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                                                        ABSTRACT 

Stability analysis of Jeffery-Hamel similarity solution and its relation to flow in a 

Diverging Channel is studied numerically in this thesis. Numerical results are presented 

for the two-dimensional flow in a wedge separated by an angle 2𝛼 and bounded by 

circular arcs at the inlet/outlet for radial outflow of the fluid. The Physical problem is 

presented mathematically governed by a non-dimensional form of equations with 

appropriate boundary conditions. Hence it is solved by employing the Finite Element 

Method and Hermite-Pad𝑒́ Approximant Method.  

The investigations are reported for different parameters such as Reynolds number, angles, 

and inlet/outlet radius ratio parameter. These results are presented graphically in the form 

of streamlines and velocity profiles. Also, the stability of the solutions is shown by 

pitchfork bifurcation and  𝛼 − 𝑅𝑒 relation for two different kinds of inlet profiles. 

Comparisons with previously published results are performed and the results are found to 

be in excellent agreement. 
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CHAPTER 1 

INTRODUCTION 

Fluid dynamics is a wide branch of science. One of the most basic and well-studied 

models of fluid dynamics is the incompressible viscous fluid model. It is described by the 

system of Navier-Stokes equations. The Navier-Stokes equations form the nonlinear 

system of partial differential equations (PDEs). It is well-known that the Navier-Stokes 

system cannot be solved analytically in the general case. Its analytical solutions are rarely 

available in the literature and have been found only for the very basic problem 

formulations. That is why most of the current research in fluid dynamics is based on the 

computational approach (or on the experimental one). 

This trend can be observed in research on the problem of viscous fluid flow in sectors.   

The flow between two nonparallel walls is common in practical situations. It may be 

considered one of the most important problems in fluid mechanics due to a wide range of 

applications. Viscous, incompressible flow in a two-dimensional wedge, frequently 

referred to as Jeffery-Hamel flow. The first analytical solutions of this problem in a very 

simple formulation were found almost a century ago [1, 2]. Since then, several aspects of 

the problem have been studied and other related problem formulations have been 

considered in the literature [3, 4, 5, 6]; with most of the works used either purely 

numerical methods or both analytic and numerical methods. 

1.1 Overview of Viscous Flows in Sectors and Domains with Corners 

Fluid flows in sectors and domains with corners have a wide range of applications 

including mechanical engineering, aerospace, and water flow in rivers and canals. Such 

flows occur whenever there is a plane corner or a conic apex in the flow domain, or when 

the domain has sector-like or conic outlets to infinity. 
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                                                       Figure 1.1: Flow in a sector 

The mathematical formulation of a problem of flow in sectors has three main 

dimensionless parameters (see Figure 1.1): 

 the sector opening angle 2𝛼, 

 the constant radial volume flux 𝑄, 

 and the Reynolds number 𝑅𝑒. 

There are two types of flow in sectors: 

1) flows due to a source (𝑄 = 1) or a sink (𝑄 = -1) at the corner point  

2) flows with zero net flow rate (𝑄 = 0) due to some disturbance 

The first type of flows is related to so-called Jeffery-Hamel flows and will be discussed 

in Sub-Section 1.1.1 

 

Q 2𝛼 
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1.1.1 Jeffery –Hamel Flows 

Mathematical modelling of flows in sectors has a long history. The first works were done 

independently by Jeffery [1] and Hamel [2] in the beginning of the previous century. They 

considered the problem in the simplest formulation and found a class of 2D steady radial 

flows due to a source or a sink at the corner point. These flows are presently known as 

Jeffery-Hamel flows Rosenhead [7] was the first to give the complete set of solutions to 

the problem of flow in sectors. He gave a classification of flows depending on the opening 

angle 2𝛼 and the Reynolds number 𝑅𝑒.  For each pair of values of (𝛼, 𝑅𝑒) there exists an 

infinity of solutions to the Jeffery-Hamel problem. The majorities of these solutions will 

be of no practical importance as they will be highly unstable.  

The qualitatively different solutions have been classified by Frankel [8] and the most 

common flows are referred to as 𝐼𝐼1, 𝐼𝐼2, 𝐼𝑉1 and 𝑉1. These may be seen sketched 

schematically in Figure 1.2. 

 
Figure 1.2: The Flow regimes 𝐼𝐼1, 𝐼𝐼2, 𝐼𝑉1 and 𝑉1 

(a) (b) 

(c) (d) 

𝐼𝐼1 𝐼𝐼2 

𝐼𝑉1 
𝑉1 
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The different types of Jeffery-Hamel flow exist in different regions of the (𝛼, 𝑅𝑒) plane. 

Frankel [8] gave solutions together with the analysis with bifurcations. It starts at some 

low 𝑅𝑒 solution and a fixed angle 𝛼, continues a solution to 𝑅𝑒 > 0 (net outflow) and 

𝑅𝑒 < 0 (net inflow). However, the problem is non-linear and non-uniqueness of solutions 

at a fixed angle and Reynolds number is common. In this regard, one may be interested 

in those points in the 𝛼 − 𝑅𝑒 plane that correspond to bifurcations of the Jeffery-Hamel 

states. These boundaries are shown schematically in Figure 1.3. Some of the properties 

that the solution possesses on the boundaries presented in Figure 1.3 are useful in this 

work. 

 

Figure 1.3: A Schematic diagram of the 𝛼 − 𝑅𝑒 relation (Frankel [8]) 

The boundary ℬ1and 𝑅𝑒 axis enclose a region in which solution type 𝐼𝐼1 are available as 

denoted by Frankel [8]; these states corresponds to a symmetric flow with a single 

velocity maximum and no reverse flow. The most significant reverse flow solution is ℬ2 

which exists between boundary ℬ2 and ℬ1. The boundary between regions  𝐼𝐼1 and 𝐼𝐼2 is 

𝑅𝑒 

𝛼 

ℬ4 

ℬ5 

ℬ1 

ℬ−1 

ℬ−2 

O 
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given by the equation 𝑅𝑒 = 𝑅𝑒2(𝛼) or 𝛼 = 𝛼2(𝑅𝑒). As  𝛼 → 0 then 𝑅2(𝛼)~4.712/𝛼. 

Similarly, the boundary regions are denoted by 𝑅𝑒 = 𝑅𝑒3(𝛼) or 𝛼 = 𝛼3(𝑅𝑒) and as 𝛼 →

0 then 𝑅𝑒3(𝛼)~5.461/𝛼. 

The Jeffery-Hamel solutions describe a flow in an idealized, infinite, domain rather than 

the practically relevant case of a system of finite streamwise extent. Various studies, both 

numerical and asymptotic, have attempted to relate Jeffery-Hamel solutions to the study 

of flow structure and stability in expanding channels of finite length. Banks et al. [9] 

addressed the spatial stability of symmetric Jeffery-Hamel flows by allowing for 

linearized perturbations suggested by Dean [10]. Their work reported that a loss of 

stability occurs at the pitchfork bifurcation boundary ℬ2. They computed the 

corresponding eigenmode, but only for small or zero Reynolds number for which the flow 

is nonlinear. The work of Goldshitk et al. [11] presented limited results at Reynolds 

numbers for which flow is nonlinear. Later Dennis et al. [12] performed a numerical study 

of the steady flow in a wedge for the ratios of outlet to inlet radius between 7 and 25. 

They examined the effect of imposing a small perturbation across either the inlet or the 

outlet to explore the relevance of Deans mode in a finite domain. They observed the loss 

of stability of symmetric base flow to antisymmetric perturbations but were unable to 

provide a critical Reynolds number, specifying only for that 𝛼 = 𝜋/18, the flow was 

stable for such perturbations for 𝑅𝑒 = 50 and was unstable for 𝑅𝑒 = 100. Numerical 

study of symmetry-broken solutions were located at Reynolds number greater than 

critical Reynolds number 𝑅𝑒𝑐̂ and the bifurcations is a supercritical pitchfork for finite 

domains. 

Both Banks et al. [9] and Sobey et al. [13] identified the boundary ℬ2 as the point at 

which the Jeffery-Hamel solutions provide a good description of the flow in an expanding 

channel. They performed numerical computations and experiments for a finite two- 
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dimensional channel, but only for an expansion ratio (the outlet width divided by inlet 

width) of less than or equal to three. In these short domains, a supercritical pitchfork 

bifurcation was observed to exist numerically and experimentally.  

Hamadiche et al. [14] presented the results of calculations in a wedge of finite length, 

finding a neutral curve for temporal stability in good agreement with ℬ2 for small 𝛼. 

Putkaradze et al. [15] examined the experimental study of the flow in a wedge angle  0.28 

and radius ratio (𝜂) approximately equal to 29. They confirmed that pure outflow solution 

is stable and that is always obtained for 𝑅𝑒 < 𝑅𝑒𝑐̂. Tutty  [16] investigated finite domain 

flows at Reynolds number close to 𝑅𝑒𝑐̂ and observed the existence of a steady solution, 

which at large distances from the inlet appeared to be spatially periodic (on the logarithm 

scale) in the radial coordinate. For values of Reynolds number greater than 𝑅𝑒𝑐̂ suggesting 

some form of instability of the symmetric Jeffery-Hamel solution. For Reynolds number 

less than the critical values ‘steady waves’ were only observed when the inlet geometry 

incorporated a sudden step extension. Tutty [16] interpreted the existence of the wave for 

Reynolds number less than 𝑅𝑒𝑐 the flow becomes unstable. Haines et al. [17] investigated 

the Jeffery-Hamel similarity solution in two-dimensional diverging channel and observed 

that symmetry-breaking pitchfork bifurcation for Re = 94.72. 

1.2 Stability Analysis for Systems   

In a dynamic system, only the solutions of linear systems may be found explicitly. The 

problem is that in general real-life problems may be modeled by nonlinear systems. The 

main idea is to approximate a nonlinear system by a linear one (around the equilibrium 

point). Of course, the behavior of the solutions of the linear system will be the same as 

the nonlinear one. 
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Consider a nonlinear differential equation  

𝑥′(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) 

where 𝑓 is a function mapping ℜ𝑛 × ℜ3 → ℜ𝑛. A point 𝑥̅ is called an equilibrium point 

if there is a specifiec 𝑢̅𝜖ℜ𝑚 such that  

𝑓(𝑥(𝑡), 𝑢(𝑡)) = 0 

Suppose 𝑥̅ is an equilibrium point (with the input 𝑢̅). Consider the initial condition 𝑥(0) =

𝑥̅, applying the input 𝑢(𝑡) = 𝑢̅  for all 𝑡 ≥ 𝑡𝑜, then resulting solutions 𝑥(𝑡) satisfies  

𝑥(𝑡) = 𝑥̅, 

For all 𝑡 ≥ 𝑡𝑜. That is why it is called an equailibrium point or solution 

Consider two-dimentional nonlinear system   

𝑥′ = 𝑓(𝑥, 𝑦), 

𝑦’ = 𝑔(𝑥, 𝑦), 

And suppose that (𝑥̅, 𝑦̅) is a steady state (equilibrium point), i.e., 

𝑓(𝑥̅, 𝑦̅) = 0   and  𝑔(𝑥̅, 𝑦̅) = 0 

Now lets consider small peterbutation from the steady state (𝑥̅, 𝑦̅)  

𝑥 = 𝑥̅ + 𝑢 , 

𝑦 = 𝑦̅ + 𝑣, 

where 𝑢 and 𝑣 are understood to be small as 𝑢 ≪ 1and 𝑣 ≪ 1.  If it moves away, it is 

called unstable equilibrium point, if it moves towards the  equilibrium point, then it is 

called stable equilibrium point. As in scalar equations, by expanding the Taylors series 

for 𝑓(𝑥, 𝑦) and (𝑥, 𝑦); 

𝑢′ = 𝑥′ = 𝑓(𝑥, 𝑦) 

= 𝑓(𝑥̅ + 𝑢,  𝑦̅ + 𝑣) 

= 𝑓(𝑥̅, 𝑦̅) + 𝑓𝑥(𝑥,̅ 𝑦̅)𝑢 + 𝑓𝑦(𝑥̅, 𝑦̅)𝑣 + higher order terms……. 
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= 𝑓𝑥(𝑥̅, 𝑦̅)𝑢 + 𝑓𝑦(𝑥̅,  𝑦̅)𝑣 +higher order terms……. 

Similarly, 

𝑣′ = 𝑦′ = 𝑔(𝑥, 𝑦) 

= 𝑔(𝑥̅ + 𝑢,  𝑦̅ + 𝑣) 

= 𝑔(𝑥̅, 𝑦̅) + 𝑔𝑥(𝑥̅,  𝑦̅)𝑢 + 𝑔𝑦(𝑥̅, 𝑦̅)𝑣 + higher order terms…….. 

= 𝑔𝑥(𝑥̅,  𝑦̅)𝑢 + 𝑔𝑦(𝑥̅,  𝑦̅)𝑣  +higher order terms……… 

Since 𝑢 and 𝑣 are assumed to be small, the higher orders terms are extremely small, we 

can neglect the higher order terms and obtain the following linear systems of equations 

governing the evolution of peturbations 𝑢 and 𝑣, 

[𝑢′
𝑣′

] = [
𝑓𝑥(𝑥̅, 𝑦̅) 𝑓𝑦(𝑥̅, 𝑦̅)

𝑔𝑥(𝑥̅, 𝑦̅) 𝑔𝑦(𝑥̅, 𝑦̅)
]  [

𝑢
𝑣

] 

Where the matrix 𝐽 = [
𝑓𝑥 𝑓𝑦

𝑔𝑥 𝑔𝑦
] is called the Jacobian matrix of the nonlinear system. 

The above linear system for 𝑢 and 𝑣 has the trivial steady state (𝑢, 𝑣) = (0,0) and the 

stability of trivial steady state is determined by the eigenvalues of the Jacobian matrix, as 

follows: 

 Asymptotically stable: A critical point is asymptotically stable if all eigenvalue 

of the Jacobian matrix are negative, or have negative real parts. 

 Unstable:  A critical point is unstable if at least one eigenvalue of the Jacobian 

matrix has positive or has positive real parts. 

 Stable (neutrally stable): Each trajectory moves about the critical point within a 

finite range of distance. 

 Hyperbolic point: The equilibrium is said to be hyperbolic if all eigenvalues of 

the Jacobian Matrix have non-zero real parts. Hyperbolic equilibria are robust (i.e. 

the system is structurally stable). Small perturbations of order do not change 
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qualitatively the phase portrait near equilibria. Moreover, the local phase portrait 

of a hyperbolic equilibrium of a nonlinear system is equivalent to its linearization. 

 Non-hyperbolic point: If at least one eigenvalue of the Jacobian matrix is zero or 

has a zero real part, then the equilibrium is said to be non-hyperbolic. Non-

hyperbolic equilibrium is not robust. Small perturbations can result in a local 

bifurcation of a non-hyperbolic equilibrium, i.e. it can change stability. 

Example 1.1:  Consider the following nonlinear system 

𝑥́(𝑡) = 𝑦(𝑡)[ 𝑥(𝑡) − 𝑦(𝑡)] 

𝑦́(𝑡) = 𝑥(𝑡)[2 − 𝑦(𝑡)] 

The equalibria are the points (𝑥́, 𝑦́) = (0, 0) and (𝑥́, 𝑦́) = (1, 2) and the Jacobian matrix 

is  

𝐽 = [
𝑦 𝑥 − 1

2 − 𝑦 −𝑥
] 

computed the Jacobian matrix at the equilibrium point (0, 0) where 𝐽(0, 0) = [
0 −1
2 0

] 

which implies that the eigenvalues are purely imaginary. 

𝜆1,2 = ±√2 𝑖 

By solving the characteristic equation    

det(𝐽 − 𝜆𝐼) = 0 

Since the system is non hyperbolic the linearized system can not tell about the stability. 

For the equilibrium point (1, 2), the jacobian matrix  𝐽(1,2) = [
2 0
0 −1

] thus the point is 

locally unstable as 𝜆1 = 1 or 𝜆2 = −1. Since it is a hyperbolic equilibrium point, the 

stability of Fixed point is the same as linearized system. So it is unstable. 
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1.3 Basic Concepts of Bifurcation Analysis 

Bifurcation Analysis is a powerful method for studying the steady-state non-linear 

dynamics of the system. Performing a bifurcation analysis is often a powerful way to 

analyze the properties of a system. This thesis, Jeffery-Hamel flow is investigated which 

is a non-linear problem in fluid dynamics. Solutions to a non-linear problems often 

involve one or several parameters. As the parameter varies, so does the solution set. A 

bifurcation occurs when a small smooth change made to the values of the parameters (the 

bifurcation parameters) of a system causes a sudden ‘qualitative’ or topological change 

in its behavior. Bifurcation has two types; 

 Local bifurcations: Local bifurcations can be analyzed entirely through changes 

in the local stability properties of equilibria, periodic orbit or other invariant sets 

as parameters cross through critical thresholds. 

 Global bifurcations: Global bifurcations which often occur in larger invariant 

sets of the system “collide” with each other, or with equilibria of the system. They 

can not be detected purely by a stability analysis of equilibria. 

A detailed discussion can be found in Kuznetsov [18], Strogatz [19], and wiggins [20]. 

Some useful local bifurcations analysis of the present study are discussed below. 

1.3.1 The Pitchfork Bifurcation 

In pitchfork bifurcation, one family of fixed points transfers its stability properties to two 

families after or before the bifurcation point. If this occurs after the bifurcation point, then 

the pitchfork bifurcation is called supercritical. Similarly, a pitchfork bifurcation is called 

subcritical if the non-trivial fixed point occurs for values of the parameter lower than the 

bifurcation value. In other words, the cases in which emerging nontrivial equilibria are 

called supercritical otherwise these equilibria are called subcritical. 
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Consider the dynamical system  

𝑥′ = 𝑎𝑥 − 𝑏𝑥3  for 𝑎, 𝑏 are real . 

a and b are external control parameters. Steady states, for which 𝑥′ = 0 are as follows  

𝑥 = 𝑥1̅̅̅ = 0, ∀ 𝑎, 𝑏 , 

𝑥 = 𝑥2̅̅ ̅ = −√𝑎
𝑏⁄ , for 𝑎 𝑏⁄  > 0 

𝑥 = 𝑥3̅̅ ̅ = √𝑎
𝑏⁄ , for 𝑎 𝑏⁄ > 0 

The equilibrium points 𝑥2̅̅ ̅ and 𝑥3̅̅ ̅ only exist when 𝑎 > 0 if 𝑏 > 0 and for 𝑎 < 0 if 𝑏 < 0. 

Now examine the linear stability of these steady state in turn. First we write the 

perturbation for 𝑥1̅̅̅ = 0,   

𝑥 = 𝑥1̅̅̅ + 𝜖 

That yields the linearized equation  
𝑑𝜖

𝑑𝑡
= 𝑎𝜖, 

With the new solution   

                                                            𝑒(𝑡) = 𝐴𝑒𝑎𝑡 

So we see that  

The state 𝑥1̅̅̅ = 0 is linearly unstable if 𝑎 > 0, 

The state 𝑥2̅̅ ̅ = 0 is linearly stable if 𝑎 < 0 

For the states 𝑥 = 𝑥2̅̅ ̅ and x = 𝑥3̅̅ ̅, setting  

𝑥̅ = ±√𝑎
𝑏⁄ + 𝜖, 

𝑑𝜖

𝑑𝑡
= 𝑎𝜖 − 3𝑏𝑥−2𝜖 

With the solution  

𝑒(𝑡) = 𝐴 𝑒𝑐𝑡 where 𝑐 = −2𝑎 

That is the obvious that  

The state 𝑥2̅̅ ̅ and 𝑥3̅̅ ̅ are linearly stable if 𝑎 > 0 

The state 𝑥2̅̅ ̅ and 𝑥3̅̅ ̅ are linearly unstable if 𝑎 < 0 
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Figure 1.4:  Diagram corresponding to pitchfork bifurcation 

1.3.2 Hopf Bifurcation  

A Hopf bifurcation is a local bifurcation in which a fixed point of a dynamical system 

loses stability as a pair of complex conjugate eigenvalues of linearization around the fixed 

point cross the imaginary axis of the complex plane. Consider the two dimensional system  

 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦, 𝜏) 

𝑑𝑥

𝑑𝑡
= 𝑔(𝑥, 𝑦, 𝜏) 

where 𝜏 is the parameter and suppose that (𝑥(𝜏), 𝑦(𝜏)) is the equilibrium point and ∝

(𝜏) ± 𝑖𝛽(𝜏) are the eigenvalues of the Jacobian matrix which is evaluated at the 

equilibrium point. First the system is transformed so that the equilibrium is at origin and 

𝑥0 0 

x 
𝑥1 

𝑥2 

𝑣 
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the parameter 𝜏 at 𝜏∗ = 0 gives purely imaginary eigenvalues. Above system is re-written 

as follows; 

𝑑𝑥

𝑑𝑡
= 𝑎11(𝜏)𝑥 + 𝑎12(𝜏)𝑦 + 𝑓1(𝑥, 𝑦, 𝜏) 

𝑑𝑦

𝑑𝑡
= 𝑎21(𝜏)𝑥 + 𝑎22(𝜏)𝑦 + 𝑔1(𝑥, 𝑦, 𝜏) 

The linearization of the system about the origin is given by 𝑑𝑋

𝑑𝑡
= 𝐽(𝜏)𝑋, where 𝑋 = [

𝑥
𝑦]  

and  

𝐽(𝜏) = [
𝑎11(𝜏) 𝑎12(𝜏)
𝑎21(𝜏) 𝑎22(𝜏)

] 

is the Jacobian Matrix evaluated at the origin. The Hopf bifurcation is called supercritical 

if the equilibrium point (0, 0) is asymptotically stable when 𝜏 = 0 and it is called 

subcritical if the equilibrium point (0, 0)  is negatively asymptotically stable (as 𝑡 → −∞) 

when 𝜏 = 0. In a supercritical Hopf bifurcation the limit cycle grows out of the 

equilibrium point. In a subcritical Hopf bifurcation, there is an unstable limit cycle 

sorrunding the equilibrium point, and a stable limit cycle surrounding that. 
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Figure 1.5: Diagram corresponding to Holf bifurcation 

1.4 Objectives of the Present Work 

This thesis is concerned with the study of computer-based approximation techniques 

which are of Hermite-Pad𝑒 ́ class and the Finite Element Method. The present study is a 

stability analysis of the Jeffery-Hamel solution and its relation to flow in a diverging 

channel. Numerical results are presented for the two-dimensional flow in a wedge of 

separation angle 2𝛼, bounded by circular arcs at the inlet/outlet and for a net radial 

outflow of the fluid. 

The purpose of the current work is as follows: 

 To study the evolution of Jeffery-Hamel flow in a diverging channel of finite (but 

large) streamwise extent. 

 To implement the Finite Element Method and Hermite-Pad𝑒́ approximation 

Method for solving the problems of steady viscous fluid flow in sectors. 

𝑥1 

𝑥2 

𝑣 
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 To examine the stability behavior of the solution with the effect of Reynolds 

number, angle, and effect of radius ratio. 

1.5 Organization of the Thesis 

The thesis contains five Chapters. In this Chapter, a brief introduction is presented with a 

literature review. The remaining Chapter organized as follows 

 Chapter 2 presents the computational procedure of the problem. 

 Chapter 3 a detailed mathematical modelling of the problem. 

 Chapter 4 results, as well as discussion, are presented. 

 Chapter 5 summarized the problem and give some ideas for future work. 
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CHAPTER 2 

COMPUTATIONAL TECHNIQUE 

Computational Fluid Dynamics (CFD) technique and Approximant’s Power Series 

technique are two popular techniques employed to analyze fluid flow problems in 

complex geometries. Computational Fluid Dynamics is the branch of fluid dynamics 

providing cost-effective means of simulating real flows by the numerical way and so 

amenable to solve the governing equations. It replaces the governing partial differential 

equations with systems of algebraic equations that are much easier to solve using 

computers. It also can allow for the testing of conditions that are not possible or extremely 

difficult to measure experimentally and are not controllable to analytic solutions. 

Computational Fluid dynamics use in numerical investigations and data structures to 

analyze and solve problems involving fluid flows. CFD is applied to a wide range of 

research and engineer’s problem in many fields of study and industries including 

aerodynamics and aerospace analysis weather simulation, natural science and 

environmental engineering, industrial system of design and analysis, biological 

engineering, and fluid flows. Therefore CFD codes need that can make physically realistic 

results with good quality accuracy in simulations with finite grids. Contained within the 

broad field of computational fluid dynamics are activities that cover the range from 

automation of well-established engineering design methods to the use of detailed 

solutions of the Navier-Stokes equations as substitutes for experimental research into the 

nature of complex flows. More details are available in  Cengul et al. [21] and Chung [22]. 

In Approximant’s Power Series technique, Hermite-Pad𝑒́ approximant is the best 

approximation of a function by a rational function of given order-under this technique, 

the approximant power series agrees with the power series of the function it is 
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approximating. The Hermite-Pad𝑒́ approximant often gives a better approximation of the 

function than truncating its Taylor series and it still works where the Taylor series does 

not converge. For these reasons, Hermite-Pad𝑒́ are used extensively in fluid flow problem 

calculation. 

2.1 Numerical Solution Method of Computational Fluid Dynamics 

Several elements of numerical solution methods are available in Ferziger and Peri𝑐́ [23] 

here only the main steps will be demonstrated following. 

2.1.1 Mathematical Model 

The primary task of any numerical solution method we have to provide a mathematical 

model, i.e. the set of partial differential equations and its related boundary conditions. A 

solution method is usually planned for a particular set of equations. Trying to procedure 

a general-purpose solution method, i.e. one which is applied to all flows, is impractical, 

is not impossible and as with most general-purpose tools, they are usually not optimum 

for any one application. 

2.1.2 Discretization Method 

After choosing the mathematical model, one has to select a suitable discretization method, 

i.e. a method of approximation the differential equations by a system of algebraic 

equations for the variable at some set of discrete locations in space and time. 

2.1.3 Numerical Grid 

The next step is to select a numerical grid that defines the discrete locations, at which the 

variable is to be calculated. It is essentially a discrete representation of the geometric 

domain on which the problem is to be solved. It divides the solution domain into a finite 
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number of sub-domains such as elements, control volumes, etc. Some of the options 

available are structural (regular) grid, bloc structured grid, unstructured grid, etc. 

2.1.4 Finite Approximations 

Following the choice of grid type, one has to choose the approximations to be used in the 

discretization process. Approximations for the derivatives at the grid points have to be 

selected in a finite difference method. In a finite volume method, one has to select the 

methods of approximating surface and volume integrals. In a finite element method, one 

has to choose the functions and weighted functions. 

2.1.5 Solution Technique 

Discretization yields a large system of non-linear algebraic equations. The method of a 

solution depends on the type of problem. For unsteady flows, the method based on those 

used for initial value problems for the ordinary differential equation is used. Since the 

equations are non-linear, an iteration scheme is used to solve them. The choice of solver 

depends on the grid type and the number of nodes involved in each algebraic equation. 

2.2 Discretization Approaches 

One is to consider numerical discretization to solve a mathematical model of physical 

phenomena. This means that each component of the differential equations is transformed 

into a “numerical analogue’’ which can be represented in the computer and then processed 

by a computer program, built on some algorithm. There are many different methodologies 

that were introduced for this purpose in the past and the development still continues. Some 

special methods are 

 Finite Difference Method 

 Finite Volume Method 
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 Finite Element Method 

 Boundary Element Method 

 Boundary Volume Method 

In the present numerical computation, Galerkin Finite Element Method (FEM) has been 

used. A detailed discussion of this method is available in Ferziger and Peri𝑐́ [23] and 

Deehaumphai [24]. 

2.2.1 Finite Element Method 

The Finite Element Method (FEM) has developed into a key, indispensable technology 

in the modelling and simulation of advanced engineering systems in various fields like 

housing, transportation, communication and so on. In building such advanced engineering 

systems, engineers and designers go through a sophisticated process of modelling, 

simulation, visualization, analysis, designing, and so on. 

The FEM is a numerical method seeking an approximated solution of the distribution of 

field variables in the problem domain that is difficult to obtain analytically. This 

computational method in which a given domain is represented as a collection of simple 

domains, called finite elements, for which it is possible to systematically construct the 

approximation functions needed in the solution of partial differential equations by the 

weighted residual method. The computational domains with irregular geometries by a 

collection of finite elements make the method a valuable practical tool for the solution of 

boundary value problems arising in various fields of engineering. The approximation 

functions, which satisfy the governing equations and boundary conditions, are often 

constructed using the ideas from interpolation theory. Approximating functions in Finite 

Elements are determined in terms of nodal values of a physical field, which is required. 

A continuous physical problem is transformed into a discretized Finite Element problem 
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with unknown nodal values. Values inside Finite Elements can be recovered using nodal 

values. The major steps involved in Finite Element analysis of a typical problem are: 

 Weighted-integral or weak formulation of the differential equation to be analyzed. 

 Development of the Finite Element Model of the problem using its weighted-

integral or weak form. 

 Assembly of Finite Elements to obtain the global system of algebraic equations. 

 Impositions of boundary conditions. 

 Solution of equations. 

 Post-computation of solution and quantities of interest. 

2.2.2 Mesh Generation 

The first step is to discretize the domain into non-overlapping elements or sub-regions. 

The Finite Element Method allows a variety of element shapes, for example, triangles, 

quadrilaterals in two dimensions, and tetrahedral, hexahedral, and prisms in three 

dimensions. Each element is formed by the connection of nodes, with the number of nodes 

in an element. The number of nodes in each element does not depend only on the number 

of corner points in the element, but also on the type of the element interpolation function. 

A detailed discussion of this available in Reddy and Gartling [25] and Sayma [26]. 

                                            
Figure 2.1: A typical two-dimensional Finite Element mesh (Reddy and Gartling [25]) 
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2.2.3 Computational Procedure of Finite Element Formulation   

Viscous incompressible thermal flows have been the subject of our investigation. The 

problem is non-linear partial differential equations, which are difficult to solve especially 

with complicated geometries and boundary conditions.  

The algorithm of computational procedure was originally put forward by the iterative 

Newton-Raphson algorithm; the discrete forms of the continuity, momentum equations 

are solved to find out the value of the related parameter. It is essential to guess the initial 

values of the variable. Then the numerical solutions of the variables are obtained while 

the convergent criterion is fulfilled. The simple algorithm is shown by the flow chart 

below: 

 

                                Figure 2.2: Flow chart of computational procedure 

Update properties 

Solve momentum equation 

Solve continuity equation, Update pressure, face mass 
flow rate 

Converge 

Yes Stop 

No 
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2.3 Solution Technique of Hermite-Pad𝒆́ Approximant Method 

In 1893, Hermite and Pad𝑒́ introduced Hermite-Pad𝑒́  class. In its most general form, this 

class is concerned with the simultaneous approximation of several independent series. 

Here only several steps of series analysis are discussed; detailed discussion of this method 

are available in Baker et al. [27], Mankinde [28] and Khan [29]. 

Firstly describing the Hermite-Pad𝑒́ class from its point of view. 

Let 𝑑 ∈ 𝑁 and let 𝑑 + 1 power series 𝑈𝑜(𝑥), 𝑈1(𝑥), … … … , 𝑈𝑑(𝑥) are given. We say that 

(𝑑 + 1) tuple of polynomials 

                                                 𝑃𝑁
[0]

, 𝑃𝑁
[1]

, … … … … … 𝑃𝑁
[𝑑] 

                            where 𝑑𝑒𝑔𝑃𝑁
[0]

+ 𝑑𝑒𝑔𝑃𝑁
[1]

+ ⋯ + 𝑑𝑒𝑔𝑃𝑁
[𝑑]

+ 𝑑 = 𝑁                          

is a Hermite-Pad𝑒́ form of these series if  

                                         ∑ 𝑃𝑁
[𝑖](𝑥)𝑈𝑖(𝑥) = 𝑂(𝑥𝑁) 𝑎𝑠 𝑥 → 0𝑑

𝑖=0                                        

Here 𝑈𝑜(𝑥), 𝑈1(𝑥), … … … … , 𝑈𝑑(𝑥) may be independent series or different form of a 

unique series. Polynomials of 𝑃𝑁
[𝑖] need to find out that satisfy the above equation. These 

polynomials are completely determined by their coefficient. So, the total number of 

unknown in above equation is  

∑ 𝑑𝑒𝑔𝑃𝑁
[𝑖]

+ 𝑑 + 1 = 𝑁 + 1

𝑑

𝑖=0

 

Expanding the left side of equation in ∑ 𝑃𝑁
[𝑖](𝑥)𝑈𝑖(𝑥) = 𝑂(𝑥𝑁) 𝑎𝑠 𝑥 → 0𝑑

𝑖=0                                        

powers of x and equating the first N equations of the system equal to zero, a system of 
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linear homogeneous equations are found. To calculate the coefficients of the Hermite-

Pad𝑒́ polynomials we required some sort of normalizations, such as  

 𝑃𝑁
[𝑖](0) = 1 for some 0 ≤ 𝑖 ≤ 𝑑 

It is important to emphasize that the only input required for the calculation of Hermite-

Pad𝑒́ polynomials are the first N coefficient of the series 𝑈0, … … … , 𝑈𝑑. The equations 

 𝑃𝑁
[𝑖](0) = 1 for some 0 ≤ 𝑖 ≤ 𝑑; simply ensures that the co-efficient matrix associated 

with the system is square. One way to construct Hermite-Pad𝑒́ polynomials is to solve 

the system of linear equations by any standard method such as Gaussian elimination or 

Gauss-Jordan elimination. 

In the next Chapter, the formulation of Jeffery-Hamel Flow in a Diverging Channel will 

be discussed. 
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                                                    CHAPTER 3 

                                   MATHEMATICAL MODELLING 

3.1 General 

The primary task of any numerical method is to set mathematical formulation, i.e. to set 

up generalized governing equations and boundary conditions. A solution method is 

usually designed to solve a particular set of equations. These governing equations are 

generally based on the conservation laws of mass, momentum, and energy equations. 

3.2 Physical Configurations 

The considered geometry of Jeffery-Hamel Flow in a Diverging Channel is a finite section 

of wedge bounded by circular arc at inlet and outlet of constant radius as depicted in 

Figure 3.1. The numerical problem is formulated in terms of polar co-ordinate(𝑟, 𝜃) 

centred on the apex of the wedge with corresponding velocities (𝑢, 𝑣) and pressure 𝑝. 

Two walls separated by a fixed angle 2𝛼 for which 𝑅𝑖̂ ≤ 𝑟 ≤ 𝑅𝑜̂. The circular arcs at 𝑅𝑖̂ 

and 𝑅𝑜̂ are referred to as the inlet and outlet boundaries respectively. After non-

dimensionalization, the size of the domain will be parameterized by the radius ratio 𝜂 =

𝑅𝑜̂

𝑅𝑖̂
.   
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                                    Figure 3.1: Geometry for Jeffery-Hamel flow 

3.3 Mathematical Formulation 

The several steps of the mathematical formulation for the above physical configurations 

are shown as follows 

3.3.1 Governing equations  

The generalized governing equations are considered the flow of an incompressible 

Viscous fluid due to a source that is present at the intersection of two rigid non-parallel 

walls, the angle between walls is 2𝛼. Flow is assumed to be symmetric and purely radial. 

These assumptions mean that the velocity field is of the form 𝑽 = [𝑢𝑟 , 𝑢𝜃] where 𝑢𝑟 is a 

function of both 𝑟  and 𝜃. 

The equations of motions for the flow are given as  

                                          ∇ . 𝑽 = 0 ,                                                                         (3.1) 

                                        𝜌 [
𝜕𝑽

𝜕𝑡
+ (𝑽. ∇)𝑽] = −∇𝑃 + 𝜇∇2𝑽                                      (3.2) 

Where 𝑉, 𝜌, 𝜇, 𝑃 is the velocity vector, constant density, dynamic viscosity, and pressure 

respectively. Also ∇2 is the Laplacian operator given by 

  𝑟 𝑢 

𝑣 

𝛼 

𝜃 
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                                         ∇2=
𝜕2

𝜕 𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
 

Incompressible continuity equation: 

                                             1
𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+

1

𝑟

𝜕(𝑢𝜃)

𝜕𝜃
= 0                                                     (3.3) 

Momentum equation for r direction 

𝜌 (
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑢𝑟

𝜕𝜃
−

𝑢𝜃
2

𝑟
) = 𝐹𝑟 −

𝜕𝑝

𝜕𝑟
+ 𝜇 [

𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟)) +

1

𝑟2

𝜕2𝑢𝑟

𝜕𝜃2 −
2

𝑟2

𝜕𝑢𝜃

𝜕𝜃
]  (3.4) 

                                    Here, 𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟)) =

𝜕

𝜕𝑟
(

𝜕𝑢𝑟

𝜕𝑟
+

1

𝑟
𝑢𝑟) 

                                             𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟))  = 𝜕

2𝑢𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝑟

𝜕

𝜕𝑟
(

1

𝑟
) 

                                             𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟))  = 

𝜕2𝑢𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
−

𝑢𝑟

𝑟2 

Now the equation (3.4) becomes 

𝜌 (
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑢𝑟

𝜕𝜃
−

𝑢𝜃
2

𝑟
) = 𝐹𝑟 −

𝜕𝑝

𝜕𝑟
+ 𝜇 [

𝜕2𝑢𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
−

𝑢𝑟

𝑟2 +
1

𝑟2

𝜕2𝑢𝑟

𝜕𝜃2 −
2

𝑟2

𝜕𝑢𝜃

𝜕𝜃
](3.5) 

Momentum equation for 𝜽 direction: 

𝜌 (
𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝑢𝑟𝑢𝜃

𝑟
) = 𝐹𝜃 −

1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜇 [

𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝜃)) +

1

𝑟2

𝜕2𝑢𝜃

𝜕𝜃2 +
2

𝑟2

𝜕𝑢𝑟

𝜕𝜃
]      (3.6) 

                                            𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝜃)) =

𝜕2𝑢𝜃

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝜃

𝜕𝑟
−

𝑢𝜃

𝑟2 

So the equation (3.6) becomes  

𝜌 (
𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝑢𝑟𝑢𝜃

𝑟
)

= 𝐹𝜃 −
1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜇 [

𝜕2𝑢𝜃

𝜕𝑟2
+

1

𝑟

𝜕𝑢𝜃

𝜕𝑟
−

𝑢𝜃

𝑟2
+

1

𝑟2

𝜕2𝑢𝜃

𝜕𝜃2
+

2

𝑟2

𝜕𝑢𝑟

𝜕𝜃
]           (3.7 ) 
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It is assumed that the flow is steady and purely radial (𝑢𝜃 = 0) then the incompressible 

Navier-Stokes equations (3.3), (3.5), (3.7) in absence of body force (𝐹𝑟 = 𝐹𝜃 = 0) simply 

reduces to; 

                                                        1
𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟) = 0                                                       (3.8) 

                                  𝑢𝑟
𝜕𝑢𝑟

𝜕𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈(

𝜕2𝑢𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟2
−

𝑢𝑟

𝑟2 +
1

𝑟2

𝜕2𝑢𝑟

𝜕𝜃2
)                            (3.9) 

                                                   − 1

𝜌

𝜕𝑝

𝜕𝜃
+

2𝜈

𝑟

𝜕𝑢𝑟

𝜕𝜃
= 0                                                   (3.10) 

With the boundary conditions are no slip on the solid walls (𝑢𝑟(𝑟, ±𝛼) = 0) and 

symmetry about the centerline (𝜃 = 0) of the channel. 

3.3.2 Dimensional Analysis 

The solution of equation (3.8) is particularly simple and inspires to form the non-

dimensional solution of the problem. Integrating (3.8) gives: 

                                                            𝑢𝑟 =
𝑔(𝜃)

𝑟
                                                          (3.11) 

From (3.9)  

       𝑔(𝜃)

𝑟

𝜕

𝜕𝑟
(

𝑔(𝜃)

𝑟
) = −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈 [

𝜕2

𝜕𝑟2
(

𝑔(𝜃)

𝑟
) +

1

𝑟

𝜕

𝜕𝑟
(

𝑔(𝜃)

𝑟
) −

1

𝑟2

𝑔(𝜃)

𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
(

𝑔(𝜃)

𝑟
)]   (3.12) 

𝜕

𝜕𝑟
(

𝑔(𝜃)

𝑟
) = −𝑔(𝜃)

1

𝑟2
 

𝜕2

𝜕𝑟2
(

𝑔(𝜃)

𝑟
) =

2𝑔(𝜃)

𝑟3
 

𝜕

𝜕𝜃
(𝑔(𝜃)) = 𝑔′(𝜃) 

𝜕2

𝜕𝜃2
(𝑔(𝜃)) = 𝑔′′(𝜃) 
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Now from equation (3.12)  

𝑔(𝜃)

𝑟
(−𝑔(𝜃)

1

𝑟2
) = −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈 [

2𝑔(𝜃)

𝑟3
+

1

𝑟
(−𝑔(𝜃)

1

𝑟2
) −

1

𝑟2
(

𝑔(𝜃)

𝑟
) +

1

𝑟2

1

𝑟
(𝑔′′(𝜃))] 

                                  − 𝑔2(𝜃)

𝑟3 = −
1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜐 [

2𝑔(𝜃)

𝑟3 −
2𝑔(𝜃)

𝑟3 +
𝑔′′(𝜃)

𝑟3 ]                            (3.13) 

                                                  − 𝑔2(𝜃)

𝑟3 = −
1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜐                                                 (3.14) 

From equation (3.10)  

−
1

𝜌

𝜕𝑝

𝜕𝜃
+

2𝜐

𝑟2

1

𝜕𝜃
(

𝑔(𝜃)

𝑟
) = 0 

                                                     − 1

𝜌

𝜕𝑝

𝜕𝜃
+

2𝜐

𝑟3 𝑔′(𝜃) =0                                              (3.15) 

Now differentiating equation (3.14) with respect to 𝜃 and equation (3.15) with respect to 

r, we get 

                              − 2

𝑟3 𝑔(𝜃)𝑔′′(𝜃) = −
1

𝜌

𝜕2𝑝

𝜕𝜃𝜕𝑟
+ 𝜐 [

1

𝑟3 𝑔′′′(𝜃)]                                (3.16) 

                                                     1

𝜌

𝜕2𝑝

𝜕𝜃𝜕𝑟
=

4𝜐

𝑟3
𝑔′(𝜃)                                                   (3.17)                                                                                            

Equation (3.16) becomes 

−
2

𝑟3
𝑔(𝜃)𝑔′′(𝜃) =

4𝜐

𝑟3
𝑔′(𝜃) + 𝜐 [

1

𝑟3
𝑔′′′(𝜃)] 

                                      𝑣𝑔′′′(𝜃) + 2𝑔(𝜃)𝑔′(𝜃) + 4𝜐𝑔′(𝜃) = 0                             (3.18)                                      

Dimensionless parameter are defined as follow: 

                                    𝜙 =
𝜃

𝛼
,      𝐺(𝜙) =

𝑔(𝜃)

𝑈𝑚𝑎𝑥𝑟𝛼
                                                                   (3.19) 

where 𝑈𝑚𝑎𝑥 is a centerline velocity. 
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Then equation (3.18) becomes 

                              𝐺′′′(𝜙) + 2𝛼𝑅𝑒𝐺(𝜙)𝐺′(𝜙) + 4𝛼2𝐺′(𝜙) = 0                                     (3.20) 

Let 𝜓 = 𝜓(𝑟, 𝜃) be the stream function , then 

                                                   𝜕𝜓

𝜕𝜃
= 𝑢𝑟 ,

𝜕𝜓

𝜕𝑟
= 0                                                                    (3.21) 

Jeffery-Hamel form of the stream function 𝜓 is  

                                                   𝜓(𝑟, 𝜃) = 𝑄𝐺(𝜙)                                                                   (3.22) 

Where 𝑄 is the volumetric flow rate through the channel is defined by  

𝑄 = ∫ 𝑢𝑟𝑑𝜃
𝛼

−𝛼

 

Then the nonlinear differential equation for stream function 𝐺(𝜙) satisfies  

                                       𝐺′′′′ + 2𝛼𝑅𝑒𝐺′𝐺′′ + 4𝛼2𝐺′′ = 0                                                  (3.23) 

Where primes indicate differentiation with respect to 𝜙 and 𝑅𝑒 =
𝑄

𝜐
 is  Reynolds number  

The appropriate boundary conditions are  

                                            𝐺(±1) = ±
1

2
,   𝐺′(±1) = 0                                        (3.24)                                                                            

Describing no slip and no penetration at the wedge walls. 

Although the system (3.23) and (3.24) is known to have an infinite number of solutions 

for any value of the Reynolds number, the most concerning solutions are found by 

continuous variation from the Stokes solution. 
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3.4 Numerical Analysis 

The governing equations along with the boundary conditions are solved numerically 

employing the Finite Element Method and Hermite-Pad𝑒́ Approximant Method discussed 

below. 

3.4.1 Mathematical Formulation for Finite Element Method 

We solve the resulting dimensionless form of the Navier-Stokes equations (3.20)  using 

a Finite-Element Method. The Finite-domain problem is set up by non-dimensionalized 

in terms of the inlet constant radial volume flux Q and the outlet radius 𝑅0̂. The relevant 

velocity scale is then 𝑈 =
𝑄

𝑅0̂
⁄  so the dimensionless radial co-ordinate, velocity and 

pressure are  

𝑟̂ =
𝑟

𝑅0̂

,   𝑢̂ =
𝑢

𝑈
,     𝑝̂ =

𝑅0̂

𝑈𝜌𝜈
𝑝 

Where a hat indicates the corresponding dimensionless variable. 

The parameter space for the computational problem is spanned by  

𝛼, 𝑅𝑒 =
𝑄

𝜈
, 𝜂 =

𝑅0̂

𝑅𝑖̂

 

which are the wedge half-angle, a Reynolds number and the outlet/inlet radius ratio. The 

computational mesh is rectangular in the co-ordinate 𝑟 and 𝜙 and comprises 𝑁𝑟 elements 

in the radial direction and 𝑁𝜙 elements in the azimuthal direction. Initial mesh nodes are 

spaced logarithmically in the radial direction in order to minimize the error associated 

with resolving the inverse radius scaling of the Jeffery-Hamel similarity solution, 

however, the initial azimuthal spacing is generally uniform. To better resolve rapid 
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adjustments caused by the outlet boundary conditions, an outlet region with smaller radial 

spacing between the nodes was incorporated into the initial mesh structure. 

The Finite-Element library FEM Multiphysics solver with MATLAB interface used to 

assemble and solve the system of algebraic equations associated with a weak form of the 

Navier-Stokes equations in plane polar coordinates on the finite domain. 

3.4.1.1 Variation of Inlet Condition 

In our Finite-element formulation, The implied, so-called natural, boundary condition is 

for the flow to be ‘pseudo-traction free’ and the inlet/outlet of the finite domain, this gives  

   −𝑝̂ +
𝜕𝑢

𝜕𝑟̂
= 0                                                           (3.25a) 

                                                            𝜕𝑣̂

𝜕𝑟̂
= 0                                                                (3.25b) 

For the bulk of finite-domain results PTF condition imposed together with a Dirichlet 

constraint at the inlet. In any given experimental configuration it is unlikely that much 

control would be available regarding the exact nature of the profile at the inlet to the 

diverging channel. 

The following inlet condition is introduced for diverging channel: 

                                       𝑢̂ =
3

4𝛼𝑟̂
(1 − 𝜙2), 𝑣 = 0  𝑜𝑛 𝑟̂ = 𝜂−1, 1                                  (3.26) 

The inlet condition in (3.26) is a parabolic flow pattern which is called ‘Diverging 

Channel Flow’ in present study. 

Another inlet and outlet condition is introduced for this channel: 

                                         𝑢̂ =
𝐺′(𝜙)

𝛼𝑟̂
 , 𝑣 = 0 on  𝑟̂ = 𝜂−1, 1                                                (3.27) 

The inlet condition in (3.27) is the symmetric Jeffery-Hamel solution.  
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3.4.2 Hermite-Pad𝒆́ Approximant Solution 

The problem defined by equation (3.22) with equation (3.23) is non-linear, for small 

Channel angle width, one can obtain a series of the form  

                                       𝐺(𝜙) = ∑ 𝐺𝑖𝛼𝑖∞
𝑖=0                                                                  (3.28) 

Substituting the above expression (3.28) into (3.23) and collecting the coefficients of like 

powers of 𝛼 and with the help of MAPLE programming language algebraic system 

software, first 18 terms for stream-function G is computed in terms of 𝛼, 𝑅𝑒. 

𝐺(𝜙; 𝛼, 𝑅𝑒) =
3

4
𝜙 −

1

4
𝜙3 + ((

3

4
+

3

224
𝑅𝑒) 𝜙 + (−

1

4
−

33

1120
𝑅𝑒) 𝜙3 +

3

160
𝑅𝑒𝜙5 −

3

1120
𝑅𝑒𝜙7) 𝛼 + 𝑂(𝛼3) +…………………………………………………… .         (3.29) 

3.4.3 Validation of numerical scheme 

To validate the numerical procedure, the result obtained by the present code is compared 

with the result of Haines et al. [17] for the same problem. The present numerical scheme 

is validated for the first symmetry-breaking loci of pitchfork bifurcation in the 𝛼 − 𝑅𝑒 

plane at radius ratio 𝜂 = 100 reported by Haines et al. [17]. The present result has an 

excellent agreement with the result obtained by Haines et al. [17] which shown in Figure 

3.2 are similar. 
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                            Figure 3.2: Code validation of the present research 

Based on the above study it is concluded that the numerical scheme applied to the 

considered problem is reliable. In the next Chapter i.e. in Chapter 4 the result of different 

parameter’s effect on Jeffery-Hamel Flow and Diverging Channel Flow will be analyzed 

and their bifurcation structure will be discussed. 

 

 

 

 

Haines et al. [17]    Present study 
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                                                CHAPTER 4 

RESULTS AND DISCUSSION 

Stability analysis of Jeffery-Hamel similarity solution and its relation to flow in a 

diverging channel is analyzed by the controlling parameters channel angle 𝛼, Reynolds 

number 𝑅𝑒 and radius ratio 𝜂. The values of parameters vary as 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝑅𝑒 ≤

120, 0 < 𝜂 ≤ 100. The results are represented in terms of velocity profiles, streamlines, 

and critical relationship for different values of the above parameter in different inlet flow 

conditions. In the critical relationship 𝛼 − 𝑅𝑒 plane, the critical point of Reynolds number 

𝑅𝑒𝑐̂ at a fixed angle 𝛼 and at fixed radius ratio 𝜂 used to measure the stability of pitchfork 

bifurcation. 

4.1 Effect of angle (𝜶) 

The velocity profile of Jeffery-Hamel flow and Diverging Channel flow at different angle 

𝛼 are shown in Figure 4.1, where the radius ratio 𝜂 = 100 and Reynolds number Re = 

80. Figure 4.1 (a) and Figure 4.1 (b) show Diverging Channel flow and Jeffery-Hamel 

flow respectably at 𝛼 = 0.1 over the finite domain. In the velocity profile at 𝛼 = 0.1, the 

maximum velocity for Diverging Channel flow is 13.08 and the maximum velocity for 

Jeffery-Hamel flow is 9.597. Figure 4.1 (c) shows the effect of the velocity profile at 𝛼 =

0.17 for Diverging Channel flow, and the effect of a velocity profile for Jeffery-Hamel 

flow at 𝛼 = 0.17 are shown in Figure 4.1 (d). At 𝛼 = 0.17, the maximum velocity for 

Diverging Channel flow is 7.5522 and maximum velocity for Jeffery-Hamel flow is 𝛼 =

5.497. Figure 4.1 (e) shows the velocity profile for Diverging Channel flow at 𝛼 = 0.4 

and Figure 4.1 (f) shows the velocity profile for Jefery-Hamel flow at 𝛼 = 0.4. At 𝛼 =

0.4, the maximum velocity for Diverging Channel flow is 3.454 and the maximum 

velocity for Jeffey-Hamel flow is 2.398. 
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Figure 4.1 (g) shows the velocity profile for Divergent Channel flow at 𝛼 = 0.7 and 

velocity profile for Jeffery-Hamel flow at 𝛼 = 0.7 are shown in Figure 4.1 (h). At 𝛼 =

0.7, the maximum velocity for Diverging Channel flow is 2.307 and the maximum 

velocity for Jeffery-Hamel flow is 1.370. 

It is observed from Figure 4.1, Diverging Channel flow velocity profile is greater than the 

Jeffery-Hamel flow velocity profile at constant radial volume flux and at fixed radius 

ratio 𝜂. When angle 𝛼 is increasing, the velocity profile is decreasing for both Diverging 

Channel flow and Jeffery-Hamel flow. 

Figure 4.2 shows the streamlines of Divergent Channel flow and Jeffery-Hamel flow at 

different angles 𝛼 with a constant radius ratio 𝜂. At angle 𝛼 = 0.1, 0.4 and 0.7 there are 

no visible differences between streamlines of Divergence Channel flow and streamlines 

of Jeffery-Hamel flow. At angle 𝛼 = 1.39, the streamlines of Diverging Channel flow 

are slightly changed with streamlines of Jeffery-Hamel flow. Therefore, it is observed 

from Figure 4.2, the difference of streamlines change less significantly for smaller 

channel angles. 
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Figure  4.1: Effect of 𝛼 on velocity profile at 𝜂 = 100 
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Figure 4.2: Effect of 𝛼 on streamlines at 𝜂 = 100 
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4.2 Effect of Reynolds number (Re)  

Figure 4.3 shows the velocity profile of Jeffery-Hamel flow and Diverging Channel flow 

at different Reynolds numbers, where fixed angle 𝛼 = 0.4 and radius ratio 𝜂 = 100. 

Figure 4.3 (a) shows the effect of the velocity profile at 𝑅𝑒 = 40 for Diverging Channel 

flow and effect of velocity profile for Jeffery-Hamel flow at 𝑅𝑒 = 40 are shown in Figure 

4.3 (b). At 𝑅𝑒 = 40,  maximum velocity for Diverging Channel flow is 3.456 and the 

maximum velocity for Jeffery-Hamel flow is 2.398. Figure 4.3 (c) shows the velocity 

profile for Diverging Channel flow at 𝑅𝑒 = 80 and Figure 4.3 (d) shows the velocity 

profile for Jefery-Hamel flow at  𝑅𝑒 = 80. The maximum velocity for Diverging Channel 

flow at 𝑅𝑒 = 80 is 3.457 and the maximum velocity for Jeffery-Hamel flow at 𝑅𝑒 = 80 

is 2.410. 

 Figure 4.3 (e) shows velocity profile for Divergent Channel flow at 𝑅𝑒 = 100 and 

velocity profile for Jeffery-Hamel flow at 𝑅𝑒 = 100 are shown in Figure 4.3 (f). At 𝑅𝑒 =

100, the maximum velocity for Diverging Channel flow is 3.459 and the maximum 

velocity for Jeffery-Hamel flow is 2.414. Figure 4.3 (g) shows the velocity profile for 

Divergent Channel flow at 𝑅𝑒 = 120 and velocity profile for Jeffery-Hamel flow at 𝑅𝑒 =

120 are shown in Figure 4.3 (h). At 𝑅𝑒 = 120, the maximum velocity for Diverging 

Channel flow is 3.463 and the maximum velocity for Jeffery-Hamel flow is 2.416. 

It is observed from Figure 4.3, the velocity profile of Diverging Channel flow is greater 

than the Jeffery-Hamel flow velocity profile at constant radial volume flux, fixed angle 

𝛼 = 0.4 and fixed radius ratio 𝜂. When the angle 𝑅𝑒 is increasing, the velocity profile is 

also increasing for both Diverging Channel flow and Jeffery-Hamel flow.  

Figure 4.4 shows the streamlines of Divergent Channel flow and Jeffery-Hamel flow at 

different Reynolds number 𝑅𝑒 with a constant radius ratio 𝜂 = 100. At Reynolds number 
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𝑅𝑒 = 40 and 80 there are no visible differences between streamlines of Divergence 

Channel flow and streamlines of Jeffery-Hamel flow. At Reynolds number 𝑅𝑒 = 100 and 

120, the streamlines of Diverging Channel flow are slightly changed with streamlines of 

Jeffery-Hamel flow. Therefore, it is observed from Figure 4.4, the difference of 

streamlines change less significantly for low Reynolds numbers. 
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Figure 4.3: Effect of 𝑅𝑒 on velocity profiles 
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                                       Figure 4.4: Effect on 𝑅𝑒 on streamlines 
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4.3 Effect of radius ratio (𝜼) 

Radius ratio 𝜂 has a significant effect on velocity profile of Diverging Channel flow and 

velocity profile of Jeffery-Hamel flow over the physical domain. Figure 4.5 shows the 

velocity profile of Jeffery-Hamel flow and Diverging Channel flow at different radius 

ratio 𝜂, where fixed angle 𝛼 = 0.4 and constant Reynolds number 𝑅𝑒. Figure 4.5 (a) 

shows the effect of velocity profile at 𝜂 = 100 for Diverging Channel flow and effect of 

velocity profile for Jeffery-Hamel flow at 𝜂 = 100 are shown in Figure 4.5 (b). At 𝜂 =

100,  maximum velocity for Diverging Channel flow is 3.307 and maximum velocity for 

Jeffery-Hamel flow is 2.414. Figure 4.5 (c) shows velocity profile for Diverging Channel 

flow at 𝜂 = 50 and Figure 4.5 (d) shows velocity profile for Jeffery-Hamel flow at 𝜂 =

50. Maximum velocity for Diverging Channel flow at 𝜂 = 50 is 1.653 and maximum 

velocity for Jeffery-Hamel flow at 𝜂 = 50 is 1.208. Figure 4.5 (e) shows velocity profile 

for Divergent Channel flow at 𝜂 = 20 and velocity profile for Jeffery-Hamel flow at 𝜂 =

20 are shown in Figure 4.5 (f). At 𝜂 = 20, the maximum velocity for Diverging Channel 

flow is 0.661 and the maximum velocity for Jeffery-Hamel flow is 0.483. Figure 4.5 (g) 

shows velocity profile for Divergent Channel flow at 𝜂 = 10 and velocity profile for 

Jeffery-Hamel flow at 𝜂 = 10 are shown in Figure 4.5 (h). At 𝜂 = 10, the maximum 

velocity for Diverging Channel flow is 0.333 and the maximum velocity for Jeffery-

Hamel flow is 0.241.It is observed from Figure 4.5, velocity profile of Diverging Channel 

flow is greater than Jeffery-Hamel flow velocity profile at constant radial volume flux, 

fixed angle 𝛼 = 0.4 and constant Reynolds number 𝑅𝑒 = 100. When radius ratio 𝜂 is 

decreasing, the velocity profile is also decreasing for both Diverging Channel flow and 

Jeffery-Hamel flow. Figure 4.6 shows the streamlines of Divergent Channel flow and 

Jeffery-Hamel flow at different radius ratio 𝜂. At 𝜂 = 100, 50, 20, 10; the streamlines of 

Diverging Channel flow are slightly changed with streamlines of Jeffery-Hamel flow. 
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                                       Figure 4.5: Effect of 𝜂 on velocity profiles 
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                                          Figure 4.6: Effect of 𝜂 on streamlines                          
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4.4 The Bifurcation Structure in Finite Domain 

In this section, all results are presented for the inlet boundary condition and outlet 

boundary condition of the physical domain. For these conditions, the computational task 

is to locate pitchforks bifurcation with a critical points in the 𝛼 − 𝑅𝑒 plane at a fixed 

radius ratio 𝜂. Once a critical point has been located, its locus in the 𝛼 − 𝑅𝑒 plane can be 

determined. These critical points are obtained by forming the appropriate system, which 

ensures that the solution lies exactly at the bifurcation point. Figure 4.7 shows the 

pitchfork bifurcations found for 𝜂 = 100 and 0 ≤ 𝑅𝑒 ≤ 60. An infinite number of critical 

relationship diagrams can be found in the combined limit of 𝛼 ≪ 1, 𝑅𝑒 ≫ 1 𝑎𝑛𝑑 𝜂 ≫ 1. 

Figure 4.7 shows that the pitchfork bifurcation is ‘right facing’ in the sense that the 

resulting symmetry-broken flows exist for 𝑅𝑒 > 𝑅𝑒𝑐̂(𝛼) in all cases. Here a hat notation 

is introduced, 𝑅𝑒𝑐̂, to distinguish critical Reynolds numbers of the finite domain from that 

associated with the Jeffery-Hamel pitchfork bifurcation. Figure 4.7 (a) shows the critical 

Reynolds number of the bifurcation diagram is 𝑅𝑒𝑐̂ ≈ 7.503265 at a separation angle 

𝛼 = 1.0472. Figure 4.7 (b) shows at a separation angle 𝛼 = 0.619465, the critical 

Reynolds number is 𝑅𝑒𝑐̂ ≈ 17.70995. At a separation angle 𝛼 = 0.379416, critical 

Reynolds number 𝑅𝑒𝑐̂ ≈ 31.1227  is found in Figure 4.7 (c). Critical Reynolds number 

𝑅𝑒𝑐̂ ≈ 47.6353 is found at separation angle 𝛼 = 0.26278 in Figure 4.7 (d). It is observed 

from Figure 4.7 that the pitchfork bifurcations in a finite domain are in good quantitative 

agreement with the boundary ℬ2 predicted by the infinite domain similarity solution.  

Figure 4.8 shows the critical relationship of 𝛼 − 𝑅𝑒 plane for 0 ≤ 𝑅𝑒 ≤ 120. These 

relationships can be obtained by employing Hermite-Pad𝑒́ Approximation method. The 

critical relationship shows in Figure 4.8 (a) indicates the variation of the Reynolds number 

at which the critical point of isolated solutions exists for varying channel angles 𝛼. Figure 
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4.8 (b) shows the solution ℬ1at a fixed angle 𝛼 = 0.28 which indicates that the existence 

of the isolated solution ℬ1is 𝑅𝑒 ≈ 40 at 𝜂 = 100.  

  

                            

Figure 4.7: Critical relationship in the 𝛼 − 𝑅𝑒 plane for 0 ≤ 𝑅𝑒 ≤ 60 

           (a)            (b) 

           (c)           (d) 
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Figure 4.8:  Critical relationship in 𝛼 − 𝑅𝑒 plane for 20 ≤ 𝑅𝑒 ≤ 120 

4.5 The Physical Relevance of Numerical results  

In the previous sections, a comprehensive picture of solution structure has been presented 

for a specific choice of boundary conditions. The practical relevance of these results 

requires that: (i) the solutions are stable; (ii) the domain is experimentally realizable; (iii) 

there is no strong sensitivity to inlet/outlet constraints. 

Table 4.1: The variation of the critical Reynolds 𝑅𝑒𝑐̂ number of the symmetry-breaking 

bifurcation in a finite domain 

𝛼 Jeffery-Hamel flow 

𝑅𝑒𝑐̂ 

Diverging Channel 
flow 
𝑅𝑒𝑐̂ 

Hanies et al. [17] 
𝑅𝑒𝑐̂ 

Jeffery-Hamel 
flow 

Diverging 
Channel flow 

0.1 94.179954 94.71643 94.18 94.72 

0.4 23.270214 23.76458 23.27 23.77 

0.7 12.8502 13.7032 12.85 13.72 

 

(a) (b) 
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Table 4.1 shows, two different inlet profiles at a different angle 𝛼 for 𝜂 = 100 and their 

influence on the finite-domain base flow which is rather minimal. The variation in the 

inlet profile leads to a variety of critical Reynolds number 𝑅𝑒𝑐 
̂ which is less than 1% at 

𝛼 = 0.1when 𝜂 = 100. The influence of the inlet profile is stronger for wider expansion 

angles. The change in critical Reynolds number is approximately 8% at 𝛼 = 0.7 when 

𝜂 = 100. So the solution structure is less sensitive to outflow conditions. 

In the next Chapter, the result analysis of the present study is summarized. 
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CHAPTER 5 

CONCLUSION 

The effect of angle (𝛼), Reynolds number (𝑅𝑒), and radius ratio (𝜂) on the flow structure 

of Jeffery-Hamel flow and Divergent Channel flow has been analyzed numerically. The 

various ideas and results have been discussed in detail at the relevant Chapter of the thesis. 

A related geometry is investigated which has long parallel inlet/outlet channels and 

recovered the qualitative behavior that is described. The governing equations are solved 

by the Finite Element Method (FEM) and also solved by the Hermite-Pad𝑒́ Approximant 

method to find 𝛼 − 𝑅𝑒 relation which is also good agreement with published data. The 

present investigation of the finite domain computational problem concluded that the 

choice of inlet/outlet conditions has a limited impact on the similarity solution behavior. 

Furthermore, there is a good agreement between Jeffery-Hamel Flow and Diverging 

Channel Flow over the domain. 

5.1 Summary of the Major Outcome 

From the investigation the following conclusion has been drawn: 

 At a separation angle of 𝛼 = 0.1 the pitchfork bifurcation occurs at 𝑅𝑒𝑐̂ ≈

94.71643. Also at a separation angle 𝛼 = 0.4, 0.7 the pitchfork bifurcation 

occurs at 𝑅𝑒𝑐̂ ≈ 23.270214, 12.8502. For 𝑅𝑒 > 𝑅𝑒𝑐̂ the solution is found to be 

unstable. 

 The parameter 𝛼, Re, 𝜂 has a significant impact on the velocity distribution of 

both Jeffery-Hamel flow and Divergence Channel flow. When angle 𝛼 is 

increasing, the fluid velocity in the radial direction is decreasing, with the 

increasing of Reynolds number 𝑅𝑒 the fluid velocity in the radial direction is 
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increasing and with the decreasing of 𝜂, fluid velocity in the radial direction is 

decreasing.  

 The difference induced by changes in inlet conditions becomes less significant for 

smaller channel angles. 

 In the finite domain the Jeffery-Hamel flow has a sequence of pitchfork 

bifurcations in the limit of 𝑅𝑒 ≫ 1 and 𝛼 ≪ 1. 

FUTURE WORK 

The following can be put forward to the further works as follows-ups of the present 

research as 

 The study can be extended by including different physics like internal heat 

generation/absorption. 

 Investigation can be analyzed by using magnetic fluid. 

 Study can be continued by changing the boundary conditions of the inlet/outlet 

walls. 

 The study can be extended for unsteady flow with periodic conditions. 

 The study can be extended for Nano-fluids. 

 Only two-dimensional fluid flow is performed in this thesis. So this deliberation 

may be extended to three-dimensional dimensional analysis to investigate the 

effects of different parameters. 
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