 
 
 
 
 
 

 

Chapter 5 
 
 
 

 

Experiments 
 
 
 
 
 
 

We evaluate our safe route planner on real datasets with experiments in both simulated and real 

environments. Since there is no solution that can find the SRs in our problem setting (please see 

Chapter 3), we evaluate the performance of our query processing algorithms by varying a wide 

range of parameters. Finally, We compare our solution with the centralized model and show the 

impact of the missing data on the quality of the SRs. 

 

We discuss the datasets and parameters in Section 5.1. We evaluate the performance of our query processing 

algorithms in Section 5.2. In Section 5.3, we compare our work with the centralized model. Then, we evaluate 

the effectiveness of the SRs with respect to the shortest routes in Section 5.4. Finally, in Section 5.5, we discuss 

the effects of datasets on the experiment result. 

 

Table 5.1: Datasets 
 

Dataset 

#Users #Checkins #Crimes 

Road Network 
   

(30 days) #Nodes #Edges    
      

Chicago (C) 3554 60922 30843 28468 74751 
      

Beijing (B) 87 - - 33923 75131 
      

Philadelphia (P) 2275 26923 82363 24800 59987 
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5.1 Experiment Setup 
 
 

 

5.1.1 Datasets 
 
 
 

We use datasets of three cities: Chicago (C), Philadelphia (P) and Beijing (B). To simulate the 

environment, for each dataset, we need the road network data, the crime data, and the users’ visit data 

to different areas. We use OpenStreetMap [80] to download the road networks. We use the real crime 

data of Chicago [81] and Philadelphia [82]. For Beijing, instead of crime data, only the locations of 

crime hotspots [83]. 

 

For the users’ visit data to different areas, we use the day-to-day Foursquare check-in dataset [84, 

85] for Chicago and Philadelphia, and real trajectory data of users for Beijing [86]. We use crime 

and check-in data of the same 6 months for Chicago and Philadelphia and one year trajectory data 

of 87 users for Beijing. To increase the number of events, we map these data to one month (30 

days), otherwise, their effects will not be visible due to decay. All of the experiments are run on 

the 31st day. The details of these datasets are summarized in Table 5.1. We use datasets of three 

cities to show the performance of our solution irrespective of the variation in the number of users, 

check-in and crime data. 

 
From check-in data, we generate the users’ visits. Specifically, we take two consecutive check-ins of a user 

in a day and generate an elliptical area, where the foci of the ellipse are located at the check-in locations and 

the length of the major axis equals to 1.25 times the distance between two check-in locations. We consider 

that the user visited the grid cells in the elliptical area. On the other hand, the user trajectories in Beijing 

directly provide the grid cell area visited by the users. Since most of the trajectory data is located around the 

center of Beijing city, we consider the area ([39.7, 40.12, 116.1, 116.6]) around the center of Beijing for our 

experiments. 

 

We normalize the crime count in the range [0,1] per grid cell for each day. This count represents 

the crime probability of each grid cell. For each grid cell, according to the crime probability, we 

randomly associate the crime events with the visits of the users. Thus, the probability of 

experiencing crime in a grid cell increases for a user who visits the cell multiple times. The visits 

of the users that are not associated with any crime are considered safe events. The pSSs are 

calculated based on the model of Chapter 4.2. We choose the model parameters in a way that 

satisfies Lemma1 for every pSS. 
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 Table 5.2: Parameter settings   
     

 Metric Range Default  
     

 Query Distance, dq (km) 1,2,3,4,5 5  
     

 Grid Size, dG 300, 500, 800 500  
     

 Distance Constraint, 1.1, 1.2, 1.3, 1.4, 1.5 1.2  
     

 Confidence Level Parameter, z (%) 25, 50, 75, 100 50  
     

 

5.1.2 Parameters 
 
 
 

We show the parameters’ default values and ranges in Table 5.2. Similar to [4], we vary the query 

distance dq, the Euclidean Distance between s and d, from 1 to 5. The parameter dG represents the grid 

size: dG dG. The range of dG changes the grid cell area within 30x30 to 150x150 square meters and we 

vary dG to show the impact of the grid resolution (and the grid cell area) on our solution performance. 

The distance constraint = R distshortest, where distshortest represents the shortest road network distance 

from s to d and R represents the ratio of the allowed road network distance of the safest route and the 

road network distance of the shortest route from s to d. We keep R at most 1.5 as a user may not feel 

comfortable travelling longer than 1.5 times of the shortest distance. The parameter z is used for 

confidence level (Section 5.3.2). For each experiment, we set S = 10 because a smaller S does not 

capture the variation of safety and a large S increases the computation cost by adding insignificant 

detail. We generate 100 safest route queries randomly and take the average performance. Our system is 

written in Java. We run our experiments on an Intel Core i7-7770U 3.60 GHz CPU and 16GB RAM 

machine. 

 
 
 
 

5.2 Comparison of Query Evaluation Algorithms 
 
 

 
We provide two optimal query processing algorithms, Dir OA and It OA, respectively. We compare the 

algorithms based on runtime, communication frequency per involved group member (comm. freq.), and the 

total number of revealed pSSs. The runtime of a query consists of the time to calculate the distance 

constraint from R and the steps shown in the pseudocodes (Algorithm 1 or 2). We assume the pSSs are 

retrieved parallely from the group members. The KSs and pSSs are updated in offline (i.e., when a user’s 

device is idle), not during query evaluation. Therefore, they do not affect the query response time. In 

addition, note that the fewer the number of revealed pSSs, the better the privacy is. We append the initial 

letter of the dataset 
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after the algorithm name with a hyphen in Figure 5.2. 
 
 

 

5.2.1 Choosing the default value of Xit 

 

Runtime (sec.)  
Comm. Freq.  

%pSSs Revealed  

 

Runtime (sec.)  
Comm. Freq.  

%pSSs Revealed  

 

Runtime (sec.)  
Comm. Freq.  

%pSSs Revealed   
   100 

200   
80    

150   
60    

100   40 
   

50   20 

0   0 

1 30 50 80 100 150 

 
 

   300 

   250 

   200 

   150 

   100 

   50 

   0 

1 30 50 80 100 150 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

1 30 50 80 100 150 

X
it 

X
it 

X
it 

(a) Chicago (b) Beijing (c) Philadelphia 
 

Figure 5.1: Choosing default value Xit = 50 based on the effects of Xit 

 

The parameter Xit significantly impacts the performance of It OA. Figure 5.1 shows clear trade-offs among 

performance metrics for Chicago. The runtime decreases (desirable), the communication frequency 

decreases (desirable) and more pSSs are revealed (undesirable) with the increase of Xit. Thus, we have to 

carefully choose a value for Xit so that the communication frequency is low, and the runtime and the 

number of revealed pSSs are reasonable. From the figure, it is clear that there is a saturation point after 

which all three performance metrics do not change much. Therefore, we choose Xit = 50 as the default 

value for all datasets because we see a sharp decrease in the communication frequency and then for Xit >= 

50 there is not much change. Please note that Xit can be used as a regulator to control the runtime, 

communication frequency and data exposure. In scenarios where privacy matters more, we can choose a 

lower value for Xit and in scenarios where the communication frequency matters, we should choose the 

value of Xit for which communication frequency reaches a saturated value. 
 
 
 

 

5.2.2 Comparison of Dir OA and It OA  
 
 
 

Figures 5.2a- 5.2c show that It OA reveals around 50% of the revealed pSSs in Dir OA. The number 

of revealed pSSs increases with an increase of and dq because the length of SR 
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Figure 5.2: Dir OA vs. It OA in terms of privacy (#pSSs revealed) and computation cost 

(comm. freq. and runtime) for varying , dq and dG  
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increases. The number of revealed pSSs also increases for large dG because the number of 

grid cells through which the route passes increases. Please note that the number of revealed 

pSSs increases more rapidly for Dir OA than that of It OA. 
 

 

Figures 5.2d- 5.2f compare Dir OA and It OA in terms of communication frequency. The communication 

frequency is always 1 for Dir OA as the group-members are requested once to provide pSSs. For It OA, the 

communication frequency is on average 15 times; it can be as high as 45:2 times (Philadelphia dataset). To 

check how reasonable this is, we ran an experiment: a message is sent from one device to another using the 

Firebase Cloud Messaging service and a reply from the recipient is received. This is a cycle, and we ran 500 

such cycles which took a total of 86641 ms, so on average, 173:28 milliseconds per cycle. Therefore, 45:2 

communications take 45:2 173:28 milliseconds 8 seconds, which is acceptable. The communication 

frequency for It OA increases with the increase of , dq and dG. For and dq, the reason behind the increased 

communication frequency is that the route length increases, whereas, for dG, the reason is that the number 

of required grid cells to compute the SR increases. 
 

 

Figure 5.2g- 5.2i compare Dir OA and It OA in terms of runtime. The runtime of Dir OA is 

very low (on average 0:3 second) for all datasets. Though the runtime of It OA increases with 

the increase in , dq and dG, they are reasonable (on average 0:54 second). Therefore, we 

conclude that both Dir OA and It OA provide practical solutions for the SR queries and show 

a trade-off between runtime and privacy. 
 
 
 
 
 

5.3 Comparison with the Centralized Model 
 
 

 

A centralized architecture assumes that users share their travel experiences with a centralized 

server (CS) without considering privacy issues. However, in reality, this does not happen and 

the centralized solution has missing data. We investigate the impact of missing data on the 

quality of SRs. 

 

As mentioned before, there exists no solution for finding SRs in our problem setting. Thus, for this 

experiment, we adopt our solution for the centralized model, where users share pSSs with the CS. We 

compare the accuracy and confidence level of our system with the centralized architecture. We vary the 

percentage of available data for the centralized model as 50%, 60%, 70%, 80%, and 90% and denote them 

with C50, C60, C70, C80, and C90, respectively. 
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Figure 5.3: Accuracy loss in the centralized model for missing data. C50 means 50% of actual 

data is present. 
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5.3.1 Accuracy 
 
 
 

In our system, users do not hesitate to share their pSSs as there is no fear of privacy violation. Thus, our 

system always provides the actual SR. We measure the accuracy as the percentage of the answers that are 

within the top-5 SRs. Figure 5.3 show that the average accuracy increases with an increase in user data 

(25.4% for C50 and 49.9% for C90). Even 10% missing data causes significant (50.1%) accuracy loss. 

Hence it is important to adopt privacy-preserving solution to find the SRs. For the same amount of available 

data, the accuracy decreases with the increase of 
 

and dq, because the number of possible routes from s to d increases. The accuracy does not 

depend on dG (Figures 5.3c, 5.3f, 5.3i). 
 
 
 
 

5.3.2 Confidence Level 
 
 
 
The confidence level of a query answer expresses its reliability from the viewpoint of a QR. In our 

case, the more the number of users supports an answer, the more reliable it is to the QR. For a 

route R, its confidence level CL(R) is expressed as follows. 

 z  P ( )   

CL(R) = 100   
c

i 

l
i   

m
ci  

    

    dist R  m 
 

 

Here, li is the length of R that crosses grid cell ci and mci is the number of group members who 

know ci. Intuitively, the confidence level indicates the average percentage of query-relevant group 

members who know each unit length of the route. The QR might be satisfied when on average z% 

members among the m query-relevant group members know about each unit length. Thus, we 

include z in the definition of the confidence level. The parameter z is varied within f25; 50; 75; 

100g to cover the full range. 

 
Figures 5.4, 5.5 and 5.6 show that the confidence level for our system is always the highest (on 

average 75.7%). Since both Dir OA and It OA provide optimal solutions, their confidence level is the 

same. In the centralized model, confidence level predictably decreases with the increase of missing 

data. confidence level decreases when the SRs become longer (for and dq). No particular trend is 

visible for dG. Philadelphia dataset shows same trends as Chicago. The CL decreases with the increase 

in dG as the SR contains more cells and ensuring on average 50% (the default value of z is 50) 

knowledgeable users per cell becomes more difficult. For an increase in z, the CL decreases as 

expected. 
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Figure 5.4: Confidence level for our system is higher than that of the centralized model 

(Chicago dataset). 
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Figure 5.5: Confidence level for our system is higher than that of the centralized model 

(Beijing dataset). 
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Figure 5.6: Confidence level for our system is higher than that of the centralized model 

(Philadelphia dataset). 
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5.4 Safest Route versus Shortest Route 
 

 

Dataset K = 1 K=10 K=50 K=100 K=250 K=500 
       

       

Chicago 1.02 3.06 3.06 3.06 3.06 3.06 
       

Beijing 4.76 11.90 13.10 19.05 25.00 27.38 
       

Philadelphia 2.27 2.27 2.27 2.27 2.27 3.41 
       

 

Table 5.3: The percentage of query samples for which top-K shortest routes include the 

respective SRs 
 

Dataset R=1:1 R=1:2 R=1:3 R=1:4 R=1:5 
      

      

Chicago 1.08 1.18 1.27 1.35 1.44 
      

Beijing 1.07 1.15 1.21 1.29 1.36 
      

Philadelphia 1.08 1.19 1.28 1.37 1.45 
      

 

Table 5.4: The actual distance constraint ratio of the lengths between the SR and the shortest 

route 
 
 

In this set of experiments, we evaluate the effectiveness of the SRs with respect to the shortest routes. To 

show that, we run an experiment for 100 queries on default setting (Section 5.1). For each query, we 

compute the top-K shortest routes and among those routes, whose lengths are within distance constraint are 

considered. We compute the safety score of each of those considered routes and match with the safety score 

of SR. Then we check whether any of the top-K shortest routes has the same safety score as that of the 

safest routes. Table 5.3 shows the results of this experiment. When we consider the shortest route (K = 1), 

only 2.7% among them are the SRs. As we increase the value of K, the percentage increases slightly. Even 

for the high value of K = 500, it is only 27%. This is because the consecutive shortest routes (e.g., the third 

and the fourth ones) normally have very small differences in terms of the included roads in the routes. Table 

5.4 shows the actual ratio of the lengths between the SR and the shortest route. Note that this ratio cannot 

exceed the distance constraint ratio R. 

 
 

 

5.5 Effect of Different Datasets 
 
 

 

The datasets in our experiments provide variation in the number of users and road network structure 

and size. The runtime (Figures 5.2g-5.2i) increases for Chicago (3554 users) and Philadelphia (2275 

users) due to more users compared to Beijing (87 users) even though the 
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runtime is still reasonable. Both communication frequency and the number of revealed pSSs are the 

highest for Philadelphia (Figure 5.2), which does not have the highest number of users or road network 

size (Table 5.1). Therefore, these two metrics might have been affected by the road network structure. 

The confidence level is less for Beijing than other datasets (Figure 5.4, 5.5 and 5.6), which shows its 

dependency on the number of users. 



 
 
 
 
 
 
 
 
 
 

 

Chapter 6 
 
 
 

 

Conclusion 
 
 
 
 
 
 

In this thesis, we have developed a novel journey planner for finding SRs with crowdsourced 

data and computation. For this purpose, we developed a realistic safety quantification model, 

provided efficient indexing techniques to store our SSs and KSs, proposed two optimal 

algorithms to find the SRs, and validated the effectiveness and efficiency of our solution 

through extensive experiments. 

 

We proposed the first privacy-preserving system architecture for computing the SRs which enhances 

the privacy of travelers’ sensitive travel information. Our quantification model for transforming a 

user’s travel experience into safety scores is personalized based on the user’s travel parameters like 

frequency and recency of visits. The evaluation of the SR queries using the pSSs of the users improves 

the quality of the query answer. The quantification model is also storage efficient and does not allow 

an adversary to reverse engineer the personalized SS of a user and identify the user’s precise travel 

data. One of our two indexing techniques modifies the R-tree for the efficient storage and fast retrieval 

of pSSs. The other indexing technique also identifies the efficient way to store KSs. 

 

Both of our proposed algorithms: direct and iterative, find the optimal answer to the SR queries. 

Experiments show that our approach can evaluate a query in less than a second. Although the search space 

for finding the SR is huge, our refining techniques enable this faster processing of the SR queries. Both of 

our algorithms aim to protect user privacy by minimizing the number of shared pSSs with others. Our 

iterative query processing algorithm enhances user privacy by not revealing, on average, 50% of the pSSs 

revealed by the direct query processing algorithm. The direct one is better than the iterative algorithm in 

terms of the processing time and communication frequency. To show the credibility of the query answers, 

the query answers in our system come 
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with a personalized confidence level parameter and make the system trustworthy for the users. 
 

 

In experiments, we observe that the data scarcity problem can have a significant impact on lowering 

the quality of SRs. For example, the actual SR is only identified for on average 34% and 38% times 

when a centralized route planner has 30% and 20% missing data, respectively. Thus, protecting the 

privacy of a user’s travel experience is essential to solve the data scarcity problem and ensure the 

quality of the SRs. Our privacy-enhanced solution encourages more users to share their data and 

improves the quality of the SRs. 

 

In the future, this work can be extended by addressing the following issues: 
 
 

 

• An extension of this work could be the safe route planning for flexible destinations and the safe route 

planning for group. In the case of safe route planning for flexible destinations, the user wants to 

reach any one of a set of specified destinations (e.g., a number of branches of a bank or a superstore) 

within distance constraints. In the case of the safe route planning for group, a group of users want to 

meet at a fixed or flexible destination locations within distance constraints. One can use our provided 

direct and iterative algorithms to solve these two problems straightforwardly. However, that would 

require exploring the search space multiple times and incur high processing cost. In the future, more 

efficient algorithms can be designed to solve these two problems in a privacy-preserving way. 

 

• Another extension of this work can adopt a tuning parameter that provides a trade-off 

between safety and length of the route within a distance constraint. The users (e.g. 

vulnerable group) can prioritize safety over length or vice versa by setting the value of 

this parameter. 

 
• In our safety quantification model, we only considered regular events. Future researches 

could incorporate the effects of temporary events (e.g., cricket matches, political public 

meetings etc.) that affect the safety of an area for a limited time in our model. Moreover, 

further studies are needed to analyze the effects of varying the values of the model 

parameters, like S, in different aspects of the SR query and choose the appropriate values 

for these model parameters. Moreover, future studies can be conducted on the feasibility of 

adopting our safety quantification model for the law agency’s safety data, which is not 

personalized. 

 
• Peer-to-peer anonymous communication protocols [87–89] can be utilized to prevent a query 

requestor from collecting pSSs of a single user using multiple queries. However, further 

investigation is needed in the selection of this anonymous protocol. 

 
• We considered the semi-honest adversary model in this thesis. In the future, the safe route 
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planning system for the malicious adversary model can be explored, where the participants 

can send wrong pSSs and collude with each other or the central entity. In addition, existing 

models can be adopted to detect suspicious behaviours of the users and decrease the 

security vulnerabilities of our safe route planning system. 

 

• In the future, a working prototype of our safe route planner can be implemented and its 

usability can be tested in the real environment. This will also allow the measurement of 

the real query processing overhead for finding the SRs. 
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