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Abstract

Diabetes management consists of two major tasks: forecasting the blood
glucose trend and taking a therapeutic decision. Due to the advancement of sensor
technologies, it becomes easy to obtain continuous glucose monitoring (CGM) and
physical activity data along with logging of diet and injected insulin information.
These data of the diabetic patient are being leveraged by applying machine learning
(ML) strategies to obtain future trajectories of glucose level which contains no
explanation.

This thesis is aimed to produce physiological explanation from ML-based
forecasting of glucose concentration by operation research (OR). For producing
forecasting, ML-based model is trained using CGM profile with diet and activity
information of a type-2 diabetic patient. Due to unavailability in the literature,
a constraint-based comprehensive glucose dynamics model integrated with other
physiological models of external stimuli is also aimed to build for OR. An integrated
physiological model consisting of glucose regulation and models of external stimuli
is considered as a composition of several compartments separately connected with a
common compartment named ‘plasma’. Plasma is the only accessible compartment
and contains the state variables. Plasma variables are the integrated result of the net
change in rates of metabolic processes and basal rates are influenced between two
saturation constraints for an operating range of each variable. The influence of a
plasma variable on a metabolic rate is represented using a form of the hyperbolic
tangent function. Validation is done by fitting the model with clinical experiments
and CGM data of a free-living environment. A feed-forward neural network (FFNN)
being trained on CGM data along with diet and activity log is used to produce
forecasting. The proposed constraint-based glucose regulation model of this thesis is
optimized on the forecasting of FFNN with sequential quadratic programming using
preestimated personalized constraints. The proposed integrated physiological model
generates an average correlation coefficient of 0.84±0.12 on all simulated responses
with the target in the fitting experiments. Besides this, the model can produce a
spectrum of metabolic effects of plasma variables for showing more insight into
glucose metabolism. Both OR response and ML forecasting are compared with
real glucose profiles. Though increased RMSE is obtained for OR response in
comparison to ML forecasting, an acceptable accuracy is found in Clarke Error Grid
Analysis. ML-based forecasting of glucose profile is transformed into optimized
glucose trend with physiological interpretation. The interpretation is visualized
in a metabolic spectrum derived from a constraint-based comprehensive glucose
regulation model. The adopted hybrid approach is capable of encapsulating both
generalization of ML and the explanation of the physiological approach.

xi



Chapter 1

Introduction

Diabetes is a disease of the modern lifestyle in the era of industrialization where people are less
utilizing their bones in their daily life activities. According to the latest data published in the
International Diabetes Federation (IDF) Diabetes Atlas 9th edition [1], there are 463 million
adults are currently living with diabetes. It is estimated by IDF that 578 million people will have
diabetes by 2030 if sufficient preventive actions are not taken and the number will reach 700
million by 2045. IDF has also estimated the annual global health expenditure on diabetes at
USD 760 billion. It is projected that these direct costs will reach USD 825 billion by 2030 and
USD 845 billion by 2045. It is also estimated by IDF that premature death, disability and other
health complications due to diabetes produce an additional 35% of indirect costs to the annual
global health expenditures associated with the condition. There are also some intangible costs
of diabetes that include worry, anxiety, discomfort, pain, loss of independence, and a host of
other crucially important features of living with diabetes. Hence it is a great scope for healthtec
researchers for inventing a strategy to minimize cost by leveraging information technology.

1.1 Modeling diabetes

According to the title, this thesis belongs to the scope of quantitative analytics of diabetes
diseases. Building a model using the correlation among quantitative information of diabetes
and domain knowledge can be very helpful and effective in long-term diabetes management.
Hence it is necessary to get a brief introduction on diabetes and its modeling approaches at the
beginning of the research.

1.1.1 Diabetes and its classification

In a healthy person, the blood glucose level is regulated between 70-110 mg/dl by two peptide
hormones, called insulin and glucagon, secreted from the pancreas. In people with diabetes, this

1
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regulatory mechanism is disturbed due to impairment of insulin secretion or sensitivity. The
American Diabetes Association (ADA) defined Diabetes as: “a group of metabolic diseases

characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or

both” [2]. As a consequence, the entrance of glucose into muscles and other tissues is reduced
and the glucose absorbed from the gastrointestinal track remains in the blood. There are three
principal types of diabetes:

1. Type-1 diabetes mellitus

2. Type-2 diabetes mellitus

3. Gestational diabetes mellitus

Type-1 diabetes is an autoimmune disease in which the insulin-producing β-cells of the pancreatic
islets are mistakenly attacked and destroyed by the body’s immune system. As a result, little
or no insulin is produced. Type-2 diabetes is called non-insulin-dependent diabetes mellitus
(NIDDM). This type leads to the permanent prevalence of higher blood glucose because of the
presence of insulin resistance and relative insulin deficiency. In gestational diabetes mellitus,
increased blood glucose level due to various hormonal effects during the pregnancy is observed.
Among different types of diabetes, type 2 diabetes is the most common type affecting 90 to 95%
of the diabetes population around the world [2]. Since no permanent treatment of diabetes is
invented till today, this disease is needed to be managed to lead a healthy life by consuming the
right amount of carbohydrate and regular physical activity in free-living condition. But diabetes
management in a free-living environment is a challenging task compared to a clinical condition.
Measuring blood sugar level and taking an appropriate amount of food\exercise\medication
based on predicted future trends transform diabetes management as prediction (forecasting) and
decision (optimization) generating process technically.

1.1.2 Diabetic data collection

Usually, the glucose level is estimated with a device taking a single drop of blood by a finger prick.
This invasive technique can’t be conducted frequently and give a small amount of data regarding
blood glucose variation from a diabetic patient. Due to the invention and usage of Continuous
Glucose Monitoring (CGM) sensors, which measure subcutaneous glucose concentration from
the interstitial fluid at a regular interval (1-5 min), a large volume of information regarding blood
glucose readings and their trend can be available in free-living condition. At the same time
tracing physical activity level and energy expenditure has become easier due to the availability
of smart-watches, fitness bands, and other body area networks. Besides these, logging down
the ingredients of each diet and injected insulin regimen is possible leveraging the smart-phone
application.
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1.1.3 Types of diabetic model

An attempt of building a personalized diabetic model using diabetic data obtained through sensor
technologies and logging has already been done. That model can be very useful in diabetes
management for both physicians and patients in approximating food taking, exercise duration
and intensity, and a dose of insulin therapy. A diabetic model can also be used in the controller
module of model predictive control in Artificial Pancreas System (APS) development.

Figure 1.1: Two strategies of modeling diabetic behavior.

Usually, two basic types of strategy are appeared in the research field of diabetes modeling
(Figure 1.1). In a data-driven approach, diabetic data consisting of continuous blood glucose
measurements obtained from CGM sensors and logged life style information are used to build a
predictive diabetic model. By using Machine Learning (ML) upon retrospective observations,
a hidden pattern of blood glucose variation is exploited and glucose concentration is predicted
without any knowledge of the underlying physiological processes. The ML-based predictive
model relies on some non-physiological formulations to characterize the relationship between
current and past CGM values. These models usually consider the task of predicting blood
glucose as a time series forecasting problem since blood glucose measurements have a natural
temporal ordering. The main drawbacks of the ML-based model are the absence of causal
reasoning, poor performance on the infrequent glycemic excursion, and lack of physiological
interpretation [3], [21], [36].

In the physiological modeling approach, blood glucose dynamics are represented by
mathematical equations based on prior physiological knowledge of metabolic behavior.
Parameters of the model are estimated by optimization on data from a clinical experiment
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on a group of persons. These models usually show poor performance in producing time-variant
metabolic behavior over the long term (> 6 hours) [36].

1.2 Research problem

A study on the literature of ML-based forecasting models [3] of blood glucose says that almost
all types of ML techniques such as neural networks, support vector machines, decision trees,
and other time-series forecasting methods have already been applied to build the predictive
model. But, to the best of the author’s knowledge still, these models are not seen to be applied in
making any therapeutic decision for diabetes management. The major limitations are the absence
of robustness analysis against noisy inputs and physiological interpretability in the forecasted
glucose trajectory. ML models leverage the correlations among the sequences of attributes
of a dataset to estimate the glucose concentration at future time points. If correlations in the
dataset vary due to measurement noise or missing records, the performance of ML models is also
affected. Besides that, the ML models usually work as the black-box classifiers. When a forecast
is obtained over a prediction horizon (PH), there is no physiological idea of how the result is
being generated. That’s why ML-based models are not found to be useful for both patients and
health professionals.

For robustness analysis of ML-based models against noisy inputs, synthetic dataset with noise
and discontinuous sequences can be adopted. But, what type of physiological interpretation is

required to make a therapeutic decision? In searching for the answer to this question, models
used to make decisions in diabetes management are studied. It is found in the literature [4]-
[7] that most of the predictive models of glucose dynamics used to estimate insulin dose are
mathematical. The parameters of those models represent specific metabolic characteristics
providing physiological realization. But, on the other hand, those mathematical models can’t
take advantage of hidden patterns laid in a large amount of retrospective CGM data similar to
ML models. To the best of the author’s knowledge, no attempt is seen to produce physiological
interpretation from ML-based forecasting.

Based on the above description, a solution is imagined for removing the limitation of the
ML-based predictive model to facilitate diabetes management. If a segment of significant
length (≥ 03 hours) of a forecasted profile of an ML-based predictive model can be fit in a
mathematical structure with personalized constraints through mathematical programming, it is
possible to regenerate that profile segment with causal reasoning and physiological interpretation.
This process is known as operation research (OR) and the application of OR in the research
field of diabetes is also available in the literature [8]. The nature of anticipated physiological
interpretation completely depends on the architecture of the adopted mathematical model.
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1.3 Research gap

In this thesis, a dataset of a type-2 diabetic patient consisting of CGM profile, diet events,
and physical activity log is used to build an ML-based predictive model for conducting OR
described in the previous section. Hence, a constraint-based physiological model of glucose
dynamics for the type-2 diabetic considering impact of exercise is required for applying
in OR. At the commencement of this research based on a rigorous study, it is found that
existing models [13]- [16] of diabetes with exercise dynamics are built on the assumption of no
endogenous production of insulin. Usually, type-1 diabetic patients cannot produce endogenous
insulin and are completely dependent on external insulin injections. So, those models are not
capable of describing exercise dynamics for insulin-independent diabetic patients or type-2
diabetic and a research gap is obvious.

To fill up the gap a constraint-based physiological model of glucose regulation consisting of
internal insulin dynamics and external stimulus of diet, insulin, and exercise is needed to be built.
This sort of model is significant for two (02) more reason as below. As stated earlier, more than
90% of diabetic are of type-2 and manage their glucose level in free-living condition. A type-2
diabetic person may have impaired insulin secretion from the pancreas or insulin resistance
in hepatic/peripheral tissues [8]. As a result, glucose concentration persists at a level higher
than normal for a longer period which is called hyperglycemia. Physical activity has a great
short and long-term impact on blood glucose regulation. Muscle tissue uptakes glucose from
circulation without the influence of insulin during the onset of exercise and helps to control
blood glucose levels in the normal range [13]. Hence, regular physical activity is prescribed for
diabetes management in free-living conditions. To cover the scope of free-living environment for
the type-2 diabetic population the effect of physical exercise on glucose dynamics is required to
incorporate.

Another important issue is to perform robustness analysis of ML-based predictive model inside an
in silico environment against noisy and missing data. Multiple sets of synthetic data with variety
of correlation and discontinuous sequences are required to serve the purpose. For preparing in
silico environment a diabetic simulator which represents physiology of blood glucose regulation
consisting of internal insulin secretion and external stimulus of diet, insulin, and exercise is
needed.

1.4 Integrated physiological model

From the previous section it is learned that a physiological model of blood glucose regulation
with some specific features is required to solve a particular problem of ML-based approach in
modeling diabetes. This type of model is also significant for type-2 diabetic because of being
large in number than other types of diabetes. At the same time, desired model is necessary to
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Figure 1.2: Concept of integrated physiological model.

produce synthetic glucose profile for both type-1/type-2 diabetic in free living environment.
To serve all these utility a comprehensive, multipurpose, easy to understand, and composite
physiological model of glucose dynamics is needed. But this type of composite model should
be consisted with glucose dynamics and physiological models of external stimulus for being
complete.

In free-living environment glucose dynamics are primarily interrupted with three (03) categories
of events: diet, insulin, and physical activity. These events are occurred in irregular periodicity
in the daily life of a diabetic patient. The nature and volume of glycemic excursion is directly
proportional to the magnitude and type of those events which are defined as external stimulus in
the physiology of glucose regulation. So, for free-living environment, external stimuli are the
glucose appearance into circulation due to oral ingestion of carbohydrate, insulin appearance
into circulation from the site of subcutaneous injection and oxygen consumption due to physical
movement. External stimulus does not influence the glucose regulation instantaneously rather
need to pass through a physiological process. Physiological models for representing the impact
of external stimuli on glucose regulation with the physiological delay are available in the
literature [13], [31], [32]. The integration of plasma glucose regulation with those physiological
models of external stimulation is required for the structure of a complete organization (Figure 1.2).
This organization can be defined as the integrated physiological model (IPM).

When this IPM is implemented in computer environment for simulating diabetic behavior, it
mimics as a virtual diabetic patient. Usually, the virtual diabetic patient is the implementation of
a system of differential equations and parameters for representing impaired glucose metabolism
in the human body [9]- [12]. By tuning the parameters, it is possible to describe the metabolic
disorder of diabetic patients with inter and intrapatient characteristics in a computer environment.
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Figure 1.3: Simulink implementation of the proposed integrated physiological model (IPM).

The Figure 1.3 shows the MATLAB/Simulink implementation of the concept of IPM. The gastro
intestinal track, subcutaneous injection, and respiratory compartment are implemented using the
existing physiological model available in the literature. Rests of the compartments of the IPM
are concerned with the proposed constraint-based glucose regulation. The IPM of Figure 1.3 is
assumed to be a complete simulator and capable of producing abnormal metabolic behavior of
different organs involved in the glucose regulation of a diabetic patient (type-1/type-2) which are
not possible in a minimal model.

1.5 Thesis objectives and contribution

The objective of this thesis is the implementation of the imagined solution (section 1.2) which
is OR on ML-based forecasting to produce a hybrid model combining the advantages of both
data-driven and physiological approaches (Figure 1.4).

A feed-forward neural network (FFNN) based predictive model is built with CGM data along
with diet and activity information of a type-2 diabetic patient to produce ML-based forecasting.
A constraint-based mathematical model of glucose regulation is adopted for OR. The OR model
is optimized with real CGM data along with protocol information to estimate the limit of the
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Figure 1.4: Hybrid predictive model of blood glucose dynamics.

constraints. Then, forecasted sequences of FFNN are optimized in the OR model with the
estimated limit of the constraints to reproduce forecasted glucose profile with a physiological
explanation. Figure 1.5 describes the complete procedure schematically. The fluctuation of both
OR and ML responses from real CGM series are estimated in terms of RMSE and placed in
Clarke Error Grid analysis. It is observed that RMSE is increased due to optimization through a
lot of constraints and consideration of less number of plasma variables. But encouraging results
are obtained in error grid analysis since maximum points are located in the clinically acceptable
zone.

Due to the gap in the literature, this thesis also aims to build a virtual diabetic patient which
is basically an integrated physiological model (IPM). This IPM integrates a constraint-based
comprehensive glucose dynamics model with existing physiological models of external stimulus.
This IPM is capable of describing desired metabolic behavior of diabetes and also plasma
glucose variation over carbohydrate ingestion, insulin injection, and exercise events. The
glucose regulation model of IPM is considered to consist of several compartments. The plasma
compartment of IPM is assumed to contain the state variables. State variables influence the
basal rate of metabolic processes (uptake/release/ secretion/degradation) of all compartments
connected with plasma. The influence of state variables on metabolic rates is nonlinear in nature
and represented using a form of the hyperbolic tangent function.

The adopted function can represent threshold and saturation phenomena which are typically
observed on a metabolic process due to a change in concentration of one or more substrates [17].
Moreover, the influence of the controlling variables (e.g. hormones) can be easily incorporated
into these relationships as a change in the saturation value and the slope of the trajectory. The
main rationale to apply hyperbolic tangent function is to introduce physiological and saturation
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Figure 1.5: Procedure of conducting OR on ML-based glucose forecasting.

constraints. The parameters of the model are tuned through constrained nonlinear optimization
and the model can be used in operation research (OR). Implementing this constraining feature
using a linear differential equation (DE) is difficult. The Parameters of the DEs are static rate
constant and provide less implication. In fitting experiments on various experimental datasets,
the proposed model produces an average correlation coefficient of 0.84±0.12 on all simulated
responses with the target. Besides this, the optimized model can generate a metabolic spectrum
by plotting effect equations for providing more metabolic insight.

1.6 Thesis organization

Chapter 2 shows the justification behind the research problem and research gap mentioned in
the introduction by studying the literature. Before going for the justification, chapter presents a
bird’s eye view of the research field of ML-based glucose forecasting models. This chapter finds
out the limitations of ML-based predictive models and shows potential solutions. By describing
the merits and limitations of the existing prominent glucose dynamics and exercise models along
with their characteristics and scope, this chapter ends by setting the research goal of this thesis.

Chapter 3 describes the datasets of clinical experiments and free-living conditions used for
building and validating ML and physiological models. This chapter also illustrates the
architecture of FFNN for building a predictive model and physiology of blood glucose regulation
during disturbances of carbohydrate ingestion, insulin injection, the onset of physical activity,
and fasting event.
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Chapter 4 describes the mathematical structure of the proposed integrated physiological model in
detail in terms of constants, parameters, state variables, and equations. This chapter also explains
the parameter tuning process of the model.

Chapter 5 deals with the result of fitting experiments, comparison with a reference model, and the
result of OR on forecasting of FFNN. It also includes the discussion on conducted experiments
with the proposed integrated physiological model and the application of the model in OR. The
discussion usually explains why and how the result of the experiments is produced. Limitations
of the model are also described in the discussion.

Finally, Chapter 6 summarizes the thesis and provides recommendations for future research
work.



Chapter 2

Literature Studies

The research problem of this thesis is defined explicitly in the introduction focusing on a research
gap in the literature. But it is essential to justify the defined problem and proposed solution by
exploring the existing research. This justification is the main objective of this chapter. Before
going for the assessment of the limitations of the ML-based predictive models, it is helpful to
obtain a high-level view of the concerned field of blood glucose forecasting. Discussion on
existing analogous models is very important to build a constraint-based physiological model of
glucose regulation consisting of external stimuli.

2.1 Machine learning-based predictive models

The task of presenting an overview of the research field of machine learning-based blood sugar
forecasting is become easy by studying the review paper authored by A.Z. Woldaregay et.al. [3].
In this review, a total of 55 articles are selected after a full-text assessment out of 624 papers
which are retrieved from rigorous searching between August 2017 and February 2018 in various
online databases including Google Scholar, PubMed, ScienceDirect, and others. The selected
articles were compared based on some categories which are defined on rigorous brainstorming
and discussions. Categories are age and number of subjects, type of input, data format or
type/data source, input preprocessing, class of machine learning, training/learning algorithm,
validation techniques, prediction horizon (PH), performance metrics.

2.1.1 Type and number of input parameters

According to the reviewed literature, blood glucose, insulin, and diet comprise the most used
group of parameters (29%), as shown in Figure 2.1. BG, insulin, diet, and physical activity
make up the second most used group of parameters (25%). The use of only the BG parameter
ranked third (20%). The use of BG, insulin, diet, and physical activity, stress and, other groups

11
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Figure 2.1: The type and number of input parameters used to train the models [3].

of parameters ranked as the fourth most used (14%). The use of BG along with insulin and BG
along with physical activity ranked equally as the fifth most used group of parameters (4%). The
use of BG with diet and BG with insulin and physical activity ranked equally as the sixth most
used parameters (2%).

2.1.2 Classes of used machine learning techniques

Various classes of machine learning techniques have been used in general dynamic system
modeling, regression, and prediction services. However, for BG prediction, feed-forward neural
networks are the most used techniques (20%), as shown in Figure 2.2 . The hybridization of
the physiology-based model and machine learning techniques is the second most used approach
(19%). Recurrent neural networks in various forms ranked as the third most used technique
(18%). Support vector machines (SVMs) ranked as the fourth most used technique (11%).
Genetic programming techniques, most notably grammatical evolution, ranked as the fifth most
used technique (6%). Autoregressive neural networks and neuro-fuzzy networks are the sixth
most used techniques (5%). Self-organizing maps (SOMs) ranked seventh (4%). Extreme
learning machines, kernel functions, Gaussian processes, genetic algorithms, and random forests
ranked eighth (2%). Jump neural networks and deep neural networks ranked ninth (1%).

2.1.3 Performance metrics for model assessment

Performance metrics are necessary steps that should be carefully chosen based on the developed
model under consideration. Various performance metrics are used to assess the predictive power
of the developed model. However, choosing the appropriate metrics depends on the type of
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Figure 2.2: Classes of machine learning techniques used in the modeling of blood glucose
prediction [3].

Figure 2.3: The performance metrics used to assess the predictive power of the developed
models [3].

application that the model is intended to be used. Based on the reviewed articles, the performance
metrics used to assess the predictive performance of the model can be categorized into two
groups: mathematical evaluation criteria (empirical accuracy) and clinical evaluation criteria
(clinical accuracy). The mathematical evaluation criteria (empirical accuracy) are simply used to
evaluate the numerical accuracy without giving due consideration to the clinical significance.
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Figure 2.4: Scatter plot of Clarke Error Grid [19].

This group of metrics includes root mean square error, correlation coefficient, FIT, normalized
prediction error (NPE), and geometric mean. The clinical evaluation criteria (clinical accuracy)
give due consideration to their significance in terms of clinical usability and include error grid
analysis, average time gain, mean absolute relative difference, expert comparison, and J index.
Generally, the most popular performance metric is the root mean square error (36%), followed
by Clarke error grid analysis (19%), as shown in Figure 2.3. The third most popular metric is
the correlation coefficient (12%), followed by the temporal gain (8%). The fifth most popular
metric is mean absolute error and mean absolute difference percent (5%). The sixth most-used
metrics are mean absolute relative difference, the energy of the second-order difference, and
mean squared error (3%). The seventh most-used metrics are normalized prediction error, expert
reference, and J index (2%).

The Clarke Error Grid Analysis (EGA) was developed in 1987 to quantify the clinical accuracy of
patient estimates of their current blood glucose as compared to the blood glucose value obtained
in their meter. It was then used to quantify the clinical accuracy of blood glucose estimates
generated by meters as compared to a reference value. Eventually, the EGA became accepted
as one of the “gold standards” for determining the accuracy of blood glucose forecasting in the
ML-based research field of diabetes. The grid breaks down a scatter plot of a reference glucose
meter and an evaluated glucose meter into five regions Figure 2.4:

• Region A are those values within 20% of the reference,

• Region B contains points that are outside of 20% but would not lead to inappropriate
treatment,
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• Region C are those points leading to unnecessary treatment,

• Region D are those points indicating a potentially dangerous failure to detect hypoglycemia
or hyperglycemia, and

• Region E are those points that would confuse treatment of hypoglycemia for hyperglycemia
and vice versa.

2.1.4 Which ML model is best

Though the review study stated above gives an overview regarding the inputs, ML techniques,
and performance metrics, it doesn’t give any idea regarding the strength of modeling approaches
used so far in the literature. Because different modeling approaches in research works utilize
different datasets of different diabetic patients. In one of the recent studies by J. Xie et.
al. [20], a comparative analysis has been conducted on various machine learning and classical
autoregression techniques based on the OhioT1DM dataset, which includes eight week’s data
collected from six anonymous T1D patients under insulin pump therapy, where Medtronic 530G
insulin pumps with Medtronic Enlite CGM Sensors were used. Besides that life-event data of
each subject were reported through a custom smartphone application and activity data were
collected from a fitness band. Because of using the same data and feature sets for all the ML
techniques, it is possible to assess the strength of all techniques in a fairway.

The major findings from the research are that no significant advantage has been observed from the
ML models compared to the classical Auto Regression with Exogenous Inputs (ARX) except that
Temporal Convolution Network (TCN) model’s performance was more robust for BG trajectories
with spurious oscillations. Compare to that, ARX shows over-predict peak BG values and
under-predict valley BG values. A major limitation of this attempt is the length of the prediction
horizon (PH) which is only thirty (30) minutes. Thirty minutes is not enough time to assess
various algorithms of predictive modeling rigorously. Normally, the performance of predictive
models deteriorates in the case of longer PH. Hence, if the experiments could be enhanced for
more than two hours, it would have been possible to assess the performance more rigorously.

2.2 Limitations of ML models and way of overcome

From the brief review described in the previous section, it is clear that the research field of
blood glucose forecasting based on ML has achieved a remarkable base. But still, these models
cannot be applied in making the therapeutic decision for diabetes management. By studying
the nature of the forecasting models and research works related to estimating the magnitude
of action (amount of carbohydrate/insulin) for diabetes management, it is appeared that two
logical reasons prevent ML models from being applied in decision making for blood glucose
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management. The first reason is the lack of robustness analysis and the second is the absence
of physiological interpretability. The only usage of the ML-based predictive model is to get a
notification on upcoming hypoglycemic events [35].

2.2.1 Limitations of ML models

The first limitation is the lack of robustness analysis of ML models in presence of noise and
missing events. ML strategy has a great generalization capability to extract a pattern from a large
number of instances that occurred in the past. Usually, ML-based models leverage the presence
of autocorrelations and cross-correlations in retrospective time series data of continuous blood
glucose concentration and other factors affecting diabetes. Hence variation of correlations has
a severe impact on the performance of the model. The crucial task in diabetes management is
the collection of lifestyle data which consists of carbohydrate consumption, physical activity
tracking, insulin injection information, mental and physical condition, etc. Usually, these data
contain an unbelievable amount of noise variation and discontinuity introduced from various
types of sensor technology and manual recording of events. The predictive model that is
capable of producing real-time acceptable forecasting must have the mechanism to handle the
noise variation and discontinuity events. In chapter 5, an experiment has been conducted on
a diabetic dataset (consisting of CGM data, diet, and activity events) to estimate the effect
of correlation variation on the performance of a feed-forward neural network (FFNN) based
forecasting model. By creating a different synthetic physical activity signal using a sigmoid
function of the CGM series (Appendix B), two activity signals of different correlations have
been produced. Two FFNN of the same architecture have been trained to build the models and
to observe the performance difference due to correlation variation. It is found that increased
correlation has better performance in the forecasting of future trajectories of plasma glucose
concentration (Table 5.3).

The second limitation is the absence of physiological interpretability in the forecasted glucose
trajectory. Parameters of the ML models contain weights that are a bunch of 1’s and 0’s. These
weights do not provide any sense regarding the blood glucose dynamics of the human body.
Weights are only interpretable by a machine for producing generalized patterns based on input.
Forecasting is mere curve fitting and there is no explanation of how the result is being generated.
That’s why ML-based models are not found to be used in therapeutic decision making such as
estimating the insulin dose required for maintaining a normal glucose range. Due to the absence
of causal reasoning ML models usually overestimates hypoglycemic events and underestimates
hyperglycemic events in predicted glucose trajectory [21].

Most of the predictive models of glucose dynamics that are used to estimate insulin dose
are the physiological model. The parameters of those models have concrete physiological
meaning and can be measured for a certain patient in complex clinical protocols. In P. Gyuk
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et. al. [4] a prediction algorithm has been proposed for outpatients without taking physical
activity under consideration. The model consists of two state-of-the-art physiological models
that calculate nutrition absorption and plasma glucose control with insulin evolution. A genetic
algorithm has been used to estimate the parameter set. In C.Liu et. al. [5] a glucose forecasting
algorithm, based on a compartmental composite model of glucose-insulin dynamics, has been
proposed which is currently being used as the core component of a modular safety system for
insulin dose recommender developed within the EU-funded project. Matlab fmincon constrained
optimization routine was employed to estimate the state of the model from the continuous
glucose monitoring (CGM) signal. In A. N. Sveshnikova et. al. [6], a mathematical model
has been constructed with six ordinary differential equations that describe the dynamics of
changes of glucose concentration as well as insulin and anti-insulin factors considering the
main physiological parameters of blood-glucose regulation. The parameters have been identified
according to continuous glucose-monitoring data using an evolutionary programming method. In
Yan Zhang et. al. [7], a data-driven nonlinear stochastic model based on second order differential
equations has been developed to describe the response of blood glucose concentration on food
intake using CGM data. A Bayesian learning scheme was applied to define the number and
values of the system’s parameters by iterative optimization of free energy. The four mathematical
models stated above are constructed based on the physiology of blood glucose regulation and
capable of producing glucose forecasting leveraging a short amount of CGM data with the
physiological interpretation. Though these models can’t take advantage of the hidden pattern
of the large amount of retrospective CGM data, these are more acceptable because of their
illustration. Hence, to make the ML-based forecasting effective in diabetes management causal
reasoning is required to be produced.

2.2.2 Literature for solutions

In this thesis, a solution has been pursued to overcome those two barriers mentioned in the
previous subsection so that ML-based models can be applied in producing therapeutic decisions
for diabetes management. For the first case, the performance of ML models can be tested on
in silico data with various possible correlations and can be rebuilt to produce an acceptable
result. The diabetic simulators/glucose dynamics models can play an important role in this
regard by generating a synthetic dataset from a preconfigured virtual diabetic patient. A diabetic
simulator produces glucose variation signals based on a prescheduled protocol for a particular
set of physiological parameters that represent a virtual patient. By adding noise signals of
different magnitude with the simulated glucose concentration and choosing various physiological
delays for the parameters, it is possible to generate different sets of data representing correlation
variation.

In a recent predictive model by J.Martinsson et.al. [22], noise experiments have been conducted
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Figure 2.5: Composition of operations research.

to observe what uncertainty the model can learn. Two types of noise called measurement noise
and state length noise, have been added to the deterministic signal obtained from the OhioT1D
dataset to produce a noisy dataset. OhioT1D dataset isn’t freely available. Data Use Agreement
with Ohio University at the institutional level is required to obtain access to the dataset. Hence,
in absence of real diabetic data, a simulator might be a better alternative for producing synthetic
noisy datasets.

For the second case, to provide physiological interpretability of the glucose concentration
forecasted from the ML-based predictive model, Operation Research (OR) might be an innovative
solution (Figure 2.5). The ML-based forecasted series is the generalized statistical response
of glucose concentration. By conducting OR with a constraint-based physiological model
upon the response of the ML model, it is possible to transform the statistical signals into
physiological/metabolic response.

A review paper by Y. Bengio et. al [23] shows various strategies of hybridization on ML and OR
to solve complex problems. The OR approach to solve a problem comprises six sequential steps
(Figure 2.6). It is obvious from the Figure 2.6 that to perform operation research on glucose
profile predicted from the ML approach, a well-descriptive mathematical model of blood glucose
regulation in a healthy human body is required.

Leveraging OR it is not only possible to transform the statistical signal into a metabolic signal but
also possible to get an idea regarding the metabolic disorder that occurred in the internal organs
of the body. A Ph.D. thesis by O.Vahidi [8] regarding the assessment of organ dysfunction in a
type-2 diabetic is available in the literature. That thesis describes how the origin of metabolic
disorder in a type-2 diabetic patient can be assessed by performing OR on a clinical experimental
dataset with a physiological model of blood glucose regulation.

So, from the above discussion, it is obvious that the two problems have a common solution.
The solution is applying a mathematical/physiological model of blood glucose regulation in two
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Figure 2.6: Sequential steps of OR approach [24].

different ways. In the first case, the model should be used to produce a noisy synthetic dataset
and in the second case, the model shall be used to perform OR.

2.3 Mathematical models/simulators of glucose dynamics

Since mathematical model is assumed as a tactical solution for the two limitations of
the ML-based predictive models, it becomes essential to get an overview of recognized
mathematical/physiological models available in the literature to obtain an idea regarding the
scope, strength, and limitations of these models. AIDA is a freely available diabetic simulator
by developed and maintained by E.D. Lehmann and T.Deutsch. It is suitable for the patient and
medical staff education for glucose-insulin interaction in insulin-dependent (type 1) diabetes
mellitus.

Over 0.638 million diabetes simulations have been run at AIDA online, from 115 countries all
over the world up to January 2014. Neither physical activity nor type-2 diabetes is modeled in
the simulator. A snap of the user interface of the AIDA simulator is shown in Figure 2.7.

Among other simulators, the Universities of Virginia and Padova research group model, named
as UVA/Padova model [9] consists of two subsystems, namely the glucose and insulin system.
In a later publication, an additional glucagon subsystem is presented. The glucose subsystem
is divided into three systems: the transport, the production, and the utilization of glucose. This
model includes the subcutaneous insulin kinetics to simulate the administered insulin. The

http://www.2aida.org/aida/technical.htm
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Figure 2.7: The user interface of the AIDA diabetic simulator.

simulation population consists of 300 virtual patients including adults, adolescents, and children.
The model is approved by the Food and Drug Administration to replace animal trials.

The Cambridge’s model [10] consists of five sub-models: the glucose and insulin kinetics, the
glucose absorption, the subcutaneous insulin, and the interstitial glucose. With these extended
sub-models, the model is specifically built to support the development of a closed-loop system.
Bayesian parameter estimation process has been applied to determine time-varying model
parameters. The model population consists of 18 virtual patients. The model is validated with an
overnight clinical study.

The Sorensen model [11] is an explanatory physiological model of glucose metabolism. The
model represents the organs in six compartments. These compartments are again divided into
three spaces: the capillaries, the interstitial, and the intracellular space. In these spaces, the
interactions of glucose, insulin, and glucagon are described. These are represented as a mass
balance. This model was the first complete model that simulates an average patient with type 1
diabetes. However, it simulates intravenous administrated insulin. Therefore, the delay when
insulin is infused subcutaneously is neglected.

The Fabietti model [12] is developed by a research group at the University of Perugia in Italy
based on a modified Bergman’s minimal model [25]. In this model, the endogenous insulin
secretion is substituted by subcutaneously delivered exogenous insulin and the glucose kinetics is
represented by two instead of a single compartment. External inputs of the model such as meals
and intravenous glucose boluses have been added together with the sub-model of the glucose
absorption from the gastrointestinal tract. An interesting feature of the model is the sinusoidal
representation of the circadian variability of insulin sensitivity. The amplitude and phase of the
circadian rhythm are estimated ‘off-line’ to characterize an individual subject.
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Comparing all the models stated above, the Cambridge and UVA/Padova models are considered
the most complete models. Both models are based on clinical data sets instead of literature.
The differences between the models are seen in the compartmental structures, the number of
parameters, and the number of differential equations. Usually, more compartments make the
model more complex. One common issue in all the models is that no model considers the
effect of exercise on glucose dynamics explicitly. So these models cannot be applied to describe
glucose dynamics in a free-living condition where blood glucose homeostasis is interrupted due
to physical exercise. Besides this, simulated activity signals cannot be produced for building and
testing ML-based models.

The development process of a physiological model considered in this thesis has been inspired
by the physiological knowledge and architecture of the blood sugar regulation model by R.O
Foster et.al. [18]. Though exercise dynamics has not been considered in this model, it has some
distinguishing characteristics which are as below.

1. Five crucial plasma variables (Glucose, FFA, Lactate, Insulin, and Glucagon concentration)
have been incorporated for modeling glucose homeostasis in respect of the normal human
body.

2. The concentration of each plasma variable is the aggregated result of rates of some
predefined release/uptake processes of a particular substrate. Each predefined release/
uptake process has a basal rate in the basal condition.

3. The effect of concentration of a particular substrate (Glucose/FFA/Lactate/Insulin/
Glucagon) on the basal rate of any physiological process has been represented by a
static lookup table of substrate concentration and its corresponding effect.

4. Time dimension has been considered as a collection of discrete-time intervals (∆T =

K–J) to form the equations of the model. The equation of substrate (Glucose, FFA, Lactate,
Insulin, and Glucagon) amount in a distribution volume at time point K is represented as.

AK = AJ + ∆T ∗ (
∑

Rin–
∑

Rout)JK ;

CK = AK/(DistributionV olume);

Where,

AK and AJ is the amount of substrate at time point K and J respectively;

CK is the concentration of that substrate at time point K.∑
Rin means the sum of all inflow rates of a substrate.∑
Rout means the sum of all outflow rates of a substrate.
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(
∑
Rin–

∑
Rout)JK is the net change in rate (mg/min) of time interval JK

5. The rate of any metabolic process (uptake/release) is the multiplication of basal rate with
effects of associated substrates retrieved from a static lookup table.

Rate = Basal Rate ∗ Effect(C1) ∗ Effect(C2) ∗ . . . ∗ Effect(Cn);

Effect(Cn) = Static Lookup Table[Effect, Concentration];

Where, Cn is the concentration of nth associated substrate.

6. For explaining the process of maintaining the energy requirement of the muscle and
nervous system, in absence of or in low concentration of glucose, the role of Free Fatty
Acid (FFA) production from the adipose tissue sector has been described quantitatively
and explicitly.

7. A full model has been established based on human anatomy. Hence other sub-models such
as simulating carbohydrate ingestion, injected insulin appearance in plasma and respiratory
effect due to physical activity on glucose metabolism can be integrated as per physiology.

2.4 Mathematical models of glucose-exercise dynamics

Though the exercise dynamics has not been implemented in recognized glucose dynamics
models/simulators till writing of this thesis there are some promising exercise dynamics models
based on the minimal model of glucose dynamics available in the literature. A reliable physical
activity model with glucose dynamics is essential especially for the model-based control design
of Artificial Pancreas (AP) systems. Up to date, only a few physiological models are reported to
describe how physical activity affects glucose dynamics.

Roy & Parker [13] proposed a minimal exercise model by extending Bergman’s minimal
model [25]. The model is prominent in the literature of exercise dynamics in blood glucose
regulation and capable of describing the changes of basal insulin, glucose uptake, and endogenous
glucose production during and after exercise. But, the long-lasting effect on insulin sensitivity
is not considered in the model. Though the model can predict plasma glucose and insulin
concentrations in response to mild-to-moderate exercise challenges, knowledge-driven lumped
minimal models do not essentially resemble the glucoregulatory system at various levels
of the body such as tissues and/or organs. To mimic the complex glucoregulatory system,
comprehensive knowledge-driven models are required, which generally possess many parameters
relating to the physiological process.

Breton [14] develops a mathematical model of glucose dynamics that can describe recognized
changes in glucose regulation during physical exercise. Heart rate (beats per minute) is used to
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Figure 2.8: Insulin Subsystem of S.M. Ewings model.

Figure 2.9: Insulin-dependent glucose subsystem of S.M. Ewings model.

detect and quantify the exercise intensity for the first time. The model can also describe both the
short-term increase of insulin-independent glucose uptake and the prolonged insulin sensitivity
change based on Bergman’s minimal model [25]. The model was successfully fit to 21 type 1
diabetic subjects during a hyperinsulinemic clamp protocol and performance was compared with
the standard minimal model of glucose kinetics that it was derived from. However, this model
was designed following the parsimony principle and was kept intentionally small in terms of
both states and parameters. Because of that, some important metabolic process such as the rise
of Endogenous Glucose Production (EGP) caused by exercise is absent in the model.

Later on, Dalla Man et. al. [15] incorporated Breton’s model into the comprehensive
compartment model. Several modifications were made to reflect glucose dynamics with different
exercise intensity and duration. Still, EGP increase is not modeled, and the model is validated
with synthetic data of T1D patients [9]. The first attempt to describe the quantitative relationship
between physical activity and change in insulin sensitivity has been taken in this model.

S.M. Ewings et. al. [16] presents a new statistical approach for analyzing the effects of everyday
physical activity on blood glucose concentration in people with type 1 diabetes. This model
shows that the exercise model based on minimal glucose dynamics cannot reflect the blood
glucose concentration profile and returns non-viable results. The primary reason for poor model
performance is the integration method of physical activity: a key assumption of the exercise
model is that activity returns to basal level after exercise, but data from real dataset shows that
physical activity does not return to basal level for extended periods during the day. This article
also highlights important practical and theoretical issues not previously addressed in the quest for
an artificial pancreas as a treatment for type-1 diabetes. The proposed method represents a new
paradigm for the analysis of deterministic mathematical models of blood glucose concentration.



2.4. MATHEMATICAL MODELS OF GLUCOSE-EXERCISE DYNAMICS 24

Figure 2.10: Insulin-independent glucose subsystem of S.M. Ewings model.

S.M.Ewings model consists of six (06) differential equations and eight (08) tunable parameters.
Figure 2.8 – Figure 2.10 shows the different subsystems of the S.M. Ewings model. MET
denotes metabolic equivalent of task. No endogenous production of insulin and glucagon has
been assumed in the model. This means the model cannot be applicable for describing type-2
diabetes. The model is not capable of describing high-intensity exercise. Induction of insulin
sensitivity due to physical exercise and its effect on the post-exercise period has been ignored.
The model is not suitable for the long-term simulation of glycemic variation. S.M.Ewings model
has been selected as a reference model for comparison with the proposed physiological model of
this thesis.

M.C. Palumbo et. al. [26] formulated a novel computational system that is more detailed in
describing both the physical exercise and the subjects’ characteristics. This model has been built
based on a previous model of whole-body metabolism by Kim et. al. [27]. Kim and colleagues
proposed a whole-body, multi-scale computational model, incorporating cellular metabolism of
different tissues/organs, to predict the responses of glucose, hormones (i.e., glucagon, insulin,
epinephrine), and various substrates to moderate-intensity exercise. Exercise is described using
the work rate (WR) expressed in Watt. A total of 136 differential equations consist of the
multi-scale computational model. The modifications that have been made by M.C.Palumbo et. al.
on the model by Kim are i) the use of the oxygen consumption in place of the WR (relative rather
than absolute exercise intensity); ii) modeling how oxygen consumption relates to epinephrine;
iii) explaining how the glucagon/insulin controller is modified by the new description of the
exercise. To date, this model is the most comprehensive multi-scale exercise model available in
the literature. But the model is computationally expensive for deployment in model predictive
control in free-living conditions. This model is suitable for the development of diagnostic
platforms for medical devices and patient-specific eHealth applications.



2.5. RESEARCH GOAL 25

2.5 Research goal

Discussion and analysis on existing models presented in the previous two sections justify
the research gap mentioned in section 1.3 and provide directions for designing integrated
physiological model (IPM) of virtual diabetic patient. The main part of the IPM is the glucose
dynamics in the blood circulation system. To implement the glucose dynamics of the IPM,
glucose regulation model introduced by R.O.Foster [18] described at the end of section 2.3 can
be adopted. The architecture of this model is suitable for introducing physiological constraints
and exercise dynamics mathematically. For learning the physiology of exercise dynamics,
existing models of section 2.4 are very important. The S.M.Ewings et.al [16] model can be
treated as the state of the art and can be selected as a reference model for comparing the
performance of the IPM. Once IPM implementation is complete, it will be usable as a standalone
simulator in computer environment and applicable for OR on ML-based glucose forecasting.
Hence, the implementation of the IPM as defined in section 1.4 is set as the research goal of this
thesis.



Chapter 3

Methodology

According to the objectives of the thesis, it is required to build an ML model for producing
forecasting of glucose concentration and a constraint-based glucose regulation model for OR on
forecasting. Figure 1.5 showed a pictorial representation of OR on ML-based forecasting. In this
chapter, adopted diabetic datasets and building strategy of the ML and OR models are described
explicitly.

3.1 Datasets for modeling diabetes

Dataset is the fundamental component of any quantitative research. As it is already stated,
blood glucose is primarily fluctuated due to ingestion of carbohydrate/glucose, external insulin
injection, and physical activity in the daily life of a diabetic patient. Hence, a dataset consisting
of those events and corresponding glycemic excursions is required to validate a physiological
model. In the following sub-sections, four (04) datasets consisting of both clinical and free-living
environments are described for getting illustration on the blood glucose fluctuation.

3.1.1 Oral glucose tolerance test (OGTT) data

A clinical dataset of OGTT performed by F.K. Knop et al. [28] was adopted. This dataset
consisted of the mean values of plasma glucose and insulin concentration of all subjects at
some specific time points of regular interval along the duration of test. In the test, ten (10)
healthy subjects (eight men and two women) were selected, and a 50 g glucose tolerance test
was performed. 17 blood samples were taken from the subjects during the test. Body weights
of subjects were different from each other; hence all clinical data were scaled to a 70 kg body
weight. The discrete values were interpolated using piecewise Hermite cubic interpolation in
MATLAB to produce continuous series. Table B.1 in Appendix B contains the OGTT records.

26
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3.1.2 Data on exercise in a clinical experiment

The clinical experiment conducted by G. Ahlborg and P. Felig [29] on physical activity was
adopted in this research. In the experiment, 20 healthy non-obese adult male subjects were
studied in the post-absorptive state after a 12 to 14-h over-night fast. For 3-4 days immediately
before the exercise period, the subjects were told not to participate in any competitive athletics
and to ingest meals consisting of 200-300 g of carbohydrate per day. The experiment was
of 03-3.5 hours leg exercise (bicycle ergo-meter) with moderate intensity (PVO2max = 60%)
and a 40-min post exercise recovery period. Data on oxygen consumption rate during exercise
along with other substrates (Glucose, Insulin, Glucagon, FFA, and Lactate) concentration were
recorded at regular interval for all subjects. From the mean value of recording of all subjects,
piecewise Hermite cubic interpolation was used to produce a continuous signal. Table B.2 and
Table B.3 in Appendix B contain the records of the exercise experiment.

3.1.3 CGM data of type-1 diabetic

To validate and compare the proposed model with a reference model, a single-day profile
of CGM data of type-1 diabetes from the dataset shared by D.K. Rollins et al. [30] were
used (Figure 3.1). The diet events and activity information of the selected profiles were
transformed into the continuous signal by Elshoff et al. [31] and linear differential equation of
oxygen consumption [13] respectively. The signal of insulin appearance into circulation was
estimated from the exogenous insulin regimen using the model introduced by M. Berger, and D.
Rodbard [32].
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(a)

(b)

(c)

(d)

Figure 3.1: Dataset of a type-1 diabetic for 04 days: (a) CGM (b) Carbohydrate (c) Activity (d)
Insulin.

3.1.4 CGM data of type-2 diabetic

Figure 3.2: Daily pattern of glucose variation of a type-2 diabetic patient over CGM of 20 days.
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A dataset of CGM, physical activity information, and diet events for 20 days of a type-2 diabetic
patient was used in this research endeavor. Dataset was collected from a research publication
by D.K. Rollins et. al. [30]. CGM data were smoothed by a MATLAB function and described
over a 24 hour time horizon in Figure 3.2. From the time scale of the figure, it is observed that
glucose fluctuation is steadier in the period of 12:00 am to 8:00 am of the day which is usually
sleeping time. Outside of that time interval glucose concentration is more interrupted due to
lifestyle events. Average of daily mean basal glucose is 114.24 mg/dl.

Figure 3.3: Daily pattern of carbohydrate(mg) taking in logged events over 20 days.

Carbohydrate (CHO) events shown in Figure 3.3 were logged as discrete events in the dataset.
But the amount of CHO was transformed into a continuous physiological signal of glucose
appearance (Figure 3.4) from the gut using a model by Elshoff et. al. [31].

Figure 3.4: Continuous carbohydrate onboard (COB) profile of 20 days.

Figure 3.5 shows the correlation between glucose appearance rate from the gut and CGM signal.
There is a strong positive correlation of about 45% among carbohydrate intake events and glucose
variation.
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Figure 3.5: Correlation analysis of glucose appearance rate from the gut with glucose profile.

Figure 3.6 displays the continuous physical activity signal of a type-2 diabetic patient logged in
free living environment. Physical activity signal maintains a negative correlation with CGM data
and also has a very significant impact on blood glucose variation. But, unfortunately, Figure 3.7
shows a very poor correlation coefficient (-0.00896) of physical activity with the CGM data. The
causes may be the incorporation of the noise factor introduced by the sensors.

Figure 3.6: Physical activity profile of a type-2 diabetic patient over 20 days.

Figure 3.7: Correlation analysis of physical activity signal with glucose profile.
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To observe the effect of correlation variation on the performance of the ML-based predictive
model, a synthetic activity signal using a sigmoid function of CGM data has been generated
as shown in Figure 3.8. The algorithm for generating synthetic activity signal is described in
Appendix B. The synthetic activity has a good negative correlation of about 11.24% with the
CGM data as displayed in the scatter plot in Figure 3.9. The utilization of synthetic activity
signals doesn’t influence the research result.

Figure 3.8: Synthetic activity profile based on CGM of a type-2 diabetic.

Figure 3.9: Correlation analysis of synthetic activity signal with glucose profile.

3.2 ML-based predictive model

According to the section 2.1.2, FFNN was mostly used for building predictive models for
forecasting future glucose trajectories for a short period. Hence, in this experimentation of a new
approach, FFNN was used to build an ML model using the CGM profile and logged information
of a type-2 diabetic person described in section 3.1.4. Studying the structure of previous FFNN
based models of the literature and analyzing correlation among the sequences of the diabetic
dataset, the architecture of the ML model shown in Figure 3.10 is defined. The NN model
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leveraged the correlation among glucose concentration data of time point t+N with the glucose
concentrations of time points t to t-5 and the accumulated amount of carbohydrate on board
and activity intensity. Here N is the number of time points and it is determined by dividing the
prediction horizon (PH) with sampling rate.

Figure 3.10: Architecture of FFNN based predictive model.

The model also took sample time points to consider the temporal variation of plasma glucose
concentration over the daily life cycle. FFNN consisted of one hidden layer of ten (10) neurons
that used hyperbolic tangent function as activation function and linear activation function in the
output layer. The model was trained using a Bayesian regularization backpropagation algorithm
with data of 15 days from the dataset and the rest of the records were used for model testing.
Other parameters are the default setting of the fitnet function of the MATLAB Neural Network
toolbox.

3.3 Physiology of blood glucose regulation

It is unavoidable to understand the pathophysiology of diabetes before diving into modeling
mathematically. Existing research works [3]- [18] on mathematical modeling of blood glucose
regulation are a good source of comprehensive knowledge on this topic. There are a couple
of organs/tissues directly involved with the glucose metabolism in a human body listed in
Figure 3.11. Plasma is the main carrier of various substrates (glucose, FFA and hormones) in
the blood circulation system and only the accessible compartment in the human body. Since all
organs/tissues are connected with the blood circulation system through vein and artery, substrates
are released in or absorbed from plasma.



3.3. PHYSIOLOGY OF BLOOD GLUCOSE REGULATION 33

Figure 3.11: Organs/tissues involved in blood glucose regulation.

Glucose concentration, the integrated result of the net change of glucose in the plasma, is the
main state variable that is needed to be maintained in the normal range in case of diabetes. In
Figure 3.11, the Pancreas organ is responsible for secreting insulin and glucagon into plasma
based on the concentration of glucose and other state variables. In diabetic conditions, the
insulin secretion process is usually impaired or stopped permanently. The brain is the constant
consumer of glucose and absorbs glucose without any dependency on insulin.

Liver, muscle, and adipose tissue are the three main crucial players in the blood glucose
homeostasis condition of the body. The liver uptakes glucose for storing as glycogen and
releases in plasma at a particular rate based on the concentration of plasma variables. Besides
this, the liver converts free fatty acid and lactates into glycogen through gluconeogenesis and
releases it into plasma for maintaining glucose homeostasis in fasting and intensive physical
activity. Muscle tissues uptake glucose from plasma and burn it to produce energy for keeping
the body active. It also stores glucose as glycogen for utilizing in demand and releases lactate
into the circulation. Adipose tissues are responsible for releasing fatty acid in the circulation
for maintaining basal secretion of insulin and the gluconeogenesis process of the liver. It also
absorbs glucose from plasma and transforms it into fat for storing in the body.

Gastro-Intestinal (GI) Track and Subcutaneous Route are the paths via which oral ingestion
of carbohydrate and injected insulin passes through respectively and flows into blood circulation.
Orally ingested carbohydrate is degraded into glucose in the intestine and triggers the pancreas
to secrete insulin in the circulation in advance. Insulin injection creates a flow of appearance in
plasma based on type and dose of insulin. In the case of bolus insulin, the appearance rate is
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high and within 15-30 minutes insulin dose is diffused completely in plasma. On the other hand,
basal insulin takes a long time to diffuse into the blood from the injection site. Lungs consume
oxygen from the air and transmit it into circulation to convey to the cells of the body. The rate of
oxygen consumption is indirectly used for the measurement of activity intensity. The percentage
of oxygen consumption usually rises to a higher rate during the onset of exercise and gradually
comes down to a normal rate after the end of the exercise. Besides all of the organs/tissues
mentioned above, the kidney also plays a role in blood glucose regulation. Glucose is excreted
through urine if plasma concentration exceeds a threshold level.

In the following subsections, the behavior of various organs/tissues in terms of release/uptake
of substrates against various events has been described by the dummy line graph over time
dimension.

3.3.1 Fasting glucose homeostasis

During fasting, blood glucose concentration remains constant for a certain period. To maintain
this constant situation hepatic release of glucose plays an important role in response to a higher
secretion rate of glucagon from the Pancreas. When stored glycogen is reduced in a significant
level, hepatic glucose release rate becomes low and plasma glucose concentration declines
eventually as shown in Figure 3.12. To meet up the glucose requirement of Brain and Muscle
tissue, the Liver increases the rate of the gluconeogenesis process to transform the fatty acid
into glucose. But due to the slow rate of gluconeogenesis compare to glucose demand, blood
glucose concentration falls ultimately. Simultaneously, the glucose uptake rate of Muscle and
Adipose tissue is reduced.
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Figure 3.12: Body response during fasting.

3.3.2 Blood glucose regulation after carbohydrate ingestion

After consumption of food, glucose flux is produced by breaking down of carbohydrate at Gut and
spreads out into circulation within 15-20 minutes of oral ingestion. Blood glucose concentration
rises abruptly and Pancreas is stimulated to release insulin hormone in the circulation. Due to
the higher concentration of insulin in plasma, glucose uptake rates in Liver and Muscle tissue
are increased significantly to bring the glucose concentration to normal range. In the state of
higher glucose concentration or hyperglycemia, hepatic glucose release rate is declined to the
lower level and glycogen synthesis occurs. Figure 3.13 describes the response of the body after
ingestion of carbohydrates.
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Figure 3.13: Body response after diet ingestion.

3.3.3 Blood glucose regulation after insulin injection

If insulin hormone is injected subcutaneously, it is transmitted into circulation at particular rate
over time on the basis of insulin type and dose amount. Usually, insulin doses are of two types:
bolus and basal. Bolus insulin, which has immediate action, is usually injected before a meal.
Basal insulin, which is transmitted in blood circulation slowly, is injected for the long-term
demand of insulin-dependent diabetic patients. A type-2 diabetic patient may have impaired
insulin secretion from Pancreas or insulin resistance in Peripheral tissues and doesn’t require
external insulin in daily life. By performing regular physical exercise and a healthy diet routine
glucose concentration can be maintained in the normal range. But for type-1 diabetic patient,
who is unable to produce insulin completely, require essential external insulin injection at regular
interval to keep blood glucose concentration in a safe range.

In a normal human body with the basal condition, blood glucose concentration falls immediately
due to an increased rate of glucose uptake in Peripheral tissue after an injection of insulin
dose causing hypoglycemia. To recover the normal condition, secretion of glucagon hormone
from the Pancreas is increased to stimulate the Liver for releasing glucose in circulation by
breaking down stored glycogen. Insulin secretion from Pancreas is suppressed completely in
this condition. The description stated above has been illustrated in Figure 3.14.
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Figure 3.14: Body response after insulin injection.

3.3.4 Blood glucose regulation at physical activity

Physical exercise has severe short-term and long-term impacts on blood glucose regulation [33].
During physical activity, the rate of oxygen consumption increases from basal level to a constant
extreme level within 4-5 minutes based on the intensity of the activity [13]. By integrating the
changes in oxygen consumption rate it is possible to estimate the amount of effort which causes
the disturbances in blood glucose concentration. Hence the rate of oxygen consumption is used
as a metric to measure the intensity of physical activity. In some research work, the heart-bit rate
is used to quantize the activity.

At the commencement of exercise with moderate intensity the Skeletal Muscle starts to increase
the rate of uptake of glucose from the circulation. This increment does not produce any impact
on the overall plasma glucose concentration. But as the duration of exercise prolongs, glucose
concentration starts to fall gradually. The Skeletal Muscle tissue burns the glucose, taken from
circulation, to meet the energy requirement of the body and releases lactate into the circulation.
As per the metabolism of glucose homeostasis, glucagon hormone is released in the circulation
for stimulating the Liver to release glucose to maintain the normoglycemia. But the amount
of glycogen stored in the Liver isn’t enough to compensate for the glucose demand for more
than a few minutes. As the stored glycogen declined significantly Liver starts to transform non-
glycogenic substrates such as fatty acid into glucose by gluconeogenesis process. But the rate of
glucose production through gluconeogenesis is very slow in respect of the glucose requirement
rate of the body during exercise. Eventually, the ultimate level of glucose concentration falls
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and may cause hypoglycemia. In the case of exercise with high intensity, the sequence of events
stated above occurs more rapidly. Type-1 or insulin-dependent diabetic patients can produce
hypoglycemic conditions during exercise and may cause severe health conditions if a proper
measure isn’t taken on external insulin injection. Figure 3.15 describes the response of the body
during the onset of exercise.

Figure 3.15: Body response during the onset of exercise.

At the end of the exercise, a separate metabolic process, called as recovery phase of the exercise,
is started to bring the body into normal condition. In the case of exercise of low intensity,
the recovery phase doesn’t produce any significant changes in the circulation. But at the end
of prolonged exercise, the glucose uptake rate of the Skeletal Muscle is declined abruptly
and at the same time, the gluconeogenesis rate is increased rapidly in presence of a higher
concentration of lactate. This lactate is released from the Skeletal Muscle during exercise.
Since glucose reproduction is greater than the uptake rate, plasma glucose concentration rises
gradually and returns to the normal range within a certain period. In the case of impaired liver
function, glucose homeostasis conditions may not be achieved. Hence precaution should be
taken before attempting high-intensity exercise for diabetic patients. Recovery phenomena have
been described in Figure 3.16.
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Figure 3.16: Body response just after exercise.

Besides the short-term effect of physical exercise, there is also a long-term impact on insulin
sensitivity in peripheral tissue of the body. Usually, after prolonged exercise, the human body
gains an extra capability on the glucose uptake process in Muscle tissue. In this case, the
metabolic process of glucose uptake without the influence of insulin gets an accelerated rate
which ultimately helps to prevent the hyperglycemic condition in the body. This accelerated rate
may persist for 10-12 hours after exercise and may prevalent on basis of the regularity of the
exercise schedule [33].

3.3.5 Rate-balance-concentration paradigm

By observing the metabolic behavior of organs/tissues discussed so far (section 3.3.1-3.3.4), a
relation among the rate of metabolic processes (release/uptake), balance of plasma substrate,
and concentration has become obvious to describe the glucose dynamics. The rate of metabolic
processes (release/uptake) is the product of their basal rate and effects of single or multiple state
variables. The balance of a specific substrate in the whole body is the result of the integration
of net change in rates of corresponding metabolic processes. The concentration of a specific
substrate is the amount of substrate balance per unit distribution volume of the body. Due to
external/internal disturbances, any change in concentration eventually makes an effect on the
rate of associated metabolic processes. So, the dynamics of the blood glucose regulation makes
a rate-balance-concentration paradigm (Figure 3.17).
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Figure 3.17: Rate-balance-concentration paradigm in blood glucose regulation.

In response to external stimuli such as oral ingestion of meals or injection of insulin or physical
exercise, the rate-balance-concentration paradigm negotiates the disturbances by altering
the metabolic process rate to bring the stable condition in the body. Both oral ingestion of
carbohydrate and subcutaneous injection of insulin directly interrupt plasma concentration. On
the other hand, exercise intensity has an immediate impact on the metabolic process rate of
glucose uptake and lactate release by the skeletal muscle tissue.

3.3.6 Defining dynamics mathematically

As described by Charette et. al. [17], the effect of any substrate concentration/external stimulus
on the basal rate of a metabolic unit process can be modeled using the kinetic theory of enzyme-
catalyzed chemical reactions. According to Charette et. al., a plot of the rate of product formation
as a function of substrate concentration with enzyme activity as a parameter is “sigmoid” in
shape, i.e. the process is rate-limited at some saturation value (Figure 3.18).
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Figure 3.18: Hyperbolic tangent function for effect representation.

For this reason, to represent the effect of concentration of any substrate/external-stimulus/event
on the basal rate of any metabolic unit process involved in blood glucose regulation in the human
body, the following functional form can be applied.

Ex = E1 + E2 ∗ tanh(c ∗ (X–Xb + d))

where,

E1 = (a+ b)/2

E2 = (a–b)/2

X = Substrates concentration/Stimulus magnitude (input);

Xb = Basal concentration/magnitude of any substrate/stimulus;

Ex = Effect of fluctuation of Substrates/Stimulus (output);

a = Effect at lowest point of X;

b = Effect at highest point of X;

c = Slope of effect trajectory;

d = Adjustment offset;

In the proposed physiological model of this thesis, the above form of hyperbolic tangent function
has been applied to represent the effect of change of state variables on various metabolic
processes of glucose dynamics. It has been considered that any metabolic process rate is
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increased monotonically from some nominal value until saturation occurs under the appropriate
stimulus. If any metabolic process is stimulated by multiple substrates concentration then the
basal rate of that process shall be multiplied by the effect of each substrate to obtain the ultimate
metabolic rate as below.

MetabolicRate = BasalRate ∗ E1 ∗ E2 ∗ . . . ∗ En;

Where, n is the number of substrates.

There were two fundamental objectives for adopting the form of hyperbolic tangent function
in the modeling rate-balance-concentration paradigm. The first one was the requirement of the
physiological model for saturation constraints. The next one was to get a metabolic spectrum of
effects of plasma variables on metabolic processes for physiological interpretation.



Chapter 4

Integrated Physiological Model

As mentioned in section 1.4 and illustrated in the methodology, equations of the IPM of
virtual diabetic patient are described explicitly in this chapter. Models are implemented in
Matlab/Simulink environment (Appendix C) and results of various fitting experiments are
mentioned and discussed in the following chapters.

4.1 Constraint-based glucose regulation

Considering five (05) plasma variables, sixteen (16) rates of metabolic processes in different
organs/tissues, and hyperbolic tangent function of saturation relation of biochemical reactions,
the constraint-based physiological model is formed according to the physiological architecture
presented in [18] and discussed in section 2.3. There are three secondary state variables in the
model: storage of glycogen in the liver and peripheral tissues, and insulin sensitivity induced
due to physical activity.

4.1.1 Glucose dynamics

Glucose release from liver: HPT Release Rate = Basal Rate× Eglucose × Einsulin × Eglucagon × Eglycogen;

Glucose uptake by liver: HPT Uptake Rate = Basal Rate× Eglucose × Einsulin × Eglycogen;

Glucose uptake by muscle tissue: MT Uptake Rate = Basal Rate×Eglucose×Einsulin×Eperi store×Eexercise;

Glucose uptake by adipose tissue: APT Uptake Rate = Basal Rate× Eglucose × Einsulin;

Since effect of insulin concentration on glucose uptake process is inversely influenced by
concentration of FFA, Einsulin = (a+ b)/2 + (a–b)/2 ∗ tanh(c ∗ ((Insulin ∗ EFFA)–Basal + d));

Glucose uptake by nervous system: NS Uptake Rate = Basal Rate× Eglucose;

Glucose uptake by red blood cell: RBC Uptake Rate = Basal Rate× Eglucose;

Glucose extraction through urination: Urine Spillage Rate = 0.5× (glucose–threshold);

NetChange = GUT Appearance Rate+HPT Release Rate–HPT Uptake Rate

43
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–MT Uptake Rate–APT Uptake Rate–NS Uptake Rate

–Urine Spillage Rate–RBC Uptake Rate;

GUT Appearance Rate denotes the rate of glucose appearance in circulation from the gut after
oral ingestion. PlasmaGlucoseStorage = InitialP lasmaGlucoseLevel +

∫
NetChange;

PlasmaGlucoseConcentration = PlasmaGlucoseStorage/(V olumeofDistribution ∗ 10);

V olumeofDistribution = 20% ∗ (BodyWeight);

Lactate uptake by liver: HPT Lactate Uptake Rate = Basal Rate× ELactate × Eglycogen × Eexercise;

NetChange = HPT Uptake Rate–HPT Release Rate + HPT Gluconeogenesis Rate +

HPT Lactate uptake rate;

HepaticStorage = InitialHepaticGlucoseLevel +
∫
NetChange;

HepaticGlycogen(%) = HepaticStorage/(HepaticStorage+ LiverWeight);

4.1.2 Exercise dynamics

Estimation of effort during exercise: Effort =
∫ EndT ime
StartT ime

Oxygen Consumption Rate

Induction of insulin sensitivity (IS) for given effort:
IS Induction Factor = (a+ b)/2 + (a–b)/2 ∗ tanh(c ∗ (Effort–Basal + d));

The net result of insulin sensitivity: Net IS Factor =
∫

(IS Induction Factor–IS Degradation factor);

Glucose burning in muscle tissue: MT Utilization Rate = Basal Rate×Eperi store×(Eexercise+Net IS Factor);

Lactate releasing from muscle tissue: MT Lactate Release Rate = Basal Rate× Eperi store × Eexercise;

NetChange = MT Uptake Rate–MT Utilization Rate–MT Lactate Release Rate;

PeripheralGlucoseStorage = InitialPeripheralGlucoseStorage+
∫
NetChange;

4.1.3 Free Fatty Acid (FFA) dynamics

FFA release from adipose/fat tissue: FFA Production Rate = Basal Rate× Eglucose × Einsulin;

FFA transformation in liver: HPT Gluconeogenesis Rate = Basal Rate× EFFA × Eglycogen;

FFA utilization in plasma: FFA Utilization Rate = ((TotalP lasmaFFAAmount ∗ EFFA)/TCFAU);

Where, TCFAU = Time Constant for FFA Utilization in fasting = 1.443*half life = 6;
NetChange = FFA Production Rate–HPT Gluconeogenesis Rate–FFA Utilization Rate;

TotalP lasmaFFAAmount = InitialP lasmaFFALevel +
∫
NetChange

FFAConcentration = PlasmaFFAStorage/(V olumeofDistribution ∗ 150);

V olumeofDistribution = 10% ∗ (BodyWeight);
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4.1.4 Lactate dynamics

NetChange = MT Lactate Release Rate–HPT Lactate Uptake Rate;

TotalP lasmaLactateAmount = InitialP lasmaLactateLevel +
∫
NetChange

P lasmaLactateConcentration = TotalLactate/V olumeofDistribution

V olumeofDistribution = 20% ∗ (BodyWeight);

4.1.5 Insulin dynamics

Insulin secretion from pancreas: I Secretion Rate = Basal Rate× Echange × Eglucose × EFFA;

Echange = (a+ b)/2 + (a–b)/2 ∗ tanh(c ∗ (perceived glucose change–Basal + d));

Insulin degradation in plasma: I Degradation Rate = 0.075× (NetInsulinAmount)× Eexercise;

I Appearance Rate denotes the rate of insulin appearance from the site of subcutaneous injection.
NetChange = I Secretion Rate–I Degradation Rate+ I Appearance Rate;

TotalInsulin = InitialP lasmaInsulinLevel +
∫
NetChange;

PlasmaInsulinConcentration = TotalInsulin/V olumeofDistribution

V olumeofDistribution = 20% ∗ (BodyWeight);

Advance sensing of plasma glucose concentration by pancreas is represented as below.
perceived glucose concentration = PlasmaGlucoseLevel +GUT Appearance Rate ∗ 0.20;

Perceivedglucosechange = (perceived glucose concentration(t)–perceived glucose concentration(t–1))/0.1;

Where t is the timestamp.

4.1.6 Glucagon dynamics

Glucagon secretion from pancreas: G Secretion Rate = Basal Rate× Eglucose;

Glucagon degradation in plasma: G Degradation Rate = 0.20× (NetP lasmaGlucagonAmount);

NetChange = G Secretion Rate–G Degradation Rate;

TotalGlucagon = InitialP lasmaGlucagonLevel +
∫
NetChange;

PlasmaGlucagonConcentration = TotalGlucagon/V olumeofDistribution.

V olumeofDistribution = 20% ∗ (BodyWeight);

4.1.7 Modeling external stimulus

Guts glucose appearance: After having diet glucose is appeared in blood circulation from the
guts breaking down the carbohydrate part of the diet at a consistent rate based on the amount
of ingested carbohydrate, type of carbohydrate, and elapsed time. The function of guts glucose
appearance is modeled in several studies. In this research, the model proposed by Elashoff et
al. [31] is used to produce a glucose appearance signal. ‘GUT Appearance Rate’ variable in the
model represents the rate of glucose appearance from the gut.
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Subcutaneous insulin appearance: Similarly, insulin appearance in circulation from the site of
subcutaneous injection is dependent on the amount of dose, insulin type, and time. The model of
subcutaneous insulin diffusion proposed by M. Berger, and D. Rodbard [32] is used to produce
plasma insulin appearance signals from injected dose in this thesis. The ‘I Appearance Rate’
variable in the proposed physiological model represents the rate of insulin appearance from the
exogenous insulin injection.

Oxygen consumption rate: The intensity of exercise is measured with the oxygen consumption
rate of the body. There is a delay between the onset of exercise and the physiological response
of the body. That delay is needed to be modeled for incorporating exercise dynamics with the
glucose regulation. The equations introduced in A. Roy and R.S. Parker [13] for modeling
physiological delay are adopted in this thesis. The ‘Oxygen Consumption Rate’ variable in the
proposed physiological model represents the continuous signal of oxygen consumption during
the onset of exercise.

All three models: [31], [32], and [13] are described in Appendix A. ‘Basal Rate’ in all equations
represented the basal rate of the corresponding metabolic process. Values of basal rates of
various metabolic processes and constants were taken from the literature [18]. Because of having
a secondary role of FFA and lactate in glucose regulation, glucose dynamics can be modeled
considering the concentration of glucose, insulin, and glucagon only.

4.2 Parameter estimation by model optimization

Parameter constraints: Each effect equation has four (04) parameters to represent the saturation
phenomenon. So, the number of total tunable parameters depends on the number of total effect
equations defined in the model. But using the physiological knowledge and experiences of
several trials on optimization it appeared that several parameters could be easily assumed without
going into the optimization process. One of those parameters was the lowest magnitude of effect
for the concentration of a particular plasma variable on a particular process rate. It may be the
parameter ‘a’ or ‘b’ in the hyperbolic tangent effect equation (Figure 3.18). Another parameter is
‘d’ which was used to set the midpoint of the operating range of concentration of plasma variables.
Hence keeping those assumable parameters aside only half of the total parameters were needed
to tune by optimization over the selected experimental dataset. The selected parameters were
the highest magnitude of the effect equations (‘a’ or ’b’) and the slope of the effect trajectories
(‘c’ parameter). In the parameter estimation process, an iterative procedure was used, which
used a sequential quadratic programming (SQP) method for solving the nonlinearly constrained
optimization problem. Basal and initial states of plasma variables were set before starting the
optimization process based on the experimental dataset and assumption. The constraints imposed
on the model parameters during the optimization were following.
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1. Each effect equation was equal to unity in the case of basal concentration of the
corresponding substrate. i.e. (a+ b)/2 + ((a–b)/2) ∗ tanh(c ∗ d) = 1

2. Parameters ‘a’ and ‘b’ were positive in each case. The range of parameters of higher
magnitude (‘a’ or ’b’) was set to 1→ Inf and parameter of lower magnitude was assumed
with physiological knowledge.

3. Parameter ’c’ was always negative in each effect equation and set to a range achieved by a
lot of trial and error.

4. Xm = [Xb–(±d)] indicated the midpoint of the operating range of the substrate
concentration where Xb was the basal concentration. Hence the parameter‘d’ was such
that Xm didn’t exceed the interval [X1, X2].

The initial value of the parameters plays a very important role in the optimization and these
values are obtained from the experience of a huge number of trial optimization.

Objective function: The objective function of the optimization problem is to minimize the
sum of deviation of model results from the clinical data. The best model parameters result in
the closest model results to the clinical data. In the case of the OGTT experiment with dataset
described in 3.1.1, the objective function of the constrained nonlinear optimization problem is
the following.

min
Θ

i=n∑
i=1

(|Gi
m −Gi

c|+ |I im − I ic|)

Where Gi
m and I im are plasma glucose and insulin concentrations at the time i obtained from

the model, respectively; Gi
c and I ic are corresponding clinical measurements. n is the size of the

clinical OGTT dataset; Θ is the vector of selected model parameters. In the case of the exercise
experiment with dataset described in 3.1.2, the objective function of the constrained nonlinear
optimization problem is the following.

min
Θ

i=n∑
i=1

(|Gi
m −Gi

c|+ |F i
m − F i

c |+ |Lim − Lic|+ |I im − I ic|+ |Γim − Γic|)

Where Gi
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i
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i
m and Γim are plasma glucose, free fatty acid, lactate, insulin, and glucagon

concentrations at the time i obtained from the model, respectively; Gi
c, F

i
c , L

i
c, I

i
c and Γic are

corresponding clinical measurements. n is the size of the clinical exercise dataset; Θ is the vector
of selected model parameters. In the case of the CGM experiment with dataset described in
3.1.3 and 3.1.4, the objective function of the constrained nonlinear optimization problem is the
following.

min
Θ

i=n∑
i=1

(|Gi
m −Gi

cgm|)
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Where Gi
m is plasma glucose concentrations at the time i obtained from the model; Gi

cgm is
corresponding clinical measurements. n is the size of the CGM dataset; Θ is the vector of
selected model parameters.

4.3 Reshaping physiological model for OR

CGM profile of a type-2 diabetic along with diet and exercise log is selected for OR on forecasting
obtained from FFNN. Hence physiological model presented in section 4.2 is needed to reshape
with less number of state variables. The reshaped model can also be used for fitting other
experimental datasets which consist of a limited number of plasma variables (section 5.1, 5.3, 5.4,
and 5.7). Table 4.1 shows the tabular representation of the reshaped physiological architecture of
the adopted model.

Table 4.1: Tabular representation of metabolic relation among plasma variables and metabolic
processes.

Plasma
Vari-
ables

Liver Muscle Pancrease Plasma

Metabolic
Processes

Glucose
Release

Glucose
Uptake

Glucose
Uptake

Insulin
Secre-
tion

Glucagon
Secre-
tion

Insulin
Degrada-

tion

Nerve
Uptake

RBC
Uptake

Glucose

Insulin

Glucagon

Exercise

? dashed line indicates the neutral effect of corresponding plasma variables on metabolic processes.

The mathematical architecture of the reshaped model according to Table 4.1 is described below.

4.3.1 Glucose dynamics

Glucose release from liver: HPT Release Rate = Basal Rate× Eglucose × Einsulin × Eglucagon;

Glucose uptake by liver: HPT Uptake Rate = Basal Rate× Eglucose × Einsulin;

Glucose uptake by muscle tissue: MT Uptake Rate = Basal Rate× Eglucose × Einsulin × Eexercise;

Glucose uptake by nervous system: NS Uptake Rate = Basal Rate× Eglucose;

Glucose uptake by red blood cell: RBC Uptake Rate = Basal Rate× Eglucose;

Glucose extraction through urination: Urine Spillage Rate = 0.5× (glucose–threshold);
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NetChange = GUT Appearance Rate+HPT Release Rate–HPT Uptake Rate

–MT Uptake Rate–NS Uptake Rate–Urine Spillage Rate–RBC Uptake Rate;

’GUT Appearance Rate’ denoted the rate of glucose appearance in circulation from the gut after
oral ingestion.
PlasmaGlucoseStorage = InitialP lasmaGlucoseLevel +

∫
NetChange

P lasmaGlucoseConcentration = PlasmaGlucoseStorage/(V olumeofDistribution ∗ 10);

V olumeofDistribution = 20% ∗ (BodyWeight);

4.3.2 Insulin dynamics

Insulin secretion from pancreas: I Secretion Rate = Basal Rate× Echange × Eglucose;

Echange = (a+ b)/2 + (a–b)/2 ∗ tanh(c ∗ (perceived glucose change–Basal + d));

Insulin degradation in plasma: I Degradation Rate = 0.075× (NetInsulinAmount)× Eexercise;

’I Appearance Rate’ denotes the rate of insulin appearance from the site of subcutaneous
injection.
NetChange = I Secretion Rate–I Degradation Rate+ I Appearance Rate;

TotalInsulin = InitialP lasmaInsulinLevel +
∫
NetChange;

PlasmaInsulinConcentration = TotalInsulin/V olumeofDistribution.

V olumeofDistribution = 20% ∗ (BodyWeight);

Advance sensing of plasma glucose concentration by the pancreas is represented as below.
perceived glucose concentration = PlasmaGlucoseLevel +GUT Appearance Rate ∗ 0.20;

Perceivedglucosechange = (perceived glucose concentration(t)–perceived glucose concentration(t–1))/0.1;

Where, t is the timestamp.

4.3.3 Glucagon dynamics

Glucagon secretion from pancreas: G Secretion Rate = Basal Rate× Eglucose;

Glucagon degradation in plasma: G Degradation Rate = 0.20× (NetP lasmaGlucagonAmount);

NetChange = G Secretion Rate–G Degradation Rate;

TotalGlucagon = InitialP lasmaGlucagonLevel +
∫
NetChange;

PlasmaGlucagonConcentration = TotalGlucagon/V olumeofDistribution.

V olumeofDistribution = 20% ∗ (BodyWeight);

4.3.4 Estimating parameters and constraints range

After reshaping the proposed glucose regulation model for OR, the dynamics were represented
by fourteen (14) effect equations. Hence there were fifty-six (56) tunable parameters present in
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the model and only twenty-four (24) parameters were selected for tuning by optimization over
the dataset of a type-2 diabetic according to the physiological representation of Table 4.1. There
were two use cases of the constrained nonlinear optimization process according to the illustration
of Figure 1.5. In the first case, optimization was conducted on original retrospective data to
generate the highest magnitude of each effect equation (‘a’ or ‘b’) over the diurnal interval using
parameter constraints described in section 4.2. By making an average of all magnitudes for a
particular equation a mean magnitude was determined for the parameter of highest magnitude (‘a’
or ‘b’) of all effect equations. This set of magnitude was treated as personalized constraints. In
the second case, optimization was conducted on the forecasted glucose profile of the ML model
using similar parameter constraints of section 4.2 except the highest magnitude of all effect
equations. The highest magnitude of all effect equations, which is Inf by default, is replaced
with the personalized constraint estimated in the first case before optimization. After completion
of each optimization, plotting of each effect equations gave the metabolic spectrum for the time
interval of the day taken under consideration for optimization.



Chapter 5

Experimental Results and Discussion

For validating the proposed constraint-based physiological model decribed in the previous
chapter, it is required to test the model upon various real world experiments. This chapter
presents the experimental results conducted with dataset described in Chapter 3 and discusses
the characterstics of the model responses.

5.1 Fitting OGTT experiment

After oral ingestion of 50 g glucose, the tentative glucose appearance rate was estimated using
Elashoff et al. [31] meal simulation model (Figure 5.1).

Figure 5.1: Trajectory of glucose appearance rate (mg/min) during OGTT.

Based on glucose appearance rate the model described in section 4.3 was optimized to the
trajectories of plasma glucose and insulin concentration profile.

51
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Figure 5.2: Real (dashed) vs. simulated (continuous) glucose concentration for OGTT.

Figure 5.3: Real (dashed) vs. simulated (continuous) insulin concentration for OGTT.

Hence, from the fitting experiment, it was observed that the simulated glucose signal produces
a 92% correlation with the target signal (Figure 5.2). At the same time, the simulated insulin
signal produced 95% correlation with the target (Figure 5.3).

5.2 Fitting clinical exercise experiment

Figure 5.4 shows the oxygen uptake rate during a moderate level of physical activity of the
selected clinical exercise experiment described in section 3.1.2. In response to this exercise
intensity, a corresponding change in glucose, free fatty acid, lactate, insulin, and glucagon
concentration both from model described in section 4.1 and dataset have been illustrated in
Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, and Figure 5.9 respectively.
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Figure 5.4: Trajectory of oxygen consumption rate during a clinical experiment of exercise.

Based on the trajectory of oxygen consumption rate during the clinical experiment of exercise
the model was optimized to the trajectories of plasma glucose, free fatty acid, lactate, insulin,
and glucagon concentration profile.

Figure 5.5: Real (dashed) vs. simulated (continuous) plasma glucose concentration for clinical
exercise experiment.
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Figure 5.6: Real (dashed) vs. simulated (continuous) plasma FFA concentration for clinical
exercise experiment.

Figure 5.7: Real (dashed) vs. simulated (continuous) plasma lactate concentration for clinical
exercise experiment.
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Figure 5.8: Real (dashed) vs. simulated (continuous) plasma insulin concentration for clinical
exercise experiment.

Figure 5.9: Real (dashed) vs. simulated (continuous) glucagon concentration for clinical
exercise experiment.

By comparing the model response with reference concentration, it was obtained that simulated
glucose, FFA, lactate, insulin, and glucagon trajectories produced a correlation of 93%, 99%,
81%, 90%, and 95% respectively with the corresponding target sequence.

5.3 Fitting continuous glucose profile

The model of section 4.3 was optimized with a daylong continuous signal of glucose appearance
rate (Figure 5.10), physical activity (Figure 5.11) and corresponding plasma glucose excursion
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of a type-2 diabetic patient for the assessment of model capacity.

Figure 5.10: Continuous glucose appearance rate (mg/min).

Figure 5.11: Continuous activity signal in % of maximum volume of oxygen consumption.
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Figure 5.12: Real continuous glucose profile (dashed) vs. simulated (continuous) glucose profile
for type 2 diabetes.

From the fitting result (Figure 5.12), it was found that the simulated glucose signal produces a
correlation of 67% with the target concentration.

5.4 Comparison with the S.M.Ewings model

The performance of the proposed model was compared with the model of S.M. Ewings et al. [16]
which was built on the assumption of no production capability of endogenous insulin. Being built
on a minimal model of glucose dynamics, the S.M. Ewings model consists of six (06) differential
equations and is implemented in Simulink (Figure 5.13). Continuous glucose profile along with
diet, insulin, and physical activity data of a type-1 diabetic were considered for comparison.
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Figure 5.13: Simulink implementation of S.M.Ewings model.

From the considered dataset described in section 3.1.3, a single day profile of smoothed
glucose concentration signal, carbohydrate on board, insulin on board, and continuous oxygen
consumption signal was taken (Figure 5.14) for optimization with the S.M. Ewings model and
proposed glucose regulation model for performance comparison.

(a)

(b)

(c)

Figure 5.14: Single-day protocol of a type 1 diabetic in continuous form: (a) Carbohydrate (b)
Insulin (c) Activity.
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Figure 5.15 shows the optimization result of both the proposed and S.M. Ewings et al. [16]
model for single-day glucose profile of a type-1 diabetic patient against the continuous signal of
carbohydrate, exogenous insulin, and activity (Figure 5.14).

Figure 5.15: Comparison among real glucose and simulated glucose signals of a type 1 diabetic
for a single day longer.

The simulated glucose profile from the proposed model produced a lower correlation coefficient
(84%) compared to the SM Ewings model (95%). But the proposed model can give more
metabolic insight into blood glucose dynamics by plotting the effect equations. Figure 5.16
describes the effect of plasma glucose, insulin, and glucagon on various metabolic processes
in the liver. Similarly Figure 5.17, Figure 5.18, and Figure 5.19 show spectral interpretation of
effect equations of muscle, pancreas, and plasma.
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(a) (b)

(c) (d)

(e)

Figure 5.16: Liver compartment - Effect of glucagon (a), glucose (b) and insulin (c) on hepatic
release. Effect of glucose (d) and insulin (e) on hepatic uptake.

(a) (b)

(c)

Figure 5.17: Muscle compartment - Effect of activity (a), glucose (b) and insulin (c) on muscle
uptake of glucose.
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(a) (b)

(c)

Figure 5.18: Pancreas compartment - Effect of glucose CHANGE (a) and glucose (b) on insulin
release. Effect of glucose (c) on glucagon release

(a) (b)

(c)

Figure 5.19: Plasma compartment - Effect of activity (a) on insulin degradation. Effect of
glucose (b) on RBC uptake. Effect of glucose (c) on glucose uptake in nervous system

Parameters of the S.M.Ewings model are estimated using unconstrained nonlinear least squares
optimization and mentioned in Table 5.1.
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Table 5.1: List of parameters and their estimated values of S.M. Ewings model for single-day
glucose profile of type 1 diabetic.

Parameters Values Unit Description

p1 2.0315 min−1 Rate of insulin clearance

p2 0.0027 min−1 Rate of insulin degradation

p3 0.0228 ml/U/min2 Rate of insulin appearance

p4 0.8 min−1 Rate constant

p5 0.8 min−1 Rate constant

p6 0.0523 mg/ml Rate constant

p7 0.0038 min−1 Rate constant

p8 0.0985 mg/ml Rate constant

p9 0.0154 min−1 Rate constant

p10 -0.0236 min−1 Rate of Insulin independent glucose clearance

p11 114 mg/dl Basal glucose concentration

5.5 Comparison of fitting experiments

The performance of the proposed model was assessed by conducting a fitting experiment on
OGTT, Clinical Exercise test, and glucose profile of free-living environment. The Dataset
of those experiments were different in nature, size, and no of variables. Hence, to compare
the results of all experiments correlation coefficient was used as the metric for bringing all
experiments on the same platform. The result of all experiments was listed in Table 5.2.

Table 5.2: Correlation coefficient among simulated responses generated from proposed model
and corresponding target in different fitting experiments.

Fitting
Experiments Input Events Glucose Insulin Glucagon FFA Lactate

OGTT Oral glucose 0.92 0.95 – – –

Exercise O2 consumption 0.94 0.90 0.95 0.99 0.81

Type-2 glucose
profile Diet, Activity 0.67 – – – –

Type-1 glucose
profile

Diet, Insulin,
Activity

0.84 – – – –

Average Correlation 0.84± 0.12 – – – –
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5.6 Effect of correlation variation in ML models

To experiment with the effect of correlation variation on the performance of the ML-based
predictive model, two FFNN models of the same architecture (section 3.2) are built on two
separate datasets with various prediction horizons (PH). Along with the same CGM and diet
information, one dataset contains real activity signal (Figure 3.6) and another one contains the
synthetic activity signal (Figure 3.8). The synthetic activity has a greater negative correlation of
about 11.24% than 0.08% of real activity signal with the CGM data as displayed in scatter plot
in (Figure 3.9 and Figure 3.7). Both models are trained over 15 days of the dataset and tested on
the rest. Performances of two models are evaluated using RMSE and Clarke Error Grid Analysis
and described in Table 5.3.

Table 5.3: Accuracy comparison of two FFNN of same architecture trained on two different
datasets (real & synthetic) of different correlation over various PH for 05 full Days.

PH Model RMSE Zone-A Zone-B Zone-C Zone-D Zone-E

2hr
Real 27.24± 1.47 57±0.08% 42±0.09% 0% 1± 0.01% 0%

Synthetic 18.15± 2.76 82±0.07% 17±0.07% 0% 1± 0.01% 0%

3hr
Real 27.23± 1.64 56±0.08% 43±0.07% 0% 1± 0.01% 0%

Synthetic 23.01± 2.69 69±0.09% 31±0.09% 0% 1± 0.01% 0%

4hr
Real 28.49± 2.22 52±0.08% 47±0.07% 0% 1± 0.01% 0%

Synthetic 26.46± 3.79 59±0.12% 40±0.11% 0% 1± 0.01% 0%

5hr
Real 34.44± 5.45 54±0.06% 45±0.05% 0% 1± 0.01% 0%

Synthetic 30.01± 6.46 55±0.11% 45±0.10% 0% 1± 0.01% 0%

6hr
Real 30.65± 2.78 53±0.06% 46±0.05% 0% 1± 0.01% 0%

Synthetic 30.35± 3.66 59±0.07% 41±0.07% 0% 1± 0.01% 0%
? Data Format = Mean± Standard Deviation; Real→ Lower Correlation; Synthetic→ Higher Correlation;

From Table 5.3, it is observed that most of forecasted values are located in the clinically
acceptable region (Zone-A and Zone-B) in the error gird analysis for both models. Very few
forecasted points are located in Zone-D. It is also obvious that the RMSE of forecasted glucose
trajectories increases for both models as the length of the prediction horizon increases. Though
both FFNN models are of the same architecture, the performance of the FFNN model trained
on the dataset with synthetic activity is more accurate in comparison to the performance of the
FFNN model trained on the dataset with real activity signal. The obvious reason behind this is
the higher correlation coefficient of activity signal with continuous glucose data for synthetic
activity.
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5.7 OR on ML-based forecasting

For conducting OR on the response obtained from the FFNN model of section 3.2, the forecasted
glucose trajectories with three (03) hours of prediction horizon (PH) are considered. Each day
of the forecasted profile is segmented into eight (08) intervals. Then the forecasted response of
each interval is targeted for optimization in the physiological model (section 4.3) along with the
corresponding carbohydrate on board, continuous activity signal, and estimated personalized
constraints illustrated in section 4.3.4. The optimization problem is solved using sequential
quadratic programming. The fitted response (OR response) of glucose concentration is compared
with the corresponding actual glucose concentration sequence using RMSE and Clarke Error Grid
Analysis [19] as the performance metric. By estimating the RMSE and Error Grid Analysis of
ML-based forecasting with corresponding actual CGM profile, a comparison between ML-based
statistical and OR-based physiological response is created (Table 5.4) for performance analysis
of the proposed solution of this research. Figure 5.20 shows the OR response for corresponding
ML forecasting for the time interval of 12:00 pm – 3:00 pm of day-1 from the testing part of the
dataset.

Figure 5.20: Producing OR response by optimizing physiological model.

As a result of producing OR response by optimizing physiological model on ML response,
following illustration of metabolic properties is obtained according to the architecture of the
physiological model. Figure 5.21 describes the effect of plasma glucose, insulin, and glucagon
on various metabolic processes in the liver. Similarly Figure 5.22, Figure 5.23, and Figure 5.24
show spectral interpretation of effect equations of muscle, pancreas, and plasma.
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(a) (b)

(c) (d)

(e)

Figure 5.21: Liver compartment - Effect of glucagon (a), glucose (b) and insulin (c) on hepatic
release. Effect of glucose (d) and insulin (e) on hepatic uptake.

(a) (b)

(c)

Figure 5.22: Muscle compartment - Effect of activity (a), glucose (b) and insulin (c) on muscle
uptake of glucose.
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(a) (b)

(c)

Figure 5.23: Pancreas compartment - Effect of glucose CHANGE (a) and glucose (b) on insulin
release. Effect of glucose (c) on glucagon release

(a) (b)

(c)

Figure 5.24: Plasma compartment - Effect of activity (a) on insulin degradation. Effect of
glucose (b) on RBC uptake. Effect of glucose (c) on glucose uptake in nervous system

Conducting similar operations over forecasting of five (05) full days, this type of spectrum with
different results is achieved. Table 5.4 shows the average comparative results of ML and OR
models on eight (08) different time intervals in mean ± standard deviation format over 05 full
days. Figure 5.25 shows the scatter plot of Clarke Error Grid Analysis of both OR response and
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ML response.

Table 5.4: Comparison among ML response vs. target & OR response vs. target over 03 hours
PH for 05 full days.

Interval Model RMSE Zone-A Zone-B Zone-C Zone-D Zone-E

12:00 am ML 20.98± 11.93 65.11± 37.80 34.89± 37.80 0.00 0.00 0.00

–3:00 am OR 20.64± 14.13 65.67± 44.75 34.33± 44.75 0.00 0.00 0.00

3:00 am ML 10.60± 4.01 91.22± 12.29 8.78± 12.29 0.00 0.00 0.00

–6:00 am OR 13.63± 7.72 74.33± 30.25 25.67± 30.25 0.00 0.00 0.00

6:00 am ML 17.33± 7.63 78.22± 30.19 20.89± 29.29 0.00 0.89± 1.99 0.00

–9:00 am OR 19.72± 6.98 70.67± 24.04 28.44± 23.41 0.00 0.89± 1.99 0.00

9:00 am ML 24.44± 6.46 56.00± 28.58 39.89± 20.43 0.00 4.11± 9.19 0.00

–12:00 pm OR 29.98± 5.78 27.44± 29.23 68.44± 25.63 0.00 4.11± 9.19 0.00

12:00 pm ML 22.39± 16.09 64.00± 39.82 36.00± 39.82 0.00 0.00 0.00

–3:00 pm OR 22.89± 11.34 57.33± 42.32 42.67± 42.32 0.00 0.00 0.00

3:00 pm ML 25.61± 7.15 57.00± 21.37 43.00± 21.37 0.00 0.00 0.00

–6:00 pm OR 22.39± 8.94 61.22± 30.32 38.78± 30.32 0.00 0.00 0.00

6:00 pm ML 23.89± 8.40 53.22± 31.26 46.78± 31.26 0.00 0.00 0.00

–9:00 pm OR 31.75± 10.41 49.78± 19.53 50.22± 19.53 0.00 0.00 0.00

9:00 pm ML 29.47± 7.61 53.22± 12.91 45.78± 11.48 0.00 1.00± 2.24 0.00

–12:00 am OR 25.93± 12.75 64.44± 21.70 33.44± 21.05 0.00 2.11± 4.72 0.00

Figure 5.25: Clarke Error grid analysis of OR Response (Red) and ML Response (Green) for
five (05) days.

5.8 Discussion

The main theme of this thesis is solving a problem by filling a research gap in modeling diabetes.
A constraint-based blood glucose regulation model as part of IPM (section 1.4) of virtual diabetic
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patient is built and validated through fitting experiments. Then the model is used in operation
research for producing physiological explanations from ML-based forecasting. Hence, the
discussion is segmented into two sections focusing on a separate issue.

5.8.1 Building and validation of the physiological model

In OGTT, glucose regulation was interrupted through external glucose ingestion. In the clinical
exercise experiment glucose dynamics was stressed to negotiate the requirement of muscle tissue.
In continuous glucose variation, glucose regulation was gone through consecutive events of oral
ingestion, activity, and subcutaneous injection of insulin. Since the proposed model generated an
average correlation coefficient of 0.84±0.12 on simulated responses with the target (Table 5.2)
and responses are analogous to the physiology described in section 3.3, the validity of the model
can be claimed.

A noticeable issue is that fitting result is not as much satisfactory for day long continuous glucose
profile as fitting with OGTT and Exercise experiment. The main cause of this phenomenon is
the lack of ability of mathematical model for capturing temporal variation of metabolic behavior.
The time length of OGTT and Exercise experiment is less than five (05) hours. The change
in temporal variation of metabolic behavior is not significant for five (05) hours. But due to
circadian rhythm, there is a diurnal variation in insulin sensitivity in the human body. As a result
day long variation in metabolic behavior is significant.

The utility of the proposed model comes out while comparing it with the reference model. The
proposed model can produce more metabolic insights (Figure 5.16 - Figure 5.19) than that of
the reference model (Table 5.1). Parameters of the reference model (Table 5.1) are static rate
constant whereas effect equations of the proposed model illustrate nonlinear saturation relation of
plasma variables on basal rate of metabolic process. The reference model considers only hepatic
release and peripheral uptake process to integrate the impact of activity in glucose dynamics. In
absence of activity, the reference model can give information only on glucose clearance due to
insulin and independent of insulin. But the proposed model can describe the glucose distribution
on more metabolic processes with the nonlinear effect of plasma variables.

Once the model is optimized all effect equations collectively provide a metabolic spectrum. By
fitting the model on a continuous glucose profile on a segment basis, it is possible to monitor
deviation of trajectories of effects of plasma variables on metabolic rates. This spectrum may
help to get more information of temporal variation on the metabolic condition of a patient.
Similar procedure for the assessment of diabetic abnormalities in type-2 diabetic patient is
shown by O. Vahidi [8] in his PhD dissertation. In Figure 5.26 – Figure 5.28 mathematical
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Figure 5.26: Peripheral glucose uptake rate during the FSIGT test: type II diabetic patients (-)
and healthy subjects (–).

Figure 5.27: Insulin multipliers in peripheral glucose uptake rate versus normalized plasma
insulin concentrations, type II diabetic patients (-) and healthy subjects (–).

evaluation of peripheral glucose uptake rate in a healthy and diabetic patient in a frequently
sampled insulin-modified intravenous glucose tolerance test (FSIGT) taken from [8] is shown.

It is obvious from Figure 5.27 and Figure 5.28 that the effect of plasma glucose and insulin
concentration on peripheral glucose uptake rate is different in diabetic and healthy subjects. As a
consequence, glucose uptake rate is also different.

The proposed model can be used as a research tool for preparing in silico environments for
modeling diabetes. Producing a glucose profile with many hypoglycemic/ hyperglycemic events
of a type-2/type-1 diabetic is unethical and dangerous. Hence producing a synthetic dataset,
the proposed model of this paper can be leveraged. Most potential usage of the proposed
constraint-based structure is the OR on ML-based forecasting intending to obtain physiological
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Figure 5.28: Glucose multipliers in peripheral glucose uptake rate versus normalized plasma
glucose concentrations, type II diabetic patients (-) and healthy subjects (–).

interpretation.

There are some unavoidable issues still unexplored. Specifically, induction of insulin sensitivity
due to exercise is represented with a sigmoid function of effort which is the integrated product of
exercise intensity and duration. But quantitative analysis of induction and reduction of insulin
sensitivity does not appear in the experiments. Insulin sensitivity is a very important metabolic
factor in the blood glucose regulation of a diabetic patient which has a natural diurnal variation
and is also greatly influenced due to physical activity. It has a very crucial role in estimating
the appropriate amount of insulin dose at a particular time of the day for an insulin-dependent
diabetic patient. The mathematical architecture of the proposed model is constructed without
considering the age, gender, injury, and mental condition of diabetic patients. Even no particular
function has been incorporated for capturing diurnal variation of insulin sensitivity.

5.8.2 OR on ML for physiological interpretation

By performing OR it is possible to transform the data-driven forecasted profile of glucose
concentration into the metabolic signal (Figure 5.20) which shows physiological interpretation
through producing the relation between plasma variables and metabolic process rate according
to Table 4.1 (Figure 5.21 – Figure 5.24). If a forecasted sequence of glucose concentration data
is undergone for constrained nonlinear optimization, the internal parameters of the physiological
model will be optimized in such a way that sigmoid functions of the model represent the trajectory
of the effects for the change of concentration of plasma variables. Once the model is optimized
for an interval, all hyperbolic tangent functions collectively provide a metabolic spectrum of
the blood glucose regulation for that specific period. That spectrum usually interprets how
the concentration of plasma glucose, insulin, glucagon, and exercise influence the metabolic
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processes in various organs/tissues. The personalized constraints are the maximum magnitude of
effect trajectories estimated on the real profile for a specific person. Optimization under these
constraints gives reliability and personalization to produced OR response.

By assessing the tabular result (Table 5.4) it is obvious that RMSE was usually increased
while performing OR for most of the cases. But both responses were located in the clinically
acceptable zone (zone-A and Zone-B) for maximum time intervals in Clarke Error Grid Analysis
(Figure 5.25). The reason behind the increment of RMSE in OR response is the compliance of
four (04) types of constraints during optimization. Besides this, very limited factors responsible
for the glycemic excursion were incorporated in the physiological model. Hence, it was harder
to produce the real trajectories in OR response by complying with all the constraints taken under
consideration.

In the time interval of 9:00 am -12:00 pm, some clinically dangerous responses were produced
in both ML and OR responses. That means both ML and OR models suffered to produce real
plasma glucose responses in that time interval. By reviewing the glucose profile of that interval
it appears that there may not have sufficient event information regarding diet events or correct
recording of glycemic variation. From Table 5.4 it is also obvious that the RMSE result is
much better at 9:00 pm – 9:00 am than that of 9:00 am to 9:00 pm. The cause behind this
improvement is that the first 12 hours (9:00 pm – 9:00 am) of the day is night time and glucose
regulation is less disturbed by external events compared to the next 12 hours (9:00 am – 9:00 pm).

The result obtained in error grid analysis produces inspiration for moving forward in applying
OR on ML-based forecasting for taking the therapeutic decision in diabetes management. Once
the OR model is optimized for forecasted glucose trajectories it is possible to simulate the model
with various types of external disturbances to observe the response for deciding the magnitude
of action for diabetes management. To the best of the author’s knowledge, hybridization of OR
and ML has never been done for building a predictive model of diabetes in the literature. This
study extends the knowledge in the area of diabetes modeling by illustrating a way of applying
ML-based forecasting in taking a therapeutic decision in diabetes management.



Chapter 6

Conclusion

6.1 Summary and findings

With a vision of building a reliable support system for taking appropriate action in diabetes
management, this thesis is subjected to build a hybrid model combining the advantages of both
ML and physiological models. At the beginning of the research, a rigorous study on ML-based
predictive models is done to find the strength and limitations of the models in the field of
modeling diabetes. As a result of the study, it is found that robustness analysis and physiological
interpretation are the two missing features of ML models. These features are essential for
successful application of the predictive models in glucose control. Data-driven experimentation
is done to observe the result of correlation variation in ML-based forecasting.

OR on the forecasted trajectory is defined as the solution for enhancing the capability of an
ML-based predictive model. A constraint-based mathematical model of glucose dynamics with
appropriate external stimulus is required for OR and that type of model is found unavailable
in the literature. Hence, a constraint-based glucose regulation model consisting of external
glucose, insulin and exercise stimulus and capable of describing desired diabetic behavior
is built and validated for implementing the proposed solution. Since the glucose regulation
model is integrated with existing physiological models of external stimulus from literature,
this composition is defined as integrated physiological model (IPM) of virtual diabetic patient.
Validation of the IPM is performed using OGTT, clinical exercise experiment, and CGM dataset.
It is found that the constraint-based glucose dynamics model produces an average correlation of
0.84±0.12 on fitting experiments. Besides this, the proposed model can give more metabolic
insight than the reference model of the literature.

An FFNN trained on CGM profile, diet and, activity information of a type-2 diabetic patient
is used to produce ML-based forecasting. This forecasting is optimized with the physiological
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model through constrained nonlinear optimization. The effect equations of the physiological
model produce the metabolic spectrum of plasma variables and their effect on metabolic process
rate. In the quantitative analysis of the performance of OR on ML, it is found that RMSE is
increased in OR response compare to ML response. But a satisfactory result is found in Clarke
Error Grid Analysis.

6.2 Recommendation for future works

Since the proposed IPM is validated against only few clinical trials, it is required to take more
attempts to assess the performance of the model in more critical clinical experiments. Particularly
the induction of insulin sensitivity due to physical exercise has not been assessed due to the
unavailability of experimental data. Similarly, the long-term impact of exercise on insulin
sensitivity is also needed to be explored in the future.

Since the proposed glucose regulation model of IPM produces the effect of concentration of
substrates on the rate of various metabolic processes, it is possible to derive more information
regarding the medical condition of a diabetic patient by assessing the rate of change of metabolism
obtained in mathematical optimization results. So, the utility of the model can be further enhanced
based on this approach.

By assessing the result of performing OR on ML-based forecasting it is obvious that though the
OR responses are located in the clinically acceptable region in error grid analysis, the RMSE
value is not up to the mark particularly in the time interval that is more interrupted with diet,
insulin, and activity events. Hence this issue is needed to be explored for further improvement.
There is another issue to be focused on. To produce physiological interpretation from ML-
based forecasted trajectories, the proposed model has been only evaluated with data from one
diabetic patient. This evaluation process is required to be performed on a more diabetic patient
of different age, gender, mental, and health condition to validate the solution from a larger
perspective. Hence, this can be another avenue to go forward in the research field.
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Appendix A

Physiological Models of External Stimuli

A.1 Gastro intestinal track compartment

This compartment is responsible for producing glucose appearance rate in the circulation due to
meal consumption. In order to model the process of glucose appearance from gastro intestinal
track, the power exponential model by Elashoff et al. [31] is adopted.

Figure A.1: Gastric emptying and appearance of glucose fluxes in circulation.

q′gut(t) = –kabs.qgut(t) +Gempt(t)

Ra(t) = f.kabs.qgut(t)

where,

qgut is the amount of glucose in the gut,

kabs is the rate constant of intestinal absorption (kabs = 1/40)

f is the fraction of intestinal absorption appears in plasma.

78



A.2. SUBCUTANEOUS COMPARTMENT 79

These equations describe glucose absorption by the gut. It is assumed that the fraction of glucose
in the duodenum increases following a power exponential function.

qduo(t) = D.{1− e– (kt)β}

where,

k is the rate of emptying (k = 1/40)

β a shape factor (β = 1, 2, 3, ...) means type of carbohydrate.

D is the amount of ingested carbohydrate in gram

Thus, the gastric empting rate is

Gemp(t) = q′duo(t) = D.β.kβ.tβ–1.e– (kt)β

A.2 Subcutaneous compartment

This compartment is responsible to produce continuous insulin appearance rate in case of
subcutaneous insulin injection. In order to model the process of insulin appearance into
blood circulation from the site of subcutaneous injection, the model proposed by Berger and
Rodbard [32] is adopted. According to that model, subcutaneous injection is represented as
below.

Iabs(t) =
s.ts.T s50.D

t.[T s50 + ts]2

where,

t is the time elapsed from the injection,

D is the dose injected subcutaneously,

T 50 is the time of absorption of 50% of the dose,

s is the preparation-specific parameter defining the insulin absorption pattern of the
different types of insulin catered for in the model (regular, intermediate, lente and ultra
lente).

A linear dependency of T50 on dose is defined as:

T s50 = a ∗D + b

The values of a, b and s according to the Berger and Rodbard [32] are:
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For regular/short acting insulin:

s=2.0; a=0.05; b=1.7;

For NPH/intermediate acting insulin:

s=2.0; a=0.18; b=4.9;

For lente/long acting insulin:

s=2.4; a=0.15; b=6.2;

For ultra-lente/very long acting insulin:

s=2.5; a=0; b=13;

A.3 Lungs compartment

Lungs compartment is responsible to produce respiratory oxygen consumption rate at basal and
during physical activity. According to the model by A. Roy and R.S. Parker [13], capacity of
an individual for aerobic work is indirectly measurable by the maximum oxygen consumption
rate, V Omax

2 . Percentage of maximum volume of oxygen consumption (PV Omax
2 ) can be used

as the intensity level for quantification of exercise. PV Omax
2 is increased rapidly at the onset of

exercise and 5–6 minutes are taken for reaching to ultimate value and remains constant for the
length of exercise. According to A. Roy and R.S. Parker, the PVO2max is represented as-

dPV Omax
2

dt
= –0.8PV Omax

2 (t) + 0.8 ∗ u3(t);

PV Omax
2 (0) = 0;

Where, PV Omax
2 is the exercise level as experienced by the individual, and u3(t) is the ultimate

exercise intensity above the basal level. The parameter value of 0.8 (1/min) was selected to
achieve a PV Omax

2 settling time of approximately 5 minutes.



Appendix B

Real and Synthetic Dataset

Table B.1: OGTT dataset for proposed model validation.

Time(min) Glucose(mmol/L) Glucose(mg/dL) Insulin(pmol/L) Insulin(µU/ml)

1 5.4 97.29828 38 5.472

5 5.2 93.69464

10 6.1 109.91102 109 15.696

15 7.1 127.92922

20 8.1 145.94742 230 33.12

30 9.1 163.96562 262 37.728

40 9.7 174.77654 302 43.488

50 9.1 163.96562 320 46.08

60 8.6 154.95652 296 42.624

70 7.6 136.93832 223 32.112

90 6.1 109.91102 136 19.584

120 4.9 88.28918 55 7.92

150 4.3 77.47826 25 3.6

180 4.3 77.47826 26 3.744

240 4.7 84.68554 20 2.88
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Table B.2: Age, height, weight, maximum oxygen uptake and work load during prolonged
exercise.

Mean SE Range

Age, yr 26 0.7 20-31

Height, cm 182 1.4 169-187

Weight, kg 71 1.6 57-82

Maximum oxygen
uptake, liters/min

3.8 0.13 2.6-4.8

Work Load, W 130 4.9 90-170

Table B.3: Mean values of arterial substrate and hormone concentrations during and after
prolonged exercise.

Time Heart
Rate O2 uptake Glucose Lactate FFA Glucagon Insulin

(min) (beats/min) (ml/min) (mmol/liter) (mmol/liter) (mmol/liter) (pg/ml) µU/ml

1 52 283 4.39 0.57 0.43 77 14.5

40 141 2137 4.09 1.19 0.66 66 11.8

90 148 2269 3.86 1.31 0.83 111 9.2

120 148 2155 3.55 1.09 1.11 158 8

180 157 2305 2.78 1.56 1.92 257 6

210 150 2234 2.56 1.55 2.3 256.5 7.7

220 96 381 3.12 1.5 2.47 256 8.3

240 94 353 3.19 1.23 2.23 222 9

260 90 325 3.18 1 2 221 8

280 85 305 3.18 0.94 1.72 220 7.5

B.1 Algorithm for synthetic activity profile

In this algorithm, generation of synthetic activity profile as function of glucose variation is
shown:

Step-1: Estimating glucose change rate:

Rt = (Gt+1–Gt)/Gt;
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Step-2: Estimating activity intensity:

[PV Omax
2 ]t = Basal Rate ∗ [EffectofGlucoseChange]t;

[EffectofGlucoseChange]t = [(a+ b)/2 + (a–b)/2 ∗ tanh(c ∗ (Rt–x0 + d))];

Step-3: Estimating parameter through nonlinear curve fitting:

a = 6; b = −5;x0 = −0.01; c = 28.4967463; d = 0.05966283;

Table B.4: Assumed dataset for establishing relation between exercise and glucose variation.

Glucose
Change Rate

Effect

-0.01 1

-0.03 2

-0.05 4

-0.07 6

-0.08 7

-0.1 9.5

-0.12 11

-0.14 11

-0.16 11

-0.18 11

-0.2 11
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Figure B.1: Hyperbolic tangential relation between exercise and glucose excursion.



Appendix C

Simulink Implementation of IPM

The proposed integrated physiological model (IPM) of this thesis is implemented on
MATLAB/Simulink Environment and all optimization is done using simulink design optimization
tool. In this part of the document, implementation views of different compartment are shown.
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Figure C.1: Simulink implementation of liver compartment.
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Figure C.2: Simulink implementation of muscle compartment.
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Figure C.3: Simulink implementation of adipose compartment.
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Figure C.4: Simulink implementation of nervous system compartment.
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Figure C.5: Simulink implementation of pancreas compartment.
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Figure C.6: Simulink implementation of plasma compartment.



Appendix D

Thesis Reproduction

The materials including all data, model files and scripts to reproduce the computational
experiments of the theis are released under an open-source license in Mendeley Data. We have
used Matlab (R2017a) for writing scripts, simulink for implementing models, and Neural Network
Toolbox (10.0) for building NN models. The url of the repositoy is DOI: 10.17632/gb5bd386g4.2
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