L-2/T-2 B. Sc. Engineering Examinations 2020-2021
 Sub : NAME 217 (Theoretical Ship Design)
 Full Marks: 210
 Time : 3 Hours

The figures in the margin indicate full marks.
All the symbols have their usual meanings.
Assume reasonable values for missing data.
USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE.

1. (a) How change in length, breadth and draft will affect the techno-economic performance characteristics of a ship.
(b) Explain how iterative procedure is used to satisfy the dimensional requirements of a ship. A 1000 DWT oil tanker ship has a speed of 12 knots. Estimate the length of the ship using Ayre formula and breadth and depth of the ship using Watson formula.
2. (a) The following information is known for a basic General Cargo Ship and a similar new design:

Particulars	Basic Ship	New Ship
LBP (m)	125	130
Br. Mld (m)	17	17.45
Depth Mld (m)	10	10.2
C_{B} (at SLWL)	0.725	0.780
Forward deck sheer (m)	2.9	3.5
Aft deck sheer (m)	1.37	1.56
Steel Weight (tonnes)	3000	\cdots

Estimate the steel weight of the new ship using the method of differences considering C_{B} corrections, scantling corrections and deck sheer corrections.
(b) A basic oil tanker ship is 140 m LBP $\times 20 \mathrm{~m}$ Br.Mld with a final W\&O weight of 800 tonnes. A new similar ship has an LBP of 138.5 m and a Br . Mld of 18.70 m . Estimate the $\mathrm{W} \& \mathrm{O}$ weight for the new design using proportional procedure.
(c) Data for a selected basic ship with Diesel machinery is as follows:
$P_{B}=4200 \mathrm{~kW}$, displacement $=16373$ tonnes, Service speed $=15 \mathrm{kt}$, Total machinery weight $=730$ tonnes.
A new similar design has displacement $=14733$ tonnes, Service speed $=15.25 \mathrm{kt}$. If the new ship is twin screwed estimate the machinery weight (total) for the new design by the rate procedure.

NAME 217

3. (a) What are the phases of Ship Design? Explain how the phases are conveniently illustrated in the design spiral as an iterative process working from owner's requirements to a detailed design.
(b) Towing tank test for a ship showed that when extrapolated to full size ship the P_{NE} value at 16.50 kt speed is 6100 kW . Determine the propulsive co-efficient and admiralty co-efficient required to give this service speed.
[Given, appendage allowances $=5 \%$, weather allowances $=10 \%$, ship's displacement $=$ 32728 tonnes, shaft efficiency $=98 \%, \mathrm{QPC}=0.720]$.
4. (a) Explain the resistance components of bare hull in calm water with necessary figure.
(b) A full-scale ship is 140 m long and has speed $=15$ knots, the model is 4.9 m long. The resistance is measured to 19 N in the model basin. Following the ITTC 57 approach, what is the predicted full-scale resistance?
The wetted surface of the full-scale ship is $3300 \mathrm{~m}^{2}$. The density of sea water $1025 \mathrm{~kg} / \mathrm{m}^{3}$, that of fresh water $1000 \mathrm{~kg} / \mathrm{m}^{3}, v_{\mathrm{m}}=1.14 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, for fresh water $v_{\mathrm{s}}=$ $1.19 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ for sea water. Use a correlation co-efficient of $\mathrm{C}_{\mathrm{A}}=0.0004$.

SECTION - B

There are FOUR questions in this section. Answer any THREE.
5. (a) According to the IMO standards for ship maneuverability, which criteria are to be complied of a satisfactory ship.
(b) What is ship rudder? What are the basic aspects to be considered in rudder design of ships?
6. (a) What are the main economic criteria to be considered from viewpoint of marine problems? Draw a flow diagram of decision chart for choice of economic criteria in case marine problems.
(b) Consider the purchase of two ship navigation systems. Assume the annual interest rate is 12 percent. The capital cost, the annual maintenance and operating cost and the salvage value of these systems are shown below. Calculate the annual cost and present net value of these systems and which ship should you select, justify?

System	$1^{\text {st }}$ Ship	$2^{\text {nd }}$ Ship
Capital cost	$\$ 110,000$	$\$ 75,000$
Annual maintenance and operating cost	$\$ 5,000$	$\$ 10,000$
Salvage values after 10 years	$\$ 10,000$	$\$ 5,000$

$$
=3=
$$

NAME 217

7. (a) Discuss the pros and cons of rationally based structural design and rules-based design. Explain the strength analysis procedure of ship of global model and sub models with the help of flow diagram.
(b) A rectangular barge is 60 m long and has a beam of 15 m . The weight distribution of the partially loaded barge is shown in Fig. for Q. No. 7(b). The barge is floating at rest in still water. Draw curves of loading, shearing force and bending moment, stating the maximum shearing force, and bending moment and position where they act.

8. (a) Define Fresh Water Allowances (FWA). Deduce mathematical expressions of FWA in terms ship displacement, TPC, etc.
(b) Calculate the minimum freeboard requirements considering correction for length, block coefficient and depth for the following ship in accordance with ICLL 66 regulations.

Main particulars of the ship
Ship type: Dry cargo (B)
Length between perpendiculars, LBP: 120.00 m
Breadth, B: 20.00 m
Depth, D: 10.00 m
${ }^{\circ}$ Load water length, LWL at $0.85: 125.00 \mathrm{~m}$
Thickness of deck plating $(t): 25 \mathrm{~mm}$
Block coefficient at 0.85D: 0.722
\qquad

$$
=4=
$$

NAME 217

(For Question No. 8(b)

TABLE B. Frooboard Table for Type 'B' Shlps

Frecboatos at iniernediate tengths of ship shat be obsainod by linear intorpotatur.
Frectoards fo: type A ships with iongin of botwen 305 nusires and 400 metres shouto bo detormnod by the fottowing formitia

$f=-587+23 L-0.0188 L^{2}$

 shoutd bo ite cans:ant yatic. $5 \times 0=5$

$=5=$

Regulation 29: Correction to the Freeboard for Ships under 100 m in length The tabular freeboard for a Type 'B' ship of between 24 m and 100 m in length having enclosed supersiructures with an effective length of up 1035 per cent of the length of the ship shall be increased by:

$$
7.5(100-L)\left(0.35-\frac{E}{L}\right) \mathrm{mm}
$$

where $L=$ length of ship in metres, where $E=$ effective length of superstructure in metres defined in Regulations 35.

Regulation 30-Correction for Block Coefficient (C_{b})

Where the block coefficient $\left(C_{b}\right)$ exceeds 0.68 , the tabular freeboard specified in Regulation 28 as modified, if applicable, by Regulations 27(8), 27(10) and Regulation 29 shall be multiplied by the factor $\left(C_{b}+0.68\right) / 1.36$

Regulation 31 Correction for Depth

- (I). Where D exceeds VIS the freeboard shall be increased hy
(D - L15) $x R$ millimeters, where R is $1 / 0.48$ at lengths less than 120 meters and 250 ali 20 meters length and above, or
- (2). Where D is less than L/I5 no reduction shall be made except in a ship with an enclosed superstructure covering at least 0.6 L amidships, with a complete trunk, or combination of detached enclosed superstructures and trunks which extend all fore and aff, where the freeboard shall be rectuced at the rate prescribed in paragraph (I) of this Regulation.
- (3). Where the height of superstructure or trunk is less than the standard height, the reduction shall be in the ratio of the actual to the standard height as defined in Regulation 33.

L-2/T-2 B. Sc. Engineering Examinations 2020-2021
Sub: NAME 223 (Marine Hydrodynamics)

Full Marks: 210
Time: 3 Hours
USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks

SECTION - A

There are FOUR questions in this section. Answer any THREE questions.

1. A ship sailing at the phase boundary of sea water and air can be approximated as a ship moving through incompressible fluid at constant temperature. Assume, that a ship of 100.00 m is traveling at 15.00 Knot through a wave of reference period 6.2 sec . A numerical solver is being used to analyze the flow around the ship and it uses Navier Stokes equation for the purpose of solving it. However, the solver uses the dimensionless form of the equation.
$(5+10+10+10=35)$
Explain
(a) Why the approximation, stated at the first sentence of the stem is correct?
(b) Write down the Navier Stokes equation for an isotropic Newtonian fluid in their conservative, differential form.
(c) Describe the mathematical process of transforming the Navier-Stokes equation for an isotropic Newtonian fluid in their conservative deferential form to the following form

$$
\frac{\partial \vec{v}}{\partial t}+\left(\vec{v}^{T} \Delta\right) \vec{v}=\vec{f}-\frac{1}{p} \underline{\nabla} P+v \Delta \vec{v}
$$

(d) Develop the mathematical equation, which the numerical solver uses, for the case stated in the stem. Take the gravitational constant to be $9.8 / \mathrm{ms}^{-2}$, density of salt water at $15^{\circ} \mathrm{C}$ to be $1026.021 \mathrm{~kg} / \mathrm{m}^{3}$, atmospheric pressure 101325.00 Pa and kinematic viscosity of salt water at $15^{\circ} \mathrm{C}$ to be $1.1892 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.
2. (a) For an irrational flow part a circulating cylinder, write the equation for the stream function and discuss the possible stagnation points of the flow.
$(10+18+7=35)$
(b) How can the flow part a 'Rankine body' be developed from compositing elementary flows? Write the stream function for a Rankine body and also find the expression for length, profile and width of the body.
(c) What is 'Magnus effect'?
3. (a) Deduce the equation for velocity distribution in an irrational vortex. Will this equation hold true for real fluids? Discuss
$(15+15+5=35)$

$$
=2=
$$

NAME 223
Contd... Q. No. 3
(b) Derive the ϕ - and ψ - function for a doublet; and sketch the equipotential lines, and streamlines for a doublet at the origin.
(c) What is 'added mass'?
4. (a) What are streamlines? Briefly discuss the characteristics of stream lines. $\quad(\mathbf{1 0 + 1 5}+\mathbf{1 0}=\mathbf{3 5})$
(b) What are the characteristics of stream function and how are these characteristics used to define stream function? Elaborately explain.
(c) Determine the stream function for parallel flow with a velocity V inclined at an angle α to the x-axis.

SECTION-B

There are FOUR questions in this section. Answer any THREE. Assume reasonable values for missing data.
5. (a) Derive the expression of circulation in relation with the components of rotation about the normal to the surface, where the surface contains no singular point. State necessary assumptions and approximations.
(b) What do you mean by residue of ω ? Express the residue function for the case where singularity exists.
(c) Using Blasius's theorem, for flow past a circular cylinder with circulation, show that the drag force is zero and the lift force is - pUK.
6. (a) For parailel viscous flow between two fixed parallel plates, derive the expression

$$
\begin{equation*}
u=\frac{1}{2 \mu} \cdot \frac{d p}{d x}\left(b^{2}-y^{2}\right), \text { where the } \tag{17}
\end{equation*}
$$

symbols have their usual meanings.
(b) Derive the Karman - Prandtl equations for velocity distribution in turbine flow past smooth and rough boundaries.
(c) What do you mean by shear velocity? Why it is important in the boundary layer theory?
7. (a) Why boundary layer separation is important? Explain the way by which the growth in the boundary layer being restricted. Also, explain schematically why the line of boundary layer separation moves upstream to the equilibrium position.
(b) Explain why Bernoulli equations are not strictly applicable to real fluid flow.

$$
=3=
$$

NAME 223
Contd... Q. No. 7
(c) Distinguish between laminar, transition and turbulent boundary layer. How

Reynold's number value can be used to define the different boundary layers?
(d). Explain analytic functions with singular points.
8. (a) Discuss the significance of $\mathrm{d} \omega / \mathrm{d}$.
(b) If $\omega=\mathrm{f}(\mathrm{z})$, where $\omega=\phi+\mathrm{i} \psi$ and $\mathrm{z}=\mathrm{x}+\mathrm{iy}$, find the values of ϕ and ψ for the following functions of z and with neat sketch identify the flow patterns in the z -plane.
(i) $\omega=\mathrm{m} \ln \frac{z+a}{z-a}$
(ii) $\omega=\mathrm{U}\left(z+\frac{a^{2}}{z}\right)$
(c) Schematically explain the transformation of flow past an ellipse.

L-2/T-2 B. Sc. Engineering Examinations 2020-2021
 Sub: HUM 211 (Sociology)
 Full Marks: 140 Time: 3 Hours
 USE SEPARATE SCRIPTS FOR EACH SECTION
 The figures in the margin indicate full marks

SECTION - A

There are FOUR questions in this section. Answer any THREE questions.

1. (a) What are the underlying factors that contributed to the development of sociology as an independent discipline?
(b) Critically discuss the functionalist perspective of sociology.
2. (a) What is meant by socialization? Explain primary socialization and anticipatory socialization with relevant examples.
(b) Explain H. M. Johnson's view of conditions of successful learning.
3. (a) What is social stratification? Explain the caste system and class system of social stratification.
(b) What is meant by social mobility? Explain different types of social mobility.
4. Write short notes on any THREE of the following:
(a) Ethnocentrism and cultural relativism.
(b) Daniel Rosside's five class model of industrial society.
(c) Social norms and social values.
(d) Sociology is a categorical discipline and not a normative discipline.

SECTION - B

There are FOUR questions in this section. Answer any THREE.
5. (a) Describe the socio-economic impact of globalization in Bangladesh.
(b) Illustrate the social impact of the British industrial revolution.

$$
=2=
$$

HUM 211/NAME

6. (a) Critically discuss the demographic transition theory of population.
(b) Summarize the salient features of an urban community.
7. (a) What is human migration? Describe the forces that cause human migration.
(b) Demonstrate five major components of demography.
8. Write short notes on any THREE of the following
(a) Natural hazards
(b) Exposure
(c) Adaptation
(d) Resilient

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA
L-2/T-2 B. Sc. Engineering Examinations 2020-2021
Sub: EEE 261 (Electrical and Electronic Technology for Marin Engineers)

> Full Marks: $210 \quad$ Time: 3 Hours USE SEPARATE SCRIPTS FOR EACH SECTION

Symbols have their usual meanings.
The figures in the margin indicate full marks

SECTION - A

There are FOUR questions in this section. Answer any THREE questions.

1. (a) What is an infinite bus? Why the oncoming generator must have a higher frequency as compared to the running system to operate the generator in parallel? What are the other conditions for paralleling generators?
(b) Explain the effect of increasing the (i) governor's set point and (ii) field current on a generator operating in parallel with an infinite bus with the help of house diagrams and phase diagrams.
(c) During a short-circuit test, a Y-connected synchronous generator produces 100 A of armature current per phase at a field current of 2.5 A . At the same field current, the open-circuit line-voltage is measured to be 440 V .
(i) Calculate the saturated synchronous reactance under these conditions.
(ii) If the armature resistance is 0.3Ω per phase, and the generator supplies 60 A to purely resistive Y-connected load at this field current setting, determine the voltage regulation under these load conditions. The no-load line voltage is 440 V.
2. (a) Explain the generation of a rotating magnetic field in a synchronous machine. Show that the magnetic field will have the same magnitude of $1.5 \mathrm{~B}_{\mathrm{m}}$ at any time.
(b) The following test data were taken on a $7.5-\mathrm{hp}$, four-pole, $208-\mathrm{V}, 60 \mathrm{~Hz}$, design A , Y-connected induction motor having a rated current of 28 A .

DC test:
$\mathrm{V}_{\mathrm{DC}}=13.6 \mathrm{~V} \quad \mathrm{IDC}=28 \mathrm{~A}$
No-load test:
$\mathrm{V}_{\mathrm{T}}=208 \mathrm{~V} \quad \mathrm{I}_{\mathrm{A}}=8.12 \mathrm{~A} \quad \mathrm{I}_{\mathrm{B}}=8.2 \mathrm{~A} \quad \mathrm{I}_{\mathrm{C}}=8.18 \mathrm{~A} \quad \mathrm{P}_{\text {in }}=420 \mathrm{~W} \quad \mathrm{f}=60 \mathrm{~Hz}$
Locked-rotor test:
$\mathrm{V}_{\mathrm{T}}=25 \mathrm{~V} \quad \mathrm{I}_{\mathrm{A}}=28.1 \mathrm{~A} \quad \mathrm{I}_{\mathrm{B}}=28.0 \mathrm{~A} \quad \mathrm{I}_{\mathrm{C}}=27.6 \mathrm{~A} \quad \mathrm{P}_{\text {in }}=920 \mathrm{~W} \quad \mathrm{f}=15 \mathrm{~Hz}$
Determine the equivalent circuit parameters and sketch the per-phase equivalent circuit for this motor. Assume stator and rotor reactance have the same value.

$$
=2=
$$

EEE 261

3. (a) Explain the starting problem of a synchronous motor. How can it be overcomed using Amortisseur windings? Use appropriate figures to explain.
(b) From the phasor diagram of a synchronous motor undergoing change of field current, derive the sync motor V curve. Explain the under-excited and over-excited operation of synchronous motors.
(c) A 208-V Y-connected synchronous motor is drawing 50 A at unit power factor from a $208-\mathrm{V}$ power system. The field current flowing under these conditions is 2.7 A . Its synchronous reactance is 1.6Ω and armature resistance can ignored. Assume a linear open-circuit characteristics.
(a) Find V_{ϕ} and E_{A} for these conditions.
(b) Find the torque angle δ.
(c) What is the static stability power limit under these conditions?
4. (a) Derive the induction motor torque-speed characteristics. Draw the curve showing the characteristics regions and explain it briefly.
(b) What is synchronous speed? Why an induction motor cannot operate at synchronous cannot operate at synchronous speed? Explain the methods for varying speed of an induction motor.
$(5+5+10=20)$

SECTION - B

There are FOUR questions in this section. Answer any THREE.
Assume a reasonable value for any missing data.
5. (a) Explain briefly early effect of a BJT with its I-V characteristics. How is this effect included in BJT's signal model?
(b) Consider the following Common Emitter amplifier.
I. What is the function of the capacitor C_{E} ?

Il. Draw the equivalent π-model of the amplifier.
III. Find the expression of gain for this amplifier considering the early effect.

Figure for question 5(b)

$$
=3=
$$

EEE 261

Contd... Q. No. 5
(c) Consider the following BJT biasing circuit. Find the maximum value of R_{c} so that the BJT remains in the active region.

Figure for question $5(\mathrm{c})$
6. (a) Draw the circuit diagram of a full-wave bridge rectifier and derive the PIV (Peak Inverse Voltage) for each diode.
(b) For the circuit given in Figure for Q. 6(b), find the limit of output voltage vo for $-10 \leq \mathrm{v}_{1} \leq 10$. Assume the diodes are ideal. Also draw the transfer characteristics of the circuit.

Figure for Q. 6(b)
(c) Draw the output waveform for the circuit given in Figure for Q 6(c). Assume diodes are ideal.

$$
=4=
$$

EEE 261
Contd... Q. No. 6(c)

7. (a) Explain briefly the different operation regions of an enhancement NMOS transistor with necessary graphs.
(b) The NMOS and PMOS transistors in the circuit of Figure for $\mathrm{Q} 7(\mathrm{~b})$ are matched with $k_{n}^{\prime}\left(\frac{W_{n}}{L_{n}}\right)=k_{p}^{\prime}\left(\frac{W_{p}}{L_{p}}\right)=1 m A / V^{2}$ and $V_{m}=V_{t p}=1 V$. Assuming $\lambda=0$ for both device, find the drain current $i_{D N}$ and $i_{D P}$ and the voltage v_{0} for $\mathrm{v}_{1}=0 \mathrm{~V},+2.5 \mathrm{~V}$ and 2.5 V .

Figure for $\mathrm{Q} .7(\mathrm{~b})$
(c) Consider a process technology for which $\mathrm{L}_{\min }=0.4 \mu \mathrm{~m}, \mathrm{t}_{0 \mathrm{x}}=8 \mathrm{~nm}, \mu_{\mathrm{n}}=450 \mathrm{~cm}^{2} / \mathrm{V}$ -
$\mathrm{s}, \mathrm{V}_{\mathrm{t}}=0.7 \mathrm{~V}$. Dielectric constant of SiO_{2} is 3.9 .
(i) Find C_{ox}. What is the significance of this parameter?
(ii) Find k_{n}^{\prime}

EEE 261

8. (a) Describe briefly with necessary diagrams the two-transistor model of a Silicon Controlled Rectifier (SCR).
(b) Consider a single-phase half wave controlled rectifier. If the input to this rectifier is $\nu_{1}(t)=V_{m} \sin (\omega t)$, derive the expression for the average value of output voltage for a resistive load. Assume that α is the firing angle. For what value of α, the rectifier will behave like an uncontrolled single phase half wave rectifier?
(c) Consider the circuit in Figure for Q 8(c). Here, G is the gate trigger pulse and α is the firing angle. $v_{l}(t)=V_{m} \sin (\omega t)$ is the input signal. Draw the output voltage V_{0} for $\alpha=0, \frac{\pi}{6}$ and $\frac{\pi}{3}$.

Figure for question 8(c)
\qquad

