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Abstract

The protein folding problem consist in finding the primary structure or native conformation

of a protein from its amino acid sequence. It is one of the most studied computational

problems in Bioinformatics and Computational Biology. Since, this is NP-hard problem,

a number of simplified models have been proposed in literature to capture the essential

properties of this problem. An important class of simplified models are known as the lattice

models. Lattice models have been proven to be extremely useful tools for reasoning about

the complexity of the protein folding problems. Hydrophobic-Polar (HP) model is one of the

lattice models where the main force in the folding process is the hydrophobic-hydrophobic

force.

In this thesis, we introduce the hexagonal prism lattice with diagonals, that solve some

long standing problems of other lattices for protein folding, e.g. parity problem. We present

two novel approximation algorithms to solve the protein folding problem in the hexagonal

prism lattice with diagonals in HP model. For any given HP string, our first algorithm

(Algorithm HelixArrangement) achieves an approximation ratio of 2. Our second algorithm

(Algorithm LayerArrangement) achieves a 9
7

approximation ratio. Furthermore, we incorpo-

rate the concept of weighted contact which has biological motivation. Considering weighted

contact we analyse our two algorithms as well as a previous algorithm on a different lat-

tice. Finally, we implement our approximation algorithms and conducted experiments on

benchmarks datasets.
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Chapter 1

Introduction

The National Center for Biotechnology Information (NCBI 2001) defines bioinformatics as:

“Bioinformatics is the field of science in which biology, computer science, and information

technology merge into a single discipline. There are three important sub-disciplines within

bioinformatics: the development of new algorithms and statistics with which to assess re-

lationships among members of large data sets; the analysis and interpretation of various

types of data including nucleotide and amino acid sequences, protein domains, and protein

structures; and the development and implementation of tools that enable efficient access

and management of different types of information.” One of the main areas of bioinformatics

is the structural bioinformatics under which structure of biological macromolecules such as

protein, RNA, DNA etc. are analysed.

Structural bioinformatics is a branch of bioinformatics which concerns itself with the

analysis and prediction of 3D structure of proteins in particular. Different data from micro-

molecule structures are analysed using computational tools and theoretical frameworks. The

data used for analysis are sequence data, sequence alignment data, NMR (Nuclear Magnetic

Resonance) data and x-ray crystallographic data. It use various visualization, modeling

and prediction tools to analyse and predict the structure, function and behavior of their

molecules of interest. One of the goals of structural bioinformatics is to obtain accurate

three-dimensional structural models for all known protein families, protein domains or pro-

tein folds.

The study of the protein is called proteomics. Finding proteins location, structure and

function are the main purpose of this study. The protein folding problem consist in finding

1
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the primary structure or native conformation of a protein from its amino acid sequence.

Proteins are the functional units of life. They are involved in everything from gene

expression regulation to defense of an organism. For example, Hemoglobin are used for

transportation, Actin and Mysin in muscles are worked for movement, antibodies’ function

for defence etc. Protein structure leads to its functions. Proteins evolved under selective

evolutionary pressure to carry out specific tasks. All these functions are defined largely

due to interactions with other molecules. The way a protein interacts with molecules in its

environment depends on its three dimensional fold. This fold refers to the overall shape, the

surface, active sites, and positioning of key amino acids.

Anfinsens famous experiments in the 1960s stated that, the complex three dimensional

structures of the protein molecules are encoded in their amino acid sequences, and the chains

autonomously fold under proper conditions. Cracking this code, which is sometimes called

“the second part of the genetic code” has been one of the greatest challenges of molecular

biology. Although a full understanding of how proteins fold still remains elusive, theoretical

and experimental. In the living cell, folding occurs in a complex and crowded environment,

often involving helper proteins, and in some cases it can go awry: the protein can misfold,

aggregate, or form amyloid fibers. It is increasingly being recognized that misfolded proteins

and amyloid formation are the root cause of a number of serious illnesses including several

neuro-degenerative diseases. Therefore, the study of protein folding remains a key area of

structural bioinfomatics research.

1.1 Motivation

Protein is known as the holy grail of biochemistry and molecular biology. Protein structure

prediction is one of the oldest but recalcitrant problem in bioinformatics. The structure of

a protein defines what a protein can or cannot do. The distinctive amino acid sequence of

proteins allow for the placement of particular chemical groups in specific places in specific

places in 3D space. Even a minor modification such as changing one amino acid could change

the structure of a protein significantly, thus modifying its function. For example, the sickle

cell anemia disease results due to a hemoglobin where the sixth amino acid is changed from
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glutamic acid to valine. Protein structures are highly diverse and this diversity the func-

tional diversity of these structures is expanded through interactions with smaller molecules.

The experimental method of determining the native structure of a protein consists in

producing a pure solution containing only the protein, followed by, first, crystallizing the

protein, and then an x-ray crystallography. A large amount of material of the protein is

required for this process and the solution containing the protein must be very pure. But

the major limitation of this method is the crystallization process. This step is very time

consuming and is limited to a subclass of proteins.

For this reason, many computational techniques have been developed and many sim-

plified models have been introduced to predict protein structures. An important class of

simplified models are known as the lattice models. Lattice models have been proven to be ex-

tremely useful tools for reasoning about the complexity of the protein folding problems. By

sacrificing the atomic details, lattice models can be used to extract essential principles, make

predictions, and unify our understanding of many different properties of proteins. Square

lattice, triangular lattice, square lattice with diagonal, hexagonal lattice, cubic lattice, face

centred cubic lattice etc. are popularly used in literature for protein folding. But these

lattices have some drawbacks for protein folding process. A new model that will removes

the drawbacks of these lattices might help us to predict protein structure successfully.

Example of some motivation behind predicting protein structure are listed below,

• It can help us understand many diseases causes by disordered protein structures, e.g.,

Parkinsons disease, Alzheimers disease, Huntingtons disease, BSE (mad cow disease),

Cancer, Cystic fibrosis, type II (non-insulin dependent) diabetes etc. These diseases

are caused by a specific protein, that misbehaves. In most cases, a defective gene codes

cause troublesome protein.

• It also necessary for structure based drug design. Structure based drug design (or

direct drug design) relies on knowledge of the three dimensional structure of molecules.

A particular drug interacts with a particular protein. Structure based drug design

uses the structure of proteins as a basis for designing new drug by applying accepted

principles of molecular recognition.

• There are many proteins with similar structure but very different functions. Quite

different sequences can adopt the same structure. This fact can useful in identifying
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evolutionary relationships. It can, however, identify false relationships as well. Anal-

ogous proteins are proteins that have the same function but do not share ancestry.

Homologous proteins share ancestry.

• For understanding various biological mechanisms it can help.

For predicting protein structure many lattice structure had been used in literature.

Square lattice and cubic lattice are the mostly studied lattice structure. But in square

lattice and cubic lattice it can

1.2 Core Contribution

In this thesis, hexagonal prism lattice with diagonals is introduced. This lattice model

removes some of the well known problems of protein folding in other lattices, e.g., parity

problem. Also, as will be clear later our proposed lattice model can provide better results.

The main contribution of this thesis are as follows.

1 As mentioned above, we introduce a new lattice model, hexagonal prism lattice with

diagonals. Compare to other lattices previously used in literature for protein folding,

this new lattice removes drawbacks of other lattices.

2 We present two novel approximation algorithms to solve the protein folding problem

in the hexagonal prism lattice with diagonals in HP model. For any given HP string,

our first algorithm (Algorithm HelixArrangement) achieves an approximation ratio of

2 for k > 16, where k is the total number of H-runs and n is the total number of H.

Our second algorithm on hexagonal prism lattice with diagonals (Algorithm LayerAr-

rangement) achieves an approximation ratio of 9
7

under some parametric constraints.

Both algorithms are polynomial in terms of the length of the given HP string.

3 We incorporate the concept of weighted contact which has biological motivation. Con-

sidering weighted contact we analyse our two algorithms as well as previous algorithm

on a different lattice. In particular we first apply the concept of weighted contact on

a previous algorithm (Algorithm ChainArrangement) of Shaw et al.[46]. Considering

weighted contact, the Algorithm ChainArrangement provides 1.96-approximation ra-

tio for k > 8, where k is number of sequence of Hs in the HP string. This new analysis

on hexagonal lattice with diagonal improve the performance of the algorithm.
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4 Considering weighted contact, Algorithm HelixArrangement achieves an approxima-

tion ratio of 2 for k > 13 and Algorithm LayerArrangement achieves 1.45-approximation

ratio for k > 89, where k is number of sequence of Hs in the HP string.

5 We develop a simple visualization software for the approximation algorithms and tested

under standard dataset. This software simulate the Algorithm ChainArrangement, Al-

gorithm HelixArrangemnt and Algorithm LayerArrangement. Protein structure gen-

erate from this algorithm along with their contacts are shown in simulation output.

The test under standard dataset results similar approximation ratio that theoretically

found.

The rest of the chapters are organized as follows. In Chapter 2, we describe the protein

folding problem and different types of methods to solve this problem. We also describe HP

Models and why it is used in this thesis. In Chapter 3, we present the literature review in

the field of protein folding. We also describe different lattices used before for the protein

folding problem in this chapter. Chapter 4 presents our main research results on protein

folding. We introduce hexagonal prism lattice with diagonals in this chapter and provide two

approximation algorithms to solve the problem. The analysis for finding the approximation

ratio is also presented here. Chapter 5 presents the analysis using the concept of weighted

contact for hexagonal lattice with diagonal. In Chapter 6 the analysis considering weighted

contact continues for hexagonal prism lattice with diagonal. In Chapter 7, we describe our

Visualization Software and experimental results on this lattice. Finally, in Chapter 8, we

conclude our thesis with a brief overview and future research directions.
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Chapter 2

Preliminaries

In this chapter, we discuss necessary notion and notations that are necessary to describe

the background of this thesis. Here we describe the structure of protein and their functions.

We state the protein folding problem and discuss approaches to solve it. We conclude this

chapter after describing the HP Model.

2.1 Approximation Algorithms

The algorithm generates approximate solution for optimization problem known as approxi-

mation algorithm. These algorithms provide feasible but not necessarily optimal solutions.

Let, C be the cost of a solution found for a problem of size n and C∗ be the optimal

solution for that problem.

Then we say an algorithm has an approximation ratio of ρ(n) if,

C/C∗ ≤ ρ(n) for minimization problems: the factor by which the actual solution obtained

is larger than the optimal solution.

C ∗/C ≤ ρ(n) for maximization problems: the factor by which the optimal solution is larger

than the solution obtained.

An algorithm that has an approximation ratio of ρ(n) is called a ρ(n)-approximation algo-

rithm.

2.2 Protein

The name protein is derived from the Greek word “protos”, meaning “primary”. Of all

the molecules found in living organisms, proteins are the most important. They are the

7
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Figure 2.1: Generic Amino Acid Structure

biological workhorses. They carry out vital functions in every cell. They are used to support

the skeleton, move muscles, control senses, defend against infections, digest food and process

emotions. Proteins can be different in shapes and sizes. For example, they can be round,

long, hard or elastic. Its complex shapes include various folds, loops, and curves. More than

half of the dry weight of a cell is due to proteins. They have a range of indispensable roles;

for example, enzymes, the bio-catalysts that carry out crucial biochemical reactions in every

cell. Otherwise it would be too slow to sustain life.

There are more than 100,000 different types of proteins exists in our body. What is

remarkable is that all of these are produced from a set of only 20 building blocks, known

as amino acids. All amino acids have the same basic structure an alpha carbon Cα, an

amino group, a carboxyl group, a hydrogen atom and a side-chain, known as R (See Fig.

2.1). The R group distinguishes one amino acid from another. Furthermore, the side chain

is responsible for the specific chemical properties of the amino acid. The two simplest

amino acids are glycine and alanine (please see Fig. 2.2). Depending on the nature of

the side-chain, an amino acid can be hydrophilic (water-attracting) or hydrophobic (water-
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repelling), acidic or basic. The diversity in the side-chain properties give proteins their

different characteristics. 19 of the 20 common amino acids have a chiral carbon atom. Gly

does not. Mirror image pairs of amino acids are designated by L (levo) and D (dextro).

Proteins are assembled from L amino acids. Only a few D amino acids occur in nature.

Almost all sugars have a D conformation. Threonine and isoleucine have 2 chiral carbons

each, thus producing 4 possible stereoisomers each. Isomers depend on the position of the

4 group around the chiral center. Amino acids are L or D depending on the position of the

amino group.

Table 2.2 presents the list of 20 amino acids in proteins with their three-letter and one-

letter codes. Based on this table the amino acids can be classified into several groups.

Charged or neutral amino acid. Polar or non-polar amino acid. Charged amino acid shown

in table is subclass of polar amino acids. Charged amino acids can be classified in two

categories, acidic or negatively charged amino acids and basic or positively charged amino

acids.

Amino acids are joined together in proteins by peptide bonds. A peptide bond forms

between the carboxyl group of one amino acid and the amino group of the adjacent amino

acid (See Fig. 2.3). These chemical bondings aid in holding the protein together and giving

it its shape. There are two general classes of protein molecules: globular proteins and

fibrous proteins. Globular proteins are generally compact, soluble, and spherical in shape.

Fibrous proteins are typically elongated and insoluble. Globular and fibrous proteins may

exhibit four types of protein structure. These structure types are called primary, secondary,

tertiary, and quaternary structures. The sequence of amino acids in a protein defines its

primary structures. Secondary structure refers to the coiling or folding of a polypeptide

chain that gives the protein its 3-D shape. Tertiary Structure refers to the comprehensive

3-D structure of the polypeptide chain of a protein. Quaternary Structure refers to the

structure of a protein that is formed by interactions between multiple polypeptide chains

(See Fig. 2.4).

2.3 Protein Folding Problem

Protein folding refers to the complex spontaneous assembly of proteins. It concerned with

how it gets its native structure. Protein folding is a spontaneous, ordered and reversible

process.
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Table 2.1: List of 20 amino acids with their three-letter and one-letter codes
Amino Acids

Characteristic Name 3 Letter code 1 Letter code

Charged Arginine Arg R

Lysine Lys K

Aspartic acid Asp D

Glutamic acid Glu E

Hydrophilic or polar Glutamine Gln Q

Asparagine Asn N

Histidine His H

Serine Ser S

Threonine Thr T

Tyrosine Tyr Y

Cysteine Cys C

Methionine Met M

Tryptophan Trp W

Hydrophobic or non-polar Alanine Ala A

Isoleucine Ile I

Leucine Leu L

Phenylalanine Phe F

Valine Val V

Proline Pro P

Glycine Gly G
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Figure 2.2: Structure of all amino acid

According to K.A. Dill[14] the protein-folding problem is concerned with three broad

questions:

(i) What is the physical code by which an amino acid sequence dictates a protein’s native

structure?

(ii) How can proteins fold so fast?

(iii) Can we devise a computer algorithm to predict protein structures from their sequences?

It is believed that some dominant forces are the major contributor for protein folding.
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Figure 2.3: Peptide bond

Dominant forces for protein folding are given below,

• Hydrogen bonds

• Induced dipole effects

• Conformational entropy

• Van der waals interaction

• Dissolvent property

• Dipole interactions

• Hydrophobic effect

• Salt bridges
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Figure 2.4: Four levels of protein structure

The protein folding problem is a optimization problem can be defined as below:

Input : A sequence of amino acids.
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Output : Conformation or primary structure of protein.

Goal : Maximization. Maximize the amount of dominant force in a conformation.

2.4 Different Types of Methods

There are many different computational methods of finding a protein’s native structure.

Despite the quantity of work on this problem over the past 30 years, no truly accurate

computational methods exists to predict the 3-dimensional structure from the amino acid

sequence. Here we briefly describe the methods of finding protein structures, namely, ho-

mology, threading, ab initio techniques.

2.4.1 Homology Method

In homology modeling, the amino acid sequence of a novel protein P is aligned against

sequences of proteins Q, whose tertiary structure is available in the Protein Data Bank

(PDB) [6]. Regions of P aligned to regions of Q are assumed to have the same fold, while non-

aligned regions are modeled by interconnecting loops. Homology modeling is also referred to

as comparative protein modeling or knowledge-based modeling. Examples of comparative

modeling software include SWISS-MODEL, developed by T. Schwede et al.[4], MODELER

developed by the Sali Lab [30] etc.. Comparative modeling relies on the assumption that

evolutionarily related (homologous) proteins retain high sequence identity and adopt the

same fold.

2.4.2 Fold Recognition or Threading Method

Fold recognition, though known to be NP-complete [37, 36, 51], is a promising structure

prediction approach. Fold recognition methods detect folds that can be used for structural

modeling with homology at the sequence level. The principle of fold recognition is the iden-

tification of folds that are compatible with a given query sequence i.e. instead of sequences

being used to predict folds, the folds are fitted to the sequence. This method can be de-

scribed in four steps,
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1. Step 1: Searching for known folds

2. Step 2: Scoring folds

3. Step 3: Identifying candidates that best fit the sequence

4. Step 4: Aligning the query and the best-scoring proteins

Once such a template has been identified, the remainder of the process is the same as

comparative modeling.

Impressive results have been obtained in Skolnick Lab program I-TASSER [58] with web

server [60]. It is the best-ranked structure predictions in the blind test CASP-7 (Critical

Assessment of Techniques for Protein Structure Prediction) in 2006. Success of threading

hinges on two things: energetics and the search strategy, i.e., usually Monte-Carlo or some

type of branch and bound algorithm. Energetics defines how the PDB is relatively saturated

and contains occurrences of almost all protein folds. Search srategy usually used for protein

foldings are Monte-Carlo, some type of branch and bound algorithms etc. According to

a study of Zhang and Skolnick [61], the PDB is currently sufficiently saturated to permit

adequate threading approaches. But it does not give sufficient accuracy required for drug

design.

2.4.3 Ab Inito Technique

Despite advances in comparative modeling and threading, there is an interest in ab initio

protein structure prediction, since this is the only method that attempts to understand

protein folding from basic principles. It apply the search strategy with a physics-based en-

ergy function. Comparative modeling and threading depends on finding a suitable template

structure. In the absence of a suitable structure, ab initio prediction is the only method.

A typical procedure can be describe as below,

1. Step 1: Define a mathematical representation of a polypeptide chain and the sur-

rounding solvent. That means, define an energy function that accurately represents

the physiochemical properties of proteins.

2. Step 2: Use an algorithm to search for a chain conformation which possesses the

minimum free energy.
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The problem with ab initio methods is that even short polypeptide chains can fold into

a potentially infinite number of structures.

Well known software for ab inito technique are CHARMM [11], Amber [18] and vari-

ant Molsoft ICM [1]. The Molsoft ICM uses internal coordinates (dihedral angle space)

and local optimization for protein docking and protein-ligand interactions. Other ab initio

methods include the Baker Lab program Rosetta [10]. Rosetta benchmarked in [22] with

comparable accuracy as the Skolnick Lab program I-TASSER [58]. Search strategies of ab

initio methods include molecular dynamics simulation, Metropolis Monte-Carlo (Rosetta

[10]), Monte-Carlo with replica exchange (I-TASSER [35]), branch-and-bound (ASTRO-

FOLD [34]), integer linear programming (ASTROFOLD [34]), Monte-Carlo with simulated

annealing, evolutionary algorithms, genetic algorithms etc.

2.5 HP Model

Finding complete optimal structure of protein is too hard. Hence, many approximation

solutions are given by using a simplified, abstract lattice structure. Lattice structure like

square lattice, triangular lattice, hexagonal lattice etc. are popularly used in literature. In

this section, we talk about the widely used HP model for protein folding. This model is

introduced by K.A. Dill, in 1985 [13].

In HP model, there are only two types of beads. H represents the hydrophobic or non-

polar beads and P is referred to polar or hydrophilic ones. These beads are randomly

distributed in the lattices. In this model it is assumed that the main force in the folding

process is the hydrophobic-hydrophobic force, so H-H contacts are the main forces in this

model. Two hydrophobic atoms create contacts if they are topological neighbours.

The input to the protein folding problem is a finite string p over the alphabet {P, H}
where p = {P}∗b1{P}+b2{P}+...{P}+bk{P}∗. Here bi ∈ {H}+ for 1 ≤ i ≤ k and let

n =
∑k

i=1 |bi|. Here, H denotes non-polar and P denotes polar amino acids respectively.

Often, in what follows, the input string in our problem will be refer to as an HP string. An

H-run in an HP string denotes the consecutive H’s and a P-run denotes consecutive P’s.

So, the total number of H-runs is k and total number of H is n. An H-run of even (odd)

length is said to be an even H-run (odd H-run). We will now define the valid embeddings

and conformation of a protein into lattice.



2.5. HP MODEL 17

Figure 2.5: Crossing between binding edges; this situation is forbidden in a valid conforma-

tion.

Definition 1. Let p = p1 . . . pt be an HP string of length t and let G = (V, E) be a lattice.

An embedding of p into G is a mapping function f : {1, . . . , t} → V from the positions of the

string to the vertices of the lattice. It assigns adjacent positions in p to adjacent vertices in

G, (f(i), f(i+ 1)) ∈ E for all 1 ≤ i ≤ t− 1. The edges (f(i), f(i+ 1)) ∈ E for 1 ≤ i ≤ t− 1

are called binding edges. An embedding of p into G is called a conformation, if no two

binding edges cross each other (see Fig. 2.5). This idea is called self-avoiding walk.

An embedding is a self-avoiding walk inside the grid. A walk in a graph is self-avoiding

if their is no edge crossings in total walk.

Since, only hydrophobic- hydrophobic contacts are the energy source and all other inter-

actions, namely, hydrophobic-polar, polar-polar and the interaction of solvent with any of

those kinds are considered as neutral.

TotalEnergy, E =
∑

(i!=j & pi,pj∈H) Contact(pi, pj)

For optimal embedding our main goal is to maximize the energy or other wisely we can say

molecular stability. That means energy will be maximized if contacts are maximized.



18 CHAPTER 2. PRELIMINARIES



Chapter 3

Literature Review

3.1 Introduction

Determining the structure of a protein is far from trivial. A protein with just five amino

acids, could fold into 100 billion structures. Hence the lattice structures are introduced

for presenting the simplified views of protein folding process by simplifying on following

dimensions:

• Reduction of the level of detail at which protein sequences are represented

• Classification of the amino acids into classes

• Discretization of the conformational space

• Considering a simplified energy function

In the lattice models, an energy value is associated with every conformation taking into

account particular neighbourhood relationships of the amino acids on the lattice. Conse-

quently, given a lattice model L and a sequence s, the PSP (Protein Structure Prediction)

problem is to find a conformation of s in L with minimal energy.

3.2 The HP Model Under Different Lattices

In 1998, P. Crescenzi et al. proved that protein folding problem in HP model is NP-hard

for the 2D square lattice by reducing the Hamiltonian cycle problem to this problem [12].

In the same year Berger and Leighton proved that this computational problem was NP-

Complete [5]. Hence the number of approximation algorithms increased using simplified

19
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lattice structures over decades. Here we described some approximation algorithms of HP

model on different lattices:

3.2.1 Square Lattice

Figure 3.1: Square Lattice

The square lattice can be imagined as the set of points Z2 where two points, x = (x1, y1)

and y = (x2, y2) are adjacent if |x1 − x2|+ |y1 − y2| = 1. That means, x and y are adjacent

if and only if the sum of the differences between the first and second coordinates of x and

y is 1 (see Fig. 3.1).

Many algorithms have been developed on the 2D square lattice. Hart and Istrail gave an
1
4-approximation algorithm for the problem on the 2D square lattice [20]. Mauri, Piccolboni,

and Pavesi [40] give different approximation algorithm, also having the same approximation

ratio of
1
4; but they argue that it works better in practice. Later on, Newman [43] improved

the approximation ratio to
1
3 considering the conformation as a folded loop. A work on the
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square lattice with side chains by Berger and Lighton achieves an approximation ratio of
1
12

[5].

3.2.2 Cubic Lattice

Figure 3.2: Cubic Lattice

The cubic lattice is the extension of the square lattice into three dimensions. We can

express the set of points of the cubic lattice as Z3 with (0;0;0) as the origin. Here, two

points x and y are adjacent if and only if the sum of the differences of their coordinates is

1 or |x1 − x2|+ |y1 − y2|+ |z1 − z2| = 1 (see Fig. 3.2).

A 3
8
-approximation algorithm for the problem on the cubic lattice was given by Hart

and Istrail [20]. Later Newman and Ruhl improved this based on different geometric idea.

They achieved an improved approximation ratio of .37501 [44] shows that
3
8 is not the best

approximation ratio guaranteed before. A similar work of side chain cubic lattice gives an

algorithm with approximation ratio 4
10

[21]. An algorithm implemented in cubic lattice with

diagonals introduced by Bockenhauer and Bongartz [8], gave 5
8

approximation ratio.

3.2.3 Triangular lattice

The triangular lattice can be represented as the vertices of an infinite tessellation of equi-

lateral triangles (see Fig. 3.3). A significant drawback of the square lattice and the cubic

lattice is the parity problem. Parity problem can be defined as if two residues are at even
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Figure 3.3: Triangular Lattice

Figure 3.4: Any bead sequence can be implemented using triangular lattice

distance from one another in the sequence then they cannot be in topological contact with

one another when the protein is embedded in the lattice. Agarwala et al. first suggest

triangular lattice is more suitable to remove this parity problem [2]. They give an 1
2

and an
6
11

approximation algorithm using a better upper bound. Unlike the square lattice graph,

the triangular lattice doesn’t have the parity problem. As shown in the sequence in Fig.

3.4, we can force the endpoints of any ‘bead sequence’ of arbitrary length to be adjacent in

the triangular lattice graph thereby eliminating the parity problem. In this lattice, Islam

and Rahman gave an algorithm with an expected approximation ratio of 1− 2logn
n−1 for n ≥ 6,

where n is the total number of H in a given HP string [27, 26].

3.2.4 Face centered cubic lattice or FCC lattice

FCC lattice is a more generalized 3 dimensional version of the triangular lattice proposed

for protein folding by Agarwala et al [2] (see Fig. 3.5). He gives an approximation algorithm
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Figure 3.5: Face centered cubic lattice or FCC lattice

with ratio 3
5
. Heun [23] present algorithms with ratios 59

70
and 37

42
. The second algorithm was

designed for a natural subclass of proteins, which covers more than 99.5% of all sequenced

proteins.

3.2.5 Hexagonal Lattice or Honeycomb Lattice

Figure 3.6: Hexagonal Lattice

2D hexagonal lattice (see Fig. 3.6) is a biologically meaningful alternative to the standard

square lattice. To alleviate the problem of sharp turn Jiang and Zhu gave an approximation

algorithm of ratio 1
6

[29].
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Figure 3.7: Square Lattice with Diagonals

3.2.6 Square Lattice with Diagonals

To remove the parity problem of the square lattice Bockenhauer and Bongartz introduce

square lattice with diagonal [8] (see Fig. 3.7). They define square lattice with diag-

onals as an infinite graph L2D = (V,E) with vertex set V = Z2 and edge set E =

(x, x′)|x, x′ ∈ Z2, |x− x′|2 ≤
√

2, where |.|2 denotes the Euclidean norm. They achieve an

approximation ratio of 26
15

in this lattice.

3.2.7 Hexagonal lattice with diagonals

The hexagonal lattice has the parity problem. Shaw et al. [46] remove this problem by

introducing diagonals into hexagonal lattice and gave two approximation algorithms for

protein folding on hexagonal lattice with diagonals (see Fig. 5.1). Their first algorithm is a

5
3

approximation algorithm, which is based on the strategy of partitioning the entire protein

sequence into two pieces. The next algorithm is also based on partitioning approaches and

improves upon the first algorithm, achieving an approximation ration of 5
4

[46].
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Figure 3.8: The Hexagonal Lattice with Diagonals

3.3 Heuristics approaches for protein folding problem

A number of heuristics and meta-heuristic techniques have also been applied to tackle the

protein folding problem in the literature. A genetic algorithm for the protein folding prob-

lem in the HP model in 2D square lattice was proposed in [57]. In [24, 25], a hybrid genetic

algorithm was presented for the HP model in 2D triangular lattice and 3D FCC lattice.

Different naturally inspired optimization algorithm has successfully applied for protein

folding problem. Lin et al. [39] proposed an efficient hybrid Taguchi genetic algorithm.

It combines genetic algorithm, Taguchi method, and particle swarm optimization, in order

to enhance the performance of predicting protein structure. Zhang et al. [62] investigated

the bacterial chemotaxis optimization (BCO) on the 2D lattice model. He compared BCO

with standard genetic algorithm, immune genetic algorithm, and artificial immune system

for various chain lengths. His result showed that the BCO (bacterial chemotaxis optimiza-

tion) has the highest successful rate. Lately, several optimization heuristics inspired by bee

colonies have been proposed. The two main approaches are the evolutionary algorithms and

the foraging algorithms. The evolutionary approach was initially proposed by [54] and was

based on the mating of bee drones with a queen bee. The foraging approach was proposed
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simultaneously in [45] and [32] under the inspiration of honey bees. Dervis Karaboga claims

that artificial bee colony (ABC) [32] performs better than genetic algorithm, differential

evolution and particle swarm optimization. The reason is, normal global optimization tech-

niques conduct only one search operation in one iteration, for example the particle swarm

optimization carries out global search at the beginning stage and local search in the ending

stage. On the other hand, ABC (artificial bee colony) conducts both global search and local

search in each iteration. As a result the probability of finding the optimal is significantly

increase. Authors of [48, 49, 50, 55] conducted their research on protein folding using ant

colony optimization which was proposed by [7, 16, 15].

The authors in [38] first proposed the pull move set for the rectangular lattices, which

was used in the HP model under a variety of local search methods, such as tabu search.

They also showed the completeness and reversibility of the pull move set for the rectangular

grid lattices. In [9, 56, 28], the authors extended the idea of the pull move set in the local

search approach for finding an optimal embedding in the 2D triangular grid and the FCC

lattice in 3D. Other local search approaches such as simulated annealing [19, 52, 3] used

extensively in literature for protein folding problem.



Chapter 4

Protein Folding in the Hexagonal

Prism Lattice with Diagonals

In this chapter, we introduce and define hexagonal prism lattice model with diagonals. Then,

give two approximation algorithms for protein folding on this lattice. Our first algorithm

leads us to a helix like structure which is commonly found in protein structure. Our first

algorithm achieves and approximation ratio of 2. Our next algorithm is based on layer

topology which improves the approximation ratio to 9
7
.

4.1 Definitions

In this section we formally define the hexagonal prism lattice with diagonals.

Definition 2. The three-dimensional hexagonal prism lattice with diagonals is an infi-

nite graph G = (V,E) in the Euclidian Space with vertex set V = R3 and edge set E =

{(x, x′)|x, x′ ∈ R3 , |x − x′| ≤ 2}, where |.| denotes the Euclidean norm. The hexagonal

prism lattice is composed by stacking multiple two-dimensional hexagonal lattices with diag-

onals on top of each other. On a hexagonal prism lattice with diagonals each two-dimensional

hexagonal lattice with diagonals is called a layer. The edges connecting the two layers are

called layer edges. An edge e ≡ (x, x′) ∈ E is a non-diagonal edge or a non-diagonal layer

edge iff |x− x′| = 1; otherwise it is a diagonal edge or diagonal-layer edge.

We use the well known notion of neighbourhood or adjacency from graph theory: two

27
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Figure 4.1: A hexagonal prism lattice with diagonals. Different layers are indicated using

black and red color. Connecting edges between layers are indicated using green color.

vertices are adjacent/neighbour to each other if they are connected through an edge. In this

connection, the difference between the usual hexagonal prism model and our propose model

lies in the fact that a vertex in the former has 5 neighbours, whereas in the latter it has

additional 15 neighbours, i.e., a total of 20 neighbours (see Fig. 4.1).

In a conformation, a vertex occupied by an H (P) will often be referred to as an H-vertex

(a P-vertex). Fig. 4.2 shows an example of a conformation. Edges coloured blue are binding

edges and all other edges between residues are non-binding edges. Throughout the paper,

the H-vertices are indicated by filled circle and the P-vertices are indicated by blank circles.

Definition 3. Given a conformation φ, an edge (x, x′) of G is called a contact edge, if it

is not a binding edge, but there exist i, j ∈ {1, . . . , t} such that f(i) = x, f(j) = x′, and pi =

pj = H. The vertices of the lattice which are not occupied by an H or a P are called unused

vertices. A binding edge connecting an H with a P is called an alternating edge. Loss

edge is a non-binding edge incident to an H that is not a contact edge (see Fig. 4.3).

Now, we define the neighbourhood of an edge in the lattice.

Definition 4. Let e = (x, y) be any edge in G. We define the neighbourhood N(e) of e as

the intersection of the neighbours of its endpoints x and y.
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Figure 4.2: Conformation of PHPHHHPHPHPHPHPHHH on the lattice. * indicates the

start symbol. The numbers in the figure is the position of beads in the string.
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Figure 4.3: (C,D) and (B,C) are alternating edges; (A,C), (C,F) and (C,E) are loss edges.
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Figure 4.4: (a) 12 neighbours of the non-diagonal edge (x, y) (b) 4 neighbours of the diagonal

edge (x, y) (c) 2 neighbours of the layer-diagonal edge (x, y) (d) 6 neighbours of the layer

non-diagonal edge (x, y).

4.2 Our Approaches

4.2.1 Upper Bound

We will deduce a bound based on a simple counting argument: we will count the number of

neighbours of a vertex in the lattice. We start with the following useful lemmas.

Lemma 1. Let p be an HP string and G = (V, E) is a hexagonal lattice with diagonals. If

p has a conformation in G, then any H in p can have at most 18 contact edges.

Proof: Every vertex in the latticeG has exactly 20 neighbours comprising 3 non-diagonal

neighbours, 9 diagonal neighbours in one layer, 4 neighbours from the upper layer and 4

neighbours from lower layer (see Fig. 4.1). In this conformation, every H-vertex has exactly

two binding edges. Hence 18 edges remain, which could potentially be contact edges. And

hence the result follows.
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Lemma 2. Let p be an input string for the problem and φ be a conformation of p. Let e

=(x, y) be a loss edge with respect to φ. Then there are at most four alternating edges in

N(e).

Proof: From Fig. 4.4 if e is a non-diagonal edge, then N(e) contains 12 vertices; if e

is a diagonal edge, then N(e) contains 4 vertices; if e is a layer-diagonal edge, then N(e)

contains 2 vertices; if e is a layer non-diagonal edge, then N(e) contains 6 vertices. Again,

each of x and y can be incident to at most two binding edges. So, there are at most four

binding edges in N(e). It follows immediately that there can be at most four alternating

edges adjacent to e.

Now we are ready to present the upper bound.

Lemma 3. For a given HP string p, the the total number of contacts in a conformation φ

is at most 18n− 1
2
k, where k is the total number of H-runs and n is the total number of H.

Proof : From Lemma 1, we know that the number of contacts is at most 18n. In a

confirmation one loss edge incident to H means that it would lose one contact edge. In what

follows we will show that there will be at least 1
2
k loss edges in φ. Since every H-run is

preceded and followed by a total of two alternating edges, it is sufficient to prove that, for

each alternating edge in φ for p, we have 1
4

loss edge on average.

From Lemma 2 we know that, for every loss edge there will be at most four alternating edges

in its neighbourhood. Alternatively, we can say that, for every four alternating edges there

will be at least one loss edge, assuming that the alternating edges are in the neighbourhood

of that loss edge. Clearly, if the alternating edges are not within the neighbourhood then

the number of loss edges will increase. So, for every alternating edge there will be at least 1
4

loss edge. There are a total of 2k alternating edges. So, the total number of loss edges will

be, 1
4
× 2× k = 1

2
k. Hence, the result follows.

4.2.2 Algorithms and lower bounds

In this section, we present two novel approximation algorithms for the problem.
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Figure 4.5: Folding of HP string H14P 2H8P 1H11 by Algorithm HelixArrangement. Dot-

ted black lines represent the lattice, solid lines represent the binding edges of the protein,

blue dashed lines show 9 contacts of a H (identified by *). Binding edges are numbered

sequentially. z indicates the direction of side layers of the upper layer.

4.2.2.1 Algorithm HelixArrangement

The idea of the first algorithm is to arrange all H’s of the input string in a helix structure.

The main difference between this new helix structure and conventional helix structure is

that arrange P’s of the input string outside of the main helix structure and put H only in

the main helix structure. Fig. 4.5 shows the way we arrange H’s and P’s.

Algorithm HelixArrangement

Input: An HP string p.
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1. Arrange the H’s as follows:

(a) Starting from a layer arrange the first six H’s in a hexagon. Let, called this base

hexagon.

(b) Using the layer diagonal edge climb up to the upper layer. In this layer arrange

the next six H’s in a hexagon which is parallel to the base hexagon.

(c) repeat Step (b) until the end of the string p. The hexagon where the process

ends, let called that top hexagon.

2. Intermediate P-runs are arranged in the outer side of the hexagon in a layer (see Fig.

4.5)

4.2.2.2 Approximation ratio for Algorithm HelixArrangement

Except for the H’s of the base hexagon and top hexagon an H can achieve at least 9 contacts

as follows. An H from its layer achieves 3 contacts, from its immediate upper layer 3 contacts

and from its immediate lower layer 3 contacts. H’s of the base hexagon miss the contacts

from the lower layer and H’s of the top hexagon miss the contacts from the upper layer.

So, there is in total 12 H in base hexagon and top hexagon combined which miss a total of

12 ∗ 3 or 36 contacts. Note that, it is possible that top hexagon is not filled with 6 H’s. But

it does not change any computation, because there is still 6 H’s in the top hexagon and the

immediate lower layer hexagon of top hexagon, which miss 3 contacts each.

Now, if we consider the P’s arrangement, we will achieve two contacts for every alter-

nating edge. If there is k alternating edges we will achieve 2k contacts.

So, for n H’s total number of contacts (C) can be achieved as follows:

C ≥ 9n− 36 + 2k

Hence we get the following approximation ratio A1:

A1 =
18n− 1

2
k

(9n− 36 + 2k)
(4.1)

From Equation 4.1 it can be seen that for large n, A1 tends to reach 18
9
or 2. So we

compute the value of k so that our approximation ratio is at most 2 as shown below.
18n− k

2

(9n−36+2k)
≤ 18

9

⇒ 81k ≥ 18× 30× 2
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⇒ k ≥ 48
3
≈ 16

So, if the total number of H-runs is greater than 16, then Algorithm HelixArrangement

will achieve an approximation ratio of 2. This can be summarized in Theorem later.

z

Figure 4.6: Folding of HP string H9P 6H18P 7H9 by Algorithm LayerArrangement only in

the Upper layer. Z indicates the direction of side layers of Upper layer

Theorem 1. For any given HP string, Algorithm HelixArrangement gives a 2 approxima-

tion ratio for k > 16, where k is the total number of H-runs and n is the total number of H.
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4.2.2.3 Algorithm LayerArrangement

The idea of the second algorithm is to arrange all H’s occurring in the input string along

the two layers. We arrange the H’s in the prefix of the string up to the bn
2
c-th H on the

upper layer and arrange the rest of those on the lower layer. In a layer, H-runs are arranged

in a spiral manner. Then we arrange the P’s between the H’s outside these two layers. The

arrangements of the P-runs outside the two layers are shown in Fig. 4.6. Within a layer the

arrangement is done in chains (see Fig. 4.6). The arrangement in the upper (lower) layer

can be further divided into nine regions, namely, the left region, the right region, the up

region, the down region, the inside-left region, the inside-right region, the inside-up region,

the inside-down region and the middle region (see Fig. 4.7).

Algorithm LayerArrangement

Input: An HP string p.

1. Set f = bn
2
c.

2. Suppose F denotes the position in p after the f -th H. Denote by pref F (p) the prefix

of p up to position F and by suff F (p) the suffix, that starts right after it. Now,

(a) Arrange the H’s in pref F (p) in the upper layer as follows:

i. Let, i and j are two integers that divide m1 with reminder 0, such that the

|i− j| is minimal for all i and j. Let, r = min(i, j), which is number of the

chains in a layer. Let s = bf
r
c, which is the number of residues in a chain.

Suppose, S1, S2, S3... denote the position in p after the s-th,2s-th,3s-th... H

respectively. Denote, Si(p)= pSi−1
...pSi−1 for i = 1, 2, 3.... Here S0 is starting

position.

ii. Now arrange Si(p) in chain one by one from top to bottom for i = 1, 2, 3....

iii. Intermediate P-runs are arranged in the upper-side layers of the upper layer

(see Fig. 4.6)

(b) Arrange the H’s in suff F (p) along the lower layer following the same strategy

spelled out in Step 2(a); intermediate P-runs are arranged in the lower-side layer

of the lower layer (see Fig. 4.6).



36CHAPTER 4. PROTEIN FOLDING IN THE HEXAGONAL PRISM LATTICEWITH DIAGONALS

z

Up Region

Inside Up Region

Right Region

Inside Right Region

Middle Region

Inside Left Region

Left Region

Inside Down Region

Down Region

Figure 4.7: Divided into 9 region. They are up region, inside up region, right region, inside

right region, middle region, inside left region, left region, inside down region, down region.

4.2.2.4 Approximation ratio for Algorithm LayerArrangement

Now we focus on deducing an approximation ratio for Algorithm LayerArrangement. Sup-

pose that m1 = bn
2
c. So, according to Algorithm LayerArrangement, the upper (lower) layer

will contain m1 (m1 or m1 + 1) H’s. We consider two cases, namely, where m1 is odd, i.e.,

m1 = 2x+ 1 and m1 is even, i.e., m1 = 2x, with an integer x > 0.

Now, let, i and j are two integers that divide m1 with remainder 0, such that |i − j| is

minimal for all i and j. Let, r = min(i, j), which is the number of the chains in a layer.

Now, let, s = m1/r, which is the number of residues in a chain. The chains are arranged

spirally in a layer.

In what follows, we will use vw-upper layer (vw-lower layer) to denote a particular region

of the upper (lower) layer. So, vw could be one of the 9 options, namely, lR (left region), rR

(right region), uR (up region), dR (down region), ilR (inside-left region), irR (inside-right
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region), iuR (inside-up region), idR (inside-down region) and mR (middle region). We also

use φLA to refer to the conformation given by Algorithm LayerArrangement.

The analysis here will be easy to understand with the help of Fig. 4.7. In φLA, every

vertex in the lR-up layer and rR-up layer has at least 8 contacts. Every vertex in the ilR-

upper layer and the irR-upper layer has at least 12 contacts. For each of lR-upper layer,

rR-upper layer, ilR-upper layer and the irR-upper layer, there are r − 2 such vertices (see

Fig. 4.7). Every vertex in the uR-upper layer and the dR-upper layer has at least 6 contacts.

There are s+3
2

such vertices for each of the uR-upper layer and the dR-upper layer. Every

vertex in the iuR-upper layer and the idR-upper layer has at least 11 contacts. There are

( s−3
2

) such vertices for each of the iuR-upper layer and the idR-upper layer. So there remain

(rs − 2r − 2s − 4) vertices in the upper layer which is arranged in mR-upper layer, where

every vertex achieves 14 contacts.

So, the total number of contacts (C ) of all the vertices of the upper layer can be com-

puted as follows:

C ≥ 2×8× (r−2)+2×12× (r−2)+2×6× s+3
2

+2×11× ( s−3
2

)+14× (2x−2r−2s−4)

⇒ C ≥ 16r − 32 + 24r − 48 + 6s+ 18 + 11s− 33 + 14sr − 28r − 28s− 56

⇒ C ≥ 14sr + 12r − 11s− 151

⇒ C ≥ 14m1 + 12r − 11s− 151

⇒ C ≥ 7n+ 12r − 11s− 151

Since the upper layer is symmetric to the lower layer, both layer will have the same

number of vertices if n = 2m1. So all the vertices of the lower layer will also have at least

C contacts. So the total number of contacts will be at least 2C or 14n+ 24r − 22s− 302.

If n = 2m1+1, then let n1 = n−1. This n1 vertices will have at least 14n1+24r−22s−302

contacts. The remaining vertex will have at least 2 contacts. So the total number of contacts

will be at least 14(n − 1) + 24r − 22s − 302 + 2 or 14n + 24r − 22s − 314. So, combining

the two cases, we get that the total number of contacts is at least 14n + 24r − 22s − 314.

Now we need to take the alternating edges into our consideration. For every alternating

edge we get two extra contacts for the two vertices (each having one). So, for n H’s and k

alternating edges we get a total of at least 14n+ 24r − 22s− 314 + 2k contacts. Hence we
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get the following approximation ratio A2:

A2 =
18n− 1

2
k

(14n+ 24r − 22s− 314 + 2k)
(4.2)

From Equation 4.2 it can be seen that for large n, A2 tends to reach 18
14

. So we compute

the value of k so that our approximation ratio is at most 18
14

as shown below.
18n− k

2

(14n+24r−22s−314+2k)
≤ 18

14

⇒ 14× 18n− k
2
≤ 18

(14n+24r−22s−314+2k)

⇒ 252n− 7k ≤ 252n+ 432r − 396s− (314× 18) + 36k

⇒ 43k ≥ 36(11s− 12r) + (314× 18) ⇒ k ≥ 36(11s−12r)+(314×18)
43

Now, from this case if 11s = 12r, k ≥ (314×18)
43

≈ 132

So, if the total number of H-runs is greater than 132, then Algorithm LayerArrangement

will achieve an approximation ratio of 18
14

or 9
7

for 11s = 12r.

Note that, the value of k is dependent on n and the HP string. We now deduce the

expected value of k for a given HP string. This problem can be mapped into the prob-

lem of Integer Partitioning as defined below. Notably, similar mapping has recently been

utilized in [26][27][46] for deriving an expected approximation ratio of some other algorithms.

Problem 1. Given an integer Y , the problem of Integer Partitioning aims to provide all

possible ways of writing Y , as a sum of positive integers.

Note that the ways that differ only in the order of their summands are considered to be

the same partition. A summand in a partition is called a part. Now, if we consider n as

the input of Problem 1 (i.e., Y ) then each length of H-runs can be viewed as parts of the

partition. So if we find the expected number of partitions we in turn get the expected value

of k. Kessler and Livingston [33] showed that to get an integer partition of an integer Y ,

expected number of required parts is:

√
3Y

2π
× (log Y + 2γ − 2 log

√
π

6
),

where γ is the famous Euler’s constant. For our problem Y = n. If we denote E[P ] as the

expected number of H-runs then,
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E[P ] =

√
6

π
×
√
n× (

1

2
log n+ γ − log

√
π

6
).

Now, as (1
2

log n+ γ − log
√

π
6
) ≤ (

√
2π
3
× 1

2
log n) for n ≥ 5, we can say that

E[P ] ≤
√
n× log n.

So the expected value of k is less than or equal to
√
n × log n which implies that

√
n × log n ≥ 132 or n ≥ 500. Now, if 11s > 12r, the lower bound of k increases, as a

result the expected lower bound of n will increase. On the other side, if 11s < 12r, expected

lower bound of n will decrease. The above findings are summarized in the following theorems.

Theorem 2. For any given HP string, Algorithm LayerArrangement achieves an approxi-

mation ratio of 9
7

for k > 132, where k is the total number of H-runs, 11s = 12r and n = 2rs

is the total number of H.

Theorem 3. For any given HP string, Algorithm LayerArrangement is expected to achieve

an approximation ratio of 9
7

for n ≥ 500 and 11s = 12r where, n = 2rs is the total number

of H.

4.3 Discussion and Conclusions

One vertex in the SC (Simple Cubic) lattice has 6 neighbours, and in FCC (Face Centered

Cubic) or BCC (Body Centered Cubic) lattice it has 14 neighbours. On the other hand,

one vertex of the hexagonal prism lattice with diagonals have 20 neighbours which property

leads us to find better approximation ratio for our algorithm for protein folding. On the

other hand this lattice model removes some well known problems of protein folding in SC

lattice, e.g., parity problem. Considering such properties of this lattice we believe that more

algorithms could be developed in this lattice. Also heuristics algorithms can be applied on

this lattice, which can lead us to better result.
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Chapter 5

Weighted Contact Analysis in

Hexagonal Lattice with Diagonals

In this chapter, we extend the hexagonal lattice model with diagonals with the concept of

weighted contacts. This lattice model was first proposed by Shaw et al. [47]. In [47] they

gave an upper bound for the total number contact edges and an approximation algorithm

having an approximation ratio of 10
3

, which is based on the strategy of partitioning the entire

protein sequence into two pieces. Our new approach for analysis improve the ratio to 1.96.

5.1 Review of the lattice structure of [46, 47]

In this section, we briefly review the notions and notations to describe the hexagonal lattice

model with diagonals introduced in [46, 47] (See Fig. 5.1).

Definition 5. The two-dimensional hexagonal lattice with diagonals is an infinite graph

G = (V,E) in the Euclidian Space with vertex set V = R2 and edge set E = {(x, x′)|x, x′ ∈
R2 , |x− x′| ≤ 2}, where |.| denotes the Euclidean norm. An edge e ≡ (x, x′) ∈ E is a non

diagonal edge iff |x−x′| = 1; otherwise it is a diagonal edge. We distinguish between 2 types

of diagonal edges, one having length less than 2 (i.e., |x − x′| < 2) and the other having

length equal to 2 (i.e., |x−x′| = 2). The former is refered to as the small diagonal edge and

the latter as the big diagonal edge.

41
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Figure 5.1: The Hexagonal Lattice with Diagonals

5.2 Concept of weighted contact

Further refinement of this model concerns the intensity of the chemical forces along the dif-

ferent types of edges. The chemical binding force directly depends on the distance between

the two adjacent amino acids. The greater the distance the smaller the chemical binding

force. The three fundamental noncovalent chemical binding forces are, electrostatic interac-

tions, hydrogen bonds, and van-der-waals interactions. They differ in geometry, strength,

and specificity. Furthermore, these bonds are greatly affected in different ways by the pres-

ence of water. According to Coulomb’s law, electrostatic interaction between two atoms

depends on the electric charges on atoms and inversely proportional to their distance.

In our assumption, the chemical binding force between the two amino acids which are

connected via a big diagonal edge is smaller than that between the two amino acids which

are connected via small diagonal edge. We introduce two additional parameters α1 and

α2 (0 ≤ α1 ≤ α2 ≤ 1) to measure the loss of binding power relative to the binding power

given by non-diagonal edges. Here we will count weighted contact of 1 for each non-diagonal

contact edge, weighted contact of α1 for big diagonal contact edge, weighted contact of α2

for small diagonal contact edge.
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5.3 Analysis with the concept of weighted contact

In this section, we analysis the algorithm of [47, 46] incorporating the concept of weighted

contact. Hexagonal lattice with diagonals is used for the algorithm. We start with deducing

two upper bounds on the number of possible contacts for any H in the HP string.

5.3.1 An upper bound

We will deduce a bound based on a simple counting argument: we will count the number of

neighbours of a vertex in the lattice. We start with the following useful lemmas.

Figure 5.2: Every vertex in the lattice has 12 neighbours comprising 3 non-diagonal neigh-

bours (blue lines), 3 big diagonal neighbours (green lines) and 6 small diagonal neighbours

(black lines)

Lemma 4. Let p be an HP string and G = (V, E) be a hexagonal lattice with diagonals. If p

has a conformation in G, then the weighted contact of any H in p can be at most 3+α1+6α2.

Proof: Every vertex in the lattice G has exactly twelve neighbours comprising 3 non-

diagonal neighbours, 3 big diagonal neighbours and 6 small diagonal neighbours (See Fig.

5.2). In this conformation, every H-vertex has exactly two binding edges. If the binding

edges are big diagonal edges, then we get the minimum loss of weighted contact. Hence

3 non-diagonal edges, 1 big diagonal edge and 6 small diagonal edges cause the maximum

weight of contact edges on a vertex. And hence the result follows.
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Lemma 5. For a given HP string p, the total weighted contact in a conformation φ is at

most (3 +α1 + 6α2)n− 1
2
k, where k is the total number of H-runs and n is the total number

of H.

Proof : From Lemma 4, we know that weighted contact for an H is at most 3+α1+6α2.

In a confirmation one loss edge incident to H means that it would lose one contact edge. In

what follows we will show that there will be at least 1
2
k loss edges in φ. Since every H-run

is preceded and followed by a total of two alternating edges, it is sufficient to prove that,

for each alternating edge in φ for p, we have 1
4

loss edge on average.

If e is a non-diagonal edge, then N(e) contain 12 vertices; if e is a diagonal edge, then

N(e) contain 4 vertices; if e is a layer-diagonal edge, then N(e) contain 2 vertices; if e is

a layer non-diagonal edge, then N(e) contain 6 vertices. Again, each of x and y can be

incident to at most two binding edges. So, there are at most four binding edges in N(e).

So, for every loss edge there will be at most four alternating edges in its neighbourhood.

Alternatively, we can say that, for every four alternating edges there will be at least one

loss edge, assuming that the alternating edges are in the neighbourhood of that loss edge.

Clearly, if the alternating edges are not within the neighbourhood then the number of loss

edges will increase. So, for every alternating edge there will be at least 1
4

loss edge. There

are a total of 2k alternating edges. So, the total number of loss edges will be, 1
4
× 2× k =

1
2
k. Hence, the result follows.

5.3.2 Algorithms lower bounds

In this section, we first briefly review the algorithm of [46, 47], which is called Algorithm

ChainArrangement. Then, we deduce the approximation ratio incorporating the concept of

weighted contact for Algorithm ChainArrangement developed in [46, 47]. Breifly, the idea

of this algorithm is to arrange all H’s occurring in the input string along the two chains.

The algorithm arrange the H’s in the prefix of the string up to the bn
2
c-th H on the left

chain and arrange the rest of those on the right one (see Fig. 5.3). The next step of the

algorithm is to arrange the P’s between H’s outside these two chains. The arrangements of

the P-runs along the side-arms of the two chains are shown in Fig. 5.3.
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Right chainLeft chainSide Arm Side Arm

Up region

Left region

Right region

Down region

Figure 5.3: Folding of HP string H2P 6H2P 2H3P 1H4P 2H4P 5H3 by Algorithm ChainAr-

rangement. The concept of the figure borrowed from [46, 47].

5.3.3 Approximation ratio by weighted contact for Algorithm ChainAr-

rangement

Now we focus on deducing an approximation ratio for Algorithm ChainArrangement using

the concept of weighted contact. Suppose that m1 = bn
2
c. So, according to Algorithm

ChainArrangement, the left (right) chain will contain m1 (m1 or m1 + 1) H’s. We need to

consider two cases, namely, where m1 = 2x + 1 and m1 = 2x, with an integer x > 0. In

what follows, we will use vw-left chain (vw-right chain) to denote a particular region of the

left (right) chain. So, vw could be one of the 4 options, namely, lR (left region), rR (right

region), uR (up region) and dR (down region). We also use φCA to refer to the conformation

given by Algorithm ChainArrangement.
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Right chainLeft chainSide Arm Side Arm

Up region

Left region

Right region

Down region

Figure 5.4: Showing different regions of the left chain and the right chain for m1 = 2x+ 1.

The concept of the figure borrowed from [46, 47]

5.3.3.1 case 1: m1 = 2x+ 1

The analysis for this case will be easier to understand with the help of Fig. 5.4 and Table

5.1. First, let, n is even.

So, the total weighted contact (C) of all the vertices in the left chain, can be computed

as follows:

C ≥ (x− 2)× (4α2 +α1) + (x− 1)× (4α2 + 2α1 + 1) + (2α2 +α1 + 1) + (3α2 +α1) + (2α2 +

α1) + (3α2 + α1)

⇒ C ≥ x(4α2 + α1) + x(4α2 + 2α1 + 1)− 2(4α2 + α1)− (4α2 + 2α1 + 1) + (2α2 + α1 + 1) +

(3α2 + α1) + (2α2 + α1) + (3α2 + α1)
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Table 5.1: Weighted contact for different regions of the left chain, when number of vertex

m1 = 2x+ 1

Region
nummber of

vertex m1 =

2x+ 1

non-diagonal

edge

(weight = 1)

small diag-

onal edge

(weight = α2)

big di-

agonal edge

(weight = α1)

lR-left

chain

x− 2 0 4 1

rR-left

chain

x− 1 1 4 2

uR-left

chain

1 1 2 1

1 0 3 1

dR-left

chain

1 0 2 1

1 0 3 1

⇒ C ≥ x(8α2 + 3α1 + 1)− 8α2 − 2α1 − 4α2 − 2α1 − 1 + 10α2 + 4α1 + 1

⇒ C ≥ x(8α2 + 3α1 + 1)− 2α2

⇒ C ≥ 1
2
(2x+ 1)(8α2 + 3α1 + 1)− 2α2 − 1

2
(8α2 + 3α1 + 1)

⇒ C ≥ 1
2
m1(8α2 + 3α1 + 1)− 2α2 − 1

2
(8α2 + 3α1 + 1)

⇒ C ≥ 1
4
n(8α2 + 3α1 + 1)− 2α2 − 1

2
(8α2 + 3α1 + 1)

Since the right chain is symmetric to the left one, both chains will have the same number

of vertices if n = 2m1, i.e., all the vertices of the right chain will also have at least C weighted

contact. So the total weighted contact will be at least 2C or 1
2
n(8α2+3α1+1)−12α2−3α1−1.

If n = 2m1+1 then let n1 = n−1. The total weighted contact for these n1 vertices will be

at least n1

2
(8α2+3α1+1)−12α2−3α1−1. The remaining vertex will have at least 2α2 weighted

contact. So the total weighted contact will be at least n−1
2

(8α2+3α1+1)−12α2−3α1−1)+2α2

or n
2
(8α2 + 3α1 + 1)− 14α2 − 9

2
α1 − 3

2
.

5.3.3.2 case 2: m1 = 2x

The analysis for this case will be easier to understand with the help of Fig. 5.5 and Table

5.2. Firstly, let, n is even.



48CHAPTER 5. WEIGHTED CONTACT ANALYSIS IN HEXAGONAL LATTICEWITH DIAGONALS

Right chainLeft chainSide Arm Side Arm

Up region

Left region
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Down region

Figure 5.5: Showing different portion of left chain and right chain for m1 = 2x. The concept

of the figure borrowed from [46, 47].

So, the total weighted contact (C) of all the vertices in the left chain, can be computed

as follows:

C ≥ (x−2)×(4α2+α1)+(x−2)×(4α2+2α1+1)+(2α2+α1+1)+(3α2+α1)+(3α2+α1+1)+2α2

⇒ C ≥ x(4α2 + α1) + x(4α2 + 2α1 + 1)− 2(4α2 + α1)− 2(4α2 + 2α1 + 1) + (2α2 + α1 + 1) +

(3α2 + α1) + (3α2 + α1 + 1) + 2α2

⇒ C ≥ x(8α2 + 3α1 + 1)− 6α2 − 3α1

⇒ C ≥ 1
2
m1(8α2 + 3α1 + 1)− 6α2 − 3α1

⇒ C ≥ 1
4
n(8α2 + 3α1 + 1)− 6α2 − 3α1
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Table 5.2: Weighted contact for different regions of the left chain, when number of vertex

m1 = 2x

Region
no. of vertex

m1 = 2x

non-diagonal

edge

(weight = 1)

small diagonal

edge(weight =

α2)

big diagonal

edge(weight =

α1)

lR-left

chain

x− 2 0 4 1

rR-left

chain

x− 2 1 4 2

uR-left

chain

1 1 2 1

1 0 3 1

dR-left

chain

1 1 2 1

1 0 2 0

Since the right chain is symmetric to the left one, both chains will have the same number

of vertices if n = 2m1, i.e., the total weighted contact considering all the vertices of the right

chain will also be at least C.

So the total weighted contact will be at least 2C or 1
2
n(8α2 + 3α1 + 1)− 12α2 − 6α1.

If n = 2m1 +1 then let n1 = n−1. This n1 vertices will have at least n1

2
(8α2 +3α1 +1)−

12α2− 6α1 weighted contact. The remaining vertex will have at least 2α2 weighted contact.

So the total weighted contact will be at least n−1
2

(8α2 + 3α1 + 1)− 12α2 − 6α1 + 2α2 or

n
2
(8α2 + 3α1 + 1)− 14α2 − 15

2
α1 − 1

2
.

So, combining the two cases, we get that the total weighted contact is at least n
2
(8α2 +

3α1 + 1) − 14α2 − 15
2
α1 − 1

2
. Now we need to take the alternating edges into our consid-

eration. For every alternating edge we get two extra weighted contact for the two vertices

(each having one). So, for n H’s and k alternating edges we get a total weighted contact of

at least n
2
(8α2 + 3α1 + 1)− 14α2− 15

2
α1− 1

2
+ 2k. Hence we get the following approximation

ratio Ac:
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Ac =
(6α2 + α1 + 3)n− 1

2
k

n
2
(8α2 + 3α1 + 1)− 14α2 − 15

2
α1 − 1

2
+ 2k

(5.1)

To analyse the ratio established above, we now discuss the corresponding ratios for spe-

cific value of α1, α2 and k.

i) Case 1: α1 = α2 = α (Let) :

Ac =
(7α + 3)n− 1

2
k

n
2
(11α + 1)− 43

2
α− 1

2
+ 2k

(5.2)

Now, if α = 0, that means their is no effect of diagonal edge on weighted contact, then,

Ac =
3n− 1

2
k

n
2
− 1

2
+ 2k

(5.3)

Now we can compute the value of k for which approximation ratio will be at least 6.

3n− 1
2
k

n
2
− 1

2
+2k
≤ 6

⇒ (3n− 1
2
k) ≤ 6(n

2
− 1

2
+ 2k)

⇒ 3n− 1
2
k ≤ 3n− 3 + 12k

⇒ 25
2
k ≥ 3

⇒ k ≥ 6
25

or k ≥ 1

That means if their is no effect of diagonal edge the lattice become similar to hexagonal

lattice and the approximation ratio found shows same result of [29], where Jiang and Zhu

works with hexagonal lattice.

If α = 1, the approximation ratio is 5
3

for k > 10 (as shown in [46]).

ii) Case 2: α1 6= α2 :

Now, assume that weighted contact is inversely proportional to the contact edge length.

Then, α1 = 1
2

and α2 = 1√
3
. Let, named it as natural assignment.

From equation 5.1,
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Ac =
(6 1√

3
+ 1

2
+ 3)n− 1

2
k

n
2
(8 1√

3
+ 31

2
+ 1)− 14 1√

3
− 15

2
1
2
− 1

2
+ 2k

⇒ Ac =
6.964n− 1

2
k

3.559n−16.08+2k

(5.4)

From Equation 5.4 it can be seen that approximation ratio of A1 tends to reach 6.964
3.559

.

Now we compute the value of k so that our approximation ratio is at most 6.964
3.559

or 1.96.

6.964n− 1
2
k

3.559n−16.08+2k
≤ 6.964

3.559

⇒ 3.559× 6.964n− 3.559× 1
2
k ≤ 3.559× 6.964n− 16.08× 6.964 + 2× 6.964k

⇒ 15.7075k ≥ 16.08× 9.964

⇒ k ≥ 16.08×9.964
15.7075

⇒ k ≥ 7.12 or k ≥ 8

So, if the total number of H-runs is greater or equal than 8, then Algorithm ChainAr-

rangement will achieve an approximation ratio of 1.96, assuming that the weighted contact

is inversely proportional to the contact edge length.

Theorem 4. For any given HP string, Algorithm ChainArrangement achieves an approxi-

mation ratio of 1.96 for k > 8 considering weighted contact under natural assignment, where

k is the total number of H-runs, n is the total number of H and n = 2rs with s = 1.5r.

5.4 Conclusions

In this chapter we have analysed Algorithm ChainArrangement. We use weighted con-

tact, where different length of contact weight get different weight. The idea improves the

approximation ratio to 1.96.
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Chapter 6

Weighted Contact Analysis in the

Hexagonal Prism Lattice with

Diagonal

In this chapter, we deduce the approximation ratio considering the concept of weighted

contact for Algorithm HelixArrangement and LayerArrangement.

6.1 Upper bound

In this section, we give an upper bound using the concept of weighted contact for hexagonal

prism lattice with diagonals. In our assumption, the chemical binding force between the two

amino acids which are connected via a big diagonal edge is smaller than that between the

two amino acids which are connected via small diagonal edge. We introduce three additional

parameters α1, α2 and α3 (0 ≤ α1 ≤ α2 ≤ α3 ≤ 1) to measure the loss of binding power

relative to the binding power given by non-diagonal edges. Here we will count weighted

contact of 1 for each non-diagonal contact edge or non-diagonal layer contact edge, weighted

contact of α1 for big diagonal contact edge, weighted contact of α2 for small diagonal contact

edge and weighted contact of α3 for diagonal layer contact edge.

Lemma 6. Let p be an HP string and G = (V, E) be a hexagonal prism lattice with diago-

nals. The total weighted contact in a conformation φ is at most (5+α1+6α2+6α3)×n− 1
2
k,

where k is the total number of H-runs and n is the total number of H.

53
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Proof: Every vertex in the lattice G has exactly twenty neighbours comprising 3 non-

diagonal neighbours, 3 big diagonal neighbours, 6 small diagonal neighbours, 2 non-diagonal

layer neighbours and 6 diagonal layer neighbours (see Fig. 2.5). In this conformation, every

H-vertex has exactly two binding edges. If the binding edges are big diagonal edges, then

we get the minimum loss of the weighted contacts. Hence weighted contact will be at most

(5+α1+6α2+6α3)×n for n Hs. Again, we can say that there will be at least 1
2
k loss edges in

φ for k H-runs. Therefore the weighted contact is at most (5+α1+6α2+6α3)n− 1
2
k in φ.

6.2 Weighted contact analysis of Algorithm HelixAr-

rangement

Now we focus on deducing an approximation ratio for Algorithm HelixArrangement consid-

ering weighted contact. For a vertex, Table 6.1 provides an account for the different types

of edges with different weights where the adjacent vertex is in different layers. Every vertex

from its layer achieves 3 contacts, 2 of them are due to short diagonal edges (weight=α2)

and 1 is due to long diagonal edge (weight=α1). From its immediate upper layer it achieves

3 contacts, 1 of them is due to non-diagonal layer edge (weight=1) and 2 of them are due

to diagonal layer edges (weight=α3). From its immediate lower layer it achieves 3 contacts,

1 of them is due to non-diagonal layer edge (weight=1) and 2 of them are diagonal layer

edges (weight=α3).

So, the total weighted contact (C) of all the vertices can be computed as follows:

C ≥ (α1 + 2α2 + 1 + 2α3 + 1 + 2α3)n− 12(1 + 2α3) + 2k

C ≥ (α1 + 2α2 + 4α3 + 2)n− 12(1 + 2α3) + 2k

Hence considering weighted contact we get the following approximation ratio A3:

A3 =
(5 + α1 + 6α2 + 6α3)n− 1

2
k

(α1 + 2α2 + 4α3 + 2)n− 12(1 + 2α3) + 2k
(6.1)

To further examine the ratio deduced above, we now consider some specific values of α1,

α2, α3 and k. It is natural to assume that the weighted contact is inversely proportional

to the contact edge length. In that case we have α1 = 1
2
, α2 = 1√

3
and α3 = 1√

2
. In what

follows, we will refer to this assignment as the natural assignment. Then, under natural
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Table 6.1: Weighted contacts for a vertex

Region Contacts non-

diagonal

edges

(weight =

1)

short

diag-

onal

edges

(weight =

α2)

long di-

agonal

edges

(weight =

α1)

non-

diagonal

layer

edges

(weight =

1)

diagonal

layer

edges

(weight =

α3)

From its

layer

3 0 2 1 0 0

From imme-

diate upper

layer

3 0 0 0 1 2

From imme-

diate lower

layer

3 0 0 0 1 2

assignment, from Equation 6.1 we have the following:

A2 =
(5 + 1

2
+ 6 1√

3
+ 6 1√

2
)n− 1

2
k

(1
2

+ 2 1√
3

+ 4 1√
2

+ 2)n− 12(1 + 2 1√
2
) + 2k

⇒ A2 =
13.2067n− 1

2
k

6.483n− 29 + 2k
(6.2)

From Equation 6.2 it can be seen that A2 tends to reach 13.2067
6.483

≈ 2. Now we compute

the value of k so that our approximation ratio is at most 13.2067
6.483

or 2.

13.2067n− 1
2
k

6.483n−29+2k
≤ 13.2067

6.483

⇒ 9
2
k ≥ 58

⇒ k ≥ 12.88 ≈ 13

So, if the total number of H-runs is greater than 13, then Algorithm HelixArrangement

will achieve an approximation ratio of 2.

Theorem 5. For any given HP string, Algorithm HelixArrangement achieves an approxi-

mation ration of 2 for k > 13 considering weighted contact under natural assignment, where

k is the total number of H-runs and n is the total number of H’s.
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6.3 Weighted contact analysis for Algorithm LayerAr-

rangement

Now we focus on deducing an approximation ratio for Algorithm LayerArrangement consid-

ering weighted contacts. Table 6.2 provides an account for the different types of edges with

different weights at different regions of the upper layer. Every vertex in the lR-up layer

and rR-up layer has at least 8 contacts, due to 1 non-diagonal edge (weight=1), 3 short

diagonal edges (weight=α2), 1 long diagonal edge (weight=α1), 1 non-diagonal layer edge

(weight=1) and 2 diagonal layer edges (weight=α3). Every vertex in the ilR-upper layer and

the irR-upper layer has at least 12 contacts, due to 1 non-diagonal edge, 5 short diagonal

edges, 2 long diagonal edges, 1 non-diagonal layer edge and 3 diagonal layer edges. Every

vertex in the uR-upper layer and the dR-upper layer has at least 6 contacts, due to of 1

non-diagonal edge, 2 short diagonal edges, 1 long diagonal edge, 1 non-diagonal layer edge

and 1 diagonal layer edge. Every vertex in the iuR-upper layer and the idR-upper layer has

at least 11 contacts, due to 1 non-diagonal edge, 4 short diagonal edges, 2 long diagonal

edges, 1 non-diagonal layer edge and 3 diagonal layer edges. Every vertex in the upper layer

achieves at least 14 contacts, due to 1 non-diagonal edge, 6 short diagonal edges, 3 long

diagonal edges, 1 non-diagonal layer edge and 3 diagonal layer edges.

So, the total weighted contact (C) of all the vertices of the upper layer can be computed

as follows:

C ≥ 2×(1+3α2+1α1+1+2α3)×(r−2)+2×(1+5α2+2α1+1+3α3)×(r−2)+2×(1+2α2+

α1+1+α3)× s+3
2

+2×(1+4α2+2α1+1+3α3)×( s−3
2

)+(1+6α2+3α1+1+3α3)×(2x−2r−2s−4)

⇒ C ≥ rs(3α3+6α2+3α1+2)+r(4α3+4α2+4)−s(2α3+6α2+3α1)−(38α3+62α2+27α1+24)

⇒ C ≥ m1(3α3+6α2+3α1+2)+r(4α3+4α2+4)−s(2α3+6α2+3α1)−(38α3+62α2+27α1+24)

⇒ C ≥ n
2
(3α3+6α2+3α1+2)+r(4α3+4α2+4)−s(2α3+6α2+3α1)−(38α3+62α2+27α1+24)

Since the upper layer is symmetric to the lower layer, the calculation would be the

same for both layers, if n = 2m1. So the total weighted contact will be at least 2C or

n(3α3 +6α2 +3α1 +2)+r(8α3 +8α2 +8)−s(4α3 +12α2 +6α1)−2(38α3 +62α2 +27α1 +24).

If n = 2m1 + 1, then let n1 = n − 1. The total weighted contacts for these n1 vertices

will be at least,
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Table 6.2: Weighted contacts for different regions of the upper layer

Region no. of

vertex

non-

diagonal

edge

(weight =

1)

short

diag-

onal

edge

(weight =

α2)

long di-

agonal

edge

(weight =

α1)

non-

diagonal

layer

edge

(weight =

1)

diagonal

layer

edge

(weight =

α3)

lR-upper

layer

r − 2 1 3 1 1 2

rR-upper

layer

r − 2 1 3 1 1 2

ilR-upper

layer

r − 2 1 5 2 1 3

irR-upper

layer

r − 2 1 5 2 1 3

uR-upper

layer

s+3
2

1 2 1 1 1

dR-upper

layer

s+3
2

1 2 1 1 1

iuR-upper

layer

s−3
2

1 4 2 1 3

idR-upper

layer

s−3
2

1 4 2 1 3

mR-upper

layer

(rs −
2r −
2s− 4)

1 6 3 1 3
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n1(3α3+6α2+3α1+2)+r(8α3+8α2+8)−s(4α3+12α2+6α1)−2(38α3+62α2+27α1+24).

The remaining vertex will have at least 2 weighted contact. So the total weighted contact

will be at least,

(n− 1)(3α3 + 6α2 + 3α1 + 2) + r(8α3 + 8α2 + 8)− s(4α3 + 12α2 + 6α1)− 2(38α3 + 62α2 +

27α1 + 24) + 2

n(3α3+6α2+3α1+2)+r(8α3+8α2+8)−s(4α3+12α2+6α1)−(79α3+130α2+57α1+48)

So, combining the two cases, we get that the total weighted contact is at least,

n(3α3+6α2+3α1+2)+r(8α3+8α2+8)−s(4α3+12α2+6α1)−(79α3+130α2+57α1+48).

Now we need to take the alternating edges into our consideration. For every alternating

edge we get 2 weighted contacts for the two vertices (each having 1). So, for n H’s and k

alternating edges we get a total of at least,

n(3α3+6α2+3α1+2)+r(8α3+8α2+8)−s(4α3+12α2+6α1)−(79α3+130α2+57α1+48)+2k

weighted contacts.

Hence we get the following approximation ratio A4:

A4 =
(5+α1+6α2+6α3)n− 1

2
k

n(3α3+6α2+3α1+2)+r(8α3+8α2+8)−s(4α3+12α2+6α1)−(79α3+130α2+57α1+48)+2k

(6.3)

To further examine the ratio established above, we again consider the natural assignment

for α1, α2, α3 and k. Then, from Equation 6.3 we have the following:

A4 =
(5+ 1

2
+6 1√

3
+6 1√

2
)n− 1

2
k

n(3 1√
2
+6 1√

3
+3 1

2
+2)+r(8 1√

2
+8 1√

3
+8)−s(4 1√

2
+12 1√

3
+6 1

2
)−(79 1√

2
+130 1√

3
+57 1

2
+48)+2k

⇒ A4 =
13.2067n− 1

2
k

9.085n+ 18.2756r − 12.7566s− 207.417 + 2k
(6.4)

From Equation 6.4 it can be seen that A4 tends to reach 13.2067
9.085

= 1.45.
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Now we compute the value of k so that our approximation ratio is at most 13.2067
9.085

or 1.45.

Assuming, 18.2756r = 12.7566s, i.e., s ≈ 1.5r We have the following:

13.2067n− 1
2
k

9.085n−207.417+2k
≤ 13.2067

9.085

⇒ 30.9559k ≥ 207.417× 13.2067

⇒ k ≥ 88.49

⇒ k ≥ 89

So, if the total number of H-runs is greater than 89 and s = 1.5r, then Algorithm Lay-

erArrangement will achieve an approximation ratio of 1.45.

Theorem 6. For any given HP string, Algorithm LayerArrangement achieves an approxi-

mation ratio of 1.45 for k > 89 considering weighted contact under natural assignment, where

k is the total number of H-runs, n is the total number of H and n = 2rs with s = 1.5r.
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Chapter 7

Visualize Software

In this chapter we elaborately describe our visualize software, which shows the structure of

protein under Algorithm ChainArrangement, Algorithm HelixArrangement and Algorithm

LayerArrangement. For making this software we use Visual Studio 2010 and OpenGL plat-

form.

7.1 Software Description

In this software three algorithms are implemented - Algorithm ChainArrangement [46, 47],

Algorithm HelixArrangement and Algorithm LayerArrangement. As said in previous chap-

ter, Algorithm ChainArrangement is implemented in hexagonal lattice with diagonals and

Algorithm HelixArrangement, Algorithm LayerArrangement are implemented in hexagonal

prism lattice with diagonals.

For the software,

Input : An sequence of 1,0 equivalent to HP String weather H=1 and P=0 considered.

Output(to see folded protein structure press ‘q’):

1. Length of HP String

2. Total number of H in that HP String

3. Folded protein structure

- Green lines show the folded structure of protein

- Blue lines show the contacts generated by the structure

- Filled green circle represents H bead

- Unfilled green circle represents P bead
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4. Total contact generated by folded protein structure

7.2 Data source and Results

Energy matrix used in this experiment is given in Table 7.1.

Table 7.1: Energy matrix for HP model introduced in [13]

H P

H -1 0

P 0 0

The HP benchmark sequence listed in Table 7.2, Table 7.3, Table 7.4 are from [59, 53]

and represent standard sequence in this area of research. The benchmark problems have

been studied before by authors [52, 3, 31, 17].

7.2.1 Result for Algorithm ChainArrangement [46, 47]

In this section we show result of folded structure of protein by Algorithm ChainArrangement

and show the result of contact under different benchmark sequence input.

7.2.1.1 Simulation Result of Algorithm ChainArrangement

Some simulation result of Algorithm ChainArrangement are given below,

Input Sequence: HPC1 : H1P1H2P2H4P1H3P2H2P2H5P1H4P2H2P3H2P7H2

Output:

Length of HP String: 48.

Total number of H in that HP String: 27

Total contact: -160

Folded protein structure: See Fig. 7.1.

Input Sequence: HPC2 : H4P1H2P1H5P2H2P1H3P1H2P5H2P1H2P2H2P1H2P2H3P1H1

Output:

Length of HP String: 48.

Total number of H in that HP String: 30
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Figure 7.1: Folding for sequence HPC1 by Algorithm ChainArrangement. Green lines indi-

cate binding edges, blue lines indicate contact edges.

Total contact: -186

Folded protein structure: See Fig. 7.2.

Figure 7.2: Folding for sequence HPC2 by Algorithm ChainArrangement. Green lines indi-

cate binding edges, blue lines indicate contact edges.

7.2.1.2 Algorithm ChainArrangement under different benchmark sequence

Table 7.2 shows contacts tested under different benchmark sequence.
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Table 7.2: HP model benchmark problems (length of 48) from[59, 53] for Algorithm ChainAr-

rangement. Here 1 denoted for H and 0 denoted for P.

ID Sequence Total H Total contact

HP1 101100111101110011001111101111001100011000000011 27 -160

HP2 111101101111100110111011000001101100110110011101 30 -186

HP3 011110111111001110011110111000110110011001110011 31 -184

HP4 011110011111001101100011111001111011100001101111 31 -182

HP5 001100111111001111011111100111011011000001101101 30 -176

HP6 111000110111101101101110000011100110011011111101 30 -184

HP7 011000111110111111011011000111000111001100110001 28 -168

HP8 011011101111001110000001111001101100110111011001 28 -170

HP9 011100001110110111111110011101101111001111100001 31 -182

HP10 011000000110001110110111100110110110011111110011 28 -168

7.2.2 Result for Algorithm HelixArrangement

In this section we show result of folded structure of protein by Algorithm HelixArrangement

and show the result of contact under different benchmark sequence input.

7.2.2.1 Simulation Result of Algorithm HelixArrangement

Some simulation result of Algorithm HelixArrangement are given below,

Input Sequence: HP1 : H1P1H2P2H4P1H3P2H2P2H1P1H3P1H1P1H2P2H2P3H1P8H2

Output:

Length of HP String: 48.

Total number of H in that HP String: 23

Total contact: -252

Folded protein structure: See Fig. 7.3 and 7.4

Input Sequence: HP2 : H4P1H2P1H5P2H1P2H2P2H1P6H1P2H1P3H1P2H2P2H3P1H1

Output:

Length of HP String: 48.

Total number of H in that HP String: 23

Total contact: -256
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Figure 7.3: Top view of folding for sequence HP1 by Algorithm HelixArrangement

Folded protein structure: See Fig. 7.5 and 7.6

Input Sequence: HP3 : P1H1P1H2P1H6P2H1P1H1P2H1P1H2P1H1P1H1P3H1P2H2

P2H2P2H1P1H1P2H2

Output:

Length of HP String: 48.

Total number of H in that HP String: 25

Total contact: -268

Folded protein structure: See Fig. 7.7 and 7.8
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Figure 7.4: Side view of folding for sequence HP1 by Algorithm HelixArrangement

7.2.2.2 Algorithm HelixArrangement under different benchmark sequence

Table 7.3 shows contacts tested under different benchmark sequence.

7.2.3 Result for Algorithm LayerArrangement

In this section we show result of folded structure of protein by Algorithm LayerArrangement

and show the result of contact under different benchmark sequence input.

7.2.3.1 Simulation Result of Algorithm LayerArrangement

Some simulation result of Algorithm LayerArrangement are given below,

Input Sequence: HPL1 : H2P2H2P4H7P1H3P2H2P1H2P1H2P1H3P1H3P1H2P1H2P1

H3P1H2P1H6P2H2P8H3P3H2P1H2P6H2P1H4
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Figure 7.5: Top view of folding for sequence HP2 by Algorithm HelixArrangement

Output:

Length of HP String: 95.

Total number of H in that HP String: 56

Total contact: -636

Folded protein structure: See Fig. 7.9, 7.10 and 7.11

Input Sequence: HPL2 : H2P2H2P4H7P1H3P2H2P1H2P1H2P1H3P1H3P1H2P1H2P1H3P1H2

P1H6P2H2P8H3P3H2P1H2P6H2P1H4P3H5P3H3P1H2P3H4P3H5P1H2P2H2P2H4

Output:

Length of HP String: 140.

Total number of H in that HP String: 83

Total contact: -1010

Folded protein structure: See Fig. 7.12, 7.13 and 7.14
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Figure 7.6: Side view of folding for sequence HP2 by Algorithm HelixArrangement

7.2.3.2 Algorithm LayerArrangement under different benchmark sequence

Table 7.4 shows contacts tested under different benchmark sequence.
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Figure 7.7: Top view of folding for sequence HP3 by Algorithm HelixArrangement

Table 7.3: HP model benchmark problems (length of 48) from[59, 53] for Algorithm He-

lixArrangement. Here 1 denoted for H and 0 denoted for P.

ID Sequence Total H Total contact

HP1 101100111101110011001011101011001100010000000011 24 -252

HP2 111101101111100100110010000001001000100110011101 24 -256

HP3 010110111111001010010110101000100110011001010010 24 -260

HP4 010110010111001101100011111001011010100001001010 24 -258

HP5 001000101111001111011011100101010010000001101101 24 -242

HP6 111000110101101101101000000010100100010011111101 24 -268

HP7 010000101110101111011011000101000111001100110001 24 -258

HP8 011011101111001110000001011001101000110101011000 24 -250

HP9 010100001010100101111110011101001011001011100001 24 -240

HP10 011000000110001110100101100100100110011111110011 24 -250
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Figure 7.8: Side view of folding for sequence HP3 by Algorithm HelixArrangement
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Figure 7.9: Side view of folding for sequence HPL1 by Algorithm LayerArrangement. Green

edges are binding edges. Blue edges are contact edges.

Figure 7.10: Side view of folding for sequence (contact edges are not shown) HPL1 by

Algorithm LayerArrangement
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Figure 7.11: Top view of folding for sequence HPL1 by Algorithm LayerArrangement

Figure 7.12: Side view(Parallel to x-axis) of folding for sequence HPL2 by Algorithm Lay-

erArrangement
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Figure 7.13: Side view of folding for sequence HPL2 by Algorithm LayerArrangement
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Figure 7.14: Top view of folding for sequence HPL2 by Algorithm LayerArrangement
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Table 7.4: HP model benchmark problems for Algorithm LayerArrangement. Here r is

number of chains in a layer and s is number of H-beads in a chain
Length Sequence Total H Total contact r s

7 P1H6 6 10 r=2 s=1

23 P2H8P7H3P1H2 13 78 r=2 s=3

29 P2H2P1H5P7H3P1H5P1H2 17 130 r=2 s=4

37 P2H2P1H5P7H3P1H2P1H5P2H3P1H2 22 186 r=2 s=5

44 P2H2P1H5P7H3P1H2P1H2P1H2P2H3P1H2P2H2P1H2 25 232 r=2 s=6

51 P2H2P1H5P7H3P1H2P1H2P1H2P2H3P1H2P2H2P1H2

P1H2P2H2

29 282 r=2 s=7

61 P2H2P1H6P6H3P1H2P1H2P1H2P2H3P1H2P2H5P1H2

P2H4P6H2

35 332 r=2 s=8

65 P2H2P1H5P7H3P1H2P1H2P1H2P2H3P1H2P2H2P1H2

P1H2P2H4P6H2P1H3

36 366 r=2 s=9

69 P2H2P1H5P7H3P1H2P1H2P1H2P2H3P1H2P2H2P1H2

P1H2P2H4P6H2P1H7

40 404 r=2 s=10

29 P2H2P1H5P7H6P1H2P1H2 17 106 r=4 s=2

44 P2H8P7H3P1H2P1H5P2H3P1H2P2H2P1H2 27 220 r=4 s=3

61 P2H2P1H5P7H3P1H5P1H2P2H6P2H2P1H2P1H2P2H4

P6H2

35 308 r=4 s=4

69 P2H2P1H5P7H3P1H2P1H5P2H3P1H2P2H2P1H5P2H4

P6H2P1H7

42 402 r=4 s=5

81 P2H2P1H5P7H3P1H2P1H2P1H2P2H3P1H2P2H2P1H2

P1H2P2H4P6H2P1H9P1H5P2H2

49 532 r=4 s=6

91 P2H2P1H5P7H3P1H2P1H2P1H2P2H3P1H2P2H2P1H2

P1H2P2H4P6H2P1 H9P1H5P2H2P1H6P1H2

57 634 r=4 s=7

105 P2H2P1H6P6H3P1H2P1H2P1H2P2H3P1H2P2H5P1H2

P2H4P6H2P1H9P1H5P2H2P1H6P1H2P1H2P1H3P5H2

66 728 r=4 s=8

121 P2H2P1H5P7H3P1H2P1H2P1H2P2H3P1H2P2H2P1H2

P1H2P2H4P6H2P1H9P1H5P2H2P1H6P1H2P1H2P1H4

P4H3P1H3P2H3P4H2

74 868 r=4 s=9

131 P2H2P1H5P7H3P1H2P1H2P1H2P2H3

P1H2P2H2P1H2P1H2P2H4P6H2P1

H9P1H5P2H9P1H2P1H2P1H3P5H3

P1H3P2H3P4H3P1H2P2H4

81 954 r=4 s=10

43 P2H2P1H5P7H6P1H2P1H2P2H3P1H2P2H2P1H1 25 166 r=6 s=2

64 P2H8P7H3P1H2P1H5P2H3P1H2P2H2P1H2P1H3P1H4

P6H2P1H2

38 300 r=6 s=3

80 P2H2P1H5P7H3P1H5P1H2P2H6P2H2P1H2P1H2P2H4

P6H2P1H9P1H5P2H1

50 458 r=6 s=4

96 P2H2P1H5P7H3P1H2P1H5P2H3P1H2P2H2P1H5P2H4

P6H2P1H9P1H5P2H2P1H9P1H2P1H1

63 648 r=6 s=5

120 P2H2P1H5P7H3P1H2P1H2P1H2P2H3P1H2P2H2P1H2

P1H2P2H4P6H2P1H9P1H5P2H2P1H6P1H2P1H2P1

H3P5H3P1H3P2H3P4H1

72 874 r=6 s=6

135 P2H2P1H5P7H3P1H2P1H2P1H2P2H3P1H2P2H2P1H2

P1H2P2H4P6H2P1H9P1H5P2H2P1H6P1H2P1H2P1

H3P5H3P1H3P2H3P4H3P1H3P1H5P1H2

84 1022 r=6 s=7
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Chapter 8

Conclusions

In this thesis we have introduced the hexagonal prism lattice with diagonals for HP model

protein folding and presented several algorithms with analysis from several point of view. In

this chapter, we draw the conclusion by highlighting the major contributions made in this

thesis. We also provide some directions for future research. We have presented some basic

approaches to solve protein folding problem studied in structural bioinformatics. We have

discussed the problem in HP Model under different lattice.

In chapter 4, we introduce hexagonal prism lattice with diagonal for HP model. It

alleviates the basic parity problem in cubic lattice for protein folding and also increase the

cardinality of neighbour than other recognized lattice like FCC, BCC, SC etc. We provide

two approximation algorithms on hexagonal prism lattice with diagonal and in chapter 6

analysis it using weighted contact concept.

8.1 Major Contribution

In this thesis, we introduce hexagonal prism lattice with diagonals. This lattice model

removes some of the well known problems of protein folding in other lattices, e.g., parity

problem. The major contributions that have done in this thesis are as follows.

• We present two novel approximation algorithms to solve the protein folding problem

in the hexagonal prism lattice with diagonals in HP model. For any given HP string,

our first algorithm, Algorithm HelixArrangement achieves an approximation ratio of

2 for k > 16, where k is the total number of H-runs and n is the total number of H.

Our second algorithm, Algorithm LayerArrangement achieves an approximation ratio

77
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of 9
7

under some parametric constraints. Both algorithms are polynomial in terms of

the length of the given HP string.

• We incorporate the concept of weighted contact which has biological motivation. Con-

sidering weighted contact we analyse our two algorithms as well as previous algorithm

on a different lattice. In particular we first apply the concept of weighted contact on

a previous algorithm (Algorithm ChainArrangement) of Shaw et al.[46]. Considering

weighted contact, the Algorithm ChainArrangement provides 1.96-approximation ra-

tio for k > 8, where k is number of sequence of Hs in the HP string. This new analysis

on hexagonal lattice with diagonal improve the performance of the algorithm.

• Considering weighted contact, Algorithm HelixArrangement achieves an approxima-

tion ratio of 2 for k > 13 and Algorithm LayerArrangement achieves 1.45-approximation

ratio for k > 89, where k is number of sequence of Hs in the HP string.

• We develop a simple visualization software for the approximation algorithms and tested

under standard dataset. This software simulate the Algorithm ChainArrangement, Al-

gorithm HelixArrangemnt and Algorithm LayerArrangement. Protein structure gen-

erate from this algorithm along with their contacts are shown in simulation output.

The test under standard dataset results similar approximation ratio that theoretically

found.

8.2 Future Plans

A number of future research directions is presented below,

• In this thesis we worked only with HP model. We will also investigate other variants

of the HP model like the HP model with side chains. We will also work with other

model different from HP model, e.g., MJ (Miyazawa-Jernigan) model [41, 42].

• Several approximation algorithm can be developed for improving the approximation

ratio. In this thesis we have used weighted contact which is based on length of contact

edges for improving the approximation ratio. Next target could be analyze the ratio

on basis of angular distance between the beads.

• We have idea to apply more heuristics and meta-heuristics algorithms on this lattice

and compare with other lattices.
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• It is a open problem to find the hardness of algorithm for folding a protein in HP

model for hexagonal prism lattice with diagonals. So it could be a possible research

direction.
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