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Abstract

This study emphasizes on the theoretical analysis of defect on bosonic system, especially

exciton-polariton bosonic system. Presence of defect may either stand as a barrier to

realization of such phenomenon or pave the way for realization of something more

exotic. This work is focused on the influence of defect on polariton lasing here. In

polariton lasers using semiconductor microcavity with high quality factor, stimulated

scattering facilitates dynamic condensation process. As a result, a macroscopic and

coherent exciton-polariton state is formed. In this metastable coherent phase,

condensate is not thermalized with the lattice rather thermalized among itself, according

to micro-cannonical thermalization. Thus, effective polariton temperature of condensate

near K=0, is generally larger than lattice temperature. Recently, for a defective MC,

measured effective polariton temperature is sustainably smaller than 300K, for room

temperature operation of GaN polariton diode lasers. Such finding is completely

different from the generic case. With higher density of dislocation and other related

defect in the active region of microcavity, this temperature lowering effect reinforce

itself. To investigate the effect of defect on condensate formation and to explain

phenomenon like this, open dissipative Gross-Pitaevskii (GP) equation coupled with

external exciton reservoir has been solved numerically. Several situations have been

considered regarding defect potential and pumping scheme. Open dissipative GP

equation enables us to investigate the vortices kinetics during condensate formation with

the presence of disorder potential and for different pumping scheme. To estimate the

exciton polariton LASER performance with the presence of defect, semi-classical

Boltzmann equations have been solve numerically. Along with all these, a

thermodynamic approach with numerical solution of Bose-Hubbard model has been

analyzed to understand the behavior of the system from different point of view. High

frequency performance of such polariton laser diode is analyzed using simplified rate

equation model. Finally, comparison between numerical and experimental result for

polariton LASER diode has been provided.
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Chapter 1

Introduction

1.1 Preface

Light-matter interaction is an emerging research field in the boundary of Condensed

matter physics, Semiconductor science and Opto-electronics. This field has developed

in both fundamental and applied directions. Recent advances in semiconductor

fabrication technology [1–4] paves the way for realization of exotic theoretical concepts

experimentally [5–11]. Although one might argue that, exact one-to-one mapping

of experiment and theory is not possible. The real systems used for experiment

are full of complications that prevent us form exactly diagnose and extricate the

cause and effect relationship for our property of interest. Despite the argument of

‘Chaos Theorist’ [12] new experiments are designing to realize theoretical prediction

with a hope to understand and tame this chaos [13]. Exciton-polariton was such

a theoretical concept. Exciton-polariton is a part-light, part-matter quasiparticle

boson has been experimentally realised by placing an emitter inside an well designed

microcavity with strong light matter interaction [14, 15]. Due to hybrid nature,

exciton-polariton can be exploited to study cavity quantum electrodynamics (QED)

and many body physics such as Bose-Einstein condensation (BEC) [16], spontaneous

symmetry breaking [17], superfluidity [18], Bardeen-Cooper-Schrieffer (BCS) states [19]

and Berezinskii-Kosterlitz-Thouless (BKT) transition [20]. Anyway, in terms of practical

applications in photonics and opto-electronics field, one of the most exotic prospect of

exciton-polaritons is towards the realization of an ‘inversionless coherent emitter’.
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This sort of emitter was first proposed by Imamoglu et al. utilizing spontaneous

radiative recombination from a coherent exciton-polariton condensate in a semiconductor

microcavity [21]. Whereas the gain mechanism in a conventional photon laser is

stimulated emission, for a polariton device the process is stimulated scattering. Unlike

a conventional photon laser, the separation of stimulation and emission in a polariton

device leads to coherent emission without the requirement of population inversion. As a

result, it is expected that the threshold energy required for coherent emission from this

sort of device would be much smaller than that of a photon laser [22, 23]. This new kind

of a solid-state device, which is more commonly known as a polariton laser, holds great

promise as a low-power coherent light source for medical and biomedical applications,

short distance plastic fiber communications, high-speed optical interconnects and logic

circuits, and quantum information processing [24–29]. Consequently, polariton lasing has

continued to be an intense topic of research in recent years. In particular, advancements

in areas of materials growth, device design and device fabrication technologies have led

to numerous experimental realizations of this novel light source.

Most of the experimental realizations using exciton-polariton tried to imitate the ideal

conditions or as close as possible to the ideal condition. Despite achieving tremendous

progress in fabrication technology, defect in form of point defect, dislocation, impurity

etc. [30] actually exist in material. This can severely hamper the performance of the device

[31,32]. The experimental study of the exciton-polariton system with defect revealed some

fascinating exceptions [33–35]. As a result, a robust theoretical understanding based on

existing exciton-polariton theoretical framework is essential to have a better prediction

capability for various practical system.

1.2 Literature Review

Bose-Einstein statistics was hypothesised in 1924 by S.N. bose [36], even before the

first appearance of Schrodinger equation in 1926 [37]. Although the original paper

by Bose was rejected, Albert einstein considered the work to be interesting and

recommended its publication in one of the most important scientific journals of that time:

Zeitschrift fur Physik. He used the theory to describe the phenomenon of Bose-Einstein
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condensation [38]. After that prediction, physics community was in a dilemma as whether

this is just a mathematical construct or an actual that is waiting for discovery. In 1995,

the discovery of such state of matter by Eric Cornell and Carl Wieman [5] put an end

to such confusion. Bose-Einstein condensate (BEC) was observed for Rb-87 system

confined by magnetic field at 170 nK with a lifetime of 15 seconds. After that researchers

turn their interest to discover BEC state for different system [6, 39–41]. Most of these

discoveries are with molecules at lower temperature, close to 0K. Observation of BEC

for composite boson i.e. exciton-polariton was first reported by Kasprazak et. al. [42].

Due to very low mass of exciton-polariton, it was possible to observe BEC state in a

temperature (19 K) much higher than originally observed with Rb-87 atom. This further

increased interest in the research of composite bosons i.e. exciton polariton, phonon

polariton etc.

The idea of exciton was first proposed by Yakov Frenkel in 1931 [43] as an excitation

of atoms inside insulator lattice. He proposed that the resulting excitation can travel

like particle. In certain ionic crystals (alkali halide crystals or organic molecular crystals

composed of aromatic molecules, such as anthracene and tetracene) exciton can form with

binding energy as high as 1 eV due to strong Coulomb interaction between electron and

hole. These sort of exciton is known as ‘Frenkel exciton’. Besides, in most semiconductor

material (GaAs, GaN, ZnO etc.) Coulomb interaction is strongly screened by dielectric

constant. As a result, exciton binding energy is low (around 10-40 meV) and binding

radius is large. These sort of excitons are called ‘Larger exciton’ or ‘Wannier-Mott

excitons’ [44]. Later theory of excitons and its properties has been investigated

thoroughly [45–49]. Early experimental studies on excitons in semiconductors, showed

significant influence of optical excitation on excitonic transition. In 1957, S. I. Pekar

described these changes of the excitonic spectrum with respect to an additional wave

appearing in the semiconductor crystal [50]. The observed phenomenon was later

explained by J. J. Hopfield by considering new eigenstates of EM (Electromagnetic)

field coupled exciton system, [51]. These eigenstates are polaritons states, or strictly

speaking exciton-polaritons states, to distinguish them from other types of light-matter

hybrid states i.e. phonon-polaritons or plasmon-polariton. Exciton-polariton was

first experimentally observed by Frohlic in CuCl in 1971 using two-photon absorption
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spectroscopy [52]. However, experimental observation of Wannier-Mott exciton was first

observed in 1977 [53]. In this study, photoluminescence obtained from high purity GaAs

epitaxial layers were explained within the polariton framework. Since then, there have

been extensive reportings on the experimental finding of exciton-polaritons in different

direct bandgap semiconductors, such as GaAs, CdS, ZnO, ZnTe, ZnSe and GaN [54].

All these experiments were performed using bulk semiconductors instead of having a

quantum well (QW) active region, because light-matter coupling of two-dimensional QW

exciton to the three-dimensional continuum of photons is precluded by enhanced radiative

decay [55]. In 1992, Weisbuch et al. reported normal mode splitting in a GaAs quantum

well based microcavity, which consisted of GaAs/AlGaAs quantum wells imbedded

between two distributed Bragg reflectors (DBRs) [14], paving the way for observation

of exciton-polariton states in QWs. This work was followed by numerous reports of

normal mode splitting and light matter coupling in semiconductor microcavities, mostly

in GaAs-based systems because of their relatively matured growth and fabrication

technologies [56–59]. Imamoglu et.al. first explained the idea of generating coherent

emission from a degenerate condensate of exciton-polaritons [21] as low dimensional

semiconductor microcavity fabrication became feasible. This prospective idea lead

to the first experimental observation of polariton lasing, reported by Le Si Dang et

al. at liquid He temperature in a CdTe-based microcavity [60]. Since then, dynamic

condensation of polaritons and polariton lasing in different material and nanostructure

systems and with different dimensionality of the polaritons have been demonstrated

in a series of experiments using optical excitation [16, 17, 42, 61–69]. Most of these

measurements have been performed at cryogenic or low temperature because of appear

of weak coupling at high temperature due to low exciton binding energy of the material

system. Wide bandgap semiconductors like GaN and ZnO gained considerable interest

because of their low exciton Bohr radii and high exciton binding energies. Polariton

lasing at high temperatures, if not at room temperature, has been demonstrated using

optical excitation in microcavities comprising of these material systems [62,70]. The first

observation of polariton lasing at room temperature was reported in 2007 in an optically

pumped bulk-GaN based hybrid microcavity [67]. As far as the dimensionality and

nanostructures are concerned, strong-coupling and polariton lasing have been reported

using bulk [67, 71], QW(s) [64, 72, 73], micro- and NW(s) [69, 74] and QD(s) [75, 76].
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It has been experimentally demonstrated that the polariton lasing threshold is 1-3

orders of magnitude smaller than the photon lasing threshold measured in the same

device [64, 69,77].

All these experimental work has given researcher essential perspective regarding

exciton-polariton condensation and lasing. All these experiments mentioned above and

others utilize a near ideal system with very few defects for experiments. But defect

will always present in practical system due to presence of no-ideal condition during

commercial fabrication process. Influence of defect on exciton polariton system has

also been investigated experimentally [33, 35, 78–88]. In all these experiments, different

effects of defect on exciton-polariton system have been observed such as change in

excitonic photo-luminescence spectra, appearance of bound exciton, lowering of effective

polariton temperature, change in resonant frequency for polariton LASER diode etc.

Several theoretical explanations [89–93] for these experimental findings have given us

some insight into the impact of defect. Most of these theoretical works have focused

on the scattering of bound exciton by defect (impurity, dislocation etc. type) and their

overall impact on photo-luminescence and Raman spectrum of the excitonic transition.

Some theoretical explanations revolve around the idea of elasticity and non-elasticity of

scattering mechanism and its eventual impact on the overall exciton-exciton scattering

rate. Theories regarding exciton capture via defect have been presented. But none of the

theories can explain the lowering effective polariton temperature satisfactorily. A new

theory is needed to explain this phenomenon.

The effect of temperature can be explained by semi-classical Boltzmann theory or

by quantum thermodynamics. Semi-classical Boltzmann equation has been successfully

employed to explain polariton population dynamics in k-space [94–97]. A drawback of

this approach is that it only permits the calculation of the populations of polaritonic

quantum states. All other quantities of interest, like ‘order parameter’, various correlation

functions are beyond scope. On the other hand, quantum thermodynamics, especially

Eigenstate Thermalization Hypothesis (ETH) [98–103] has been successful to explain the

thermalization dynamics for isolated quantum system under different quench. To explain

the effect of lower effective polariton temperature it is essential to tackle the problem from
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both direction.

1.3 Motivation of the Work

Experiment can give us different types of result. It is the job of theory to link between

the results. Without a proper theory, experimental results do not coincide with

understanding. It is the purpose of theory to explain the experiment. But sometimes

exception happen. Researcher design experiment to prove a theory (Einstein gravitational

wave theory [104]). But our purpose here is the first one, try to design a theory to

explain experimental finding. Designing a new theory from ground up is extremely

difficult. Thankfully, some theoretical work on bosonic system with defect has been done

previously. We will focus on these existing theories and add necessary modifications

to them to explain the phenomenon of ‘Defect induced effective polariton temperature

lowering’ and ‘Performance of defective polariton LASER diode with defect’. In an

experimental work [33] it is reported that with the presence of dislocation type of defect

effective polariton temperature is getting reduced. In polariton LASER, polariton creates

a non-equilibrium state with the lattice. Most often, when there is very few defects this

polariton gas is at higher temperature than the lattice temperature. With more and more

defect this effective polariton temperature is lower than the one in pure case. With more

and more defect this lowering effect increases. By incorporating only exciton-exciton

scattering modification due to defect [91, 93] a proper explanation of this lowering effect

is not possible. Furthermore, the effect of defect on parameters of polariton LASER

diode such as lower resonant frequency, increased threshold etc. need proper explanation

from one theory.

Additionally, one phenomenon should be tackled from multiple direction to understand

the robustness of the experimental result whether it is a common phenomenon or it

is just a rare event created by special condition in laboratory. To investigate this

approach, this event was tried from three separate direction. First, using time and

space dynamics (by Gross Pitaevskii equation) to understand the role of defect on

exciton-polariton condensation process. Second, Coupled semi-classical Boltzmann rate

equations incorporating defect modification have been solved to explain the phenomenon.
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And lastly, a thermodynamic approach has been taken to investigate the temperature

lowering effect by employing ETH and MBL (Many Body Localization) [105,106]. In case

one theoretical investigation provides conflicting results, doubt has to be emphasized on

theory has to be put or experimental finding. This theories will then be employed to

investigate the performance of some practical system.

1.4 Objectives of the Work

The objectives of this work are the following:

1. To analyze and explain the role of defects on the dynamic condensation process of

GaN-based optically and electrically pumped exciton polariton lasers.

2. To investigate the impact of defects on the steady-state performance of electrically

and optically pumped exciton polariton lasers.

3. To explain the impact of defects on the high-frequency modulation response of

exciton polariton lasers.

1.5 Outline of the Dissertation

Chapter 2 introduces the very basic of exciton polariton. Exciton polariton is a hybrid

particle due to strong coupling between matter wave excitation (exciton) and optical

excitation (photon). A brief discussion of exciton and cavity photon is provided there.

Different concept of polariton LASING has been introduced in this chapter too. These

concepts are, relaxation dynamics, stimulated scattering event, bottleneck phenomenon

etc. There are some fundamental difference between polariton LASING and photon

LASING. The main difference is photon LASER employs stimulated emission where

polariton LASER employs stimulated scattering. These differences are also discussed in

chapter 2.

Chapter 3 conceptualizes the idea of condensation of Quasi particle like exciton

particle. Bose-Einstein condensation occurs only for pure bosons without any form

of interaction. Exciton polariton are not exact bosons rather co-bosons and exhibit
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particle-particle interaction. It is not possible for such quasi-particles to condensate

exactly according to theory. Chapter 3 introduces the basic idea of Bose Einstein

condensation process with explanation of necessary parameters. Despite unable to form

ideal Bose Einstein condensate, quasi particle like exciton polariton form condensate

state utilizing vortex pairing and undergoes Berezinskii-Kosterlitz-Thouless transition

to form superfluid state of matter. Detailed of this superfluid state is discussed in this

chapter. Finally discussion on Gross-Pitaevskii equation along with solution of such

equation coupled with external exciton reservoir for zero potential is provided.

Chapter 4 discusses the details about quantum thermodynamics with some

introductory discussion of discussion on classical thermalization and classical chaos.

Characteristics of classical chaos and quantum chaos is fundamentally different which

results in different nature of classical and quantum thermalization. nevertheless an

analogue between classical thermalization and quantum thermalization exist. Such

analogue has also been discussed in chapter 4. We put a special emphasis on Random

Matrix Theory (RMT) and Eigenstate Thermalization Hypothesis (ETH) as these are

most successful to describe quantum thermalization. But presence of defect cannot

validate the use of these approach. For understanding why, concept of localization is

discussed in detail starting from elementary level of Anderson localization. Finally in

this chapter we provide some basic ideas about Bose-Hubbard model which will be solved

numerically to analyze the influence of defect on bosonic system.

Chapter 5 provides the result of dynamics of polariton condensate in temporal,

spatial and kinetic domain. Open dissipative Gross-Pitaevskii Equation coupled with

external exciton reservoir provides spatial and temporal dynamics where coupled

Semi-classical Boltzmann rate equation provides relaxation dynamics of polariton in

kinetic domain. Both of these equation sets are essential to understand the influence of

defect on polariton condensate dynamics. We use different types defect potential pattern

and pumping scheme to analyze the polariton condensate dynamics by solving GP

equation. To understand the dynamics in kinetic domain, different defect densities has

been employed along with calculated exciton-phonon scattering rate and exciton-exciton

scattering rate.
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Chapter 6 provides the result from perspective of thermodynamics. Conclusion

on the effect of defect has been reached from two direction, one is heuristic approach

and another numerical approach. Heuristic approach utilizes existing theory of ETH

and MBL to provide some insight about the thermalization of bosonic system under

the presence of disorder or defect. Numerical approach utilizes exact diagonalization

and Quantum Monte Carlo approach to solve disorder Bose Hubbard model numerically

to evaluate some thermodynamic equilibrium value and provide important conclusion

regarding defect impact.

Chapter 7 provides the comparison between numerical and experimental result.

Defect influences experimental characteristics of polariton LASER diode. Using a

simplified rate equation approach effect of defect on polariton LASER diode frequency

characteristics has been analyzed compared with experimental results. Some prediction

regarding the impact of defect on quantum information processing is provided based on

the achieved conclusion.

Chapter 8 summarizes the whole work of this dissertation in short and sheds some

light on the impact of such work. Additionally focus is given on the future work that

could be done with the obtained results and necessity for further investigation.
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Chapter 2

Exciton-Polariton : Fundamentals

Until present all constituent particles of the universe can be put into one of the two

classes: Bosons or Fermions. Bosons follow Bose-Einstein statistics with integer spin

where Fermions follow Fermi-Dirac statistics, Pauli’s exclusion principle with half integer

spin. As a consequence, Bosons tend to bunch together and can create a macroscopic

state under proper condition. But one state can only be occupied by one fermion. Some

examples of boson and fermion are: Fermion-Lepton (electron, neutrino etc.), Baryons

(proton, neutron etc.), Boson-Photon, Gluons, W boson, Z boson (four force-carrying

gauge bosons of the Standard Model), Higgs bosons etc.

Besides the traditional example of bosons, a different branch of bosons exist. These

bosons, sometimes coined as co-bosons are formed by paired fermions. Cooper pair from

BCS superconductor theory, exciton are these types of boson. Due to even number of

fermion, these particles shows an interger spin and also follows the other properties of

boson i.e. Bose-Einstein statistics, macrscopic condensation etc. Exciton is a co-boson

which is formed due to formation of elcetron-hole pair under the influence of strong

Coulomb attraction between them. Exciton-polariton is a hybridized state due to strong

interaction between semiconductor exciton and microcavity photon. In this chapter, a

rigorous theoretical background of exciton polariton is being presented. For a detailed

theory of exciton-polariton readers are requested to follow text [107,108].
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2.1 Cavity Photon

A microcavity is an optical resonator to confine light in small volume by some sort

of reflecting mechanism [109]. Depending on the method of light confinement, a

semiconductor microcavity can be of different classes i.e. planar, spherical, pillar or

photonic crystal microcavity. In semiconductor microcavity this reflecting mechanism

is implemented using metallic mirror reflector or by Distributed Bragg Reflector

(DBR) [110, 111].Due to high reflectivity and current progress in fabrication technique,

DBR reflector is efficient in light trapping. A DBR mirror consists of alternate layers

of materials having different refractive indices. DBR mirror employs the principle of

interference to achieve high reflectivity. Depending on the contrast of refractive indices,

it is possible to achieve very high reflectivity [112, 113]. Due to this high reflectivity,

semiconductor microcavity can achieve a very quality factor; Q
(
Q = π(R1R2)

1
4

1−(R1R2)
1
2
,

with R1 and R2 are the reflectivity of two mirrors
)

which enable the microcavity to

stimulate strong light matter interaction. Strong light matter interaction is essential

for exciton-polariton coupled eigenstate formation. For weak light-matter interaction,

exciton and photon act as independent states, decoupled from each other.

Due to multiple reflection from both mirror, a photon is effectively is trapped inside

cavity. This photon is known as cavity photon. This sort of photon has gained some mass

compared to the one that is free.

For semiconductor microcavity (Fig. 2.1) energy momentum relationship can be

written as,

Ec =
ℏck
nc

=
ℏck
nc

√
k2z + k2x + k2y =

ℏck
nc

√
k2z + k2∥ (2.1)

Here, c is the speed of light in vacuum, nc is the effective refractive index of the cavity

region and in-plane wave-vector k2∥ = k2x + k2y. For kz >> k∥, equation 2.1 can be written

as,

Ec ≈
ℏckz
nc

+ k2∥
ℏc
nckz

= Ek∥=0 +
ℏ2k2∥
2mc

(2.2)

which gives us the cavity photon mass mc as,
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Figure 2.1: Schematic representation of a planar microcavity having DBR mirrors with
cavity photon and exciton excitation.

mc =
ℏnckz
2c

=
ℏpπnc
cLc

(2.3)

here p is cavity mode no and Lc is cavity length. In case of free photon Lc →∞ mass

goes to zero (2.3).

2.2 Matter Wave Excitation : Exciton

An exciton is a neutral quasi-particle results from the Coulombic interaction between an

electron and a hole. Excitons are in fact the elementary excitations in a semiconductor

(Wannier-Mott exciton) as the first excited state resulting from external excitation is a

bound electron-hole pair. Exciton binding energy (EBX) is the energy that binds this

pair (or alternately this amount of energy will be released) and spatial distance between

electron-hole pair is Bohr radius, aBX (Fig. 2.2).

For Frenkel type of exciton EBX is high (small aBX) and for Wannier-Mott exciton

has low EBX (large aBX).EBX and aBX are strongly dependent on the dimensionality and

quantum confinement of the system [114–116]. For a 3D system, exciton hamiltonian can

be described as,

HX = −ℏ2∇2
e

2m∗
e

− ℏ2∇2
h

2m∗
h

− e2

4πϵϵ0|r|
(2.4)
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Figure 2.2: Schematic representation of an exciton inside a 2D lattice with lattice
constant alattice. aBX is exciton binding radius (average distance between electron and

hole).

here, m∗
e and m∗

h are effective mass of electron and hole respectively inside the

material, ϵ is dielectric constant of material, |r| = |re − rh| is the relative coordinate of

the exciton. In the hamiltonian, first and second term correspond to electron and hole

respectively while the third represents the interaction between them.

Considering the solution for hydrogen atom for 1s state only, we get exciton

wavefunction ψX(r), Bohr radius aBX and binding energy EBX as,

ψX(r) =
1√
πa3BX

exp[− r

aBX
] (2.5)

aBX =
4πℏ2ϵϵ0
µe2

(2.6)

EBX =
ℏ2

2µa2BX
(2.7)

here, µ =
m∗

em
∗
h

m∗
e+m

∗
h

is the reduced mas off exciton. Considering the difference between

the reduced mass µ and the free-electron mass the dielectric constant in the denominator,

one can estimate that the EBX is about three orders of magnitude less than the Rydberg

14



constant, Ry. EBX and aBX for some semiconductor material is shown in table 2.1. Data

are taken from [107].

Table 2.1: Binding energies and Bohr radii for Wannier–Mott excitons in different
semiconductor materials.

Semiconductor material Eg (eV) EBX (eV) aBX(A
0)

InSb 0.237 0.5 860
Ge 0.89 1.4 360

GaAs 1.519 4.1 150
CdTe 1.6 10.6 80
GaN 3.5 22.7 40

For Mx = m∗
e + m∗

h and higher state (n = 1, 2, 3, ..., considering beyond 1s state)

exciton dispersion relation for 3D system,

EX,K,n = Eg +
ℏ2K2

X

2MX

− EBX
n2

(2.8)

Eg is the band-gap energy of the material.

2.2.1 Exciton : Co-boson vs Boson

Boson are the particles following Bose-Einstein statistics. Additionally, bosons follow the

symmetric wave-function rule, which allows it for macroscopic occupation of one single

state. Second quantization of this wave-function gives the idea of boson creation and

annihilation operator, b0 and b†0 respectively defined as,

bi|ni⟩ =
√
ni|ni − 1⟩ (2.9)

b†i |ni⟩ =
√
ni + 1|ni + 1⟩ (2.10)

These two operators follow commutation relationship as,

[bi, bj] = [b†i , b
†
j] = [b†i , bj] = [bi, b

†
j] = 0 (2.11)

[bi, b
†
i ] = 1 (2.12)
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Co-bosons or composite bosons are the bosonic particles by two fermions. From this

definition, exciton is a composite bosons formed by electron and hole- two fermions. There

are some differences between co-boson and elementary boson. Commutation relation for

co-bosons (equation 2.11) has been modified as,

[Bi, B
†
i ] = 1− d (2.13)

here, Bi(B
†
i ) is annihilation (creation) operator for co-bosons and d is deviation factor

defined as,

d =
∑

ke,kh,qe,qh

⟨ψi|ke, kh⟩⟨qe, qh|ψi⟩(δkh,qhc
†
ke
cqe + δke,qed

†
kh
dqh) (2.14)

where, ⟨ke, kh|ψi⟩ is ith state exciton wave-function in momentum space (ke and kh

being the momentum of electron and hole respectively), cp(dp) is annihilation operator

at state p for electron (hole).

Due to presence of d, exciton is not exactly a boson, rather a composite boson [117].

Due to by such composite nature of the exciton is the uncertainty to identify an exact

interaction potential between two excitons, even for the Coulomb contribution. It might

be easier to identify e-e and h-h interaction but exact interaction picture between electron

and hole for two excitons is ambiguous. Despite the existence of such ambiguity, most of

work regarding exciton consider it as an elementary bosons.

2.3 Light Matter Interaction : Exciton Polariton

Light matter interaction can be explained from both classical and quantum perspective.

Depending on interaction strength light-matter interaction can be classified into weak,

strong coupling regime. Exciton polariton is a hybrid state arising due to coupling between

light (cavity photon) and matter (exciton) in strong coupling regime. Before delving into

detail of polariton, a brief discussion on the generic coupled state, dressed state from bare

state has been discussed.
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2.3.1 Dressed States

Consider two different mode (for ex. light and matter) with energy EX and EY are

interacting with each other by interaction energy G. Hamiltonian of such system is,

H = EXx
†x+ EY y

†y +G(xy† + x†y) (2.15)

The analysis of equation 2.15 can be made in |x, y⟩ (x no of excitation in X field and

y no of excitation in Y field) which is bare states (states if no interaction exists between

X and Y). Due to presence of G, we can replace x and y as,

a = α1x+ α2y (2.16)

b = β1x+ β2y (2.17)

with α1, α2, β1, β2 ∈ C. Bosonic commutation relationship between a and b,

hamiltonian (equation 2.15) implies

α1β
∗
1 + α2β

∗
2 = 0 (2.18)

α1β
∗
2 + α2β

∗
1 = 0 (2.19)

α2
1 + α2

2 = β2
1 + β2

2 = 10 (2.20)

For canonical unitary transformation solution of these results,

α1 = cos(θ), α1 = sin(θ), β1 = −sin(θ), β1 = cos(θ)

where cos(θ) is defined as,

cos(θ) =
∆ +

√
4G2 +∆2√

2∆2 + 8G2 + 2
√
4G2 +∆2

(2.21)

δ = EX−EY is coined as detuning. So the substitution turns hamiltonian as (equation

2.15),
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H = EAa
†a+ Ebb

†b (2.22)

where plot for EA and EB are,

Figure 2.3: Eigen-energies for equation 2.15 as a function of detuning. Anti-crossing is
observed at zero detuning. Dressed states can be suitably approximated as bare state

for large detuning.

Let us consider a simple case with ∆ = 0;EA = EB = E and coherent superposition

of bare states as,

a =
x+ y√

2
(2.23)

a =
x− y√

2
(2.24)

gives us the hamiltonian (equation 2.15),

HDr = (E −G)a†a+ (E +G)b†b (2.25)

For a dressed state |n,m⟩ this hamiltonian (HDr|n,m⟩ = E(n,m)|n,m⟩) gives us the

energy,

18



E(n,m) = E(n+m)−G(n−m) (2.26)

If one excitation is taken away from the system, new state will be either |n− 1,m⟩ or

|n,m−1⟩ resulting in either E(n+m−1)−G(n−m−1) or E(n+m−1)−G(n−m+1).

Existence of such two state upon transition is known as ‘Rabi Doublet’ although they

remain in the same manifold in Fock space. Energy difference between two states is 2G.

This case is shown in Fig. 2.4 for H2 manifold to H1 manifold transition.

Figure 2.4: (a) Rabbi Doublet energy density diagram for dressed boson. (b) Transition
from H2 to H1 to H0 (vacuum state). H2 manifold contains total 2 particles. There are

4 possible ways of this transition. Corresponding energy release for each possible
configuration is shown.

2.3.2 Strong Coupling Regime

Exciton photon interaction strength (ℏg) is governed by [118],

ℏg =

√
πe2f

ϵϵ0m∗
eV

τ (2.27)

Term τ contains overlap integral of the electron and hole wave-function, the angular

momentum conservation term governed by the selection rule, and the projection of exciton

dipole moment onto the photon field. Exciton oscillator strength f is defined as,
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f =
2m∗

eω

ℏ
|⟨uv|r⃗.E⃗|uv⟩|

V

πa3BX
(2.28)

where, uc(uv) is electron (hole) Bloch function, ω is incident photon frequency, E⃗ is

photon field, V is interaction volume.

In a cavity with high Q factor, a periodic, reversible energy exchange between excitons

and photons at a rate of ℏg which can be larger than exciton and cavity photon decay

rate, γX and γc respectively. If ℏg >> (γX − γc)/2 then, there is at least one coherent

energy transfer between the exciton and the photon before they decay out of coherence.

The interaction strength or energy transfer rate ℏg is often referred to as the ‘vacuum

Rabi splitting’, whereas the periodic energy transfer phenomenon is commonly known as

Rabi oscillation.

2.3.3 Exciton Polariton

Exciton polariton emerges as new eigenstate due in strong coupling regime. Hamiltonian

for a strong coupling regime or alternatively hamiltonian for exciton polariton can be

written as,

Hpol = EX,Ka
†
KaK + Ecc

†
KcK +

ℏgK
2

(c†KaK + a†KcK) (2.29)

EX,K is defined in equation 2.8, Ec in equation 2.2, aK(cK) is the annihilation operator

for exciton (cavity photon). Employing a similar linear substitution of 2.16 and 2.17,

pLP,K = XKaK + CKcK (2.30)

pUP,K = XKaK − CKcK (2.31)

we can turn hamiltonian 2.29 into,

Hpol = ELP,Kp
†
LP,KpLP,K + EUP,Kp

†
UP,KpUP,K (2.32)

XK and CK , the Hopfield coefficients are defined as,
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|XK |2 =
1

2

[
1 +

∆K√
∆2
K + (ℏg)2

]
(2.33)

|CK |2 =
1

2

[
1− ∆K√

∆2
K + (ℏg)2

]
(2.34)

This coefficients effectively determine the exciton fraction (XK) and photon fraction

(CK) of the hybrid exciton polariton particles. From equation 2.32 dispersion relationship

for ELP,K and EUP,K are,

ELP/UP,K =
1

2

[
EX,K + Ec ±

√
(ℏg)2 +∆2

K

]
(2.35)

where + indicates the dispersion relationship for EUP,K , upper polariton branch and

+ indicates the dispersion relationship for ELP,K , lower polariton branch.

Figure 2.5: Exciton polariton dispersion relationship from equation 2.35, blue and black
curve are for ELP and EUP dispersion respectively.

At high k LP branch becomes exciton like and UP branch is cavity photon like.

From equation 2.33, 2.34 and 2.35 it is clear that detuning ∆K plays an important role

in determining the dispersion relation and hopfield coefficient. That is why at small k,

LP branch is more photon like for negative detuning and exciton like for positive detuning.
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Another aspect of exciton polariton is its mass is different from MX and mc. Effective

polariton mass is two fold, one is lower polariton mass (mLP ) and another is upper

polariton mass (mUP ), defined as,

1

mLP

=
|XK |2

MX

+
|CK |2

mc

(2.36)

1

mUP

=
|XK |2

mc

+
|CK |2

MX

(2.37)

Despite polariton mass being a mathematical function of exciton and photon mass,

near k ≈ 0 polariton mass is dominated by mc as exciton mass is often many times larger

than cavity photon mass.

This far, we do consider lifetime of interacting modes to be infinite (γX = γc = 0)

which is not even close to ideal. Considering a finite γX and γc, polariton hamiltonian

can be modified as,

Hpol =

 Ec + iγc
ℏg
2

ℏg
2

EX,K + iγX

 (2.38)

which gives us LP and UP branch dispersion relationship as,

ELP/UP,K =
1

2

[
EX,K + Ec + i(γX + γc)±

√
(ℏg)2 + [∆K + i(γc − γX)]2

]
(2.39)

From equation 2.35 and 2.39, presence of homogeneous and non-homogeneous

broadening modify effective Rabi splitting.

2.4 Polariton Lasing

Due to bosonic (composite bosonic) nature of exciton polariton macroscopic condensation

of ground can facilitate lasing action of polariton particles. In this section, a somewhat

detailed discussion of polariton scattering events, LP relaxation, stimulated scattering,

fundamental contrast between polariton and photon lasing is provided.
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2.4.1 Polariton Lifetime and Scattering Events

After a finite time (τp), polariton decays radiatively as a photon. Lifetime for LP and UP

can be expressed as,

1

τLP,K
=
|XK |2

τX
+
|CK |2

τc
(2.40)

1

τUP,K
=
|XK |2

τc
+
|CK |2

τX
(2.41)

In many cases, the exciton lifetime (τX = 1/γX) is in the order of much much greater

than cavity photon lifetime (τc = 1/γc).This indicates that the τp is governed by the

τc which in turn depends on cavity property i.e. Q-factor. For GaN with detuning

20 meV, recombination rate (in meV) is shown is Fig. 2.6. Clearly at higher K, LP

lifetime gets closer to exciton one wheres and UP lifetime gets closer to cavity photon

lifetime. Detail of these radiative recombination rate calculation can be found [119].

For calculating radiative recombination rate, γc is taken as 1.6 meV and γX is taken as zero.

Due to constituent excitonic fraction, polaritons may undergo three different types of

scatterings before decay. These are,

1. Polariton-photon scattering.

2. Polariton-polariton scattering.

3. Polariton-electron scattering.

1. Polariton-photon scattering [107]: Phonon are quantized lattice vibration

which can effectively scatter polariton. Polariton can be effectively scattered by both

optical and acoustic phonon but at low temperature probability for acoustic phonon

scattering is low due to its high energy. Scattering rate between polariton state at Ki

(initial wave vector) and Kf (final wave vector) can be written according to Fermi’s golden

rule,

W ph(Ki → Kf ) =
2π

ℏ
∑
q

|M(q)|2(θ± +Nph(q))δ(E(Kf )− E(Ki)± Eph(q)) (2.42)
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Figure 2.6: Radiative recombination rate for upper and lower polariton branch.
Interaction strength is taken as 35 meV.

here, + is for phonon emission and − is for absorption and Nph is Bose distribution of

phonon with wave vector q and |M(q)| is matrix element of interaction between polariton

and phonon defined as,

|M(q)|2 = |XKi
|2|XKf

|2|⟨ψX(Ki)|Hpol−ph
q |ψX(Kf )⟩|2 (2.43)

Hpol−ph
q is polariton phonon interaction hamiltonian. For acoustic phonon, equation

2.43 reads,

Mac(q) =

√
e

2µρuSL
DeDh

[
1 +

(
m∗
eqaBX
2MX

)]2[
1 +

(
m∗
hqaBX
2MX

)]2
(2.44)

here, ρ is material density, u is speed of sound inside the material, De(Dh) is conduction

(valance) band deformation potential and S, L are normalization area, microcavity length

respectively. Matrix element for optical phonon with energy EOph(q) reads,

MOph(q) = −e
q

√
4πEOph(q)

SLϵ0

(
1

ϵh
− 1

ϵl

)
(2.45)

ϵh and ϵl are the high frequency (optical) and low frequency (static) dielectric constant

respectively.
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2. Polariton-polariton scattering [107]: Due to dipole-dipole interaction

between excitonic component of polariton, polariton-polariton scattering can effectively

redistribute polariton population among the states. This is most effective scattering

mechanism for stimulated scattering and macroscopic ground state occupation.

Polariton-polariton scattering rate can be defined as,

W pol(Ki → Kf ) =
2π

ℏ
∑
q

|M ex|2|XKi
|2|XKf

|2|Xq|2|Xq+Kf−Ki
|2N(q)(1+N(q+Kf−Ki))

δ(E(Kf )− E(Ki) + E(q +Kf −Ki)− E(q)) (2.46)

q is the momentum exchanged during scattering event and N is polariton Bose

distribution. Polariton–polariton scattering has been shown to be extremely efficient

for a resonantly excited microcavity. even for non-resonant excitation. This scattering

events can solely self-thermalize the whole exciton depending on the excitation condition

and on the nature of the semiconductor.

3. Polariton-electron scattering [107]: Polariton-electron scattering is more

efficient than polariton-phonon scattering du to the small effective mass of electron

and strong charge-dipole interaction. For optical pumping, electron polariton scattering

can be imitated by exciting a secondary quantum well adjacent to the emitter of the

microcavity [120]. Polariton-electron scattering rate can be written as,

W el(Ki → Kf ) =
2π

ℏ
∑
q

|M el(q,Ki, Kf ) +M el(q,Ki, Kf )|2|XKi
|2|XKf

|2Ne(q)

(1 +Ne(q +Kf −Ki))δ(E(Kf )− E(Ki) + Ee(q +Kf −Ki)− Ee(q)) (2.47)

where, Ne is Fermi distribution Ee(q) is defined as ℏ2q2
2m∗

e
. The polariton–electron

interaction is a dipole-charge interaction that takes place on a picosecond time scale. An

equilibrium electron gas can thermalize a polariton gas quite efficiently. A more complex

effect may, however, take place such as trion formation or exciton dephasing.
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2.4.2 LP Relaxation and Bottleneck Effect

Relaxation of energy (with momentum) along LP branch dispersion and eventual

accumulation close to the ground state is related to polariton lasing phenomenon. In

this context, the LP dispersion can be divided into three regions: polariton-trap region

(I), bottleneck region (II) and thermalization region (III) as shown in Fig. 2.11. With

external pumping, the electron-hole plasma form excitons which inside a microcavity with

high Q strongly couple with photons to form polaritons.

Figure 2.7: LP relaxation along LP dispersion indicating different region of interest.

Initial formation of excitons is incoherent. These excitons, having high energy and

momentum (K) effectively form ‘exciton reservoir’ (red area in LP dispersion branch). At

high in-plane momenta of the polariton dispersion, polaritons are essentially exciton-like

and therefore they have relatively long lifetimes, heavy effective masses and large density

of states (DOS). As a result, over region III of dispersion, phonon mediated LP relaxation

processes are very efficient over the thermalization region (Fig. 2.7). The energy difference

between the bottleneck region (region II) andK = 0 state of the LP dispersion is known as

‘polariton-trap depth’. As can be observed from Fig. 2.7, in the polariton dispersion, LP

relaxation from the bottleneck (region II) down to the polariton-trap (region I) requires

a significant change of energy (polariton-trap depth), and a simultaneous small change of

momentum [121] and alternatively this in order to get out of region I, LP need to hurdle
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this amount of energy. Close to region I, the polariton lifetime decreases by about two

orders of magnitude and becomes significantly smaller than the timescales of acoustic

phonon scattering, the dominant scattering mechanism at low temperatures. Also, the

polariton effective mass decreases by about 4 orders of magnitude in this region, thereby

significantly reducing the LP DOS. As a result, at low pump densities, there is also a

lack of polariton-polariton scattering in this transitional region. In the presence of these

effects, which are altogether known as the bottleneck effect. it is very likely that polaritons

will decay as photons before they can relax down to the bottom of the polariton trap.

There are several ways of overcoming the bottleneck effect in semiconductor microcavities.

These are the following.

• increased the pumping density: This increases polariton-polariton scattering rate.

But the system may cease to be in the strong-coupling regime if the pumping density

becomes comparable to the Mott density. The scattering rate can be enhanced by

increasing the exciton fraction near the bottleneck region. This can be attained

by increasing positive detuning. However if the positive detuning is too large, the

polaritons essentially become excitons.

• Increased temperature: This will increase phonon scattering rate. But this also

results homogenous broadening of the exciton linewidth. Moreover excitons tend to

dissociate if the KBT value is higher than the corresponding exciton binding energy,

where KB is the Boltzmann constant.

• Excess carrier:By introducing excess carriers in the form of modulation doping, the

polariton electron scattering rate can be enhanced.

2.4.3 Polariton Lasing Dynamics and Stimulated Scattering

The polariton lasing dynamics can be described using the semiclassical

Maxwell-Boltzmann rate equations. In this context, if NK is defined as the LP

occupation at at state with momentum K, then its rate of change is given by,
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dNK

dt
= PK −

NK

τLP,K
−
∑
Kf

W (K → Kf )NK(1+NKf
)+

∑
Kf

W (Kf → K)NKf
(1+NK)

(2.48)

where, PK is pumping rate, W (K → Kf ) = W ph(K → Kf ) + W pol(K →

Kf ) +W el(K → Kf ) is the net scattering rate. These scattering events are explained

in 2.4.1. When NK << 1, phonon scattering dominates LP relaxation process. With

the increase of external pumping density , W pol(Ki → Kf ) becomes prominent. Because

energy and momentum is conserved during this scattering process, polariton-polariton

scattering process plays a substantial role in overcoming the relaxation bottleneck.

During a single polariton-polariton scattering event, a LP from the bottleneck region

may relax down to the polariton trap and at the same time a LP is scattered from

the bottleneck region to a higher energy, exciton-like state. This process, which is also

known as pair-scattering, is an incoherent two-body scattering process [122]. As the LP

occupation increases (especially N0), pair-scattering increases quadratically in the system

and at a sufficiently high pumping density, LP relaxation to the final state i.e. to the

ground state is dominated by the term (1 +N0) where N0 is the ground state population

in equation 2.48. Under this condition, the overall scattering rate increases non-linearly

by what is known as the Bosonic final state stimulation. The enhanced scattering

initiated by this Bose-Einstein statistical process is known as ‘stimulated scattering’.

This is a phase coherent process where both polariton-polariton and polariton-phonon

scattering rates are enhanced significantly. Because N0 >> 1 for stimulated scattering

to take place, it can be said that the system achieves quantum degeneracy during

this process. This means a macroscopic population of polaritons having same energy,

momentum and phase builds up at the ground state. Because of the short lifetime,

these polaritons though may nor attain thermal equilibrium with the lattice, they can

remain at a metastable condensed state where they are in thermal equilibrium among

themselves. Hence it can be said that the stimulated scattering process leads to the

formation of a non-equilibrium polariton condensate. This process is often referred

to as the ‘dynamic condensation’ of polaritons. The formation of such a quasi- or

non-equilibrium degenerate condensate means that upon decay by means of spontaneous
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radiative recombination, the exciton-polaritons will generate coherent light output and

the system will act as a coherent emitter i.e. a laser. Though there is no stimulated

emission of radiation, but only stimulated scattering in the process, the misnomer of

‘polariton laser’ is commonly used to indicate its operation as a coherent light source.

Figure 2.8: Numerical solution of equation 2.48 for three different pumping rate with
P3 > P2 > P1.

In Fig. 2.8 numerical solution of coupled rate equation 2.48 is shown. Detail of this

solution and other technique will be discussed later. A close observation of solution reveals

the appearance of macroscopic ground state with N0 >> 1 which enables ‘stimulated

scattering’ process.

2.4.4 Polariton Lasing vs Photon Lasing

We will finish this chapter by showing the distinctions between polariton and photon

lasing. In conventional photon lasers, ‘stimulated emission’ is source of lasing. Population

inversion (electronic inversion of the system N1 > N2 with E1 > E2) initiates this sort

of stimulated emission. This ‘stimulated emission’ is also reason behind the light

amplification (photon generated by stimulated emission > photon lost due to decay or

absorption). On the other hand, the underlying dynamics of polariton lasing is the
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‘stimulated scattering’ process, which is the result of stimulation of Bosonic final state

in the ground state of the polariton dispersion. The coherent emission in this case is

generated by spontaneous radiative recombination of the degenerate polariton condensate

(degenerate state in the ground state, N0). Therefore, whereas photon loss has to be

balanced by stimulated emission in a photon laser, in a polariton laser stimulation and

emission processes are independent, thereby eliminating the requirement of ‘population

inversion’. For this reason a polariton laser is often referred to as an ‘inversion-less laser’.

Besides the physics, several distinct differences are observed between the output

characteristics of polariton and photon lasers. These are the following.

• Low effective mass and DOS of polaritons forces the lasing threshold can be 2-3

orders of magnitude lower than an equivalent photon laser. The photon lasing

threshold has to be larger than the transparency density (pumping density at which

losses are equal to the gain). This density is always several orders of magnitude

higher than the critical density.

• Collapse of the emission line-width at the edge of lasing is observed for both

polariton and photon lasers. For both the cases, there is an associated coherence

time, τcoh = λ2

c∆λ
with λ is the emission wavelength, c is the speed of light and

∆λ is the emission line-width. In a photon laser, the coherence time increases

in proportion to the photon occupation number and the line-width decreases

accordingly to reach the Schawlow-Townes line-width limit. However in a polariton

laser, polariton-polariton scattering in the non-equilibrium degenerate condensate

leads to the loss of coherence time and corresponding increase of the emission

line-width.

• Unless there is screening of the built-in electric field, as in GaN-based quantum

well lasers, a red-shift of the emission peak in photon lasers may be observed

because of device heating. However, in polariton lasers the emission peak blue-shifts

because of energy re-normalization caused by polariton-polariton scattering in the

non-equilibrium polariton condensate.

• The spontaneous coupling factor β, which is a measure of the fraction of spontaneous

emission coupled to the lasing mode, is usually greater than 0.01 in microcavity

30



photon lasers because of Purcell effect. However in the polariton lasing regime,

spontaneous emission emerges in the polariton mode which undergoes stimulated

scattering and hence β is usually significantly smaller [67].

• Polariton lasers exhibit a characteristic magnetic field dependent Zeeman splitting

because of the exciton-fraction of polaritons. As photon lasing is mediated by

stimulated emission of uncoupled cavity photons in the weak coupling regime, such

a magnetic field dependence is not observed [123].

2.5 Bound Exciton

This research work will mainly focus on the effect of defect on exciton-polariton system. A

short description of bound exciton is given for convenience. For a defective system (system

with any type of defect e.g. point defect, dislocation, impurity (intentional or doped),

vacancy) free exciton localized at potential trap formed by defect, lose all its kinetic

energy and formed ‘bound exciton’. These excitons are not mobile as they are fixed in

space-time. They do not thermalize like the free exciton. Bound exciton formation is

dependent on the nature of defect (ionized defect, neutral dopant, dislocation). Nature

of such excitons will be described in short in this section.

2.5.1 Exciton bound to ionized defect (donor/acceptor)

The capturing event of a free exciton can be stated as,

FE + T+/− = T+/−X + E1 (2.49)

Here, FE = free exciton, T+/− = ionized defect (donor (+)/ acceptor (-)), T+/−X =

Bound exciton, E1 = energy released by exciton during localization (or alternatively

energy required to convert a bound exciton into a free one).

Radiative recombination of these bound exciton gives D+X or A−X line in photo

luminescence spectra. Simultaneous existence of both D+X and A−X is not possible. A

stable ionized defect bound exciton is only possible under certain condition [124]. For

D+X this condition implies, σ = me/mh < 0.43 for A−X, σ > 0.43. E1 becomes negative

beyond this region and it is energetically favorable for exciton to remain free rather than
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bound to an ionized defect.

2.5.2 Exciton Bound to Neutral Defect (Donor/Acceptor)

At any value of σ, a stable neutral defect bound exciton is stable. Formation of neutral

defect bound exciton can be represented as,

FE + T 0 = T 0X +D1 (2.50)

D1 = Disassociation energy of exciton.

For any arbitrary value of σ, D1 stays positive (although can vary depending on defect

type). So, exciton bound to neutral donor is energetically favorable.

Due to presence of another particle (electron in neutral donor and hole neutral

acceptor), exchange interaction between bound exciton and the existing particle causes

energy level to split. The calculation for exciton bound to neutral donor has been shown

below. The approach followed has been discussed detail by Ungier and Suffczyriski [91].

The wavefunction of these three particles (electron and hole from exciton and another

electron/hole from defect) can be written as,

ψm =
∑

k1,k2,k3

A(k1, k2, k3)|ψ⟩ (2.51)

where the slater determinant |ψ⟩ is,

|ψ⟩ = 1√
2
[ψk1(r1)ψk2(r2)− ψk2(r1)ψk1(r2)]Kψ∗

k3
(r3) (2.52)

In equation 2.52, r1 and r2 corresponding to two electrons coordinate and r3

corresponding to hole coordinate. K is time reversal operator. k1, k2, k3 are corresponding

to electron 1, electron 2 and hole wave-vector respectively. Equation (10) is the result of

anti-symmetric condition followed by fermion (Same goes for co-efficient A, A(k1, k2, k3) =

−A(k2, k1, k3)). So equation 2.51 becomes,
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ψm =
1√
2
[
∑

k1,k2,k3

c1A(k1, k2, k3)[ψk1(r1)ψk2(r2)− ψk2(r1)ψk1(r2)]

−
∑

k1,k2,k3

c2A(k2, k1, k3)[ψk1(r1)ψk2(r2)− ψk2(r1)ψk1(r2)]]ψ∗
k3
(r3) (2.53)

Due to exchange interaction between ψk1(r1) and ψk2(r2) energy of bound exciton is

not exactly the same as that of free exciton. Hamiltonian for can be written as,

H +W+ W−

W− H +W+

c1X1

c2X2

 = E

c1X1

c2X2

 (2.54)

In equation 2.54, X is the Fourier transform of A, H is Hamiltonian of defective

system without exchange interaction and exchange part of Hamiltonian is determined as,

W+ = ⟨ψ(r1)|
e2

|r1 − r3|
|ψ(r3)⟩+ ⟨ψ(r2)|

e2

|r2 − r3|
|ψ(r3)⟩

W+ = ⟨ψ(r1)|
e2

|r1 − r3|
|ψ(r3)⟩ − ⟨ψ(r2)|

e2

|r2 − r3|
|ψ(r3)⟩

This exchange interaction results in a split of bound exciton energy. Here we show

the case for neutral donor. Same energy splitting occurs for neutral acceptor.

2.5.3 Multiple Bound Exciton Complexes (MBEC)

It has been proven experimentally that a single defect center can trap several excitons

[125]. This multi exciton complexes formation is harder as exciton number increases as

the localization energy for bound exciton decreases. After a certain number of excitons,

free exciton is energetically favorable than adding another one to the complex. Formation

of multi exciton complex around a neutral defect can be expressed as,
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FE + T 0 = T 0X +D1
1

2FE + T 0 = T 0XX +D1
1 +D1

2

3FE + T 0 = T 0XXX +D1
1 +D1

2 +D1
3

here Dm
i stands for disassociation energy for mth exciton.

During further calculation, we consider the bound exciton in lower energy level. Any

bound state has been modeled as ,

ψb(r) = Cexp(−αr) (2.55)

where, α is a phenomenological parameter. For bound exciton, defect size is considered

to be big enough to quantize the exciton as a whole. In case of bound electron/hole,

same wavefunction has been considered with different normalization constant C.

34



Chapter 3

Condensation of Exciton-Polariton

Quasi-particle

Is our universe strange or we think in a strange way? Or all the strange result the

universe is presenting us is due to way of thinking? Study of quantum mechanics give

me such revelation. Quantum mechanics bring about some strange result beyond our

strangest imagination. One of its fascinating strange result is the concept ‘Bose-Einstein

Condensation’ or BEC. For a long time most physicists considered this concept merely

as a mathematical construct developed by Alber Einstein in 1925 [38]. Only after the

discovery of such event in 1995 [5] convinced science community about the actual existence

of such exotic state of matter. In this chapter, a detail discussion of BEC following by

condensation of quasi-particle like exciton-polariton will be presented.

3.1 Overture

Bosons are fundamental particles follows many particle wave-function symmetry with

Bose-Einstein statistics,

n[E(i), T, µ] =
1

exp
(E(i)−µ

kBT

)
− 1

(3.1)

here, µ is the chemical potential (energy required to add one particle to the system).

Consider total N(=
∑

E(i) ni) no. of particles with parabolic dispersion relation and mass

m are placed inside a square potential of volume V in 3-D space. From equation 3.1, N

can be divided into two parts, particles occupying ground state (N0) and particles not
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occupying the ground state or particles in the excited states (NE) with definition as,

N = N0 +NE =
1

exp
( −µ
kBT

)
− 1

+
∑
E(i)̸=0

+
1

exp
(E(i)−µ

kBT

)
− 1

(3.2)

Considering bosonic wave-function ψ(x, y, z) follows periodic boundary condition, in

the thermodynamic limit excited state total population becomes,

NE =
V

λ3T
g3/2

(
exp

[ −µ
kBT

])
(3.3)

where, De broglie wavelength λT is defined as,

λT =

√
2πℏ2
mkBT

(3.4)

and function ζn(p),

gn(p) =
1

Γ(n)

∫ ∞

0

xn−1

z−1ex − 1
(3.5)

Integral 3.4 converges for z ≤ 1 and ζ3/2(1) = 2.16 = ζ(3/2), the Riemann zeta

function. So a hard and fast condition on the value of NE is,

NEλ
3
T ≤ ζ(3/2) (3.6)

If particles number are increased beyond this limit, extra particles will start to

accumulate in the ground state and create a macoscopically occupied state. This

phenomenon is defined as ‘Bose Einstein Condensation’ or BEC.

BEC can occur for a fixed no of particles by reducing temperature as reduced cause the

distribution function to change and cause the value of NE to decrease. This temperature,

at which the macroscopic ground state occupation starts is known as critical temperature,

Tc and is defined as [126] for fixed density n = N/V ,

TBEC =
2πℏ2

kBm

[ n

ζ(3/2)

] 2
3 (3.7)

Most often this critical temperature is in nK range which is one of the factor for 70

years delay in discovering of BEC.
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Figure 3.1: Phase diagram indicating different zone Solid, Liquid, Gas and BEC region.
BEC region lies as a subset of solid region.

BEC is considered a metastable phase of matter. A close look at phase diagram of

Fig. 3.1 gives us the insight that Bose-Einstein condensed gas can only exist as metastable

condition as stable state of matter is solid at this temperature and pressure. Conditions

for such metastability are,

• Low density of gas: Low density of gas prevents collision among the particle,

especially three body collision to form the solid state.

• Internal thermalization: Gas phase thermalized internally quickly to prevent it come

in canonical ensemble with the external system.

• Longer lifetime for Bose gas particles: Longer lifetime ensures that it will take

longer time for gas particle to enter solid phase than to reach BEC phase.

3.2 Fundamentals of BEC

Some important concepts to understand BEC will be discussed in this section. These topic

are order parameter, spontaneous symmetry breaking, Goldstone boson, off-diagonal long

rang range order.
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3.2.1 Order Parameter

Order parameter is a physical observable that identifies a phase transition for example

liquid to solid, superfluid to normal fluid etc. Based on how order parameter changes

during a phase transition, phase transition can be first order and second order. BEC

is also a state of matter (Fig. 3.1). So transition from normal gas condensed gas is

associated with a change in order parameter.

As we have already established that, BEC state of matter is a macroscopic occupation

of ground state. A normal state of bosons in Fock space can be expressed as,

|N0, N1, ..., Nk, ...⟩ =
(b†0)

N0

√
N0!
|0⟩ ⊗ (b†1)

N1

√
N1!
|0⟩ ⊗ ...(b

†
k)
Nk

√
Nk!
|0⟩... = ⊗

∏
k

(b†k)
Nk

√
Nk!
|0⟩ (3.8)

If ground state occupation N0 is much greater than other states, N0 = N >>

N1, N2, .....Nk, we can consider effectively all the particles accumulated in ground state

for simplicity. Later we consider a more general state with particles in all state. In case

of all particle N is ground state and other states being empty, we can rewrite the effective

representation of BEC state in Fock space as,

|N, 0, 0, ...⟩ = (b†0)
N

√
N !
|0⟩ (3.9)

Before moving further we need to discuss in brief about field operator, Bosonic field

annihilation operator ψ̂b(r), which annihilates a boson at position r can be expressed

using bosonic annihilation operator (bi) as,

ψ̂b(r) =
∑
i

ψi(r)bi (3.10)

here, ψi(r) is single particle wavefunction for state i and can be as simple as
1√
κ
exp(ip⃗.x⃗) for free boson to more complicated case. This single particle wavefunction

follows orthogonality condition in both space and time domain as,

∫
ψi(r)ψ

∗
j (r)dr = δij (3.11)
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∑
i

ψi(r)ψi(r
′) = δ(r − r′) (3.12)

As a result, bosonic field operator follows bosonic commutation rule. This enables us

to write bosonic operator in momentum space in terms of bosonic field operator utilizing

Fourier transform as,

bi =

∫
drψI(r)ψ̂b (3.13)

Replacing bosonic creation operator with bosonic field creation operator (equation

3.13) in equation 3.9, we got the following form of BEC state in Fock space.

|N, 0, 0, ...⟩ = 1√
N !

[ ∫
drψ0(r)ψ̂

†
b

]N
|0⟩ (3.14)

From equation 3.14, the macroscopic wavefunction of ground state, ψBEC(r) is formed

by N bosons each with same wavefunction ψ0(r) and can be expressed as,

ψBEC(r) =
√
Nψ0(r) (3.15)

The expectation value of ψBEC(r) gives us N, total particle number of the system.This

is the idea of ‘order parameter’. In normal gaseous state above critical BEC temperature

TBEC , wavefunction with N different in different states would be much different than the

one in equation 3.15 and also gives a very different expectation value than N.

To remove the no-ideal case of all particles in ground state, we now consider a N

particle system with most of then in ground state but other states also have some bosons.

In that case, bosonic field operator can be expressed as,

ψ̂b(r) = ψ0(r)b0 +
∑
i ̸=0

ψi(r)bi (3.16)

For macroscopic occupation of ground stateN0 >> 1, using Bogoliubov approximation

[127] of replacing bosonic operator by complex numbers, b0 =
√
N0 with N0(= ⟨b†0b0⟩)

being the ground state occupation, equation 3.16 becomes,

ψ̂b(r) =
√
N0ψ0(r) + δψ̂(r) = ψBEC(r) + δψ̂(r) (3.17)
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Clearly, the ground state wavefunction expression is same as equation 3.15, for a

more ideal case, only now containing the actual ground state occupation instead of all

the particles of system. Expression 3.17 is particularly useful to describe the averaged

nonlinear dynamics of the condensate via the closed form equation for the classical field

ψBEC(r) and the small fluctuations around the average value. This classical field, ψBEC(r)

acts as order parameter for BEC and can be dissolved into real and imaginary part (due

to Bogoliubov approximation),

ψBEC(r) =
√
|n(r)|eiP (r) (3.18)

here, n(r) is the particle density and and P (r) is the phase term, characterize the

coherence.

3.2.2 Spontaneous Symmetry Breaking

Robert Browning once said,“On the earth the broken arcs; in the heaven, a perfect

round". A system or event cannot can only maintain its perfect symmetry in ideal

condition, it will eventually break for slight perturbation. It is hard to overestimate

the topic of broken symmetry on condensed matter physics, particle physics or QFT

(quantum field theory). Here, a introductory discussion of this beautiful topic is given.

Before delving into broken, a brief discussion of symmetry should be provided.

Intuitively, if an object possess some form of symmetry if it looks same from different

viewpoint. For example, a sphere looks same from any angle, and we can say that

it is rotationally symmetric. Within quantum mechanics the definition is symmetry is

somewhat same. A state |ψ⟩ is said to be symmetric under transformation U if it follows,

U |ψ⟩ = eiδ|ψ⟩ (3.19)

Appearance of phase term in equation 3.19 is due to QM axiom, ‘total phase of state

cannot be measured’. Like state laws of motion (hamiltonian or Lagrangian) can also be

symmetric for some operator U if if follows,

[U,H] = 0 (3.20)
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This sort of symmetry has profound importance on physical system. According

Noether’s theorem ‘Symmetries in natural laws implies some conserved quantities and

vice versa’. For example, translation invariance in laws of motion implies momentum

conservation. That’s why identifying proper symmetry in physical problem is important.

Despite most of the natural laws follow some form of symmetry, asymmetric state

is found. Eigenstate for a symmetric system is symmetric. If a system hamiltonian H

which is symmetric under operator U, has a state |ψ⟩ which is not invariant under the

same transformation operator U that it can be said state has broken the symmetry of

the system. Let us explain that case more. Consider the following Lagrangian which has

ϕ→ −ϕ symmetry,

L =
1

2
(dd(ϕ))

2 − V (ϕ) (3.21)

where the potential term U(ϕ) reads,

V (ϕ) =
a2

2
ϕ2 +

b

4!
ϕ4 (3.22)

Plot of U(ϕ) is shown in Fig. 3.2 for a2 > 0 and a2 < 0. For a2 > 0, a non-degenerate

minimum occurs at ϕ = 0. But for negative a2, we got a degenerate vacuum state at

ϕ = ±
√

6a2

b
. System will spontaneously choose one and the symmetry of ϕ → −ϕ for

vacuum state (or ground state) is broken.

Figure 3.2: Plot of U(ϕ) for (a) a2 > 0 with a minimum at ϕ = 0 and (b) a2 < 0 with

minimum at ϕ = ±
√

6a2

b
.
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For Lagrangian in equation 3.21 have a discrete global symmetry. For such a system

we got only two discrete degenerate ground state. But for continuous global symmetry we

can get an infinite number of degenerate vacuum state. For example, following Lagrangian

has global SO(2) symmetry,

L =
1

2

[
(dd(ϕ1))

2 + (dd(ϕ2))
2
]
+
a2

2
(ϕ2

1 + ϕ2
2)−

b

4!
(ϕ2

1 + ϕ2
2)

2 (3.23)

The broken ground state of such system follows,

ϕ2
1 + ϕ2

2 =
6a2

b
(3.24)

an infinite number of combination for ϕ1 and ϕ2 is possible for such ground state.

System will spontaneously choose one of these infinite possibility.

As we have seen in equation 3.18, order parameter for BEC system has a phase term.

However, one can always add additional phase eiQ to it without changing the physical

property of such system. This implies ‘Gauge Symmetry’ of the problem. A random phase

will be chosen for condensate due to lack of a phase fixing force . However, in the BEC

phase transition, a condensate system spontaneously chooses a particular phase, P (r).

A spontaneous selection for the phase P (r) is referred to as a spontaneous breaking of

gauge symmetry. According QFT, SSB (Spontaneous Symmetry Breaking) of condensate

state means it is close to or in a coherent state defined by linear superposition of particle

number eigenstate as [128],

|α⟩ =
∑
N

e−
N0
2 |N⟩√
N !

(3.25)

Considering time evolution of number eigenstate as e−i
ENt

ℏ |N⟩ gives us time evolution

of coherent state as e−iµt|α⟩ with ℏµ = E(N) − E(N − 1) chemical potential of the

condensate.

From Fig. 3.3 coherent state’s phase is localized to a specific value through the

destructive and constructive interferences between particle number eigenstates. Above

the TBEC , the ground state is occupied by the statistical mixture of other particle number

eigenstates but for T < TBEC ground state approaches a pure coherent state.
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Figure 3.3: Time evolution of particle number eigenstate |N⟩ and a coherent state |α⟩.
The phase of coherent state is localized by the destructive and constructive interference

among the existing particle number eigenstates in a phase space (P1, P2).

3.2.3 Goldstone Mode

SSB is inevitably accompanied by gap-less (meaning that these modes do not cost any

energy to excite) Nambu–Goldstone modes with slow long-wavelength fluctuations of the

order parameter. For example, vibrational modes in a crystal, known as phonons, are

associated with slow density fluctuations of the crystal’s atoms.The associated Goldstone

mode for magnets are oscillating waves of spin known as spin-waves.

To get a more quantitative idea about, lets focus on the system represented by

Lagrangian equation 3.23. Ground state can spontaneously take any one of the infinite

value from equation 3.24. Consider, ground state takes a particular point (ϕ1, ϕ2) =

(ϕ0
1, ϕ

0
2) = (

√
6a2

b
, 0). We can expand the potential function U(ϕ1, ϕ2) = −a2

2
(ϕ2

1 + ϕ2
2) +

b
4!
(ϕ2

1 + ϕ2
2)

2 around this (ϕ0
1, ϕ

0
2) point in ϕ1 − ϕ2 plane using Taylor expansion,
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U(ϕ1 − ϕ0
1, ϕ2 − ϕ0

2) = U(ϕ0
1, ϕ

0
2) +

(
dU

dϕ1

)
ϕ01

(ϕ1 − ϕ0
1) +

(
dU

dϕ2

)
ϕ02

(ϕ2 − ϕ0
2)

+
1

2

(
d2U

dϕ2
1

)
ϕ01

(ϕ1 − ϕ0
1)

2 +

(
d2U

dϕ2
2

)
ϕ02

(ϕ2 − ϕ0
2)

2 +
1

2

(
d2U

dϕ1dϕ2

)
ϕ01,ϕ

0
2

(ϕ1 − ϕ0
1)(ϕ2 − ϕ0

2)

(3.26)

Clearly due to minima
(

dU
dϕ1

)
ϕ01

=

(
dU
dϕ2

)
ϕ02

= 0, and from the definition of U(ϕ1, ϕ2)

we get
(
d2U
dϕ21

)
ϕ01

= 2a2 and
(
d2U
dϕ22

)
ϕ02

=

(
d2U

dϕ1dϕ2

)
ϕ01,ϕ

0
2

= 0. So finally equation 3.26

becomes

U(ϕ1 − ϕ0
1, ϕ2 − ϕ0

2) = a2(ϕ1 − ϕ0
1)

2 (3.27)

which gives us the Lagrangian of equation 3.23 in terms of (ϕ′
1, ϕ

′
2) = ϕ1−ϕ0

1, ϕ2−ϕ0
2,

L =
1

2

[
(dd(ϕ

′
1))

2 + (dd(ϕ
′
2))

2
]
− a2ϕ′2

1 (3.28)

From Lagrangian (equation 3.28), ϕ′
1 field particle has a mass is

√
2a but ϕ′

2 field

particle are mass-less (no quadratic term for ϕ′
2). We can understand presence of this

mass-less particles from Fig. 3.4.

Figure 3.4: a) Mexican hat look alike potential profile for SO(2) symmetry
corresponding to equation 3.23 (b) Prospect of particles with and without mass. For

detail discussion see text.

For particle to move along ϕ1 direction (along red curve) particle will need energy to
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climb up the wall. So particles gain mass. But to move along ϕ2 direction (along green

curve), particle just will roll around the gutter, no energy is needed, as a result no mass.

This mass-less particles are known ‘Nambu-Goldstone Boson’.

In the condensate, bosons have repulsive interaction among them. This interaction

causes long-wavelength fluctuations in the condensate. To see this, we can start with the

simplified Gross-Pitaevskii (detail in section 3.3) equation for the order parameter,

i
d

dt
ψBEC(r, t) =

[
− ℏ∇2

2m
+ g|ψBEC(r, t)|2

]
ψBEC(r, t) (3.29)

g characterizes the interaction and g > 0 indicates repulsive interaction. Eigenvalues

of condensate will be,

Eeig(K) = ±

√
ℏ2K2

2m

[
ℏ2K2

2m
+

ℏg|ψBEC(r)|2
2

]
(3.30)

For small K, the eigen-frequencies (ωeig(K) =
Eeig

ℏ ) of propagating excitonic wave,

ωeig = ±uK (3.31)

with u =
√

ℏg|ψBEC |2
2m

is effective sound velocity. This is exactly the mass-less boson that

we just discussed. Due to interaction long-wavelength fluctuation globally appears in SSB

process in particle and condensed matter systems, and nothing but ‘Nambu-Goldstone

modes’ (Fig. 3.5).

3.2.4 Off Diagonal Long Range Order (ODLRO)

Intuitively, ODLRO is defined as a measure of phase coherence between particles at long

distance. To understand this concept, we need to define reduced one body density matrix

which is defined by field operator,

ρ(r, r′) = ⟨ψ̂†
b(r)ψ̂b(r

′)⟩ (3.32)

Using equation 3.10, 3.11, 3.12 and setting
∑

i b
†
ibi = N , total no. of particle in the

system, one body reduced density matrix turns to,
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Figure 3.5: ωeig(K) vs K plot. Mass-less particle region is highlighted in blue close to
K = 0 line. As we move further away from K = 0 line relation 3.31 doesn’t hold and

particles achieve some and for higher K it particles behave like free particle.

ρ(r, r′) = N

∫
dr2dr3...drNψ

∗(r, r2, r3, ..., rN)ψ(r
′, r2, r3, ..., rN) (3.33)

Here integration is done along co-ordinates of N − 1 particles. This reduced density

matrix gives us the probability amplitude to annihilate a particle at r′ and create

simultaneously create one at r. If we take r = r′, then one body density matrix represents

local particle number density,

n(r) = ⟨ψ̂†
b(r)ψ̂b(r)⟩ (3.34)

For N dimensional system dot product between position and momentum eigenstate

(|p⟩, |r⟩) can be written as [129],

⟨p|r⟩ = 1√
(2πℏN)

e−i
p⃗.r⃗
ℏ (3.35)

From equation 3.35 using completeness relation
∫
dr|r⟩⟨r| = 1 and

∫
dp|p⟩⟨p| = 1 we

find the following relationship between ψ̂b(r) (in spatial domain) and ψ̂b(p) (in momentum

space),
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ψ̂b(r) =
1√

(2πℏ)N

∫
dpψ̂b(p)e

−i p⃗.r⃗ℏ (3.36)

ψ̂b(p) =
1√

(2πℏ)N

∫
drψ̂b(r)e

i p⃗.r⃗ℏ (3.37)

From equation 3.36 and 3.37, we can say that ψ̂b(r) and ψ̂b(p) are Fourier transform

of each other. So we can write momentum distribution of particle n(p) (Fourier transform

of n(r1)) from equation 3.34 as,

n(p) = ⟨ψ̂†
b(p)ψ̂b(p)⟩ (3.38)

So we can write using equation 3.32

ρ(r, r′) =
1

V

∫
dpn(p)ei

p⃗.(r⃗−r⃗′)
ℏ (3.39)

V is volume. Now lets consider a homogeneous system with N particles and V volume.

In thermodynamic limit N, V → ∞ but keeping n = N
V

= constant, ρ(r, r) depends soly

on the distance between r and r′, x = r⃗ − r⃗′, so equation 3.39 becomes,

ρ(x) =
1

V

∫
dpn(p)ei

p⃗.x⃗
ℏ (3.40)

For T > TBEC , n(p) is a smooth function of p which results in limx→∞ ρ(x) = 0,

one-body density matrix will decay to zero for a distance larger than de-broglie wavelength

(3.4). But if BEC occurs with macroscopic occupation of ground state, then n(p) is not

a smooth function of p but has a singularity at p = 0 which we can write,

n(p) = N0δ(p) +Np ̸=0 (3.41)

which gives us one body reduced density matrix for longer distance some finite value

other than zero,

lim
x→∞

ρ(x) =
N0

V
(3.42)

This asymptotic behavior of was discussed by Landau and Lifshitz [130], Penrose

[131] and Penrose and Onsager [132], and is often referred to ODLRO as it coherence is
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described for off-diagonal element of the density matrix.

Limiting case for one particle density matrix is shown in Fig. 3.6. For a normal state

with smooth momentum distribution of particle, reduced density matrix reduced to zero

for high x (for x > λT ). But in case of formation of coherent condensate, a finite value of
N0

V
sustain for a long value of x.

Figure 3.6: One particle density matrix vs relative distance.For normal state (T > TBEC)
ρ(x) vanishes for large x but sustain a fixed value for BEC state (T > TBEC).

One particle density matrix measurement does not provide any information regarding

quantum statistical properties of the condensate. In order to distinguish various possible

quantum states i.e. particle number eigenstate, coherent state or thermal state higher

order reduced density matrix measurement is required.

3.3 Interacting Bosons and Gross-Pitaevskii Equation

When we formulate the condition for BEC, no interaction among bosons is considered.

There is severe implication for that. We will discuss that in short here. Total energy of

an ideal non-interacting Bose gas is,

E =
∑
i

E(i)n[E(i), T, µ] =
2√
π
kBT

V

λ3T

∫ ∞

0

dxx3/2
1

Z−1ex − 1
(3.43)
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Here, Z is fugacity and for T < TBEC , Z = 1. Pressure of such ideal bose gas will be

below BEC critical temperature will be,

P =
2

3

E

V
=

4

3
kBT

V

λ3T

∫ ∞

0

dxx3/2
1

ex − 1
= 1.789kBT

V

λ3T
(3.44)

So pressure of gas does not depend on volume of gas, ideal bose gas has infinite

compressibility in BEC state. For not considering interaction among boson is the reason

of such abnormal answer. To remove such pathological feature, interaction among boson

needs to be considered. In this section we will discuss nature of interacting dilute bose

gas. Additional to this, we will discuss about Gross-Pitaevskii equation. Gross-Pitaevskii

equation describe the dynamics of ground state of a quantum system with identical bosons

taking Hartree-Fock approximation and pseudopotential interaction.

3.3.1 Interacting Dilute Bose Gas

We are familiar two particle interaction potential profile (Fig. 3.7) which indicates

interaction range r0. For a dilute gas inter-particle distance a is much higher than

interaction range a >> r0.

Figure 3.7: Two body scattering potential. For r > r0 interaction potential effectively
vanishes defining the range of interaction.

This condition effectively allows us to ignore three or more body interaction inside
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dilute bose gas. Two particle interaction hamiltonian can be expressed within second

quantization scheme,

H =
∑
i

p2i
2m

b†ibi +
1

2V

∑
pi,pj ,q

U(q)b†pi+qb
†
pj−qbpibpj (3.45)

where, m is the mass of boson, U(q) =
∫
drU(r)exp(−i q⃗.r⃗ℏ ). We can replace U(q) with

an effective potential U0 as we are interested only in macroscopic property. Under Born

approximation, we can write U0 as,

U0 =
4πℏ2

m
s0 (3.46)

s0 is scattering length. Using Bogoliubov approximation, we will separate operator

as b0 (ground state annihilation operator) and bi (operator for state other than ground

state) and hamiltonian in equation 3.45 can be decomposed as,

H =
U0

2V
b†0b

†
0b0b0 +

∑
i

p2i
2m

b†ibi +
U0

2V

∑
i ̸=0

(4b†0bib0bi + b†ib
†
−ib0b0 + b†0b

†
0b0b−i) (3.47)

During discussion of order parameter, we see that Bogoliubov approximation allow us

to replace b0 with a complex number. We will same thing here but with better accuracy

as,

b†0b0 +
∑
i ̸=0

a†iai = N (3.48)

which transforms the hamiltonian of equation 3.47 into,

H =
U0N

2

2V
+
∑
i

p2i
2m

b†ibi +
U0N

2V

∑
i ̸=0

(2b†ib0 + b†ib
†
−i + bib−i) (3.49)

Third term represents self energy of excited state, simultaneous creation and

annihilation of boson at i and −i state. Invoking Bogoliubov transformation,

bi = αiai + α−ia
†
−i (3.50)

b†i = αia
†
i + α−ia−i (3.51)
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These transformation is similar to the one we consider during dressed boson (equation

2.16 and 2.17). Here we consider boson to be a linear superposition of forward propagating

quasi-particle (ai) and backward propagating quasi-particle (a−i). We can uniquely

determine the coefficient αi, α−i as,

αi, α−i = ±
( p2i

2m
+ U0N

V

2E(pi)

) 1
2

(3.52)

where E(pi) follows,

E(pi) =

√
p2i
2m

(
p2i
2m

+
2U0N

V

)
(3.53)

which is the exact relationship that we have obtained for Goldstone boson in equation

3.30. Putting Bogoliubov transformation into hamiltonian (equation 3.49) gives us,

H = E0 +
∑
i ̸=0

E(pi)a
†
iai (3.54)

E0 =
U0N

2

2V
+

1

2

∑
i ̸=0

[
E(pi)−

U0N

V
− p2i

2m
+m

(
U0N

V pi

)2]
(3.55)

As we have seen for dressed boson, here transformation transform hamiltonian in

interaction picture (equation 3.45) into hamiltonian of non-interacting particles following

dispersion relation of E(pi) with ground state energy being E0.

As we consider dilute gas, other excited state has very small occupation as most of

particles are in ground state. So we can neglect energy associated with those particles

and take total energy of the interacting bose gas as,

E0 ≈
U0N

2

2V
(3.56)

So now the pressure of condensed becomes,

P = −dE0

dV
=
U0

2

(
N2

V

)2

(3.57)

Pressure is a function of volume, so no infinite compressibility here. Inclusion

of two body interaction removes the paradoxical conclusion of infinite compressibility.
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To understand the dynamics of BEC under interaction potential we need the help of

Gross-Pitaevskii Equation.

3.3.2 Gross-Pitaevskii Equation: Derivation

We will start by deriving time independent Gross-Pitaevskii (GP) equation first. We will

start with the same hamiltonian in equation 3.45 but without second quantization.

H =
∑
n

(
p2(n)

2m
+ Uext(r⃗n)

)
+

∑
n,m,n ̸=m

U(|r⃗n − r⃗m|) (3.58)

To avoid confusion in equation 3.45 pi is defined as momentum of ith state and here

in equation 3.58 p(n) is defined as momentum of nth particle. Due to the complexity

associated with many-bodied system, a mean-field approach is used, all bosons exist in

the same single-particle state κ(r). So many body wavefunction for N particle can be

written as,

ψ(r1, r2, ..., rN) =
N∏
n=1

κ(rn) (3.59)

Both many body and single particle wavefunction are normalized. With equation 3.60

we can determine energy for hamiltonian (equation 3.58),

E = N

∫
dr

[
ℏ2

2m
|∇κ(r)|2 + Vext|κ(r)|2 +

N − 1

2
U0|κ(r)|4

]
(3.60)

U0 is defined in equation 3.46. For macroscopically occupied ground state, we can

approximate condensate wavefunction as,

ψBEC(r) =
√
Nκ(r) (3.61)

So energy E of equation 3.60 can be written considering N − 1 ≈ N ,

E =

∫
dr

[
ℏ2

2m
|∇ψBEC(r)|2 + Vext|ψBEC(r)|2 +

U0

2
|ψBEC(r)|4

]
(3.62)

From thermodynamics we know that free energy F is defined as F = E − µN with

µ being chemical potential. To minimize F we need δE − µδN = 0, which ends up with

time independent GP equation,

52



− ℏ2

2m
∇2ψBEC(r) + Vext(r)ψBEC(r) + U0|ψBEC(r)|2ψBEC(r) = µψBEC(r) (3.63)

If we consider time evolution of condensate wavefunction as ψBEC(r, t) = ψBEC(r)e
−iµt

then we get time dependent GP equation from equation 3.63 as,

− ℏ2

2m
∇2ψBEC(r, t)+Vext(r)ψBEC(r, t)+U0|ψBEC(r, t)|2ψBEC(r, t) = i

d

dt
ψBEC(r, t) (3.64)

This is the same equation that we mentioned in equation 3.29 with Vext = 0. GP

equation is very useful for understanding dynamics of BEC state. Next we will discuss

about some analytical solution of GP equation.

3.3.3 Gross-Pitaevskii Equation: Analytical Solution

Equation 3.64 is in fact a nonlinear Schrodinger equation considering mean field approach.

Analytical solution for such types of equation is quite complicated due to presence of

non-linear term U0|ψBEC(r)|2. Here, we will present analytical solution of time-dependent

1D GP equation,

− ℏ2

2m

d2ψBEC(r, t)

dx2
+ Vext(x)ψBEC(x, t) + U0|ψBEC(x, t)|2ψBEC(x, t) = i

d

dt
ψBEC(x, t)

(3.65)

under weak and strong repulsive interaction potential for external potential,

Vext(x) =

0 if x ≤ L

0 if x > L

(3.66)

Replacing t, x, ψBEC(x) from 3.65 as follows,

t→ ℏtn
mL2

, x→ Lxn, ψBEC(x)→
√
L3ψBEC(xn)

and multiplying it by (mL2/ℏ)2

m
√
L

gives us dimensional GP equation ,
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[
− 1

2

d2

dx2n
+ Vext(xn) + Un|ψBEC(xn, tn)|2

]
ψBEC(xn, tn) = i

d

dt
ψBEC(xn, tn) (3.67)

where, Un = U0N
mL5 . This transformation also causes energy (equation 3.62) to be

dimensionless as E = E
E0

= E
ℏ2

mL2

. In new co-ordinate we can take ψBEC(xn, tn) =

e−iµtnψBEC(xn) with
∫
dxn|ψBEC(xn)|2 = 1 we got,

[
− 1

2

d2

dx2n
+ Vext(xn) + Un|ψBEC(xn, tn)|2

]
ψBEC(xn) = µψBEC(xn) (3.68)

We need to find the solution of equation 3.68 for external trapping potential.

Weak interaction potential (Un ≈ 0): In this case we can consider interaction

term equation (Un|ψBEC(xn, tn)|2) negligible compared to kinetic term (−1
2
∇2). We can

rewrite equation 3.68 for 0 ≤ xn ≤ 1 as,

−1

2

d2

dx2n
ψBEC(xn) = µψBEC(xn) (3.69)

Solution of this is straight forward. Considering ψBEC(xn = 0) = ψBEC(xn = 1) = 0,

ground state wavefunction ψBEC(xn) and energy EBEC is,

ψBEC(xn) = [
√
2sin(πxn)]

N (3.70)

EBEC =
Nπ2

2
(3.71)

Strong repulsive interaction potential (Un >> 1): We will another

approximation here, Thomas-Fermi (TF) approximation. This approximation ignores

kinetic term with respect to interaction term. Under such approximation, from equation

3.68 we can write,

Un|ψTFBEC(xn)|2ψTFBEC(xn) = µTFψTFBEC(xn) (3.72)

which gives us wavefunction as,

ψTFBEC(xn) =

√
µTF

Un
(3.73)

54



Clearly TF approximation does not suit zero boundary condition rather suggest the

appearance of boundary layer. Normalization of equation 3.73 gives us chemical potential

under Thomas-Fermi approximation,

µTF = Un (3.74)

Using equation 3.60, 3.73, 3.74 we find Thomas-Fermi energy as,

ETF
BEC =

Un
2

(3.75)

Using such approximation we can solve equation 3.68. As boundary layer now exist

at both xn = 0 and xn = 1, we will solve the problem at region 0 ≤ xn ≤ 1/2. We need

to further re-scale equation 3.68 by introducing xn → y√
µTF

with conditions,

ψBEC(0) = 0, ψBEC(∞) = 1

we find solution as,

ψBEC(xn) = tanh(
√
µTFxn) (3.76)

Similarly for region 1/2 ≤ xn ≤ 1

ψBEC(xn) = tanh(
√
µTF (1− xn)) (3.77)

So complete solution for strong interaction potential,

ψBEC(xn) = tanh(
√
µTF (1− xn)) + tanh(

√
µTF (1− xn)) (3.78)

with ground state energy,

EBEC =
µTF

2
+

4

3

√
[(µTF )2 + 1] + 2 (3.79)

Solution is shown in Fig. 3.8

For the most simplest 1D potential, finding analytical solution for GP equation is

quite cumbersome. With the introduction of defect, finding an exact solution will be

impossible. So we need to resort to numerical technique for solving GP equation for any
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Figure 3.8: Analytical solution for ground state wavefunction of BEC state in strong
with different µTF . Solution is shown for 1D infinite potential.

random potential. Detail of this numerical technique will be discussed in appendix and

in Chapter 5.

3.4 Superfluidity

In Fig. 3.9 variation of specific heat with temperature for helium liquid is shown. Around

2.2K, singularity in specific heat indicates a phase transition of helium liquid. This

transition is from normal helium liquid to superfluid helium. Due to similarity of the

graph with Greek letter λ, often this transition is regraded in literature as ‘Lambda

transition’ or ‘λ-transition’. This sort of transition was first discovered by M. Wolfke and

W.H. Keesom in 1927. Besides the capability of extreme heat transport superfluid shows

persistence flow through narrow tube without dissipation, fountain effect etc.

In this section we will discuss superfluid phenomenon from phenomenological

and field theoretic perspective with the concept of quantized vortices and

Berezinskii-Kosterlitz-Thouless (BKT) phase transition.
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Figure 3.9: Lambda transition in helium. Change of heat capacity in helium shows at
2.2K temperature specific heat shows singularity. This temperature, 2.2K indicates the

boundary between normal helium (He I) and superfluid helium (He II).

3.4.1 Phenomenological Explanation of Superfluidity

Lev Landau first tackle the problem of superfluidity from phenomenological point of view

[133]. This theory revolves around the idea of Galilean transformation. One phenomenon

of superfluid is persistence flow through capillary tube without any dissipation. Consider

two reference frame F and F ′ with relative velocity v⃗ (velocity at which fluid moves

through capillary tube). Reference frame F is at rest with respect to fluid and F’ is at

rest with respect to capillary tube. If E and K⃗ are energy and momentum in F frame, then

movement of viscous fluid through tube creates elementary particle with dispersion E(K)

to cause dissipation. Considering Galilean transformation energy (E ′) and momentum K⃗ ′

in frame F ′ can be written as,

K⃗ ′ = K⃗ +mv⃗ (3.80)

E ′ = E0 + E(K) + K⃗.v⃗ +
1

2
m|v⃗|2 (3.81)

E0 being the ground state energy. For such generation of elementary excitation to

be spontaneous, total energy associated with excitation E(P ) + K⃗.v⃗ should be negative
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which implies,

|v⃗| < E(P )

K⃗
and K⃗.v⃗ (3.82)

means velocity v⃗ should have a minimum value of E(K)

K⃗
and elementary excitation

should have the momentum K⃗ opposite to the fluid velocity v⃗. Elementary excitation will

disappear if velocity goes down than this minimum value. This is known as ‘Landau’s

critical velocity’, vc

vc = minK⃗
E(K)

|K⃗|
(3.83)

Minimum is calculated over all possible K⃗. Dispersion of elementary excitation can be

different for weak interaction and strong interaction among the excitation. This is shown

in Fig. 3.10.

Figure 3.10: (a) Dispersion for a weakly interacting particle excitation. In this case
critical velocity vc = sound velocity. (b) Dispersion for a weakly interacting particle

excitation.Here critical velocity is lower than sound velocity vs (from phonon dispersion
relation).

For weak interaction we get a situation similar to Goldstone boson (Fig. 3.5) with

linear dispersion relation close to K⃗ = 0. Here, sound velocity is defined and critical

velocity is equal to that. But for strong interaction, we got two types of excitation:
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phonon and roton. Although here sound velocity, vs is defined by phonon dispersion but

critical velocity is quite different than vs.

Now question can be risen regarding normal fluid to superfluid transition process.

For this to answer, we need to look at ‘Two Fluid Model’ proposed by Tisza [134] and

Landau [133]. According to this model, According to this model, system consists of two

fluids, superfluid and normal fluid. The superfluid fraction is formed by condensate, while

the normal component consists of the excitations like phonon and roton excitations. At

absolute zero temperature, only superfluid part of system sustains, a perfect condensate.

With rising temperature, more and more elementary excitations appear and form the

normal fluid. As temperature rises, normal fluid gradually becomes dominant until the

superfluid completely vanishes beyond critical temperature. According to this model,

total density of fluid, ρt is summation of normal fluid and superfluid fraction as,

ρt = ρsup + ρnorm (3.84)

where, ρsup and ρnorm are density of superfluid and normal fluid respectively. These

two types of fluid also has different velocities vsup for superfluid and vnorm for normal

liquid. As a result of this model, a new type sound velocity has appeared, known as

‘second sound’ which is due fluctuation of temperature and entropy rather than density,

as is the case for ‘first sound’.

3.4.2 QFT perspective

Phenomenological modeling gives us a clear overview of nature of superfluidity. We

will now try understand superfluidity using Quantum Field Theory (QFT). Some of the

important concepts of QFT to understand superfluidity has already been discussed in

section 3.2. We can start directly from GP equation but instead of finding BEC state we

can find the evolution of ground state (BEC always form in ground state of Bose-Einstein

distribution), ψG(r, t).

− ℏ2

2m
∇2ψG(r, t) + Vext(r)ψG(r, t) + U0|ψG(r, t)|2ψG(r, t) = i

d

dt
ψG(x, t) (3.85)

59



As we have seen in section 3.4.2 superfluid is actually a component in ‘Two Fluid

Model’. In this model, superfluid is stable ground state and normal is fluctuations induced

by elementary excitation. So we can consider ground state below critical temperature as,

ψG(r, t) = ψsup(r, t) + δψnorm(r, t) ≈ ψsup(r, t) (3.86)

Same case like equation 3.41 but below critical temperature superfluid fraction is

dominant part, δψnorm(r, t) = 0. So under Bogoliubov approximation, we can write down

ψsup(r, t) as,

ψsup(r, t) =
√
nsup(r, t)exp(iθsup(r, t)) (3.87)

Equation 3.87 is same as 3.61 with κ(r, t) = exp(iθ(r, t)) and as usual nsup(r, t) =

|ψsup(r, t)|2 is particle density. ψsup(r, t) is order parameter for normal fluid to superfluid

transition. From equation 3.87 and continuity equation we can determine superfluid

velocity. From elementary quantum mechanics [135], we can write for particle number

dynamics and particle current density J(r, t),

dnsup(r, t)

dt
+ ∇⃗. ⃗J(r, t) = 0 (3.88)

where particle current density is defined as,

J(r, t) =
iℏ
2m

[ψ∗
sup(r, t)∇⃗ψsup(r, t)− ψsup(r, t)∇⃗ψ∗

sup(r, t)] (3.89)

Using ψsup(r, t) from equation 3.87 in the definition of particle current density J(r, t)

J(r, t) = nsup(r, t)
ℏ
m
∇⃗θsup(r, t) (3.90)

So superfluid velocity vsup can be written as,

⃗vsup =
ℏ
m
∇⃗θsup(r, t) (3.91)

From normal to superfluid transition, ODLRO forces a coherence (same phase) over

large distance. What exact value of such phase will be chosen will be determined by SSB

(exactly what point in the degenerate ground state (fig. 3.4) be chosen). This phase then

determine superfluid velocity.
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3.4.3 Quantized Vortices

Figure 3.11: Essential co-ordinate system for solving rotational quantization in
superfluid.

Consider the cylinder in Fig. 3.11 is filled with normal fluid. For a rotational velocity

σ, fluid will have a linear velocity along tangent of rotation vnorm = σ⃗ × r⃗, r⃗ being radial

component of cylindrical co-ordinate system or position vector of the point of interest

(point where we want to determine linear velocity vnorm).

Now what will happen if we replace normal fluid with superfluid? If we take curl of

equation 3.91 using first null identity of vector calculus,

∇⃗ × ⃗vsup =
ℏ
m
∇⃗ × ∇⃗θsup(r, t) = 0 (3.92)

So superfluid cannot rotate. How does superfluid act under external rotational force?

In that case, we need to look closer to at order parameter, ψsup(r, ϕ) =
√
n(r, ϕ)eiθ(r,ϕ) for

cylindrical co-ordinate. Due to symmetry for such condition,
√
n(r, ϕ) will only depend

on r and θ(r, ϕ) will be a function of ϕ (angular component of cylindrical co-ordinate). If

we take θ(ϕ) = lsϕ then superfluid velocity is found,

vsup =
ℏ
m

ls
r

(3.93)
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where ls = ±1, ± 2, ± 2, .... = ±ms.Circulation of vsup around closed surface

centered around z-axis is found as,

∮
vsuprdϕ = 2πls

ℏ
m

(3.94)

which is integral of ℏ
m

. This is called ‘Onsager-Feynman quantization condition’. So

rotation over the whole closed path will be divided into several closed path as shown in

Fig. 3.12 (b). These are known as ‘Quantized Vortices’

Figure 3.12: Difference between rotational mechanics between normal fluid (a) and
superfluid (b). Normal fluid rotates with well defined tangential velocity but in case of

superfluid rotation is quantized.

Close loop integral can result in either 2πms
ℏ
m

or −2πms
ℏ
m

based on the charge of

quantized vortex. For charge +1, we consider it as simply ‘vortex’ and for charge −1

‘anti-vortex’. This sort of pair vortex will be important in the discussion of BKT phase

transition.

Typically size of a single vortex is [136],

dv =

√
ℏ2V

2mU0N
(3.95)

and energy of such vortex,

ev =
πN

V

ℏ2

m
ln

(
rv
dv

)
(3.96)

Energy of vortex is function of position vector, rv, measured from the center of the
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vortex. At the center of vortex, we get ev =∞. Due to this infinite energy, no condensate

particle can stay at the center of vortex.

We will numerically evaluate presence of vortex by solving GP equation under a

rotational force being applied. GP equation which has been solved numerically for the

purpose of this section is,

[
− ℏ2

2m

d2

dx2
+− ℏ2

2m

d2

dy2
+ c1(|x|2 + |y|2) + c2(|x|2 + |y|2)2 + U0|ψG(x, y, t)|2

+ σLz

]
ψG(x, y, t) = i

d

dt
ψG(x, t) (3.97)

Figure 3.13: |ψG(x, y)|2 after steady state in numerical solution has been achieved. The
vortices are clear from condensate density plot.

Here, we consider an additional term σLz to introduce rotational energy in non-linear

SC (Schrodinger) equation or GP equation. We are prompt to use quadratic and quartic

potential to confine the ground state inside the narrow loop as shown in Fig. 3.13.

Clearly we can see the quantized vortices throughout the condensate. Existence

of vortex is extremely important for understanding of condensate dynamics under the

presence of defect potential. We will come to the implication of vortex presence in detail
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in Chapter 5.

3.4.4 Berezinskii-Kosterlitz-Thouless (BKT) Transition

According to Mermin-Wagner Theorem [137], long range order, in a strict sense, cannot

be formed in 1D or 2D dimension. Using xy model we can easily prove one body density

matrix ρ(r, r′) for different dimension becomes (taking nearest neighbour spin interaction

potential J = 1),

ρ(r, r′) ≈



e−(const)T if d > 2(
|r′−r|
alattice

)
if d = 2

exp

(
− Tr

2alattice

)
if x > L

(3.98)

Here, T is temperature. Any 2D system, like xy model with a continuous symmetry

will have a massless field by the Goldstone theorem (Goldstone boson section 3.2.3).

The fluctuations created by these Goldstone modes destroy this long range order. Now

questions arises “How does condensation occur for 2D or 1D system?"

A 2D system can achieve quasi-condensation and superfluidity below a critical

temperature, TBKT . For T > TBKT , thermal energy is enough to excite vortex (with

energy ev) and sustain it for long time. But as temperature is decreasing, T < TBKT ,

single vortex and anti-vortex is not stable anymore due to lack of thermal energy. They

start to pair up, as shown in Fig. 3.14.

Due to removal of such topological defect, a topological order has been established

and long range fluctuation of phase θ(r) has been removed. This sort of transition is

more prominent in quasi-particle Boson like exciton-polariton as they are inherently a 2D

particle (cavity photon is restricted in one direction) [138].

3.5 Dynamic Condensation of Exciton-Polariton

In this section we will present dynamic condensation of exciton-polariton quasi-particle

for zero potential. As we have already discussed, time independent GP equation provides

the time dynamic solution for ground state condensate wavefunction for both condensate
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Figure 3.14: Different state of condensation for 2D weakly interacting Bose gas.

density and condensate phase. As we have discussed already, BKT transition below TBKT

forms a quasi condensate for 2D system like exciton polariton. In Fig. 3.15 we show

numerical result for ground state condensate phase term θ(x, y). for three different time.

Figure 3.15: Phase of ground state condensate for time (a) 0.66 ps (b) 9.9 ps (d) 33.2 ps.

Initially system has no phase coherence (3.15 (a)). But as time passes SSB breaks

some local symmetry and forces creation of topological defect like vortex (or anti-vortex).

As time passes, these vortex (and anti-vortex) moves and pair up with anti-vortex

(vortex) and annihilate each other. As a result with time, phase fluctuation eventually

goes away and long range topological order is starting to appear. For example in Fig.

3.15 we see a phase coherence of over a distance 20 (unit-less).
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Chapter 4

Thermalization of Condensate

One of characteristics of a mature theory is that to understand it one does not need to

know its history. One may start leaning about classical mechanics without the need for

knowing Parisian scholastic. But in case of ‘Statistical Mechanics’, a study to explain

thermal behavior in macroscopic level lacks a common set of assumptions is not found

due to its development from several school with each having different goal in mind. From

early work of Maxwell, Boltzmann, Gibbs [139] to extended work by Von Neumann,

Schrodinger [140] statistical physics gets a solid footing to give us more or less a clear

idea of thermalization of generic system. One of the foundational problems of statistical

physics is probabilistic assumption which makes detail understanding of statistical physics

very difficult. We will not even try that here. Some basic concept regarding classical

and quantum thermalization and localization especially many body localization will be

discussed here. Many body localization (MBL) can significantly influence thermalization

process. At the end of this chapter we will discuss in short about Bose-Hubbard model

and thermalization process for such model.

4.1 Fundamentals on Classical Thermalization

There is no universal definition of chaos. Mathematician Edward Norton Lorenz after

after discovering ‘Butterfly effect’ commented“When a butterfly flutters its wings in one

part of the world, it can eventually cause a hurricane in another." This can be taken as

an overall definition of chaos. In this sense, chaos is defined as exponential divergence in

phase-space trajectory due to slight perturbation in initial condition. Consider two initial
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condition for a hamiltonian H are X1(0) and X2(0). After time t, their values becomes.

Due to presence of chaos,

|X1(t)−X2(t)| = eλt|X1(0)−X2(0)| (4.1)

λ is Lyapunov’s exponent. Despite H being deterministic in nature, presence of chaos

(λ ̸= 0) can give very different result for slight change in initial condition. Such a system

is known as ‘Chaotic System’ or ‘Non-integrable System’. An integrable system, H(p, r)

with p = (p1, p2, ..., pN) = momentum and q = (r1, r2, ..., rN) = position has N different

no. of conserved quantities C = (C1, C2, ..., CN), Number of conserved quantities is equal

to degrees of freedom. So, a chaotic system can be defined alternatively as the system

which have lower number of independent conserved quantities than degrees of freedom.

Besides being sensitive to initial condition, a chaotic system possess important properties

like ergodicity and mixing property. A brief discussion of these two properties along with

KAM theorem is provided.

We will start the discussion with ergodicity. Consider hamiltonian of N identical

classical particles of mass m with potential V (r1, ..., rN) as,

H(p, r) =
1

2m

∑
i

p2i + V (r1, ..., rN) (4.2)

(p, r) ,a point in phase-space, evolve in time following a trajectory constrained by

energy hyper-surface, H(p, r) = E. One of many possible such trajectories is shown in

Fig. 4.1.

Probability to find trajectory point at current time t, (p(t), r(t)) in a region of

phase-space with dv = (dp1, dp2, ..., dpN , dr1, dr2, ..., drN) volume considering that general

trajectory has visited every corner of phase-space is,

P (p, r)dv =
1∫

δH(p, r)
δ(H(p, r)− E)dv (4.3)

This sort of stationary probability distribution, micro-canonical distribution,

ρmc(p, r) =
1∫

δH(p,r)
δ(H(p, r)−E) was first approximated by Boltzmann and implies that

probability of finding a state in a region of phase-space depends on volume of region.

This constant probability gives us the idea of thermal equilibrium value of the system; it

is phase-space average of the value interest as trajectory remains a equal time at equal
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Figure 4.1: Phase space with one possible trajectory within energy hyper-surface H = E.

volume.

We can determine conditional probability of finding a particle within momentum

[p1, p1 + dp1] with position given as (dr1, dr2, ..., drN) as follows,

P (p1|r1, r2, ..., rN)dp =
∫
Pmc(p, r)dp2dp3...dpN∫
Pmc(p, r)dp1dp2...dpN

dp1 (4.4)

where, marginal probability of finding a particle with momentum p1 is,

P (p1, r1, r2, ..., rN) =

∫
Pmc(p, r)dp2dp3...dpN

=

√
π3N

T (3N
2
)
∫
δH(p, r)

√(
E − V − p21

2m

)3N−3

(4.5)

Using such expression of marginal probability and joint probability distribution, we

can find a closed form expression of conditional probability for equation 4.4 as

P (p1|r1, r2, ..., rN) =
1√
2mπ

T (3N
2
)

T (3N−1
2

)

√
(E − V − p21

2m
)
3N−2

2√
(E − V )

3N−3
2

(4.6)
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For large N (N → ∞) and for constant kinetic energy for each degree of freedom

(1
2
kBT ), expression for conditional probability becomes,

P (p1|r1, r2, ..., rN) =
1√

2πmkBT
exp

[
− p21

2mkBT

]
(4.7)

which is same as Maxwell distribution. Ergodicity gives us equilibrium momentum

distribution for large number of particle system.

Mixing hypothesis is also essential to understand classical thermalization. Statistically

speaking a system contain mixing property if statistical dependence of some property

X(t1) and X(t2) of the system decreases as |t1− t2| increases. More precisely a dynamical

system F is mixing if property of the system X in two different sub-spaces of phase-space

A and B follows,

X(A ∩ T−tB) = X(B ∩ T−tA) (4.8)

Intuitively, mixing property means that the dynamical evolution will evolve the phase

points in such a way that points initially contained in subspace A eventually become

homogeneously distributed over all measurable subspace B.

Using mixing property, we can divide the whole phase-space into several different

block, ci and replace original probability distribution ρ(p, r) by average over such blocks

as,

P (p, r)←→
∑
i

∫
ci
drdpP (p, r)∫
ci
drdp

Uci(p, r) (4.9)

where,

Uci(p, r) =

1 if (p, r) ∈ ci

0 otherwise
(4.10)

Dynamic evolution of such coarse grained probability distribution will eventually resort

to micro-canonical distribution.
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4.1.1 Kolmogorov-Arnold-Moser (KAM) Theorem

Clearly introduction of chaos causes appearance of chaotic trajectory (or ergodic

trajectory). But an integrable system doesn’t possess such trajectory, with periodic

trajectory preventing it from being thermalized. A general classical dynamical system can

be said to be a composition of non-integrable (chaotic) and integrable regions with limit

relying on some parameters such as energy or the interaction strength. KAM theorem

tells us under what condition a system can be considered as ‘Chaotic’ or ‘Integrable’ or

an integrable system can achieve chaotic nature. KAM theorem tells us,

If the bounded motion of an integrable Hamiltonian H0, described along a set of N

invariant tori with frequencies ωi, is disturbed by a small perturbation, ∆H, that makes

the total Hamiltonian, H = H0 +∆H non integrable and if two conditions are satisfied:

• the perturbation ∆H is small.

• the frequencies ωi of H0 are incommensurate,

then the motion remains confined to an invariant N-torus, except for a negligible set of

initial conditions that results in a meandering trajectory on the energy surface.

For a sufficiently small perturbation, some periodic trajectory lost its periodic

nature and turn quasi periodic. The case of “except for a negligible set of initial

conditions" suggests in-applicability of KAM theorem for a set of particular initial

conditions. Moreover the applicability of the KAM theorem is only for an sufficiently

small perturbation and chaotic behavior appears typically when unperturbed hamiltonian

and perturbation are on the same order.

4.2 Quantum Thermalization

Consider a system with hamiltonian H has eigenstate |ψ⟩ which describe the behavior of

the system in Hilbert space completely. But in quantum statistical, |ψ⟩ is not enough, we

need density operator ρ(t) which evolve as,

iℏ
dρ(t)

dt
= [H, ρ(t)] (4.11)
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Clearly system is well defined, no chaos is here. According to discussion of section 4.1

we cannot expect such a quantum system to be thermalized as it holds information of

initial state of system throughout the whole evolution. How can one expect thermalization

in quantum system? We will discuss some topic of quantum thermalization in this section.

4.2.1 Quantum Chaos

We cannot precisely define a phase-space for quantum system like we did for classical

system as according to uncertainty principle, simultaneous determination of momentum

and space is not possible. That’s why quantum chaos has some difference from its

classical counterpart, focus is mainly given on statistical study of eigenfuction and

energy rather than time evolution. Quantum chaos appears due to presence of large

number frequencies and random phase in a wave packet [141] presenting chaos as chaotic

eigenstates. As we have seen from ergodicity property, for a non-chaotic system, motion

is confined to invariant tori in phase-space but for chaotic system the whole phase-space

is filled in a uniform way. Now how can we say that a quantum is whether chaotic or not?

According to Berry-Tabor conjecture [142], a quantum system, in classical limit which

is integrable, has energy eigenvalues generically behave like a sequence of independent

random variables, follows a Poisson distribution. On the other hand, a quantum system

with a non-integrable classical counterpart, energy eigenvalues follows a Wigner-Dyson

distribution [143].

But there are some exceptions to such simple conjecture. For example, eigenfunction in

chaotic billiard shows complicated spatial profile [144]. This prompts a new conjecture,

eigenfunction of chaotic system is a sum of plane waves with random amplitude and

phase [145]. We will discuss structure of such chaotic eigenstate in RMT (Random Matrix

Theory) discussion in 4.2.2. This concept of defining quantum chaos in terms of eigenstate

structure rather than level statistics was first discussed in [146] as vanishing correlation

between eigenstates in appropriate basis.

4.2.2 Berry’s Conjecture

As we have already discussed regarding the structure of chaotic wavefunction that it is

random superposition of plane waves. We can write a chaotic eigenfunction ψ(r) of N
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particle state in a 3-dimensional system with r position coordinate and p momentum

coordinate as,

ψ(r) = N

∫
dp1dp2...dpNA(p)δ(E −

p2

2m
)e

ip⃗.r⃗
ℏ (4.12)

N is normalization constant, A(p) is Gaussian random variable with A∗(p) = A(−p)

and E is eigen energy corresponding to state ψ(r). Two point correlation function of such

function at distance s is defined as,

⟨ψ∗
(
r +

∆r

2

)
ψ

(
r − ∆r

2

)
⟩ = 1

V

∫
dp1dp2...dpNδ(E − 2mp2)exp

(
− ip⃗.∆⃗r

ℏ

)
(4.13)

here, V = 1
N2 =

∫ ∫
dr1...drNdp1...dpNδ(E − 2mp2). Wigner function for such

eigenfunction ψ(r) is,

W (r, p) =
1

(2πℏ)3N

∫
d(∆r)1d(∆r)2...d(∆r)Nψ

∗
(
r +

∆r

2

)
ψ

(
r − ∆r

2

)
exp

(
ip⃗.∆⃗r

ℏ

)
(4.14)

Fourier transform of ψ(r)⇐⇒ ψF (p), gives us the expression of Wigner function as,

W (r, p) =
1

(2πℏ)3N

∫
d(∆p)1d(∆p)2...d(∆p)Nψ

∗
F

(
p+

∆p

2

)
ψF

(
p− ∆p

2

)
exp

(
ir⃗.∆⃗p

ℏ

)
(4.15)

So Wigner function acts as quasi-probability distribution in phase-space. We can take

average of such distribution as,

¯W (r, p) =

∫
∆V1

dr1dp1
2πℏ

∫
∆V2

dr2dp2
2πℏ

....

∫
∆VN

drNdpN
2πℏ

W (r, p) (4.16)

with V = ∪∆V1 ∪∆V2....∪∆VN with ∆Vi is centered around (ri, pi) and ∆Vi → 0. In

thermodynamic limit, average of quasi probability distribution (Wigner function) is,

¯W (r, p) =
δ(E − 2mp2)∫ ∫

dr1...drNdp1...dpNδ(E − 2mp2)
(4.17)

which is nothing but ‘Micro-canonical Distribution’. So a quantum system with chaotic

classical limit , the Wigner function of energy eigenstates reduces to the micro-canonical
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distribution. This understanding will help us to further move down the road to realization

of RMT (Random Matrix Theory) and ETH (Eigenstate Thermalization Hypothesis).

4.2.3 Random Matrix Theory

Consider a hamiltonian H as,

H = H0 + V (4.18)

where, system H0 in integrable and has component (H0)i,j = δi,jC and V is

perturbation to system H0 with component Vi,j = V ∗
j,i drawn from a Gaussian distribution

with mean 0 and variance σ2. So hamiltonian H becomes a random matrix. For simple

analytical calculation lets consider a 2× 2 hamiltonian as,

H =

C V

V ∗ C

 (4.19)

Eigen-energies of such hamiltonian is,

E1,2 = C ±
√
|V |2 (4.20)

Considering V = V ∗ (for only real value of V ), energy level statistics P (∆E = E2−E1)

gives us,

P (∆E) =
∆E

σ2
exp

(
− (∆E)2

2σ2

)
(4.21)

Considering complex value of V (no time reversal symmetry), energy level statistics

P (∆E = E2 − E1) gives us,

P (∆E) =
(∆E)2√
πσ3

exp

(
− (∆E)2

2σ2

)
(4.22)

It is as we have discussed earlier, chaotic eigenstate level statistics follow Wigner-Dyson

statistics. Exact level spacing distributions do not have a closed analytic form. However,

they are qualitatively (and quantitatively) close to the Wigner distribution.

If perturbation V is sufficiently strong, the eigenstates of the total H can be considered

74



as chaotic super-positions of many-body eigenstate of H0. If eigenstate for system H is

|ψHi ⟩ with eigen-energy EH
i and eigenstate for system H0 is |ψH0

j ⟩ with eigen-energy EH0
i ,

|ψHi ⟩ =
∑
i

aji |ψ
H0
j ⟩ (4.23)

where co-efficient aHi follows,

⟨ajia
j′

i′ ⟩ = δi,i′δj,j′P (i, j) (4.24)

where, P (i, j) is chaotic wavefunction probability distribution, a function of EH0
i −E

H0
i .

Probability distribution of eigenfunction is found by Deutsch as,

P (i, j) =
δE∆E
π

(EH
i − E

H0
j )2 + (δE)2

(4.25)

where, δE is energy width of the system. Such Lorentzian probability distribution will

later help us approximate thermal equilibrium value to micro-canonical average. We will

discuss in 4.2.4 about the matrix elements of the operator under RMT.

In the above discussion, Mean field H0 acts as a “natural” basis, where the most regular

part of the dynamics is absorbed, thus defining the single particle states. In contrast, the

residual component V may include interaction among particles and fluctuations. As a

result, the whole system H acquires both collective motion on the background of the

mean field, and chaotic dynamical features.

4.2.4 Matrix Structure of Operator under RMT

As we have seen, presence of interaction (or perturbation) causes even quantum system

become chaotic. Interaction becomes effectively stronger with the growth of the excitation

energy. Therefore, in an isolated system, thermalization can emerge for sufficiently high

energy when the interaction effectively mixes the simple states (equation 4.23). It is

to be noted that the randomness in V does not ensure chaotic nature of eigenfunction.

Generic interactions without randomness can produce chaotic features in a region of a

sufficiently high level density.

Consider a hermitian operator O defined in H basis as,
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O =
∑
j

Ojj|ψHj ⟩⟨ψHj | (4.26)

where,

O|ψHj ⟩ = Ojj|ψHj ⟩ (4.27)

Now for eigenfunction |ψHm⟩ and |ψHn ⟩ matrix element of operator O is,

⟨ψHm |O|ψHn ⟩ = Omn =
∑
j

Oj⟨ψHm |ψHj ⟩⟨ψHj |ψHn ⟩ (4.28)

Eigenfunction of a random matrix is itself a random unit vector and follow

orthogonality property. Considering such orthogonality ψHi we can write from equation

4.28

Omn =
1

D

∑
j

δmjδjnOjj (4.29)

D is dimension of Hilbert space. So we have very different value for diagonal and

off-diagonal component. Diagonal component of operator O is,

Omm =
1

D

∑
j

Ojj = Ō (4.30)

and off-diagonal elements are,

Omn = 0 for m ̸= n (4.31)

Similarly we can determine fluctuation between diagonal and off-diagonal element

(variance in matrix Omn) as,

¯|Omn|2 − ¯|Omm|2 =
1

D
Ō2 (4.32)

4.2.5 Eigenstate Thermalization Hypothesis

Consider same hamiltonianH of equation 4.18. System is prepared at |ψH(0)⟩ and allowed

to evolve in time. At time t system wave function is |ψH(t)⟩. We have already defined
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eigenfunction of hamiltonian H, so we can express initial wavefunction as,

|ψH(0)⟩ =
∑
i

cHi |ψHi ⟩ (4.33)

So evolved wavefunction can be written as,

|ψH(t)⟩ =
∑
m

e−iE
H
mtcHm|ψHm⟩ (4.34)

Using expression 3.34, we can determine time-dependent expectation value of operator

O (definition of such operator is given in equation 4.26) as,

⟨O(t)⟩ = ⟨ψH(t)|O|ψH(t)⟩ =
∑
m,n

(cHm)
∗cHn e

i(EH
m−EH

n )tOmn (4.35)

with Omn defined as,

Omn = ⟨ψHm |O|ψHn ⟩ (4.36)

Taking long time average of equation 4.35,

¯⟨O(t)⟩ = lim
t→∞

1

t

∫ t

0

dt
[
⟨ψH(t)|O|ψH(t)⟩

]
=

∑
m,n

(cHm)
∗cHn e

i(EH
m−EH

n )tOmn (4.37)

For exponential part of the function we can write,

∫ ∞

0

dtei(E
H
m−EH

n )t = δ(EH
m − EH

n ) = δmn (4.38)

which turn equation 4.37 as,

¯⟨O(t)⟩ =
∑
m

|cHm|2Omm (4.39)

As other term limt→∞

∫∞
0

∑
m,n,m ̸=n(c

H
m)∗cHn e

i(EH
m−EH

n )tOmn

t
goes to zero due to very small

value of Omn,m ̸=n (equation 4.31).

There are two conditions for thermalization of operator O. These are

• after some relaxation time, the average expectation value of this observable agrees
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with the micro-canonical expectation value.

• temporal fluctuations of the expectation value about the micro-canonical prediction

are small at most later times.

Close observation of equation 4.30 and 4.31 and considering small energy fluctuation

in diagonal ensemble lets us assume that that diagonal element of observable Omm does

not depend on m so

∑
m

|cHm|2Omm = Ō
∑
m

|cHm|2 = Tr(ρMCO) = OMC (4.40)

where, ρMC is micro-canonical ensemble density matrix. So first condition of

thermalization is satisfied.

We can determine temporal fluctuation of time averaged observable in long time limit

as,

(δŌ)2 = lim
t→∞

1

t

∫ t

0

dt[(O(t))2 −O2
MC ] =

∑
m,n,m ̸=n

|cHm|2|cHn |2|Omn|2 (4.41)

Temporal fluctuation of observable expectation is significantly small. So condition

two of thermalization is satisfied. Equation 4.41 and 4.40 tells us that at any time t,

expectation value of an observable O is the equal to its micro-canonical ensemble average

value, implying ergodicity in quantum system.

Based on the above discussion ETH ansatz for matrix element of observable O can be

written as [147],

Omn = O(Ē)δmn + e−
S(Ē)

2 f0(Ē,∆E)Rmn (4.42)

where, Ē = EH
m+EH

n

2
, S(E) is thermodynamic entropy, andRmn is a matrix with random

element drawn from a normal distribution with zero mean and unit variance.

4.2.6 Other Approach to Thermalization

There are some other approach to thermalization. We will not discuss them in detail

rather give an overview of those ideas. ‘Typicality’ takes the approach of majority state,

observable behavior. Any chosen random state is likely in connection with canonical
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ensemble. A detail overview of typicality can be found in [148]. ‘Equilibration’ takes

the idea of thermalization condition for non-thermal atypical initial state. If inverse

participation ratio of initial state (a measure of the number of eigenstates that contribute

a non-trivial weight to the initial state) is small for such initial state then equilibration

can be realised. A more detail discussion for equilibration condition is discussed in [149].

4.3 Localization

Theoretical analysis requires ‘simple’ systems to analyze efficiently rather than a ‘complex’

system. Simpler the law governing the system, it is easier to understand. Our notion

of worldview is simple: Nature follows some fundamental laws and these laws can be

expressed by some partial or ordinary differential equation. Everything is simple and neat

except, of course, nature itself. Despite the complexity of nature, standard reductionism

[150] split such complex system into small, simple constituent parts which can be described

by ‘simple’ laws. In his paper [150], P.W.Anderson write the success of reduction

hypothesis as “The reductionist hypothesis may still be a topic for controversy

among philosophers, but among the great majority of active scientists I think

it is accepted without question. The workings of our minds and bodies, and of

all the animate or inanimate matter of which we have any detailed knowledge,

are assumed to be controlled by the same set of fundamental laws, which except

under certain extreme conditions we feel we know pretty well."

Despite the success of reductionism, one question remains, ‘can one always reconstruct the

properties of composed systems from the workings of their parts?’ The ability to reduce

everything to simple fundamental laws does not necessarily mean the ability to start

from those laws and reconstruct the universe. In fact, the more the elementary particle

physicists tell us about the nature of the fundamental laws, the less relevance they seem

to have to the very real problems of the rest of science, much less to those of society.

The behavior of large and complex composition of simple systems cannot be understood

by simple extrapolation of the constituent system’s properties. Instead, at each level of

complexity, entirely new properties appear, and the understanding of the new behaviors

requires research.

A system with defect is one such complex system. Without defect, analysis of system
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can be done utilizing ‘reductionism’ ideas. But presence of defect makes system complex

to be explained beyond such ‘simplistic’ ideas. Until now, discussion of thermalization

considers only pure system without any form of disorder. But as we intend to analyze

influence of defect in this thesis, it is essential for some discussion on the influence of defect

on thermalization process. That can be translated to understanding a ‘complex system’.

Disorder in a system can induce localization which can effectively hamper thermalization

process. Localization is a fascinating phenomenon that can give rise to some remarkable

result. In this section we will discuss about theoretical framework of such localization

process.

4.3.1 Anderson Localization (AL) : Transfer Matrix

A periodic crystal with periodic potential has Bloch eigenstate, a propagating state.

But when such a periodicity is broken by randomness in a non-interacting system,

quantum back-scattering of single-particle eigenstates can eventually localize particles

in a finite region of space, leading to the absence of diffusion. This is the summary of

Anderson localization. Experiments at Bell Labs [151] found that the relaxation times

of electron spins in phosphorous-doped Si semiconductors was abnormally large. The

theoretical framework at the time was based on band theory, Bloch states and Drude’s

theory of conductivity, predicting thus a diffusive motion of electrons. It was considered

electrons in metal to be acting as quantum random walkers, losing memory after each

collision with an impurity center. Larger the concentration of impurities, larger the

number of collision, larger the resistance. Anderson’s analysis suggested that beyond a

critical disorder strength resistance will just get abnormally high (mean free path being

lower than Fermi wavelength, conductance = 0) which prevents the diffusive motion of

electrons. Eigenstates are localized by the valleys of the disordered potential.

First we will try to develop some intuition on such localization in disordered systems

using solvable models. It turns out that in a one-dimensional system with the barriers at

random positions provides such a solvable model. Such disordered potential is shown in

Fig. 4.2.

For a perfect periodic crystal distance between two adjacent barrier is fixed, ∆x. But

for for disordered potential, such distance is not fixed rather a random variable. We can
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Figure 4.2: (a) 1D periodic potential with period ∆x and random potential with ∆x
being random. (b) Transfer matrix map for one potential barrier.

model such barrier as, Vi(x) = V0δ(x−xi) with variable xi being random. For one barrier

(Fig. 4.2 (b)), transfer matrix M can map wave-function from left to right as,

ψ+
R

ψ−
R

 =M

ψ+
L

ψ−
L

 (4.43)

where m is defined as,

M =

 1
t

r∗
t∗

− r
t

1
t∗

 (4.44)

Here we eliminate r′, t′ with unitarity relations in favor of r, t and their complex

conjugates to get this simple form of M . For two barrier, indexed as 1 and 2, we find

combined transfer matrix M12 =M2M1 and resulting transmission coefficient,

1

t12
=

1

t1t2
+
r1 ∗ r2
t1 ∗ t2

(4.45)

This transmission amplitude contains the entire series of repeated internal reflection

between the two barriers as t12 = t1t2 + t2r1r2t1 + t2(r1r2)
2t1 + .... The transmission

probability (T = |t|2) reads,
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T12 =
T1T2

|1−
√
R1R2eiθ|2

(4.46)

where, θ is total phase accumulated during one complete internal reflection. Due to

random placement of barrier this θ is a random variable with [0, 2π]. Taking ensemble

average of equation 4.46 we get,

⟨T12⟩ =
T1T2

1−R1R2

(4.47)

The so-called element resistance of barrier, R
T
, calculated with the classical

transmission, is additive for two barriers.

R12

T12
=

1− T12
T12

=
1− T1
T1

+
1− T2
T2

(4.48)

Classical resistance across N identical barriers along 1D wire of length L with density

n = N/L is R1

T1
N

Rtot =
R1

T1
N =

L

L1

(4.49)

where L1 = T1
nR1

is length characterizing the back-scattering strength of a single

impurity. Within the constrain of electronic conduction, equation 4.49 is the famous

Ohm’s Law, A wire’s resistance grows with length. Ensemble averaging has cleared any

phase-coherence and made the system a purely classical transport process. But equation

4.48 cannot be easily generalized to more than two barriers due to complication to average

of the product of transmission matrices even over random phases. So rather than averaging

over T12, we intend to average over ln(T12) which results in,

⟨ln(T12)⟩ = ⟨ln(T1)⟩+ ⟨ln(T2)⟩ (4.50)

Due to the analyticity of the complex logarithm for all 0 < R1R2 < 1,

∫ 2π

0

dθ

2π
ln(|1−

√
R1R2e

iθ|) = 0 (4.51)

The generalization for many barriers is now easy because ⟨ln(T )⟩ is additive. Such

value for a channel of length L grows on average like ⟨ln(T )⟩ = nL⟨ln(T1)⟩. With this

scaling behavior, one obtains that the log-averaged transmission
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exp(⟨ln(T )⟩) = e
− L

Lloc (4.52)

which drops exponentially fast with increasing sample length L and Lloc is defined as

1/n|ln(T1)|. This is a hallmark of strong localization by disorder.

4.3.2 Anderson Localization (AL) : Tight Binding Hamiltonian

A simple calculation only in one dimension is given in previous section. In this section

we will provide more generic case for arbitrary dimension case. Considering the lattice in

d-dimensional space with sites labeled by i, tight binding Anderson Hamiltonian can be

written as,

H = −h
∑
i,j

(a†iaj + a†jai) +
∑
i

Via
†
iai (4.53)

where ai(a†i ) is annihilation (creation) operator for particles at site i (particles can be

Fermion or boson with corresponding commutation relationship), h is hopping amplitude

(or tunneling coefficient from site i to site j) and Vi the on-site energies, independent,

identically distributed (iid) random variables (RVs) that are uniformly distributed in

[−W/2,W/2] with W is the strength of the ‘disorder’. We will consider solution of

equation 4.53 for three different cases; (i) Disorder free case. (ii) Infinite disorder case.

(iii) Diffusion case.

Disorder Free Case (W = 0) : Consider the hamiltonian in equation 4.53 with

W = 0 and a periodic potential with period L. In this case eigenstate is defined as,

ψ(t, ri) =
1

Ld

∑
k

eik⃗.r⃗i+2i
∑d

i=1 cos(ki)ht (4.54)

where k is momentum vector with 2πn
L

and ki is momentum along ith dimension

(kx, ky, kz for 3d xyz coordinate). In thermodynamic limit (L→∞) wavefunction ψ(t, ri)

reads,

ψ(t, ri) = id
d∏
i=1

Jri(2th) (4.55)

where, Jri is Bessel function of first order. We can determine probability of ψ(t, ri) to
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return to initial state after some time t,

p(t) = |ψ(t, 0)|2 ∼ 1

td
(4.56)

and mean square displacement of the centre of wave-packet is,

⟨r(t)⟩2 =
∑
ri

ri|ψ(t, ri)|2 = 2dh2t2 (4.57)

From equation 4.55 we can see that, with time wave-packet return probability goes

to zero and wave-packet diverges rapidly with time. This is the condition for ‘Ballistic

transport’.

Infinite Disorder Case (W = ∞) : Now we consider hamiltonian in equation 4.53

with W = ∞ or more accurately h/W ∼ 0. In this case eigenstate is defined as (with

initial excitation is at ri = 0),

ψ(t, ri) = e−iV0tδri,0 (4.58)

We can determine return probability and mean square displacement for such

wave-packet. It can be easily determined that for

p(t) = 1 and ⟨r(t)⟩2 = 0 for t→∞ (4.59)

State is completely localized at ri = 0.

Diffusion Case ( 0 ≤ W ≤ ∞) : Complication arises when g/W is neither zero

nor infinity but rather a finite value, a finite competition between the hopping and the

‘localizing’ disordered term of the Hamiltonian. Classical understanding predicts the

motion of the particle consists in a succession of ballistic propagation (in region without

disorder) and elastic scattering against impurities. Such a picture leads to a diffusive

propagation as,

⟨r(t)⟩2 = Dt for t≫ τ (4.60)

where D = v2τ is diffusion coefficient, τ and v is mean free time and velocity between

successive collision. The scattering rate ( 1
τ
) can be found using perturbation theory by

adding disorder with the plane wave case (case (i)). In semiclassical sense, we can assume
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the particle has a definite momentum k and compute the scattering probability per unit

time using the Fermi golden rule,

1

τ
=

2π

ℏ
∑
k′

|
∑
i

⟨k|i⟩⟨i|k′⟩|2δ(Ek − E ′
k) (4.61)

Average over disorder i gives us the result,

1

τ
=
πW 2

12
ρ(Ek) (4.62)

ρ(Ek) is density of states at energy E = Ek. For such case expression for diffusion

coefficient, D becomes,

D =
12v2(E)

πW 2ρ(E)
∝ 1

W 2
(4.63)

Here, diffusion velocity is considered as a function of energy, E (v = δEk

dk
). Diffusion

coefficient is inversely proportional to disorder strength (W ) but never zero (equation

4.63). Anderson predicted that the diffusion coefficient might in fact vanish for a

sufficiently strong (but finite) disorder, W > Wc [152].This is ‘Anderson localization’.

In such case, ⟨r(t)⟩2 and p(t) remains finite for all t.

All eigenstates are localized above a critical value of the disorder strength. Now question

can be asked whether extended (disorder free) and localized states (infinite disorder) can

simultaneously exist at different energy densities. If the answer is yes, one can have

mobility edges, defined as the energy which separates localized states from extended

(delocalized) states. Typically, extended and localized states cannot coexist at the same

energy density. As such, mobility edges must separate localized and extended bands.

Such mobility edge is shown in Fig. 4.3.

4.3.3 Localization: Scaling Theory

A scaling theory explains a property of a physical system by considering their behavior

under changes of size. Utilizing scaling theory, one can expect to capture those microscopic

insensitive features on macroscopic scales. One cannot expect to get some precise

location of critical point in parameter or system specific data from such semi-quantitative

approximation of scaling theory. Scaling theory can provide surprisingly accurate
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Figure 4.3: Energies Em1 and Em2 which separate the regions of localized and
delocalized (pure) states are mobility edges. For strong disorder Em1 ≈ Em2 and all the
states are localized. When the Fermi energy, EF crosses the mobility edge we have the

Metal Insulator transition.

prediction based on microscopic behavior.

Traditionally, the scaling theory of localization is formulated in terms of a channel’s proper

conductance, a dimensionless parameter defined as g = T
R
. A perfectly transmitting

channel T = 1 has a proper conductance of g = ∞, and a perfectly resisting channel

with T = 0 has g = 0, which seems a reasonable definition. We have already used such

definition in equation 4.48 which gives us resistivity behavior of equation 4.52. We can

write down equation 4.52 as a function of sample length L,

g(L) =


Lloc

L
if L << Lloc

1
eL/Lloc−1

if L >> Lloc

(4.64)

Length of the channel changes the behavior of channel as seen from Fig. 4.4. Short

channel follows Ohm’s law where long channel (channel length is long compared to

localization length) do not. But in order to understand behavior of g with length L,

we need β function which is defined as,

β(L) = L
δln(g)

δL
(4.65)
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Figure 4.4: Resistance of a 1D channel as function of L . Short channel’s resistance
grows linearly (according to Ohm’s law, solid line), whereas long channel’s resistance

shows exponential behavior (dash line).

β = 0 means value of g does not change with L. For 1D long channel using g from equation

4.64 one can determine β as,

β(L) =
L

Lloc

1

eL/Lloc − 1
(4.66)

which can be utilized to express β as function of g, β(g)

β(g) = −(1 + g)ln(1 + g−1) (4.67)

For a generalized d dimensional system, we can generalize expression from equation

4.67 as,

β(g) = (d− 1)− (1 + g)ln(1 + g−1) (4.68)

A plot of β(g) vs ln(g) for three different dimension (d = 1, 2, 3) is shown in Fig. 4.5.

In 1D, for short samples the conductance g is large, and limg→∞β(g) = −1 and for

long samples asymptotically β(g) = ln(g). β(g) can thus explain the change in system

behavior with system size. Although for d = 1, β(g) < 0 for all g implying system
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Figure 4.5: β(g) vs ln(g) plot for 1D, 2D and 3D system. Arrow sign in each plot shows
the direction of increasing channel length (transition from Ohmic region to localization

region). Critical point gc indicates metal insulator transition.

resistance increases with increase in system size. But for d = 2, limg→∞β(g) = 0 implies

length independent conductance. Both one and two dimensional case shows that β(g) < 0

for all g, indicating insulator at any length. But for 3D system, for g > gc a metal insulator

transition occurs .Although scaling theory can only give a semi-quantitative idea of such

critical point rather than its precise location.

4.3.4 Localization: Disorder with Interaction

So far only disorder can induce localization. But in reality interaction among particles

can also cause localization. This might led someone to think that presence of both

components would strengthen insulating behavior. This naive assumption underestimates

the considerable richness of the disordered many-body problem. Interactions can destroy

disorder-induced localization, and disorder can transform localized state to something

quite different (Mott insulator to exotic glassy states). Discussion in this section will not

contain too much mathematical expression like previous section.

Consider a system shows sharp phase transition due to some parameter (for example

temperature) change when it contains no disorder. With introduction of disorder, how

does the behavior of such phase transition will modify? In 1974, Harris formulated a

general criterion that can guide our answer for such question [153]. Consider the pure
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system shows phase transition with temperature, correlation length Lc diverges with

temperature as, |T − Tc|−x. But for a disordered system, instead of a single critical

temperature Tc, there are ‘local critical temperature’ , Tc,loc with spatial variation due

to local variations in the couplings. The central limit theorem suggests that fluctuations

of the mean of Tc,loc in a localization volume decay as L−d/2
c . So,

Ld/2c = |T − Tc|−xd/2 (4.69)

Critical point in disorder must follow,

xd > 2 (4.70)

Figure 4.6: Schematic depiction of a Griffiths phase in a disordered system.

Equation 4.70 is known as ‘Harris Criterion’. If a clean critical point follows such

criterion, weak disorder cannot change universal properties of clean system. Otherwise,

weak disorder will impact transition characteristics of the system. Consider in clean

system shows phase X for T < Tc and phase Y for T > Tc. Disorder as we have discussed

induces spatial variation in the couplings which results in local phase transition. When

the bulk of the system is in phase X, there can still be regions that are locally in phase

Y , as shown in Fig. 4.6. These regions are known as Griffiths regions, and the phase in

which they appear is known as a Griffiths phase. If the disorder is spatially uncorrelated,

the Griffiths regions get exponentially rare as their size increases. But Griffiths region
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can arbitrarily appear [154,155].

4.3.5 Many Body Localization (MBL): Lack of Thermalization

Up until now, we only consider only single particle hamiltonian (equation 4.53) except

some phenomenological study at section 4.3.4. Adding interaction U(i − j) to equation

4.53 we get,

H = −h
∑
i,j

(a†iaj + a†jai) +
∑
i

Via
†
iai +

∑
i,j

a†ia
†
jU(i− j)ajai (4.71)

If all single particle wavefunction, ψα(ri) is localized for some disorder strength W

with eigen energy Eα then we can write hamiltonian H from equation 4.71 as,

H =
∑
α

Eαnα
∑
α,β,γ,δ

uα,β,γ,δa
†
αa

†
βaγaδ (4.72)

Here aα is annihilation operator defined as, aα =
∑

i ψα(ri)ai. So presence of disorder

and interaction can indeed localize many body wavefunction with
∑

αEα energy.

It is easy to understand that presence of localization can change ETH picture. Presence

of strongly localized state with site dependent energy (equation 4.58) prevent any sort of

energy exchange between sites, prevents thermalization. Even for many body case, many

body eigenfunction is simply product state (|ψ(r)⟩ = |ψ(r1)⟩ ⊗ |ψ(r2)⟩ ⊗ ... ⊗ |ψ(ri)⟩...).

But question can be asked regarding will thermalization prevail with the introduction of

interaction as has been done in equation 4.71? Answer is based on relative strength of

disorder compared to strength of interaction. As done in [156, 157], non-thermalization

situation can survive even with weak interaction. We can expect a transition from

insulating state to metal for relative strength of interaction to disorder. For W/u >>

1 we find the system in complete localization, a Mott insulator state without any

thermalization. In the limit of u/W →∞, superfluid (metal in case of Fermionic particles)

state appears following ETH ansatz. But in the middle, as we have already discussed in

section 4.3.4 presence of Griffiths phase and local temperature is dominant, a ‘Glassy

State’ appears with local region having different phase that the whole system. Such state

can present thermalization in small local region rather across the whole system. As in

thermalization of quantum system, we expect whole system acts as thermal bath of its
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own (whole system is thermal to one of its component), presence of disorder can change

the size of such bath and subsystem. As a result, we find ourselves with a system with

only local thermalization occurs.

4.4 Bose Hubbard Model

Analysis of disordered system is often too complex to perform analytically. As a

consequence, we need to resort to numerical analysis of the problem based on some

standard model. One of such example is numerical analysis of XXZ Heisenberg model for

analysis of ferromagnetism. For a better understanding the thermodynamic behavior of

disordered bosonic system, numerical calculation of Bose-Hubbard Model has been done

in this dissertation. In this section, a brief introduction of this Bose-Hubbard model is

given.

Bose-Hubbard (BH) model is defined for spinless bosonic particle with repulsive

interaction

H = −t
∑
⟨ij⟩

(b†ibj + b†jbi)− µ
∑
i

n̂i +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

V (ri)n̂i (4.73)

Here, t is tunneling parameter, U is on-site interaction and µ is chemical potential,

b†i (bi) is boson creation (annihilation) operator and n̂i = b†ibi is number operator for site

i with position ri. Summation over ⟨ij⟩ indicates nearest neighbour hopping only and

V (ri) is confining potential. Discussion for ideal case V (ri) = 0 and disordered case

V (ri) ̸= 0 is essential for understanding the influence of defect on overall phase transition

characteristics.

4.4.1 Ideal Case

For ideal situation, V (ri) = 0. In this case, BH model can describe two different states

of bosonic system; superfluid state (In the lime of U/t → 0) and Mott Insulator (In the

lime of t/U → 0) state accurately. Before delving into the detail into each state and

phase transition, initial analysis is needed to be done on BH model. Interaction term

in Hamiltonian of equation 4.73 plays an important role. First, lets consider t = 0, no

hopping is present and only interaction is present. In that case,
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Hint = −µ
∑
i

n̂i +
U

2

∑
i

n̂i(n̂i − 1) (4.74)

In this case, different sites are completely decoupled. So wavefunction of such function

in Fock space is,

|nint⟩ = |n1⟩ ⊗ |n2⟩...|nN⟩ (4.75)

here N is total number of site and n = n1+n2+ ...+nN , total number of boson in that

state |nint⟩. Wavefunction is a simple combination of total number of particles of each

site. This case is almost identical to the case of Many-Body Localization (MBL) effect.

Ground state energy of interaction hamiltonian, Hint depends on n, number of boson in

ground state,

For n = 0, Eint = 0

For n = 1, Eint = −µ

For n = 2, Eint = −2µ+ U

For n = 3, Eint = −3µ+ 3U

So ground state energy is,

Eint = −nµ+
U

2
n(n− 1) (4.76)

and ground state boson number follows the following criterion,

(n− 1)U < µ < nU (4.77)

There are level crossing between states with different integer fillings. Adjacent states

have sufficient gap away from level crossing. Evolution of ground state energy and ground

state boson number with chemical potential, µ is shown in Fig. 4.7.

Absence of hopping amplitude causes the system to go into Mott-insulator phase. In

92



Figure 4.7: (a) Energy of ground state vs chemical potential plot for different ground
state boson number. (b) Evolution of ground state energy along with particle number
with chemical potential. Red dashed line shows the evolution of ground state energy
while blue line shows evolution of ground state occupation. (equation 4.46 and 4.77).

the opposite extreme limit (U/t → 0), superfluid phase sustains. In that limit we can

write wavefunction simply as,

|ψ⟩ = 1√
N !

(b†k=0)
N |0⟩ (4.78)

To understand the transition from superfluid to Mott-insulator state we need to resort

to Site Decoupled Mean Field Theory (SDMFT) and use the following decoupling ,

b†ibj = ⟨b
†
i⟩bj + b†i⟨bj⟩ − ⟨b

†
i⟩⟨bj⟩ (4.79)

As a result, Hamiltonian from equation 4.73 is decoupled as,

H = −t
∑
⟨ij⟩

(⟨b†i⟩bj + b†i⟨bj⟩ − ⟨b
†
i⟩⟨bj⟩+ ⟨b

†
j⟩bi + b†j⟨bi⟩ − ⟨b

†
j⟩⟨bi⟩) +Hint (4.80)

Hint is defined in equation 4.74. By considering ⟨b†i⟩ = x, we get,

H = −2dt
∑
i

(xbj + x∗b†i − |x|2 + h.c.) +Hint (4.81)

Ground state energy for such hamiltonian is
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E = Eint + E(2) (4.82)

where only second order perturbation theory has been considered and Eint is defined

in equation 4.76. Second order correction can be determined as,

E(2) = 2dt|x|2 +
∑

|n⟩≠|nint⟩

|⟨nint|(−2dt[xb† + x∗b])|n⟩|
Eint − En

(4.83)

where, En is eigenstate of H corresponding to wavefunction |n⟩. Using the following

relationship we can determine a close form for E2.

⟨nint|(−2dt[xb† + x∗b])|nint + 1⟩ = −2dtx∗
√
n+ 1

⟨nint − 1|(−2dt[xb† + x∗b])|nint⟩ = −2dtx
√
n (4.84)

Close form of second order correction to ground state energy is (taking z = −2dt),

E(2) = z|x|2 + z2|x|2
[
n+ 1

µ− Un
− n

µ− U(n− 1)

]
(4.85)

If E(2)/|x|2 > 0, we find a stable Mott-insulator state. Transition line in plane

(t/U, µ/U) is defined as,

1

z
=

n

µ− U(n− 1)
− n+ 1

µ− Un
(4.86)

Such transition line for Mott-insulator to superfluid transition or BH model phase

diagram is shown in Fig. 4.8 for different n along with Mott lobes. To determine Mott

lobes, we need to find solution of µ from equation 4.86. We get solution for µ as,

µ±,z = −
z

2
± 1

2

√
z2 − 4z

(
n+

1

2

)
+ U2 (4.87)

We can easily determine the critical value of z = 2dt for Mott-insulator to superfluid

transition by setting both solution of µ±.z equal to one another. Critical value of z

(hopping amplitude) becomes,

zc = U(2n+ 1− 2
√
n2 + n) (4.88)
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Figure 4.8: SDMFT phase diagram of the Bose-Hubbard model with first three Mott
lobes.

We thus obtain a series of Mott lobes labeled by the integer n with peaks defined by

equation 4.88. Some key parameters to determine such transition are number density and

compressibility. Number density is defined as,

⟨n⟩ =
∑
i

⟨b†ibi⟩ (4.89)

And compressibility is defined as,

κ =
d⟨n⟩
dµ

(4.90)

In MI phase of matter compressibility is zero as number density during this state is

fixed and is equal to an integer value according to Mott lobes it is in. As the system goes

to superfluid phase, non-integer number density and non zero compressibility is found.

4.4.2 Disorder BH Model: Bose Glass Phase of Dirty Bosons

Presence of disordered confining potential can change transition of MI-SF significantly. As

we have discussed in previous section of localization, disorder induces localization. Even

slight presence of disorder can result in complete localization for 1D system. But in that
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discussion we do not consider any sort of interaction. A simplistic discussion with both

disorder and interaction is provided in section 4.3.4. Based on that discussion, we can say

that MI-SF transition can be significantly influenced by disorder strength compared to

interaction strength. Disorder induced change in BH phase diagram is shown in Fig. 4.9.

Presence of disorder potential causes the appearance of new phase, Bose glass phase [158].

Figure 4.9: Phase diagram for dirty bosons for different disorder strength. (a) Without
any disorder (same as Fig. 4.8). (b) Disorder strength is less than interaction strength
(c) Disorder strength is higher than interaction strength. Presence of disorder creates a

new phase, Bose glass phase.

Disorder can be modeled by various method, Box disorder, Speckle disorder,

exponential disorder etc. to be considered in disordered BH (DBH) model. For a

Box disorder disorder potential is drawn randomly from set [−W/2,W/2] with W being

disorder strength. If W is large enough, it is energetically favourable for the system to be

localized in energy minima, a Mott-Insulator phase. In this case, jumping from one site

to other would require W order energy. Density distribution, ⟨n(k)⟩ give us an ideal on

the level of localization. Width of such plot in inversely proportional to spatial extent of

condensate [159,160]. While disorder (W ) solely tends to localize non-interacting particles

in the absolute lowest energy state (AL), repulsion (U) can screen effect of the disorder

and bring the system back to a degree of coherent, extended SF phase, passing through

an intermediate glassy phase.
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This standard idea of the MI-BG-SF transition is generally accepted is in the form of

percolation clusters [11, 161, 162]. At W = 0, in superfluid phase, coherence is present

over long distance, forming ODLRO and macroscopic condensate. With introduction

of disorder (W ̸= 0), long range coherence becomes energetically unfavourable. But

depending on the strength of disorder, some form of ODLRO can still be present. As

disorder strength is increased, the superfluid global coherence reduced to zero. This

picture follows the concept of percolation. The system now exhibits spatially separated

superfluid puddles that not correlated with one another. So the expectation is that the

BG consists of puddles embedded in an incoherent background.
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PART II

RESULTS AND DISCUSSION
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Chapter 5

Numerical Study of Condensation

Dynamics with and without Defect

Understanding the dynamics of condensate is essential to further analyze the effect of

defect on condensation process. We will analyze this process in temporal-spatial and

kinetic domain. This will enable us to get a better understanding on condensation process.

We will analyze for both pure and defective case. For spatial and temporal analysis, open

dissipative GP equation coupled with external exciton reservoir will be solved. And

for analysis in kinetic domain coupled semiclassical Boltzmann equation will be solved

numerically.

5.1 Condensation Dynamics in Spatial-Temporal

Domain

Polariton condensate formed under non-resonant pumping is a non-equilibrium system.

While the condensate state can be described by a mean-field approximation, it is

necessary for a full theoretical treatment to consider incoherent excitations generated by

non-resonant pumping that couple to the condensate. Furthermore, for system with the

presence of defect (point defect, dislocation, impurity or vacancy), free exciton localizes

near trap potential, loses all its kinetic energy and forms ‘Bound Exciton’. Single trap

center can localize several exciton but with high energy cost. To understand the influence

of defect on exciton polariton condensate formation, Gross-Pitaevskii equation coupled

with active and inactive exciton reservoirs [163] has been solved numerically.
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dni(r, t)

dt
= −ni(r, t)

τi
− ni(r, t)

τr
+ P (r, t) (5.1)

dnx(r, t)

dt
= −nx(r, t)

τx
+
ni(r, t)

τr
+R|ψ(r, t)|2nx(r, t) (5.2)

iℏ
dψ(r, t)

dt
=

[
− ℏ2

2m
∇2+ℏg|ψ(r, t)|2+V (r)+ℏgR(nX(r, t)+ni(r, t))+

iℏ
2
(Rnx(r, t)−γ)

]
ψ(r, t)

(5.3)

Here,

ni(r, t) = inactive exciton reservoir density.

nx(r, t) = active exciton reservoir density.

ψ(r, t) = ground state condensate wavefunction.
1
τi

= non-radiative recombination rate of inactive exciton.
1
τr

= Inactive to active exciton conversion rate.

P (r) = Pumping rate.
1
τx

= radiative recombination rate of active exciton.

R = scattering rate of active exciton into ground state condensate.

m = polariton mass.

g = Inter condensate interaction strength.

gR = Interaction between condensate and exciton reservoir.

γ = Condensate decay rate.

Defect is introduced into the system using potential profile V(r). For ideal condition

without any defect, V(r) = 0, has been analyzed first. Condensation process is significantly

influenced by pumping mechanism. For the whole work we consider incoherent pumping

with four different pumping scheme. These four pumping schemes are:

1. Pumping Scheme 01 : Uniform pumping across the whole sample

P (r, t) = P0u(t) (5.4)

Pumping is uniform across the whole sample with strength P0 and is active for the

whole simulation time.
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2. Pumping Scheme 02 : Continuous Gaussian pumping

P (r, t) = P0exp

[
− (r − r0)2

σ2

]
u(t) (5.5)

Similar to uniform pumping, pumping is active for the whole simulation time, σ is

spot size and P0 is strength of Gaussian pulse at r = r0.

3. Pumping Scheme 03 : Gaussian pumping single pulse

P (r, t) = P0exp

[
− (r − r0)2

σ2

]
[u(t)− u(t− t0)] (5.6)

Here pumping only sustained for t0 time from the start of simulation.

4. Pumping Scheme 04 : Gaussian oscillatory pulse pumping

P (r, t) = P0exp

[
− (r − r0)2

σ2

]∑
i

rect(
t− td
T

) (5.7)

Time interval between two pulses is T and duration of each pulse is, td.

Detail of numerical calculation and value used for numerical calculation is given in

appendix A.

Numerical solution for different potential profile and pumping scheme has been

discussed below. We are only presenting selective pumping scheme for different potential

profiles to get a good idea of the physical aspects of defect in condensation process.

5.1.1 For Zero Potential, V(r) = 0

We start our discussion for ideal case with no disorder of any type, potential V (r) = 0. We

will analyze the result for such potential under two different pumping scheme; pumping

scheme 02 and pumping scheme 03. Pumping scheme 01 and 04 produces similar sort of

result.
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Figure 5.1: |ψ(r)|2 and θ(r) for V(r) = 0 and pumping scheme 02 for three different time
(a) |ψ(r)|2 and (d) θ(r) at t = 8.57 ps, (b) |ψ(r)|2 and (e) θ(r) at t = 19.11 ps, (c)

|ψ(r)|2 and (f) θ(r) at t = 30.98 ps. Location of vortex (anti-vortex) is marked by white
(black) circle.

5.1.1.1 Pumping Scheme 02

Fig. 5.1 shows the solution of |ψ(r, t)|2 along with θ(r, t) at three different times for open

dissipative GP equation coupled with external reservoir under ideal no defect potential

(V (r) = 0) and Continuous Gaussian pumping (pumping scheme 02 with r0 = 0). Initially,

(fig. 5.1 (a)+ (d)) some local condensate without any long range correlation has been

formed. Going through fig 5.1 (b) + (e), and (c) + (f), local condensates percolate

and form condensate of considerable size (a macro condensate) and long range order

has been established. As in this pumping scheme is active whole time, spontaneous

vortex generation process continues for the whole time. Besides such long range ordered

macroscopic condensate, presence of small regional condensate is also present (fig. 5.1(b),

5.1(c)) due to presence of vortex at the edge of central macroscopic condensate (fig.

5.1(e) and fig. 5.1(f)). Outward propagation of vortex is also observed in this case.

Characteristics of such vortex has been discussed in theoretical section. We have shown the

position of vortex (anti-vortex) in white (black) circle. Determination of vortex position

will be discussed for periodic potential with pumping scheme 02 in next section.
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5.1.1.2 Pumping Scheme 03

Figure 5.2: |ψ(r)|2 and θ(r) for V(r) = 0 and pumping scheme 03 for three different time
(a) |ψ(r)|2 and (d) θ(r) at t = 9.9 ps, (b) |ψ(r)|2 and (e) θ(r) at t = 23.1 ps, (c) |ψ(r)|2
and (f) θ(r) at t = 32.96 ps. Location of vortex (anti-vortex) is marked by white (black)

circle.

Fig. 5.2 shows the solution of ψ(r, t) (both magnitude and phase of condensate) at

three different times for open dissipative GP equation coupled with external reservoir

under ideal no defect potential (V(r) = 0) and Gaussian pumping single pulse (pumping

scheme 03 with r0 = 0 and t0 = 3.03ps). Almost as same result for pumping scheme 02 can

be observed but with much less number of vortices. Sufficient energy is needed for vortex to

be stable. This energy can come from different source, chemical energy induced by defect,

thermal energy or excitation energy. In scheme 03, we see a much lower number of vortices

are generated due to limited time of pumping as here an effective low amount of energy.

As the pumping is turned off and calculation has been done below BKT temperature, very

few new vortices have been generated and existing vortices (anti-vortices) have annihilated

by combining with anti-vortices (vortices). Nevertheless, we see as the case for pumping

scheme 02, a macroscopic condensate formed close to r0 = 0 with phase coherence 20µm.
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5.1.2 Potential Profiles

To understand condensation process under different potential profile and different

pumping scheme, different potential profiles have been considered. These are shown in

Fig. 5.3.

Figure 5.3: V (r) for solving coupled open-dissipative Gross-Pitaevskii equation. Here
V (r) is (a) sinusoidal potential in both x and y direction, (b) sinusoidal potential in

both x and y direction with superimposed random disorder, (c) sinusoidal potential in
both x and y direction with some potential maxima missing, mimicking a dislocation.

5.1.3 For Periodic Potential

From complete absence of disorder, we now introduce a periodic disorder (effectively) as

shown in fig. 5.3 (a) . We will analyze the result for such potential under two different

pumping scheme; pumping scheme 02 and pumping scheme 04. Pumping scheme 01 and

03 gives us similar sort of results.

5.1.3.1 Pumping Scheme 02

Fig. 5.4 shows the solution of ψ(r, t) (both magnitude and phase) at three different times

for open dissipative GP equation coupled with external reservoir for periodic potential

shown in fig. 5.3 with Continuous Gaussian pumping (pumping scheme 02). Here we

point out the position of vortex (anti-vortex) by white (black) circle. Determination of

such vortex position is discussed thoroughly here.

We can determine velocity of superfluid, v(r, t) from phase distribution θ(r, t) according

to equation 3.91. In fig. 5.5 velocity for that correspondent phase (7.9 ps, 13.4 ps, 23.72

ps) are shown.

Position of vortex is determined from such velocity plot. We are showing one vortex

and one anti-vortex in fig at position (-8, 13.5) µm and (-3, 15.5) µm respectively for time
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Figure 5.4: |ψ(r)|2 and θ(r) for periodic potential and pumping scheme 02 for three
different time (a) |ψ(r)|2 and (d) θ(r) at t = 7.9 ps, (b) |ψ(r)|2 and (e) θ(r) at t = 13.4
ps, (c) |ψ(r)|2 and (f) θ(r) at t = 23.72 ps. Location of vortex (anti-vortex) is marked

by white (black) circle.

Figure 5.5: Velocity of condensate for time (a) t = 7.9 ps, (b) t = 13.4 ps, (c) t = 23.72
ps. Determination of superfluid velocity is done according equation 3.91.

.
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13.4 ps in fig 5.6. In vortex position, superfluid has a quantized clockwise rotation while

in anti-vortex position we see a counter clockwise rotation.

Figure 5.6: Position of vortex (clockwise rotation) and anti-vortex (counter clockwise
rotation).

Position of some other vortex and anti vortex for same time (t = 13.4ps) is shown in

fig. 5.7. Numerically we determine the position of such vortex (anti-vortex) by taking

localized curl of velocity field. The position at which curl produces an integer result of ℏ
m

gives us the position of vortex.

Figure 5.7: Position of vortex (clockwise rotation) and anti-vortex (counter clockwise
rotation) for time t = 13.4ps.
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Such quantized rotation (clockwise or counter-clockwise) prevents local condensate to

form a macro condensate with long range order. Due to presence of potential fluctuation in

sinusoidal potential, some vortices get pinned close to potential dip or maxima. Position

of some more vortices for same time are shown in fig. These vortices if no potential

fluctuation exist, normally travel some distance before getting annihilated via combining

with another anti vortex. But potential fluctuation can cause a vortex to get pinned and

can enhance its lifetime several times

5.1.3.2 Pumping Scheme 04

Fig. 5.8 shows the solution of ψ(r, t) for three different time of open dissipative GP

equation coupled with external reservoir for periodic potential under pumping scheme 04

with td = 3.03ps and T = 12.13ps. As pumping is now continuously turned on and off,

we see local condensate more clearly. And due to pseudo continuous pumping, vortex

generation rate is less than the case of continuous Gaussian pumping. Pumping scheme

can change vortex generation as we have already seen for zero potential.

Figure 5.8: |ψ(r)| and θ(r) for periodic potential and pumping scheme 04 for three
different time (a) |ψ(r)| and (d) θ(r) at t = 9.48 ps, (b) |ψ(r)| and (e) θ(r) at t = 14.23
ps, (c) |ψ(r)| and (f) θ(r) at t = 36.37 ps. Location of vortex (anti-vortex) is marked by

white (black) circle.

Another important thing to be observed here, spontaneous generation pattern is
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also influenced by pumping mechanism even for same potential profile. For sinusoidal

potential, this has been shown in fig. 5.9. This can significantly influence percolation

scheme to produce macroscopic coherent condensate. With change in pumping scheme,

it is thus possible to observe local condensate of different size as we will see later.

Figure 5.9: Vortex pattern for sinusoidal potential for periodic potential under two
different pumping scheme (a) Continuous Gaussian pumping (b) Gaussian oscillatory

pulse pumping.
.

5.1.4 For Defective Potential 01

Here we introduce a some random disorder superimposed on a periodic potential as shown

in fig. 5.3 (b). Random disorder exist between x = −15µm to x = 15µm and y =

−15µm to y = 15µm and follows Gaussian distribution.We will analyze the result for such

potential under three different pumping scheme; pumping scheme 01, pumping scheme 02

and pumping scheme 04.

5.1.4.1 Pumping Scheme 01

For defective potential shown in Fig.5.10, we are studying the effect of defective potential

under pumping scheme 01. From fig, we show ψ(r, t) at time 5.27, 9.89 and 30.97 ps. As

time have passes, more and more vortices are centered around the potential minima. This

is due to pinning of vortices near disordered potential. Local condensate forms around such

minima. But due to presence of such vortex, no macroscopic condensate is not formed, as

seen from fig. 5.10 (c). Pumping scheme and additional disorder potential causes vortex
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Figure 5.10: |ψ(r)| and θ(r) for defective potential 01 and pumping scheme 01 for three
different time (a) |ψ(r)| and (d) θ(r) at t = 5.27 ps, (b) |ψ(r)| and (e) θ(r) at t = 9.89

ps, (c) |ψ(r)| and (f) θ(r) at t = 30.97 ps. Location of some vortex (anti-vortex) is
marked by white (black) circle.

generation rate and spontaneous vortex pattern to change as we will in section 5.1.3.2

and 5.1.3.3 . Pinned vortex cannot travel [138] as is the case of no disorder. As a result

such vortex can survive longer than ideal case, increasing its life time.

A detailed vortex mapping is shown in fig. 5.11. As we see, with passing of time, more

and more vortices (and anti-vortices) are accumulated around defect. In this accumulation

vortex pair can be annihilated by combination with each other. But presence of one

vortex anti-vortex pair can effectively act as domain wall, prevents the local condensate

to percolate.

As a result of increased accumulation of vortices with longer lifetime around defect

potential, local condensate cannot form a macro condensate for long time and cause local

condensate to exist. Absence of macroscopic condensate due to presence of excessive no.

of vortex can be seen from fig. 5.12. One pair of vortex and anti-vortex stand between two

local condensate. Influence of defect over creation of macroscopic condensate can cause

some serious implication i.e. increase of lasing threshold, lowering of effective temperature,

decrease of resonant frequency for laser diode. We will discuss this in later chapters.
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Figure 5.11: Vortex mapping along with potential and phase distribution for defective
potential 01 under pumping scheme 01 for time (a) 9.88 ps (b) 13.18 ps (c) 16.47 ps (d)
19.77 ps (e) 23.06 ps (f) 30.97 ps. Vortex (anti-vortex) is represented by red circle (blue

circle).

Figure 5.12: Vortex mapping along with potential and |ψ(r)| for defective potential 01
under pumping scheme 01 for time (a) 9.88 ps (b) 13.18 ps (c) 16.47 ps (d) 19.77 ps (e)

23.06 ps (f) 30.97 ps. Vortex (anti-vortex) is represented by red circle (blue circle).
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5.1.4.2 Pumping Scheme 02

Figure 5.13: |ψ(r)|2 and θ(r) for defective potential 01 and pumping scheme 02 for three
different time (a) |ψ(r)|2 and (d) θ(r) at t = 6.59 ps, (b) |ψ(r)|2 and (e) θ(r) at t =

16.48 ps, (c) |ψ(r)|2 and (f) θ(r) at t = 32.3 ps. Location of some vortex (anti-vortex) is
marked by white (black) circle.

With same potential as in 5.1.3.1 a change in the pumping scheme from 01 to 02, a

continuous pulse with r0 = 0 and σ = 16 has been made. We have already seen for the

case of sinusoidal potential the effect of pumping is two-fold, a change in vortex pattern

and a change in vortex generation rate. This sort of change has also been observed here.

But despite dramatic change in vortex formation pattern, we find the same end result,

‘Vortex prevents to form a macroscopic condensate from local condensate’. Most of the

survived vortices are accumulated close to disordered potential. Even from fig. 5.13(c) and

(f) we see that, at t= 32.3 ps, most two prominent local condensate exist at (x,y)=(0,0)

µm and (x,y)=(-7,-5) µm, close to potential minima with a coherence length around 1

µm. A detailed vortex map for such case is also shown in fig. 5.14. Clearly most vortices

are centered around disordered potential. This in turn prohibits local condensate formed

inside defect potential to come in contact with other local condensate. As a result, no

phase coherence between local condensate inside defect potential and other defect free

zone has been established.
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Figure 5.14: Vortex mapping along with potential and phase distribution for defective
potential 01 under pumping scheme 02 for time (a) 15.82 ps (b) 19.11 ps (c) 24.38 ps (d)
28.33 ps (e) 30.97 ps (f) 32.95 ps. Vortex (anti-vortex) is represented by red circle (blue

circle).

5.1.4.3 Pumping Scheme 04

At a first glance at fig 5.15, one might think that for pumping scheme 04, the different

result other than 5.1.3.1 and 5.1.3.2 comes forward. But if we look θ(r) for different

time actually same result also happened here. We can see phase distribution, θ(r) for six

different time in fig. 5.16. As vortex pattern has changed for different pumping scheme,

all the vortices are shaped as a ring around the disorder potential. This ring sustains

for longer time, preventing local condensate inside the disorder minima to percolate with

other local condensate and form a macro-condensate. This is the same case as we seen

before (5.1.3.1, 5.1.3.2). The appearance of vortices is solely due to change in vortex

generation patter under different pumping scheme.

With proper pumping scheme and suitable defect engineering one can achieve a

considerable size of condensate. One such case has been reported in [62]. One big potential

trap has been created. As polariton diffused inside the trap, it has very low probability to

leave from there. Having a such long lifetime, polariton slowly create a condensate state.
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Figure 5.15: |ψ(r)| and θ(r) for defective potential 01 and pumping scheme 01 for three
different time (a) |ψ(r)| and (d) θ(r) at t = 3.95 ps, (b) |ψ(r)| and (e) θ(r) at t = 10.54

ps, (c) |ψ(r)| and (f) θ(r) at t = 25.7 ps. Location of some vortex (anti-vortex) is
marked by white (black) circle.

Figure 5.16: Phase distribution, θ(r) for defective potential 01 under pumping scheme
04 for time (a) 3.95 ps (b) 7.24 ps (c) 10.54 ps (d) 19.77 ps (e) 26.36 ps (f) 33.29 ps.
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5.1.5 For Defective Potential 02

Instead some random disorder, we take away one row of periodic potential maxima from

periodic potential profile as shown in fig. 5.3(c). We will analyze the result for such

potential under two different pumping scheme; pumping scheme 02 and pumping scheme

03.

5.1.5.1 Pumping Scheme 02

Figure 5.17: |ψ(r)|2 and θ(r) for defective potential 02 and pumping scheme 02 for three
different time (a) |ψ(r)|2 and (d) θ(r) at t = 13.84 ps, (b) |ψ(r)|2 and (e) θ(r) at t =

17.13 ps, (c) |ψ(r)|2 and (f) θ(r) at t = 21.74 ps. Location of some vortex (anti-vortex)
is marked by white (black) circle.

For defective potential shown in fig. 5.3(c), we are showing the effect of defective

potential under pumping scheme 02, with r0 = 0 and σ = 16 in fig. 5.17. For such

potential pattern and pumping scheme, a detailed mapping of vortices for different time

has also been shown in fig. 5.18. Here just like the case of 5.1.3.1 and 5.1.3.2, vortices

pattern themselves around the dislocation (missing potential maxima). And as a result of

that, we see local condensate formed near dislocation (around (x,y) = (0,0) µm) cannot

percolate with other local condensate (around (x,y) = (15,15) µm or around (x,y) =

(-15,15) µm), same as previous case.

We are also showing condensate amplitude with mapped vortex to get a better
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Figure 5.18: Phase distribution, θ(r) for defective potential 02 under pumping scheme
02 for time (a) 9.23 ps (b) 11.2 ps (c) 13.84 ps (d) 17.13 ps (e) 19.77 ps (f) 21.74 ps.

Figure 5.19: Phase distribution, |ψ(r)| for defective potential 02 under pumping scheme
02 for time (a) 9.23 ps (b) 11.2 ps (c) 13.84 ps (d) 17.13 ps (e) 19.77 ps (f) 21.74 ps.
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understanding on how vortices prevent the percolation of local condensate. Here also, we

see that due to position, size of defect and pumping scheme, we achieve a local condensate

of considerable size close to (x,y) = (0,0) µm.

5.1.5.2 Pumping Scheme 03

Figure 5.20: |ψ(r)| and θ(r) for defective potential 02 and pumping scheme 03 for three
different time (a) |ψ(r)| and (d) θ(r) at t = 7.91 ps, (b) |ψ(r)| and (e) θ(r) at t = 10.54

ps, (c) |ψ(r)| and (f) θ(r) at t = 15.16 ps. Location of some vortex (anti-vortex) is
marked by white (black) circle.

Same potential profile as fig. 5.3(c), with pumping scheme 03, Gaussian pumping with

only a single pulse for time duration of 3.03 ps. Here pumping scheme changes the vortex

pattern as we have seen earlier, with a reduced rate of vortex generation.

Whatever pumping scheme is, one thing that we have observed for all case so far, pinned

vortex close to dislocation or defect. Any sort of disorder in potential cause such pinning to

occur. If we look at phase distribution especially fig. 5.20 (f), we see that vortices pattern

themselves around dislocation and pinned to that location for some time, longer than a

vortex normally does. This phenomenon results in our usual conclusion, ‘Pinned Vortex

prevents local condensate to percolate with each other to generate macroscopic

condensate’ . Local condensate around (x,y) = (0,0) µm, (x,y) = (-15,-15) µm, (x,y)

= (15,-15) µm, (x,y) = (15,15) µm, (x,y) = (-15,15) µm and others (fig. 5.20 (c)) stays
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separated from each other without forming any sort of long range coherence.

5.1.6 For Other Defective Potential

Here we introduce a some random disorder superimposed on V (r) = 0 as shown in .

Figure 5.21: V (r) for solving coupled open-dissipative Gross-Pitaevskii equation. Here
V (r) = 0 with superimposed random disorder of Gaussian distribution.

We will analyze the result for such potential under only one type of pumping scheme;

pumping scheme 02.

5.1.6.1 Pumping Scheme 02

For two different disordered potential shown in fig. 5.21, Gaussian continuous pumping

produce same result. It is same as we have discussed earlier. Even in this case we can

observe local condensate palette more clearly from fig. 5.22 (a), (b), (c) and from fig.

5.23 (a), (b), (c). From fig. 5.23 (c), we see a local condensate between defect bound local

condensates around (x,y) = (-10,-10) µm and (x,y) = (10,10) µm. This local condensate is

not at all coherence with other local condensates. This will be clear if we take a closer look

of phase distribution at that time (t = 32.95 ps fig. 5.23 (f)). Presence of such well defined

defect can be utilized to create local zone of high co-relation for extraordinary computing

advantage. Defect does not always come as disadvantage rather can be engineered to get

some really exotic result.
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Figure 5.22: |ψ(r)|2 and θ(r) for defective potential 03 and pumping scheme 02 for three
different time (a) |ψ(r)|2 and (d) θ(r) at t = 6.6 ps, (b) |ψ(r)|2 and (e) θ(r) at t = 19.77

ps, (c) |ψ(r)|2 and (f) θ(r) at t = 32.95 ps. Location of some vortex (anti-vortex) is
marked by white (black) circle.

Figure 5.23: |ψ(r)|2 and θ(r) for defective potential 04 and pumping scheme 02 for three
different time (a) |ψ(r)|2 and (d) θ(r) at t = 6.6 ps, (b) |ψ(r)|2 and (e) θ(r) at t = 19.77

ps, (c) |ψ(r)|2 and (f) θ(r) at t = 32.95 ps. Location of some vortex (anti-vortex) is
marked by white (black) circle.

118



5.1.7 Final Remark On Condensation in Spatial-Temporal

Domain

So far we have argued that presence of defect causes vortex to get pinned which in

turn prevents percolation of local condensate to create a macroscopic condensate. Here

we present same result but with 30 different initial condition for Gaussian Continuous

pumping and defect potential pattern 01. Red dots represent position of a vortex.

Figure 5.24: Vortex mapping for 30 different initial condition for defective potential 01
under pumping scheme 02 for time (a) 15.81 ps (b) 19.1 ps (c) 24.38 ps (d) 28.33 ps (e)

30.97 ps (f) 32.95 ps.

Whatever the initial condition is, vortices keep their pattern. Some additional vortices

are created at different positions but they eventually gets annihilated by recombining

with other anti-vortices. And time forces vortices to get accumulated close to defect

potential (accumulation of red dots near disordered potential).

What is the significance of such case on overall performance of the system? When

no defect is present, we find a overall macroscopic condensate with long range order.

But as such long range order hasn’t established, local condensation takes place and local

condensate with short range order has been formed. This can significantly influence

thermalization process of condensate. Due to strong localization of condensate, each local

zone can have its own local energy, define its local temperature. We will see in Chapter
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06, how this same result can be achieved by introducing localization in thermalization

process. Furthermore, as local condensate dominates condensation process, more and

more energy will be required to achieve a lasing action for exciton polariton LASER.

Analysing the influence of defect is a very complex calculation from both numerical and

numerical perspective. Existence of randomness in defective system cause it sometime

very hard to predict. But with the advancement of theoretical treatment of randomness

like the one we are going to use in Chapter 06, ‘Random Matrix Theory’, we now have at

least some solid foothold facing such complex defect ridden system. And analysis of such

complex system, it is at least my understanding that defect is actually a new frontier for

engineer and physicist. Most often, we consider defect as undesirable condition, damaging

our system. In some case they really are. But careful engineering of defect can bring some

extra-ordinary result.

In this section, results regarding condensation process in spatial domain at different

times have been presented. Such result does not show a clear picture of single state

coherence which is fundamental for lasing action. As we have discussed in theoretical

section, stimulated scattering process accumulates huge number of exciton-polariton

particles close to K = 0 state which gives us coherent emission. We mainly focuses

in this section about the result of condensation in spatial domain, how coherence has

been achieved over distance? Now we will turn our focus on to coherence in K domain.

A macroscopic coherence indicates effectively a very confined state in K space. We will

focus on such results in the next section.
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5.2 Condensation Dynamics in Kinetic Domain

Relaxation kinetics of classical particles is described by semiclassical Boltzmann equations.

These sets of equation, modified to take into account of quantum nature of particle, are

essential to understand the dynamics of condensate with respect to energy over time

[164]. Kinetics of condensate without defect has been studied previously [94, 165, 166].

In this section we will analyze condensation dynamics using same approach of [121] but

considering defect.

5.2.1 Preliminaries: Coupled Boltzmann Rate Equation

We have already talked about coupled semiclassical Boltzmann equation in section 2.4.3

and how does these coupled equations describe condensation dynamics of polariton lasing

or ground state condensation process. Here we will present essential procedure for solving

such coupled equations.

For solving such equations numerically, we consider non-resonant excitation. Usually,

free electron—hole pairs are created by such excitation process, as the exciton binding

energy amounts to some tens of meV only. These electron-hole pairs cool down, and

form hot excitons (bound electron-hole pairs), by emitting phonons. A simple rate

equation analysis indicates a strong non-equilibrium situation biased towards free carriers

at low temperatures in typical III-V materials, owing to long formation times of excitons

compared with their short radiative lifetime.

5.2.1.1 Discrete Polariton Dispersion Relation

Discretized Boltzmann equation results in a finite set of rate equations. A natural

discretization of the modes of the system results when the system is enclosed in a large

box. The quasiparticle momenta are then quantized into a uniform mesh. But this mode

of discretization has certain drawbacks. Exciton-like polaritons and strongly coupled

polaritons have very different masses. A dense grid in k space for the light-mass polariton

would result in a grid for the heavy-mass exciton-like polaritons having a extremely large

number of mesh. Alternatively, energy can be discretized into uniform mesh. The uniform

energy grid allows us to impose exactly the energy conservation condition for elastic

exciton—exciton scattering, avoiding drifts in the energy conservation in the numerical
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integration of the rate equations. The energy grid is defined as ,

E(j) = E(0) + (j +
1

2
)∆E (5.8)

The choice of ∆E is determined by many factors. These are

• Population distributions, population should vary by only a small amount over ∆E.

This implies ∆E < kBT .

• A good description of the scattering matrix elements with phonons. This implies

∆E < energy exchange during a phonon scattering.

• A good description of exciton-exciton scattering matrix elements.

We have already shown polariton dispersion relationship in fig. 2.5. A discretized

version of that dispersion relation is shown in fig. 5.25

Figure 5.25: Discretized lower polariton dispersion relation. Blue line shows the
continuous version and red dots are the energy grids for numerical solution purpose.

And radiative recombination rate has been discretized accordingly.

5.2.1.2 Discretized Rate Equations

Due to such discretization, semiclassical rate equation now reads,
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dN(i)

dt
= P (i)− N(i)

τi
−

∑
j

Wph(i, j)N(i)(1 +N(j)) +
∑
j

Wph(j, i)N(j)(1 +N(i))

−
∑
j,i1,j1

Wex(i, j, i1, j1)N(i)N(j)(1 +N(i1))(1 +N(j1))

+
∑
j,i1,j1

Wex(i1, j1, i, j)N(i1)N(j1)(1 +N(i))(1 +N(j)) (5.9)

Wph(i, j) is the scattering rates of polaritons with phonons from energy bin i to j,

Wex(i, i1, j, j1) is the exciton—exciton scattering rates where two exciton from energy bin

i and j are scattered to energy bin i1 and j1, N(i) is the population of energy bin i, and

P (i) is the pumping rate.

5.2.1.3 Exciton-Phonon Scattering rate

We have already discussed exciton phonon scattering rate in section 2.4.1 (rate can be

determined from equation 2.42). For discretized picture, exciton-phonon scattering rate

is [94] for phonon absorption,

Wph(i, j) =
∆E(∆k)2

4ℏρu
X(i)X(j)

π2[DOS(j)]−1
[1 +Nph(|E(j)| − E(i))]Int(i, j) (5.10)

and for phonon emission,

Wph(i, j) =
∆E(∆k)2

4ℏρu
X(i)X(j)

π2[DOS(j)]−1
Nph(|E(j)| − E(i))Int(i, j) (5.11)

where, integrand Int(i, j) is defined as,

Int(i, j) =

∫ θmax

0

dθ
I⊥(qz(θ))

qz(θ)
[aeI∥

(
me

me +mh

∆k∥aBX

)
− ahI∥

(
mh

me +mh

∆k∥aBX

)
]

(5.12)

And θmax is defined here as,

123



cos(θmax) =


1 if c > 1

c if c ∈ [−1, 1]

−1 if c < −1

(5.13)

Some definitions of the terms is in order. First we define term c in equation 5.12.

If momentum corresponding to energy bin i is k(j) and energy bin j is K(j), then c is

defined as,

c =
K(i)2 + k(j)2 − (∆k)2

2K(i)K(j)
(5.14)

here, ∆k is defined as phonon energy for scattering between two subsequent energy

bin,

∆k =
∆E

ℏu
(5.15)

Another important in the integrand is, qz(θ) which is defined as,

qz(θ) =
√

(∆k)2 − k(i)2 −K(j)2 + 2k(i)k(j)cos(θ) (5.16)

and here we consider I⊥(qz(θ)) ≈ 1. ae(ah) is deformation potential for conduction

(valance) band. Other terms are, ρ is density of material, u is sound velocity, DOS(j)

is density of state (inverse of effective mass) corresponding to momentum k(j), X is

Hopfield coefficient. Values used for numerical calculation is given table 5.1. For such

values exciton-phonon scattering for some state is shown fig. 5.26.

Figure shows exciton phonon scattering rate from a state (state mentioned in legend

is initial state) to final state (momentum of final state is along x axis). Clearly, scattering

rate for transition with phonon absorption is higher than the transition with phonon

emission.

5.2.1.4 Exciton-Exciton Scattering Rate

We have already discussed basic of exciton-exciton scattering in section 2.4.1. For

numerical evaluation of discretized coupled rate equation, exciton-exciton scattering rate

is,
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Figure 5.26: Exciton phonon scattering from different state. x axis shows the
momentum value of final state exciton in after scattering rate. Legend shows exciton

initial energy bin no. Unit of scattering rate is s−1.

Wex(i, j, i1, j1) =
(∆ES)2

16π3h
|M |2 |X(i)|2|X(i1)|2|X(j)|2|X(j1)|2

[DOS(i1)]−1[DOS(j)]−1[DOS(j1)]−1
Int(i, i1, j, j1)

(5.17)

where, M = 6EBX
a2BX

S
and integrand Int(i, i1, j, j1) is defined as,

Int(i, i1, j, j1) =

∫
dx

1√
[(k(i) +K(i1))2 − x][x− (k(i)−K(i1))2]

1√
[(k(j) +K(j1))2 − x][x− (k(j)−K(j1))2]

(5.18)

where Integration limit is,

I = [(k(i)−K(i1))2, (k(i) +K(i1))2] ∩ [(k(j)−K(j1))2, (k(j) +K(j1))2]

This integration needs to be adaptive to handle singularity at the edge of the

integration region. This integration is kind of different from the other scattering rate
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defined i.e. exciton-phonon scattering rate. Here, scattering rate is due to interaction

between two exciton at energy bin i and j and after scattered they are in energy bin i1

and i2. And K(i), k(j), k(i1), k(j1) is momentum associated with energy bin (or state

no) i, j, i1, j1 respectively. This sort of scattering mechanism is dominant in polariton

relaxation dynamics.

5.2.2 Modification to Coupled SB Equations due to Defect

Due to introduction of defect, we are suggesting the following modification of discretized

rate equation 5.9 as,

dN(i)

dt
= P (i)− N(i)

τi
−

∑
j

Wph(i, j)N(i)(1 +N(j)) +
∑
j

Wph(j, i)N(j)(1 +N(i))

−
∑
j,i1,j1

Wex(i, j, i1, j1)N(i)N(j)(1 +N(i1))(1 +N(j1))

+
∑
j,i1,j1

Wex(i1, j1, i, j)N(i1)N(j1)(1 +N(i))(1 +N(j))

− N(i)

τd
(5.19)

Another term corresponding to exciton capture to defect is introduced via term N(i)
τd

to each energy bin. Calculation of exciton capture rate due to defect has been done

according to [92] with additional effect of effective capture cross section of exciton. Here

we are providing a somewhat detailed calculation to determine Rd(=
1
τd
).

Hamiltonian of a system with conduction band, valance band and defect level in

bandgap region can be written as,

H0 =
∑
k

Ec(k)c
†(k)c(k) +

∑
k

Ev(k)v
†(k)v(k) +

∑
d

Edd
†d (5.20)

One careful thing to consider here is k (lowercase) is actually single particle momentum

vector wheres K (uppercase) is in-plane exciton momentum vector. For convenience we

replace K (uppercase) by Q. c(v) is annihilation operator for conduction (valance) band

electron where d is annihilation operator for defect level with energy Ed. And q will be

exchanged momentum during any sort of interaction as we have discussed in scattering
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event. Exciton is is eigen-function of hamiltonian H which is H = H0 + Hint, where

interaction hamiltonian is defined as,

Hint =
∑
k1,k2,q

V (q)c†(k1 + q)v†(k2 − q)c(k1)v(k2) (5.21)

V (q) is Coulomb interaction potential in momentum domain. Exciton wavefunction

with momentum K is an eigenstate of H(= H0 +Heh) and is defined as,

|ψX(Q)⟩ =
∑
k

ψX,Q(k)c
†
(
k +

me

me +mh

Q

)
v

(
k − me

me +mh

Q

)
|ψX(0)⟩ (5.22)

where ψX,Q is Fourier transform of envelop wavefunction of equation 2.5 with |ψX(0)⟩ is

state corresponding to filled valance band and empty conduction band. This wavefunction

ψX(Q) follows same dispersion relationship as equation 2.8 (withQ replacingK). Here one

difference is presentation of wavefunction in terms of creation and annihilation operator.

An exciton is actually a linear superposition of all electron and hole wavefunction which

can exchange momentum me

me+mh
Q. Equation 5.22 is an indication of that.

Defining wavefunction close to defect is one of the approximation of this research work.

In [92], defect is taken as periodic potential which causes the appearance of extra phase

term with periodicity to appear in defect state wavefunction. But as in the experiment

[33, 87], disorder is due to dislocation which is random in nature. This prompts us to

approximate defect state wavefunction as,

ψd(r) = Cexp(−ζr2) (5.23)

here r is location of defect and ζ is confinement factor which is a phenomenological

parameter. ζ needs to be tuned along with some other parameters to fit numerical results

close to experimental results.

Main exciton capture process is considered due to capture of hole and electron through

the defect. Hole capture process as defined in [92] is used with modification here as,

Hhc =
∑
k1,k2,q

V (q)Xd(k2 − q)c†(k1 + q)v†(k2 − q)c(k1)v(k2)d+H.c. (5.24)

Xd(k2− q) is Fourier transform of equation 5.23. Using equation 5.22 as basis, we can
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use time dependent perturbation theory to determine hole capture rate. Electron capture

hamiltonian can be defined in the same way with now an electron is created at defect

level. Keeping only first order term, we get hole capture rate,

Rhc(Q) =
2π

ℏ
ndfd|X(Q)|2N(Q)

∑
k

Nc(k)|V (k)|2|ψd(k)|2 (5.25)

here, k is momentum of scattered electron with Ec(k) − Ec(0) = EBX − Ed. nd is

density of defect with occupation fd. Nc is conduction band density of states, |X| is

Hopfield coefficient squared and occupation N(Q) is defined as

N(Q) = ⟨b†(Q)b(Q)⟩ (5.26)

with b†(Q)(b(Q)) being exciton creation (annihilation) operator at momentum Q.

Same procedure for electron capture results in electron capture rate as,

Rec(Q) =
2π

ℏ
nd(1− fd)|X(Q)|2N(Q)

∑
k

Nv(k)|V (k)|2|ψd(k)|2 (5.27)

with Nv is now valance band density of state. This two capture rate is same as capture

rate from Shockley-Read-Hall theory of recombination [167,168] with excitonic transition

of momentum between hole and electron is taken into account and additional effect of

localization near defect region.

Another important factor to be considered here for the calculation of τd is the effect

of exciton capture cross-section and exciton momentum. Clearly, defect capture rate is

directly proportional to capture cross-section of exciton (≈ πa2BX) and velocity of exciton

center of mass . Considering all the effect we can write exciton capture rate as,

Rd(Q) = A(Q)nd(1− fd)|X(Q)|2N(Q)|Q|
∑
k

Nv(k)|V (k)|2|ψd(k)|2 (5.28)

where, term A(Q) contains universal constant like ℏ, π with exciton center of mass m

and exciton capture cross section which can be a function of |Q|.

5.2.2.1 Data Table for Coupled Rate Equation

Various data that is needed for numerical calculation of condensation dynamics from

semiclassical Boltzmann equation is given in the following table. Data are taken from
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[33, 87,169], NSM archive etc.

Table 5.1: Data for Numerical Solution of Coupled Boltzmann Rate Equation.

Property Symbol Value
Effective mass of electron me 0.2 m0

Effective mass of heavy hole mhh 1.1 m0

Effective mass of light hole mlh 0.259 m0

Exciton Bohr radius aBX 40 nm
Refractive index n 2.6

Photon energy at k = 0 Eph0 3.415 eV
Exciton binding energy EBX 20 nm

Micro-cavity quality factor Q 2090
Lower refractive index of DBR mirror nl 1.59
Higher refractive index of DBR mirror nl 2.87

Coupling factor ℏg -0.035 eV
Normalization area S 138 µm2

Density ρ 6.15 gcm−3

Sound velocity u 7960 ms−1

CB deformation potential ae 11 eV
VB deformation potential ah 11 eV

Temperature T 300 K
Exciton formation rate W 1e10 s−1

Energy mesh size ∆E 0.1 meV
Electron-hole plasma lifetime τeh 5 ns

5.2.2.2 Non-resonant Pumping

As we have already mentioned, we considered non-resonant pumping condition. So P (i)

from equation 5.9 is defined as,

P (i) =


Wneh

Ñ
if E(i)− EX(i) > ∆

0 otherwise
(5.29)

where, ∆ exciton binding energy and EX is exciton energy as a function of in-plane

momentum. Value of neh (electron hole plasma concentration) has been deduced from the

129



following rate equation at each time t.

dneh
dt

=
JS

q
− neh
τeh
−Wneh (5.30)

here W is exciton formation rate, q is electron charge τeh is electron-hole plasma

lifetime.

5.2.3 Numerical Result of Coupled SB Equations

In this section we will present numerical results of coupled SB rate equations. We take

time mesh of size ∆t = 0.01 ps for calculation purpose.

5.2.3.1 Checking Steady State

Clearly, we first check how many calculation step is needed to achieve stable state.

Figure 5.27: Occupation as a function of time. Steady state condition has been achieved
after approximately 200 ps. Several different states are shown for better testing purpose

of numerical calculation.

In fig. 5.27 variation of occupation with respect to time is shown. Steady state has

been achieved around 200 ps. To avoid any unwanted numerical error, calculation has been

done up-to 300 ps. This ensure a better stability condition than the one achieved at 200

ps. For the rest of this section we present result that has been achieved at t = 300ps. Fig.
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5.27 shows four different state with each having different energy and for three different

current density. Such analysis has to be performed for each state to ensure existence of

steady state of the system.

If one state cannot achieve steady state, calculation has to be continued for further

time until that state has not reached stable steady state. In our calculation, we see that

for different current density whole system reaches steady state well before 300 ps.

5.2.3.2 System with No Defect

Figure 5.28: Occupation as a function of energy for three different current densities
50A/cm2, 200A/cm2 and 500A/cm2.

We will start with equation set 5.9 where we take no defect into account. Fig. 5.28

shows the plot of occupation, N as a function of energy, E.

For experimental data used for such calculation (table 5.1), threshold current was

found to be 200A/cm2. So for current density of 50A/cm2, we see a very low occupation

value and for current density much larger than threshold current density, 500A/cm2,

occupation value gets quite big. This is an indication of LASING phenomenon.

Another important thing to be noticed here is ground state occupation N(E = 0) is
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abnormally larger than other state especially for J ≥ Jth ≈ 200A/cm2. The reason

behind this is explained in section 2.4.1 as ‘Stimulated Scattering’. Such scattering

mechanism forces a macroscopic amount of polariton to be accumulated at state E = 0

which causes emitted light to be coherent. This is the fundamental difference between a

‘photon LASER’ and ‘polariton LASER’.

Figure 5.29: Occupation plot, N(E) along with Maxwell distribution fit for two different
current densities 200A/cm2 and 500A/cm2.

One of our main objective of this research work is to analyze the effective temperature

of polariton LASER under different condition. We can fit N(E) plot with Maxwell

Distribution (= N0exp

(
− E

kBTpol

)
). We consider polariton does not thermalize with

lattice but rather thermalize among themselves. That’s why we use Tpol rather than

lattice temperature, Tlattice which is room temperature here, 300 K.

Fig. 5.29 shows such a fit for two different current densities. For both cases, Tpol >

Tlattice i.e. for J = 200A/cm2, effective polariton temperature is found as 320K and for

J = 500A/cm2 such temperature is 500K whereas for both cases is 300K. A higher

effective polariton temperature ensures pseudo-thermalization of polariton particle rather

than a conventional thermalization with lattice and environment. This result is consistent
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with several experimental findings.

5.2.3.3 System with Defect

Figure 5.30: Occupation plot, N(E) for two different current densities 200A/cm2 and
500A/cm2 with defect density nd = 1× 107cm−2.

In fig. 5.30, numerical results for defect density nd = 1× 107cm−2 has been shown for

two different current densities 200A/cm2 and 500A/cm2 along with the results with no

defect. Result is intuitively obvious as we solve here equation set 5.19 instead of equation

set 5.9.

Addition of −N(i)
τd

is clear from calculation result, Occupation at each energy bin is

reduced. Amount of reduction depends on exact value of Rd(Q) at the corresponding

energy bin. This effect is clear from fig. 5.30. Another important understanding from our

analysis of defect capture rate (equation 5.27) that this reduction in occupation number

should depend on defect density. This is also clear from numerical results shown in fig.

5.31 and 5.32. As we increase defect density from 1×107cm−2 to 1×108cm−2 (an increase

in one order) causes occupation each corresponding energy bin to decrease further. This

decrease with defect densities is consistent with experimental results [33]. Our calculated
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Figure 5.31: Occupation plot, N(E) for two different defect densities, nd = 1× 107cm−2

and nd = 1× 108cm−2 for current density of 200A/cm2.

Figure 5.32: Occupation plot, N(E) for two different defect densities, nd = 1× 107cm−2

and nd = 1× 108cm−2 for current density of 500A/cm2.
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result even match well with experimental results. Such a fit shown in fig. 5.33.

Figure 5.33: Calculated occupation plot N(E) along with experimental data found for
GaN device 2 (see text for detail). For numerical calculation, defect density

nd = 1× 107cm−2 and current density of 200A/cm2 was used.

Although we can claim from fig. 5.33 calculated result shows a good fit with

experimental data, there are some discrepancies. In experiment, GaN device 2 had a

dislocation density of 7.22 ± 0.34 × 108cm−2 where in our calculation we find the same

result for defect density of 1 × 108cm−2. This sort of mismatch can be attributed to

our approximation of equation set 5.19 where we take consider influence of defect as

an independent term, not effecting other scattering mechanism like exciton-phonon or

exciton-exciton interaction mechanism. Additionally, there might be some error regarding

Ed estimation along with defect bound wavefunction. For our calculation of defect, we

consider Ed to be mid gap region (equation 5.28), taking defect as deep level trap center.

This sort of idealization might lead to such mismatch between experimental results and

numerical results.

As we have already mentioned in previous section, polariton condensate is

quasi-thermalized state rather than actually thermalize with lattice, having a different
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temperature Tpol other than lattice temperature Tlattice. Such polariton effective

temperature is found by fitting polariton occupation plot with a Maxwell distribution

with temperature Tpol as we have done in fig. 5.29.

Same procedure has been followed for defect case. Occupation plot along with Maxwell

distribution fit is shown in fig. 5.34 for current densities 200A/cm2 and fig. 5.35 for current

densities 200A/cm2 In both cases, defect density has been varied from 1 × 107cm−2 to

1× 108cm−2.

An interesting can be seen from these figures. When no defect is present (equation set

5.9), effective polariton temperature is always greater than lattice temperature (Tpol >

Tlattice). This is general convention in terms of polariton effective temperature and has

been experimentally verified by many experiment [61,67,69]. Although polariton effective

temperature can vary with applied current density but nevertheless Tpol > Tlattice will

always maintain for current density above threshold current density (For J = 200A/cm2,

Tpol = 320K and for J = 500A/cm2, Tpol = 420K where lattice temperature Tlattice =

300K).

Figure 5.34: Occupation plot, N(E) along with Maxwell distribution fit for two different
defect, nd = 1× 107cm−2 and nd = 1× 108cm−2.Here current density is 200A/cm2.

But with the introduction of defect such case of Tpol > Tlattice is not always followed
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Figure 5.35: Occupation plot, N(E) along with Maxwell distribution fit for two different
defect, nd = 1× 107cm−2 and nd = 1× 108cm−2.Here current density is 500A/cm2.

as we can see from fig. 5.34 and 5.35. For J = 200A/cm2 and defect density of nd =

1 × 107cm−2 we find an effective polariton temperature of Tpol = 220K and for defect

density of nd = 1 × 108cm−2 we find an effective polariton temperature of Tpol = 180K.

Both of these polariton temperature is much lower than lattice temperature, Tlattice =

300K. Again for J = 200A/cm2 we find same type of result. Here, defect density of

nd = 1×107cm−2 we find an effective polariton temperature of Tpol = 310K and for defect

density of nd = 1 × 108cm−2 we find an effective polariton temperature of Tpol = 200K.

Here, for defect density, nd = 1× 107cm−2 polariton effective temperature is almost equal

to lattice temperature (Tpol ≈ Tlattice). But for higher defect density polariton effective

temperature can get lower than lattice temperature (210K). This same sort of result

was found in one experiment [33] where introduction of defect causes polariton effective

temperature to get decreased (dislocation density of 6.44±0.34×108cm−2 resulted in Tpol

of 270 ± 8.9K and density 7.22 ± 0.34 × 108cm−2 resulted in Tpol of 230 ± 9.7K). Same

effect due to defect has been found by solving equation set 5.19 numerically taking defect

capture rate by considering defect capture rate by equation 5.28.
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5.3 Summary

In chapter 05, we present result for analysis on the impact of defect from two different

point of view, one is in condensation in spatial and temporal domain and other in

condensation in kinetic domain. Both of these perspective give us a better insight of

the effect of defect in polariton like bosonic system. Spatial analysis shows us that defects

prevent local condensate forming spontaneously from creating a long range coherence, a

macro-condensate. And kinetic analysis shows us that defect reduces occupation number

of each state and effectively reduces effective polariton temperature. Such two different

dramatic result might not seem no connection in them, why absence of a macro-condensate

results in a lower effective polariton temperature? Answer of such question will need a

detail analysis of quantum thermodynamics which will be presented in chapter 06.But this

seemingly two different results give us a better understanding of how defect can ‘possibly’

influence a system. We her emphasize on the word ‘possibly’ as we have to resort some

sort of approximation to analyze the influence of defect. Limit of such approximation is

needed to be tested to better understand the complex nature of defect in a system.
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Chapter 6

Thermodynamics of Defective System

Thermodynamic study of a system is normally done in the limit of large number of system

constituents. In this regard, probability plays a key role to understand thermodynamic

behavior. But in quantum mechanics, unlike classical mechanics system is very well

defined by hamiltonian. So a state evolves exactly as equation suggests. So thermalization

in quantum system is thought to occur for each individual eigenstate and for their phase

coherence. Addition of defect will change this picture. In this chapter, we will take a

heuristic approach to tackle the problem of defect induced thermalization phenomenon.

Additionally, we will solve disordered Bose Hubbard model numerically to understand the

influence of defect on clean system especially on thermodynamic property of the system.

It is our aim to reach a meaningful conclusion of the question raised in previous chapter,

why absence of a macro-condensate results in a lower effective polariton temperature?. In

heuristic approach, Theoretical background of this results are provided in Chapter 04.

6.1 Heuristic Approach

In this section, understanding the lower effective temperature is tackled from two

viewpoint, percolation cluster and complete localization of low energy eigenstate.

Discussion of both approach with slight mathematical aid is provided.

6.1.1 Approach 01: Percolation Cluster

As we have already discussed in section 4.4.2, presence of defect prevents long range

correlation, results in disconnected superfluid puddle. We got somewhat similar result
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in Chapter 05 when we evaluated ground state dynamics under the presence of defect.

Local condensate cannot combine and create a macro condensate due to pinned vortices.

We define local hamiltonian of the system containing such superfluid puddle or local

condensate as HV (i) and total hamiltonian is defined as,

H =
N∏
i=1

⊗
HV (i) = HV (1) ⊗HV (2) ⊗ ...⊗HV (N) (6.1)

where, V (i) is the volume of ith region and there are N different regions with local

condensate (total volume V =
∑N

i=1 V (i)). No coupling between two region is considered.

Eigenstate of such a region or eigenstate for HV (i) is defined as,

ψil(ri) = N i
l

∫
ddpCi

l (pi)δ(p
2
i − 2mU i

l )e
i
ℏ p⃗i.r⃗i (6.2)

where, d is dimension of the system, U i
l is eigen-energy of state l in such a local region

(ith region), m is mass of the particles and N i
l is defined as,

∫
V (i)

ddr|ψil(ri)|2 = 1 (6.3)

We here consider eigenfunction in each region is just a random summation of plane

wave function with the coefficients following Gaussian distribution. Coefficients Ci
l (pi)

follows,

⟨Ci
l (pi)C

i
k(pi)⟩EE|V (i) = δlk (6.4)

⟨Ci
l (pi)C

j
l (pj)⟩V = δij (6.5)

⟨Ci
l (pi)C

j
k(pj)⟩V = 0 (6.6)

⟨Ci
l (pi)C

i
l (qi)⟩EE = δ(pi − qi) (6.7)

Purpose of equation 6.4 - 6.7 is to isolate one region of local condensate from other,

even eigenstates. Equation 6.5 defines that eigen state from two region i and j are

completely uncorrelated. We can use equation 6.2 to define eigenfunction for system
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defined by hamiltonian in equation 6.1 as,

ψα(r) =
N∏
i

⊗
ψil(ri) (6.8)

As a result of equation 6.8, eigen-energy of hamiltonian H (from equation 6.1) can be

written as,

Uα ≈
N∑
i=1

U i
l (6.9)

Fourier transform of eigenstate of H can be defined as,

ψα(P ) =
1√
ℏd

∫
ddrψα(r)e

− i
ℏ P⃗ .r⃗ (6.10)

We can consider eigenstate of each region separately because of equation 6.5 and 6.6.

We can write,

⟨ψα(p)ψβ(q)⟩EE =
N∑
i=1

⟨ψil(pi)ψik(qi)⟩EE =
N∑
i=1

(N i
l )

2δlkδ(pi − qi)δ(p2i − 2mU i
l ) (6.11)

For an initial state ψ(P, 0),

ψ(P, 0) =
∑
α

aαψα(P ) (6.12)

For such a system, microcanonical average of any observable is defined according to

equation 4.39. We can determine diagonal component of such observable as,

Oαα = ⟨ψα(P )|O|ψα(P )⟩ (6.13)

which can be expressed in terms of ψil(pi) as,

Oαα =
N∑
i=1

⟨ψil(pi)|Oi|ψil(pi)⟩ =
N∑
i=1

Oi
ll (6.14)

Here, Oi is observable in ith region. So a thermodynamic average is summation of its

value in different region where local superfluid phase exist. This result in quite intuitive

according to percolation picture.
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Based on above discussion, we will determine probability of finding a particle from

a system of n particle around momentum P1 which is defined in equation 4.4. For non

defective case, similar calculation is given in [99, 100, 147]. For 3D quantum mechanical

system with initial condition of equation 6.12, such probability is defined as,

ρQM(P1, t) =

∫ ∫
...

∫
d3P2d

3P3...d
3Pn|ψ(P, t)|2 =

∑
αβ

a∗αaβe
i(Uα−Uβ)t/ℏOαβ(P1) (6.15)

Using equation 6.14, 4.5, 4.38 and 4.39, we can write ρQM(P1, t) as,

ρQM(P1, t) =
∑
α

|aα|2
N∑
i=1

I3n(i)−3(2mU
i
l − P 2

1 )

I3n(i)(2mU i
l − P 2

1 )
(6.16)

where In(x) is defined as,

In(x) =
(πx)

D
2

T (D
2
)x

(6.17)

In the above we consider a uniform density across the whole sample. As a result of

such assumption, n(i) = n
V
V (i), is local density of particles. If we calculate each region

individually, each system will show Maxwell Boltzmann distribution for large n(i) limit

(n(i)→∞). Now each region will show a different equilibrium distribution with different

temperature, Ti due to difference in U i
l among different regions. For each individual region

we can express I3n(i)−3(2mU
i
l−P

2
1 )

I3n(i)(2mU
i
l−P

2
1 )

using U i
l =

3
2
n(i)kBT

i
l as

I3n(i)−3(2mU
i
l − P 2

1 )

I3n(i)(2mU i
l − P 2

1 )
=

1

(2πmkBT il )
3/2
e
− P2

1
2mkBTi

l = ρiMB(T
i
l ) (6.18)

which in turn gives us the probability distribution as,

ρQM(P1, t) =
∑
α

|aα|2
N∑
i=1

ρiMB(T
i
l ) (6.19)

If initial energy of the system is U and for close quantum system there is no exchange

of energy between the system and outside environment, energy U will remain constant

throughout the whole dynamics. Such total energy now can be expressed as,

U =
∑
α

|aα|2Uα =
∑
α

|aα|2
N∑
i=1

U i
l (6.20)
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From equation 6.19, we see that for exchange inside individual region i, energy is

thermalized with temperature, T il . This local temperature 4.3.5 depends on the local

energy quantity. Net distribution of such disordered system is micro-canonical average of

eigenstates which is again a weighted average of local distribution. Without defect, such

local distribution do not occur which causes overall temperature to be higher.

6.1.2 Approach 02: Eigenstate Localization

This approach is quite simpler than the previous case. Instead of dividing whole region into

small region containing local condensate, we instead consider localization of eigenstates.

Eigenstate is considered here is same as before (equation 6.2) for whole sample space

instead of only for a local region. For clarity, eigenstate is considered here,

ψa(r) = N

∫
dpCa(p)δ(p

2 − 2mUa)e
i
ℏ p⃗.r⃗ (6.21)

with Ca(p) is Gaussian random variable follows equation 6.4 and 6.7 over the whole

sample rather than only a local region. Fourier transform of such random wavefunction

is,

ψa(p) = N

∫
dKCa(K)δ(p2 − 2mUa)

∫
dre

i
ℏ p⃗.r⃗ (6.22)

where Ua is eigen energy corresponding to state ψa(p). If dynamics start from initial

condition,

ψ(P, 0) =
∑
a

caψa(p) (6.23)

with energy U as,

U =
∑
a

|ca|2Ua (6.24)

Now our assumption is here that some eigenstates thermalize themselves wheres others

localize themselves thus avoid thermalization. We can divide initial state of the system

into two components as,
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ψ(P, 0) =
∑
l

clψl(p) +
∑
t

ctψt(p) (6.25)

where ψl(p) and ψt(p) are the localized and thermalized states respectively. Similarly

energy can also be divided into two parts,

U =
∑
l

|cl|2Ul +
∑
l

|ct|2Ut = U(l) + U(t) (6.26)

And further we also approximate,

⟨ψl(p)|ψt(p)⟩ = 0 (6.27)

Such approximation makes this approach quite simpler than approach 01. Validity

of such approximation can be questioned. Our logic behind such assumption is that

with defect some state is found to be localized especially the low lying state as they do

not posses sufficient energy to surpass the defect barrier. Additionally, we have already

seen in section 4.3.5 how localization can prevent thermalization with is the basis of our

approximation of equation 6.27. Nevertheless, such assumption should be put through

experiment and scrutiny for better understanding. We will not do such scrutinising

activity here but rather keep it for future work.

Following the assumption of equation 6.25, 6.26 and 6.27 from discussion of approach

01 it can be easy said that thermalized energy will attain an equilibrium temperature,

Tt but localized energy corresponding to localized eigenstate do not thermalize. If we

consider a simple model that each particle attain an average energy, then Ut =
3
2
NkBTt

and system total energy can be written as as,

U = Ul +
3

2
NkBTt (6.28)

where, N is total no. of particles (Considering only a small fraction of particle has

been thermalized). If no defect present then whole energy will be thermalized which will

result in temperature T > Tt as Ul > 0. This can be thought of another alternative answer

to the question effective lowering of polariton temperature due to defect.
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6.2 Numerical Approach

Heuristic approach has several drawbacks, most significant of which is that it is based

on some through assumptions. Although validity and detail of such assumption can

be tested experimentally, such assumption prevents to bring a complete and tentative

analytical conclusion on the question, why absence of a macro-condensate results in a

lower effective polariton temperature? So we resort to numerical approach. Here, we

solve DBHM numerically. DBHM is defined as,

H = −t
∑
⟨ij⟩

(b†ibj + b†jbi)− µ
∑
i

n̂i +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

V (ri)n̂i (6.29)

with Vi being drawn randomly from [−W/2,W/2] with disorder strength W . Detail

of such model is described in section 4.4.

Numerical solution of such model requires heavy computational resources and time.

To optimize both, we resort to Quantum Monte Carlo (QMC) simulation method for

system which has hamiltonian of large dimension. Hamiltonian with smaller dimension

is solved by complete diagonalization method. Introductory discussion regarding QMC

simulation methods is provided in appendix.

In Fig. 6.1, we show the lattice to solve Bose Hubbard Model with and without any

disorder. Initially, 4 bosons are located lower right corner (blue lattice points). At t = 0,

red bond has been established and bosons are allowed to roam within 13 lattice points

according to equation 6.29 with disorder strength W = 0. Same procedure has been

followed to report thermalization of isolated quantum state in [170]. We consider singly

occupied site which makes dimension of Hamiltonian to be 715. Momentum distribution

along x axis is obtained as,

n(kx) =
∑
ky

n(kx, ky) (6.30)

where n(kx, ky) is defined as,

n(kx, ky) =
1

L2

∑
i,j

e−i2πk⃗.(r⃗i−r⃗j)/L⟨b†ibj⟩ (6.31)

The position vector ri = (ixd, iyd) with lattice constant d and L = 4. In Fig. 6.2,

thermalization of n(kx = 0) is shown, with time value approaches close to 1.
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Figure 6.1: Lattice diagram for evaluating n(k). A 4× 4 lattice (4 sites missing) with 4
atoms. Initially, atoms were located in blue zone with no connection with rest of the
lattice. At t = 0 connection has been established (red bond) and system is allowed to

thermalize.

Figure 6.2: Evolution of n(kx = 0) with time. Here, hopping amplitude is considered as
t=2.2U to ensure the system is in superfluid phase. x axis time ordinate is normalized

by t.
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Figure 6.3: Momentum distribution along x axis for initial and thermalized state (after
60 unit of normalized time).

In Fig. 6.3, complete momentum distribution for initial and final state without any

disorder is shown. Initially, whole system is comprised of 4 bosons in 5 lattice points. As

the these bosons are allowed to roam in 13 lattice points. Final momentum distribution is

take at 50 unit of normalized time (time normalized by hopping amplitude.) As explained

in [170], such thermalized value can be very well approximated by ETH, a micro-canonical

average with mean of ground state energy of hamiltonian and very small deviation.

So far, these results have already been found in [170]. Our addition to that results

is study the influence of defect. In Fig. 6.4, momentum distribution with and without

disorder. We consider disorder potential V (i) to be drawn from set [−W/2,W/2] with

uniform distribution. Presence of disorder can prevent thermalization of the system

as discussed in section 4.3.5 by localizing particles in spatial domain. This effect is

clear from momentum distribution. Disorder spread momentum distribution further, a

delocalization is momentum space is an indication of localization of phase space. Such

delocalization, as expected, cannot be approximated by micro-canonical average predicted

by ETH (equation 4.40). Presence of disorder makes application ETH invalid here.

So far, we use exact diagonalization method to study BH model. This was possible
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Figure 6.4: Comparison of momentum distribution n(kx) for system without (W = 0)
and with (W = 0.2U) disorder potential. Delocalized state for a system without disorder

gets partially localized due to disorder as can be seen from momentum distribution
function.

Figure 6.5: Evolution of Von Neumann entanglement entropy for a system for L = 12
with time. Entropy starts from an initial condition and eventually saturates to a

maximum value.
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Figure 6.6: Evolution of Von Neumann entanglement entropy for a system with varying
lattice size.

due to low dimension of the hamiltonian which is a consequence of low number of

lattice sites and low number of bosons. But as explained in [98], to accurately describe

thermalization property, larger system should be evaluated. As system size grows,

hamiltonian dimension grows exponentially. For example, for 1D lattice with size 24

and 12 bosons, hamiltonian dimension is 2704156. For larger system, it will be impossible

to utilize exact diagonalization (Creating a matrix of 2704156 × 2704156 will require a

lot of memory and solving such a system will also require further memory with time).

Instead of exact diagonalization, Stochastic Series Expansion (SSE) method has been

used to get the follwoing results with 1D BH model containing L lattice points to reduce

computational resources. In Fig. 6.5 von neumann entropy is shown as a function of

time and in Fig. 6.6 as a function of lattice point, L. As time passes, system eventually

thermalizes, reaching maximum entropy state. The saturation value of this entropy is

a function of lattice points. Although we do not find any saturation characteristics in

entropy as a function of L, in [98], such saturation characteristics appear for larger L.

For following results, we will use 1D BH model with L = 24 along with incommensurate

filling of ⟨n⟩ = 0.5.
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Figure 6.7: Evolution of Von Neumann entanglement entropy for a system with different
disorder strength.

In Fig. 6.7, saturated von neumann entropy for three different disorder strength is

depicted. With disorder we see a steady decline of saturation entropy. Additionally in Fig.

6.8 and 6.9 shows same behavior of compressibility and superfluid fraction with respect

to defect. Compressiblity is defined as,

κ =
d⟨N⟩
dµ

(6.32)

where ⟨N⟩ is defined as,

⟨N⟩ = 1

Z

∑
p

∑
a

(−β)p

p!
⟨a|

∑
i

n̂i|a⟩ (6.33)

with Z is partition function and |a⟩ is eigenstate of the hamiltonian and β = 1
kBT

. We

use Handscomb method [171] to express the expectation value of operator.

And Superfluid Fraction is defined using the winding number prescription [172]. In the

World line configuration with periodic boundary conditions, whenever a particle crosses

a boundary it means a winding has occurred. This is particularly easy to measure in SSE

as all that is need is to check for off diagonal terms that connect two sites across the
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Figure 6.8: Evolution of Compressibility for a system with different disorder strength.

(periodic) boundary. Using winding number fluctuation, superfluid fraction is defined as,

ρs =
m∗⟨X2⟩L2

ℏ2βN
(6.34)

here m∗ is effective mass of particle. Such situation is expected. Disorder, as we discussed

earlier, causes uncorrelated local condensate or superfluid puddle which effectively impact

compressiblity and superfluid fraction in the whole sample. Lack of correlation reduces

entropy as expected.

But saying something simply as ‘Disorder reduces thermal equilibrium value of

observable of a system’ is understatement. Effect of disorder is not just simply reducing

observable expectation value but something much more exotic. Due to presence of defect

or disorder, direct MI-SF transition has transformed to a new type of transformation,

BG-SF transition with a new universality class. This sort of of transition is predicted

to occur in percolation cluster. BG phase has two different characteristics; one with

high compressibility (for incommensurate filling) and another with low compressibility.

And there exist a crossover from low κ BG to high κ BG for small change in disorder

strength [173]. Disorder can stabilize the SF phase at higher densities, whereas at low

densities the disorder stabilizes BG state.
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Figure 6.9: Evolution of Superfluid fraction for a system with different disorder strength.

6.3 Summary

In this chapter, we look at the effect of disorder from thermodynamics perspective.

Polariton condensate can be considered as isolated quantum system due to lack of coupling

with outside environment. Such system tends to follow ETH, system acts as a bath for

thermalization of subsystem of its own. Presence of disorder induces localization which

invalidate the use of ETH for the system. So, in exact sense, whole system cannot

thermalize in the event of dislocation. Here, thermalization occurs on local level with

each zone is defined by its own temperature. Disorder form several superfluid puddle

across the sample which cannot form a macro condensate by establishing ODLRO. These

small local areas with condensate thermalize itself without interacting with other local

condensate. This result in the lowering of effective polariton temperature for a defective

polariton LASER. In this chapter, we tackle the problem from two different approach and

analyze the impact of defect.
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Chapter 7

Performance Analysis of Defected

Bosonic System

A system is tried to design as perfectly as possible for best performance. But inevitably,

some form of non-ideal condition due to limitation of available technology. These sort of

ideal condition can alternate expected performance of a system greatly, even can make

the whole system obsolete. Presence of different types of defect (point defect, dislocation,

vacancy, interstitial defect etc.) is one of the many types of imperfections that can present

in a system. Sometimes, presence of such non-ideal cases can give us some different

result which is not possible in an ideal system. Imperfection breeds new result and new

understanding. But imperfections are complicated to study from theoretical viewpoint.

So often, detailed experiment is needed to get an idea of such remarkable result. Then

theoretical analysis can be performed based on those result. Such theoretical analysis

along with numerical calculations have been done in chapter 05 and 06. In this chapter

we will show the impact of defect of some practical applications based on our theoretical

analysis done so far. This will shed some light on practical impact of defect.

7.1 Impact of Defect on Small Signal Characteristics of

Exciton-Polariton LASER

We have already discussed impact of defect on polariton LASING in chapter 05. In this

section we will analyze small signal performance of polariton LASER. Experimental basis

of such work can be found in [87]. Here,
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7.1.1 Simplified Rate Equation

We will not use detailed equation set 5.19 rather a simplified version introduced by Tassone

et.al. [94] and Iorsh [169]. Considering defect equations for electrical pumping scheme are

modified as,

dneh
dt

=
JS

q
− neh
τeh
−Wneh (7.1)

dnx
dt

= −nx
τx
− nx
τdx

+Wneh−anx(1+np)+ae
− ∆sc

kBT nxnp−bn2
x(1+np)−cnxneh(1+np) (7.2)

dnp
dt

= −np
τp
− np
τdp

+ anx(1 + np)− ae
− ∆sc

kBT nxnp + bn2
x(1 + np) + cnxneh(1 + np) (7.3)

Here, neh, nx, np are the concentration of electron hole plasma, exciton and

excitons-polaritons respectively, J is current density, S is effective surface area, τeh, τx, τp

are decay rate of electron-hole plasma, exciton lifetime and exciton-polariton lifetime

respectively, W is exciton generation rate, a, b, c are exciton-acoustic phonon scattering

rate, exciton-exciton scattering rate and exciton electron-hole plasma scattering rate

respectively. The detail regarding equations 7.1-7.3 can be found in Irosh et.al [169].

Our modification here is the introduction of nx

τdx
and np

τdp
as same as equation set 5.19.

Here τdx is inverse of exciton capture rate at high momentum excitonic state where τdp is

inverse of exciton capture rate at k = 0.

7.1.2 LI Characteristics

Before delving into detail of small signal analysis, we analyze the effect of defect on lasing

threshold.

Introduction of defect causes LASING threshold to increase as from Fig. 7.1. This

result is consistent with other device especially with normal semiconductor device. In

order achieve accepted performance, most of such imperfect device requires more energy.

Here is also the same case. From numerical calculation, we find that with no defect

(τdx = τdp = ∞), polariton LASER shows a threshold of 200A/cm2 but with defect this
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Figure 7.1: LI characteristics of polariton LASER with and without defect.

threshold increases to 250A/cm2 for defect density of 5× 106cm−2 and to 350A/cm2 for

defect density of 5× 106cm−2.

7.1.3 Small Signal Analysis of Polariton LASER

Now we will analyze small signal characteristics based on equation 7.1-7.3. One of the

main reason to use simplified rate equation (equation 7.1-7.3) rather than equation set

5.19 is that simplified rate equation can be further simplified and approximated to give

us some analytical expression of small signal characteristics. For small signal analysis

equation 7.2 and 7.3 can be written as [169],

d

dt

dnx
dnp

 =

P1 P2

P3 P4

dnx
dnp

+

dnp(W − cnx∞np∞)

dnpcnx∞np∞)

 (7.4)

where,

P1 = −
1

τdx
− 1

τx
+ anp∞ + 2bnx∞np∞ + cneh∞np∞ − anp∞e

− δesc
kBT (7.5)
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P2 = anp∞ + 2bnx∞ + cneh∞np∞ − anp∞e
− δesc

kBT (7.6)

P3 = −anx∞ − bn2
x∞ − cneh∞nx∞ + anp∞e

− δesc
kBT (7.7)

P4 = −
1

τdp
− 1

τp
+ anx∞ + bn2

x∞ + cneh∞nx∞ − anp∞e
− δesc

kBT (7.8)

For calculation of defect free case, a simple consideration of τdx = τdp =∞ will give us

the result. Laplace transform of equation 7.4 gives us the following expression for nx(s)

and np(s).

nx(s) =
neh∞(cnx∞np∞ −W )(−P4 +W )

(−P1 + s)(−P4 + s)− P2P3

(7.9)

np(s) =
neh∞(W − cnx∞np∞) + (−P1 + s)cnx∞np∞

−P2P3 + s2 − s(P1 + P4) + P1P4

(7.10)

These equation (equation 7.9 and 7.10) along with equations 7.5-7.8 will be used for

small signal analysis for both defective and defect free case.

7.1.3.1 Defect Free Polariton LASER

Before going into detail of system with defect, we first analyze the system without defect.

Numerical calculation of equation 7.1-7.3 gives us the following results (Fig. 7.2) for

four different current densities (266A/cm2, 304A/cm2, 570A/cm2 and 1026A/cm2). With

more current densities frequency response shift to higher frequency.

Resonance frequency of such can be determine analytically. Under steady state

condition, (dnx

dt
= dnp

dt
= deh

dt
= 0), we can safely approximate,

1

τp
≈ bn2

x∞ (7.11)

which gives us expression of P2 and P3 as,

P2 = −bn2
x∞ , P3 = 2bnx∞np∞ (7.12)

Using these expression, from equation 7.10 we can determine resonance frequency of
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Figure 7.2: Frequency response (magnitude plot) of polariton LASER without any defect
for four different current densities, 266A/cm2, 304A/cm2, 570A/cm2 and 1026A/cm2.

polariton LASER is,

ωr =

√
2
bnx∞np∞

τp
(7.13)

This is the same expression derived by Iorsh et. al [169]. Defect free polariton LASER

resonance frequency can be approximated by this equation.

7.1.3.2 Polariton LASER with Defect

Same equation 7.1-7.3 will be used here but with τdx = τdp ̸= ∞. Values that has been

found for τdx and τdp for different current densities are shown in table 7.1. As can be seen

with increase in current density, capture rate for both high momentum exciton and low

momentum exciton has increased.

In Fig. 7.3, frequency response for polariton LASER with defect is shown for same

four different densities as defect free case. One thing is obvious here is the absence of

resonant frequency. We can find an analytical answer to this sort of result. Using the

same approximation of equation 7.11, we can find an analytical expression for resonant

frequency as,
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Table 7.1: Effective capture time for high and low momentum exciton.

Current density (A/cm2) τdx (ns) τdx (ps)
266 5.5 4.8
304 3 3.5
570 1 0.81
1026 0.33 0.75

Figure 7.3: Frequency response (magnitude plot) of polariton LASER with defect
(nd = 1× 108cm−2) for four different current densities, 266A/cm2, 304A/cm2, 570A/cm2

and 1026A/cm2.
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ωr =

√
2
bnx∞np∞

τp
− R2 + 4Rbnx∞np∞

4
(7.14)

where R = 1
τdx

+ 1
τdp

. If R >> bnx∞np∞, we can simplify equation 7.14 as,

ωr =

√
2
bnx∞np∞

τp
− R2

4
(7.15)

If R2 < 8 bnx∞np∞
τp

system is under-damped and system will show a resonance frequency.

But when R2 > 8 bnx∞np∞
τp

condition is not fulfilled, system is over-damped (with both of

system poles are in left plane and real) and system will not show any resonant frequency.

Figure 7.4: Frequency response (magnitude plot) of polariton LASER without and with
defect (nd = 1× 108cm−2) for current density of 304A/cm2.

In Fig. 7.4 and 7.5, we are showing exclusively this effect of under-damped to

over-damped transition due to introduction of defect for four different current densities.

Presence of defect does not confirm such transformation but condition R2 > 8 bnx∞np∞
τp

has

to be fulfilled which can be fulfilled using other sort of damping mechanisms. If R is very

low, one can find the system in under-damped condition, with a real value of resonant

frequency. In our case of defect density of 1× 108cm−2, system has reached over-damped
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Figure 7.5: Frequency response (magnitude plot) of polariton LASER without and with
defect (nd = 1× 108cm−2) for current density of 1026A/cm2

region.

From such numerical results, one thing is clear presence of defect effect frequency

response by changing the nature of the system (from under damping to over damping)

and reduce its -3 dB frequency. A close look at Fig. 7.4, 7.5 reveals that at every current

density, we locate such decrement of -3 dB frequency decrement. This can severely hamper

the performance of high frequency device such as Laser Diode.
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7.1.3.3 Comparison between Numerical and Experimental Result

Frequency response characteristics for such defected case has been done in [87].

Figure 7.6: Comparison of numerically calculated frequency response (magnitude) of
polariton LASER with defect with experimental value [87] for current density 304A/cm2

In Fig. 7.6 and 7.7 we are comparing result found by numerical calculation and

by direct experiment [87]. Comparison has been done for two different current density

304A/cm2 and 1026A/cm2. One significant discrepancy between experimental result and

numerical result is that the presence of damped resonant frequency in experimental data

but numerical result shows nothing such. Our numerical results show that system is

completely in over-damped region. But other than that, we can say that other properties

like −3 dB frequency has matched quite well with experimental result especially in higher

current densities. Some detail analysis considering influence of defect on scattering rate

should be considered to answer the existing mismatch between numerical and experimental

results.

One prime reason behind such discrepancy is RC effect that was taken out externally

during experiments. During numerical calculations, no such RC is considered which might

indicate an inherent damping presence in such system which might be over-estimated

during calculating experimental results. Further investigations into with numerical and

161



Figure 7.7: Comparison of numerically calculated frequency response (magnitude) of
polariton LASER with defect with experimental value [87] for current

density1026A/cm2.

experimental calculations might solve such discrepancies.

7.2 Impact of Defect on Quantum Information

Processing

We will not present any experimental result on such case and our discussion here is very

limited. Nevertheless, theoretical analysis opened the Pandora’s box for us to explore for

new exotic behavior. In the field of quantum computation, a quantum gate can be realized

in many ways [174–176]. One of the realization of sSWAP gate is by utilizing multiple

polariton condensate in close vicinity to be coupled effectively with each other [177]. Due

to such coupling, such system is best described by Lindblad master equation as,

iℏ
dρ̂

dt
= [H(t), ˆρ(t)]− iγ

2

∑
i=1,2

L⟩( ˆρ(⊔)) (7.16)

where, L ˆρ(⊔) is defined as,
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L⟩ = 2cnρ(t)c
†
n − ρ(t)c†ncn − c †n cnρ(t) (7.17)

Figure 7.8: Expectation value for number operator for two different coupled condensate
with one condensate start with 4 particles and other with 1 particle. Both condensate

can exchange particle between them.

H(t) from equation 7.16 is defined as summation of two condensate hamiltonian and

of interaction hamiltonian between them,

H = H1 +H2 +Hint (7.18)

Expectation value for number operator for two different condensate with different

initial condition with coupling between them is shown in Fig. 7.8. Due to exchange of

particle and energy between them, condensate 1 population is decreasing at the expense

of increased population of condensate 2.

Presence of defect can significantly alter this picture. As we have already discussed

in previous chapters of results, defect effectively reduce condensate fraction available

to probe. This causes an decrease in condensate population without exchange to

another condensate. Additionally, presence of defect can significantly impact interaction

hamiltonian, Hint between two condensate. This might result in reduced fidelity for such
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types of gate. As a result, more pumping might be required for the system to work as

expected limit. We are not presenting any results here, rather predict the performance of

defective quantum gate based on the analysis so far.

7.3 Summary

Presence of defect can significantly alter the performance of a system, as has been found

both theoretically and experimentally. In this chapter, we shed light on practical system

based on the theoretical analysis in the previous two chapters and try to explain some

experimental behavior of the system along with some prediction. Main focus of this

chapter is the explain the high frequency behavior of defective polariton that was reported

earlier. Presence of defect change frequency characteristics of polariton LASER diode.

Based on simplified rate equation, we explain such change to an acceptable limit. Addition

of defect to polariton LASER cause its threshold current to increase which was also

explained. Finally, in-short we predict the possible effect of defect on disordered quantum

gate.
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Chapter 8

Conclusion

Understanding an experimental event using theoretical framework is undoubtedly a

daunting task. Despite such trouble, a theoretical understanding of an experiment is

extremely important both in field of philosophy and engineering. Sometimes, a theory can

say something simple like some old theory but with new perspective. Fermat’s theorem of

least action and Snell’s law both gives us the law of refraction but philosophically Fermat’s

law is more celebrated than Snell’s law as Fermat’s law let us understand the behavior

of light along with natural event more abstractly by simply stating ‘Event will occur in

a way which requires least action’. Snell’s law may give us some solid usable equation in

our practical field but Fermat’s law gives us rather a broad picture. This is one of the

primary reason, sometimes old theory is needed to be revisited and looked upon with an

abstract mind.

Understanding a theory using experiment is straightforward. Theory will be proven

on the field of experiment. A theory has to prove its competence with passage of time

by various experiment. When an anomaly is detected in experiment, theory need to be

revised or modified. Most physical that we had is constructed using simplistic assumption

of nature. As already discussed in the introductory part of Chapter 04, despite knowing

almost all the properties of constituent particles like electron, proton, neutron we cannot

explain behavior of sold using properties of these particles. Introduction of interaction

among particle raises complexity which cannot solved easily. As a result of this interaction

and other phenomenon, system of interest gets increasingly complex. Analysis of defect

is one such complex system. Analysis of system with defect is not possible due inherent

nature of defect which is random. Due to progress in probability theory of randomness,
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it is somewhat possible to come to some sort of conclusion in this regard.

8.1 Summary of the Work

Presence of defect can affect a system is various way. Main purpose of this dissertation is to

analyze the influence of defect on polariton LASING. Experiments show some somewhat

peculiar result due to defect for polariton LASER diode. Two main findings were change

of frequency response characteristics and lowering of effective polariton temperature. To

explain such event, we perform an in depth analysis to understand why defects are causing

this?

We started our analysis by solving open dissipative Gross-Pitaevskii equation coupled

with external reservoir. Such analysis reveals that presence of defect causes quantized

vortices to be pinned close potential extreme. As a result of such pinning, local condensate

cannot form a macroscopic condensate. This small regions with local condensate exist

individually over their lifetime. Analysis of open dissipative GP equation reveals the

temporal and spatial dynamics of condensate under disorder or defect.

Out next stop was to try out numerical analysis of semiclassical Boltzmann equation.

These equations are coupled differential rate equation coupled with each other. A complete

numerical analysis of such equation set gives us the detail about occupation number

in different momentum state. Occupation plot of polariton LASER with and without

defect has been calculated numerically. Fitting such occupation plot with Maxwell

distribution (as has been done in the experiment) reveals that, defect decreases effective

polariton temperature. It is well established polariton do not thermalize with lattice

rather thermalize among themselves, create a quasi thermalized situation with an effective

polariton temperature. Without defect such effective polariton temperature always tend

to be greater than lattice temperature or environment temperature. But with addition

of defect such scenario changes, and effective polariton temperature is getting lowered

and can even get lower than lattice temperature. Our numerical analysis found effective

polariton temperature as low as 180K for GaN based polariton LASER diode. One thing

to be mentioned here is that all our analysis has been performed on GaN material basis.

This numerical result match quite well with experimental findings.

Result of these two analysis seems to be disjointed. One analysis shows that
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defect creates local condensate with longer lifetime. Another analysis reveals that

defect causes average occupation to decrease for each momentum state which eventually

translate to lowering of effective polariton temperature. How come lack of macro

condensate lower effective polariton temperature? To answer this question, analysis

from thermodynamics point of view has been done. A heuristic approach with the help

of Eigenstate Thermalization Hypothesis (ETH) and Many Body Localization (MBL)

reveals that local condensate thermalizes among themselves without interacting with other

condensate. Each of these local condensates act as isolated quantum system and act as

a bath for their own subsystem to thermalize just like the case for macro condensate.

Here, lack of long range coherence prevents thermalization to occur across the whole

rather inside a local region. Presence of defect or disorder thus create Griffits phase of

singularity. Effective local temperature depends on the size of local condensate and total

energy contained inside such region by local eigenstate. These eigenstate thermalizes

themselves without any interaction with other local eigenstate of other local condensate.

Numerical approach by solving disordered Bose Hubbard model also reveals same picture.

Presence of disorder potential localizes state which ultimately prevents thermalization.

Several thermodynamic property like Compressibility, Superfluid fraction, Momentum

distribution, Von Neumann entanglement entropy is analyzed under the influence of defect

and shows that presence of defect alters thermodynamic equilibrium point. Even defect

can change phase transition or even prevent if Harris criterion is not fulfilled. By analyzing

DBHM, it is found that presence of disorder prevent Mott Insulator - Superfluid transition

but allows Bose Glass - Superfluid transition.

Finally, we take a look at other experimental findings of defect induced frequency

response characteristics. Using simplified rate equation developed from coupled SB rate

equations, we analyze the behavior of absence of resonance frequency and frequency

characteristics for high frequency response of polariton LASER diode. By deriving

analytical expression of resonant frequency for LASER diode with and without defect

it is shown that defect increases damping coefficient and can effectively bring an

under-damped system to over-damped region with both poles being real and negative.

Lower density of defect in a system exhibit some resonating behavior but with larger

defect density resonating frequency becomes imaginary. A comparison between numerical

result calculated from simplified rate equations and experimental results are provided for
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better understanding of the success these theoretical frameworks. Despite having slight

dissimilarities between numerical and experimental result, both these shows remarkable

resemblance. Addition to this, we use our understanding from our discussion about the

influence of defect to predict the behavior of quantum gate in the presence of defect. As

defect or disorder can effectively reduce condensate population, quantum gate designed

by employing interaction between two separate polariton condensate can be significantly

impacted by defect.

8.2 Scopes of Future Work

Understanding the influence of defect on a pure system can benefit us in designing practical

system. Defect can act as both hurdles and an opportunity. Presence of defect reveals

the new phase of matter ‘Glassy Phase’. Other exotic behavior like this can be utilized

to design effective system. We just need to incorporate exotic property of defect into our

design philosophy. Some future work that can be done to better understand the influence

of defect based on our current work,

• Understanding the dynamics of the system in kinetic, spatial and temporal domain

with and without defect is essential to have a better grasp on defect. We have

done this using open dissipative Gross-Pitaevskii equation and coupled semiclassical

Boltzmann rate equations for GaN. Such analysis with different approach for

example using Lindblad quantum Master Equation, Jaynes Cummings model etc.

and for other different material and at different temperature will be helpful to get

a better grasp.

• Thermodynamic approach definitely can be analyzed further to get a better

understanding of defect. A more robust approach other than heuristic approach

based on ETH and MBL is essential to give such theoretical foundation a solid

foothold. Additionally, DBHM model should be solved for larger system with a lot

of variation in parameter of t, U , W and even for different types of defect modeling

like, speckle disorder, exponential disorder etc. Some such work has already been

done. But most of the work takes very low temperature limit. Behavior of DBHM

under room temperature requires a detailed investigation.

168



• Some of the modifications proposed within the existing theoretical framework cannot

exactly match experimental data. For example, calculation of defect capture rate

considers influence of defect only as an isolated situation of capturing excitons

by defect. No consideration is given on defect influencing scattering rate i.e.

polariton-phonon scattering rate or polariton-polariton scattering rate. Considering

long range and short range potential of defect into calculating scattering rate

should give us better result regarding effective polariton temperature and frequency

characteristics of polariton LASER diode.

• Recent advancements in quantum information processing is tremendous.

Advancement in fabrication technology gives us almost defect free device.

Nevertheless, defect will exist in one form or other. Most of existing quantum

gates depends on the purity of device for effective operation. Presence of defect at

normal temperature can significantly alter behavior of such device. Analysis the

influence of defect is essential in this case for robust design of such quantum gates.

Defect is like a Pandora’s Box which can either reveal exotic behavior of matter or

present itself as a unbreakable barrier. Understanding the impact of defect will be essential

for tacking the problem of defect analysis of system in the future.
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