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ABSTRACT 
 

Water is one of the most indispensable resources on earth which is potentially useful for 

all living things. Consequential impacts of climate change are mediated through the 

changes in the water or hydrologic cycle due to the close connection between the climate 

and the atmosphere, hydrosphere, land surface and biosphere. Hydrologic models are 

being used in understanding the behavior of hydrologic systems of a watershed to make 

better predictions and to address the major challenges induced by climate change. 

 

Khowai is one of the trans-boundary rivers that plays an important role in the fields of 

irrigation, transportation and flood events of the north-eastern region of Bangladesh. It 

also contributes to the flash flood hazard in this region damaging agricultural products of 

large areas. Anticipated climate change may exacerbate the current situation as climate 

change will have a profound impact on the availability and variability of fresh water 

throughout the world due to a change in rainfall pattern in response to the global warming. 

This response may vary from region to region. Hence assessing the impact of climate 

change on the streamflow of the Khowai river basin is very important for sustainable 

water resources management in this region.   

 

In this study, HBV (Hydrologiska Byrans Vattenavdelning) hydrologic model has been 

set, calibrated and validated to assess the future flow of Khowai river and the suitability 

of two gridded datasets has been assessed in this regard. To test the datasets, three models 

have been set using three different datasets. Each model has been calibrated for 1980 to 

2010 and validated for 2011 to 2019. In terms of Nash-Sutcliffe efficiency (NSE), ERA5 

data driven model (NSE = 0.50 and 0.21) shows better result than NOAA data driven 

model (NSE = 0.49 and 0.19) in both calibration and validation, respectively. But, in the 

validation period (2011-2019), both ERA5 and NOAA show unsatisfactory results than 

the calibration results. For this reason, another model has been set using the average 

rainfall from the global gridded products (NOAA, ERA5) and measured precipitation of 

Habiganj station. This model shows better results for both calibration and validation 

periods and has been used for simulating future flow. For the calibration and validation 

period R2 have been found to be 0.78 and 0.75 while NSE have been found to be 0.75 and 

0.67, respectively. 
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Future precipitation, temperature and evaporation from the CANESM2 (The second-

generation Canadian Earth System Model) climate model under RCP8.5 scenario and bias 

corrected by Quantile mapping method have been used to simulate future flow. 

Projections show an increase in precipitation by 7.69, 15.86 and 21.05%, in 2020-2040 

(2020s), 2041-2070 (2050s) and 2071-2099 (2080s), respectively, from the baseline 

period (1980-2019) whereas temperature is expected to increase by 0.82, 1.46 and 2.41oC, 

in those periods, respectively. Evaporation is projected to increase in all future periods 

while actual evapotranspiration is projected to decrease as warmer environment may 

decrease vegetation coverage and transpiration due to water stress in the soil system 

which will reduce the overall actual ET in future.  

 

The future (2020 to 2099) flow of the Khowai river has been simulated by the calibrated 

and validated model driven by bias corrected CANESM2 climate datasets. Analysis of 

monthly flow data indicates that wet months will be wetter while some dry months such 

as January, February and March will be drier with respect to the base period. Flow may 

decrease up to 61% (during February of 2020) while wet season flow may increase up to 

50% (during July-August of 2070). Flow duration curve also indicates that at 1%-time, 

discharge may equal or exceed 117, 163, 184 and 192 m3/sec during the base period 

(1980-2019), 2020s, 2050s and 2080s, respectively. Frequency analysis shows that 

discharge corresponding to 100-year return period may increase by 13, 25 and 48% during 

the 2020s, 2050s and 2080s, respectively.  

 

This study may play a vital role in assessing the future flow of the Khowai river basin for 

the proper planning and water resources management in this basin. Furthermore, as 

Khowai river is a transboundary river, the results of this study can also be used for the 

development of an effective water sharing policy which will ensure that both countries 

(India and Bangladesh) can get enough water for the purpose of agriculture, livelihood, 

economic growth, and maintenance of ecology and biodiversity in this region in the 

coming decades. 
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1 INTRODUCTION 
 

1.1 Background and Present State of the Problem 

 

Bangladesh is the most downstream country in the Ganges-Brahmaputra-Meghna (GBM) 

basin and has at least 57 major transboundary rivers that enter Bangladesh from India and 

Myanmar (Mondal et al., 2018). These transboundary rivers affect Bangladesh largely as 

a huge amount of water and sediments that flow through Bangladesh are carried by these 

transboundary rivers (Mou and Jahan, 2021). 

 

Khowai River is one of the transboundary rivers which originates in the eastern part of 

the Atharamura Hills of Tripura in India. The river leaves India at Khowai and enters 

Bangladesh at Ballah in Habiganj District. The river passes through the eastern part of 

Habiganj town and then it turns west to join the Kushiyara river near Adampur in Lakhai 

Upazila, Kishoreganj District. The Khowai river is approximately 166 km (103 mi) in 

length. This river is approximately 91 km in length in Bangladesh Territory. Tripura, the 

upstream part of the Khowai catchment, is characterized by hill ranges, valleys, and plains 

(Hossain T. , 1997).  

 

The area of the Khowai catchment is 1325 square km (FFWC, 2006). There is no tidal 

effect and salinity intrusion in this basin as it is very far away from the sea. The majority 

of the catchment area lies in India. 

 

Khowai river has a flashy flood regime and experiences frequent flooding, channel 

shifting, sediment deposition and scouring. Moreover, this river plays an important role 

in the North Eastern part of Bangladesh in the fields of agriculture, irrigation, 

transportation, flood and flash flood events, ecology and biodiversity maintenance 

especially in the Habiganj district. Flash Floods cause huge economic losses in this region 

by damaging property and agricultural products of large areas (Hossain T. , 1997). 

However, lack of rainfall data in the upper catchment of the river, outside of Bangladesh, 

has made the streamflow modelling challenging for this basin (FFWC, 2006). So, 

assessing the streamflow in the Khowai river basin, through the development of a 

hydrologic model, is very important for assessing the water balance for agriculture and 
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also for predicting floods in the north-eastern region of Bangladesh. Index map of the 

Khowai river and its basin is illustrated in Figure 1.1. 

 

 

Figure 1.1: Index map - Khowai river and its basin 

The Khowai river becomes disastrous during the rainy season (Debnath et al., 2017). 

Frequent flash floods in the Khowai river basin during the months of April-May damage 

the mature Boro rice of large area. This river passes through the towns of Chunarughat, 

Shaistaganj and Habiganj. The embankments often overtop during high floods and flood 

waters spill onto the floodplain (Deb, 2015).  
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In June 2017, residents of around 45 villages in Habiganj Sadar upazila became isolated 

due to flash flood triggered by heavy rain. Low lying areas in Khowai river basin were 

submerged during the period, and Aus paddy on thousands of hectares of land was also 

damaged due to the inundation. According to the locals, heavy downpour and water 

rolling down the hills caused breaches in different points of the Khowai River Protection 

Embankment (The Daily Star, 2017).  

 
Figure 1.2: Flash Flood affected areas on the bank of the Khowai river in Habiganj 

Sadar (The Daily Star, 2017) 

In May 2018, Habiganj experienced early flooding as the Khowai river crossed the danger 

level and some areas of the district including several roads went under water due to 

overflowing of the river. Moreover, continuous rainfall for several days triggered 

waterlogging in different places of the district town. Officials of Habiganj municipality 

admitted that rainwater cannot pass through the drains as those are too narrow and 

blocked due to indiscriminate dumping of wastes (The Daily Star, 2018).  
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Figure 1.3: Habiganj town encounters serious waterlogging due to days-long downpour, 

which also led to crossing of the Khowai river's danger mark (The Daily Star, 2018) 

In June 2019, vast areas of several villages in Habiganj’s Madhabpur upazila were 

inundated as water entered the areas through the collapsed embankment on the Sonai river 

due to flash flood triggered by heavy rain and storm surges. Vast tracts of croplands and 

vegetable fields in more than 30 villages have been submerged and fish in a number of 

ponds washed away due to the flash flood. Flash flood also caused waterlogging in 

different areas of Habiganj town and submerged many educational institutions, markets 

and residential areas. People of Habiganj town have long been suffering from 

waterlogging due to unplanned drainage system and illegal grabbing of the Khowai river 

(The Daily Star, 2019). 

 

Figure 1.4: On rush of water from the hills in the Indian state of Tripura flooded a 

diversion road in Brahmanbaria’s Bijoynagar upazila, disrupting vehicular movement 

on different regional roads (The Daily Star, 2019) 
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A calibrated and validated hydrologic model for the Khoai river can be very useful for 

flow forecasting based on forecasted climate data as well as to assess the effect of climate 

change on its flow and flood frequency. 

1.2 Scope of the Study 

 

Hydrological models play an important role to understand the watershed behavior and the 

interactions among hydrological variables in a quantitative way. Due to climatic changes 

and the increase of hydrologic extremes such as heavy precipitation events and droughts, 

which in recent years have been occurring more frequently and in greater severity 

worldwide, it is important to be able to credibly project hydrologic responses of river 

basins in order to adapt the water resources management of river basins. Among various 

elements of the hydrological cycle, possible quantitative changes to the future surface 

runoff of a river basin are important for water resources management: flood control, water 

quality, ecology, biodiversity, agriculture, etc. (Rahman, 2016).  

 

This hydrological model will be extremely useful in the future for the evaluation of future 

streamflow and its temporal variation (seasonal flow volume), assessment of frequency 

and intensity of extreme events (flood events), evaluation of periodic variation of water 

availability due to the changes in the climate (significant air temperature warming), and 

to provide sufficient information for water resources management and planning and many 

more (Rahman, 2016). Choosing the right model for a catchment where hydrological 

responses are measured is difficult (Kirchner, 2006). Moreover, choosing a suitable 

model structure where the catchment is ungauged is even more challenging (Knoben et 

al., 2019). 

 

This study conducts a systematic assessment of future streamflow under climate change 

in the data scarce Khowai river basin by using a semi-distributed, conceptual hydrological 

model HBV (Hydrologiska Byrans Vattenavdelning). HBV tend to have low data 

requirements and are less computationally intensive than spatially explicit models 

(Knoben et al., 2019). Also, the HBV model has already been used successfully in many 

mountainous and data scarce region (Normand et al., 2011). So far it has been successfully 

applied in over 90 countries for flow forecasting and climate change impact studies 

(Schreur, 2019). 
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Present study intends to set-up HBV hydrologic model to assess the effect of climate 

change on the streamflow of the Khowai river basin. Future changes in the frequency and 

the magnitude of annual maximum discharge will be assessed through frequency analysis 

of the future flow data of Shaistaganj station of the Khowai river. 

 

1.3 Objectives of the Study 

 

The specific objectives of the study are as follows: 

i) To set up, calibrate and validate the HBV hydrological model for the Khowai river 

basin. 

ii) To simulate the future stream flow using the calibrated and validated model under 

RCP 8.5 climate scenario. 

iii) To assess the future change in the frequency and magnitude of annual maximum 

discharge. 

 

1.4 Possible Outcome 

 

The possible outcomes of the study are: 

i) A flow simulating model for the khowai river basin, 

ii) An assessment of the impact of climate change on the Khowai river flow. 

These results will help the water resources engineers and policy makers to implement 

management strategies. 

 

1.5 Organization of the Thesis 

 

Chapter one 

The first chapter of the thesis presents a general idea of the work. This chapter includes 

background of the study and present state of the problem, a brief description of the study 

area, scopes, objectives and possible outcome of the study. 

 

Chapter two 

The second chapter describes mainly literature review. This chapter includes necessity of 

catchment-scale hydrological modeling, the river system of Bangladesh, previous works 
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related to hydrological model: HBV-light. This chapter also includes previous studies on 

Meghna river basin and finally on Khowai River basin. A brief description on CORDEX 

is also presented in this chapter. 

 

Chapter three 

The third chapter consists of data sources and methodologies adopted in this research 

work. This chapter also provides a theoretical description of the hydrological model: 

HBV-light and the steps adopted for the setup of the model. 

 

Chapter four 

The fourth chapter includes the result and discussion. It includes results from calibration 

and validation of the model. The suitability of two global gridded datasets (NOAA vs 

ERA5) have been discussed in this chapter for modelling the streamflow of data-scarce 

Khowai river basin using HBV hydrologic model. The climate change impact assessment 

has also been discussed in this chapter. 

 

Chapter five 

The fifth chapter is the final chapter which concludes the thesis project along with some 

recommendations for further research and development. 
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2 LITERATURE REVIEW 
 

2.1 The River System of Bangladesh 

 

Bangladesh lies approximately between 20030’ and 26040’ north latitude and 88003’ and 

92040’ east longitude. It is one of the biggest active deltas in the world with an area of 

about 1,48,560 sq.km. The country is under sub-tropical monsoon climate, annual average 

precipitation is 2,300 mm, varying from 1,200 mm in the north-west to over 5,000 mm in 

the north-east. India borders the country in west, north and most part of east. The Bay of 

Bengal is in the south, Myanmar borders part of the south-eastern area (Hossain, 2014). 

 

Bangladesh is a riverine country. According to Bangladesh Water development board 

(BWDB), about 230 rivers currently flow in Bangladesh (during summer and winter). 

Old sources and history states about 700 to 800 rivers but most of them dried out due to 

lack of attention and pollution. About 17 rivers are on the verge of extinction and the 54 

rivers flow directly from India and 3 from Myanmar. Total of 57 international rivers flow 

through Bangladesh. Sangu and Halda are the only two internal rivers originated and 

finished within Bangladesh. Surma is the longest river and Karnafuli is the swiftest. 

Jamuna is the widest river. There is an including tributaries flow through the country 

constituting a waterway of total length around 24,140 kilometers (15,000 mi). Most of 

the country's land is formed through silt brought by the rivers. The geography and culture 

of Bangladesh are influenced by the riverine delta system. Bangladesh lies in the biggest 

river delta of the world - the Ganges Delta system (Hossain, 2014). 

 

Bangladesh has predominantly four major river systems (Hossain, 2014) – 

1) the Brahmaputra,  

2) the Ganges,  

3) the Meghna, and  

4) the Chittagong Region River system. 

 

Meghna River System is one of the four major river systems of Bangladesh. It is the 

longest river (669 km) system in the country. It also drains one of the world's heaviest 
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rainfall areas (e.g., about 1,000 cm at Cherapunji, Meghalaya, India) (Hossain, 2014). 

Khowai is one of the rivers associated with the Meghna river system which is a tributary 

of the Kushiyara river. 

 

 
Figure 2.1: Major Rivers of Bangladesh. (Banglapedia) 

2.2 A Brief History of Hydrological Modeling 

 

A hydrologic model is a simplification of a real-world system (e.g., surface water, soil 

water, wetland, groundwater, estuary) that aids in understanding, predicting, and 
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managing water resources. Both the flow and quality of water are commonly studied 

using hydrologic models. 

Depending on how a hydrological model represents different component processes of 

hydrological cycle, three types of models can be identified (Rahman, 2016):  

i) empirical  

ii) conceptual and  

iii) physically based. 

 

An empirical model is also termed metric or black-box model as it does not represent and 

so cannot explain internal hydrological processes of a catchment. Instead, such a model 

converts rainfall into runoff through a linear parametric equation (Rochester, 2010; Xu, 

2002) or a transfer function (Mutlu et al., 2008; Rochester, 2010). The simplest empirical 

rainfall-runoff model is perhaps the single parametric runoff coefficient-based model. 

Runoff coefficient is the ratio of effective rainfall i.e., runoff to total rainfall falling over 

a catchment during a particular time period. In other words, runoff coefficient defines the 

water retention ability of a catchment (Giudice et al., 2012, 2014). Where detailed 

characteristics of a catchment are sparse such models may be used to estimate design 

flood peaks (Giudice et al., 2012, 2014). Example – ANN (Artificial Neural Network) 

(Rahman, 2016). 

 

Conceptual models, also termed grey-box models, are generally recognized as superior to 

empirical rainfall-runoff models since they emulate the major component processes of 

hydrological cycle rather than lumping those processes empirically. In conceptual 

modelling, precipitation / snow melt water is cascaded through some linear storage 

reservoirs such as surface, soil, and groundwater. In conjunction with few physical 

properties of each storage reservoir, necessary parameters are incorporated to determine 

the water retention ability of each reservoir and to route / transfer water from one reservoir 

to another or from reservoir to channel. Most conceptual rainfall-runoff models maintain 

the conservation of mass law and use simpler physical expressions for water movement 

in the system (Xu, 2002). Moreover, in data scarce environments, conceptual model may 

be the better alternative to more physics-based approaches with their higher data demands 

(Rahman, 2016). Example – HBV Light. 
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Physically based rainfall-runoff models express major hydrological processes in the form 

of fundamental mathematical equations of conservation of mass, momentum, and energy 

(Freeze and Harlan, 1969; Valerity Y. Ivanov et al., 2004; Kavvas et al., 2004; Krysanova 

and Arnold, 2008; Meselhe et al., 2009). However, sometimes this definition of physics-

based model is reduced to only laws of mass conservation. For instance, SWAT (Soil and 

Water Assessment Tools), one of the world’s most frequently used catchment models, is 

often termed a physics-based model though it does not strictly consider the conservation 

of momentum and energy (Spruill et al., 2000). The major hydrological processes which 

are commonly used to identify a model if it is a physics-based are infiltration, 

evapotranspiration, overland and channel flows, and groundwater dynamics (Kampf and 

Burges, 2007). However, many physics-based models do not use the state-of-the-art one-

dimensional (1D) Richard’s soil water equation for estimating actual evapotranspiration 

as suggested by Kampf and Burges (2007). For example, MIKE SHE, one of the robust 

physics-based watershed models, estimates actual evapotranspiration based on empirical 

equation developed by Kristensen & Jensen (1975) (Rahman, 2016). 

 

The early studies were often based on the relatively straightforward use of climate 

scenarios and conceptual hydrological models developed for other purposes such as 

hydrological forecasting and design. It was, however, soon realized that some 

components of the hydrological models can be questioned, if a changed climate is 

assumed. The most critical of these is the parameterization of evapotranspiration, which 

determines the response to increasing CO₂ concentrations and changed land-use. Despite 

the limitations in hydrological models, the main source of uncertainty related to water 

resources scenarios lies in the climate scenarios. Hydrologists demand a lot from the 

climate modelers in this respect. Recent studies have tried to address the issue by using 

several climate scenarios. Today the applied scientific literature on water resources is full 

of examples of climate change impact studies (Mou and Jahan, 2021). 

 

2.3 Necessity of Catchment-Scale Hydrological Modeling 

 

Globally the hydrological cycle experiences significant disturbances through the changes 

of its components (e.g., precipitation, evapotranspiration, river flows, soil water storage) 

in quantity, quality, space and time. Many nations and communities across the world have 

been experiencing intensified water related problems such as floods, drought and 
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associated water scarcity for the last few decades. Water related disasters killed more than 

290,000 and affected more than 1.5 billion people worldwide during the period of 2000–

2006 (UN Water, 2014a). About 1800 million people will suffer from water scarcity by 

2025 (UN Water, 2014b). On one hand, increasing population pressure, unsustainable 

developmental activities and industrialization are together increasing pressure on the 

Earth’s finite useable water resources. On the other hand, climate and land use changes 

have been found to be the dominant causes of frequent and intense flooding in many 

regions of the world (Rahman, 2016).  

 

Sophocleous (2004) stated that water related problems are more visible at local scales 

(e.g., river catchment) than at the global scale. This is because the overall water turnover 

between Earth’s atmosphere and land systems remains almost the same at the global scale 

but at more local scales this turnover varies in space and time. For this reason, catchment-

scale water analysis has been one of the key approaches in the development of sustainable 

water management plans (Rahman, 2016). 

 

Regional / local hydrologic models are generally calibrated and validated specifically to 

the site of interest. On the contrary, most global hydrologic models (GHM) are usually 

applied for impact studies with a global parameterization, which compromises the quality 

of local performance for assumed good performance globally, i.e., using a priori estimates 

of individual process parameters (e.g., Vörösmarty et al. 2000), or after calibration only 

for selected large catchments (e.g., Döll et al. 2003, Widén-Nilsson et al. 2007), or 

combinations of these approaches (e.g., Nijssen et al. 2001). It is impossible to achieve 

good performance at all locations and basins using GHM, so generally a regional or local 

hydrologic models will provide better performance than a GHM at the location for which 

a regional/ local hydrologic model has been tuned. 

 

2.4 Previous Studies Using HBV Model 

 

Hydrological models play an important role to understand the watershed behavior and the 

interactions among hydrological variables in a quantitative way. The HBV (Hydrologiska 

Byrans Vattenavdelning) model is a semi-distributed hydrologic model, named after the 

Hydrologiska Byrans Vattenavdelning unit at the Swedish Meteorological and 

Hydrological Institute (SMHI), where its development started in the 1970s. The version 
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HBV-light was developed at Uppsala University in 1993 using Microsoft Visual Basic. 

A new version of HBV model has recently been developed using Microsoft Visual 

Basic.net at the University of Zurich (Seibert and Vis, 2012). The HBV model has a long 

history since 1970 and this hydrological model has found applications in more than 90 

countries (Schreur, 2019). 

 

Bergström et al. (2001) performed a study on the climate change impacts on runoff in 

Sweden—assessments by global climate models, dynamical downscaling and 

hydrological modelling. The Swedish regional climate modelling program, SWECLIM, 

started in 1997 with the main goal being to produce regional climate change scenarios 

over the Nordic area on a time scale of 50 to 100 yrs. An additional goal is to produce 

water resources scenarios with a focus on hydropower production, dam safety, water 

supply and environmental aspects of water resources. The scenarios are produced by a 

combination of global climate models (GCMs), regional climate models and hydrological 

runoff models. The regional climate model is a modified version of the international 

HIRLAM forecast model and the hydrological model is the HBV model developed at the 

Swedish Meteorological and Hydrological Institute. Scenarios of river runoff had been 

simulated for 6 selected basins covering the major climate regions in Sweden (Bergström 

et al., 2001). 

 

Linde et al. (2008) performed a study for the comparison of model performance of two 

rainfall-runoff models in the Rhine basin using different atmospheric forcing data sets. 

Due to the growing wish and necessity to simulate the possible effects of climate change 

on the discharge regime on large rivers such as the Rhine in Europe, there is a need for 

well performing hydrological models that can be applied in climate change scenario 

studies. There exists large variety in available models and there is an ongoing debate in 

research on rainfall-runoff modelling on whether or not physically based distributed 

models better represent observed discharges than conceptual lumped model approaches 

do. In addition, it is argued that Land Surface Models (LSMs) carry the potential to 

accurately estimate hydrological partitioning, because they solve the coupled water and 

energy balance. In this paper, the hydrological models HBV and VIC were compared for 

the Rhine basin by testing their performance in simulating discharge. Overall, the semi-

distributed conceptual HBV model performed much better than the distributed land 

surface model VIC (Linde et al., 2008). 
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Normand et al. (2011) performed a study in which the HBV model has been used 

successfully to estimate runoff at Tapethok, Taplejung, in Eastern Nepal (2011), which is 

a mountainous and data-scarce region just like the Khowai river basin. As there was no 

discharge data available for this particular location, the model was first calibrated and 

validated for the bigger, gauged basins at Mulghat and Majithar. However due to its 

structure HBV showed difficulties in modelling low and high flows correctly at the same 

time. Therefore, two parameter sets were produced: one with focus on the model 

performance during low flows and the second one, on high flows. Those parameters were 

then applied to the basin at Tapethok. Generally, HBV was able to correctly simulate low 

flows except for some sharp peaks due to isolated precipitation events. However, pre-

monsoon discharge was overestimated while the runoff of the monsoon season was most 

of the time underestimated (Normand et al., 2011). 

 

Radchenko et al. (2014) conducted a study in the data scarce Ferghana Valley (Central 

Asia) for simulating water resource availability using HBV-light model. Glaciers and 

snowmelt supply the Naryn and Karadarya rivers, and about 70% of the water available 

for the irrigated agriculture in the Ferghana Valley. Nineteen smaller catchments 

contribute the remaining water mainly from annual precipitation. The latter will gain 

importance if glaciers retreat as predicted. Hydrological models can visualize such 

climate change impacts on water resources. However, poor data availability often 

hampers simulating the contributions of smaller catchments. This study tested several 

data pre-processing methods (gap filling, MODAWEC (MOnthly to DAily WEather 

Converter), lapse rate) and their effect on the performance of the HBV (Hydrologiska 

Byråns Vattenavdelning)-light model. Monte Carlo simulations were used to define 

parameter uncertainties and ensembles of behavioral model runs. Model performances 

were evaluated by constrained measures of goodness-of-fit criteria (cumulative bias, 

coefficient of determination, model efficiency coefficients (NSE)) for high flow and log-

transformed flow. The developed data preprocessing arrangement can utilize data of 

relatively poor quality (only monthly means or daily data with gaps) but still provide 

model results with NSE between 0.50 and 0.88 (Radchenko et al., 2014). 

 

Khorchani (2016) conducted a study to evaluate the land use/cover change impacts on 

hydrology of the Mellegue river sub-basin in the Upper Medjerda River Basin by using 

the semi-distributed HBV-Light hydrological model and remote sensing for two different 
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periods. ArcGIS was used to generate the land use-cover maps from Landsat TM (1984-

1997) for the year 1988 and second land use / land cover map on 2003 was taken from 

the Regional Commissariat of Agricultural Development (CRDA) of Kef region 

(Khorchani, 2016). 

 

Beck et al. (2016), studied Global-scale regionalization of hydrologic model parameters. 

The research shows current state-of-the-art models typically applied at continental to 

global scales (hereafter called macroscale) tend to use a priori parameters, resulting in 

suboptimal streamflow (Q) simulation. For the first time, a scheme for regionalization of 

model parameters at the global scale was developed. Data from a diverse set of 1787 

small-to-medium sized catchments (10–10000 km2) and the simple conceptual HBV 

model to set up and test the scheme. In this study, HBV was chosen because of its 

flexibility, computational efficiency, proven effectiveness under a wide range of climatic 

and physiographic conditions and successful application in many previous studies. Each 

catchment was calibrated against observed daily Q, after which 674 catchments with high 

calibration and validation scores, and thus presumably good-quality observed Q and 

forcing data, were selected to serve as donor catchments. The calibrated parameter sets 

for the donors were subsequently transferred to 0.58-degree grid cells with similar 

climatic and physiographic characteristics, resulting in parameter maps for HBV with 

global coverage. For each grid cell, the 10 most similar donor catchments, rather than the 

single most similar donor, and averaged the resulting simulated Q, which enhanced model 

performance. The 1113 catchments not used as donors were used to independently 

evaluate the scheme. The regionalized parameters outperformed spatially uniform (i.e., 

averaged calibrated) parameters for 79% of the evaluation catchments. Substantial 

improvements were evident for all major Koppen-Geiger climate types and even for 

evaluation catchments > 5000 km distant from the donors. The median improvement was 

about half of the performance increase achieved through calibration. HBV with 

regionalized parameters outperformed nine state-of-the-art macroscale models, 

suggesting these might also benefit from the new regionalization scheme (Beck et al., 

2016). 

 

Kuo et al. (2017) performed a study on the future streamflow patterns of three sub basins, 

i.e., East Holland, Beaver, and Pefferlaw River basins, located in the upstream of Lake 

Simcoe of Canada are assessed for 2021–2099. The individual set of parameters of a 
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conceptual hydrological model, HBV-light, were first calibrated for these three sub 

basins. The calibrated model was validated and further used to estimate the future 

streamflow driven by statistically downscaled projected precipitation and air temperature 

from the Pacific Climate Impacts Consortium under Representative Concentration 

Pathways 8.5 and 4.5 scenarios. The uncertainty of annual streamflow, hydrograph, flow 

duration curve (FDC), and flood frequency were evaluated. The results reveal that the 

annual stream flows of the Beaver and Pefferlaw River Basins (PRB) are projected to 

slightly increase in 2020–2099 while the annual stream flows of the East Holland River 

Basin (EHRB) are expected to be similar in 2020–2099. The monthly streamflow in 

winter is projected to increase but to decrease in spring across three sub basins. Based on 

the projected FDCs, daily streamflow of EHRB and PRB will likely increase by 2070–

2099 (Kuo et al., 2017).  

 

Sagor et al. (2017) simulated climate change impacts on the runoff processes of the 

Karnali River Basin of Nepal. Estimation of the variation of snowmelt contribution to 

streamflow in increased temperatures had been done in the research. The semi-distributed 

HBV rainfall-runoff model had been calibrated using hydro-meteorological data available 

from 1986 to 1997. The model simulated runoff based on precipitation, air temperature 

and potential evapotranspiration. The calibrated model was fed with the climatic 

projections developed using the PRECIS Regional Climate Model to estimate future 

(2040s) streamflow. The study indicated that the growing temperatures will generally 

result in wetter flow regime in the future (Shiwakoti, 2017). 

 

Ali et al. (2018) performed a study on the projection of future streamflow of the Hunza 

River Basin, Karakoram Range (Pakistan) using HBV hydrological model. HBV-light 

model was used to evaluate the performance of the model in response to climate change 

in the snowy and glaciated catchment area of Hunza River Basin. The study aimed to 

understand the temporal variation of streamflow of Hunza River and its contribution to 

Indus River System (IRS). HBV model performed fairly well both during calibration and 

validation periods on daily time scale in the Hunza River Basin (Ali et al., 2018). 

 

Ayalew (2019) tried to identify the best hydrological models in simulating the discharge 

in a comparative approach (SWAT vs HBV light) at Geba catchment and identifying of 

models which represent realistic simulation at sub basin scale. The various modelling 
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procedure (i.e., input data, sensitivity analysis, calibration, validation and uncertainty 

assessment) were employed to test the model’s performance. These mentioned results 

depicted that both models are well reasonably simulated the discharge of Geba catchment 

and from uncertainty and identifiability of parameter applying HBV light model could be 

effective in simulation of runoff for sustainable water resources management in the 

watershed run off (Ayalew, 2019). 

 

2.5 Previous Studies Using Other Models in The Meghna Basin and The Khowai 

Basin 

 

Accurate streamflow simulation is crucial for water resources monitoring and 

management (Woldemeskel et al., 2013). Few past studies have employed hydrologic 

models for climate change impact assessment or flash flood forecasting in the north-

eastern region of Bangladesh (IWFM, 2020). But only a few of them have so far been 

concentrated on the Khowai river. The majority of the Khowai catchment lies in India 

and flash flood of this region is triggered by the high intensity rainfall in the upstream 

Indian catchments located in the Tripura hills (FFWC, 2006). But the lack of rainfall data 

in the upper catchment of the river, outside of Bangladesh, has made the streamflow 

modelling challenging for this basin (IWFM, 2020).  

  

Past studies reported that large scale/regional scale model generally compromises the 

quality of local performance at sub-basin scale therefore it is impossible to achieve good 

performance at all locations within a large basin using regional / large scale model 

(Krysanova et al., 2018). Therefore, individual model for khowai may provide better 

results for this basin instead of a regional model of Meghna basin or NE region. 

 

Ullah (1989) performed a study on statistical characteristics of low flows of three rivers 

in Bangladesh. Analysis of low flow is essential for project involved with water supply, 

power generation, navigation, irrigation, pollution abatement, etc. In the study graphical 

relationships for low flow events had been derived for three selected rivers, namely Manu, 

Khowai and Ghagot, using both historic and synthetic stream flows (Ullah, 1989).  

 

Hossain (1997) performed a study on aggradation and degradation of the Khowai River. 

Assessment of future sedimentation along the Khowai river was also carried out. The 
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reach extends from Ballah to the confluence of Khowai- Dhaleswari River and has an 

overall length of 87 km. The study revealed that there would be continued deposition of 

sediment indicating continued aggradation of the bed level along the study reach of the 

river (Hossain T. , 1997). 

 

Flood Forecasting and Warning Center (2006) set up a rainfall-runoff model for the 

Khowai river basin but the results were also inconclusive. During the Main Project a 

rainfall-runoff model was set up for the Khowai basin. However, the available data on 

discharges at Remabagan, located at the Indian border had not been taken simultaneous 

with available rainfall data. Therefore, the calibration results were inconclusive, and the 

Flood Forecasting model was not extended to the Indian border at Remabagan (FFWC, 

2006).  

 

Past researchers have studied the geomorphological variables and bank erosion, channel 

migration of the Khowai River, and its impact on land use/land cover using Remote 

Sensing (RS) and Geographical Information System (GIS) (Majumdar et al., 2014). 

Majumdar and Das (2014) conducted a study to analyze the temporal change of the bank 

line of the Khowai River and to calculate the Bank Erosion Hazard Index (BEHI) of these 

vulnerable sites (Majumdar et al., 2014). 

 

Rahman (2016) used SWAT model driven by limited observed rainfall to simulate the 

flow of Khowai basin but the results were also poor for both calibration and validation 

periods. The model produces unsatisfactory results due to lack of rainfall data of the upper 

catchment area. Also ignoring the effects of the upstream Chakmaghat Barrage on the 

catchment’s hydrology might partly be responsible for the model’s unrealistic water 

balance. But for Sheola station on the Kushiyara river during calibration (1990–2003) and 

validation (2004–2010) periods, the SWAT model showed good R2 values of 0.81 and 

0.90 respectively (Rahman, 2016). 

 

Debnath et al. (2017) performed a study on channel migration and its impact on Khowai 

River of Tripura, North-East India. The study on bank erosion and channel migration of 

the present course of the Khowai River through the synclinal valley of Atharamura and 

Baramura Hill Ranges indicated that the area was under active erosion since long back. 

In the study, the rate of channel migration had been assessed and variation of sinuosity 
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index and radius of curvature had also been calculated. The work also documented land 

use changes in its surrounding flood plain area using supervised image classification. All 

the assessments of this study highlighted a significant message of immense vulnerability 

of Khowai River and also provided news about geomorphological instabilities of the 

study area (Debnath et al., 2017). 

 

Mondol et al. (2018) used a multi-model approach to simulate the flood risks in the major 

rivers of Bangladesh due to increased rainfall and sea level under a high-end climate 

scenario. The models used include SWAT hydrological model for basin-scale rainfall-

runoff modeling, HEC-RAS hydrodynamic model for flood routing, and Delft3D coastal 

model for sea level rise induced tidal forcing in the Bangladesh coast. These models 

together simulate flood hydrographs at different locations under climate change. The 

Ganges, Brahmaputra and Meghna rivers and their major distributaries and tributaries, 

the Bay of Bengal and the coastal region of Bangladesh were included in the different 

model setups. The models were calibrated and validated using observed water level and 

discharge data of BWDB and BIWTA for different years. It was found that the models 

could simulate the observed variation in flood hydrographs quite well. To assess the 

impact of climate change on flood, the flood hydrographs under the base condition and 

the high-end climatic condition were simulated and compared. The model simulated the 

flow data of Bhairab Bazar station for North-Eastern region (Mondal et al., 2018). 

 

Narzis (2020) developed a semi-distributed hydrological model for the Meghna river 

basin using soil and water assessment tool SWAT to simulate the impact of changing 

climate (under RCP 4.5 and RCP 8.5) and upstream interventions on the hydrologic cycle 

of the basin area. The model was calibrated (2009-April, 2018) and validated (2000-2008) 

at the outlet station on the Kushiyara river near Sheola using the daily observed discharge 

and the SWAT model showed R2 values of 0.68 and 0.71 respectively. The probable 

impact of the post-dam Barak River flow on the Surma-Kushiyara river system at 

Amalshid was analyzed by adding a reservoir / dam on the Barak River (Narzis, 2020).  

 

Institute of Water and Flood Management (2020) had conducted a study on flash flood 

forecasting for the rivers in the northeast haor region of Bangladesh by coupling a number 

of open source-based models and tools. In that study, both HEC-HMS and HEC-RAS 

models were used. But the results were unsatisfactory for the Khowai river basin due to 
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the lack of reliable rainfall data in the upper catchment areas outside Bangladesh, lack of 

observations of discharge in the hydrodynamic model boundary, and lack of high-

resolution bathymetry and topographic data (IWFM, 2020).   

 

Mou (2021) performed a study applying HBV model for runoff simulation in khowai 

river basin in which the model calibration period was 2001 to 2007 and the validation 

period was 2008 – 2012. The whole catchment was divided into three elevation and three 

vegetation zones. For calibration period (2001-2007), the coefficient of determination 

was 0.71 (acceptable), whereas, for the validation period (2008 – 2012) the R2 value was 

0.39 (unsatisfactory) on monthly scale (Mou, 2021). 

 

2.6 Climate Change Modeling for Hydrological Impact Assessment 

 

Climate change impact studies are largely based on climatic projections simulated by 

climate models. Hydrological models are used to simulate the impact of climate change 

on the water cycle as well as to project future hydrological regimes. To drive such a 

model, reliable information on climatological variables (e.g., temperature, precipitation, 

or evapotranspiration) and on their distribution in space and time is required. This 

information can be provided by different climate models. Climate models use quantitative 

methods to simulate the interactions of the important drivers of climate including the 

atmosphere, oceans, land surface, and ice. They are used for a variety of purposes from 

the study of the dynamics of the climate system to projections of future climate. All 

climate models take account of incoming energy from the sun as short-wave 

electromagnetic radiation, chiefly visible and short-wave (near) infrared, as well as 

outgoing longwave (far) infrared electromagnetic (Narzis, 2020). 

 

2.6.1 Climate change scenarios 

 

There are several types of climate change scenarios. They range from scenarios that are 

devised arbitrarily based on expert judgment (arbitrary climate change scenarios) to 

scenarios based on past climate (analog climate change scenarios) to scenarios based on 

climate model output (Narzis, 2020). 
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2.6.1.1 Arbitrary climate change scenarios 

 

Arbitrary climate change scenarios are changes in key variables selected to test the 

sensitivity of a system to possible changes in climate. These are often uniform annual 

changes in variables, such as temperature and precipitation. An example is combinations 

of 1°, 2°, and 4° increases in temperature combined with no change and increases and 

decreases of 10% and 20% in precipitation. Different changes can be assumed for 

different seasons. These scenarios are most useful for testing the sensitivity of systems to 

changes in individual variables and combined changes (Narzis, 2020). 

 

2.6.1.2 Analogue climate change scenarios 

 

Analogue, or past climates, can be created from historical instrumental records of climate 

or paleoclimate reconstructions. The instrumental record will often be a complete multi-

decadal record of often daily or sub-daily weather observations. The advantage of these 

data is that they will be recorded at each observation station and thus could provide better 

information on the regional distribution of climate than many climate models. Their 

disadvantages include inaccuracies in the estimation of past climates, low temporal 

resolution (e.g., they may estimate seasonal or annual climates), and incomplete coverage 

(Narzis, 2020). 

 

2.6.1.3 Climate model-based scenarios 

 

Climate models are mathematical representations of the climate. Although there are many 

uncertainties with models such as climate models, they do enable us to simulate how 

global and regional climates may change as a result of anthropogenic influences on the 

climate. Models of both global and regional climate exist. Global climate models range 

from simple, one-dimensional models such as MAGICC, which is briefly described 

below, to more complex models such as general circulation models (GCMs). GCMs 

model the atmosphere and oceans, and interactions with land surfaces. The model on a 

regional scale, typically estimating the change in grid boxes that are approximately 

several hundred kilometers wide. GCMs, provide only an average change in climate for 

each grid box, even though real climates can vary quite considerably within several 

hundred kilometers (Narzis, 2020). 
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2.7 Emission Scenarios 

 

Future greenhouse gas (GHG) emissions are the product of very complex dynamic 

systems, determined by driving forces such as demographic development, socio-

economic development, and technological change. Their future evolution is highly 

uncertain. Scenarios are alternative images of how the future might unfold and are an 

appropriate tool with which to analyze how driving forces may influence future emission 

outcomes and to assess the associated uncertainties. They assist in climate change 

analysis, including climate modeling and the assessment of impacts, adaptation, and 

mitigation (Intergovernmental Panel on Climate Change, 2000). 

 

2.7.1 The representative concentration pathways (RCPs) 

 

Representative Concentration Pathway (RCP) is a greenhouse gas concentration (not 

emissions) trajectory adopted by the IPCC for its fifth Assessment Report (AR5) in 2014. 

It supersedes Special Report on Emissions Scenarios (SRES) projections published in 

2000. It describes four different 21st-century pathways of greenhouse gas (GHG) 

emissions, atmospheric concentrations, air pollutant emissions, and land use. RCPs 

include a stringent mitigation scenario (RCP 2.6), two intermediate scenarios (RCP 4.5 

and RCP 6.0), and one scenario with very high GHG emissions (RCP 8.5). The four 

RCPs, namely RCP2.6, RCP4.5, RCP6, and RCP8.5 are labeled after a possible range of 

radiative forcing values in the year 2100 (2.6, 4.5, 6.0, and 8.5 W/m2, respectively). The 

newly developed RCP scenarios help the climate research community in several ways. 

They provide more detailed and better-standardized greenhouse gas concentration inputs 

for running climate models than those provided by any previous scenario sets. The RCP 

scenarios explicitly explore the impact of different climate policies to allow the cost-

benefit evaluation of long-term climate goals. They also allow a more detailed exploration 

of the role of adaptation and further integration of scenario development across the 

different disciplines involved in climate research (Narzis, 2020). 
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2.7.1.1 RCP 2.6 

 

This scenario might be described as the best case for limiting anthropogenic climate 

change. It requires a major turnaround in climate policies and a start to concerted action 

in the next few years in all countries, both developing and developed. Global CO2 

emissions peak by 2020 and decline to around zero by 2080. Concentrations in the 

atmosphere peak at around 440 ppm in midcentury and then start slowly declining. Global 

population peaks midcentury at just over 9 billion and global economic growth is high. 

Oil use declines but the use of other fossil fuel increases and is offset by the capture and 

storage of carbon dioxide. Biofuel use is high. Renewable energy (e.g., solar & wind) 

increases but remains low. Cropping area increases faster than current trends while the 

grassland area remains constant. Animal husbandry becomes more intensive. Forest 

vegetation continues to decline at current trends (Narzis, 2020). 

 

2.7.1.2 RCP 4.5 

 

Emissions peak around midcentury at around 50% higher than 2000 levels and then 

decline rapidly over 30 years and then stabilize at half of 2000 levels. CO2 concentration 

continues on trend to about 520 ppm in 2070 and continues to increase but more slowly. 

Population and economic growth are moderate but slightly lower than under scenario 

RCP 2.6. Total energy consumption is slightly higher than RCP 2.6 while oil consumption 

is fairly constant through to 2100. Nuclear power and renewables play a greater role. 

Significantly, cropping and grassland area declines while reforestation increases the area 

of natural vegetation (Narzis, 2020). 

 

2.7.1.3 RCP 6 

 

In this scenario, emissions double by 2060 and then dramatically fall but remain well 

above current levels. CO2 concentration continues increasing, though at a slower rate in 

the latter parts of the century, reaching 620 ppm by 2100. Population growth is slightly 

higher peaking at around 10 billion. This scenario assumes the lowest GDP growth of the 

four. Energy consumption increases to a peak in 2060 then declines and levels out to 

finish the century at levels similar to RCP2.6. Oil consumption remains high while biofuel 
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and nuclear play a smaller role than in the other 3 scenarios. The cropping area continues 

on the current trend, while the grassland area is rapidly reduced. Natural vegetation is 

similar to RCP 4.5 (Narzis, 2020). 

 

2.7.1.4 RCP 8.5 

 

This is the nightmare scenario in which emissions continue to increase rapidly through 

the early and mid-parts of the century. By 2100 annual emissions have stabilized at just 

under 30 gigatons of carbon compared to around 8 gigatons in 2000. Concentrations of 

CO2 in the atmosphere accelerate and reach 950 ppm by 2100 and continue increasing for 

another 100 years. Population growth is high, reaching 12 billion by centuries end. This 

is at the high end of the UN projections. Economic growth is similar to RCP 6 but assumes 

much lower incomes and per capita growth in developing countries. This scenario is 

highly energy-intensive with total consumption continuing to grow throughout the 

century reaching well over 3 times current levels. Oil use grows rapidly until 2070 after 

which it drops even more quickly. Coal provides the bulk of a large increase in energy 

consumption. Land use continues current trends with the crop with grass areas increasing 

and forest area decreasing (Narzis, 2020). 
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Figure 2.2: All forcing agents' atmospheric CO2-equivalent concentrations according to 

the four RCPs used by IPCC AR5 (Wikipedia, Representative Concentration Pathway, 

2021) 

The RCPs are an important development in climate research and provide a foundation for 

emissions mitigation and impact analysis. RCPs will facilitate the exchange of 

information among physical, biological, and social scientists. Researchers working on 

impacts, adaptation, and vulnerability will obtain model outputs sooner and have more 

time to complete their part of the AR5. Climate-model scenarios can also be developed 

without constraining future work on integrated assessments. As climate models improve, 

newer models can employ the same pathways, allowing modelers to isolate the effects of 

changes in the climate models themselves. The RCPs are supplemented with extensions 

(Extended Concentration Pathways, ECPs), which allow climate modeling experiments 

through to the year 2300. Development of the RCPs also brings together a diverse range 

of research communities that will help create fully integrated Earth-system models that 

include representation of the global economy and society, impacts and vulnerabilities 

(Narzis, 2020). 
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2.8 Regional Climate Model Data Portal-CORDEX 

 

The Coordinated Regional Downscaling Experiment (CORDEX) program was recently 

established by the World Climate Research Program (WCRP) with the aim of developing 

an international coordinated framework to generate improved regional climate change 

projections world-wide for input into impact and adaptation studies, including input to 

the IPCC’s Fifth Assessment Report (CCCR, 2021). The program consists of several 

subcomponents: development of a framework for evaluating downscaling methodologies, 

develop improved downscaling techniques, both statistical and dynamical; and promote 

interactions among global climate modelers, downscaling modelers, and assessment 

community who assess the impact of climate change on specific sectors using the 

downscaled data (Narzis, 2020). 

 

2.8.1 CORDEX South Asia 

 

The CORDEX South Asia program brings together researchers/scientists from the 

Climate Science and those involved in vulnerability, impacts and adaptation (VIA) 

research from the Asian region to interpret raw downscaled data for information on how 

climate processes over the continent may change, and to analyze how these changes may 

impact important sectors, such as health, agriculture and water security in multiple 

regions across the continent. The CORDEX South Asia activities are envisaged towards 

building capacity and expertise within the region to analyze, interpret and apply 

CORDEX results for decision making that are relevant to the knowledge needs of the 

South Asian region (CCCR, 2021). 

 

CORDEX-South Asia is a partnership involving the Centre for Climate Change Research 

(CCCR) at the Indian Institute of Tropical Meteorology (IITM), the World Climate 

Research Program (WCRP), START, Swedish Meteorological Hydrological Institute 

(SMHI) and the University of Cape Town's Climate Systems Analysis Group (CSAG) 

(CCCR, 2021). 

 

For the South Asian region, CORDEX presents an unprecedented opportunity to advance 

knowledge of regional climate responses to global climate change, and for these insights 

to feed into Working Groups One and Two of the IPCC Fifth Assessment Report as well 
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as to on-going climate adaptation and risk assessment research and policy planning in the 

region. The keys to success of this initiative in South Asia will be in developing a means 

for analysis and translation of CORDEX data in terms that are relevant to South Asia’s 

knowledge needs, and in developing the internal capacity to perform the analyses and in 

doing so create expertise at regional levels in South Asia (CCCR, 2021). 

 

2.8.2 Regional model: REGCM4 - a regional climate model system 

 

The Regional Climate Model system RegCM, originally developed at the National Center 

for Atmospheric Research (NCAR), is maintained in the Earth System Physics (ESP) 

section of the ICTP. The first version of the model, RegCM1, was developed in 1989 and 

since then it has undergone major updates in 1993 (RegCM2), 1999 (RegCM2.5), 2006 

(RegCM3) and most recently 2010 (RegCM4). The latest version of the model, RegCM4, 

is now fully supported by the ESP, while previous versions are no longer available. This 

version includes major upgrades in the structure of the code and its pre- and post- 

processors, along with the inclusion of some new physics parameterizations. The model 

is flexible, portable and easy to use. It can be applied to any region of the World, with 

grid spacing of up to about 10 km (hydrostatic limit), and for a wide range of studies, 

from process studies to paleoclimate and future climate simulation (International Center 

for theoretical physics, 2014). 

 

The second-generation Canadian Earth System Model (CanESM2) is the fourth 

generation coupled global climate model developed by the Canadian Centre for Climate 

Modelling and Analysis (CCCma) of Environment and Climate Change Canada. 

CanESM2 represents the Canadian contribution to the IPCC Fifth Assessment Report 

(AR5) (Government of Canada, 2019). The second-generation Canadian Earth System 

Model (CanESM2) consists of the physical coupled atmosphere-ocean model CanCM4 

coupled to a terrestrial carbon model (CTEM) and an ocean carbon model (CMOC) 

(Government of Canada, 2019). 

 

Flash flood is a serious concern for the Khowai river basin. If future climate becomes 

warmer and wetter then it may increase the flooding risk of this region. Therefore, in this 

study, climate variables from CCCma-CanESM2 global climate model downscaled by 

REGCM4-4 RCM has been used as this dataset has showed an increase in temperature 
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and precipitation for the 21st century (wet and warm scenario) for south Asian region by 

few past researches (Khan and Koch, 2018) (Narzis, 2020). In addition, RCP 8.5 has been 

considered for future scenario as it represents extreme scenario. 
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3 METHODOLOGY 
 

3.1 General 

 

Hydrological modeling study which aims to derive scenarios of the future water situation 

in a river basin requires some basic data like digital elevation model, land use, weather 

data (precipitation, temperature, evaporation) and discharge data. The model 

development includes numerous amounts of preprocessing and post-processing that is 

quite challenging for the researchers. Assessment of the impact of future climate change 

and upstream barrage impact on the flow of any river basin using a hydrological model 

involves several steps. Steps followed in the present research can be described as the 

following: 

 

Step 1-Data collection: This includes collection of the digital elevation model (DEM), 

land use pattern, climate data, and flow data. 

 

Step 2-Data pre-processing: Digital elevation model within basin, land use pattern 

analysis, climate data analysis for missing value interpolation. 

  

Step 3-Model setup: Model setup using HBV light hydrologic model, dividing the 

catchment in 20 elevation zones and 3 vegetation zones, weather data input. 

 

Step 4-Calibration and validation of HBV model: Calibration and validation of the 

model, Sensitivity analysis of the model parameters, evaluation of the model 

performance. 

 

Step 5-Selection of climate model and Scenarios: Selection of Regional Climate Model 

and scenario for climate change impact assessment. 

 

Step 6-Bias correction of the future climate data set: Bias correction of the future 

precipitation, temperature and evaporation data. 
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Step 7-Simulation and analysis of future flow: Computation of future flow of the 

Khowai river basin based on using projected climate data for RCP 8.5 scenario and 

analyzing the impact of climate change on flow. 

 

A flow chart of the methodology is given in Figure 3.1. 

 

 

Figure 3.1: Flow chart of the methodology of this Thesis project 

3.2 Data Collection 

 

SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model) with a 

resolution of 30X30m was collected from USGS (United States Geological Survey) earth 
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explorer (USGS, 2019). Land Cover Map at 100m resolution was collected from the 

Copernicus – Global Land Cover Data (Copernicus, 2019).  Precipitation, temperature, 

and evaporation data were collected from both ERA5 (Fifth Generation ECMWF - 

European Centre for Medium-Range Weather Forecasts Reanalysis) Land Hourly Dataset 

which is under the Copernicus Climate Change Service (C3S) and also from NOAA 

(National Oceanic and Atmospheric Administration) under NOAA Climate Prediction 

Center (CPC) Global Unified Gauge-Based Analysis. Precipitation, temperature and 

evaporation data of Habiganj were collected from BMD (Bangladesh Meteorological 

Department). Water Level and Discharge data at Shaistaganj station (SW 158.1, NTQ) 

were collected from BWDB (Bangladesh Water Development Board). Future data of 

precipitation, temperature and evaporation from 1979 to 2099 was collected from 

CORDEX (Coordinated Regional Climate Downscaling Experiment). A data collection 

summary and particulars of the future data is given in Table 3.1 and Table 3.2 

respectively. 

 

 
Figure 3.2: Shaistaganj Station (BWDB) 
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Table 3.1: Data collection summary 

SL Collected Data Source 
Resolution 

/ interval 
Duration 

1 
Digital Elevation 

Model (DEM) 

SRTM (Shuttle Radar 

Topography Mission), 

USGS (United States 

Geological Survey) earth 

explorer 

30m 

2000 

(acquisition), 

2015 

(updated) 

2 Vegetation data 
Copernicus – Global Land 

Cover Data 
100m 2019 

3 

Reanalysis data of 

Precipitation, 

Temperature and 

Evaporation) 

ERA5 (Fifth Generation 

ECMWF - European Centre 

for Medium-Range Weather 

Forecasts Reanalysis) 

(ECMWF, ERA5, 2019) 

0.25 

degree, 

Hourly 

1979 – 2019 

NOAA (National Oceanic 

and Atmospheric 

Administration) Climate 

Prediction Centre (CPC) 

(NOAA, 2021) 

0.5 degree, 

Daily 
1979 – 2019 

4 

Precipitation, 

Temperature, 

Evaporation 

(Habiganj) 

BMD Daily 1979 – 2019 

5 

Future 

precipitation, 

Temperature and 

Evaporation 

CORDEX (Coordinated 

Regional Climate 

Downscaling Experiment) 

Daily 1979 – 2099 

6 

Water level and 

Discharge 

(Shaistaganj) 

BWDB (Bangladesh Water 

Development Board) 
Daily 1979 – 2019 
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Table 3.2: Particulars of CORDEX data download (CCCR, 2021) 

SL Subject Answer Remarks 

1 Project CORDEX 
Coordinated Regional Downscaling 

Experiment  

2 Domain WAS 44  WAS means West Asia 

3 Resolution 0.44 degree   

4 Institute IITM Indian Institute of Tropical Meteorology  

5 RCM Model RegCM4-4 
Regional Climate Model latest version 

(2010) 

6 
Driving 

Model 
RCP 8.5 worst case scenario 

7 Experiment 
CCCma-

CanESM2 

wet and warm scenario (selected in this 

study) 

 

3.3 Data Pre-processing 

 

3.3.1 Stream burning and watershed delineation 

 

Stream burning has been performed using Khowai cross sections from IWM database, 

DEM (Digital Elevation Model) from USGS and stream network from Google Earth. 

Then watershed has been delineated using Shaistaganj station (SW 158.1, NTQ) as the 

outlet. The area of the Khowai River Basin has been calculated to be 1325.42 square 

kilometers. In Bangladesh portion, the Khowai basin’s area is 139.82 square kilometers. 

In Indian portion, the Khowai basin’s area is 1185.60 square kilometers. 

 

3.3.2 Precipitation, temperature and evaporation data preparation 

 

Precipitation, temperature and evaporation data from 1979 to 2019 had been collected 

from three different sources (Table 3.1).  

 

With the purpose of putting daily data into the HBV Light Model, ERA5 hourly data had 

been processed into daily data for precipitation, temperature and evaporation. 
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A separate dataset for precipitation had been made by averaging ERA5, NOAA and BMD 

(Habiganj) precipitation datasets for further use. This dataset has been termed “Average 

rainfall” in the next sections of this report. 

 

ERA5, NOAA and CORDEX future datasets are gridded data sets downloaded for an area 

near to the Khowai basin. By using Theissen polygon method in ArcGIS software, nearest 

gridded datasets from the basin are weighted averaged and prepared as ERA5, NOAA 

and CORDEX datasets (precipitation, temperature and evaporation). The details of the 

bias correction procedure for the CORDEX future datasets have been given in article 4.8. 

 

 
Figure 3.3: Location of climate data station 
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3.3.3 Discharge data preparation 

 

Discharge data of Shaistaganj station collected from Bangladesh Water Development 

Board (BWDB) does not have regular interval. In case of missing water level data 

interpolation, NUM XL software oriented cubic spline method have been used. In case of 

missing discharge data interpolation, rating curve have been generated from water level.  

 

3.3.3.1 Rating curve generation 

 

Forty years (1979 – 2019) of discharge data and water level data of Shaistaganj station of 

BWDB had been distributed in 12 datasets according to month. From these 12 monthly 

distributed water level and discharge data of 40 years, 12 rating curve equations had been 

formed. 

 

Rating curve equations analyzing 40 years water level and discharge data of Shaistaganj 

station of Bangladesh Water Development Board has been given in Appendix (Table A 

1). 

 

3.3.3.2 Missing values interpolation by NUM XL software 

 

NUM XL software (NUMXL, 2021) works through Microsoft Excel in which the missing 

data is interpolated. More information can be found on www.numxl.com. 

With the function generates as “interpolate” after it is installed in the PC, this function 

can generate four different data for the missing value in Microsoft Excel. 

1. Forward 

2. Backward 

3. Linear 

4. Cubic spline 

 

http://www.numxl.com/
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Figure 3.4: A simple data interpolation with NUM XL software 

In this research, cubic spline method was applied for interpolating the missing water level 

value. From the water level data and the rating curve equations, the missing discharge has 

been generated. 

3.4 Calibration and Validation of HBV Model 

 

3.4.1 Description of HBV model 

 

The full form of HBV is Hydrologiska Byrans Vattenavdelning. The HBV model is a 

semi-distributed hydrologic model, named after the Hydrologiska Byrans 

Vattenavdelning unit at the Swedish Meteorological and Hydrological Institute (SMHI), 

where its development started in the 1970s. The version HBV-light was developed at 

Uppsala University in 1993 using Microsoft Visual Basic. A new version of HBV model 

has recently been developed at the University of Zurich using Visual Basic.net (Seibert, 

2005). This hydrological model has a long history and the model has found applications 

in more than 90 countries. 

 

In general, The HBV model ... 

• is a conceptual model for runoff simulation 

• has a simple structure 



37 
 

• is semi-distributed, i.e., allows to divide the catchment into sub basins, elevation 

and vegetation zones 

• is easy to understand, learn and apply 

• has been applied to many catchments in Sweden and abroad 

• provided good results in most applications 

• has become a standard tool for runoff studies in the Nordic countries 

• needs a moderate amount of input data 

• can be run on a PC 

 

In this study, HBV was chosen because of its flexibility, computational efficiency against 

data scarce catchments, proven effectiveness under a wide range of climatic and 

physiographic conditions and successful application in many previous studies. 

 

 
Figure 3.5: Main window of HBV Model 

The HBV (Hydrologiska Byråns Vattenbalansavdelning) model (Bergström, 1976) is a 

rainfall-runoff model, which includes conceptual numerical descriptions of hydrological 

processes at the catchment scale. It is a user-friendly model. This model has been used 

successfully in 90 countries. The main idea behind the development of HBV-light was to 

provide an easy-to-use Windows-version for research and education (Seibert, 2005).  

The general water balance can be described as in Equation 3.1 (Gendzh, 2015): 
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𝑃 − 𝐸 − 𝑄 = 𝑑/𝑑𝑡 [𝑆𝑃 + 𝑆𝑀 + 𝑈𝑍 + 𝐿𝑍 + 𝑙𝑎𝑘𝑒𝑠]  …………………..    Equation 3.1 

Where: 

P = precipitation 

E = evapotranspiration 

Q = runoff 

SP = snow pack 

SM = soil moisture 

UZ = upper groundwater zone 

LZ =lower groundwater zone 

lakes = lake volume 

3.4.2 General structure of HBV model 

 

The selected HBV model consists of a snow routine, a soil moisture routine, runoff 

response routine, and a routing routine. 

The snow routine of HBV uses a degree-day method to estimate snow accumulation and 

snowmelt processes.  

The soil moisture routine of HBV is based on tank model, which control the contribution 

of precipitation to the runoff response and soil moisture storage.  

Groundwater routine/response function routine: The model consists of two 

conceptual storages (tanks) that simultaneously redistribute the generated runoff in terms 

of quick and slow responses, respectively.  

The total runoff response from both tanks is further transformed by a routing routine. 

 

It has 5 stores and 15 parameters (TT, CFMAX, SP, SFCF, CFR, CWH, FC, LP, BETA, 

PERC, UZL, K0, K1, K2, MAXBAS) parameters. The model aims to represent: 

• Snow accumulation, melt and refreezing;  

• Infiltration and capillary flow and evaporation from soil moisture; 

• A non-linear storage-runoff relationship from the upper runoff-generating zone; 

• A linear storage-runoff relationship from the lower runoff-generating zone. 
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Figure 3.6: A Simplified Schematization of the HBV Light model 

3.4.3 Model parameters 

 

The model simulates daily discharge using daily rainfall, temperature and potential 

evaporation as input. 

Precipitation is simulated to be either snow or rain depending on whether the temperature 

is above or below a threshold temperature, TT [°C]. All precipitation simulated to be 

snow, i.e., falling when the temperature is bellow TT, is multiplied by a snowfall 

correction factor, SFCF. 

Melt = CFMAX (T(t) – TT)        Equation 3.2 

Refreezing = CFR CFMAX (TT – T(t))      Equation 3.3 

recharge

P(t)
= (

SM(t)

FC
)

Beta

        Equation 3.4 

Snowmelt is calculated with the degree-day method (Equation 3.2). Meltwater and 

rainfall are retained within the snowpack until it exceeds a certain fraction, CWH, of the 

water equivalent of the snow. Liquid water within the snowpack refreezes according to 

Equation 3.3. Rainfall and snowmelt (P) are divided into water filling the soil box and 
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groundwater recharge depending on the relation between water content of the soil box 

(SM [mm]) and its largest value (FC [mm]) (Equation 3.4). 

E act = E pot min (SM(t)

FC.LP
 , 1)        Equation 3.5 

Actual evaporation from the soil box equals the potential evaporation if SM/FC is above 

LP. while a linear reduction is used when SM/FC is below LP (Equation 3.5). 

Groundwater recharge is added to the upper groundwater box (SUZ [mm]). 

QGW (t) = K2SLZ + K1SUZ + K0max (SUZ – UZL , 0)   Equation 3.6 

Q sim (t) = ∑  MAXBAS
i=1 c(i) QGW (t-i+1)       Equation 3.7 

Where, c(i) = ∫ 2

MAXBAS
− |u −  

MAXBAS

2
 |

4

MAXBAS2

i

i=1
 du  

PERC [mm d-1] defines the maximum percolation rate from the upper to the lower 

groundwater box (SLZ [mm]). Runoff from the groundwater boxes is computed as the 

sum of two or three linear outflow equations depending on whether SUZ is above a 

threshold value, UZL [mm], or not (Equation 3.6). This runoff is finally transformed by 

a triangular weighting function defined by the parameter MAXBAS (Equation 3.7) to 

give the simulated runoff [mm / d].  

P(h) = P0  (1+ (PCALT (h-h0)/10000))      Equation 3.8 

T(h) = T0 – TCALT (h – h0) / 100       Equation 3.9 

If different elevation zones are used the changes precipitation and temperature with 

elevation are calculated using the two parameters PCALT [%/100 m] and TCALT [ºC / 

100 m] (Equation 3.8 and Equation 3.9). 

E pot (t) = (1 + CET (T(t) - TM)) E pot , M               Equation 3.10 

But 0≤ E pot (t) ≤ 2 E pot , M        

The long-term mean of the potential evaporation, Epot, M for a certain day of the year 

can be corrected to its value at day t, Epot(t), by using the deviations of the temperature, 

T(t), from its long-term mean, TM, and a correction factor, CET [°C-1] (Equation 3.10). 

When each of the Snow Routine parameters (TT, CFMAX, SFCF, CFR and CWH), 

Response Function parameters (PERC, Alpha, UZL, K0, K1 and K2) and the CET 
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parameter were decreased, the efficiency of the model output increased. When each of 

the Soil Routine parameters (FC, LP and BETA) and the Routing Routine parameter 

(MAXBAS) was increased, the efficiency of the model output increased. 

3.4.4 Description of four routines 

 

 
Figure 3.7: Schematic Structure of Four Routines of the HBV model 

Table 3.3: Input and Output data for Four Routines 

Sub Model Input data Output data 

Snow routine Precipitation, temperature Snow pack, snow melt 

Soil routine 
Potential evaporation, 

precipitation, snowmelt 

Actual evaporation, soil moisture, 

groundwater recharge 

Response 

function 

Groundwater recharge, 

potential evaporation 
Runoff, groundwater level 

Routing routine Runoff Simulated runoff 

 

3.4.4.1 Snow routine 

 

According to the HBV light User’s Manual (Seibert, 2005), 

CFMAX= degree-day factor (mm oC-1 day-1) 

CFR  = refreezing coefficient 

TT  = threshold temperature (oC) 
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1. Accumulation of precipitation as snow if temperature<TT (TT is normally close to 0 
oC) 

2. Melt of snow starts if temperatures are above TT calculated with a simple degree-

day method. 

meltwater = CFMAX (T-TT) (mm day-1) 

CFMAX varies normally between 1.5 and 4 mm oC-1 day-1 (in Sweden), with lower 

values for forested areas. As approximation the values 2 and 3.5 can be used for 

CFMAX in forested and open landscape respectively. 

3. The snow pack retains melt water until the amount exceeds a certain portion (CWH, 

usually 0.1) of the water equivalent of the snow pack. When temperatures decrease 

below TT this melt water refreezes again. 

refreezing meltwater = CFRCFMAX (TT-T) 

      (CFR 0.05) 

 

NOTE: 

a) All precipitation that is simulated to be snow is multiplied by a correction factor, 

SFCF. 

b) These calculations are carried out separately for each elevation and vegetation 

zone. 

 

3.4.4.2 Soil moisture routine 

 

According to the HBV light User’s Manual (Seibert, 2005), 

 

FC = maximum soil moisture storage (mm) 

LP = soil moisture value above which ETact reaches ETpot (mm) 

BETA = parameter that determines the relative contribution to runoff from rain or 

snowmelt  

 

NOTE: FC is a model parameter and not necessarily equal to measured values of ‘field 

capacity’. 
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3.4.4.3 Response routine 

 

According to the HBV light User’s Manual (Seibert, 2005), 

 

Simple linear reservoir: 

 

The model of a single linear reservoir is a simple description of a catchment where the 

runoff Q(t) at time t is supposed to be proportional to the water storage S(t). 

 
Figure 3.8: Simple linear reservoir 

Q(t) = k. S(t) 

Here,  

S = storage (mm) 

Q = outflow (mm day-1) 

t = time (day) 

k = storage (or recession) coefficient (day-1) 

(A realization of a single linear reservoir is a box with porous outlet) 

The water balance of the catchment is 

P(t) = E(t) + Q(t) + d. S(t) / dt 

 

Recharge  

SUZ  

SLZ  

UZL  

PERC  

= input from soil routine (mm day-1) 

= storage in upper zone (mm) 

= storage in lower zone (mm) 

= threshold parameter (mm) 

= max. percolation to lower zone (mm day-1) 

Ki  = Recession coefficient (day-1) 

Qi  
 

= runoff component (mm day-1) 
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NOTE: 

- SUZ has no upper limit 

- Q2 can never exceed PERC SLZ can never exceed PERC/K2 

 

 
Figure 3.9: Response Function 

 

3.4.4.4 Routing routine 

 

According to the HBV light User’s Manual (Seibert, 2005), 

 

Transformation function: 

The generated runoff of one-time step is distributed on the following days using one free 

parameter, MAXBAS, which determines the base in an equilateral triangular weighting 

function.  

 

 
Figure 3.10: Example for a transformation with MAXBAS=5 



45 
 

3.4.5 Input climate data 

 

The PTQ-file contains time series of precipitation [mm/Δt], temperature [ºC] and 

discharge [mm/Δt]. If the catchment consists of more than one sub catchment, a distinct 

set has to be specified for each of the sub catchments. Time series can be on a daily basis, 

hourly basis, or any other time interval, as long as the time interval remains constant over 

the time series. 

 

The evaporation-file contains values for the potential evaporation [mm/Δt]. This could be 

either one set of values which will be applied to all sub catchment, or one set per sub 

catchment. 

 

3.4.5.1 Precipitation 

 

According to the HBV light User’s Manual (Seibert, 2005), 

The areal average precipitation P area is calculated as weighted mean of precipitation 

stations in and around the catchment. 

 

P area = ∑ Ci Pi 

 

The weight Ci of station can be determined subjectively or by Thiessen Polygons or by 

the Isohyetal or the Hypsometric method 

 

The catchment can be divided into different elevation zones. For each zone the 

precipitation will be corrected according to the its increase with elevation above sea level 

(usually 10-20% per 100 m, parameter PCALT).  

 

3.4.5.2 Temperature 

 

According to the HBV light User’s Manual (Seibert, 2005), Temperature data is needed 

in catchments with snow and is calculated as weighted mean of stations in and around the 

catchment. When different elevation zones are used temperature will be corrected for 

elevation above sea level with usually -0.6oC per 100 m (parameter TCALT). 
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3.4.5.3 Potential evaporation 

 

According to the HBV light User’s Manual (Seibert, 2005), 

Estimates of the potential evaporation may be provided by calculations using, for 

instance, the Penman formula or measurements by evaporimeters. Normally monthly 

mean values are assumed to be sufficient. The long-term mean evaporation can be 

corrected by using the deviations of the temperature from its long-term mean. 

E pot (t) = (1 + CET (T(t) - TM)) E pot , M      

(But 0 ≤ E pot (t) ≤ 2 E pot , M) 

E pot (t) potential evaporation at day t (mm d-1) 

CET = correction factor (0C-1) 

T(t) = temperature at day t (0C) 

TM = long term mean temperature for this day of the year (0C) 

E pot , M = long term mean evaporation for this day of the year (mm d-1) 

 

3.4.6 Model setup 

 

After the processing of discharge, water level, precipitation, temperature, evaporation 

data as well as digital elevation model and land use data collection, now it is time for the 

simulation using HBV Light. 

 

3.4.6.1 Model settings 

 

Then clicking settings in the menu bar - model settings button, Model Settings window 

pops up. Model settings was done selecting the following options given in the following 

Figure 3.11. 
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Figure 3.11: Model settings 

3.4.6.2 Catchment settings 

 

The whole catchment is divided into 20 elevation zones and 3 vegetation zones. Elevation 

zone wise vegetation zones distribution ratio sum area should be equal to 1. If not, the 

model will not run. 

 

3.4.6.3 Calibration and validation of HBV model 

 

Calibration is the process where we look at parameters that closely simulate the behavior 

of the basin (Madsen et al., 2002). It consists of adjusting numerical values assigned to 

the model parameters to reproduce the best observed response (Khorchani N. , 2016). 

This process can be used manually by trial-and-error method, or automatically by an 

optimization process in looking at the optimum value of a given criterion to enhance 

consistency between the observed and simulated discharge response of the basin for a 

certain period of time (Madsen et al., 2002). 

Once the hydrological model is calibrated for a given time period, then the model’s ability 

to simulate the discharge for another time period is checked in the validation step.  
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In this study, the HBV model has been calibrated for the Khowai catchment for the period 

01-01-1980 to 31-12-2010. The first year of the simulation period is treated as a warm-

up period for HBV Light model (Bergström 1976, 1992; Seibert and Vis 2012) because 

the model initial conditions are unknown. One year of warm-up is generally sufficient to 

spin-up a conceptual hydrologic model such as HBV. Therefore, only the first-year 

simulation was discarded for analysis. The model is validated for the period 01-01-2011 

to 31-12-2019. The performance of the calibrated model has been evaluated by comparing 

the observed discharge and the simulated discharge values and also based on the values 

of Goodness of Fit functions. 

 

Three types of simulation can be done in HBV to optimize the model parameters: 

• Monte Carlo simulations 

• Batch simulations 

• GAP simulation (Genetic Algorithm and Powell optimization).  

 

Monte Carlo simulations and GAP simulation can be used to run a large number of 

simulations based on randomly selected parameter sets (within user-defined parameter 

boundaries) and for automatic calibration of the model. In this research only Monte Carlo 

simulation has been considered and the parameters’ ranges (Table 3.4) have been 

obtained from Beck et al. (2016), Wawrzyniak et al. (2017) and Melsen and Guse (2021). 
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Table 3.4: Maximum and minimum of parameters for the Monte Carlo Run for HBV 

Land (the parameters’ ranges have been obtained from Beck et al. (2016), Wawrzyniak 

et al. (2017) and Melsen and Guse (2021)) 

Routine Parameter Explanation Min Max Unit 

SNOW 

ROUTINE 

TT Threshold temperature -1.5 0 °C 

CFMAX Degree-day factor 1 10 
mm °C-1 d 
-1 

SFCF Snowfall correction factor 0.4 1.0   

CWH Water holding capacity 0.0 0.2   

CFR Refreezing coefficient 0.0 0.1   

SOIL 

ROUTINE 

FC 
Maximum of SM (storage 

in soil box) 
1 1000 mm 

LP 
Threshold for reduction of 

evaporation (SM/FC) 
0.3 1.0   

BETA Shape coefficient 1 7   

CET 
Correction factor for 

potential evaporation 
0.0 0.3 °C-1 

RESPONSE 

ROUTINE 

K0 
Recession coefficient 

(upper box) 
0.001 0.4 d -1 

K1 
Recession coefficient 

(upper box) 
0.001 0.18 d -1 

K2 
Recession coefficient 

(lower box) 
0.0001 0.50 d -1 

PERC 
Maximal flow from upper 

to lower box 
0 10 mm d-1 

UZL Threshold parameter 0 100 mm 

ROUTING 

ROUTINE 
MAXBAS 

Routing, length of 

weighting function 
1 7 d 

 

After Monte Carlo Simulation, a Multi.txt file would be created in the Results folder. This 

file is opened in Excel and the parameter values corresponding to maximum coefficient 

of efficiency (Reff) are considered as the optimized parameter set and are selected for 

calibration.  
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In this study, the suitability of two global gridded datasets (NOAA and ERA5) have been 

assessed in modelling the streamflow of data-scarce Khowai river basin (Table 3.5) as no 

measured data is available for the major portion of the basin lying in India. Measured 

precipitation is available only at the Habiganj BMD station. So, it could be possible to 

correct the ERA5 or NOAA data for only Habiganj area if there was any bias by 

comparing them with the observed. But it was not possible to evaluate whether there is 

any bias in ERA5 or NOAA data for Indian part of the basin as we do not have any 

measured data from India. It would be inaccurate to assume that NOAA or ERA5 data of 

Indian portion have bias without any evidence and it may produce uncertainty if we 

correct the precipitation data of Indian part based on the bias observed for the Habiganj 

station as the amount and nature of bias (positive or negative) varies from region to 

region. As it was not possible to evaluate if there is any bias for all part of the basin except 

Habiganj, this study did not employ any correction or adjustment to the ERA5 or NOAA 

data.  

 

Another dataset termed as “Merged dataset” has been prepared by averaging ERA5, 

NOAA and Habiganj (BWDB) precipitation datasets and have been used in the trial-3. 

But the temperature and evaporation dataset were taken from the ERA5 dataset in trial 3 

as ERA5’s resolution is better. The description of three trials is given in Table 3.5. The 

HBV model was calibrated for each dataset individually and the model that produced the 

highest Reff has been used for climate change impact assessment. 

 

Table 3.5: Description of three trials in terms of applying datasets in the model  

Trials 
Acronym 

of the trial 
Precipitation data source 

Temperature 

data source 

Evaporation  

data source 

Trial 1 ERA5 ERA5 ERA5 ERA5 

Trial 2 NOAA NOAA NOAA NOAA 

Trial 3 Merged 

Average of ERA5, NOAA 

and measured precipitation 

from Habiganj BMD station 

ERA5 ERA5 
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3.5 Evaluation Criteria Based on Goodness of Fit Functions 

Evaluation criteria based on Goodness of Fit Functions are as follows (Seibert, 2005): 

Table 3.6: Goodness of Fit Functions 

RMSE Root Mean Square Error 

R2 Coefficient of Determination 

Reff / NSE Coefficient of Efficiency/ Nash-Sutcliffe Efficiency 

PBIAS Percent Bias 

Coefficient of determination (R2) describes the proportion of the variance in measured 

data explained by the model. R2 ranges from 0 to 1, with higher values indicating less 

error variance, and typically values greater than 0.5 are considered acceptable.  

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the relative 

magnitude of the residual variance compared to the measured data variance. NSE ranges 

between -∞ and 1.0 (1 inclusive), with NSE as 1 being the optimal value. Values between 

0.0 and 1.0 are generally viewed as acceptable levels of performance, whereas values 

<0.0 indicates that the mean observed value is a better predictor than the simulated value, 

which indicates unacceptable performance. For optimizing the model parameters while 

calibration, NSE value has been considered until the final acceptable model appears. 

Table 3.7: Criteria for Evaluating Model Performance (Carlos et al., 2021) 

Parameter Very Good Range Good Range Acceptable Range Unsatisfactory Range 

R2 0.75-1.00 0.60-0.75 0.50-0.60 <0.5 

NSE 0.75-1.00 0.60-0.75 0.5-0.6 <0.5 

PBIAS 0 - ±10 ±10 - ±15 ±15 - ±25 > ±25 

 

3.6 Bias Correction of The Future Climate Data Set 
 

In this study two bias correction methods have been tested such as Linear Scaling and 

Quantile based mapping. 
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3.6.1 Linear scaling method 

 

Climate model outputs often suffer from biases. To overcome these bias, future rainfall, 

temperature and evaporation data from CORDEX CANESM2 model were bias-corrected 

based on average rainfall, ERA5 temperature and evaporation using the linear scaling 

(LS) method of bias correction. Linear scaling method computes a ratio of observed 

dataset (In this study, merged rainfall, ERA5 temperature and evaporation) and 

corresponding raw data from CORDEX for the historic period. Then, the future data is 

corrected by multiplying the future data with this ratio (Narzis, 2020).  

Bias-corrected climate data = Raw data from climate model × C.F. 

Where, Correction factor (C.F.) for month i = Mean of observed data for month i

Mean of raw data from climate model  for month i 
 

 

3.6.2 The quantile mapping method 

 

The quantile mapping method (Haibin Li, Justin Sheffield, Eric F. Wood, 2010) 

[Panofskyand Brier, 1968] maps the distribution of monthly climate model variables 

(precipitation and temperature) onto that of gridded observed data. The method is a 

relatively simple approach that has been successfully used in hydrologic and many other 

climate impact studies [e.g., Cayan et al., 2008; Hayhoe et al., 2004; Maurer and Hidalgo, 

2008]. For a climate variable x, the method can be written as 

x̃ m-p.adjst. = Fo−c
−1

 (Fm−c (xm−p))                 Equation 3.11 

where F is the Cumulative distribution factor (CDF) of either the observations (o) or 

model (m) for a historic training period or current climate (c) or future projection period 

(p). Basically, to bias correct model values for a future period, we first find the 

corresponding percentile values for these future projection points in the CDF of the model 

for the training period and then locate the observed values for the same CDF values of 

the observations. These are the model values after bias correction. 
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3.7 Simulation and Analysis of Future Change of Flow  
 

Using the bias corrected climate data and calibrated HBV model future flow has been 

simulated. The future change of flow has been analyzed in three different future periods 

(2020 – 2040, 2041-2070, 2071-2099) in terms of mean, median and different percentiles. 

Besides those, change in flow will also be assessed in terms of flow duration curves and 

frequency analysis. 

3.7.1 Flow duration curve 

 

The flow-duration curve is a cumulative frequency curve that shows the percent of time 

specified discharges were equaled or exceeded during a given period. It combines in one 

curve the flow characteristics of a stream throughout the range of discharge, without 

regard to the sequence of occurrence. If the period upon which the curve is based 

represents the long-term flow of a stream, the curve may be used to predict the distribution 

of future flows for water- power, water-supply, and pollution studies (Searcy, 1959). In 

this study, flow duration curves for different periods such as base period (1980 to 2019), 

2020 -2040, 2041-2070, 2071-2099 have been compared.  

3.7.2 Frequency analysis 

 

Flood frequency analysis is a technique used by hydrologists to predict flow values 

corresponding to specific return periods or probabilities along a river. In this study, the 

best frequency distribution is chosen from the existing statistical distributions such as 

Gumbel, Normal, Log-normal, Exponential, Weibull, Pearson and Log-Pearson. After 

choosing the probability distribution that best fits the annual maxima data, flood 

frequency curves are plotted. These graphs are then used to estimate the design flow 

values corresponding to specific return periods which can be used for hydrologic planning 

purposes. Flood frequency plays a vital role in providing estimates of recurrence of floods 

which is used in designing structures such as dams, bridges, culverts, levees, highways, 

sewage disposal plants, waterworks and industrial buildings. In order to evaluate the 

optimum design specification for hydraulic structures, and to prevent over-designing or 

under designing, it is imperative to apply statistical tools to create flood frequency 

estimates (Saksena, 2017). 
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4 RESULTS AND DISCUSSION 
 

4.1 General 

In the first segment of this chapter, results from data preprocessing such as watershed 

delineation, land use mapping, rating curve analysis have been presented. Later, the 

results of calibration and validation of the HBV model has been discussed. The HBV 

model has been calibrated separately for three different input dataset such as ERA5, 

NOAA and a merged dataset. The model that showed best performance in calibration and 

validation has been used for analyzing the impact of climate change. The results from 

bias correction of CANESM climate data has also been discussed in this chapter. In the 

last part of this chapter, future flow has been computed from calibrated model using the 

bias corrected data. An analysis on future change in flow duration curve and extreme flow 

have also been presented in this chapter. 

4.2 Watershed Delineation 

From the SRTM digital elevation model, the mosaic DEM has been generated by ArcGIS 

software. After computing flow direction, flow accumulation, snap pour point etc. in the 

hydrology tab, the Khowai watershed with outlet at the Shaistaganj station was 

delineated. The area of the Khowai basin from ArcGIS is 1325.42 which matches with 

Consolidation and Strengthening of Flood Forecasting and Warning Services, final report 

(FFWC, 2006). The digital elevation model (DEM) within the delineated Khowai basin 

is shown in Figure 4.1. 
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Figure 4.1: Extracted Digital Elevation Model (DEM) 

4.3 Elevation Wise Zone Distribution 

 

The extracted digital elevation model (Figure 4.1) is divided into 20 elevation zones for 

further use in HBV model. Elevation wise zone distribution is given in Figure A 1 and 

Table A 2 (Appendix). 

4.4 Land Use Data Processing 

 

Land use data was downloaded from Copernicus – land cover data. Downloaded land use 

data has been processed and divided into three vegetation zone. Twenty elevation zones 

were then distributed into three vegetation zones. The results have been compared with 

Debnath et al. (2017). 
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The land use map has been shown in Figure 4.2 and elevation wise distribution of the 

land use area has been shown in Appendix (Table A 3).  

 

 
Figure 4.2: Land use map 

4.5 Filling Gaps in Discharge Data  

 

Discharge data (Deb, 2015 and Rahman, 2016) of Shaistaganj station from 1979 to 2019 

has been collected from BWDB for this research (Figure 4.5). The water level of 

Shaistaganj station is shown in Figure 4.3. Figure 4.4 shows the Shaistaganj (BWDB) 

station’s rating curve formed from WL and the original discharge. From the time series 
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of discharge data (Figure 4.5), it has been found that after the chakmaghat barrage came 

into operation in 2015, the low flow did not decrease rather increased.   

 

This gaps in the discharge data have been filled by rating curve generated from the WL 

and Q data of Shaistaganj station. If there is missing data in the WL, then the missing 

values have been interpolated by NUM XL software cubic spline method. This gap-filled 

discharge dataset has been used in calibration and validation of the HBV model. 

 

  

Figure 4.3: Water Level Hydrograph of Shaistaganj (BWDB) Station 

 

 
Figure 4.4: Rating curve plot for a period of 1980 to 2019 using Shaistaganj station’s 

Water level and original Discharge 
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Figure 4.5: Original and gap-filled discharge of Shaistaganj station of the Khowai river 

4.6 Model Calibration and Validation 

 

In this section, the suitability of two global gridded datasets (NOAA and ERA5) and a 

merged dataset, as described in Table 3.5, has been assessed in modelling the streamflow 

of data-scarce Khowai river basin using HBV hydrologic model. In this study, the HBV 

model has been calibrated for the Khowai catchment for the period 01-01-1980 to 31-12-

2010 (where the warm-up period is from 01-01-1979 to 31-12-1979). While the model is 

validated for the period 01-01-2011 to 31-12-2019.  

4.6.1 Results from calibration and validation with ERA5 datasets (trial 1) 

 

In this trial, ERA5 precipitation, temperature and evaporation datasets (Table 3.1) from 

1979 to 2019 have been used. A plot between observed and simulated discharge data 

using this ERA5 datasets is shown in Figure 4.6. The coefficient of determination (R2) 

based on the observed and simulated discharge for the calibration period is 0.51 and for 

the validation period is 0.44. The Nash-Sutcliff coefficient (NSE) for the calibration and 

the validation period are 0.38 and 0.08 respectively (Table 4.1). It has been noticed that 

the ERA5 data driven model could not simulate the high peaks quite accurately in several 

years. A large difference is found for 2004. However, the model could simulate the low 

flow quite efficiently. The PBIAS for the calibration and validation period are 5.23 and -

2.35 respectively. 
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Figure 4.6:  Results from calibration and Validation with ERA5 datasets (Trial 1) 

4.6.2 Results from calibration and validation with NOAA datasets (trial 2) 

 

In Trial 2, precipitation, temperature and evaporation datasets downloaded from NOAA 

CPC (Table 3.1) from 1979 to 2019 have been used as input. A plot between observed 

and simulated discharge data using this NOAA datasets in this trial is shown in Figure 

4.7. The coefficient of determination (R2) for the observed and simulated discharge for 

the calibration and the validation period are 0.48 and 0.40, respectively (Figure 4.7). The 

NSE for the calibration and the validation period are 0.37 and 0.06, respectively (Table 

4.1). The NOAA data driven model also underestimated the peaks for most of the years. 

The errors in the model output were large for the large flood events such as for the events 

of 1988 and 2004.  

 

 

Figure 4.7: Results from calibration and Validation with NOAA datasets (Trial 2) 
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4.6.3 Results from calibration and validation with merged datasets (trial 3) 

 

In this trial, average rainfall of NOAA, ERA5 and Habiganj (BWDB) has been used. For, 

temperature and evaporation ERA5 datasets (Table 3.1) have been used because 

temperature and evaporation from both NOAA and ERA5 datasets are close but ERA5 

has better resolution. A plot between observed and simulated discharge data from this 

trial is shown in Figure 4.8. The coefficient of determination (R2) for the observed and 

simulated discharge for the calibration and validation period are 0.67 and 0.63, 

respectively on daily time scale (Table 4.1). The Nash-Sutcliff coefficient (NSE) for the 

calibration and the validation period are 0.65 and 0.56 respectively (Table 4.1). The 

PBIAS for the calibration and the validation period are 1.30 and -14.35 respectively 

(Table 4.1). The model driven by the average data showed better performance than the 

model driven by the NOAA or ERA5 datasets. This model could simulate the peaks more 

accurately than the previous two trials for most of the years with some exceptions. 

However, the peak of 2004 could not be predicted accurately. The reason behind this can 

be the inability of the precipitation data sets (Appendix - Figure A 2) to capture the high 

rainfall of 2004.  

 

 
Figure 4.8:  Results from calibration and Validation with merged datasets (Trial 3) 

4.6.4 Comparison of the ERA5 and NOAA gridded datasets and merged dataset  

 

In each trial (Trial 1, 2 and 3), different parameter sets have been found from the Monte 

Carlo simulation. The optimal parameter set for each trial is presented in Appendix (Table 

A 4).  
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Table 4.1: Comparison of the ERA5 (trial 1), NOAA (trial 2) and merged dataset (trial 3) 

driven models’ output for the calibration and the validation periods  

Period 

Goodness 

of fitness 

functions 

Trials 

Trial 1 Trial 2 Trial 3 

ERA5 Evaluation NOAA Evaluation Merged Evaluation 

Calibration 

(1980-

2010) 

R2 0.51 Acceptable 0.48 
Not 

satisfactory 
0.67 Good 

NSE 0.38 
Not 

satisfactory 
0.37 

Not 

satisfactory 
0.65 Good 

PBIAS 5.23 Good -24.59 Acceptable 1.30 
Very 

Good 

Validation 

(2011-

2019) 

R2 0.44 
Not 

satisfactory 
0.40 

Not 

satisfactory 
0.63 Good 

NSE 0.08 
Not 

satisfactory 
0.06 

Not 

satisfactory 
0.56 Acceptable 

PBIAS -2.35 Very Good 26.54 
Not 

satisfactory 
-14.35 Good 

Whole 

Period 

(1980-

2019) 

R2 0.50 Acceptable 0.41 
Not 

satisfactory 
0.66 Good 

NSE 0.34 
Not 

satisfactory 
0.33 

Not 

satisfactory 
0.64 Acceptable 

PBIAS 3.02 Very Good -13.66 Good -2.38 
Very 

Good 

 

Table 4.1 shows a comparison among the models driven by different datasets. Table 4.1 

indicates that ERA5 shows better result than NOAA in both calibration and validation. 

But in the validation period (2011-2019), both ERA5 and NOAA show worse results than 

the calibration results. For this reason, another trial (trial 3) has been done using average 

rainfall (average of NOAA, ERA5 & Habiganj) which shows better results for all three 

periods (calibration, validation & whole period). Therefore, the model obtained from trial 

3 will be used to assess the impact of climate change on the Khowai river flow. The 

optimal parameter set of the final selected model has been shown in Appendix (Table A 

5).  
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Table 4.2: The results on monthly scale for final selected “merged dataset” used model 

Evaluation 

for 

Period 
R2 Remarks NSE Remarks PBIAS Remarks 

From To 

Whole data 

set 
1979 2019 0.77 

Very 

Good 
0.74 Good -2.38 

Very 

good 

Calibration 1980 2010 0.78 
Very 

Good 
0.75 Very Good 1.30 

Very 

good 

Validation 2011 2019 0.75 
Very 

Good 
0.67 Good -14.35 Good 

 

Rahman (2016) used the SWAT model to simulate the discharge of Shaistaganj station in 

which calibration period was 1990-2003 and validation period was 2004-2010. The 

SWAT model produces unsatisfactory results for the Shaistaganj station for both 

calibration (NSE = 0.43, PBIAS = -37.88%, R2 = 0.60) and validation (NSE = 0.05, 

PBIAS = 17.84%, R2 = 0.43) periods in case of mean monthly analysis (Rahman, 2016).  

So, it can be said that the HBV model results from calibration and validation is better than 

that of Rahman (2016).  

 

IWFM (2020) set-up a hydrologic model to forecast flash flood in the north-easter region 

of Bangladesh. They reported that due to insufficient observations of discharge, it was 

not possible to accurately calibrate and validate hydrologic (HEC-HMS) and hydraulic 

models (HEC-RAS). Lack of observations of rainfall in the upper catchment areas outside 

Bangladesh also made their research challenging. Because transboundary collaborations 

on sharing observed data from the rainfall stations inside India is very limited (IWFM, 

2020). Shaistaganj station was not analyzed in this research. However, the results were 

acceptable to good for the two other near-by rivers such as Korangi and Sutang which 

also belong to the Tripura basin like the Khowai river. The R2 were 0.75 and 0.71 for the 

calibration period and 0.68 to 0.52 for the validation period, respectively. 

 

4.7 Model Parameter Uncertainty Analysis 

 

In a hydrological modeling context, the optimized parameter set is obtained by running 

the hydrological model multiple times using different parameter sets, generated using, for 
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instance, Monte-Carlo procedures, Bayesian methods or evolutionary algorithms. The 

sensitivity of a parameter is obtained by plotting the values of model goodness against 

the different values of the parameter. For a well-defined parameter the goodness statistics 

decreases clearly as parameter values deviate from some optimal value. If, on the other 

hand, good simulations could be achieved using parameter values over a wide range, this 

parameter is not well-defined.  

HBV-light allows many model runs with randomly generated parameter sets using the 

“Monte Carlo Runs” tool. Optimum parameters and parameter uncertainty is estimated 

by allowing single or multiple (up to all) parameters to vary within the limit mentioned 

in the Table 3.4. After Monte Carlo Simulation, a Multi.txt file would be created in the 

Results folder. This file is opened in Excel and the parameter values corresponding to 

maximum Nash-Sutcliffe value (Reff) is selected as final parameter set (Appendix – 

Table A 5). If there are too many solutions / combinations to get the required objective 

function value, it may lead to the problem of equifinality and large uncertainty. While 

well-defined behavioral parameters lead to more certainty and confidence in the solution. 

While model calibration, two most sensitive parameters have been found – K2 (baseflow 

parameter from response routine variable) and MAXBAS (routing parameter). Varying 

K2 from 0.005 to 0.04, it has been noticed that NSE varies from 0.33 to 0.64 (Figure 4.9). 

Varying MAXBAS from 1 to 7, it has been noticed that NSE decreases from 0.64 to 0.58 

(Figure 4.10). 

 
Figure 4.9: Sensitivity analysis – K2 (from response routine) 
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Figure 4.10: Sensitivity analysis – MAXBAS (from routing routine) 

4.8 Bias Correction of The Future Climate Data Set 

 

4.8.1 Linear scaling method 

 

Climate model outputs often suffer from biases. To overcome these bias, future rainfall, 

temperature and evaporation data from CORDEX CANESM2 model were corrected for 

bias based on merged rainfall, ERA5 temperature and evaporation using the linear scaling 

(LS) bias correction method.  

The plot of bias corrected CORDEX rainfall and merged rainfall (average of ERA5, 

NOAA, Habiganj) is given in Figure 4.11. The plots of bias corrected CORDEX 

temperature and evaporation vs ERA5 temperature and evaporation are given in Figure 

4.12 and Figure 4.13, respectively. 

Table 4.3: Comparison of Linear Scaling and Quantile Mapping 

Variable 
RMSE before 

bias correction 

RMSE after bias correction 

Linear Scaling Quantile Mapping 

Precipitation 20.70 20.11 15.49 

Temperature 3.52 2.77 2.59 

Evaporation 1.43 1.45 1.11 
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Figure 4.11: Bias corrected CORDEX rainfall using linear scaling method 

 

 

Figure 4.12: Bias corrected CORDEX temperature using linear scaling method 

 

Figure 4.13: Bias corrected CORDEX evaporation using linear scaling method 
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Figure 4.11 to Figure 4.13 clearly show linear scaling method could not remove the bias 

efficiently and it either underestimated or over-estimated the observed data therefore, 

another bias correction method called quantile mapping has been employed. 

4.8.2 The quantile mapping method 

 

The results from the quantile mapping bias correction for the precipitation data is shown 

in Figure 4.14 and Figure 4.15. Figure 4.14 shows that the CDF of observed data and 

bias corrected data match very well. 

 

Figure 4.14: Cumulative distribution function for observed (merged precipitation), biased 

and bias corrected precipitation (mm/day) data 
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Figure 4.15: Comparison of observed (merged) precipitation with biased and bias 

corrected (Quantile Mapping) CANESM precipitation for the historic period 

The results from the quantile mapping bias correction for the temperature data is shown 

in Figure 4.16 and Figure 4.17. Figure 4.16 shows that the CDF of observed data and bias 

corrected temperature data match very well. 
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Figure 4.16: Cumulative distribution function for observed (ERA5), biased and bias 

corrected temperature (0C) 

 

Figure 4.17: Comparison of observed (merged) temperature with biased and bias 

corrected (Quantile Mapping) CANESM temperature for the historic period 
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The results from the quantile mapping bias correction for the evaporation data is shown 

in Figure 4.18 and Figure 4.19. Figure 4.18 shows that the CDF of bias corrected 

evaporation data follows the CDF of observed data very closely. 

 

Figure 4.18: Cumulative distribution function for observed (ERA5), biased and bias 

corrected evaporation (mm/day) data 



70 
 

 

Figure 4.19: Comparison of observed (merged) evaporation with biased and bias 

corrected (Quantile Mapping) CANESM evaporation for the historic period 

As quantile mapping could correct the bias more efficiently (Table 4.3) with respect to 

the merged rainfall, ERA5 temperature and evaporation, this approach will be used to 

correct the future climate dataset. Later the corrected datasets will be used to simulate the 

future flow using the calibrated HBV model. 

 

4.9 Climate Change Impact Assessment 

 

4.9.1 Change in precipitation, temperature and evaporation due to climate 

change 

 

Bias-corrected precipitation time series of 1980 to 2099 (Figure 4.20) shows an increasing 

trend. In the base period (1980-2019), the peak does not exceed 300 mm/day once, but in 

future period (2020-2099), the peak crosses 350 mm/day 8 times. So, the precipitation 

intensity shows an upward trend.  
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Figure 4.20: Precipitation time series (1980 – 2099) 

 

Figure 4.21: Monthly variation of observed and projected precipitation over different 

time periods. 

Increase in mean precipitation from baseline have been found to be 7.69, 15.86 and 

21.05 percent for 2020-2040, 2041-2070 and 2071-2099, respectively. The maximum 

daily precipitation for periods 1980-2019, 2020-2040, 2041-2070 and 2071-2099 are 

270, 325.22, 379.17 and 356.29 mm/day respectively. 

The trend in temperature rises from 1980 to 2099 has been shown in Figure 4.22. From 

this figure, it can be said that the mean temperature increases from 1980 to 2099 by almost 

30C. 
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Figure 4.22: Temperature time series (1980-2099) 

 

Figure 4.23:  Boxplots of observed and projected temperature for different time periods 

 

 

 

 



73 
 

Table 4.4: Temperature (daily) change analysis 

Temperature 

(0C) 

1980 - 

2019 

2020 - 

2040 

2041 – 

2070 

2071 – 

2099 

Whole future 

period (2020 - 

2099) 

Minimum 6.08 8.73 6.63 8.41 6.63 

Median 23.95 24.15 25.77 26.97 25.89 

Maximum 34.78 34.80 35.65 36.30 36.30 

Mean 23.10 23.92 24.56 25.51 24.74 

Mean change  0.82 1.46 2.41 1.64 

Change (%) 

from the 

baseline period 

 3.55 6.11 9.80 6.42 

Upper whisker 34.78 34.80 35.65 36.30 36.30 

Lower whisker 8.12 8.73 6.63 8.41 6.63 

skewness Negative Negative Negative Negative Negative 

 

From Table 4.4, increase of mean temperature from baseline (1980-2019) for 2020-2040, 

2041-2070 and 2071-2099 have been found to be 0.82, 1.46 and 2.41 degree Celsius, 

respectively and 3.55%, 6.11% and 9.80% respectively. 

 

Figure 4.24: Boxplots of observed and projected evaporation for different time periods 
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 Table 4.5: Evaporation (daily) change analysis 

Evaporation 

(mm/day) 

baseline observed 

(1980 - 2019) 
2020 - 2040 2041 - 2070 2071 - 2099 

Minimum 0.354 0.159 0.240 0.200 

Median 3.089 3.124 3.108 3.138 

Maximum 6.376 7.649 7.888 8.567 

Mean 3.165 3.187 3.221 3.250 

Mean change   0.022 0.056 0.084 

Change (%) from 

the baseline period 
  0.695 1.755 2.662 

Upper whisker 6.571 7.484 7.290 7.470 

Lower whisker 0.354 0.159 0.240 0.200 

skewness positive positive positive positive 

Increase of mean evaporation from baseline for 2020-2040, 2041-2070 and 2071-2099 

have been found to be 0.022, 0.056 and 0.084 mm/day respectively. Evaporation is 

projected to increase by 0.695%, 1.755%, 2.662% in 2020-2040, 2041-2070 and 2071-

2099, respectively. The median value is also projected to increase. 

Month wise mean daily AET and PET plots are given in Figure 4.25 and Figure 4.26 

respectively. From the plots, it can be mentioned that monthly PET will not increase much 

in future for the monsoon and post-monsoon months. But in 2071-2099, although the 

rainfall increases from the base period (1980-2019), the actual evaporation decreases in 

the pre-monsoon to monsoon and increases in the post-monsoon period and dry period.  
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Figure 4.25: Monthly variation of observed and projected actual evapotranspiration 

(AET) for different time periods. 

 

Figure 4.26: Monthly variation of observed and projected potential evapotranspiration 

(PET) 
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Changes of evapotranspiration in response to climate change have been widely studied at 

regional and continental scales. Climate factors affecting evapotranspiration include three 

independent factors: Demand, supply, and energy. Demand depends on air temperature 

and wind speed, while supply and energy are determined by precipitation and solar 

radiation, respectively (Xiuliang and Bai, 2018). Murray et al. (2012) in their study, used 

a dynamic global vegetation model, showed that a warmer environment decreases 

vegetation coverage and transpiration due to water stress in the soil system which reduces 

overall actual ET. Kirschbaum and McMillan (2018) reported reductions in daily 

transpiration rates over the twenty-first century that became stronger under higher 

atmospheric CO2 concentrations. They found that the effect of CO2-induced reduction of 

stomatal conductance would have a stronger transpiration-depressing effect than the 

stimulatory effect of future warming (Kirschbaum, M.U.F. and McMillan, A.M.S., 2018). 

Alfi et al. (2014), in their research shows that in the recent decades, the average 

evapotranspiration in Bangladesh has reduced from January to April. However, from July 

to December, ET shows slight increase in recent decades. Spatial Analysis has revealed 

that ET0 has reduced more in the western part than in the eastern part of the country. The 

south eastern region of Bangladesh shows a notable decrease of ET0 (Alfi et al., 2014). 

In this study we also noticed decrease in AET in some months. As for example, it is 

noticed that in 2071-2099, the actual evaporation decreases in the pre-monsoon to 

monsoon and increases in the post-monsoon period and dry period.  

 

4.9.2 Future flow simulation 

 

The calibrated and validated model obtained from Trial 3 has been used to simulate the 

discharge of Shaistaganj station for 2020 to 2099 using the bias corrected CANESM 

climate data as input. The simulated discharge hydrograph from 2020 to 2099 is shown 

in Figure 4.27. 
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Figure 4.27: Simulated discharge hydrograph from 2020 to 2099 for Shaistaganj Station 

of BWDB 

The highest discharge value in the simulated period from 2020 to 2099, is 273.96 m3/sec 

will occur on 19/07/2075 (as per model simulation). From the above figure, it can be 

mentioned that the daily discharge at Shaistaganj station will cross 250 m3/sec three times 

from 2020 to 2099. 

4.9.3 Analysis of future change of flow  

 

The change of flow has been analyzed in three different future periods (2020 – 2040, 

2041-2070, 2071-2099). The boxplots showing month-wise mean daily flow for four 

different periods (base line 1980-2019, 2020-2040, 2041-2070 and 2071-2099) have been 

given in from Figure 4.28 to Figure 4.39. The overall change of daily flow analysis for a 

period from 1980 to 2099 has been given in Table 4.6. Month wise mean daily discharge 

hydrograph for different periods is shown in Figure 4.40. 

From Figure 4.28 to Figure 4.30 for January, February and March it can be seen that both 

highest and lowest flow is decreasing in the future periods with respect to the base period 

(1980-2019). From April to December (Figure 4.31 to Figure 4.39), the highest flow 

increases for all the future periods compared to the base period. For August to December 

(Figure 4.35 to Figure 4.39), the lowest flow decreases for all the future periods compared 

to the base period.    
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Figure 4.28: Boxplot of month-wise mean daily flow for January 

 

Figure 4.29: Boxplot of month-wise mean daily flow for February 

 

Figure 4.30: Boxplot of month-wise mean daily flow for March 
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Figure 4.31: Boxplot of month-wise mean daily flow for April 

 

Figure 4.32: Boxplot of month-wise mean daily flow for May 

 

Figure 4.33: Boxplot of month-wise mean daily flow for June 
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Figure 4.34: Boxplot of month-wise mean daily flow for July 

 

Figure 4.35: Boxplot of month-wise mean daily flow for August 

 

Figure 4.36: Boxplot of month-wise mean daily flow for September 
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Figure 4.37: Boxplot of month-wise mean daily flow for October 

 

Figure 4.38: Boxplot of month-wise mean daily flow for November 

 

Figure 4.39: Boxplot of month-wise mean daily flow for December 
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Table 4.6: Statistics from daily flow analysis from 1980 to 2099  

Month 

Mean Flow % Change with respect to 1980-2019 

1980-

2019 

2020-

2040 

2041-

2070 

2071-

2099 

2020-

2040 
2041-2070 2071-2099 

Jan 13.84 9.31 9.40 10.56 -32.76 -32.10 -23.69 

Feb 12.12 4.78 4.90 5.19 -60.59 -59.55 -57.16 

Mar 12.90 7.49 7.45 6.64 -41.89 -42.24 -48.51 

Apr 18.94 24.85 25.04 28.06 31.23 32.24 48.19 

May 46.14 49.10 47.63 53.18 6.42 3.23 15.25 

Jun 57.83 67.16 60.64 61.67 16.15 4.86 6.64 

Jul 57.44 73.67 78.26 85.72 28.25 36.25 49.25 

Aug 53.77 68.15 76.23 80.36 26.74 41.76 49.44 

Sep 54.50 59.66 56.53 69.95 9.48 3.73 28.36 

Oct 44.72 59.09 64.29 70.83 32.12 43.75 58.37 

Nov 27.63 39.62 41.33 46.31 43.39 49.60 67.62 

Dec 18.28 20.33 20.62 23.57 11.20 12.80 28.92 

 

 

Figure 4.40: Month wise mean daily discharge (m3/sec) 
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From the boxplots Figure 4.28 to 4.39, the median value is projected to decrease in the 

months from January to March but the median value is projected to increase from the 

months of April to December in future periods compared to baseline. From Table 4.6 and 

Figure 4.40, it can be observed that, from 1980-2019 (base period) to the future periods 

2020-2040, 2041-2070, 2071-2099 the low flow is decreasing and the high flow is 

increasing. So, the dry period will become drier causing water scarcity and in contrast, 

increasing high flow will increase the flood risk in monsoon and post monsoon periods.  

4.9.4 Flow duration curve 

 

Flow duration curve for different periods such as observed period (1980 to 2019) and, 

three simulated period of 2020 -2040, 2041-2070, 2071-2099 for the Khowai catchment 

have been plotted and shown in Figure 4.41.  

From Figure 4.41, it can be mentioned that at 0.1% of time, discharge equaled or exceeded 

are 190, 202.3, 240.4 and 242.1 m3/sec for 1980-2019, 2020-2040, 2041-2070 and 2071-

2099, respectively. At 1%-time, discharge equaled or exceeded are 117, 163, 184 and 192 

m3/sec for 1980-2019, 2020-2040, 2041-2070 and 2071-2099, respectively. At 10%-time, 

discharge equaled or exceeded are 70, 94.3, 97.2 and 102.9 m3/sec for 1980-2019, 2020-

2040, 2041-2070 and 2071-2099, respectively. 

 

Figure 4.41: Flow duration curve 
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4.9.5 Frequency analysis 

 

In order to perform frequency analysis, year wise maximum discharge from 1979-2019, 

2020-2040, 2041-2070 and 2071-2099 have been computed first. The year wise 

maximum discharge data (Appendix- Table A 6) have been put into “EasyFit” software. 

It is a data analyzing program used for statistical purposes. “EasyFit” allows to 

automatically fit a large number of distributions to the dataset and select the best model 

in seconds (Easyfit, 2021). 

From the Easyfit software, discharge (m3/sec) according to the exceedance probability 

have been calculated. For extreme value analysis, the Generalized Extreme Value (GEV) 

Distribution fitted better than the other distributions. 

Table 4.7: Discharge according to exceedance probability and return period calculated 

using Easyfit and Microsoft Excel 

Return 

Period (T) 

Discharge (m3/sec) 
% of change with respect to 

1980-2010 

1980-

2010 

2020-

2040 

2040-

2070 

2071-

2099 

2020-

2040 

2040-

2070 

2071-

2099 

2 107 124.56 123.7 135.49 16.41 15.61 26.63 

5 144.28 171.89 176.77 193.15 19.14 22.52 33.87 

10 168.53 200.2 209.99 232.47 18.79 24.60 37.94 

25 198.9 232.88 249.88 283.27 17.08 25.63 42.42 

50 221.37 255.07 278.05 321.85 15.22 25.60 45.39 

100 243.74 275.49 304.86 361.02 13.03 25.08 48.12 

 

4.10 Effect of Chakmaghat Barrage 
 

Chakmaghat Barrage is situated in the upstream at Teliamura, West Tripura District, 

India. It is 96 m long across the river Khowai. Date of completion of the project is 31 

March 2015. This barrage was mainly constructed to irrigate nearby lands in the dry 

season (Department of economic affairs India, 2019).  
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Figure 4.42: Chakmaghat Barrage (https://khowai.nic.in/bn/gallery and Google Earth) 

As the Chakmaghat barrage is constructed to irrigate nearby agricultural areas in the dry 

season, the effect of the barrage on the dry season flow before and after 2015 is mainly 

analyzed in this section. For this analysis, October to April data (discharge) data have 

been used. 

 

Boxplot showing the effect of Chakmaghat barrage on the flow of Shaistaganj station is 

presented in Figure 4.43. As the barrage tends to capture water upstream of barrage, the 

water level at Shaistaganj was supposed to decrease because of the barrage operation. But 

it is not noticed in discharge yet (Figure 4.43). 

 

 
Figure 4.43: Boxplot showing the effect of Chakmaghat barrage on Khowai river, 

Shaistaganj station discharge (considering discharge for the dry season only – October to 

April) 

https://khowai.nic.in/bn/gallery
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Although the effect of the barrage is not still quite noticed in the low season flow of 

Shaistaganj, however in future it may affect the flow. Therefore, three different flow 

diversion scenarios, following a past study (Khan, 2018), have been analyzed here. Each 

scenario considers that a portion of upstream flow will be diverted upstream of 

Chakmaghat barrage and change the water availability for the Bangladesh portion of 

Khowai river. The changes in mean monthly flow for 2020-2040 at Shaistaganj station 

for different flow diversion scenarios is shown in Table 4.8. 

 

Table 4.8: Mean monthly flow of the Khowai river at Shaistaganj due to different flow 

diversion scenarios for 2020-2040 

Month 

Mean daily flow at Shaistaganj (cumec) 

Without 

Barrage 

Flow after following flow diversion 

10% 20% 30% 40% 

January 9.31 8.38 7.45 6.52 5.59 

February 4.78 4.30 3.82 3.35 2.87 

March 7.49 6.74 5.99 5.24 4.49 

April 24.85 22.37 19.88 17.40 14.91 

October 59.09 53.18 47.27 41.36 35.45 

November 39.62 35.66 31.70 27.73 23.77 

December 20.33 18.30 16.26 14.23 12.20 

 

Since the flow diversion activates only during lean season (October-April), the monsoon 

flow for all the diversion scenarios remains same. Flow of February will decrease the 

most. This amount of water diversion is bound to make a serious impact on the 

Bangladesh side. The lowest water availability will be during the month of January, 

February and March. The flow scenario for 2041-2070 (Table A 7, Figure A 5) and 2071-

2099 (Table A 8, Figure A 6) are shown in appendix. 
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Figure 4.44: Hypothetical lean season flow at Shaistaganj for different flow diversion 

scenarios considering the flow period 2020-2040  

4.11 Discussion and Comparison with Past Studies 
 

The impacts of anthropogenic climate change on the water cycle are already apparent. 

These impacts include changes in annual river streamflow, shifts in both flood peak 

magnitude and timing, alterations in flow duration curves, and changes in magnitude of 

low-flow periods. The continued increase of global temperatures will lead to further 

changes in regional hydrology within the next decades through shifts in precipitation 

trends, melting of glaciers and permafrost, and a growing rain-to-snow ratio in cold 

regions. In addition, changes in natural vegetation cover, land use practices, crop water 

requirements, prolonged growing seasons, and soil functions may further alter the 

hydrological cycle. Extreme events such as river flooding pose a potential threat to human 

societies and are likely to occur more often. Given that these changes directly affect 

agriculture, forestry, energy production, drinking water supply, sanitation, and 

ecosystems, there are likely to be substantial consequences for societies in many regions 

around the world. Reliable information on potential changes to future hydrological 

conditions is fundamental for deciding on long-term management strategies and 

adaptation measures (Hakala et al., 2019). 

The climate change impact assessment summary determined from this research presented 

in the following Table 4.9. 
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Table 4.9: Summary of climate change impact assessment from base period (1980-2019) 

SL Parameter 

Base 

period 
Change of mean observed future periods 

1980 - 

2019 

2020 -2040 
2041 - 

2070 

2071 - 

2099 
Remarks 

1 Precipitation 7.69% 15.86% 21.05% Increase 

2 Temperature 0.82 0C 1.46 0C 2.41 0C Increase 

3 Evaporation 0.695% 1.755% 2.662% Increase 

4 
Actual 

Evapotranspiration 

-0.39 

mm/day 

-0.54 

mm/day 

-0.56 

mm/day 
Decrease 

5 
Annual mean 

Discharge  
15.70% 17.985% 29.874% Increase 

 

According to (World Bank Climate Change Knowledge Portal, 2021), Mean temperatures 

across Bangladesh are projected to increase between 1.4°C and 2.4°C by 2050 and 2100, 

respectively. This warming is expected to be more pronounced in the winter months 

(December-February). In this study, temperature is projected to rise by 2.410C by the end 

of the century which is similar to World Bank Climate Change Knowledge Portal, 2021. 

Narzis (2020) has reported that the maximum temperature will increase by 4.540C in the 

2080s under RCP 8.5 from the base period 1970-1999. The difference in the temperature 

change findings, between this research and Narzis (2020), might be due to choosing 

different bias correction method and different baseline period. Narzis (2020) had used 

linear scale bias correction method for correcting future climate datasets whereas, in this 

research quantile‐based mapping method has been used for bias correction of the 

CANESM climate datasets. Rahman (2016) has shown that the magnitude of the 

temperature changes ranges from 1.68–2.72 °C for 2061–2080 with respect to the base 

period (1980-2000) for the upper Meghna basin based on Quantile Mapping (QM) bias 

correction method. Findings of Rahman (2016) is similar to the finding of this study. 

 

In this study, it has been found that the precipitation will increase by 21.05% for the 

period of 2071-2099 from the base period. Narzis (2020) reported an increase in 

precipitation about 26.16% during the 2080s compared to the baseline (1970-1999) 
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Rahman (2016), modelled the climate change impacts on the water regimes of the river-

wetland systems in the data-scarce transboundary Upper Meghna River Basin 

(Bangladesh and India) and has shown that precipitation will increase by 20-30% in the 

future (2061-2080) with respect to the base period (1981-2000) for the Tripura region 

where most of the Khowai basin is located. The precipitation change obtained in this 

study is in line with the findings of these research ((Rahman, 2016) and (Narzis, 2020)). 

 

Murray et al. (2012) used a dynamic global vegetation model and showed that a warmer 

environment decreases vegetation coverage and transpiration due to water stress in the 

soil system which reduces overall actual ET. Alfi et al. (2014) shows that in the recent 

decades, the average evapotranspiration in Bangladesh has reduced in January to April. 

However, from July to December, ET shows slight increase in the recent decades. The 

south-eastern region of Bangladesh shows a notable decrease of evapotranspiration (Alfi 

et al., 2014). In this study we also noticed decrease in AET in some months. As for 

example, it has been observed that during 2071-2099, the actual evaporation decreases in 

the pre-monsoon to monsoon and increases in the post-monsoon period and dry period. 

 

In this research, the discharge of Shaistaganj station is projected to increase by 15.70%, 

17.985% and 29.874% during 2020-2040, 2041-2070 and 2071-2099, respectively, with 

respect to the base period (1980-2019). Rahman (2016) reported similar findings. He 

found that during 2061-2080 discharge will increase by 29% for Tripura region (Rahman, 

2016) based on SWAT model output.  
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5 CONCLUSION AND RECOMMENDATIONS 
 

5.1 Conclusion 

 

Khowai is a transboundary river that plays an important role in the fields of irrigation, 

transportation and flood events of the north-eastern region of Bangladesh. It also 

contributes to the flash flood hazard in this region damaging agricultural products of large 

areas. Anticipated climate change may exacerbate the current situation as climate change 

will have a profound impact on the availability and variability of fresh water throughout 

the world due to the increased frequency of climatic extremes such as drought and change 

in rainfall pattern in response to global warming. Hence assessing the impact of climate 

change on the streamflow of the Khowai river basin is very important for sustainable 

water resources management and flood prediction in this region.  

The hydrologic modeling of Khowai river produced inconclusive results in the past due 

to the lack of observations of rainfall in the upper catchment areas outside Bangladesh 

and complex hydrological response of the basin. In this study, HBV Hydrologic model 

has been chosen because of its flexibility, computational efficiency for data scarce regions 

like Khowai basin, proven effectiveness under a wide range of climatic and physiographic 

conditions and successful application in many previous studies.  

In this study the suitability of two gridded datasets has been assessed for flow modeling 

in the Khowai basin. To test the datasets, a few calibrations trials have been made. Each 

model has been calibrated for 1980 to 2010 and validated for 2011 to 2019. In terms of 

Nash-Sutcliffe Efficiency (NSE) (0.336 and 0.331 for ERA5 and NOAA, respectively) 

and coefficient of determination (0.502 and 0.399 for ERA5 and NOAA, respectively), 

ERA5 data driven model shows better result than NOAA data driven model in both 

calibration and validation. But in the validation period (2011-2019), both ERA5 and 

NOAA show worse results than the calibration results. For this reason, another trial has 

been done using average rainfall (average of the global gridded products (NOAA, ERA5) 

and measured precipitation of Habiganj station) which shows better results for both 

calibration and validation. For the calibration and validation period R2 has been found to 

be 0.67 and 0.63 and NSE has been found to be 0.65 and 0.56, respectively. On monthly 
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scale, R2 have been found to be 0.78 and 0.75 while NSE have been found to be 0.75 and 

0.67 for the calibration and validation period, respectively. 

Future precipitation, temperature and evaporation from the CANESM2 climate model 

under RCP8.5 scenario has been used to simulate future flow. The datasets have been bias 

corrected using the quantile-mapping bias correction method. The quantile mapping 

method could remove the bias more efficiently than the Linear scaling method. Bias 

corrected precipitation has been projected to increase by 7.69, 15.86 and 21.05%, 

respectively in 2020-2040, 2041-2070 and 2071-2099 from the baseline period (1980-

2019) whereas temperature is expected to increase by 0.82, 1.46 and 2.41oC, respectively. 

Evaporation is projected to increase in all future periods while actual evapotranspiration 

is projected to decrease as warmer environment may reduce daily transpiration rates as 

reported in past studies (Kirschbaum and McMillan, 2018) 

The future (2020 to 2099) flow of the Khowai basin has been simulated by the calibrated 

and validated model driven using bias corrected future meteorological datasets as input. 

Analysis of monthly flow data indicates that wet months will be further wetter while some 

dry months such as January, February and March will be drier. Flow may decrease up to 

61% (February, 2020) while wet season flow may increase up to 50% (in July-August of 

2070). Flow duration curve also indicates that at 1%-time, discharge may equal or exceed 

117, 163, 184 and 192 m3/sec during the base period (1980-2019), 2020-2040, 2041-2070 

and 2071-2099, respectively while at 10%-time, discharge may equal or exceed 70, 94.3, 

97.2 and 102.9 m3/sec during 1980-2019, 2020-2040, 2041-2070 and 2071-2099, 

respectively. Frequency analysis shows that discharge corresponding to 100-year return 

period may increase by 13, 25 and 48% during 2020, 2050 and 2080s, respectively from 

1980-2010. 

The impact of Chakmaghat barrage at the upstream has been analyzed by considering 

different flow diversion scenarios which will consider flow diversion from 10% to up to 

30%. Results show that flow of February will decrease the most after considering 

diversion. The lowest water availability will be during the month of January, February 

and March. 

This study may play a vital role in assessing the future flow of the Khowai river basin for 

the proper planning and water resources management in this basin. Furthermore, as 

Khowai river is a transboundary river, the results of this study can also be used for the 
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development of an effective water sharing policy which will ensure that both countries 

(India and Bangladesh) can get enough water for the purpose of agriculture, livelihood, 

economic growth, and maintenance of ecology and biodiversity in this region in the 

coming decades. 

 

5.2 Recommendation 

 

The researcher has a few recommendations that may be considered for further study in 

the future. 

• The rainfall data used to calibrate and validate the model in this study has been 

collected from the fifth generation of ECMWF (European Centre for Medium-

Range Weather Forecast) atmospheric reanalysis data sets, NOAA climate 

prediction center and Habiganj BWDB station. As no measured rainfall data is 

available for this catchment, it was not possible to check the accuracy of the 

ECMWF ERA5 dataset and NOAA dataset. So, the average of all three datasets 

have been used in the model. Future studies should therefore assess the potential 

of other reanalysis or satellite measure dataset in obtaining more accurate runoff. 

Also, rainfall data from the upstream Indian catchment should be collected. 

• To understand the wide range of uncertainty of the projected precipitation and 

temperature, future climate data from multiple RCM models and different 

projection scenarios can be considered in the future.  

• Further studies also may assess the impact of changes in land cover in addition to 

the climate change scenario. 

• Future study may assess the capability of this model in flash flood forecasting 

using weather forecast data. 

• Quantile mapping method could not remove the bias in precipitation completely. 

Future study should test other bias correction methods in this regard. 
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Table A 1: Rating curve equations analyzing 40 years WL & Q data of Shaistaganj station 

of BWDB 

SL Month Rating curve equations 

Coefficient of 

determination (R2) 

determined from 

observed and rating 

curve equation data 

1 January y = 17.761x2 - 313.61x + 1393.8 0.419 

2 February y = 17.818x2 - 314.04x + 1391.9 0.412 

3 March y = 17.445x2 - 310.31x + 1389.3 0.5786 

4 April y = 7.7536x2 - 135.92x + 609.87 0.4227 

5 May y = 10.942x2 - 191.79x + 862.79 0.5746 

6 June y = 2.252x2 - 21.03x + 34.372 0.616 

7 July y = 6.6655x2 - 109.01x + 469.78 0.6736 

8 August y = 9.7776x2 - 177.17x + 839.96 0.5064 

9 September y = 10.25x2 - 181.2x + 832.73 0.5808 

10 October y = 12.063x2 - 214.88x + 984.79 0.4877 

11 November y = 17.746x2 - 320.34x + 1463.4 0.4461 

12 December y = 16.963x2 - 300.19x + 1340.6 0.3115 

 

In the equations, x = Water Level and y = Discharge 
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Table A 2: Zone Distribution (elevation wise)  

SL Elevation Zone Range (MSL) Mean Elevation Area (sq km) 

1 Zone 1 9.33 - 33.43 21.38 137.86 

2 Zone 2 33.44 - 53.82 43.63 219.60 

3 Zone 3 53.83 - 74.21 64.02 224.51 

4 Zone 4 74.22 - 96.45 85.335 151.77 

5 Zone 5 96.46 - 118.7 107.58 180.37 

6 Zone 6 118.8 - 139.1 128.95 177.30 

7 Zone 7 139.2 - 159.5 149.35 99.37 

8 Zone 8 159.6 - 179.9 169.75 52.45 

9 Zone 9 180 - 202.1 191.05 29.71 

10 Zone 10 202.2 - 226.2 214.2 19.25 

11 Zone 11 226.3 - 250.3 238.3 10.62 

12 Zone 12 250.4 - 274.4 262.4 9.14 

13 Zone 13 274.5 - 298.5 286.5 5.41 

14 Zone 14 298.6 - 322.6 310.6 3.42 

15 Zone 15 322.7 - 348.5 335.6 2.04 

16 Zone 16 348.6 - 374.5 361.55 1.00 

17 Zone 17 374.6 - 396.7 385.65 0.77 

18 Zone 18 396.8 - 420.8 408.8 0.34 

19 Zone 19 420.9 - 446.8 433.85 0.27 

20 Zone 20 446.9 - 482 464.45 0.21 

Total area (sq. km) 1325.41 
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Table A 3: Elevation wise distribution of the land use area 

Land Use Elevation Zone Area (sq. km) Total Area 
Ratio with respect to 

total area 

Forest 

Zone 1 16.52 

1070.36 

0.012 

Zone 2 124.78 0.094 

Zone 3 191.60 0.145 

Zone 4 148.84 0.112 

Zone 5 179.82 0.136 

Zone 6 176.48 0.133 

Zone 7 98.89 0.075 

Zone 8 52.19 0.039 

Zone 9 29.44 0.022 

Zone 10 19.09 0.014 

Zone 11 10.56 0.008 

Zone 12 9.06 0.007 

Zone 13 5.34 0.004 

Zone 14 3.35 0.003 

Zone 15 1.96 0.001 

Zone 16 0.97 0.001 

Zone 17 0.70 0.001 

Zone 18 0.31 0.000 

Zone 19 0.24 0.000 

Zone 20 0.20 0.000 

Crop Area 

Zone 1 121.53 

240.49 

0.092 

Zone 2 86.84 0.066 

Zone 3 29.20 0.022 

Zone 4 2.63 0.002 

Zone 5 0.19 0.000 

Zone 6 0.07 0.000 

Zone 7 0.00 0.000 

Zone 8 0.02 0.000 

Zone 9 0.00 0.000 

Zone 10 0.00 0.000 
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Land Use Elevation Zone Area (sq. km) Total Area 
Ratio with respect to 

total area 

Zone 11 0.00 0.000 

Zone 12 0.00 0.000 

Zone 13 0.00 0.000 

Zone 14 0.00 0.000 

Zone 15 0.00 0.000 

Zone 16 0.01 0.000 

Zone 17 0.00 0.000 

Zone 18 0.00 0.000 

Zone 19 0.00 0.000 

Zone 20 0.00 0.000 

Building 

Area 

Zone 1 3.33 

14.56 

0.003 

Zone 2 7.70 0.006 

Zone 3 3.46 0.003 

Zone 4 0.03 0.000 

Zone 5 0.03 0.000 

Zone 6 0.01 0.000 

Zone 7 0.00 0.000 

Zone 8 0.00 0.000 

Zone 9 0.00 0.000 

Zone 10 0.00 0.000 

Zone 11 0.00 0.000 

Zone 12 0.00 0.000 

Zone 13 0.00 0.000 

Zone 14 0.00 0.000 

Zone 15 0.00 0.000 

Zone 16 0.00 0.000 

Zone 17 0.00 0.000 

Zone 18 0.00 0.000 

Zone 19 0.00 0.000 

Zone 20 0.00 0.000 

Total 1325.41 1325.41 1.000 
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Table A 4: Different optimal parameter sets used for three different trials using Monte 

Carlo run tools 

Parameter Trial 1 Trial 2 Trial 3 

PERC 9.91 0.79 3.28 

UZL 94.06 4.38 70 

K0 0.17 0.05 0.05 

K1 0.12 0.02 0.06 

K2 0.07 0.1 0.02 

MAXBAS 3.02 5.17 1 

PCALT 10.62 10.29 10.41 

TCALT 0.81 0.89 0.79 

Pelev 343.27 381.31 477 

Telev 150.96 307.54 30 

TT_1 -0.92 -0.39 -0.26 

CFMAX_1 6.63 7.79 9 

SP_1 0.53 0.89 1 

SFCF_1 0.72 0.73 0.6 

CFR_1 0.1 0.02 0.1 

CWH_1 0.07 0.15 0.1 

LP_1 0.61 0.97 0.6 

BETA_1 2.95 4.01 2.5 

TT_2 -0.13 -0.66 -0.85 

CFMAX_2 4.83 1.01 9 

SP_2 0.92 0.98 1 

SFCF_2 0.88 0.67 0.6 

CFR_2 0.02 0.01 0.1 

CWH_2 0.03 0.19 0.1 

LP_2 0.97 0.44 0.6 

BETA_2 5.88 3.94 2 

TT_3 -0.38 -0.42 -0.55 

CFMAX_3 5.02 7.01 9 

SP_3 0.62 0.81 1 
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Parameter Trial 1 Trial 2 Trial 3 

SFCF_3 0.52 0.8 0.6 

CFR_3 0.01 0.08 0.1 

CWH_3 0.13 0.04 0.1 

LP_3 0.31 0.64 0.6 

BETA_3 6.58 3.24 2 
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Table A 5: Optimal parameter set for both calibration and validation of the final selected 

model 

Optimized Value of Different Parameter 

Snow Routine 

TT Threshold temperature when 

precipitation is simulated as snowfall 

(Threshold temperature for snowfall) 

°C -0.26, -

0.85, -0.55 

CFMAX Melt rate of the snowpack (degree day 

factor) 

mm/Δt °C 

[mm 0C-1 d-1] 

9 

SP current snow storage - 1 

SFCF Snowfall gauge under catch correction 

factor  

- 0.6 

CFR Refreezing coefficient - 0.1 

CWH Water holding capacity of snow - 0.1 

Soil Moisture Routine 

LP Soil moisture value above which actual 

evaporation reaches potential 

evaporation (Wilting Point) 

- 0.6 

BETA Shape coefficient of recharge function 

(Parameter Relating Runoff and 

Infiltration 

- 2.5, 2, 2 

Response Routine 

PERC Maximum percolation to lower zone 

(Percolation) 

mm/Δt 

[mm d-1] 

3.28 

UZL Threshold parameter for extra outflow 

from upper zone (Upper Zone Limit; 

Current Storage in the Upper Zone) 

mm 70 

K0 Additional recession coefficient of 

upper groundwater store 

1/Δt 

[d-1] 

0.0503 

K1 Recession coefficient of upper 

groundwater store 

1/Δt 

[d-1] 

0.0649 
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K2 Recession coefficient of lower 

groundwater store 

1/Δt 

[d-1] 

0.019 

Routing Routine 

MAXBAS Length of equilateral triangular 

weighting function (Lag Parameter) 

Δt 

[d] 

1 
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Table A 6: Year wise maximum discharge data 

SL Date 
Maximum observed discharge 

(m3/sec) 

1 24/07/1979 93.70 

2 25/07/1980 93.70 

3 06/08/1981 65.97 

4 16/09/1982 68.18 

5 09/08/1983 77.97 

6 23/09/1984 106.17 

7 15/08/1985 78.07 

8 04/09/1986 134.32 

9 02/10/1987 55.09 

10 07/07/1988 186.27 

11 12/10/1989 107.13 

12 11/10/1990 96.97 

13 23/05/1991 223.38 

14 16/07/1992 57.63 

15 23/09/1993 107.24 

16 06/10/1994 67.54 

17 18/05/1995 134.85 

18 26/06/1996 105.31 

19 19/08/1997 94.22 

20 27/05/1998 90.00 

21 20/09/1999 97.41 

22 27/09/2000 156.12 

23 05/10/2001 126.11 

24 11/09/2002 104.50 

25 03/07/2003 118.53 

26 01/07/2004 271.35 

27 26/05/2005 119.76 

28 14/06/2006 145.72 

29 17/06/2007 140.54 

30 09/10/2008 97.80 
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SL Date 
Maximum observed discharge 

(m3/sec) 

31 02/07/2009 118.82 

32 22/09/2010 121.78 

33 18/08/2011 126.43 

34 27/06/2012 81.03 

35 11/05/2013 82.34 

36 24/09/2014 89.53 

37 19/08/2015 159.18 

38 22/09/2016 66.63 

39 20/10/2017 106.02 

40 14/06/2018 120.49 

41 13/07/2019 103.09 

42 9/9/2020 73.75 

43 7/18/2021 143.66 

44 7/3/2022 93.64 

45 7/27/2023 153.39 

46 10/7/2024 96.65 

47 10/26/2025 76.25 

48 9/1/2026 117.49 

49 11/1/2027 129.52 

50 9/21/2028 175.61 

51 5/26/2029 112.01 

52 5/5/2030 110.88 

53 7/16/2031 83.07 

54 6/16/2032 71.03 

55 8/10/2033 200.84 

56 7/22/2034 182.92 

57 6/16/2035 209.78 

58 6/25/2036 113.58 

59 10/28/2037 215.05 

60 5/9/2038 51.34 

61 7/19/2039 124.34 
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SL Date 
Maximum observed discharge 

(m3/sec) 

62 6/8/2040 198.31 

63 5/27/2041 90.34 

64 7/17/2042 269.83 

65 8/5/2043 73.57 

66 7/29/2044 219.96 

67 6/15/2045 101.14 

68 10/17/2046 162.51 

69 7/20/2047 118.61 

70 8/11/2048 107.44 

71 6/28/2049 112.66 

72 10/9/2050 196.73 

73 10/18/2051 141.38 

74 7/14/2052 141.96 

75 7/24/2053 196.68 

76 7/12/2054 65.50 

77 4/13/2055 37.22 

78 10/5/2056 218.69 

79 4/24/2057 37.83 

80 8/9/2058 109.44 

81 6/30/2059 130.03 

82 10/16/2060 120.89 

83 7/11/2061 86.45 

84 4/20/2062 78.38 

85 7/26/2063 142.47 

86 10/27/2064 100.36 

87 6/8/2065 151.85 

88 7/16/2066 175.07 

89 5/30/2067 75.76 

90 7/13/2068 129.65 

91 9/13/2069 122.96 

92 8/4/2070 231.40 
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SL Date 
Maximum observed discharge 

(m3/sec) 

93 10/31/2071 95.91 

94 7/18/2072 143.19 

95 5/22/2073 105.68 

96 4/24/2074 114.93 

97 7/19/2075 273.96 

98 5/9/2076 68.07 

99 7/7/2077 206.69 

100 10/9/2078 204.76 

101 10/8/2079 94.59 

102 9/1/2080 194.90 

103 7/12/2081 160.55 

104 7/29/2082 105.25 

105 9/12/2083 165.99 

106 6/30/2084 95.10 

107 10/9/2085 262.10 

108 7/19/2086 226.26 

109 7/17/2087 169.75 

110 7/14/2088 50.75 

111 9/27/2089 140.26 

112 7/22/2090 100.16 

113 7/16/2091 114.60 

114 8/31/2092 145.43 

115 8/23/2093 197.71 

116 8/23/2094 202.48 

117 7/5/2095 108.44 

118 6/27/2096 131.61 

119 5/13/2097 176.54 

120 7/3/2098 54.99 

121 10/21/2099 155.89 
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Table A 7: Mean monthly flow of the Khowai river at Shaistaganj due to different flow 

diversion scenarios for 2041-2070 

Month 

Mean daily flow at Shaistaganj (cumec) 

Without 

Barrage 

Flow after following flow diversion 

10% 20% 30% 40% 

January 9.40 8.46 7.52 6.58 5.64 

February 4.90 4.41 3.92 3.43 2.94 

March 7.45 6.71 5.96 5.22 4.47 

April 25.04 22.54 20.03 17.53 15.02 

October 64.29 57.86 51.43 45.00 38.57 

November 41.33 37.20 33.06 28.93 24.80 

December 20.62 18.56 16.50 14.43 12.37 

 

Table A 8: Mean monthly flow of the Khowai river at Shaistaganj due to different flow 

diversion scenarios for 2071-2099 

Month 

Mean daily flow at Shaistaganj (cumec) 

Without 

Barrage 

Flow after following flow diversion 

10% 20% 30% 40% 

January 10.56 9.50 8.45 7.39 6.34 

February 5.19 4.67 4.15 3.63 3.11 

March 6.64 5.98 5.31 4.65 3.98 

April 28.06 25.25 22.45 19.64 16.84 

October 70.83 63.75 56.66 49.58 42.50 

November 46.31 41.68 37.05 32.42 27.79 

December 23.57 21.21 18.86 16.50 14.14 
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Figure A 1: Zone distribution (Elevation wise)  
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Figure A 2: Precipitation plot – NOAA vs ERA5 

 

 

Figure A 3: Month wise mean daily AET vs PET (1980-2099) 
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Figure A 4: Daily AET vs PET analysis 

 

Figure A 5: Lean season flow at Shaistaganj for different flow diversion scenarios 

considering the flow period 2041-2070 
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Figure A 6: Lean season flow at Shaistaganj for different flow diversion scenarios 

considering the flow period 2071-2099 
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