Sub: NAME 219 (Marine Engines and Fuels)

Full Marks: 210
Time: 3 Hours
The figures in the margin indicate full marks
The symbols have their usual meanings. Assume reasonable value of any data if missing.
USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION-A

There are FOUR questions in this section. Answer any THREE questions.

1. (a) Why the cylinder scavenging process is much more critical in a two-stroke engine than in a four-stroke engine? Explain with the necessary diagrams.
(b) In on IC engine, it is essential to open and close the valves precisely to run the engine efficiently. Broadly describe the system which controls the operation of the valves by using the sketch if the whole system along with the views of individual components of the system.
2. (a) Why don't we use a high compression ratio in the SI engine? Draw the crosssection of a basic carburetor and illustrate how the full load and the part-load conditions are achieved by the throttle valve mechanism in an engine.
(b) Write short notes on the followings-
(i) Pre-flame combustion period
(ii) Turbo lag
(iii) Compression ring and oil ring
(iv) Over square engine and under square engine
3. (a) How electricity is produced in a hydro-electric power plant and why it is considered a source of renewable energy? Briefly explain which component distinguishes the liquid-dominant geothermal power plant from the vapour-dominant system.
(b) Differentiate between viscosity index and viscosity grading in an elaborate manner. Classify the types of lubricating oil reservation in a compression ignition engine using neat sketches.
4. A three-liter SI V6 square engine is operating on a four-stroke cycle at 3600 RPM . At this speed, air enters the cylinders at 85 kPa and $60^{\circ} \mathrm{C}$. A dynamometer connected to the engine is giving a brake output torque reading of $205 \mathrm{~N}-\mathrm{m}$ at 3600 RPM. The engine is running with an air-fuel ratio of 15 , fuel heating value of $44000 \mathrm{~kJ} / \mathrm{kg}$, compression ratio of 9.5 , combustion efficiency of 97% and mechanical efficiency of 85%. Calculate-
(i) Clearance volume of each cylinder
(ii) Indicated power (in hp unit)
(iii) Friction mean effective pressure (in psi unit)
(iv) Brake work per unit mass of gas in the cylinder (in $\mathrm{BTU} / \mathrm{lbm}$ unit)
(v) Indicated thermal efficiency
(vi) Volumetric efficiency
(vii) Brake specific fuel consumption (in $\mathrm{lbm} / \mathrm{hp}$-hr unit).

$$
=2=
$$

NAME 219

SECTION - B

There are FOUR questions in this section. Answer any THREE questions.
5. (a) Define Calculated Carbon Index. A heavy fuel oil at $15^{\circ} \mathrm{C}$ has a density of 991 $\mathrm{kg} / \mathrm{m}^{3}$ and a viscosity of 2.9 CST . Can this fuel be used in a ship or not? Justify your answer.
(b) Describe the 4 major problems related to the use of the Heavy Fuel Oil in marine engines. Despite of having these problems why HFO is used in marine engines as primary fuel?
(c) What is Governor? Why it is more important in CI engine rather than SI engine?
6. (a) Define Octane number and cetane number. What will happen if we use high octane number fuel than specified?
(b) An 8 cylinder 2 -stroke C.I. engine develops 220 KW power at 1200 rpm with brake specific fuel consumption of $0.273 \mathrm{~kg} / \mathrm{KWh}$. The diameter of the single hole injector nozzle is 0.8 mm . The period of injection is 30° of crank angle. Specific gravity of fuel $=0.85$ and the orifice discharge co-efficient $=0.9$. Determine the pressure difference required to be created by nozzle for injecting the fuel into the cylinder.
(c) Describe the working principle of the 'Energy Cell' combustion chamber in C.I. engine with schematic diagram.
7. (a) Describe the 7 . major differences between the Open and Divided combustion chambers.
(b) Explain the functions of all the components used in a typical water-cooling system elaborately and draw a schematic diagram of that system.
8. (a) Derive the expression for the maximum net-work output of the Brayton cycle with Reheater, if the inlet temperatures of the high-pressure and low-pressure turbine are equal, and the ratio of the maximum and minimum temperature remains constant.
(b) Draw a schematic diagram of a Brayton cycle with the heat exchanger, reheater and intercooler. Also draw the T-S diagram.

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2021-2022
 Sub: NAME 251 (Mechanics of Structures)
 Full Marks: 210
 Time: 3 Hours
 The figures in the margin indicate full marks
 USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE questions.

1. (a) The composite bar as shown in Fig. for Q. No. 1(a) is stress-free before the axial loads P_{1} and P_{2} are applied. Assuming that the walls are rigid, calculate the stress in each material if $P_{1}=150 \mathrm{kN}, P_{2}=90 \mathrm{kN}$ and the right wall yields 0.80 mm .
(b) A homogeneous rigid block weighing 12 kips that is supported by three symmetrically placed rods as shown in Fig. for Q . No. 1(b). The lower ends of the rods were at the same level before the block was attached. Determine the stress sin each rod after the block is attached and the temperature of all bars increases by $100^{\circ} \mathrm{F}$. Use the following data:

	$A\left(\right.$ in. $\left.^{2}\right)$	$E(\mathrm{psi})$	$a\left(/{ }^{\circ} \mathrm{F}\right)$
Each steel rod	0.75	29×10^{6}	6.5×10^{-6}
Bronze rod	1.50	12×10^{6}	10.0×10^{-6}.

(c) The 4-mm-diameter cable $B C$ is made of a steel with $E=200 \mathrm{GPa}$. Knowing that the maximum stress in the cable must not exceed 190 MPa and that the elongation of the cable must not exceed 6 mm , find the maximum load P that can be applied as shown in Fig. for Q. No. 1(c).
2. (a) Determine by the double-integration method, the maximum deflection for a simplysupported beam of $L f t$. long, loaded uniformly with $w l b / f t$. (Assume, E and I constant)
(b) For the uniform beam $A B$ as shown in Fig. for Q. No. 2(b), (i) determine the reaction at A (ii) derive the equation of the elastic curve, and (iii) determine the slope at A. (None that the beam is statically indeterminate to the first degree)
3. (a) Plot the shear-force and bending-moment diagrams for the beam loaded as shown in Fig. for Q. No. 3(a). State the maximum magnitudes of shear force and bending moment of the beam.
(b) A $2 m$ long pin-ended column of square cross section is to be made of wood. Assuming $E=13 \mathrm{GPa}$, $\sigma_{\text {allow }}=12 \mathrm{MPa}$, and using a factor of safety of 2.5 in computing Euler's critical load for buckling, determine the size of the cross section if the column is to safely support a 100 kN load.

$$
=2=
$$

NAME 251

4. (a) A 5-m-long, simply supported steel beam $A D$ is to carry the distributed and concentrated loads as shown in Fig. for Q. No. 4(a). Knowing that the allowable normal stress for the grade of steel to be used is 160 MPa , select the wide-flange shape that should be used.
(b) A beam with cross-section as shown in Fig. for Q. No. 4(b) is loaded in such a way that the maximum moments are $+1.0 P l b . f t$ and $-1.5 P l b . f t$, where P is the applied load in pounds. Determine the maximum safe value of P if the working stresses are $4 k s i$ in tension and $10 k s i$ in compression.

SECTION - B

There are FOUR questions in this section. Answer any THREE questions.
Assume reasonable value for missing data if any.
5. (a) Derive the relationship between the followings:
(i) Engineering stress and True stress
(ii) Engineering strain and True strain
(b) Distinguish between the followings:
(i) Modulus of toughness and Modulus of resilience
(ii) Brittle material and ductile material.
(c) The state of plane stress at a point is represented by the stress element as shown in Fig. for Q . No. $5(\mathrm{c})$. Determine the stresses acting on an element oriented 30° clockwise with respect to the original element.

Fig. for Q. No. 5(c)

NAME 251

6. (a) With necessary assumptions derive an expression for angle of twist of a circular solid shaft.
(b) Knowing that each of the shaft AB, BC and CD consist of solid circular rods as shown in Fig. for Q. No. 6(b), determine (i) the shaft in which the maximum shearing stress occurs, (ii) the magnitude of that stress.

Fig. for Q. No. 6(b)
(c) A 2.50 m long steel shaft of 30 mm diameter rotates at a frequency of 30 Hz . Determine the maximum power that the shaft can transmit, knowing that $G=77.2$ GPa, that the allowable shearing stress is 50 MPa , and that the angle of twist must not exceed 7.5°.
7. (a) A beam $A B C D$ is supported by a roiler at A and a hinge at D. It is subjected to the loads as shown in Fig. for Q. No. 7(a), which act the ends of the vertical members BE and CF. These vertical members are rigidly attached to the beam at B and C . Compute the support reactions.

Fig. for Q. No. 7(a)

NAME 251

Contd.... for O. No. 7

(b) The bridge shown in Fig. for Q. No. 7(b) consists of two end sections, each weighing 20 tons with center of gravity at G, hinged to a uniform center span weighing 12 tons. Compute the reactions at $\mathrm{A}, \mathrm{B}, \mathrm{E}$ and F .

Fig. for Q. No. 7(b)
(c) Explain buckling and critical buckling stress.
8. (a) What would be the moment of inertia about x-axis and y-axis of the shape as sown in Fig. for Q. No. 8(a)?

Fig. for Q. No. 8(a)

$$
=5=
$$

NAME 251

Contd.... for Q. No. 8

(b) Determine the forces in the members $\mathrm{CD}, \mathrm{CE}, \mathrm{DF}, \mathrm{EF}$ and DE of the truss as shown in Fig. for Q. No. 8(b).

Fig. for Q. No. 8(b)
(c) Define principal stress and principal plane.

Fig. for O. No. 1(b)

Fig. for O . No. 1(c)

$-7-$

Fig. for Q. No. 2(b)

Fig. for Q. No. 3(a)

Fig. for O. No. 4(a)

Fig. for 0. No. 4(b)

$-10-$

Dentpention	$\begin{gathered} \operatorname{Mas} \\ (\mathrm{kdm}) \end{gathered}$	$\text { Aneat }_{\left(\mathbf{m}^{\prime}\right)}$	$\begin{aligned} & \text { Depth } \\ & \text { (min) } \end{aligned}$	Henge			Aste $x-x$			Axis Y. Y		
				$\begin{gathered} \text { Whath } \\ \text { (man) } \end{gathered}$	Thelonen (man)		$\left(10^{\prime}{ }^{\prime}{ }^{\circ}\right)$	$)$	$\underset{(m 0)}{\sim}$	$\left(100^{1} \operatorname{man}^{4}\right)$	$\begin{gathered} S=/ / k \\ \left(10^{-2} \operatorname{man}^{\prime}\right) \end{gathered}$	
W460 $\times 17$	17	2600	483	287	26.9	16.6	912	3790	201	los	$736-$	-68.3
$\times 158$	188	20100	475	284	23.9	15.0	795	3340	199	91.6	646	67.6
$\times 14$	144	18400	472	282	22.1	13.6	728	3080	199	83.7	592	67.3
-128	128	16300	467	382	19.6	12.2	637	2720	197	728	518	66.8 -
$\times 113$	113	14400	462	279	173	10.8	34	2390	196	63.3	452	66.3
$\times 108$	105	13400	470	194	20.6	12.6	487	2080	191	25.1	259	43.2
$\times 97$	97.0	12300	467	193	19.1	11.4	4 L	1920	190	22.8	296	42.9
$\times 89$	89.0	11400	462	192	17.7	10.5	410	1770	190	20.9	218	427
$\times 12$	82.0	10500	+60	191	16.0	9.91	370	1610	188	18.7	195	42.4
$\times 74$ $\times 14$	74.0	9480	45	191	14.5	9.02	333	1460	187	16.7	175	41.9
$\times 69$	68.0	8710	460	154	15.4	9.14	296	1290	184	9.37	122	328
$\times 60$	60.0	7610	45	153	13.3	8.00	255	1120	183	7.95	104	32.3
$\times 52$	520	6650	450	152	10.8	7.62	212	944	179	6.37	83.9	31.0
W410 $\times 149$	149	19000	432	264	25.0	14.9	620	2870	180	77.4	585	63.8
$\times 132$	132	16900	47	264	22.2	13.3	541	2540	179	67.8	515	63.2
+114	114	14600	419	262	19.3	11.6	462	2200	178	57.4	41	62.7
$\times 100$	100	12700	414	259	16.9	10.0	397	1920	177	49.5	380	62.5
$\times 85$	B5. 0	10800	417	181	18.2	10.9	316	1510	171	17.9	198	40.6
$\times 75$	75.0	9480	414	180	16.0	9.65	274	1330	170	15.5	172	40.4
$\times 67$	67.0	8580	409	179	14.4	8.76	244	1190	169	13.7	153	39.9
$\times 60$	60.0	7610	406	178	12.8	7.75	216	1060	168	120	135	39.9
$\times 5$	53.0	6840	404	178	10.9	7.49	186	926	165	10.2	115	38.6
$\times 461$	46.1	5890	404	140	11.2	6.99	158	773	163	5.16	73.6	29.7
$\times 388$	31.8	4950	399	140	8.76	6.35	125	629	159	3.99	57.2	28.4
W360 $\times 1086$	1090	139000	509	ass	125	78.0	S950	21000	308	1960	8640	119
+990	980	126000	59	450	115	71.9	5160	18800	203	1740	7730	117
$\times 900$	900	115000	531	42	106	66.0	4500	17000	198	15.0	6930	116
$\times 818$	818	105000	513	437	97.0	60.5	3930	15300	194	1350	6190	114
$\times 74$	74	98800	498	432	88. 9	55.6	3420	13700	198	1300	5560	113
$\times 67$	67	80500	483	47	81.5	51.3	2990	12400	185	1070	4980	111
$\times 6.4$	6.4	80600	475	424	77.2	47.8	2750	11600	184	982	4640	110
$\times 392$	592	75500	465	42	724	15.0	2500	10700	182	903	4290	109
$\times 551$	531	20300	455	419	67.6	42.2	2260	9950	180	828	3950	108
+ 599	509	65300	45	417	62.7	39.1	2040	9140	177	753	3620	108
$\times 463$	463	59000	134	411	57.4	35.8	1800	8290	175	$\stackrel{670}{59}$	3260	107
$\times 121$	421	53700	d24	409	526	32.8	1600	7520	172	599	2930	106
$\times 382$	382	48800	417	406	48.0	30.0	1420	6800	170	537	2640	105
$\times 47$	347	44200	406	404	43.7	27.2	1250	6150	168	479	2380	104
$\times 14$	314	40000	399	401	39.6	24.9	1110	5540	166	429	2130	103
$\times 287$	287	36800	394	399	36.6	22.6	999	5080	165	388	1980	103

TABLE B-2 Properties of Wita-Fange Sections (W-Shapes): SI Units (continued)

Destparitoe	Mass (k\&fa)	$\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \text { Droph } \\ & (\mathrm{man}) \end{aligned}$	F\%		$\begin{gathered} \text { Wct } \\ \text { aschem } \\ \hline(\mathrm{mm}) \end{gathered}$	Axt $\boldsymbol{x}-\boldsymbol{X}$			Axt Y-Y			
				$\begin{aligned} & \text { Whath } \\ & (\mathrm{man})^{-} \end{aligned}$	$\begin{aligned} & \text { Thekess } \\ & \text { (mmon) } \end{aligned}$		$\left(10^{6} \mathrm{ma}^{4}\right)$	$\underset{\left(10^{\prime} \mathrm{mm}\right)}{s=\\| / c}$	$\underset{-}{{ }_{-}=\sqrt{(\mathrm{mm})}}$	$\left(10^{6} \mathrm{nmm}^{\prime}\right)$	$\begin{aligned} & S=1 / k \\ & \left(10^{2} \operatorname{man}^{\prime}\right) \end{aligned}$	$\underset{(m m)}{ }$	
W310 $\times 60$	60.0	7550	302	203	13.1	7.49	128	844	130	18.4	180	49.3	
$\times 52$	520	6650	318	167	132	7.62	119	747	133	10.2	122	39.1	
$\times 4.5$	4.5	5670	312	166	11.2	6.00	99.1	633	132	8.45	102	38.6	
$\times 38.7$	38.7	490	310	165	9.65	5.84	8.9	547	131	7.20	87.5	38.4	
- 327	32.7	4180	312	102	10.8	6.60	61.9	416	S	1.94	37.9	21.5	
$\times 28.3$	28.3	3590	310	102	8.89	5.97	54.1	49	12	1.57	30.8	20.9	
$\times 23.8$	238	3040	305	101	6.73	5.59	42.9	280	119	1.17	23.1	19.6	
$\times 21$	21.0	2680	302	101	5.72	5.98	36.9	244	117	0.982	19.5	19.1	
W250 $\times 167$	167	21200	290	264	31.8	19.2	298	2060	118	98.2	742	68.1	
$\times 149$	149	19000	282	262	28.4	17.3	259	1840	117	86.2	655	67.3	
$\times 131$	131	16700	274	262	25.1	15.4	22	1610	115	74.5	570	66.8	
$\times 115$	115	14600	289	299	22.1	13.5	189	1410	114	64.1	493	66.0	
$\times 101$	101	12900	264	257	19.6	11.9	164	1240	113	55.8	433	65.8	
$\times 89$	89.0	11400	259	257	17.3	10.7	142	1090	112	48.3	37	65.3	
- 80	80.0	10300	257	254	15.6	9.40	126	983	111	42.9	338	65.0	
$\times 73$	73.0	9390	$\underline{34}$	24	14.2	8.64	113	${ }^{895}$	110	38.9	306	64.5	
$\times 67$	67.0	8580	237	204	15.7	8.89	103	805	110	22.2	218	51.1	
$\times 58$	58.0	7430	252	203	13.5	8.00	87.0	69	108	18.7	185	50.3	
$\times 49.1$	49.1	6260	247	302	11.0	7.37	71.2	574	106	15.2	151	49.3	
$\times 4.8$	44.8	5700	267	148	13.0	7.62	20.8	531	111	6.95	94.2	34.8	
$\times 38.5$	38.5	4910	262	147	11.2	6.60	59.9	457	110	5.87	80.1	34.5	
$\times 327$	327	4190	259	146	9.14	6.10	49.1	380	108	4.75	65.1	33.8	
- 28.4	28.4	3630	259	102	10.0	6.35	40.1	308	105	1.79	35.1	22.2	
$\times 2.3$	25.3	3220	257	102	8.38	6.10	4.1	265	103	1.48	29.2	21.5	
$\times 2.3$	22.3	2850	254	102	6.85	5.84	28.7	226	100	1.20	23.8	30.6	
$\times 17.9$	17.9	2280	251	101	5.33	4.83	22.4	179	99.1	0.907	18.0	19.9	
w 200×100	100	12700	229	210	$23.7{ }^{\circ}$	14.5	113	990	94.5	36.9	351	53.8	
$\times 86$	86.0	11000	22	209	20.6	13.0	9.9	852	92.7	31.3	300	53.3	
$\times 71$	7.0	9100	216	206	17.4	10.2	76.6	708	91.7	25.3	246	52.8	
$\times 59$	59.0	7550	210	205	14.2	9.14	60.8	582	89.7	20.4	200	51.8	
$\times 52$	520	6650	206	204	12.6	7.87	52.9	511	89.2	17.7	174	51.6	
$\times 46.1$	46.1	5880	203	203	11.0	7.24	45.8	451	88.1	15.4	152	51.3	
$\times 41.7$	41.7	5320	205	166	11.8	1.24	40.8	398	87.6	9.03	109	41.1	
$\times 35.9$	33.9	4570	201	165	10.2	6.22	34.4	342	86.9	7.62	223	40.9	
$\times 31.3$	31.3	3970	210	134	10.2	6.35	31.3	298	88.6	4.07	60.8	32.0	
- 26.6	26.6	3390	207	133	8.28	5.8	25.8	249	87.1	3.32	\$9.8	31.2	
$\times 22.5$	225	2860	206	102	8.00	6.22	20.0	193	83.6	1.42	27.9	223	
$\times 19.3$	19.3	2480	203	102	6.88	9.84	16.3	162	81.5	1.14	22.5	21.4	
$\times 15$	15.0	1910	200	100	S. 1	4.32	12.8	128	81.8	0.870	17.4	21.4	

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2021-2022
 Sub: MME 293 (Shipbuilding Materials)
 Full Marks: 210
 Time: 3 Hours
 The figures in the margin indicate full marks
 USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE questions.

1. (a) A cylindrical specimen of steel $(E=210 \mathrm{GPa})$ having an original diameter of 12.8 mm is tensile tested to fracture and found to have an engineering yield strength of 300 MPa and an engineering fracture strength of 460 MPa . If its cross-sectional diameter at fracture is 10.7 mm , determine: (i) the ductility of the steel, (ii) the true stress at fracture and (iii) the true strain at yield point.
(b) "Obstructing the motion of dislocations is the main goal of various strengthening processes used for metal" - Justify the assertion correlating with various metal strengthening mechanism.
2. (a) Both gray cast iron and nodular cast iron are solidification products. What is the basic difference between the two production parameters that is responsible to produce graphite flake in gray cast iron and spheroidal graphite in nodular cast iron? Compare the properties and applications of gray cast iron and nodular cast iron.
(b) Suppose you have to choose a suitable material for sea water environment from the following copper base alloys. Select one among the three materials with appropriate reasoning(s): (i) $70 \mathrm{Cu}-30 \mathrm{Zn}$, (ii) $60 \mathrm{Cu}-38 \mathrm{Zn}-2 \mathrm{~Pb}$ and (iii) $60 \mathrm{Cu}-39.25 \mathrm{Zn}-$ 0.75 Sn .
(c) How does sensitization affect stainless steel?
3. (a) Select and outline an NDT method suitable for detecting internal defect of a great.
(b) What problems do you face with sand cast magnesium alloys? How can you minimize these problems?
(c) Relate the microstructural characteristics of maraging steel with its mechanical properties.
4. (a) Which of the common defects is most detrimental to timber? Place argument in favour of your choice.
(b) Describe the factors that affect T_{g} of glass.
(c) Select and describe a suitable process for manufacturing multiple polypropelynè (PP) boxes.

MME 293/NAME

SECTION - B

There are FOUR questions in this section. Answer any THREE questions.
5. (a) Metals X and Y of melting points $750^{\circ} \mathrm{C}$ and $920^{\circ} \mathrm{C}$ respectively are mutually soluble (completely) in the liquid state but partially soluble in the solid state. At $400^{\circ} \mathrm{C}$ a eutectic composition is formed with $60 \% \mathrm{X}$ and $40 \% \mathrm{Y}$. At eutectic temperature the solubility of Y in X is 20% and that of X in Y is 15%, while at $0^{\circ} \mathrm{C}$ the solubility of Y in X is 8% and that of X in Y is 5%. Solid solution of Y in X is known as α phase and that of X in Y is known as β phase.
Draw the $\mathrm{X}-\mathrm{Y}$ equilibrium phase diagram on graph paper, assuming all the liquidus and solidus lines to be straight and label all the phase fields.
(b) Sketch and label the slow cooled microstructure of a $0.3 \% \mathrm{C}$ and a $0.9 \% \mathrm{C}$ steel at room temperature. Considering the composition of pearlite to be $0.76 \% \mathrm{C}$ and that of ferrite to be 0.008% C which steel will contain more pearlite? Comment, with reasoning, on the mechanical properties of these two steels.
(c) The microstructure of an iron-carbon ally (steel) consists of pro-eutectoid ferrite and pearlite; the mass fractions of these microconstituents are 0.20 and 0.80 , respectively. Determine the concentration of carbon in this alloy. Also, calculate the mass fraction of total ferrite and total cementite in the identified steel.
6. (a) Explain how coring occurs with reference to copper-nickel phase diagram. Explain the problem associated with a cored structure and give a method of its rectification.
(b) Sketch and label the microstructural changes that occur in $0.35 \% \mathrm{C}$ steel during equilibrium cooling from $900^{\circ} \mathrm{C}$ to room temperature.
7. (a) Explain how a normalized hypoeutectoid steel achieve more hardness \& strength than the annealed one.
(b) Explain the steps involved in steel making in an LD converter. Also, discuss its advantages and disadvantages.
8. (a) Discuss the functions of each raw material used in a blast furnace and hence give an overview of pig iron production in a blast furnace.
(b) Explain the term "hardenability". How can the hardenability of steel be increased?
(c) How would you harden a surface by nitriding? Explain the advantages and disadvantages of nitriding over carburizing.

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA
L-2/T-1 B. Sc. Engineering Examinations 2021-2022
Sub: MATH 281 (Vector Analysis and Differential Equation)
Full Marks: 210
Time: 3 Hours

The figures in the margin indicate full marks Symbols used have their usual meaning. USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE questions.

1. (a) Solve the differential equation $\left(x^{2} D^{2}-2 x D+2\right) y=x^{2}+\sin (5 \ln x)$.
(b) Solve $\left[x D^{2}+(1-x) D-2(1+x)\right] y=e^{-x}(1-6 x)$ by the method of operational factors.
2. Use the method of Frobenius to find solutions of the differential equation

$$
\begin{equation*}
2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+(x-5) y=0 \tag{35}
\end{equation*}
$$

3. (a) Prove that $P_{n}(x)$ is the coefficient of t^{n} in the expansion of $\left(1-2 x t+t^{2}\right)$ in ascending power of t.
(b) Establish the recurrence relation

$$
(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x)
$$

Hence prove that $\int_{-1}^{1} x^{2} P_{n}^{2}(x) d x=\frac{1}{8(2 n-1)}+\frac{3}{4(2 n+1)}+\frac{1}{8(2 n+3)}$.
4. (a) Prove that
(i) $\quad x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{n+1}(x)$
(ii) $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$
(b) Show that
$J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \varphi-x \sin \varphi) d \varphi$, when n is a positive integer.

MATH 281/NAME

SECTION - B

There are FOUR questions in this section. Answer any THREE questions.
5. (a) Prove that the area of the triangle formed by joining the mid-point of one of the non-parallel sides of a trapezium to the extremities of the opposite side is half of that of the trapezium.
(b) Show that the vectors $A=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}, B=\mathbf{i}-4 \mathbf{k}$ and $C=4 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ are linearly dependent. Determine a relation among them and hence show that the terminal points are collinear.
(c) A force of 15 units acts through point $\mathrm{A}(4,1,-3)$ in the direction of the vector (3, $1,5)$. Find its moment about the point $\mathrm{B}(2,-3,-1)$ and the moment about axes through that point parallel to the co-ordinate axes.
6. (a) If $\mathbf{P}=\mathbf{A} \cos k t+\mathbf{B} \sin k t$, where \mathbf{A} and \mathbf{B} are constant vectors and k, a constant scalar, then find $\frac{d^{2} \mathbf{P}}{d t^{2}}+k^{2} \mathbf{P}$.
(b) State and prove Frenet-Serret formulae.
(c) Solve the vector equation $\mathbf{a} \times \mathbf{x}+\mathbf{a}(\mathbf{a} \cdot \mathbf{x})+\mathbf{b}=\mathbf{0}$ for the vector \mathbf{x}.
7. (a) Find the acute angle between the surfaces $x y^{2} z=3 x+z^{2}$ and $3 x^{2}-y^{2}+2 z-1=0$ at $(1,-2,1)$.
(b) Find $\nabla^{2}\left(r^{n} \mathbf{r}\right)$ where \mathbf{r} is the position vector.
(c) Show that $\nabla \times(\mathbf{A} \times \mathbf{B})=\mathbf{A}(\nabla . \mathbf{B})-\mathbf{B}(\nabla . \mathbf{A})-(\mathbf{A} . \nabla) \mathbf{B}+(\mathbf{B} . \nabla) \mathbf{A}$
8. (a) Find the work done by the force field \mathbf{F} on a particle that moves along the curve C where $\mathbf{F}=\left(3 x^{2}-2 y\right) \mathbf{i}+\left(y^{2}+3 x^{2}\right) \mathbf{j}+(2 z y-5 x) \mathbf{k}$ and C is the curve defined by line segments from $(0,0,0)$ to $(1,2,-1)$ to $(-2,-1,-3)$.
(b) State and verify the Gauss divergence theorem for $\mathbf{F}=2 x^{2} y \mathbf{i}-y^{2} \mathbf{j}+4 x z^{2} \mathbf{k}$ taken over the region in the first octant bounded by $y^{2}+z^{2}=9$ and $x=0, x=3$.

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2021-2022
1 Sub: HUM 113 (Economics)
Full Marks: 140
Time: 3 Hours
The figures in the margin indicate full marks
Symbols indicate their usual meaning.
USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE questions.

1. (a) Define demand function.
(b) What are the main determinants of demand? Explain.
(c) What are the exceptions to the law of demand?
2. (a) Show that price elasticity of demand varies from zero to infinity along any straight line demand curve. Explain graphically.
(b) From the following table calculate elasticity of demand if you move from point A to C and explain what you understand from the result.

POINT	Py	Qx
A	500	150
B	600	160
C	700	170

3. (a) What is an indifference curve? Explain the properties of an indifference curve.
(b) Consumers attain equilibrium at the point of tangency between the indifference curve and the budget line-discuss.
4. (a) How is price determined in an open economy? What will happen to the price and quantity due to change in demand?
(b) From the following demand and supply functions, calculate equilibrium price and quantity and show that result in a graph.

$$
\begin{gathered}
P=0.40 Q+20 \\
P=-0.30 Q+90
\end{gathered}
$$

(i) What will happen to the equilibrium price and quantity if government imposes a unit tax of TK 10 ?
(ii) Describe the change in equilibrium. Show the equilibrium coordinates on the same graph.

HUM 113/NAME

SECTION - B

There are FOUR questions in this section. Answer any THREE questions.
5. (a) Clarify the concepts of 'short run' and 'long run' in the theory of production and explain the law of diminishing marginal returns in production.
(b) Describe the relationship between total physical product (TPP), average physical product (APP) and marginal physical product (MPP). Use diagrams.
6. (a) What are the possible situations that firms usually experience in terms of returns to scale (RTS) of production? Describe them and explain the economies and diseconomies of scale of production with reference to RTS.
(b) Describe the loss minimizing point and the shut-down point under perfect competition. The following are respectively the Average Revenue (AR) and Total Cost (TC) functions of a firm.

$$
\begin{aligned}
& \mathrm{AR}=1400 \mathrm{Q}^{-1}-7.5 \mathrm{Q} \\
& \mathrm{TC}=\mathrm{Q}^{3}-6 \mathrm{Q}^{2}+140 \mathrm{Q}+750
\end{aligned}
$$

Find the maximum profit maximizing level of output and maximum profit.
7. (a)Distinguish between the terms given below
(i) Gross Domestic Product (GDP) and Gross National Income (GNY)
(ii) Consumer Price Index (CPI) and GDP deflator.
(b) What is inflation? Describe the causes and consequences of inflation. How is inflation measured? Explain with hypothetical data.
8. Write Short Notes on any THREE of the following
(i) Short run and long run cost curves
(ii) Monopolistic competition market
(iii) National income accounting
(iv) Fiscal Policy and Monetary Policy

