
ANALYSIS OF SOLITON SOLUTIONS TO THE NONLINEAR 
SCHRODINGER AND KONOPELCHENKO-DUBROVSKY 

EQUATIONS 

 

by 

 

S. M. Yiasir Arafat 

 

Student No: 0421092509(F) 

Registration No: 0421092509, Session: April-2021 

MASTER OF SCIENCE  

IN 

 MATHEMATICS 

 

 

 

Department of Mathematics 

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, 

 DHAKA-1000 

 

 







 

iv 
 

CERTIFICATE OF RESEARCH 

This is to certify that the work entitles “ANALYSIS OF SOLITON SOLUTIONS TO 

THE NONLINEAR SCHRODINGER AND KONOPELCHENKO-DUBROVSKY 

EQUATIONS” has been carried out by S. M. Yiasir Arafat bearing Roll No: 

0421092509(F), Registration No: 0421092509, Session: April 2021, Department of 

Mathematics, Bangladesh University of Engineering and Technology, Dhaka-1000, 

Bangladesh, in partial fulfillment of the requirements for the degree of Master of Science 

in Mathematics of the university, under my supervision.  

 

 

 

 

_______________ 

Dr. Md. Mustafizur Rahman 

Supervisor 

Department of Mathematics 

Bangladesh University of Engineering and Technology, Dhaka-1000 

  



 

v 
 

 

 
 

Dedicated  
to  

My Parents 
 
 

 
 
 
  



 

vi 
 

ACKNOWLEDGEMENT 

I would want to express my gratitude for the Almighty’s constant kindness and assistance, 

without which no task would have been able to complete. I am grateful to my supervisor, 

Dr. Md. Mustafizur Rahman, Professor, Department of Mathematics, Bangladesh 

University of Engineering and Technology, for his guidance, continuous inspiration, and 

support, all of which have been found to be very helpful to the research’s outcome.  

I would also like to express my sincere thanks and gratitude to, Dr. Khandker Farid Uddin 

Ahmed, Professor, and Head of the Department of Mathematics, Bangladesh University 

of Engineering and Technology, Dr. Rehena Nasrin, Professor, Department of 

Mathematics, Bangladesh University of Engineering and Technology, Dr. K. M. Ariful 

Kabir, Assistant Professor, Department of Mathematics, Bangladesh University of 

Engineering and Technology and Dr. Md. Mustafa Kamal Chowdhury, Former  Professor, 

Department of Mathematics, Bangladesh University of Engineering and Technology, for 

extending their cordial support and liberal co-operation for performing my M.Sc. course.  

Finally, I express my thanks to all members of department of Mathematics for their support 

and direction throughout the whole period of my study in BUET.  

 

  



 

vii 
 

ABSTRACT 

Many phenomena in the real world are described by nonlinear evolution equations 

(NLEEs), which have recently gained popularity. In this dissertation, we have explored 

two NLEEs to develop the generic and compatible closed form stable wave solutions by 

applying the (𝑤/𝑔)-expansion methods and the Modified Version of the New Kudryashov 

(MVNK) method. In this research, the (2+1)-dimensional paraxial nonlinear Schrodinger 

equation is investigated by the (𝑤/𝑔)-expansion methods. Also, the (2+1)- 

Konopelchenko–Dubrovsky (KD) equation is investigated via MVNK method. With the 

help of MATLAB, Wolfram Mathematica and Maple software, the solutions describe 

many forms of solitons and vary their nature and positions displayed in 3-dimensional and 

2-dimensional figures for the values of Kerr nonlinearity, nonlinear coefficient, wave 

number, wave speed etc. Even so, it is found that the features of the solutions are crucial 

in parameter selection when comparing our results to existing literature produced using 

various methodologies and evaluating the solutions by drawing figures for various values 

of the corresponding parameters. Additionally, we show how the values of the various 

kinds of parameters relate to the physical justification of the determined solution. We have 

shown that the main reason why wave profiles behave differently when their associated 

free parameters change. The impacts of wave velocity and other free parameters on the 

wave profile are also examined. However, by sketching images of the solutions for 

different values of the associated parameters and examining the results of these 

approaches, it is evident that the solutions characteristics are greatly influenced by the 

parametric values. Although the facing few limitations, the techniques used are 

trustworthy, clear-cut, useful, and simple to apply. 
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Chapter 1: Introduction 
The study of partial differential equations (PDE’s) started in the 18th century in the work 

of Euler, d’Alembert, Lagrange, and Laplace as a central tool in the description of 

mechanics of continua and more generally, as the principal mode of analytical study of 

models in the physical science. Beginning in the middle of the 19th century, particularly 

with the work of Riemann, partial differential equations (PDE’s) also became an essential 

tool in other branches of mathematics. This duality of viewpoints has been central to the 

study of PDE's through the 19th and 20th century. The nonlinear evolution equations 

(NLEEs) are a particular kind of partial differential equation (PDE) that have been the 

focus of extensive research in many fields of nonlinear science and engineering.  Evolution 

equations is the evolution of a system depending on a continuous time variable 𝑡 described 

by an equation of the form 

𝑢𝑡 =  𝑓(𝑢) 

where, 𝑢𝑡 denoting the time derivative, 𝑢(𝑡) ∈ 𝑋 is the state of the system at time 𝑡, and 𝑓 

is a given vector field on 𝑋. The space 𝑋 is the statespace of the system; a point in 𝑋 

specifies the instantaneous state of the system. In physics, applied mathematics, and 

engineering fields, a wave is a propagating dynamic disturbance (change from 

equilibrium) of one or more quantities, sometimes as illustrated by a wave equation of the 

following 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡 + 𝜙) 

In other words, waves involve the transport of energy without the transport of matter 

through a medium. Nowadays NLEEs have become most examined subject of all-

embracing studies in several branches of nonlinear sciences. A special class of analytical 

solutions named solitary wave solutions for NLEEs has a lot of importance, because most 

of the phenomena that arise in mathematical physics and engineering fields can be 

described by NLEEs. NLEEs are repeatedly used to describe many problems of the wave 

propagation phenomena, quantum mechanics, fluid mechanics, plasma physics, 

propagation of shallow water waves, optical fibres, biology, solid state physics, electricity, 

and so forth. 

1.1 Some Nonlinear Waves 
1.1.1 Standing wave 
A standing wave, also called a stationary wave, is the combination of two waves moving 

in opposite directions, each having the same amplitude and frequency. The phenomenon 
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is the result of interference; that is, when waves are superimposed, their energies are either 

added together or canceled out. If two people shake a jump rope, the pattern of waves it 

forms is quite similar to standing or stationary waves. 

1.1.2 Travelling wave 
A travelling wave in which the particles of the medium move progressively in the direction 

of the wave propagation with such a gradation of speeds that the faster overtake the slower 

and are themselves in turn overtaken compared to a standing wave. A few examples of 

these waves are water waves, sound waves, seismic waves, etc. 

1.1.3 General wave 
A wave transfers energy from one place to another without the transfer of particles in the 

medium. Rather, individual particles vibrate (oscillate) about fixed positions instead. In 

other words, wave is a disturbance in a medium that carries energy without a net movement 

of particles. It may take the form of elastic deformation, a variation of pressure, electric or 

magnetic intensity, electric potential, or temperature. 

 

Photo collected from Google  

Figure 1.1: Travelling wave 
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Photo credit: AGU journal, Wiley,V-113,2008 

Figure 1.2: General wave 

1.1.4 Rogue wave 
Rogue wave (also known as freak wave, monster wave, episodic wave, killer wave,  

 

Collected from Google 

Figure 1.3: Rogue wave 

extreme wave, abnormal wave) are usually large, unexpected, and suddenly appearing 

surface wave that can be extremely dangerous, even to large ships such as ocean liners. 
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1.1.5 Solitary wave 
A solitary wave is a wave which propagates without any temporal evolution in shape or 

size when viewed in the reference frame moving with the group velocity of the wave. 

Roughly speaking, a solitary wave is a nonsingular solution that travels as a localized 

packet. 

 

Photo credit: AGU journal, Wiley,V-113,2008 
Figure 1.4: Solitary wave 

1.2 Balance of dispersion and nonlinearity 
The dynamics of water waves in shallow water is described mathematically by the 

Korteveg-de Vries (𝐾𝑑𝑉) equation  

𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥 = 0 

where 𝑢 = 𝑢(𝑥, 𝑡) measures the elevation at time 𝑡 and position 𝑥, 𝑖. 𝑒. the height of the 

water above the equilibrium level. The subscripts denote partial differentiation. The 

second and the third term in the equation is the dispersive and the nonlinear term 

respectively. 

1.2.1 Dispersion 
Let us first investigate the effect of the dispersive term. Thus, we neglect the nonlinear 

term in the 𝐾𝑑𝑉 equation. This leaves us with the following: 

𝑢𝑡 + 𝑢𝑥𝑥𝑥 = 0 
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Figure 1.5: Dispersive wave 

1.2.2 Nonlinearity 
Now let us see the effect of the nonlinear term. We neglect the dispersive term in the 𝐾𝑑𝑉 

equation, which leaves us with the following:  

𝑢𝑡 + 𝑢𝑢𝑥 = 0 

 

Figure1.6: Nonlinearity 

1.3 Soliton  
In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet 

that maintains its shape while it propagates at a constant velocity. Solitons are caused by 

a cancellation of nonlinear and dispersive effects in the medium which have been 

described through the 𝐾𝑑𝑉 equation as follows: 

𝑢𝑡 − 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 

 

𝒕 = 𝟎 𝒕 < 𝟎 

 

𝒕 > 𝟎 

 

𝒕 = 𝟎 

 

𝒕 > 𝟎 

 

Dispersion of wave 

Nonlinear breaking of wave 
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Profile of the solution curve: 

✓ Unchanging in shape 

✓ Bounded 

✓ Localized 

 

When both the dispersive and the nonlinear terms are present in the equation the two 

effects can neutralize each other. If the water wave has a special shape the effects are 

exactly counterbalanced, and the wave rolls along undistorted. The soliton shape can be 

found by direct integration of the 𝐾𝑑𝑉 equation: 

𝑢(𝑥, 𝑡)  =    𝑎 sech2[𝑏(𝑥 − 𝜔𝑡)] 

 with 𝑏 = ( 𝑎
12
)

1

2 and 𝜔 = 3𝑎. The constant 𝑎 is the only free parameter in the solution. It 

defines the amplitude and the width in such a way that a large (tall) soliton will be narrow, 

while a low soliton will be broad. The constant 𝜔 defines the velocity of the soliton. Since 

𝜔 = 3𝑎 a tall soliton will move faster than a low one. 

Nonlinear term  
𝑢𝑡 − 6𝑢𝑢𝑥 

 

 

Dispersion  term  
𝑢𝑡 + 𝑢𝑥𝑥𝑥 

 

 

Steepen Flatten 

Steepen + Flatten =Stable 
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Figure 1.7: Soliton 

1.4 Some solitary solutions 
Solitary waves are localized travelling waves with constant speeds and shape, 

asymptotically zero at large distances. Solitons are special kinds of solitary waves. Solitons 

have a remarkable soliton property in that it keeps its identity upon interacting with other 

solitons. 

The soliton solution is spatially localized solution, hence 𝑢′(𝜉), 𝑢″(𝜉) 𝑎𝑛𝑑 𝑢‴(𝜉) →

0, 𝑎𝑠 𝜉 → ±∞, 𝜉 = 𝑥 ± 𝜔𝑡. 

1.4.1 Periodic Solutions  
Periodic solutions are travelling wave solutions that are periodic such as cos(𝑥 − 𝑡). The 

standard wave equation 𝑢𝑡𝑡 = 𝑢𝑥𝑥𝑥 gives periodic solutions. As stated before, because this 

standard wave equation is linear, it admits d’Alembert solution, and components can be 

superposed. Figure 1.8 shows a periodic solution 𝑢(𝑥, 𝑡) = cos(𝑥 − 𝑡) − 𝜋 ≤ 𝑥, 𝑡 ≤ 𝜋 for 

a standard wave equation. 

 
Figure 1. 8: Graph of a periodic solution  𝑢(𝑥, 𝑡) = cos(𝑥 − 𝑡) ;−𝜋 ≤ 𝑥, 𝑡 ≤ 𝜋. 

𝒕 = 𝟎 𝒕 > 𝟎 

 

Balance leads to 

Soliton 
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1.4.2 Kink Type Soliton Solution 

Kink waves are travelling waves which rise or descend from one asymptotic state to 

another. The kink solution approaches a constant at infinity. The standard dissipative 

Burgers equation is 

𝑢𝑡 + 𝑢𝑢𝑥 = 𝑣𝑢𝑥𝑥 

Where ν is the viscosity coefficient, is a well-known equation that gives kink solutions. 

Figure 1.9 shows a kink soliton Solution 𝑢(𝑥, 𝑡) = tanh(𝑥 − 𝑡) − 10 ≤ 𝑥, 𝑡 ≤ 10 for 

Burgers equation with 
2
1

=v  

 

Figure 1.9: Graph of a kink solution 𝑢(𝑥, 𝑡) = tanh (𝑥 − 𝑡) − 10 ≤ 𝑥, 𝑡 ≤ 10. 

1.4.3 Bell-Shaped Soliton Solution 
Bell-shaped soliton solution has infinite wings or infinite tails. This soliton referred to as 

non-topological solitons. This solution does not depend on the amplitude and high 

frequency soliton. Figure 1.10 shows the shape of the exact bell-shaped soliton 

solution 𝑢(𝑥, 𝑡) = sech(𝑥 − 𝑡) − 4 ≤ 𝑥, 𝑡 ≤ 4. 
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Figure 1.10: Graph of a bell solution 𝑢(𝑥, 𝑡) = sech (𝑥 − 𝑡); − 4 ≤ 𝑥, 𝑡 ≤ 4. 

1.5 Background of Soliton  
The soliton phenomenon was first described in 1834 by John Scott Russell (1808–1882) 

who observed a solitary wave in the Union Canal in Scotland. He reproduced the 

phenomenon in a wave tank and named it the “Wave of Translation”. 

In 1834, John Scott Russell describes “Wave of Translation”. The discovery is described 

here in Scott Russell's own words: “I was observing the motion of a boat which was rapidly 

drawn along a narrow channel by a pair of horses, when the boat suddenly stopped – not 

so the mass of water in the channel which it had put in motion; it accumulated round the 

prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled 

forward with great velocity, assuming the form of a large solitary elevation, a rounded, 

smooth and well-defined heap of water, which continued its course along the channel 

apparently without change of form or diminution of speed. I followed it on horseback and 

overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its 

original figure some thirty feet long and a foot to a foot and a half in height. Its height 

gradually diminished, and after a chase of one or two miles I lost it in the windings of the 

channel. Such, in the month of August 1834, was my first chance interview with that 

singular and beautiful phenomenon which I have called the “Wave of Translation”. Scott 

Russell’s solitary “Wave of Translation” is nowadays called a “soliton”. 
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A soliton is a special solution of a special non-linear PDE (wave equation) which: 

✓ Is localized (“a lump of energy”) 

✓ Moves with constant shape and velocity in isolation. 

✓ Is preserved under collisions with other solitons if two solitons collide, they re- 

emerge with the shapes and velocities. 

When a young engineer named John Scott Russell was engaged for a summer job in 1834 

to look into how to increase the effectiveness of designs for barges that were intended to 

ply canals—specifically the Union Canal near Edinburgh, Scotland he made the first 

known observation of a lone wave. The barge abruptly came to a stop one August day 

when the tow rope connecting the mules to the barge snapped. However, the water mass 

in front of the barge's blunt prow “rolled forward with great velocity, assuming the form 

of a large solitary elevation, a rounded, smooth, and well-defined heap of water, which 

continued its course along the channel without change of form or diminution of speed.” 

[1]. 

 
Photo credit: Hieu D. Nguyen, IEEE Night, 20-05-2003 

Figure 1.11: Modern picture of narrow-boat being towed by horse on tow-path which 

inspired Russell’s observation on solitary waves. 
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Photo credit: Hieu D. Nguyen, IEEE Night, 20-05-2003 
Figure 1.12: Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-Watt 

University, 12 July 1995. 
Russell pursued this serendipitous observation and “followed it [the launched 'Wave of 

Translation'] on horseback and overtook it still rolling on at a rate of some eight or nine 

miles per hour, preserving its original form some thirty feet long and a foot to a foot and a 

half in height.” He then conducted controlled laboratory experiments using a wave tank 

and quantified the phenomenon in an 1844 publication [1]. He demonstrated four facts:  

✓ The waves are stable, and can travel over very large distances (normal waves 

would tend to either flatten out, or steepen and topple over) 

✓ The speed depends on the size of the wave, and its width on the depth of water. 

✓ Unlike normal waves they will never merge – so a small wave is overtaken by 

a large one, rather than the two combining. 

✓ If a wave is too big for the depth of water, it splits into two, one big and one 

small. 

Scott Russell's experimental work seemed at odds with Isaac Newton's and Daniel 

Bernoulli's theories of hydrodynamics. George Biddell Airy and George Gabriel Stokes 

had difficulty accepting Scott Russell's experimental observations because they could not 

be explained by the existing water wave theories. Their contemporaries spent some time 

attempting to extend the theory, but it would take until the 1870s before Joseph Boussinesq 
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[2] and Lord Rayleigh published a theoretical treatment and solutions. In 1895 Diederik 

Korteweg and Gustav de Vries provided what is now known as the Korteweg–de Vries 

equation, including solitary wave and periodic cnoidal wave solutions [3]. 

In 1965 Norman Zabusky of Bell Labs and Martin Kruskal of Princeton University first 

demonstrated soliton behavior in media subject to the Korteweg–de Vries (KdV) equation 

in a computational investigation using a finite difference approach [4]. They also showed 

how this behavior explained the puzzling earlier work of Fermi, Pasta, Ulam, and Tsingou. 

1.6 Literature review 

A special category of partial differential equations is designated nonlinear evolution 

equations (NLEEs). The study of numerous models in engineering, physics, and 

mathematical physics is significantly impacted by the NLEEs. Due to the practical 

applications of the analytical solutions in numerous fields, including chaos, optical fibres, 

nonlinear optics, quantum mechanics, mathematical biology, shallow-water wave 

propagation, electromagnetic theory, solid-state physics, neural physics, diffusion process, 

reaction process, and others, the studies are therefore of fundamental importance. Several 

phenomena are explained by nonlinear evolution equations for large-scale study in various 

fields of physical engineering and science. Firstly, Gardner et al. [5] developed an inverse 

scattering transformation for findings the soliton Solutions that describe any finite number 

of solitons in interaction can be expressed in closed form. two years later, assisting with 

analytical solutions from the KdV equation. This equation highly used in weakly nonlinear 

ion-acoustic waves in a magnetized plasma. Consequently, Wang [6] introduced nonlinear 

transformation to find the exact and explicit solitary wave solutions to the KdV Burgers 

equation by using a homogeneous balance method that describes the shallow water waves, 

plasma waves. Also, Camassa et al. [7] peakons introduced by Camassa and Holm the 

simplified modified Camassa-Holm (SMCH) equation which describes the shallow water 

waves and complex integrable Hamiltonian systems on Riemann surfaces.  

optical soliton is a type of soliton that plays an important role in science and engineering. 

Nonlinear Schrodinger (NLS) model clarifies the pulses in optical fiber. For example, 

Kudryashov [8, 9] used the nonlinear Schrodinger (NLS) model to describe the 

propagation of pulses in an optical fiber and to describe a wave packet envelope for 

changing the pulse's amplitude and width. Kundu et al. [10] studied the Kundu and 

Mukherjee equation and obtained optical soliton solutions and its wave events play an 

important role in the ocean currents of rogue waves through exact dynamical lamp solitons, 
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high speed data transmission in communication systems and describing of propagation 

pulses in optical fibers. Konopelchenko and Dubrovsky first got the Konopelchenko–

Dubrovsky equations that’s describes the propagation of weak shock waves in a fluid and 

plasma physics [11]. Recently, Liu et al. [12] investigate the (2+1) dimensional 

Konopelchenko and Dubrovsky equation and obtained the exact dynamical lamp solitons, 

which play a vital role in the interaction of rough waves, in closed form. Moreover, the 

nonlinear optics, optical fibers phenomena reported by the the Biswas Arshad (BA) 

equation that is examined by Biswas and Arshed [13]. Also, the new Hamiltonian 

amplitude (nHA) equation used in nonlinear optics, optical fibers which is noticed by 

Wadati et al. [14]. Recently, Bilal et al. [15] observed that the new wave structures to the 

Gilson–Pickering equation (GPE) for numerical and experimental verification in plasma 

physics. Biswas [16] purify the generalized Zakharov–Kuznetsov modified equal width 

(ZKMEW) equation and found the 1-soliton that’s describe in the quantum magneto-

plasmas. The Maccari system (MS) introduced by Maccari based on Fourier expansion 

and spatio-temporal rescaling from the Kadomtsev–Petviashvili equation [17]. The (2 + 

1)-dimensional couple breaking soliton equation describe in fluid dynamics, the Burgers 

equation represents the propagation of weak shock waves in a fluid, the disparity in vehicle 

density in highway traffic [18,19] and so on. 

There are several NLEEs through which scientists have expressed various phenomena that 

occur in nature in relation to the various aspects. Different groups of mathematicians and 

physicists have successfully examined the (2+1)-dimensional paraxial NLS equation in 

Kerr media. Arshad et al. [20, 21] studied the non-dispersive and non-diffraction 

spatiotemporal localized waves of the paraxial NLS equation using a modified extended 

mapping technique. The modified auxiliary expansion method was applied to the paraxial 

NLS equation and obtained new optical soliton solutions, stability analysis and also 

showed constraint conditions of the attained solutions by Gao et al. [22]. Ali et al. [23], 

the extended trial equation method is applied to the paraxial NLS equation and retrieves 

the periodic, bright and singular solitons. 

Moreover, many researchers find the solitons solutions of the coupled (2+1)-dimensional 

nonlinear Konopelchenko–Dubrovsky (KD) model by using different techniques. Sachin 

Kumar et al. [24] scrutinized the Konopelchenko-Dubrovsky (KD) equation, which in 

mathematical physics represents non-linear waves with weak dispersion via rational 

function method. Also, they analyzed the bifurcation with the help of first Hamiltonian 
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integral. Hongyan [25] inquired similarity reduction of the Lax pair for Konopelchenko-

Dubrovsky (KD) equation aid of Lie symmetry technique. Taghizadeh and Mirzazadeh 

[26] investigated the Konopelchenko-Dubrovsky (KD) equation by using the first integral 

method. Pandey et al. [27] explored the instability of the Konopelchenko-Dubrovsky (KD) 

equation and they demonstrate that these waveforms are longitudinally unstable with 

regard to two-dimensional perturbations that have long wavelengths in the direction 

perpendicular and are periodic in both directions. Zhang [28] reported the numerous brand-

new, precise non-travelling wave solutions and their physical phenomena to the 

Konopelchenko-Dubrovsky (KD) equation with the help of ansatz technique. 

Due to the NLEEs high success rate in illuminating complex issues across industries. 

Hence, among researchers, looking for single wave solutions has become more common. 

Yet, it takes a lot of time and effort to find numerical or theoretical solutions to NLEEs 

that pertain to real-life situations. Theoretical or numerical analysis of a nonlinear model 

of a real-world issue is challenging. The occurrence of peaking regimes, many steady 

states under different conditions, the multiplicity or lack of steady states, and many other 

complicated nonlinear phenomena can all be explained by stable solutions to nonlinear 

equations. The consistency and error estimates of various numerical, asymptotic, and 

approximate analytical approaches can be checked using even the special precise solutions 

that lack a clear physical meaning. Precise solutions can be used to refine and test computer 

algebra software that solve NLEEs. To evaluate theoretical, approximative, or numerical 

solutions to nonlinear models, many researchers studied variety and more sophisticated 

methods. Irshad et al. [29] applied the Exp-function method to the improved Boussinesq 

equation for finding the solitary solutions and periodic solutions appearing in 

mathematical physics. Wazwaz [30] investigated exact solutions via compactons 

solutions, solitons solutions and plane periodic solutions of mCH equation by using direct 

anaatze which is simplified from mCH equation. They obtained some exponential 

solutions that leads to singular soliton. The (𝐺′ 𝐺⁄ )-expansion method applied to SMCH 

equation and find out some exact travelling wave solutions by Liu et al. [31]. Hafez et al. 

[32] through the using novel (𝐺′ 𝐺⁄ )-expansion method to the (2+1)-dimensional 

nonlinear complex coupled Maccari equation had been successfully and analysis of 

distinct physical structures. Again, Hafez et al. [33] noticed importance of couple physical 

model by using the exp (−𝜑(𝜉))-expansion method to the coupled Higgs equation and the 

Maccari system. Akbar et al. [34] examined the time-fractional Kundu–Eckhaus equation 
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in the sense of beta fractional derivative through the (𝐺′ 𝐺⁄ , 1/𝐺)-expansion approach for 

search out the transmission of data through the optical fiber. Fractional implications of the 

time-fractional modified equal width equation and examined soliton solutions via 

(𝐺′ 𝐺⁄ , 1/𝐺)-expansion method by Bashar et al. [35]. Islam et al. [36] studied Benney–

Luke equation by using the enhanced (𝐺′ 𝐺⁄ )-expansion method. They clarify the handling 

of nonlinear optics phenomena. Islam et al. [37] presented some more and more exact 

solutions yields from the SMCH equation with modified simple equation method. Lump 

solutions, lump-soliton solutions, and lump-kink solutions result from special instances 

obtained employed the Hirota Bilinear scheme by Ma et al.[38]. Li-xin et al. [39] found 

the exact travelling wave solutions and double soliton solutions of CH equation and he 

also introduced convex peaked and smooth soliton solutions. By using the modified 

Kudryashov and new auxiliary equation approaches, new dual-wave soliton solutions to 

the two-mode Sawada-Kotera (TmSK) equation emerging in fluids are addressed by 

Kumar et al. [40]. In comparison to the family of tanh function methods, the unified 

method is not just more general Compared to the more recent members of the G′/G -

expansion method family, it provides far more generic solutions. First, unifying the family 

of tanh function methods and the family of (𝐺′ 𝐺⁄ )-expansion methods is the unified 

method's substantial contribution in comparison to previous approaches studied by 

Akcagil and Aydemir [41]. Fatema et al. [42] investigated symmetric regularized long-

wave (SRLW) equation describes the attribute of the nonlinear ion acoustic waves, space 

charge waves, undular bore in meteorology by using two different scheme namely New 

auxiliary equation method and  Improved Bernoulli sub-equation function method. 

Gonzalez-Gaxiola et al. [43] have investigated the KMN model by the Laplace Adomian 

decomposition method, and it’s reported some breathers type optical soliton solutions. Li 

et al. [44] presented the (𝑤/𝑔)  -expansion method to construct the exact solutions for the 

Vakhnenko equation and explained the loop soliton solution. Very earlier Zayed and 

Arnous [45] applied this method to a modified generalized Vakhnenko equation and 

obtained the periodic, soliton and rational function solutions. Gepreel [46] explored 

the solitary wave solutions are derived from the travelling waves solutions when the 

parameters are taken some special values for Kadomtsev–Petviashvili hierarchy (KPH) 

equations via the (𝑤/𝑔)-expansion method. Durur and Asif [47] obtained the exact 

solutions and discussed the paraxial wave equation on diffraction and the dispersion 

phenomena using the modified (1 𝐺⁄ )-expansion and modified Kudryashov methods. 

https://www.sciencedirect.com/topics/physics-and-astronomy/ion-acoustic-waves
https://www.sciencedirect.com/topics/engineering/solitary-wave
https://www.sciencedirect.com/topics/mathematics/traveling-wave-solution
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Kudryashov et al. [48] investigated  the second-order nonlinear differential equation by 

using modified version of new Kudryashov methods  and explained the encountered 

in nonlinear optics. 

Also, the necessity to solve the different types of NLEEs, a variety of methods for exact 

and explicit stable soliton solutions of nonlinear physical models have been established 

such as the complex method [49], the extended rational sin-cos and sinh-cosh methods 

[50], the Jacobi-elliptic function method [51], the Backlund transformation [52] and so on. 

Since the success rate of NLEEs is high in illustrating multifaced problems in different 

sectors. Thus, searching solitary wave solutions has gained popularity among the 

researchers. However, numerical, or theoretical solutions to real-life-related NLEEs are 

time-consuming and cumbersome. It is not easy to examine a nonlinear model of real-life 

problems theoretically or numerically. In recent years much attention is paid by 

researchers to establish better and efficient methods for determining solutions approximate 

or exact, analytical, or numerical to nonlinear models. In the necessity to solve the different 

types of NLEEs, variety of methods for exact and explicit stable soliton solutions of 

nonlinear physical models have been established. Among these methods, (𝑤/𝑔) -

expansion method, the Modified Version of the New Kudryashov (MVNK) method is 

functional, easy to adapt, effective, and provide further generic, advanced and useful 

travelling wave solution. 

1.7 Research Gap 
In the nonlinear sciences, shallow water wave propagation investigation has grown in 

importance. The lashing procedure of the wave solutions, which sorts of waves are 

common in lakes, rivers, beaches, and oceans, and the mechanisms that create them can 

be used in ocean engineering, influences the wave propagation of surface waves. The 

investigations are also fundamentally significant because analytical answers from them 

can be applied successfully in a variety of domains, including mathematical biology, 

shallow-water wave propagation, electromagnetic theory, optical fibres, diffusion 

processes, reaction processes, chaos, neural physics, solid-state physics, plasma physics, 

and others. 

Many phenomena are described as nonlinear evolution equations for large-scale study in 

various fields of physical sciences and engineering. In solid-state physics, optical fibres 

for example, the paraxial nonlinear Schrodinger (NLS) equation occurs. Because NLEEs 

have a high success rate in presenting multifaceted challenges in several areas. Thus, the 

https://www.sciencedirect.com/topics/physics-and-astronomy/nonlinear-optics
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hunt for solitary wave solutions has grown in support among researchers. Numerical or 

theoretical solutions to real-life-related NLEEs, on the other hand, are time-consuming and 

inconvenient. It is difficult to investigate a nonlinear model of real-world situations 

theoretically or numerically. 

1.8 Study Plan 
Every model is based primarily on a variety of phenomena that occur in nature.  Different 

scientists have solved this same model in different ways by applying it to the related 

phenomenon and we have got the benefit of the obtained solutions to express the different 

problems and it is still going on today.  So, despite the fact that some models already have 

solutions, we will look for more different solutions through different methods that will 

help to rescue the damaged of nature and some new direction by applying in different 

phenomena of the solutions. 

In recent years, academics have focused on developing better and more efficient methods 

for obtaining approximate or exact, analytical, or numerical solutions to nonlinear models. 

To my best knowledge, the (2+1)-dimensional paraxial NLS equation in Kerr media is not 

examined through the (𝑤/𝑔)-expansion methods. In this section, we established, the 

(2+1)-dimensional paraxial (NLS) equation in Kerr media by using the (𝑤/𝑔)-expansion 

methods. Also, the coupled (2+1)-dimensional nonlinear Konopelchenko–Dubrovsky 

(KD) model is not examined through the Modified Version of the New Kudryashov 

(MVNK) method. We investigated, (2+1)-dimensional nonlinear Konopelchenko–

Dubrovsky (KD) model by using the Modified Version of the New Kudryashov (MVNK) 

method. 

Therefore, in this dissertation, we will put forward the methods to establish the broad 

ranging travelling wave solution to the stated equations. Also, we will discuss the effect 

of the value of the associated free parameters of the obtained solutions on wave profile by 

illustrating the various type of waves. Especially, we will examine the effect of the values 

of the coefficient of the highest order linear and nonlinear terms of the NLEEs on the wave 

profile. We will also, compare the obtained results by the studied methods and the other 

methods that are investigated by other researchers. 
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1.9 Objectives of the research 

The objective of this thesis work is to find out solitary wave solution of the (2+1)-

dimensional paraxial NLS equation in Kerr media through the (𝑤/𝑔)-expansion methods 

and the coupled (2+1)-dimensional nonlinear Konopelchenko–Dubrovsky (KD) model 

through the Modified Version of the New Kudryashov (MVNK) method. It can be used to 

fluid dynamics, optical fibers, communication systems and other numerous areas. 

The specific objectives of the present research work are as follows:  

i. The (𝑤 𝑔⁄ )-expansion method and the generalized Kudryashov method are applied 

to the (2+1)-dimensional paraxial NLS equation and the coupled (2+1)-

dimensional nonlinear Konopelchenko–Dubrovsky (KD).  

ii. To observe effect of the free parameters, dispersion, and nonlinearity of the 

obtained soliton solutions of the wave profile. 

iii. The obtained solutions are compared with other solutions obtained by various 

methods available in the literature. 

1.10 Organization of the thesis 
The dissertation entitled “ANALYSIS OF SOLITON SOLUTIONS TO THE 

NONLINEAR SCHRODINGER AND KONOPELCHENKO-DUBROVSKY 

EQUATIONS” has been separated into four parts which are arranged chapter wise as 

follows: 

Chapter 1 contains introduction of the present work including a literature review of the 

past studies on nonlinear evolution equations through different types of method. 

Objectives of the present study have also been incorporated in this chapter. The algorithms 

of two analytical methods are summarized in Chapter 2.  Also, we have formulated diverse 

generic and standard closed form solutions to the (2+1)-dimensional paraxial (NLS) 

equation in Kerr media and the coupled (2+1)-dimensional nonlinear Konopelchenko–

Dubrovsky (KD) model through the instructed methods in this chapter. In Chapter 3 we 

have illustrated the figures of the obtained soliton solutions and explained the physical 

significance. Also, comparison of the obtained our solutions via others solution with the 

merits and demerits have been discussed in this Chapter. Finally, in Chapter 4 the 

conclusions and future directions of this study are presented. 
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Chapter 2: Methodology and Applications 

In this chapter we discuss about the methodology and its application. The (𝑤 𝑔⁄ )-

expansion method (where 𝑤 and 𝑔 are arbitrary functions to find the analytical solutions.) 

and the Modified Version of the New Kudryashov (MVNK) method. The new 

computational approach the  (𝑤 𝑔⁄ ) is a family of some expansion methods which includes 

(𝐺′ 𝐺⁄ )-expansion method, tanh-function method, 𝑔′-expansion method, and  (𝑔′ 𝑔2⁄ )-

expansion method. In 2009, Li Wen-An and his collaborators  suggested 𝑔′-expansion 

method, and  (𝑔′ 𝑔2⁄ )-expansion method based on the closed form soliton solution of 

nonlinear evolution equation and applied to the Vakhnenko equation and explained the 

loop soliton solution [44]. The modern computational approach the Modified Version of 

the New Kudryashov (MVNK) method, which Kamyar Hosseini initially suggested in 

2020 [53], based on the solutions of the nonlinear evolution equations. The Modified 

Version of the New Kudryashov (MVNK) method is another form of the new Kudryashov 

method that has proved its potential in handling nonlinear evolution equations. In this 

thesis paper, we consider two nonlinear evolution model namely  the (2+1)-dimensional 

paraxial nonlinear Schrodinger (NLS) equation in Kerr media and the (2+1)-

Konopelchenko–Dubrovsky (KD) equation. According to the literature review we will 

apply , 𝑔′-expansion, (𝑔′ 𝑔2⁄ )-expansion methods to the (2+1)-dimensional paraxial 

nonlinear Schrodinger (NLS) equation in Kerr media and Modified Version of the New 

Kudryashov (MVNK) method to the (2+1)-Konopelchenko–Dubrovsky (KD) equation 

respectively.  

2.1 The (w/g)-expansion methods 

In this section we discuss about 𝑔′-expansion method, and  (𝑔′ 𝑔2⁄ )-expansion method 

which are applied for searching closed form soliton solutions. Now we consider the NLEE 

in conjunction with three independent variables 𝑥, 𝑦 and 𝑡 of the form: 

  𝐿(𝑢, 𝑢𝑥 , 𝑢𝑦, 𝑢𝑡 , 𝑢𝑥𝑥, 𝑢𝑥𝑦, 𝑢𝑥𝑡,…… . . … ) = 0                                                            (2.1) 

Where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡)  is an unknown function, 𝐿 is a polynomial of 𝑢(𝑥, 𝑦, 𝑡), and various 

partial derivatives involve in equation (2.1). 

Step-1. By using the wave variable, the NLEE (2.1) is reduced to the nonlinear ordinary 

differential equation (ODE). Making use of the wave transformations 

  {
𝑢(𝑥, 𝑡) = 𝑢(𝜉),
𝜉 = 𝑥 + 𝑦 ± 𝜎𝑡

                                                                                                           (2.2) 
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 where 𝜎 is the speed of the travelling wave. Inserting equation (2.2) into equation (2.1) 

yields the following ODE 

  𝑃(𝑢,−𝜎𝑢′, 𝑢′, 𝜎2𝑢″, −𝜎𝑢″, 𝑢″, ⋯⋯⋯) = 0                                                         (2.3) 

where 𝜎 will be determined later. 

Step-2. Suppose that the trail solution of Ordinary Differential Equation (2.3) is given by 

  𝑢(𝜉) = ∑ 𝛽𝑖 (
𝑤

𝑔
)
𝑖

𝑁
𝑖=0                                                                                                     (2.4) 

where 𝛽𝑖(𝑖 = 0,1,2,3, …………𝑁) are constants will be determined later. From equation 

(2.3), using balance principle and yields 𝑁.  

Step-3. For 𝑤 and 𝑔 the following relation is given: 

  (
𝑤

𝑔
)
′

= 𝑙 + 𝑚 (
𝑤

𝑔
) + 𝑛 (

𝑤

𝑔
)
2

                                                                                       (2.5) 

where 𝑙, 𝑚, 𝑛 are arbitrary constants. This equation can be written as 

  𝑤′𝑔 − 𝑤𝑔′ = 𝑙𝑔2 +𝑚𝑤𝑔 + 𝑛𝑤2                                                                            (2.6) 

If we consider 𝑤 = 𝑔′, 𝑙 = −𝜇,𝑚 = −𝜆, 𝑛 = −1, Then 𝑢(𝜉) can be expressed as 

  𝑢(𝜉) = ∑ 𝛽𝑖 (
𝑔′

𝑔
)
𝑖

 𝑁
𝑖=0                                                                                                    (2.7) 

where 𝑔 satisfies the following relation: 

  𝑔′′ + 𝜆𝑔′ + 𝜇𝑔 = 0,                                                                                                     (2.8) 

This is called (𝐺′ 𝐺⁄ )-expansion method and this method was proposed by Wang et al. 

[54]. Again, we consider 𝑤 = tanh(𝜉) , 𝑔 = 1, 𝑙 = 1,𝑚 = 0, 𝑛 = −1, Then 𝑢(𝜉) can be 

expressed as 

  𝑢(𝜉) = ∑ 𝛽𝑖(tanh(𝜉))
𝑖𝑁

𝑖=0                                                                                           (2.9) 

where 𝑔 satisfies the following relation 

  (tanh(𝜉))′ = 1 − (tanh(𝜉))2                                                                                  (2.10) 

This method is called the tanh-function method and proposed by Wazwaz [55]. 

In this research, we have mentioned another two applications of (𝑤 𝑔⁄ ) which are more 

than effective and essay to another technique. Firstly, we consider 𝑤 = 𝑔𝑔′, Then 𝑢(𝜉) 

can be expressed as 

  𝑢(𝜉) = ∑ 𝛽𝑖(𝑔
′)𝑖 𝑁

𝑖=0                                                                                                  (2.11) 

where 𝑔 satisfies the following relation 

  𝑔′′ = 𝑙 + 𝑚𝑔′ + 𝑛𝑔′
2
                                                                                                (2.12) 

This is called  𝑔′-expansion method that is proposed by Li et al. [44]. 

Secondly, we consider 𝑤 = 𝑔′ 𝑔⁄  and 𝑚 = 0, Then 𝑢(𝜉) can be expressed as 
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  𝑢(𝜉) = ∑ 𝛽𝑖 (
𝑔′

𝑔2⁄ )
𝑖

  𝑁
𝑖=0                                                                                         (2.13) 

where 𝑔 satisfies the following relation 

  𝑔′′𝑔2 − 2𝑔𝑔′
2
= 𝑙𝑔4 + 𝑛𝑔′

2
                                                                                  (2.14) 

This is called (𝑔′ 𝑔2⁄ )-expansion method that is proposed by Li et al. [44]. 

Step-4. With the help of Eq. (2.12) or Eq. (2.14) substituting Eq. (2.11) or Eq. (2.13) 

into Eq. (2.3) and equate each coefficient of all powers of (𝑤 𝑔⁄ )𝑖 to zero, we obtain a 

determining system equation. The obtained system includes 𝛽𝑖(𝑖 = 0,1, …………𝑁), 𝑙, 𝑚, 

𝑛 and 𝜎. 

Step-5. If we solve the determining equations with the aid of Maple, we get values of 

𝛽𝑖(𝑖 = 0,1, …………𝑁) and 𝜎. If we put obtained values into Eq. (2.11) or Eq. (2.13), we 

will get all possible solutions. 

we are use two new familiar (𝑤 𝑔⁄ )-expansive approaches namely the 𝑔′-expansion 

approach and another the (𝑔′ 𝑔2⁄ )-expansion approach which are describing in the below. 

2.1.1 The g'-expansion method 
The solution of Eq. (2.12) is given by 

Case -1:  If  4𝑙𝑛 − 𝑚2 < 0, 

  𝑔 =
1

2𝑛
[ln (tanh2 (

𝜉√𝑚2−4𝑙𝑛

2
) − 1) − 𝑚𝜉] 

And 𝑔′ =
1

2𝑛
[√𝑚2 − 4𝑙𝑛 tanh (−

𝜉√𝑚2−4𝑙𝑛

2
) − 𝑚]                                                   (2.15) 

Case -2:  If  4𝑙𝑛 − 𝑚2 = 0, 

  𝑔 = −
1

𝑛
[ln(𝜉) +

𝜉𝑚

2
] 

And 𝑔′ = −
1

𝑛
[
1

𝜉
+
𝑚

2
]                                                                                                         (2.16) 

Case -3: If 4𝑙𝑛 − 𝑚2 > 0, 

  𝑔 =
1

2𝑛
[ln (tan2 (

𝜉√4𝑙𝑛−𝑚2

2
) + 1) − 𝑚𝜉] 

And 𝑔′ =
1

2𝑛
[√4𝑙𝑛 − 𝑚2 tan (

𝜉√4𝑙𝑛−𝑚2

2
) − 𝑚]                                                          (2.17) 

2.1.2 The (g'/g2) expansion method  
The solution of Eq. (2.14) is given by  

Case -1: If  𝑛𝑙 < 0, 

  𝑔 = −
2𝑛

2𝜉√|𝑛𝑙|−  ln[
𝑛

4𝑙
(𝛥1𝑒

2𝜉√|𝑛𝑙|−𝛥2)
2
]
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And 𝑔′

𝑔2⁄ = −
√|𝑛𝑙|

𝑛
 (
𝛥1 sinh(2𝜉√|𝑛𝑙|)+𝛥1 cosh(2𝜉√|𝑛𝑙|)+𝛥2

𝛥1 sinh(2𝜉√|𝑛𝑙|)−𝛥1 cosh(2𝜉√|𝑛𝑙|)−𝛥2
)                                        (2.18) 

Case -2: If  𝑙 = 0, 𝑛 ≠ 0, 

𝑔 =
𝑛

ln[𝑛(𝜉𝛥1+𝛥2)]
  

And 𝑔′

𝑔2⁄ = −
𝛥2

𝑛(𝜉𝛥1+𝛥2)
                                                                                                  (2.19) 

Case -3: If  𝑛𝑙 > 0, 

  𝑔 =
2𝑛

ln[
𝑛

𝑙
(𝛥1 sin(𝜉√𝑛𝑙)−𝛥2 sin(𝜉√𝑛𝑙))

2
]
  

And 𝑔′

𝑔2⁄ = √
𝑙

𝑛
 (
𝛥1 cos(𝜉√𝑛𝑙)+𝛥2 sin(𝜉√𝑛𝑙)

𝛥1 sin(𝜉√𝑛𝑙)−𝛥2 cos(𝜉√𝑛𝑙)
)                                                                  (2.20) 

where 𝛥1 and 𝛥2 are arbitrary constant. 

2.2 The Modified Version of the New Kudryashov (MVNK) method 
In this portion, we provide a brief explanation of the Modified Version of the New 

Kudryashov (MVNK) method [53]. Now we consider the NLEE in conjunction with two 

independent variables 𝑥 and 𝑡 of the form 

  𝐿(𝑢, 𝑢𝑥, 𝑢𝑡 , … ) = 0                                                                                                    (2.21) 

Where,𝑢 = 𝑢(𝑥, 𝑡)  is an unknown function, 𝐿 is a polynomial of 𝑢(𝑥, 𝑡) and various 

partial derivatives involves in equation (2.21).  

Step-1. By using the wave variable, the NLEE (2.21)is reduced to the nonlinear Ordinary 

Differential Equation (ODE). Making use of the complex wave transformations 

  {
𝑢(𝑥, 𝑡) = 𝑢(𝜉)𝑒𝑖(𝛼𝑥+µ𝑡),

𝜉 = 𝑥 + 𝑣𝑡
                                                                                          (2.22) 

where 𝑣 is the speed of the travelling wave. Computing equation (2.22) into equation 

(2.21) yields the following nonlinear ODE 

  𝑅(𝑢, 𝑢′, 𝑢′′, … . . ) = 0                                                                                                (2.23) 

Where prime (‘) represent derivative of 𝜉 that means 𝑑
𝑑𝜉
. 

Step-2. Based upon the Modified Version of  the New Kudryashov (MVNK) method the 

trail solution of Eq. (2.23) can be expressed as following: 

  𝑢(𝜉) = 𝑐0 + ∑ (
𝑘(𝜉)

1+𝑘2(𝜉)
)
𝑗−1

𝑇
𝑗=1 (𝑐𝑗

𝑘(𝜉)

1+𝑘2(𝜉)
+ 𝑑𝑗

1−𝑘2(𝜉)

1+𝑘2(𝜉)
) , 𝑐𝑇 𝑜𝑟 𝑑𝑇 ≠ 0       (2.24) 

Where 𝑐0, 𝑐𝑗 , 𝑗 = 1,2, … . . 𝑇 and 𝑑𝑗 , 𝑗 = 1,2, … . . 𝑇 are determined later. 𝑇 is the 

homogeneous balance of number. 

Step-3. 𝑘(𝜉) satisfied the following function. 
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𝑘(𝜉) =
1

(𝑀 − 𝑁) sinh(𝜉) + (𝑀 +𝑁) cosh(𝜉)
                                                   (2.25) 

And satisfying the following Jacobi equation 

  (𝑘′(𝜉))
2
= 𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))                                                                    (2.26) 

Step-4. By inserting Eq. (2.24) into Eq. (2.23) and rearranging the teams, we attain a 

system of nonlinear algebraic equations whose solution results in soliton solutions of Eq. 

(2.21). 

2.3 Applications of the (w⁄g)-expansion methods  
we apply two new familiar (𝑤 𝑔⁄ )-expansive techniques namely 𝑔′-expansion technique 

and another (𝑔′ 𝑔2⁄ )-expansion technique to our governing equation. So, we consider  

the (2+1)-dimensional paraxial nonlinear Schrodinger (NLS) equation in Kerr media is  

  𝑖𝑢𝑦 +
𝜇

2
𝑢𝑡𝑡 +

𝜗

2
𝑢𝑥𝑥 + 𝜖|𝑢|

2𝑢 = 0                                                                          (2.27) 

where the function 𝑢(𝑥, 𝑦, 𝑡) represent the complex wave profile and 𝜇, 𝜗 and 𝜖 represent 

dispersion, diffraction and Kerr nonlinearity, respectively. This equation is also called the 

elliptic nonlinear Schrodinger equation when the product of dispersion and diffraction 

(𝜇𝜗) is less than zero. i.e. (𝜇𝜗 < 0) [20]. 

Now, we consider the following wave transformation 

  {
𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝜉)𝑒𝑖𝜃(𝑥,𝑦,𝑡)

𝜉 =  𝑥 +  𝑦 −  𝜎𝑡 

𝜃(𝑥, 𝑦, 𝑡) =  𝛿1𝑥 + 𝛿2𝑦 − 𝜆𝑡

                                                                                (2.28) 

where 𝑢(𝜉) is the amplitude portion includes wave velocity 𝜎. Also 𝑒𝑖𝜃(𝑥,𝑦,𝑡) is the phase 

portion which including frequency of soliton 𝛿1 and 𝛿2 also including wave number of 

solitons 𝜆. Now, inserting equation (2.28) into equation (2.27), we get the following real 

and imaginary parts:  

  −(𝜎2𝜇 + 𝜗)𝑢′′ + (𝜗𝛿1
2 + 𝜇𝜆2 + 2𝛿2)𝑢 − 2𝜖𝑢

3 = 0                                         (2.29) 

  (1 + 𝜗𝛿1 + 𝜎𝜇𝜆)𝑢
′ = 0                                                                                            (2.30) 

If we take (𝑢′ ≠ 0), we get from Eq. (2.30) 

  𝜗 =
−1−𝜎𝜇𝜆

𝛿1
                                                                                                                  (2.31) 

Making use Eq. (2.31), from Eq. (2.29) we achieved Ordinary Differential Equation 

(ODE) as 

  (1 − 𝜎2𝜇𝛿1 + 𝜎𝜇𝜆)𝑢
′′ − 𝛿1(𝛿1 + 𝜎𝜇𝛿1𝜆 − 𝜇𝜆

2 − 2𝛿2)𝑢 − 2𝜖𝛿1𝑢
3 = 0    (2.32) 
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Using the balancing principle between the highest degree nonlinear term 𝑢3 and the 

highest derivative  𝑢′′, we get 𝑁 = 1. 

2.3.1 Applications of the g'-expansion method to NLS equation  
Using the fact 𝑁 = 1, solution (2.11) can be written as  

  𝑢(𝜉) = 𝛽0 + 𝛽1𝑔
′                                                                                                       (2.33) 

Similarly noticeable as 

  g′′ = 𝑙 + 𝑚g′ + 𝑛𝑔′
2
                                                                                                (2.34) 

  𝑢′(𝜉) = 𝛽1(𝑙 + 𝑚𝑔
′ + 𝑛𝑔′

2
)                                                                                  (2.35) 

  𝑢′′(𝜉) = 𝛽1 (𝑚(𝑙 + 𝑚𝑔
′ + 𝑛𝑔′

2
)) + 2𝑛𝑔′ (𝑚(𝑙 + 𝑚𝑔′ + 𝑛𝑔′

2
))              (2.36) 

Introducing  𝑢′′(𝜉) and 𝑢(𝜉) into (2.32) we accomplish 

(−2𝜇𝑛2𝜎2𝛽1𝛿1 + 2𝜆𝜇𝑛
2𝜎𝛽1 − 2𝜖𝛽1

3𝛿1 + 2𝑛
2𝛽1)𝑔

′3

+ (−3𝑚𝜇𝑛𝜎2𝛽1𝛿1 + 3𝜆𝑚𝜇𝑛𝜎𝛽1 − 6𝜖𝛽0𝛽1
2𝛿1 + 3𝑚𝑛𝛽1)𝑔

′2

+ (−2𝑙𝜇𝑛𝜎2𝛽1𝛿1 −𝑚
2𝜇𝜎2𝛽1𝛿1 + 2𝑙𝜆𝜇𝑛𝜎𝛽1 + 𝜆𝑚

2𝜇𝜎𝛽1 − 𝜆𝜇𝜎𝑐 − 6𝜖𝛽0
2𝛽1𝛿1

+ 𝜆2𝜇𝛽1𝛿1 + 2𝑙𝑛𝛽1 +𝑚
2𝛽1 − 𝛽1𝛿1

2 + 2𝛽1𝛽1𝛿1𝛿2)𝑔
′ − 𝑙𝑚𝜇𝜎2𝛽1𝛿1 + 𝑙𝜆𝑚𝜇𝜎𝛽1

− 𝜆𝜇𝜎𝛽0𝛿1
2 − 2𝜖𝛽0

3𝛿1 + 𝜆
2𝜇𝛽0𝛿1 + 𝑙𝑚𝛽1 − 𝛽0𝛿1

2 + 2𝛽0𝛿1𝛿2

= 0                                                                                                                                          (2.37) 

It is possible to collect all term with same order of 𝑔′ and will get the following system of 

algebraic equations,  

Constant: −𝑙𝑚𝜇𝜎2𝛽1𝛿1 + 𝑙𝜆𝑚𝜇𝜎𝛽1 − 𝜆𝜇𝜎𝛽0𝛿1
2 − 2𝜖𝛽0

3𝛿1 + 𝜆
2𝜇𝛽0𝛿1 + 𝑙𝑚𝛽1 −

𝛽0𝛿1
2 + 2𝛽0𝛿1𝛿2 = 0 

𝑔′: −2𝑙𝜇𝑛𝜎2𝛽1𝛿1 −𝑚
2𝜇𝜎2𝛽1𝛿1 + 2𝑙𝜆𝜇𝑛𝜎𝛽1 + 𝜆𝑚

2𝜇𝜎𝛽1 − 𝜆𝜇𝜎𝑐 − 6𝜖𝛽0
2𝛽1𝛿1 +

𝜆2𝜇𝛽1𝛿1 + 2𝑙𝑛𝛽1 +𝑚
2𝛽1 − 𝛽1𝛿1

2 + 2𝛽1𝛽1𝛿1𝛿2 = 0 

   𝑔′
2
:  −3𝑚𝜇𝑛𝜎2𝛽1𝛿1 + 3𝜆𝑚𝜇𝑛𝜎𝛽1 − 6𝜖𝛽0𝛽1

2𝛿1 + 3𝑚𝑛𝛽1 = 0 

   𝑔′
3
:  −2𝜇𝑛2𝜎2𝛽1𝛿1 + 2𝜆𝜇𝑛

2𝜎𝛽1 − 2𝜖𝛽1
3𝛿1 + 2𝑛

2𝛽1 = 0 

Now, solving these equations with the help of package software Maple, the following 

values of the unknown parameters are attained 

Set-1: 

𝜇 = −
(4𝜖𝑙𝑛𝛽1

2 − 𝜖𝑚2𝛽1
2 − 2𝑛2𝛿1 + 4𝑛

2𝛿2)
2

2𝑛2𝜆2(4𝜖𝑙𝑛𝛽1
2 − 𝜖𝑚2𝛽1

2 + 2𝜖𝛽1
2𝛿1
2 − 4𝑛2𝛿1 + 4𝑛2𝛿2)

, 

𝜎 = −
2𝜆(𝜖𝛽1

2𝛿1 − 𝑛
2)

4𝜖𝑙𝑛𝛽1
2 − 𝜖𝑚2𝛽1

2 − 2𝑛2𝛿1 + 4𝑛2𝛿2
, 
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𝛽0 =
𝛽1𝑚

2𝑛
, 

𝛽1 = 𝛽1. 

Set-2:   

𝜇 = −
4𝑙𝑛 − 𝑚2 − 2𝛿1

2 + 4𝛿1𝛿2
2𝜆2𝛿1

, 

𝜎 = 0, 

𝛽0 = ±
𝑚

2√𝜖𝛿1
, 

𝛽1 = ±
𝑛

√𝜖𝛿1
. 

By using Set-1 along with Eq. (2.15), Eq. (2.16), Eq. (2.17) and Eq. (2.33), We are 

rapidly reducing the travelling waves solution of Eq. (2.27) as below: 

Family -1: when 4𝑙𝑛 − 𝑚2 < 0 

  𝑢1(𝜉) = 𝑒
𝑖(𝛿1𝑥+𝛿2𝑦−𝜆𝑡 )

−𝛽1√𝑚2−4𝑙𝑛 tanh(
√𝑚2−4𝑙𝑛

2
 𝜉)

2𝑛
                                            (2.38) 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡 , 𝜎 = − 2𝜆(𝜖𝛽1
2𝛿1−𝑛

2)

4𝜖𝑙𝑛𝛽1
2−𝜖𝑚2𝛽1

2−2𝑛2𝛿1+4𝑛2𝛿2
. 

Family -2: when 4𝑙𝑛 − 𝑚2 = 0 

  𝑢2(𝜉) = −𝑒
𝑖(𝛿1𝑥+𝛿2𝑦−𝜆𝑡 )

𝛽1

𝑛𝜉
                                                                                    (2.39) 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡, 𝜎 = − 2𝜆(𝜖𝛽1
2𝛿1−𝑛

2)

4𝜖𝑙𝑛𝛽1
2−𝜖𝑚2𝛽1

2−2𝑛2𝛿1+4𝑛2𝛿2
. 

Family -3: when 4𝑙𝑛 − 𝑚2 > 0 

  𝑢3(𝜉) = 𝑒
𝑖(𝛿1𝑥+𝛿2𝑦−𝜆𝑡 )

𝛽1√4𝑙𝑛−𝑚2 tan(
𝜉√4𝑙𝑛−𝑚2

2
)

2𝑛
                                                 (2.40) 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡, 𝜎 = − 2𝜆(𝜖𝛽1
2𝛿1−𝑛

2)

4𝜖𝑙𝑛𝛽1
2−𝜖𝑚2𝛽1

2−2𝑛2𝛿1+4𝑛2𝛿2
. 

Similarly, by using Set-2 along with Eq. (2.15), Eq. (2.16), Eq. (2.17) and Eq. (2.33), 

We are rapidly reducing the travelling waves solution of Eq. (2.27) as below 

Family -4: when 4𝑙𝑛 − 𝑚2 < 0 

  𝑢4(𝜉) = 𝑒
𝑖(𝛿1𝑥+𝛿2𝑦−𝜆𝑡 ) ×

√𝑚2−4𝑙𝑛 tanh(
𝜉√𝑚2−4𝑙𝑛

2
)

2√𝜖𝛿1
                                              (2.41) 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡, 𝜎 = 0. 

Family -5: when 4𝑙𝑛 − 𝑚2 = 0 

  𝑢5(𝜉) = 𝑒
𝑖(𝛿1𝑥+𝛿2𝑦−𝜆𝑡 ) ×

1

𝜉√𝜖𝛿1
                                                                             (2.42) 



 

26 
 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡, 𝜎 = 0. 

Family -6: when 4𝑙𝑛 − 𝑚2 > 0 

  𝑢6(𝜉) = 𝑒
𝑖(𝛿1𝑥+𝛿2𝑦−𝜆𝑡 ) ×

√4𝑙𝑛−𝑚2 tan(
𝜉√4𝑙𝑛−𝑚2

2
)

2√𝜖𝛿1
                                                (2.43) 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡, 𝜎 = 0. 

2.3.2 Applications of the (g'⁄g2)-expansion method to NLS equation  
Using the fact 𝑁 = 1, solution (2.13) can be written as  

  𝑢(𝜉) = 𝛽0 + 𝛽1 (
𝑔′

𝑔2⁄ )
′

                                                                                         (2.44) 

Similarly, satisfied following relation as 

  𝑔′′𝑔2 − 2𝑔𝑔′
2
= 𝑙𝑔4 + 𝑐𝑔′

2
                                                                                   (2.45) 

𝑢′(𝜉) =

𝑎1 (𝑎𝑔
2(𝜉) +

𝑐𝑔′
2(𝜉)

𝑔2(𝜉)
+
2𝑔′

2(𝜉)
𝑔(𝜉)

)

𝑔2(𝜉)
−
2𝑎1𝑔

′2(𝜉)

𝑔3(𝜉)
                              (2.46) 

  𝑢′′(𝜉)     =
1

𝑔2(𝜉)

(

 
 
 

𝑎1

(

  
 2𝑎𝑔(𝜉)𝑔′(𝜉) +

2𝑐𝑔′(𝜉)(𝑎𝑔2(𝜉)+
𝑐𝑔′

2
(𝜉)

𝑔2(𝜉)
+
2𝑔′

2
(𝜉)

𝑔(𝜉)
)

𝑔2(𝜉)

−
2𝑐𝑔′

3
(𝜉)

𝑔3(𝜉)
+
4𝑔′(𝜉)(𝑎𝑔2(𝜉)+

𝑐𝑔′
2
(𝜉)

𝑔2(𝜉)
+
2𝑔′

2
(𝜉)

𝑔(𝜉)
)

𝑔(𝜉)
−
2𝑔′

3
(𝜉)

𝑔2(𝜉) )

  
 

)

 
 
 

 

−

6𝑎1 (𝑎𝑔
2(𝜉) +

𝑐𝑔′
2(𝜉)

𝑔2(𝜉)
+
2𝑔′

2(𝜉)
𝑔(𝜉)

)𝑔′(𝜉)

𝑔3(𝜉)
+
6𝑎1𝑔

′3(𝜉)

𝑔4(𝜉)
                         (2.47) 

Introducing  𝑢′′(𝜉) and 𝑢(𝜉) into (2.32) we accomplish 

(−2𝛼𝑘𝑎1𝑐
2𝑚2 + 2𝛼𝑐2𝑚𝑣𝑎1 − 2𝛾𝑘𝑎1

3 + 2𝑎1𝑐
2) (

𝑔′

𝑔2
)

3

− 6𝛾𝑘𝑎0𝑎1
2 (
𝑔′

𝑔2
)

2

+ (−2𝛼𝑘𝑎1𝑐𝑎𝑚
2 + 2𝑎𝛼𝑐𝑚𝑣𝑎1 − 𝑎1𝑚𝛼𝑣𝑘

2 − 6𝛾𝑘𝑎0
2𝑎1 + 𝛼𝑘𝑎1𝑣

2

+ 2𝑎1𝑐𝑎 − 𝑎1𝑘
2 + 2𝑘𝑎1𝜔)(

𝑔′

𝑔2
) − 𝑎0𝑚𝛼𝑣𝑘

2 + 𝑘𝑎0𝛼𝑣
2 − 2𝛾𝑘𝑎0

3

− 𝑎0𝑘
2 + 2𝑘𝑎0𝜔 = 0                                                                                  (2.48) 

It is possible to collect all term with same order of (𝑔′ 𝑔2⁄ ) and will get the following 

system of algebraic equations,  

Constant: 𝑎0𝑚𝛼𝑣𝑘2 + 𝑘𝑎0𝛼𝑣2 − 2𝛾𝑘𝑎03 − 𝑎0𝑘2 + 2𝑘𝑎0𝜔 = 0 

(
𝑔′

𝑔2
): − 2𝛼𝑘𝑎1𝑐𝑎𝑚

2 + 2𝑎𝛼𝑐𝑚𝑣𝑎1 − 𝑎1𝑚𝛼𝑣𝑘
2 − 6𝛾𝑘𝑎0

2𝑎1 + 𝛼𝑘𝑎1𝑣
2 + 2𝑎1𝑐𝑎

− 𝑎1𝑘
2 + 2𝑘𝑎1𝜔 = 0 
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     (𝑔
′

𝑔2
)
2

: −6𝛾𝑘𝑎0𝑎1
2 = 0 

     (𝑔
′

𝑔2
)
3

: −2𝛼𝑘𝑎1𝑐
2𝑚2 + 2𝛼𝑐2𝑚𝑣𝑎1 − 2𝛾𝑘𝑎1

3 + 2𝑎1𝑐
2 = 0 

Now, solving these equations with the help of package software Maple, the following 

values of the unknown parameters are attained 

Set -1:  

𝜇 = −
(2𝑙𝜖𝛽1

2 − 𝑛𝛿1 + 2𝑛𝛿2)
2

𝜆2(2𝑙𝑛𝜖𝛽1
2 + 𝜖𝛿1

2𝛽1
2 − 2𝑛2𝛿1 + 2𝑛2𝛿2)

, 

𝜎 = −
𝜆(𝜖𝛿1𝛽1

2 − 𝑛2)

𝑛(2𝑙𝜖𝛽1
2 − 𝑛𝛿1 + 2𝑛𝛿2)

, 

𝛽0 = 0, 

𝛽1 = 𝛽1 

Set -2:   

   𝜇 = −
2𝑙𝑛−𝛿1

2+2𝛿1𝛿2

𝛿1𝜆2
,  

   𝜎 = 0, 

   𝛽0 = 0, 

   𝛽1 = ±
𝑛

√𝜖𝛿1
 

By using Set-1 along with Eq. (2.18), Eq. (2.19), Eq. (2.20) and Eq. (2.44), We are 

rapidly reducing the travelling waves solution of Eq. (2.27) as below 

Family -7: when 𝑙𝑛 < 0 

               𝑢7(𝜉) = −𝑒
𝑖(𝛿1𝑥+𝛿2𝑦−𝜆𝑡 )

×
√|𝑙𝑛| (𝛥1sinh (2𝜉√|𝑙𝑛|) + 𝛥1cosh (2𝜉√|𝑙𝑛|) + 𝛥2)𝛽1

𝑛 (𝛥1sinh (2𝜉√|𝑙𝑛|) + 𝛥1cosh (2𝜉√|𝑙𝑛|) − 𝛥2)
                        (2.49) 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡, 𝜎 = − 𝜆(𝜖𝛿1𝛽1
2−𝑛2)

𝑛(2𝑙𝜖𝛽1
2−𝑛𝛿1+2𝑛𝛿2)

.  

Family -8: when 𝑙 = 0, 𝑛 ≠ 0 

𝑢8(𝜉) = −𝑒
𝑖(𝛿1𝑥+𝛿2𝑦−𝜆𝑡 ) ×

𝛥1𝛽1
𝑛(𝛥1𝜉 + 𝛥2)

                                                            (2.50) 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡, 𝜎 = − 𝜆(𝜖𝛿1𝛽1
2−𝑛2)

𝑛(2𝑙𝜖𝛽1
2−𝑛𝛿1+2𝑛𝛿2)

. 
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Family -9: when 𝑙𝑛 > 0 

             𝑢9(𝜉) = 𝑒
𝑖(𝛿1𝑥+𝛿2𝑦−𝜆𝑡 ) ×

√𝑙
𝑛 (𝛥1cos(𝜉√𝑙𝑛) + 𝛥2sin(𝜉√𝑙𝑛))𝛽1

𝛥1sin(𝜉√𝑙𝑛) − 𝛥2cos(𝜉√𝑙𝑛)
                (2.51) 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡, 𝜎 = − 𝜆(𝜖𝛿1𝛽1
2−𝑛2)

𝑛(2𝑙𝜖𝛽1
2−𝑛𝛿1+2𝑛𝛿2)

. 

By using Set-2 along with Eq. (2.18), Eq. (2.19), Eq. (2.20) and Eq. (2.44), We are 

rapidly reducing the travelling waves solution of Eq. (2.27) as below 

 

Family 10: when 𝑙𝑛 < 0 

  𝑢10(𝜉) = 𝑒
𝑖(δ1x+δ2y−λt ) ×

                                               
√|𝑙𝑛|(Δ1sinh(2𝜉√|𝑙𝑛|)+Δ1cosh(2𝜉√|𝑙𝑛|)+Δ2)

√𝜖𝛿1(Δ1sinh(2𝜉√|𝑙𝑛|)+Δ1cosh(2𝜉√|𝑙𝑛|)−Δ2)
                      (2.52) 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡, 𝜎 = 0. 

Family -11: when 𝑙 = 0, 𝑛 ≠ 0 

            𝑢11(𝜉) = 𝑒
𝑖(𝛿1𝑥+𝛿2𝑦−𝜆𝑡 ) ×

𝛥1

√𝜖𝛿1(𝛥1𝜉 + 𝛥2)
                                                        (2.53) 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡, 𝜎 = 0. 

Family -12: when 𝑙𝑛 > 0 

            𝑢12(𝜉) = 𝑒
𝑖(𝛿1𝑥+𝛿2𝑦−𝜆𝑡 ) ×

√𝑙𝑛 (𝛥1cos(𝜉√𝑙𝑛) + 𝛥2sin(𝜉√𝑙𝑛))

√𝜖𝛿1(𝛥1sin(𝜉√𝑙𝑛) − 𝛥2cos(𝜉√𝑙𝑛))
                  (2.54) 

where 𝜉 = 𝑥 + 𝑦 − 𝜎𝑡, 𝜎 = 0. 

2.4 Applications of the MVNK method to KD equation 
In this section, by using the Modified Version of the New Kudryashov (MVNK) method 

we perform the general, pertinent, and widespread transparent soliton solutions to the 

(2+1)-Konopelchenko–Dubrovsky (KD) equation. In 1984, B.G. Konopelchenko and 

V.G. Dubrovsky constructed the (2+1)-dimensional Konopelchenko-Dubrovsky (KD) 

equation [11]. The (2+1)-dimensional nonlinear Konopelchenko–Dubrovsky (KD) model 

is 

  𝑢𝑡 − 𝑢𝑥𝑥𝑥 − 6𝑞𝑢𝑢𝑥 +
3

2
𝑝2𝑢2𝑢𝑥 − 3𝑣𝑦 + 3𝑝𝑢𝑥𝑣 = 0                                       (2.55) 

 𝑢𝑦 = 𝑣𝑥                                                                                                                         (2.56)   

where 𝑢 and  𝑣 represent the velocity components along the x-axis and y-axis, respectively. 

In equation (2.55) 𝑢𝑡 is the time evaluation term, 𝑢𝑢𝑥 and 𝑢2𝑢𝑥 are non-linear term which 
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include the non-linear coefficient 𝑝 and 𝑞 which works as the amplitude of the wave, others 

are the dispersive terms. The (2+1)-dimensional (KD) equation covers the Gardner 

equation (if 𝑢𝑦 = 0 ), Kadomtsev–Petviashvili (KP) equation (if  𝑝 = 0 ), the modified 

KP equation (if  𝑞 = 0 ). These equations are also used to simulate shallow coastal waves, 

irregular waves in paramagnetic media, super-fluids, and ion-acoustic wave propagation 

in a plasma with quasi electrons and liquid crystals. Substituting the wave transformation 

   {
𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝜉),

          𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝜇𝑡 + 𝜃0
                                                                   (2.57) 

Putting the value of Eq. (2.57) into Eq. (2.55) and (2.56) as a result we obtained the 

system of non-linear ordinary differential equations. 

   𝜇𝑢′ − 𝛼3𝑢′′′ − 6𝑞𝛼𝑢𝑢′ +
3

2
𝑝2𝛼𝑢2𝑢′ − 3𝛽𝑣′ + 3𝑝𝛼𝑢′𝑣 = 0            (2.58) 

   𝛽𝑢′ = 𝛼𝑣′                                                                                                       (2.59) 

Integrating Eq. (2.59) with respect to 𝑣 once and integrating constant zero then it reduces 

to 

   𝑣 =
𝛽

𝛼
𝑢                                                                                                            (2.60) 

Substituting Eq. (2.60) into Eq. (2.58) and we get 

   𝜇𝑢′ − 𝛼3𝑢′′′ +
3

2
𝑝2𝛼𝑢2𝑢′ −

3

𝛼
𝛽2𝑢′ + (

3𝑝𝛽−6𝑞𝛼

2
) 2𝜇𝑢′ = 0               (2.61) 

Integrating Eq. (2.61) with respect to 𝑣 once and integrating constant zero then it reduces 

to 

  𝜇𝑢 − 𝛼3𝑢′′ +
1

2
𝑝2𝛼𝑢3 −

3

𝛼
𝛽2𝑢 + (

3𝑝𝛽−6𝑞𝛼

2
) 𝑢2 = 0                           (2.62) 

Balancing the highest order derivative term 𝑢′′ with the highest power of nonlinear term 

𝑢3, gives 𝑇 = 1.Through the proposed method, using the value of 𝑇 with the help of Eq. 

(2.24), we achieved.        

  𝑢(𝜉) = 𝑐0 + 𝑐1
𝐾(𝜉)

1+𝐾2(𝜉)
+ 𝑐1

1−𝐾2(𝜉)

1+𝐾2(𝜉)
                                                         (2.63) 

Where 𝑐, 𝑐1 and 𝑐2 are constants to be determined latter, such that 𝑐1 ≠ 0 or 𝑐2 ≠ 0 and 

𝑘(𝜉) satisfies the Eq. (2.25) and Eq. (2.26). 

𝑢′(𝜉) =
𝑐1√𝑘

2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

1 + 𝑘2(𝜉)
−
2𝑐1𝑘

2(𝜉)√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

(1 + 𝑘2(𝜉))
2  

−
2𝑐2𝑘(𝜉)√𝑘

2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

1 + 𝑘2(𝜉)
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                        −
2𝑐2(1 − 𝑘

2(𝜉))𝐾(𝜉)√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

(1 + 𝑘2(𝜉))
2                                   (2.64) 

𝑢′′(𝜉) =

𝑐1

(

 
2𝑘(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

−8𝑘3(𝜉)𝑀𝑁√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))
)

 

2√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))(1 + 𝑘2(𝜉))

 

−
 6𝑐1𝑘

3(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

(1 + 𝑘2(𝜉))
2 +

 8𝑘5(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

(1 + 𝑘2(𝜉))
3  

−

 𝑐1𝑘
2(𝜉) (2𝑘(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉)))√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

−8𝑘3(𝜉)𝑀𝑁√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

(1 + 𝑘2(𝜉))
2
√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

 

−
2𝐶2𝑘

2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

1 + 𝑘2(𝜉)
 

−

 𝑐2𝑘(𝜉) (2𝑘(𝜉)(1 − 4𝑀𝑁𝑘
2(𝜉)))√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

−8𝑘3(𝜉)𝑀𝑁√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))(1 + 𝑘2(𝜉))

 

+
8𝐶2𝑘

4(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

(1 + 𝑘2(𝜉))
2 +

8𝐶2(1 − 𝑘
2(𝜉))𝑘4(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

(1 + 𝑘2(𝜉))
3  

−
2𝐶2(1 − 𝑘

2(𝜉))𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

(1 + 𝑘2(𝜉))
2  

−
1

(1 + 𝑘2(𝜉))
2
√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

 

(𝐶2(1 − 𝑘
2(𝜉))𝑘(𝜉) (2𝑘(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))

− 8𝑘3(𝜉)𝑀𝑁√𝑘2(𝜉)(1 − 4𝑀𝑁𝑘2(𝜉))))                                                                       (2.65) 
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Introducing  𝑢′′(𝜉) and 𝑢(𝜉) into (2.62) we accomplish 

(32𝑀𝑐2𝑁𝛼
4 + 𝛼2𝑝2𝑐0

3 − 3𝛼2𝑝2𝑐0
2𝑐2 + 3𝛼

2𝑝2𝑐0𝑐2
2 − 𝛼2𝑝2𝑐2

3 − 6𝛼2𝑞𝑐0
2

+ 12𝛼2𝑞𝑐0𝑐2 − 6𝛼
2𝑞𝑐2

2 + 3𝛼𝑝𝛽𝑐0
2 − 6𝛼𝑐2𝑝𝛽𝑐0 + 3𝛼𝛽𝑝𝑐1

2

+ 3𝛼𝑐2
2𝑝𝛽 + 2𝛼𝜇𝑐0 − 2𝛼𝑐2𝜇 − 6𝛽

2𝑐0 + 6𝛽
2𝑐2)𝐾

6(𝜉)

+ (−48𝑀𝑁𝛼4𝑐1 + 3𝛼
2𝑝2𝑐0

2𝑐1 − 6𝛼
2𝑝2𝑐0𝑐1𝑐2 + 3𝛼

2𝑝2𝑐1𝑐2
2 − 2𝛼4𝑐1

− 12𝛼2𝑞𝑐0𝑐1 + 12𝛼
2𝑞𝑐1𝑐2 + 6𝛼𝛽𝑝𝑐0𝑐1 − 6𝛼𝛽𝑝𝑐1𝑐2 + 2𝛼𝜇𝑐1

− 6𝛽2𝑐1)𝑘
5(𝜉)

+ (−96𝑀𝑐2𝑁𝛼
4 + 3𝛼2𝑝2𝑐0

3 − 3𝛼2𝑝2𝑐0
2𝑐2 + 3𝛼

2𝑝2𝑐0𝑐1
2

− 3𝛼2𝑝2𝑐0𝑐2
2 − 3𝛼2𝑝2𝑐1

2𝑐2 + 3𝛼
2𝑝2𝑐2

3 − 16𝛼4𝑐2 − 18𝛼
2𝑞𝑐0

2

+ 12𝛼2𝑞𝑐0𝑐2 − 6𝛼
2𝑞𝑐1

2 + 6𝛼2𝑞𝑐2
2 + 9𝛼𝛽𝑝𝑐0

2 − 6𝛼𝑐2𝑝𝛽𝑐0

+ 3𝛼𝛽𝑝𝑐1
2 − 3𝛼𝑐2

2𝑝𝛽 + 6𝛼𝜇𝑐0 − 2𝛼𝑐2𝜇 − 18𝛽
2𝑐0 + 6𝛽

2𝑐2)𝑘
4(𝜉)

+ (16𝑀𝑁𝛼4𝑐1 + 6𝛼
2𝑝2𝑐0

2𝑐1 + 𝛼
2𝑝2𝑐1

3 − 6𝛼2𝑝2𝑐1𝑐2
2 + 12𝛼4𝑐1

− 24𝛼2𝑞𝑐0𝑐1 + 12𝛼𝛽𝑝𝑐0𝑐1 + 4𝛼𝜇𝑐1 − 12𝛽
2𝑐1)𝑘

3(𝜉)

+ (3𝛼2𝑝2𝑐0
3 + 3𝛼2𝑝2𝑐0

2𝑐2 + 3𝛼
2𝑝2𝑐0𝑐1

2 − 3𝛼2𝑝2𝑐0𝑐2
2 + 3𝛼2𝑝2𝑐1

2𝑐2

− 3𝛼2𝑝2𝑐2
3 + 16𝛼4𝑐2 − 18𝛼

2𝑞𝑐0
2 − 12𝛼2𝑞𝑐0𝑐2 − 6𝛼

2𝑞𝑐1
2

+ 6𝛼2𝑞𝑐2
2 + 9𝛼𝛽𝑝𝑐0

2 + 6𝛼𝑐2𝑝𝛽𝑐0 + 3𝛼𝛽𝑝𝑐1
2 − 3𝛼𝑐2

2𝑝𝛽 + 6𝛼𝜇𝑐0

+ 2𝛼𝑐2𝜇 − 18𝛽
2𝑐0 − 6𝛽

2𝑐2)𝑘
2(𝜉)

+ (3𝛼2𝑝2𝑐0
2𝑐1 + 6𝛼

2𝑝2𝑐0𝑐1𝑐2 + 3𝛼
2𝑝2𝑐1𝑐2

2 − 2𝛼4𝑐1 − 12𝛼
2𝑞𝑐0𝑐1

− 12𝛼2𝑞𝑐1𝑐2 + 6𝛼𝛽𝑝𝑐0𝑐1 + 6𝛼𝛽𝑝𝑐1𝑐2 + 2𝛼𝜇𝑐1 − 6𝛽
2𝑐1)𝑘(𝜉)

+ 𝛼2𝑝2𝑐0
3 + 3𝛼2𝑝2𝑐0

2𝑐2 + 3𝛼
2𝑝2𝑐0𝑐2

2 + 𝛼2𝑝2𝑐2
3 − 6𝛼2𝑞𝑐0

2

− 12𝛼2𝑞𝑐0𝑐2 − 6𝛼
2𝑞𝑐2

2 + 3𝛼𝑝𝛽𝑐0
2 + 6𝛼𝑐2𝑝𝛽𝑐0 + 3𝛼𝑐2

2𝑝𝛽 + 2𝛼𝜇𝑐0

+ 2𝛼𝑐2𝜇 − 6𝛽
2𝑐0 − 6𝛽

2𝑐2

= 0                                                                                                                  (2.66) 

It is possible to rearranging all term with same order of 𝑘(𝜉) and we reached a system of 

algebraic equations 

Constant: 𝛼2𝑝2𝑐0
3 + 3𝛼2𝑝2𝑐0

2𝑐2 + 3𝛼
2𝑝2𝑐0𝑐2

2 + 𝛼2𝑝2𝑐2
3 − 6𝛼2𝑞𝑐0

2 − 12𝛼2𝑞𝑐0𝑐2

− 6𝛼2𝑞𝑐2
2 + 3𝛼𝑝𝛽𝑐0

2 + 6𝛼𝑐2𝑝𝛽𝑐0 + 3𝛼𝑐2
2𝑝𝛽 + 2𝛼𝜇𝑐0 + 2𝛼𝑐2𝜇

− 6𝛽2𝑐0 − 6𝛽
2𝑐2 = 0 

𝑘(𝜉): 3𝛼2𝑝2𝑐0
2𝑐1 + 6𝛼

2𝑝2𝑐0𝑐1𝑐2 + 3𝛼
2𝑝2𝑐1𝑐2

2 − 2𝛼4𝑐1 − 12𝛼
2𝑞𝑐0𝑐1 − 12𝛼

2𝑞𝑐1𝑐2

+ 6𝛼𝛽𝑝𝑐0𝑐1 + 6𝛼𝛽𝑝𝑐1𝑐2 + 2𝛼𝜇𝑐1 − 6𝛽
2𝑐1 = 0 
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𝑘2(𝜉): 3𝛼2𝑝2𝑐0
3 + 3𝛼2𝑝2𝑐0

2𝑐2 + 3𝛼
2𝑝2𝑐0𝑐1

2 − 3𝛼2𝑝2𝑐0𝑐2
2 + 3𝛼2𝑝2𝑐1

2𝑐2

− 3𝛼2𝑝2𝑐2
3 + 16𝛼4𝑐2 − 18𝛼

2𝑞𝑐0
2 − 12𝛼2𝑞𝑐0𝑐2 − 6𝛼

2𝑞𝑐1
2

+ 6𝛼2𝑞𝑐2
2 + 9𝛼𝛽𝑝𝑐0

2 + 6𝛼𝑐2𝑝𝛽𝑐0 + 3𝛼𝛽𝑝𝑐1
2 − 3𝛼𝑐2

2𝑝𝛽 + 6𝛼𝜇𝑐0

+ 2𝛼𝑐2𝜇 − 18𝛽
2𝑐0 − 6𝛽

2𝑐2 = 0 

𝑘3(𝜉): 16𝑀𝑁𝛼4𝑐1 + 6𝛼
2𝑝2𝑐0

2𝑐1 + 𝛼
2𝑝2𝑐1

3 − 6𝛼2𝑝2𝑐1𝑐2
2 + 12𝛼4𝑐1 − 24𝛼

2𝑞𝑐0𝑐1

+ 12𝛼𝛽𝑝𝑐0𝑐1 + 4𝛼𝜇𝑐1 − 12𝛽
2𝑐1 = 0 

𝑘4(𝜉):−96𝑀𝑐2𝑁𝛼
4 + 3𝛼2𝑝2𝑐0

3 − 3𝛼2𝑝2𝑐0
2𝑐2 + 3𝛼

2𝑝2𝑐0𝑐1
2 − 3𝛼2𝑝2𝑐0𝑐2

2

− 3𝛼2𝑝2𝑐1
2𝑐2 + 3𝛼

2𝑝2𝑐2
3 − 16𝛼4𝑐2 − 18𝛼

2𝑞𝑐0
2 + 12𝛼2𝑞𝑐0𝑐2

− 6𝛼2𝑞𝑐1
2 + 6𝛼2𝑞𝑐2

2 + 9𝛼𝛽𝑝𝑐0
2 − 6𝛼𝑐2𝑝𝛽𝑐0 + 3𝛼𝛽𝑝𝑐1

2 − 3𝛼𝑐2
2𝑝𝛽

+ 6𝛼𝜇𝑐0 − 2𝛼𝑐2𝜇 − 18𝛽
2𝑐0 + 6𝛽

2𝑐2 = 0 

𝑘5(𝜉): −48𝑀𝑁𝛼4𝑐1 + 3𝛼
2𝑝2𝑐0

2𝑐1 − 6𝛼
2𝑝2𝑐0𝑐1𝑐2 + 3𝛼

2𝑝2𝑐1𝑐2
2 − 2𝛼4𝑐1

− 12𝛼2𝑞𝑐0𝑐1 + 12𝛼
2𝑞𝑐1𝑐2 + 6𝛼𝛽𝑝𝑐0𝑐1 − 6𝛼𝛽𝑝𝑐1𝑐2 + 2𝛼𝜇𝑐1 − 6𝛽

2𝑐1

= 0 

𝑘6(𝜉): 32𝑀𝑐2𝑁𝛼
4 + 𝛼2𝑝2𝑐0

3 − 3𝛼2𝑝2𝑐0
2𝑐2 + 3𝛼

2𝑝2𝑐0𝑐2
2 − 𝛼2𝑝2𝑐2

3 − 6𝛼2𝑞𝑐0
2

+ 12𝛼2𝑞𝑐0𝑐2 − 6𝛼
2𝑞𝑐2

2 + 3𝛼𝑝𝛽𝑐0
2 − 6𝛼𝑐2𝑝𝛽𝑐0 + 3𝛼𝛽𝑝𝑐1

2

+ 3𝛼𝑐2
2𝑝𝛽 + 2𝛼𝜇𝑐0 − 2𝛼𝑐2𝜇 − 6𝛽

2𝑐0 + 6𝛽
2𝑐2 = 0 

Now, solving these equations with the help of package software Maple, the following 

values of the unknown set of parameters are attained 

Set-1:   𝑐0 = −𝑐2, 𝑐1 = 0, 𝑐2 = 𝑐2, 𝑁 =
−𝑐2

2𝑝2+4𝛼2

16𝛼2𝑀
, 𝛼 = 𝛼 

𝛽 =
𝛼(𝑐2

2𝑝2+4𝛼2+4𝑞𝑐2)

2𝑝𝑐2
, 

𝜇 =
𝛼(3𝑝4𝑐2

4 + 40𝛼2𝑝2𝑐2
2 + 24𝑝2𝑞𝑐2

3 + 48𝛼4 + 96𝛼2𝑞𝑐2 + 48𝑞
2𝑐2
2)

4𝑝2𝑐2
2 . 

Set-2:   𝑐0 = 𝑐0, 𝑐1 = 0, 𝑐2 = 𝑐2, 𝑁 =
−𝑐0(𝑐0−𝑐2)

2𝑀(2𝑐0
2+𝑐0𝑐2−𝑐2

2)
, 𝛼 = ±𝑝∆, 

∆= √−
𝑐2
3 − 2𝑐0

2𝑐2 − 𝑐0𝑐2
2

12𝑐0 − 4𝑐2
, 

𝛽 = ∓
2∆(𝑝2𝑐0

2 − 3𝑞𝑐0 + 𝑞𝑐2)

3𝑐0 − 𝑐2
 

𝜇 = ±

∆(
33𝑝4𝑐0

4 − 4𝑝4𝑐0
2𝑐2
2 + 4𝑝4𝑐0𝑐2

3 − 𝑝4𝑐2
4 − 144𝑝2𝑞𝑐0

3 +

48𝑝2𝑞𝑐0
2𝑐2 + 216𝑞

2𝑐0
2 − 144𝑞2𝑐0𝑐2 + 24𝑞

2𝑐2
2 )

2𝑝(3𝑐0 − 𝑐2)2
. 

Set-3:   𝑐0 = 0, 𝑐1 = ±
4𝑖𝛼

𝑝
, 𝑐2 = 0,𝑁 = 0, 𝛽 =

2𝛼𝑞

𝑝
, 𝛼 = 𝛼, 𝜇 = 𝛼(𝛼2𝑝2+12𝑞2)

𝑝2
. 
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Set-4:   𝑐0 =
√2𝑖𝛼

𝑝
, 𝑐1 = ±

4𝑖𝛼

𝑝
, 𝑐2 = 0,𝑁 = 0, 𝛽 = √2𝛼 (

𝑞

𝑝
− 𝑖𝛼) ,𝛼 = 𝛼,  

𝜇 =
−12𝛼

𝑝2
(√2𝑖𝛼𝑝𝑞 +

2𝛼2𝑝2

3
− 𝑞2). 

Set-5:   𝑐0 = −
√2𝑖𝛼

𝑝
, 𝑐1 = ±

4𝑖𝛼

𝑝
, 𝑐2 = 0,𝑁 = 0, 𝛼 = 𝛼,  

𝛽 = √2𝛼 (
𝑞

𝑝
+ 𝑖𝛼), 

𝜇 =
−12𝛼

𝑝2
(√2𝑖𝛼𝑝𝑞 +

2𝛼2𝑝2

3
− 𝑞2). 

Set-6:   𝑐0 = −𝑐2, 𝑐1 = ±2𝑖𝑐2, 𝑐2 = 𝑐2, 𝑁 = −
𝛼2−𝑐2

2𝑝2

4𝛼2𝑀
, 𝛼 = 𝛼, 

𝛽 =
𝛼(𝛼2 + 2𝑞𝑐2)

𝑝𝑐2
, 

𝜇 =
𝛼(𝛼2𝑝2𝑐2

2 + 3𝛼4 + 12𝛼2𝑞𝑐2 + 12𝑞
2𝑐2
2)

𝑝2𝑐2
2 . 

Set-7:   𝑐0 = 𝑐0, 𝑐1 = ±2𝑖𝑐2, 𝑐2 = 𝑐2, 𝛼 = ∆𝑝, 

𝑁 =
−𝑐0(𝑐0 − 𝑐2)

4𝑀(𝑐0
2 + 2𝑐0𝑐2 + 𝑐2

2)
, 

∆= √
𝑐2

𝑐2 + 3𝑐0
(𝑐0 + 𝑐2), 

𝛽 = −
2∆(𝑝2𝑐0

2 + 𝑝2𝑐0𝑐2 − 3𝑞𝑐0 − 𝑞𝑐2)

3𝑐0 + 𝑐2
, 

𝜇 =

∆(33𝑝4𝑐0
4 + 66𝑝4𝑐0

3𝑐2 + 32𝑝
4𝑐0
2𝑐2
2 − 2𝑝4𝑐0𝑐2

3 − 𝑝4𝑐2
4 − 144𝑝2𝑞𝑐0

3

−192𝑝2𝑞𝑐0
2𝑐2 − 48𝑝

2𝑞𝑐0𝑐2
2 + 216𝑞2𝑐0

2 + 144𝑞2𝑐0𝑐2 + 24𝑞
2𝑐2
2)

2𝑝(3𝑐0 + 𝑐2)2
 

Set-8:   𝑐0 = 𝑐0, 𝑐1 = ±2𝑖𝑐2, 𝑐2 = 𝑐2,  

𝑁 =
−𝑐0(𝑐0 − 𝑐2)

4𝑀(𝑐0
2 + 2𝑐0𝑐2 + 𝑐2

2)
, 

∆= √
𝑐2

𝑐2 + 3𝑐0
(𝑐0 + 𝑐2), 

𝛼 = −∆𝑝,   

𝛽 =
2∆(𝑝2𝑐0

2 + 𝑝2𝑐0𝑐2 − 3𝑞𝑐0 − 𝑞𝑐2)

3𝑐0 + 𝑐2
, 
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𝜇 = −

∆(33𝑝4𝑐0
4 + 66𝑝4𝑐0

3𝑐2 + 32𝑝
4𝑐0
2𝑐2
2 − 2𝑝4𝑐0𝑐2

3 − 𝑝4𝑐2
4 − 144𝑝2𝑞𝑐0

3

−192𝑝2𝑞𝑐0
2𝑐2 − 48𝑝

2𝑞𝑐0𝑐2
2 + 216𝑞2𝑐0

2 + 144𝑞2𝑐0𝑐2 + 24𝑞
2𝑐2
2)

2𝑝(3𝑐0 + 𝑐2)2
. 

By using Set-1 along with Eq. (2.25) and Eq. (2.63), We are rapidly reducing the 

travelling waves solution of Eq. (2.58) and Eq. (2.59) as below 

Collection-1:  

 𝑢10 =
−512𝛼4𝑀2𝑐2

(

((512𝑀2+32)𝛼4−16𝛼2𝑝2𝑐22+2𝑝4𝑐22)cosh2(𝜉)+

((512𝑀2−32)𝛼4−16𝛼2𝑝2𝑐22+2𝑝4𝑐22)

sinh(𝜉)cosh(𝜉)+(−256𝑀4+128𝑀2−16)𝛼4+32𝑝2(𝑀2+
1

4
)𝑐22𝛼2−𝑝2𝑐2

4
)

                          (2.67) 

 𝑣10 =
𝛽

𝛼

(

 
 
 
 
 

−512𝛼4𝑀2𝑐2

(

 
 

((512𝑀2+32)𝛼4−16𝛼2𝑝2𝑐22+2𝑝4𝑐22)cosh2(𝜉)+

((512𝑀2−32)𝛼4−16𝛼2𝑝2𝑐22+2𝑝4𝑐22)

sinh(𝜉)cosh(𝜉)

+(−256𝑀4+128𝑀2−16)𝛼4+32𝑝2(𝑀2+
1

4
)𝑐22𝛼2−𝑝2𝑐2

4
)

 
 

)

 
 
 
 
 

                                       (2.68) 

For arbitrary 𝑀 = ±
1

2
, 𝑐0 = −1, 𝑐1 = 0, 𝑐2 = 1 

𝑢11(𝜉)

= −
128𝛼4

(64𝛼4 − 16𝛼2𝑝2 + 2𝑃4)cosh2(𝜉) + (16𝛼2𝑝2 − 2𝑃4) sinh(𝜉) cosh(𝜉)

+16𝛼2𝑝2 − 𝑃4

        (2.69) 

𝑣11(𝜉)

= −
128𝛽𝛼3

(64𝛼4 − 16𝛼2𝑝2 + 2𝑃4)cosh2(𝜉) + (16𝛼2𝑝2 − 2𝑃4)(sinh(𝜉) cosh(𝜉))

+16𝛼2𝑝2 − 𝑃4

     (2.70) 

Where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝜇𝑡 + 𝜃0, 𝜇 =
𝛼(3𝑝4+40𝛼2𝑝2+24𝑝2𝑞+48𝛼4+96𝛼2𝑞+48𝑞2)

4𝑝2
 and  

𝛽 =
𝛼(𝑝2+4𝛼2+4𝑞)

2𝑝
. 

By using Set-2 along with Eq. (2.25) and Eq. (2.63), We are rapidly reducing the 

travelling waves solution of Eq. (2.58) and Eq. (2.59) as below 

Collection -2:  

 𝑢20 = 𝑐0 +

𝑐2

(

 
 
 

−1

(𝑀+
(𝑐0−𝑐2)𝑐0

2𝑀(2𝑐0
2+𝑐0𝑐0−𝑐2

2)
)sinh(𝜉)+((𝑀−

(𝑐0−𝑐2)𝑐0
2𝑀(2𝑐0

2+𝑐0𝑐0−𝑐2
2)
)cosh(𝜉))

2+1

)

 
 
 

1

(𝑀+
(𝑐0−𝑐2)𝑐0

2𝑀(2𝑐0
2+𝑐0𝑐0−𝑐2

2)
)sinh(𝜉)+((𝑀−

(𝑐0−𝑐2)𝑐0
2𝑀(2𝑐0

2+𝑐0𝑐0−𝑐2
2)
)cosh(𝜉))

2+1
               (2.71) 
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 𝑣20 =
𝛽

𝛼

(

 
 
 
 
 
 

𝑐0 +

𝑐2

(

 
 
 

−1

(𝑀+
(𝑐0−𝑐2)𝑐0

2𝑀(2𝑐0
2+𝑐0𝑐0−𝑐2

2)
)sinh(𝜉)+((𝑀−

(𝑐0−𝑐2)𝑐0
2𝑀(2𝑐0

2+𝑐0𝑐0−𝑐2
2)
)cosh(𝜉))

2+1

)

 
 
 

1

(𝑀+
(𝑐0−𝑐2)𝑐0

2𝑀(2𝑐0
2+𝑐0𝑐0−𝑐2

2)
)sinh(𝜉)+((𝑀−

(𝑐0−𝑐2)𝑐0
2𝑀(2𝑐0

2+𝑐0𝑐0−𝑐2
2)
)cosh(𝜉))

2+1

)

 
 
 
 
 
 

      (2.72) 

For arbitrary 𝑀 = ±1,𝑐0 = 1, 𝑐1 = 0, 𝑐2 = 1 

   𝑢21(𝜉) = 1 + tanh(𝜉)                                                                                            (2.73) 

 𝑣21(𝜉) =
𝛽

𝛼
(1 + tanh(𝜉))                                                                                      (2.74) 

For arbitrary 𝑀 = ±𝑖,𝑐0 = 1, 𝑐1 = 0, 𝑐2 = 1 

  𝑢22(𝜉) = 1 + coth(𝜉)                                                                                              (2.75) 

 𝑣22(𝜉) =
𝛽

𝛼
(1 + coth(𝜉))                                                                                       (2.76) 

Where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝜇𝑡 + 𝜃0, 𝛼 = ±
𝑝

2
, 𝛽 = ∓ (

−𝑝2

2
+ 𝑞) and 

𝜇 = ±(
(32𝑝4−96𝑝2𝑞+96𝑞2)

16𝑝
). 

By using Set-3 along with Eq. (2.25) and Eq. (2.63), We are rapidly reducing the 

travelling waves solution of Eq. (2.58) and Eq. (2.59) as below 

Collection -3:  

𝑢30 =
±4𝐼𝛼𝑀(sinh(𝜉) + cosh(𝜉))

𝑝(2𝑀2cosh2(𝜉) + 2𝑀2sinh(𝜉)cosh(𝜉) − 𝑀2 + 1)
                                        (2.77) 

𝑣30 =
𝛽

𝛼
(

±4𝐼𝛼𝑀(sinh(𝜉) + cosh(𝜉))

𝑝(2𝑀2cosh2(𝜉) + 2𝑀2sinh(𝜉)cosh(𝜉) − 𝑀2 + 1)
)                                (2.78) 

For arbitrary 𝑀 = ±1,𝑐0 = 0, 𝑐1 =
4𝑖𝛼

𝑝
, 𝑐2 = 0 

  𝑢31,2(𝜉) = ±
2𝑖𝛼

𝑝
sech(𝜉)                                                                                          (2.79) 

  𝑣31,2(𝜉) = ±
2𝑖𝛽

𝑝
sech(𝜉)                                                                                          (2.80) 

For arbitrary 𝑀 = ±𝑖,𝑐0 = 0, 𝑐1 =
4𝑖𝛼

𝑝
, 𝑐2 = 0 

  𝑢33,4(𝜉) = ±
2𝛼

𝑝
csch(𝜉)                                                                                           (2.81) 

  𝑣33,4(𝜉) = ±
2𝛽

𝑝
csch(𝜉)                                                                                           (2.82) 

Where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝜇𝑡 + 𝜃0, 𝛽 =
2𝛼𝑞

𝑝
 𝑎𝑛𝑑 𝜇 =

𝛼(𝛼2𝑝2+12𝑞2)

𝑝2
. 
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By using Set-4 along with Eq. (2.25) and Eq. (2.63), We are rapidly reducing the 

travelling waves solution of Eq. (2.58) and Eq. (2.59) as below 

Collection -4: 

𝑢40 =
𝐼𝛼 ((𝑀2sinh(𝜉) + 𝑀2cosh(𝜉) − sinh(𝜉) + cosh(𝜉))√2 ± 4𝑀)

𝑝(𝑀2sinh(𝜉) + 𝑀2cosh(𝜉) − sinh(𝜉) + cosh(𝜉))
                 (2.83) 

𝑣40 =
𝛽

𝛼
(
𝐼𝛼 ((𝑀2sinh(𝜉) + 𝑀2cosh(𝜉) − sinh(𝜉) + cosh(𝜉))√2 ± 4𝑀)

𝑝(𝑀2sinh(𝜉) + 𝑀2cosh(𝜉) − sinh(𝜉) + cosh(𝜉))
)       (2.84) 

For arbitrary 𝑀 = ±1;𝑐0 =
√2𝑖𝛼

𝑝
; 𝑐1 =

4𝑖𝛼

𝑝
; 𝑐2 = 0 

  𝑢41,2(𝜉) =
√2𝑖𝛼

𝑝
(1 ± √2 sech(𝜉))                                                                          (2.85) 

  𝑣41,2(𝜉) =
√2𝑖𝛽

𝑝
(1 ± √2 sech(𝜉))                                                                          (2.86) 

For arbitrary 𝑀 = ±𝑖,𝑐0 =
√2𝑖𝛼

𝑝
, 𝑐1 =

4𝑖𝛼

𝑝
, 𝑐2 = 0 

  𝑢43,4(𝜉) =
√2𝛼

𝑝
(𝑖 ± √2 csch(𝜉))                                                                            (2.87) 

  𝑣43,4(𝜉) =
√2𝛽

𝑝
(𝑖 ± √2 csch(𝜉))                                                                            (2.88) 

Where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝜇𝑡 + 𝜃0, 𝛽 = √2𝛼 (
𝑞

𝑝
− 𝑖𝛼),  𝜇 = −12𝛼

𝑝2
(√2𝑖𝛼𝑝𝑞 +

2𝛼2𝑝2

3
− 𝑞2). 

By using Set-5 along with Eq. (2.25) and Eq. (2.63), We are rapidly reducing the 

travelling waves solution of Eq. (2.58) and Eq. (2.59) as below 

Collection -5:  

𝑢50 =
−𝐼𝛼 ((𝑀2cosh(𝜉) + 𝑀2sinh(𝜉) + cosh(𝜉) − sinh(𝜉))√2 ∓ 4𝑀)

𝑝(𝑀2cosh(𝜉) + 𝑀2sinh(𝜉) + cosh(𝜉) − sinh(𝜉))
             (2.89) 

𝑣50 =
𝛽

𝛼
(
−𝐼𝛼 ((𝑀2cosh(𝜉) + 𝑀2sinh(𝜉) + cosh(𝜉) − sinh(𝜉))√2 ∓ 4𝑀)

𝑝(𝑀2cosh(𝜉) + 𝑀2sinh(𝜉) + cosh(𝜉) − sinh(𝜉))
)   (2.90) 

For arbitrary 𝑀 = ±1, 𝑐0 = −
√2𝑖𝛼

𝑝
, 𝑐1 = ±

4𝑖𝛼

𝑝
, 𝑐2 = 0 

  𝑢51,2(𝜉) =
√2𝑖𝛼

𝑝
(±√2 sech(𝜉) − 1)                                                                       (2.91) 

  𝑣51,2(𝜉) =
√2𝑖𝛽

𝑝
(±√2 sech(𝜉) − 1)                                                                       (2.92) 

For arbitrary 𝑀 = ±𝑖, 𝑐0 =
√2𝑖𝛼

𝑝
, 𝑐1 = ±

4𝑖𝛼

𝑝
, 𝑐2 = 0 

  𝑢53,4(𝜉) =
√2𝛼

𝑝
(±√2 csch(𝜉) − 𝑖)                                                                         (2.93) 
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  𝑣53,4(𝜉) =
√2𝛽

𝑝
(±√2 csch(𝜉) − 𝑖)                                                                         (2.94) 

Where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝜇𝑡 + 𝜃0, 𝛽 = √2𝛼 (
𝑞

𝑝
+ 𝑖𝛼) , 𝜇 = −12𝛼

𝑝2
(√2𝑖𝛼𝑝𝑞 +

2𝛼2𝑝2

3
− 𝑞2). 

By using Set-6 along with Eq. (2.25) and Eq. (2.63), We are rapidly reducing the 

travelling waves solution of Eq. (2.58) and Eq. (2.59) as below 

Collection -6: 

 𝑢60 = ±
(32𝛼2𝑀𝑐2(((𝐼𝑀

2−
𝐼

4
)𝛼2+

𝐼𝑝2𝑐2
2

4
)cosh(𝜉)+((𝐼𝑀2+

𝐼

4
)𝛼2−

𝐼𝑝2𝑐2
2

4
)sinh(𝜉)−𝛼2𝑀))

(

((32𝑀4+2)𝛼4−4𝛼2𝑝2𝑐22+2𝑝4𝑐24)cosh2(𝜉)+

((32𝑀4−2)𝛼4+4𝛼2𝑝2𝑐22−2𝑝4𝑐24)sinh(𝜉)cosh(𝜉)+

(−16𝑀4+8𝑀2−1)𝛼4+8(𝑀2+
1

4
)𝑝2𝑐22𝛼2−𝑝4𝑐24

)

          (2.95) 

 𝑣60 = ±
𝛽

𝛼
(

 
 
32𝛼2𝑀𝑐2(((𝐼𝑀

2−
𝐼

4
)𝛼2+

𝐼𝑝2𝑐2
2

4
)cosh(𝜉)+((𝐼𝑀2+

𝐼

4
)𝛼2−

𝐼𝑝2𝑐2
2

4
)sinh(𝜉)−𝛼2𝑀)

)

 
 

(

 
 
 
 

((32𝑀4+2)𝛼4−4𝛼2𝑝
2
𝑐22+2𝑝4𝑐24)cosh

2(𝜉)+

((32𝑀4−2)𝛼4+4𝛼2𝑝
2
𝑐22−2𝑝4𝑐24)sinh(𝜉)cosh(𝜉)+

(−16𝑀4+8𝑀2−1)𝛼4+8(𝑀2+
1

4
)𝑝2𝑐22𝛼2−𝑝4𝑐24 )

 
 
 
 

              (2.96) 

For arbitrary 𝑀 = ±1,𝑐0 = −1, 𝑐1 = ±2𝑖, 𝑐2 = 1  

𝑢61,2(𝜉) = −
8𝛼2((5𝑖𝛼2 − 𝑖𝑝2) sinh(𝜉) + (3𝑖𝛼2 + 𝑖𝑝2) cosh(𝜉) ∓ 4𝛼2)

(
(34𝛼4 − 4𝛼2𝑝2 + 2𝑃4)cosh2(𝜉) + (30𝛼4 + 4𝛼2𝑝2 − 2𝑃4)

sinh(𝜉) cosh(𝜉) − 9𝛼4 + 10𝛼2𝑝2 − 𝑃4
)

         (2.97) 

𝑣61,2(𝜉) = −
8𝛼𝛽((5𝑖𝛼2 − 𝑖𝑝2) sinh(𝜉) + (3𝑖𝛼2 + 𝑖𝑝2) cosh(𝜉) ∓ 4𝛼2)

(34𝛼4 − 4𝛼2𝑝2 + 2𝑃4)cosh2(𝜉) + (30𝛼4 + 4𝛼2𝑝2 − 2𝑃4)

sinh(𝜉) cosh(𝜉) − 9𝛼4 + 10𝛼2𝑝2 − 𝑃4

             (2.98) 

Where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝜇𝑡 + 𝜃0,  𝛽 = 𝛼(𝛼2+2𝑞)

𝑝
  and  𝜇 = 𝛼(𝛼2𝑝2+3𝛼4+12𝛼2𝑞+12𝑞2)

𝑝2
. 

By using Set-7 along with Eq. (2.25) and Eq. (2.63), We are rapidly reducing the 

travelling waves solution of Eq. (2.58) and Eq. (2.59) as below 

Collection -7:  

 𝑢70 =

4(𝑐0+𝑐2)(
((−𝑀2+

1

4
)𝑐0

2+(−𝑀2𝑐2−
1

4
𝑐2)𝑐0−𝑀

2𝑐2
2)cosh(𝜉)+

((−𝑀2−
1

4
)𝑐0

2+(−2𝑀2𝑐2+
1

4
𝑐2)𝑐0−𝑀

2𝑐2
2)sinh(𝜉)+𝐼(𝑐0−𝑐2)𝑀(𝑐0+𝑐2)

)

(
((4𝑀2−1)𝑐02+(8𝑀2𝑐2+𝑐2)𝑐0+4𝑀2𝑐22)cosh(𝜉)+

((4𝑀2+1)𝑐02+(8𝑀2𝑐2−𝑐2)𝑐0+4𝑀2𝑐22)sinh(𝜉)+4𝐼𝑀(𝑐0+𝑐2)2
)

              (2.99) 

 𝑣70 =
𝛽

𝛼

4(𝑐0+𝑐2)(
((−𝑀2+

1

4
)𝑐0

2+(−𝑀2𝑐2−
1

4
𝑐2)𝑐0−𝑀

2𝑐2
2)cosh(𝜉)+

((−𝑀2−
1

4
)𝑐0

2+(−2𝑀2𝑐2+
1

4
𝑐2)𝑐0−𝑀

2𝑐2
2)sinh(𝜉)+𝐼(𝑐0−𝑐2)𝑀(𝑐0+𝑐2)

)

(
((4𝑀2−1)𝑐02+(8𝑀2𝑐2+𝑐2)𝑐0+4𝑀2𝑐22)cosh(𝜉)+

((4𝑀2+1)𝑐02+(8𝑀2𝑐2−𝑐2)𝑐0+4𝑀2𝑐22)sinh(𝜉)+4𝐼𝑀(𝑐0+𝑐2)2
)

         (2.100) 
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For arbitrary 𝑀 = 𝑖, 𝑐0 = 𝑖, 𝑐1 = ±2𝑖, 𝑐2 = 1 

𝑢71,2(𝜉) =
(6𝑖 − 8) cosh(𝜉) + (10𝑖 − 8) sinh(𝜉) ± 8𝑖 ± 8

(7𝑖 − 1) cosh(𝜉) + (9𝑖 + 1) sinh(𝜉) ∓ 8𝑖
                        (2.101) 

𝑣71,2(𝜉) =
𝛽

𝛼
(
(6𝑖 − 8) cosh(𝜉) + (10𝑖 − 8) sinh(𝜉) ± 8𝑖 ± 8

(7𝑖 − 1) cosh(𝜉) + (9𝑖 + 1) sinh(𝜉) ∓ 8𝑖
)               (2.102) 

For arbitrary 𝑀 = −𝑖,𝑐0 = 𝑖, 𝑐1 = ±2𝑖, 𝑐2 = 1 

𝑢73,4(𝜉) =
(6𝑖 − 8) cosh(𝜉) + (10𝑖 − 8) sinh(𝜉) ∓ 8𝑖 ∓ 8

(7𝑖 − 1) cosh(𝜉) + (9𝑖 + 1) sinh(𝜉) ± 8𝑖
                        (2.103) 

𝑣73,4(𝜉) =
𝛽

𝛼
(
(6𝑖 − 8) cosh(𝜉) + (10𝑖 − 8) sinh(𝜉) ∓ 8𝑖 ∓ 8

(7𝑖 − 1) cosh(𝜉) + (9𝑖 + 1) sinh(𝜉) ± 8𝑖
)               (2.104) 

Where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝜇𝑡 + 𝜃0, 𝛼 = (
𝑖

10
+

1

10
)√10 − 30𝑖𝑝, 𝛽 = (

𝑖

25
−

2

25
) ((𝑖 − 3)𝑝2 −

(3𝑖 + 1)𝑞)√10 − 30𝑖  and 𝜇 =
1

𝑝
(
7𝑖

1000
−

1

1000
) (−68𝑖𝑝4 + 96𝑖𝑝2𝑞 + 192𝑝2𝑞 −

192𝑞2 + 144𝑖𝑞2). 

By using Set-8 along with Eq. (2.25) and Eq. (2.63), We are rapidly reducing the 

travelling waves solution of Eq. (2.58) and Eq. (2.59) as below  

Collection -8: 

 𝑢80 =

4(𝑐0+𝑐2)(
((𝑀2−

1

4
)𝑐0

2+(2𝑀2𝑐2+
1

4
𝑐2)𝑐0+𝑀

2𝑐2
2)cosh(𝜉)+

((𝑀2+
1

4
)𝑐0

2+(2𝑀2𝑐2−
1

4
𝑐2)𝑐0+𝑀

2𝑐2
2)sinh(𝜉)+𝐼𝑀(𝑐0+𝑐2)(𝑐0−𝑐2)

)

(
((4𝑀2−1)𝑐02+(8𝑀2𝑐2+𝑐2)𝑐0+4𝑀2𝑐22)cosh(𝜉)+

((4𝑀2+1)𝑐02+(8𝑀2𝑐2−𝑐2)𝑐0+4𝑀2𝑐22)sinh(𝜉)+4𝐼𝑀(𝑐0+𝑐2)2
)

                (2.105) 

 𝑣80 =
𝛽

𝛼

4(𝑐0+𝑐2)(
((𝑀2−

1

4
)𝑐0

2+(2𝑀2𝑐2+
1

4
𝑐2)𝑐0+𝑀

2𝑐2
2)cosh(𝜉)+

((𝑀2+
1

4
)𝑐0

2+(2𝑀2𝑐2−
1

4
𝑐2)𝑐0+𝑀

2𝑐2
2)sinh(𝜉)+𝐼𝑀(𝑐0+𝑐2)(𝑐0−𝑐2)

)

(
((4𝑀2−1)𝑐02+(8𝑀2𝑐2+𝑐2)𝑐0+4𝑀2𝑐22)cosh(𝜉)+

((4𝑀2+1)𝑐02+(8𝑀2𝑐2−𝑐2)𝑐0+4𝑀2𝑐22)sinh(𝜉)+4𝐼𝑀(𝑐0+𝑐2)2
)

              (2.106) 

For arbitrary 𝑀 = ±1, 𝑐0 =
1

2
, 𝑐1 = ±𝑖, 𝑐2 =

1

2
 

𝑢81,2(𝜉) =
cosh(𝜉) + sinh(𝜉)

cosh(𝜉) + sinh(𝜉) ∓ 𝑖
                                                                      (2.107) 

𝑣81,2(𝜉) =
𝛽

𝛼
(
cosh(𝜉) + sinh(𝜉)

cosh(𝜉) + sinh(𝜉) ∓ 𝑖
)                                                             (2.108) 

𝑢83,4(𝜉) =
cos(𝑖𝜉) − 𝑖 sin(𝑖𝜉)

cos(𝑖𝜉) − sin(𝑖𝜉) ∓ 𝑖
                                                                        (2.109) 

𝑣83,4(𝜉) =
𝛽

𝛼
(
cos(𝑖𝜉) − 𝑖 sin(𝑖𝜉)

cos(𝑖𝜉) − 𝑖 sin(𝑖𝜉) ∓ 𝑖
)                                                             (2.110) 

Where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝜇𝑡 + 𝜃0, 𝛼 =
−𝑝

2
, 𝛽 =

𝑝2

4
− 𝑞 and 𝜇 = (48𝑝2𝑞−8𝑝4−96𝑞2)

16𝑝
.  
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Chapter 3: Result and Discussion 

In this chapter, we will present physical illustrations of the obtained closed-form solutions 

of the stated equations cited in chapter four using various methods. Furthermore, we 

discuss the impact of the values of the various types of parameters on determining 

solutions on the wave profile. Furthermore, we will discover the distinction between 

solutions obtained through different methods, as well as the limitations of the implemented 

methods, which will be elaborately described in two parts namely Comparisons of the 

investigated methods and Benefits and drawbacks of the investigated methods. Rather, we 

analyze the physical description and then display the graphs of the gained solutions of the 

(2+1)-dimensional paraxial nonlinear Schrodinger (NLS) equation and the (2+1)-

dimensional nonlinear Konopelchenko–Dubrovsky (KD) equation. 

3.1 Graphical and physical discussion of the wave profile 
This section contains three subsections that locate the well-delineated representations and 

discussions of innumerable solitary waves of the ascertained solutions for (2+1)-

dimensional paraxial nonlinear Schrodinger (NLS) equation through the 𝑔′- expansion  

and (𝑔′ 𝑔2⁄ )-expansion methods. In addition, the (2+1)-dimensional nonlinear (KD) 

model via Modified Version of New Kudryashov (MVNK) Method. Various types such 

as 3D, and combined 2D plots represented of the real, imaginary and modulus graph are 

obtainable by using of MATLAB and Wolfram Mathematica software, our gained 

travelling wave solutions of the proposed equations are represented in the figures and 

discuss the characteristics of those waves for disagreeable values of the free parameters.  

3.1.1 Wave profile analysis of paraxial nonlinear Schrodinger model 
With the help of the Mathematical software Wolfram Mathematica, the obtained solutions 

to the 𝑔′ method is picturized in 3D, and 2D plots with suitable values of the related 

parameters in this sub-section. By applying the 𝑔′ technique obtainment to the paraxial 

NLS equation, we attain the families of well-known and standard soliton solutions such as 

smooth kink, idea kink, singular kink, peakon, periodic, anti-bell, bell shape. By applying 

the (𝑔′ 𝑔2⁄ )-expansion technique on the paraxial NLS equation we have achieved 

trigonometric, hyperbolic, and rational solutions. In general, depending on the kerr 

nonlinearity 𝜖, the resulting 𝑢1(𝜉), 𝑢3(𝜉) and 𝑢4(𝜉) exhibit different sorts of solitary 

waves with the coefficient of the higher degree of nonlinear term. Also, the outcomes 

𝑢7(𝜉), 𝑢9(𝜉) and 𝑢10(𝜉)  shows various types of solitary waves depending on wave 
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numbers 𝜆 with the coefficient of the higher order of nonlinear term. In this section, we 

will show the wave shape those changes as a result of the effect of free parameters which 

will play an important role in the field of engineering modern physics. Here, we have 

shown a change in the graph due to the non-linearity effect and explain the graphical 

representation with some fixed parametric values. 

(a) (b) 

  
(c) (d) 

  
Figure 3.1: The graph of the real part of the solution  𝑢1(𝜉) is depicted for selecting 

parameters within the interval −5 ≤ 𝑥, 𝑡 ≤ 5. 

The real part of the result 𝑢1(𝜉) represent the flat kink soliton for the free parameter 𝑙 =

0.1,𝑚 = 1, 𝑛 = 1, 𝜆 = 0.01, 𝛿1 = 𝛿2 = 0.001, 𝛽1 = 0.1, 𝜖 = −1.5 shown in Fig-3.1(a).  

Now, increasing the Kerr nonlinearity 𝜖 at −0.7 and 0.1 the solution 𝑢1(𝜉) represent 

smooth kink and ideal kink shape respectively portrayed in Fig-3.1(b) and Fig-3.1(c). Also, 

we illustrate the corresponding line graph for 𝜖 = −1.5, −0.7 and 0.1 shown in Fig-

3.1(d).The soliton solution is stable since the figure cannot change from its original shape 

for very large values of 𝜖, such as 𝜖 = 30, 40, 50.   This type of soliton changes their 

asymptotic line from one location to another location and is finally stable at 𝑡 ⟶ ∞.   
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(a) (b) 

  
(c) (d) 

  
Figure 3.2: The modulus plots of the solution  𝑢1(𝜉) is depicted for selecting 

parameters within the interval −5 ≤ 𝑥, 𝑡 ≤ 5. 

Again, the modulus plot of the result 𝑢1(𝜉) represent the peakon type soliton for the free 

parameter 𝑙 = 0.01,𝑚 = 2, 𝑛 = 5, 𝛿1 = −1, 𝛿2 = 2, 𝛽1 = 4, 𝜆 = 3, 𝜖 = 0.3 shown in Fig-

3.2(a). A peakon is a type of soliton in which each peakon is a soliton and confined to a 

finite centre. Peakons are characterized by solitary waves with noticeable soliton 

properties that, after being consecutively destroyed in various compacts, they reemerge 

with precise shapes. Now, increasing 𝜖 = 0.7 and 0.9 the solution 𝑢1(𝜉) represent singular 

kink soliton portrayed in Fig-3.2(b) and Fig-3.2(c) respectively. Also, we illustrate the 

corresponding line graph for 𝜖 = 0.3, 0.6 and 0.9 shown in Fig-3.2(d). For fixed-

parameter 𝑙 = 1.01,𝑚 = 2, 𝑛 = 1.01, 𝜆 = 0.5, 𝛿1 = 1.4, 𝛿2 = 1.4, 𝛽1 = 0.3, 𝜖 = 0.4 

behavior of the result  𝑢3(𝜉) shown in Fig-3.3(a). Increases the value of Kerr nonlinearity 

such as 𝜖 = 1.4   and 2.6 with keeps the value of all the other  
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 (a)   (b) 

  
 (c)      (d) 

  
Figure 3.3: The graph of the imaginary part of the solution  𝑢3(𝜉) is depicted for 

selecting parameters within the interval −5 ≤ 𝑥, 𝑡 ≤ 5. 

parameters the same as the structure solution 𝑢3(𝜉) has been not changed all are looks like 

as short wave portrayed in Fig-3.3(b) and Fig-3.3(c). The singular soliton exists for very 

large values of 𝜖, such as 𝜖 = 40, and 45 that are not shown. The line graphics as portrayed 

for same values shown in Fig-3.3(d). In addition, the 3D depiction real part of the solution 

𝑢4(𝜉) represent anti-bell soliton for the fixed values parameter 𝑙 = −0.1,𝑚 = 1, 𝑛 =

0.9, 𝜆 = 0.01, 𝛿1 = 0.35, 𝜖 = −0.05 illustrates in Fig-3.4(a). For large value of 𝜖 = 0.01 

and 0.09 the nature of the result  𝑢4(𝜉) is parabolic shape and bell shape soliton shown in 

Fig-3.4(b) and Fig-3.4(c) respectively. The line graphics as portrayed for same values 

shown in Fig-3.4(d). The 3D bell shape soliton is sketched for the imaginary part of the 

solution 𝑢7(𝜉) for arbitrary real values 𝑙 = −0.02, 𝑛 = 0.01, 𝜆 = 0.3, 𝛿1 = 0.01, 𝛿2 =

1.5, 𝛽1 = 0.5, 𝜖 = 3.5, 𝛥1 = 1, 𝛥2 = −1 shown in Fig-3.5(a). The bell shape soliton rises 
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from both sides. Here obtained waves are symmetric about the vertical axis and propagated 

along the x- axis. 

(a) (b) 

  
(c)     (d) 

  

Figure 3.4: The graph of the real part of the solution  𝑢4(𝜉) is depicted for selecting 

parameters within the interval −5 ≤ 𝑥, 𝑡 ≤ 5. 

Increasing wave number 𝜆 = 0.4 and 0.9 with rest at all arbitrary values the solitary wave 

presented at bell shape and W-shape soliton shown in Fig-3.5(b) and Fig-3.5(c) 

respectively. Also, corresponding combined line graphs are illustrated in Fig-3.5(d).   
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(a) (b) 

  
(c) (d) 

  

Figure 3.5: The graph of the imaginary part of the solution  𝑢7(𝜉) is depicted for 

selecting parameters within the interval −5 ≤ 𝑥, 𝑡 ≤ 5. 

The real part of the result 𝑢9(𝜉) represent the parabolic soliton for the free parameter 𝑙 =

0.001, 𝑛 = 0.001, 𝜆 = 0.5, 𝛿1 = 0.1, 𝛿2 = 1, 𝛽1 = 0.01, 𝜖 = 0.2, 𝛥1 = 0.2, 𝛥2 = 0.3 

shown in Fig-3.6(a) can be noticed. If the value of 𝜆 is increased to 0.8 and 2.1 by 

(a) (b) 
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(c) 

 

(d) 

 
 

Figure 3.6: The graph of the real part of the solution  𝑢9(𝜉) is depicted for selecting 

parameters within the interval −5 ≤ 𝑥, 𝑡 ≤ 5. 

keeping the value of all the parameters the same, the change of propagation wave Fig-

3.6(b) and Fig-3.6(c) respectively. Each 3D soliton is shown in a similar line picturized 

Fig-3.6(d). 

(a) (b) 

 
 

(c) (d) 

  

Figure 3.7: The graph of the real part of the solution  𝑢10(𝜉) is depicted for selecting 

parameters within the interval −5 ≤ 𝑥, 𝑡 ≤ 5. 

 𝝀 = 𝟐. 𝟏 

 𝝀 = 𝟏. 𝟑  𝝀 = 𝟏. 𝟗 

 𝝀 = 𝟐. 𝟗 

𝒖
𝟗
(𝒙
,𝒚
=
𝟏
,𝒕
) 

𝒖
𝟗
(𝒙
=
𝒚
=
𝟏
,𝒕
) 

𝒖
𝟏
𝟎
(𝒙
,𝒚
=
𝟏
,𝒕
) 

𝒖
𝟏
𝟎
(𝒙
,𝒚
=
𝟏
,𝒕
) 

𝒖
𝟏
𝟎
(𝒙
,𝒚
=
𝟏
,𝒕
) 

𝒖
𝟏
𝟎
(𝒙
=
𝒚
=
𝟏
,𝒕
) 



 

46 
 

For arbitrary fixed parameters 𝑙 = 0.01, 𝑛 = −0.01, 𝜆 = 1.3, 𝛿1 = 0.04, 𝜖 = 0.01, 𝛥1 =

−2, 𝛥2 = −1, the real part of the result 𝑢10(𝜉) represent M-shape soliton in Fig-3.7(a). 

Now rising 𝜆 to 1.9 and 2.5 by the rest of other parameters the wave profile changed shown 

in Fig-3.7(b) and Fig-3.7(c) respectively. This profile is called the periodic wave profile 

which is repeated over a period of time. Also, each 3D soliton is shown in a similar line 

graph Fig-3.7(d).In this section, we attain the families of well-known and standard soliton 

such as bell shape, W-shape, M-shape, anti-parabolic, periodic for the (2+1)-dimensional 

paraxial NLS equation in Kerr media. The effect of the parameters (for example 𝜖 and 𝜆) 

are studied successfully to observe the change of the behaviour of wave propagation. The 

above outcomes of the (2+1)-dimensional paraxial NLS equation in Kerr media explain 

surface waves in signal transmission, hydro-magnetic cold plasma, non-linear optics, 

quantum mechanics, sound waves in harmonious crystals, and so on.  
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3.1.2 Wave profile analysis of Konopelchenko–Dubrovsky model 
In this segment, we discuss the physical clarifications and graphical representations of the 

obtained solutions of the (2+1)-Konopelchenko–Dubrovsky (KD) equation via Modified 

Version of New Kudryashov Method (MVNK), as detailed in chapter 2. The nature of the 

travelling wave profile changes as the unknown parameters of the accomplished solutions, 

which are related to the linear and nonlinear terms of the nonlinear equation. Obtained 

stable wave solutions to of the (2+1)-Konopelchenko–Dubrovsky (KD) equations are 

illustrated through figures and speculated the nature of these waves for dissimilar values 

of parameters using MATLAB software.  

 

 
Figure 3.8: The modulus plots of the solution  𝑣21(𝜉) is depicted for selecting 

parameters within the interval −20 ≤ 𝑥, 𝑡 ≤ 20. 

The obtained solution 𝑣21(𝑥, 𝑦, 𝑡), travelling in the upward direction of the x-axis with 

speeds of phase 𝜇 = 1.46,1.04 𝑎𝑛𝑑 0.74 . Fig-3.8(A) represents the 3D kink soliton 

profile of 𝑣21(𝑥, 1, 𝑡)for the values of 𝑝 = 1, 𝑞 = 0.1 𝑎𝑛𝑑 𝜃0 = 1. Fig-3.8(B) and Fig-

3.8(C) for 𝑞 = 0. 2 𝑎𝑛𝑑 0.3 respectively and others parameter are fixed. Fig-3.8(D) 
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depicts the progression of the wave motion as time passes, with snapshots taken at 𝑡 =

1,2,3. Fig-3.8(D) depicts the temporal evolution of the solution 𝑣21(𝑥, 1, 𝑡) indicating that 

the solitary wave is travelling in the positive direction of the x-axis. In addition, we clearly 

noticed from 2D figure that the asymptotic line moves from left to right. 

 

 
Figure 3.9: The graph of the imaginary part of the solution 𝑢31(𝜉) is depicted for 

selecting parameters within the interval −20 ≤ 𝑥, 𝑡 ≤ 20. 

The imaginary wave profile of the resultant 𝑢31(𝑥, 𝑦, 𝑡) is travelling in the backward 

direction of the x-axis with speeds of phase 𝜇 = 0.203375, 0.453375 𝑎𝑛𝑑 1.803375 . 

Fig-3.9(A) represents the 3D bell shape soliton wave profile of 𝑢31(𝑥, 1, 𝑡)for the values 

of 𝑝 = 0.3, 𝑞 = 0.1 𝑎𝑛𝑑 𝜃0 = 1. Fig-3.9(B) and Fig-3.9(C) for 𝑞 = 0. 15 𝑎𝑛𝑑 0.3 

respectively and others parameter are fixed. Fig-3.9(D) depicts the evolution of the wave 

motion throughout time, with  photograph taken at 𝑡 = 1,10 𝑎𝑛𝑑 20. Fig-3.9(D) depicts 

the temporal evolution of the solution 𝑢31(𝑥, 1, 𝑡) indicating that the solitary wave is 
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 𝒒 = 𝟎. 𝟑 

 𝒒 = 𝟎. 𝟏𝟓 



 

49 
 

travelling in the negative direction of the x-axis. The bell shape soliton is non topological 

soliton. Also, it is stable bounded and the initial boundary condition at infinity. 

 

 
Figure 3.10: The modulus plot of the solution 𝑢42(𝜉) is depicted for selecting 

parameters within the interval −20 ≤ 𝑥, 𝑡 ≤ 20. 

The modulus plot of the result 𝑢42(𝑥, 𝑦, 𝑡) represent the anti-bell type soliton for the with 

speeds of phase 𝜇 = −0.6788225099𝑖 + 2.384,−1.018233765𝑖 + 5.384 and 

−3.39411255𝑖 + 59.984 and free parameter 𝑝 = 0.1, 𝑞 = 0.1, 𝛼 = 0.2  and  𝜃0 = 0.1. 

shown in Fig-3.10(A). An anti-bell is a type of and confined to a finite centre. anti-bell are 

solitary waves with distinct soliton characteristics that, after being repeatedly annihilated 

in different compacts, emerge with precise shapes. Fig-3.10(B) and Fig-3.10(C) for 𝑞 =

0.15 and 0.5 respectively and others parameter are fixed. Fig-3.10(D) depicts the 

progression of the wave motion as time passes, with snapshots taken at 𝑡 = 1, 5 and  10. 

Fig-3.10(D) depicts the temporal evolution of the solution 𝑢42(𝑥, 1, 𝑡) indicating that the 

solitary wave is travelling in the negative direction of the x-axis. 
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Figure 3.11: The modulus plots of the solution  𝑣41(𝜉) is portrayed for selecting 

parameters within the interval −20 ≤ 𝑥, 𝑡 ≤ 20. 

The modulus plot of the result 𝑣41(𝑥, 𝑦, 𝑡) represent the W-shape soliton for the with 

speeds of phase 𝜇 = −0.509116882𝑖 + 10.792,−0.593969696𝑖 + 14.692 and 

−0.678822509𝑖 + 19.192 and free parameter 𝑝 = 0.1, 𝑞 = 0.3, 𝛼 = 0.1  and  𝜃0 = 0.1. 

shown in Fig-3.11(A). For increasing the value of the nonlinear coefficient 𝑞 = 0.35 and 

0.4 and other parameters that are fixed, we clearly see that the left wings of the W-shape 

soliton also increased, as shown in Fig-3.11(B) and Fig-3.11(C) respectively. Fig-3.11(D) 

depicts the progression of the wave motion as time passes, with snapshots taken at 𝑡 =

1, 5 and  10. Fig-3.11(D) depicts the temporal evolution of the solution 𝑣41(𝑥, 1, 𝑡) 

indicating that the solitary wave is travelling in the negative direction of the x-axis. 
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Figure 3.12:The modulus plots of the solution  𝑢51(𝜉) is portrayed for selecting 

parameters within the interval −20 ≤ 𝑥, 𝑡 ≤ 20. 

The absolute wave pattern of 𝑢51(𝑥, 𝑦, 𝑡) is the double anti-bell type soliton for the with 

speeds of phase 𝜇 = −0.04242640687𝑖 + 0.067,   − 0.4242640687𝑖 + 7.492 and 

−1.272792206𝑖 + 67.492 and free parameter 𝑝 = 0.04, 𝑞 = 0.01, 𝛼 = 0.1 and 𝜃0 =

0.15 shown in Fig-3.12(A). Fig-3.12(B) and Fig-3.12(C) for 𝑞 = 0.1 and  0.3  respectively 

and others parameter are fixed. Fig-3.12(D) illustrates how the flow patterns change over 

time by displaying snapshots of the wave motion taken at time  at 𝑡 = 1, 5 and 10. Fig-

3.12(D) depicts the time evolution of the solution 𝑢51(𝑥, 𝑦, 𝑡), and it reveals that the 

solitary wave is travelling away from the x-axis. 
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Figure 3.13: The modulus plots of the solution  𝑢53(𝜉) is portrayed for selecting 

parameters within the interval −20 ≤ 𝑥, 𝑡 ≤ 20. 

The modulus graph of the obtained solution 𝑢53(𝑥, 𝑦, 𝑡) is travelling in the backward 

direction of the x-axis with speeds of phase 𝜇 = −9.545941546𝑖 + 1124.973,   −

5.727564928𝑖 + 404.973 and −4.963889604𝑖 + 304.973. Fig-3.13(A) represents the 

3D wave profile of 𝑢53(𝑥, 1, 𝑡)for the values of 𝑝 = 0.01, 𝑞 = 0.25, 𝛼 = 0.15 𝑎𝑛𝑑 𝜃0 =

0.5. Fig-3.13(B) and Fig-3.13(C) for 𝑞 = 0.15 and 0.13 respectively and others parameter 

are unchanged. Fig-3.13(D) illustrates the propagation of the wave motion as time passes, 

with snapshots taken at 𝑡 = 1, 10 and 20. The actual development of the solution 

𝑢53(𝑥, 1, 𝑡) is shown in Fig-3.13(D), which shows that the solitary wave is moving away 

from the horizontally. 

In this segment, all obtained soliton solutions are expressed as trigonometric and 

hyperbolic, function solutions. Using dispersion, nonlinearity, and free parametric to the 

specified equations, physical causes of some of the soliton solutions studied by the 

suggested method are also visually described. 
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Also, the description makes it abundantly evident that the soliton solutions of the KD 

equation, when solved using the MVNK approach, give a wide variety of wave types. 

These wave types include a soliton kink soliton, bell shape soliton, anti-bell shape soliton, 

w-shape soliton, and many others soliton solutions. It can be seen that the soliton profile 

changes their shape depending on the values of the nonlinear coefficient 𝑞. This particular 

solo wave focuses on the application of common scientific, natural, and technology 

concerns in our daily lives. Although comparable numbers are available for all other 

alternatives, we have not mentioned minimalism here. 

3.2 Comparison  
Using the proposed methods, we discovered several general and some new solitary wave 

solutions to the (2+1)-Konopelchenko–Dubrovsky (KD) equation and the (2+1)-

dimensional paraxial NLS equation. The resulting solutions are compared below with 

other authors solutions [21,56]. 

3.2.1 For the (2+1)-dimensional paraxial NLS equation 
In this section, we will discuss comparison between attained solutions and Arshad et al. 

[21] solutions. Arshad et al. [21] studied the paraxial NLS equation in Kerr media by 

different techniques via the improve simple equation, the exp(−𝜙(𝜁))-expansion and the 

modified extended direct algebraic methods. Using the improve simple equation method, 

Arshad et al. [21] have explored eight precise optical soliton solutions from the paraxial 

NLS equation in Kerr media. On the other hand, the (𝑤 𝑔⁄ )-expansion method have been 

used to generate many wave solutions for paraxial NLS equation. Both methods have some 

common solutions as shown in Table 1. The number of wave solutions we have developed 

is more than the number of solutions found using the improve simple equation method. 

Table 1: Comparison between attained solutions with improve simple equation method 
solutions [21] 

Obtained solutions Arshad et al. [21] solutions 

In Eq. (2.40) taking  𝑙 = 𝑛 = 𝛽1 = 𝛿1 =
𝛿2 = 1,𝑚 = 0, 𝜆 = 5, 𝜖 = 2 and 
𝑢3(𝑥, 𝑦, 𝑡) = 𝑘(𝑥, 𝑦, 𝑡), then the 
solution becomes 
𝑘(𝑥, 𝑦, 𝑡) = 𝑒𝑖(𝑥+𝑦−5𝑡) tan(𝑥 + 𝑦 + 𝑡) 

𝑄13(𝑦, 𝑧, 𝑡) =
√𝛿0𝛿2(𝑎𝜔2+𝛽𝑘1

2)

√𝛾
 tan(√𝛿0𝛿2𝜁) 

          𝑒𝑖(𝜇1𝑦+𝜇2𝑧+𝜏𝑡+𝜃), 𝛿0𝛿2 > 0 
where 𝜁 = 𝑘1𝑦 + 𝑘2𝑧 + 𝜔𝑡. 

𝜇2 = 
−𝛼𝜏2

2
−
𝛽𝜇1

2

2
+ 𝛿0𝛿2(𝛼𝜔

2 + 𝛽𝑘1
2) 

Taking 𝛿0 = 𝛿2 = 𝛼 = 𝜇1 = 𝑘1 = 𝑘2 = 1, 
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𝜔 = 1, 𝛽 = 25, 𝛾 = 26, 𝜃 = 0, 𝜏 = −5 and 
𝑄13(𝑦, 𝑧, 𝑡) = 𝑘(𝑥, 𝑦, 𝑡), then the solution 
becomes 
𝑘(𝑥, 𝑦, 𝑡) = 𝑒𝑖(𝑥+𝑦−5𝑡) tan(𝑥 + 𝑦 + 𝑡) 

In Eq. (2.38) taking  𝑛 = 𝛿1 = 𝛿2 =
1,𝑚 = 0, 𝛽1 = 𝑙 = −1 𝜆 = 3, 𝜖 = 2 
and 𝑢1(𝑥, 𝑦, 𝑡) = 𝑘(𝑥, 𝑦, 𝑡), then the 
solution becomes 
𝑘(𝑥, 𝑦, 𝑡) = 𝑒𝑖(𝑥+𝑦−3𝑡) tanh(𝑥 + 𝑦 − 𝑡) 

𝑄14(𝑦, 𝑧, 𝑡)

=
√−𝛿0𝛿2(𝑎𝜔2 + 𝛽𝑘1

2)

√𝛾
tanh(√−𝛿0𝛿2𝜁) 

          𝑒𝑖(𝜇1𝑦+𝜇2𝑧+𝜏𝑡+𝜃), 𝛿0𝛿2 < 0 
where 𝜁 = 𝑘1𝑦 + 𝑘2𝑧 + 𝜔𝑡. 

𝜇2 = 
−𝛼𝜏2

2
−
𝛽𝜇1

2

2
+ 𝛿0𝛿2(𝛼𝜔

2 + 𝛽𝑘1
2) 

Taking 𝛿0 = 𝜔 = −1, 𝛿2 = 𝜇1 = 𝑘1 = 𝑘2 =
1, 𝛼 = 2, 𝛽 = −8, 𝛾 = 6, 𝜃 = 0, 𝜏 = −3 and 
𝑄14(𝑦, 𝑧, 𝑡) = 𝑘(𝑥, 𝑦, 𝑡), then the solution 
becomes 
𝑘(𝑥, 𝑦, 𝑡) = 𝑒𝑖(𝑥+𝑦−3𝑡) tanh(𝑥 + 𝑦 − 𝑡) 

In addition, Arshad et al. [21] have also explored eight precise optical soliton solutions 

from the paraxial NLS equation in Kerr media through the exp(−𝜙(𝜁))-expansion 

method, As opposed to generate many wave solutions from the stated equation by the 

mentioned method in this research. Both approaches share some potential solutions, which 

are compared and contrasted in Table 2. The number of wave solutions that we have 

generated is more than the number of solutions that can be obtained by employing the 

exp(−𝜙(𝜁))-expansion method. 

Table 2: Comparison between attained solutions with the exp(−𝜙(𝜁))-expansion method 
solutions [21] 

Obtained solutions Arshad et al. [21] solutions 
a) In Eq. (2.38) taking  𝑛 = 𝛿1 = 𝛿2 =
1,𝑚 = 0, 𝛽1 = 𝑙 = −1 𝜆 = 3, 𝜖 = 2 and 
𝑢1(𝑥, 𝑦, 𝑡) = 𝑘(𝑥, 𝑦, 𝑡), then the solution 
becomes 

b) 𝑘(𝑥, 𝑦, 𝑡) = 𝑒𝑖(𝑥+𝑦−3𝑡) tanh(𝑥 + 𝑦 − 𝑡) 

c) 𝑄5(𝜁) =

√(𝛿2−4𝜂)(𝑎𝜔2+𝛽𝑘1
2) tanh (

√𝛿2−4𝜂

2
(𝜁+𝜁0)

2√𝛾
 𝑒𝑖Π  , 

d)  𝜂 ≠ 0 & 𝛿2 − 4𝜂 > 0 
where     𝜁 = 𝑘1𝑦 + 𝑘2𝑧 + 𝜔𝑡 and 

Π = 𝜇1𝑦 + 𝜇2𝑧 + 𝜏𝑡 + Θ 

𝜇2 =
1

4
(−𝛼𝜔2(𝛿2 − 4𝜂) − 2𝛼𝜏2 − 2𝛽𝜇1

2

− 𝛽𝑘1
2(𝛿2 − 4𝜂)) 

e) Taking 𝜇1 = 𝑘1 = 𝑘2 = 1,𝜔 = 𝜂 = −1, 
f) 𝛼 = 2, 𝛽 = −8, 𝛾 = −6, 𝛿 = 𝜁0 = Θ =
0,𝜏 = −3 and 𝑄5(𝑦, 𝑧, 𝑡) = 𝑘(𝑥, 𝑦, 𝑡), then 
the solution becomes 
𝑘(𝑥, 𝑦, 𝑡) = 𝑒𝑖(𝑥+𝑦−3𝑡) tanh(𝑥 + 𝑦 − 𝑡) 
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g) In Eq. (2.40) taking  𝑙 = 𝑛 = 𝛽1 = 𝛿1 =
𝛿2 = 1,𝑚 = 0, 𝜆 = 5, 𝜖 = 2 and 
𝑢3(𝑥, 𝑦, 𝑡) = 𝑘(𝑥, 𝑦, 𝑡), then the solution 
becomes 
𝑘(𝑥, 𝑦, 𝑡) = 𝑒𝑖(𝑥+𝑦−5𝑡) tan(𝑥 + 𝑦 + 𝑡) 

h) 𝑄6(𝜁) =

√(4𝜂−𝛿2)(𝑎𝜔2+𝛽𝑘1
2) tan (

√4𝜂−𝛿2

2
(𝜁+𝜁0)

2√𝛾
 𝑒𝑖Π  , 

i)  𝜂 ≠ 0 & 𝛿2 − 4𝜂 < 0 
where     𝜁 = 𝑘1𝑦 + 𝑘2𝑧 + 𝜔𝑡 and 

Π = 𝜇1𝑦 + 𝜇2𝑧 + 𝜏𝑡 + Θ. 

𝜇2 =
1

4
(−𝛼𝜔2(𝛿2 − 4𝜂) − 2𝛼𝜏2 − 2𝛽𝜇1

2

− 𝛽𝑘1
2(𝛿2 − 4𝜂)) 

j) Taking 𝛼 = 𝜇1 = 𝑘1 = 𝑘2 = 𝜔 = 𝜂 = 1, 
k) 𝛽 = 25, 𝛾 = 26, 𝛿 = 𝜁0 = Θ = 0, 𝜏 = −5 

and 𝑄6(𝑦, 𝑧, 𝑡) = 𝑘(𝑥, 𝑦, 𝑡), then the 
solution becomes 

l) 𝑘 = 𝑒𝑖(𝑥+𝑦−5𝑡) tan(𝑥 + 𝑦 + 𝑡) 
 

3.2.2 For the (2+1)- Konopelchenko–Dubrovsky (KD) equation 
In this part, we will analogy the solutions derived in this article to the analytic wave 

solutions available in the literature for the KD equation. These solutions can be found in 

the literature. Many authors have studied the early literature to analyze the KD equation 

with different techniques. Wazwaz [56]  have also explored optical soliton solutions from 

the KD equation through the tanh technique. On the other hand, by using Modified Version 

of the New Kudryashov (MVNK) approach, we got many soliton solutions for the stated 

equation. Some common solutions are shown in Table 3. The hyperbolic function and the 

trigonometric function solutions are both represent these potential solutions. Finally, the 

proposed method obtained us a lot of wave solutions than the tanh method. 

Table 3: Comparison between attained solutions with the tanh method solutions [56]. 

Obtained solutions Wazwaz [56] solutions 
In Eq. (2.73) and (2.74) taking 𝑝 = 𝑞 = 1, 
𝜃0 = 0 and 𝑢21(𝑥, 𝑦, 𝑡) = 𝑣21(𝑥, 𝑦, 𝑡) 
= 𝑘(𝑥, 𝑦, 𝑡), then the solution becomes. 
𝑘(𝑥, 𝑦, 𝑡) = 1 + tanh (

𝑥

2
+
𝑦

2
+ 2𝑡) 

𝑢(𝑥, 𝑦, 𝑡) =
2𝑏 − 𝑎

𝑎2
(1

+ tanh [
2𝑏 − 𝑎

2𝑎
(𝑥 + 𝑦

−
4(𝑎𝑏 − 𝑎2 − 𝑏2)

𝑎2
 𝑡)]) 

Taking 𝑎 = 𝑏 = 1 and 𝑢(𝑥, 𝑦, 𝑡) =
𝑘(𝑥, 𝑦, 𝑡), then the solution becomes. 
𝑘(𝑥, 𝑦, 𝑡) = 1 + tanh (

𝑥

2
+
𝑦

2
+ 2𝑡) 
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In Eq. (2.75) and (2.76) taking 𝑝 = 𝑞 =
1, 𝜃0 = 0 and 𝑢22(𝑥, 𝑦, 𝑡) = 𝑣22(𝑥, 𝑦, 𝑡) 
= 𝑘(𝑥, 𝑦, 𝑡), then the solution becomes. 
𝑘(𝑥, 𝑦, 𝑡) = 1 + coth (

𝑥

2
+
𝑦

2
+ 2𝑡) 

𝑢(𝑥, 𝑦, 𝑡) =
2𝑏 − 𝑎

𝑎2
(1

+ coth [
2𝑏 − 𝑎

2𝑎
(𝑥 + 𝑦

−
4(𝑎𝑏 − 𝑎2 − 𝑏2)

𝑎2
 𝑡)]) 

Taking 𝑎 = 𝑏 = 1 and 𝑢(𝑥, 𝑦, 𝑡) =
𝑘(𝑥, 𝑦, 𝑡), then the solution becomes. 
𝑘(𝑥, 𝑦, 𝑡) = 1 + coth (

𝑥

2
+
𝑦

2
+ 2𝑡) 

3.3 Merits and Demerits of the investigated methods 
In this section, we will outline the Merits and Demerits of the applied methods to examine 

NLEEs in mathematical physics. 

3.3.1 Merits of the (w/g)-expansion method  
✓ The (𝑤 𝑔⁄ ) approach is straightforward, simple, and approachable. 

✓ This technique successfully resolves NLEEs with any balance number. 

✓ Each solution contains several free parameters that aid in illuminating the soliton's 

nature. 

3.3.2 Demerits of the (w/g)-expansion method 
✓ We get singular solitary wave which doesn’t belong to real world. 

✓ The (𝑤 𝑔⁄ )-technique is not appropriate for some NLEEs that require fractional 

balancing numbers. 

3.3.3 Merits of the modified new Kudryashov method 
✓ The modified new Kudryashov method is sleek, simple, and straightforward to use. 

✓ The solutions consist of several free parameters that are helpful to explain the 

nature of the soliton. 

✓ This method is able to give a suitable solution for any NLEEs. 

3.3.4 Demerits of the modified new Kudryashov method 
✓ This method is not able to provide a suitable solution for many equations. 

✓ For certain NLEEs that must have fractional balancing numbers, the MVNK 

approach is not applicable. 
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Chapter 4: Conclusion and Future Work 

4.1 Summary of the major outcome 

We have investigated one equation to find the closed form travelling wave solutions 

through the Modified Version of the New Kudryashov (MVNK) approach and we also 

investigated NLS equations to find the closed form travelling wave solutions through the 

(𝑤 𝑔⁄ )-expansion methods. According to the study, the MVNK approach contains more 

parameters than other methods, which makes it simpler to use those numbers to explain 

the wave profile in detail.  We have discovered some novel universal and comprehensive 

closed form travelling wave solutions connected with various types of free parameters of 

the aforesaid numerous NLEEs by applying these methods to the various equational 

genres.  

Because of the more parameterized approaches we utilized, the solutions have varied 

dimensions, which makes it easier to illustrate the solitons in great detail. Based on the 

mention methods, the kink soliton, singular kink soliton, peakon soliton, bell shape soliton, 

anti-bell shape soliton, periodic wave soliton, double anti-bell soliton, w-shape soliton, 

parabolic and anti-parabolic shape soliton solutions wave profile obtained from the stated 

equations. It can be seen that a lot of wave profiles are new to the literature. The linear 

component of the studied model's coefficient is more successful than the nonlinear part in 

changing the nature of the wave profile by looking at the values of the parameters found 

in the solutions to the equations for dispersion, linear, nonlinear, and free parameter terms. 

By going over the parameter values in the solutions, we can see how they relate to the 

linear and nonlinear terms of the corresponding equation. As a result, we have been able 

to determine that the effect of these components on the wave profile is that the linear 

element of the KD model's coefficient is more successful at changing the nature of the 

wave profile. 

Additionally, we discovered that the wave velocity value on the wave profile performs 

better than the wave number value. The findings obtained by considering the various 

values of the free parameters show numerous wave types. Few waves are obtained because 

it is so harsh and dangerous to nature. By reducing and decaying these kinds of waves 

based on the values of the linked parameters, the nature will be protected from the risky 

real-world events. 
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4.2 Further work  

There will be plenty of opportunities for study in this area in the future because of the 

properties and widespread occurrence of nonlinear evolution models across a wide variety 

of applications in nature. So, the future prospect of the nonlinear fractional model. 

For additional research on the current subject, the following suggestions might be made.  

✓ For various NLEEs, we have discovered some methodological shortcomings. In 

order to make these methods appropriate for those equations, the opportunity 

exists.  

✓ Additionally, we are aware that all mathematical equations result from a single or 

a collection of distinct natural facts. We solved those models and got the answers 

using a variety of parameters connected to the procedure or the principal equations.  

✓ Our main goal in the future is to determine how much the desire equation solutions 

can be used to protect nature from its harmful effects. 
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