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ABSTRACT 

The effectiveness of natural convection heat transfer in a skewed enclosure is 

investigated in this study with respect to variations of baffle lengths and the skew 

angles. The non-dimensional governing equations are solved using finite element 

techniques based on Galerkin weighted residuals. The effect of the baffle length and 

skew angles ( 0 015 165  ) on fluid flow and heat transfer for various Rayleigh 

numbers ( 3 610 10Ra  )  are explored in this study. The analyses are carried out for 

different values of Rayleigh number (Ra), baffle lengths (L) for fixed baffle 

thickness and baffle position while Prandtl number is maintained constant at 1.41. In 

addition, various features such as streamlines, isotherms, velocity profiles, 

temperature profiles, local Nusselt number, baffle effectiveness, skew-angle 

effectiveness, and heat transfer rate in terms of the average Nusselt number ( avgNu ) 

and average fluid temperature was shown for the relevant parameters. Several 

comparisons have been made between the results of this study and previously 

published studies to assess the reliability and consistency of the data. Streamlines, 

isotherms, local and average Nusselt numbers, mean fluid temperature, baffle 

effectiveness and angle effectiveness were used to illustrate the results of 

simulations. 

 The findings of the study showed that heat transfer rate improves with the increase 

of Rayleigh number. Furthermore, the results showed that the heat transmission rate 

rises when the skew angle is progressively raised to 090 . But after that, when the 

angles are further raised up to 0165 , the heat transmission rate reduces. The findings 

of this study are highly consistent with those of previous research. 
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NOMENCLATURE 

efA  Skew effectiveness 
b Baffle position 
B  Dimensionless baffle position, b/S 
Cp Specific heat, J/kg k 
d Baffle thickness 
D  Dimensionless baffle thickness, d/S 

fE  Baffle effectiveness 
g  Gravitational acceleration, m/s 
h  Heat transfer coefficient 
k  Thermal conductivity, W/m. K 
l Baffle length 
L  Dimensionless baffle length, l/S 
Nuavg Average Nusselt number 
NuL Local Nusselt number 
Pr  Prandtl number, /   

baffleQ  Average fluid temperature with baffle 

withoutbaffleQ  Average fluid temperature without baffle 

090
Q
 =

 Average fluid temperature for skew angle of 090  
090

Q
  

 Average fluid temperature for skew angle without 090  
Ra  Rayleigh number 
Gr Grashof number 
S  Cavity height and width 
u Velocity in x direction 
U Dimensionless velocity in X direction 
v Velocity in y direction 
V Dimensionless velocity in Y direction  
x  Horizontal coordinate 
X Dimensionless Horizontal coordinate 
Y  Dimensionless vertical coordinate 
y  Vertical coordinate 

Greek symbols 
  Thermal diffusivity 
  Thermal expansion coefficient 
  Density 
  Amplitude 
  Dynamic viscosity 
  Kinematic viscosity 
  Dimensionless temperature 
  
Subscripts 

  
h  Hot wall 
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                        CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION  

Heat transfer is a science that attempts to anticipate the flow of energy between two 

material objects due to a temperature difference between them. According to the 

laws of thermodynamics, this transmission is characterized as heat. Because of this, 

the science of heat transfer aspires not only to explain how heat energy may be 

transmitted but also to anticipate the rates at which thermal energy is transferred 

under certain circumstances. In the prehistoric era, when humans utilized sun 

radiation as a heat source for cooking, heat transfer phenomena were well-known to 

them. In the early days of human civilization, the development of fire marked the 

beginning of heat transmission in its basic form. Since it is closely tied to the 

expansion of human society since then, its understanding and application have been 

steadily rising with each passing day. The heat transfer phenomenon received its 

first practical attention with the creation of the steam engine by James Watt in 1765 

A. D. Its use was expanded to a wide range of engineering sectors and became well 

known. It has been possible to determine heat transfer of greater complexity over the 

past three decades, especially with the development of modern systems, 

mathematical analysis, and simulation methods of heat transfer. This has enabled a 

new approach to thermal management design to be established. More details could 

be found in Hagen [1]. 

Temperature and heat transport are essential topics for engineers to understand since 

they occur virtually universally in many research and engineering fields. For 

example, aircraft performance relies on the care with which the architecture and 

engines can be cooled, even though thermal transfer modeling is much more 

necessary for the right size of transportation fuel in nuclear reactor cores to avoid 

nuclear plant burning. The design of chemical industries is often based on 

convective heat transfer and equivalent mass transfer procedures, which are then 

implemented. All heat transfer processes are defined as transferring and 

reconfiguring energy from one form to another. As a result, they are regulated by the 
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first and second laws of thermodynamics, which are the fundamental laws of 

physics. When it comes to fluid mechanics, heat transport is often mentioned. Heat 

transport analyses need an understanding of heat transfer characteristics since heat 

flow occurs only when there is an increase or decrease in temperature in a system. 

One may compute the heat flux from the physical regulations that apply to the 

thermal gradient and the heat flow, which is defined as the quantity of heat transfer 

per unit surface area in a given period. 

All physical occurrences are subject to natural laws, as discovered through extensive 

research into the cosmos. In describing the structure or scheme of basic and 

worldwide necessity inside this methodology or mechanism, the word "natural" 

might be employed. The processes for heat transport are one such system. Heat 

transfer is an interdisciplinary field of research meteorology that deals with heat 

transport. In this process, it calculates the rate at which data is transported 

throughout the application domain when exposed to specified temperature variations 

and the temperature profile of the framework. On the other hand, conventional 

thermodynamics is concerned with the requirement to raise the temperature that is 

transmitted throughout the process. Heat transfer mechanisms have become a 

fundamental aspect of human surroundings in our daily lives. 

1.1.1 Modes of Heat Transfer 

Heat is more than just energy that could be transmitted from one system to another 

due to temperature variations. A thermodynamic analysis is concerned with the heat 

transfer rates that occur when a system transitions from one equilibrium state to 

another. The physics of heat exchange is concerned with establishing the speeds at 

which energy transfers occur. The transmission of energy as heat occurs only from 

the more excellent temperature medium to the lower thermal medium, and heat 

transfer ceases when the temperatures of the two mediums are equal. Heat is 

transferred via three main techniques or mechanisms: conduction, convection, and 

radiation. All heat transfer modes need a temperature gradient, and all methods are 

from a high-temperature medium to a lower-temperature medium. In actuality, the 

combined influence of these three heat transport mechanisms regulates the 

temperature profile in a platform [1]. 
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Thermal Conduction 

Thermal conduction is the transmission of internal energy by microscopic collisions 

of particles and the movement of electrons inside a body. It is the most common 

kind of energy transfer. When colliding particles, which include molecules, atoms, 

and electrons, transmit disordered tiny kinetic and potential energy, referred to as 

internal energy, to the other colliding particles. Conduction occurs in all three phases 

of matter: solid, liquid, and plasma. Heat transfers naturally from a hotter to a colder 

body when a body is heated. For example, when heat is transferred from the hotplate 

of an electric stove to the bottom of a saucepan that comes into contact with it, this is 

known as conduction. Heat loss occurs over time when there is no opposing external 

driving energy source present, either inside a body or between bodies, and 

temperature disparities diminish as thermal equilibrium is approached, with 

temperature becoming more uniform [2]. 

Convection 
Convection, also known as convective heat transfer, is the transfer of heat from one 

region to another due to the movement of a fluid. Even though it is often regarded as 

a unique technique of heat transfer, convective heat transfer seems to be the result of 

the combined processes of conduction (heat diffusion) and advection (heat transfer 

by bulk fluid flow). When it comes to heat transmission in liquids and gases, 

convection is generally the most prevalent mode of heat transfer. It is important to 

note that this definition of convection is only appropriate in the settings of heat 

transport and thermodynamics. It should not be confused with the dynamic fluid 

phenomena of convection, which is often referred to as Natural Convection in 

thermodynamic settings to differentiate between the two. 

The basic relationship for heat transfer by convection is: 

( )b
fQ hA T T= −  

where Q is the heat transferred per unit time, A is the surface area of the object, h is 

the heat transfer coefficient, T is the surface temperature of the object, fT  is the fluid 

temperature, and b is a scaling exponent in the equation. There are two kinds of 

convective heat transfer that may be distinguished: 
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Free or natural convection occurs when fluid motion is produced by buoyant forces 

resulting from differences in density induced by fluctuations in thermal temperature 

in the fluid. For example, when fluid comes into the interface with a heated surface 

without an internal source, its molecules divide and disperse, causing the fluid to 

become less dense. As a result, the liquid is displaced, while the colder fluid 

becomes more viscous, and the fluid sinks. As a result, the hotter volume of fluid 

transfers heats to the cooler volume of the same fluid.   The upward movement of air 

caused by a fire, or a hot item is a well-known example, as is the circulation of water 

in a pot that is heated from below. 

Forced convection occurs when a fluid is forced to flow over the surface of a solid 

by an internal source such as fans, churning, or pumps, resulting in an artificially 

generated convection current. This mechanism is found in a wide range of daily 

appliances, including central heating, air conditioning, steam turbines, and many 

more. Engineers developing or studying heat exchangers, pipe flow, and flow over a 

plate at a different temperature than the stream are often confronted with forced 

convection. 

When natural convection and forced convection processes work together to transport 

heat, this is called combined forced and natural convection, or mixed convection. 

Pressure-buoyancy interactions are sometimes characterized as circumstances in 

which both pressure and buoyant forces are at work. It is primarily governed by the 

flow, temperature, shape, and direction of the air that each kind of convection 

contributes to heat transmission. When it comes to determining the Grashof number 

of a fluid, the nature of the fluid is also essential since the number grows as the 

temperature of the fluid increases, but it is maximum at a certain point in a gas. In 

extremely high-power-output devices, when forced convection is insufficient to 

remove all the heat generated, it is common to see a combination of forced and 

natural convection. Combining natural convection with induced convection at this 

moment will often provide the desired outcomes. Nuclear reactor technology, as 

well as various parts of electronic cooling, are examples of these procedures. 
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Figure 1.1: The heat transfer mechanism is shown. 

Radiation 

Radiation is the name given to the heat transfer method in which no medium is 

needed. It refers to the transfer of heat in waves rather than individual molecules 

since it does not need molecules to go through. The objects don't need to be in close 

touch with one another for heat to be transferred. In most cases, when you feel the 

heat without really touching a thing, you are experiencing Radiation. Furthermore, 

color, surface orientation, and other surface properties are some of the factors that 

significantly impact Radiation. As a result of this process, energy is transported by 

electromagnetic waves, referred to as radiative energy. In general, hot things radiate 

thermal energy towards their surroundings, which is colder. Radiant energy can 

move across a vacuum from its source to its colder surrounds, according to Hagen 

[1] (1999). The most remarkable example of radiation is the solar energy that we 

receive from the sun, even though it is thousands of miles distant from us. Figure 1.1 

depicts an illustration of several modes of heat transfer in movement.  
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1.1.2 Flow within an enclosure 

One of the essential circumstances seen repeatedly in practice is circulation within 

the enclosures composed of two walls at different temperatures from one another. In 

all cases, mainly where this circumstance exists, heat transfer happens due to the 

temperature gradients throughout the fluid layer. One horizontal solid surface is at a 

higher temperature than the other flat, stable surface. Assuming that the top plate is 

the hot surface, the lower scale will have a heavier fluid than the upper plate. As a 

result of buoyancy, the liquid will not reach the bottom plate for the simple reason 

that the heat transport method is limited to simply transmission in this scenario. 

However, assume the fluid is contained between two horizontal surfaces, with the 

top surface being at a lower temperature than the lower surface. Benard cells, which 

are natural convection currents that flow across cells, will also be present in that 

scenario. Fluids whose density drops with rising temperature are put in an unstable 

state due to this phenomenon. Benard referred to this state of instability as a "top-

heavy" condition. As a result, the fluid is entirely immobile and only transfers heat 

across the layer by the conduction process in such a situation. Rayleigh realized that 

this unstable condition would have to break down at a precise value of the Rayleigh 

number, at which convective motion would have to be produced. When the air layer 

is surrounded on both sides by solid walls, Jeffreys concluded that the limiting value 

of Ra is 1708, according to his calculations. More information might be found in 

Patankar [3]. 

1.1.3 Applications of the Enclosure 

As a result of the wide range of applications for which free convection is utilized, it 

is regarded as one of the most significant achievements in thermal activity. Our work 

often encounters fluid flow and heat transfer in cavities of various orientations. 

Some of these classical issues have analytical and massive numerical solutions, 

while others do not. Researchers in this field have developed solar energy collectors, 

nuclear reactor temperature control systems, room ventilation systems, fire-

prevention systems, electrical cooling equipment, and geothermal equipment, among 

many other applications. It is anticipated that the investigation will be beneficial in a 

wide range of applications, including air conditioning in rooms, biological 
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transportation, injection modeling, double-paned windows, building energy 

conservation, material processing, grain storage, and high-performance building 

insulation; dynamics of lakes, reservoirs, and cooling ponds; and cryogenics. A 

substantial amount of research has been done on the various designs of the cavity, 

with the results being published in scientific journals. For example, many different 

kinds of geometric structures, simulation algorithms, and fluid frameworks have 

been researched in recent years. When it comes to heat transfer study, the skewed 

enclosure with a single horizontal baffle represents a significant advancement and an 

area of fast expansion in today's modern trend of heat transfer investigation. It is a 

fast-emerging discipline of fluid flow to study the flow of fluid mechanics and heat 

transfer via a hollow cavity. Natural convection heat transfer in a skewed cavity with 

sinusoidal boundary conditions may occur when a magnetic field is present. This is a 

significant branch of thermo-fluid mechanics that has developed. 

1.2 RELEVANT DEFINITIONS 

The following are the numerous definitions related to thesis: 

1.2.1 Skewed Cavity 

A skewed cavity, also known as an inclined enclosure, is a flat supporting surface 

that has been sloped at an angle, through one end of the cavity being higher than the 

other end. Skewed cavities are physical structures that use angle differences to get a 

mechanical advantage. The typical shape of the skewed enclosures is shown in Fig 

1.2. 

 
Figure 1.2: Skewed cavity 
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1.2.2 Stream Function 

The stream function is defined for incompressible flows in two dimensions, and in 

three dimensions with axisymmetric. The derivatives of the scalar stream function 

may represent the flow velocity components of the flow. It is possible to visualize 

streamlines, which depict the trajectories of objects in a steady flow, with the help of 

the stream function. Joseph Louis Lagrange invented the two-dimensional Lagrange 

stream function in 1781, and it has been in use ever since. In asymmetrical three-

dimensional flow, the Stokes stream function is used. It was named after George 

Gabriel Stokes, who discovered it. The volumetric flow rate (or volumetric flux) 

through a line connecting two places can be calculated using the stream function 

difference between any two points in the case of fluid dynamics. The concept of 

adding a stream function is only productive if the continuity equation can be 

simplified to two periods. When a function )(x,y satisfy the continuity equation 

0
u u
x y

 
+ =

 
, it is referred to be a stream function. For two-dimensional flows, the 

relationships between the stream function )(x,y and the velocity components are 

u
y


=


and v
x


= −


. Using the above definition of the stream function, the 

positive sign of )(x,y  denotes anti-clockwise circulation and the clockwise 

circulation is represented by the negative sign of )(x,y . More information might 

be found in Batchelor, G. K. [4]. 

1.2.3 Thermal Diffusivity 

Thermal diffusivity is the rate at which heat is transferred from one side of a 

material to the other side of the substance. It may be computed by dividing the 

thermal conductivity by the density and the specific heat capacity at constant 

pressure. Thermal diffusivity is a measure of how quickly heat diffuses across a 

substance and is defined as 

p

k
c




=  

A material with a superior thermal conductivity or a lower heat capacity will have an 

effective thermal diffusivity. The higher thermal diffusivity indicates that heat 
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propagation into the medium is more instantaneous. In contrast, a low thermal 

diffusivity number implies that the material absorbs most of the heat, and only a 

small quantity of heat is carried further [4]. 

1.2.4 Thermal Conductivity 

The thermal conductivity is measured in terms of the quantity and speed of heat that 

can transfer through it. Materials with a high thermal conductivity transmit heat 

more quickly than those with a low one. Materials with high thermal conductivity 

are utilized as heat sinks, whereas materials with low thermal conductivity are 

employed as thermal insulation. Materials' heat conductivity is transferred away 

from the junction. It is well known that material properties' electrical and thermal 

conductivity are closely linked; in other words, materials with high electrical 

conductivity also have high thermal conductivity. The proportionality constant k is 

referred to as the material's thermal conductivity. More details are available in 

Çengel and Yunus [2]. 

Heat flow(Q) Thickness of thematerial (L)
Surface area of material(A)  Temperature gradient ( T)

k


=
 

 

( )
 

 
Q L

k
A T


=

 
 

1.2.5 Newtonian Fluid and Non-Newtonian Fluid 

Newtonian fluids are defined as fluids in which the constant of proportionality, i.e., 

the coefficient of viscosity (  ), does not vary with the deformation rate. In other 

ways, fluids that obey Newton's viscosity rule are referred to as Newtonian fluids. 

Newtonian fluids are named after Sir Isaac Newton (1642 - 1726), who defined the 

flow behavior of fluids using a simple linear relationship between shear stress [mPa] 

and strain rate [1/s]. Newtonian fluids include substances such as water, air, and 

mercury, to name a few examples. 

A non-Newtonian fluid is a fluid whose viscosity varies according to its amount of 

stress or force. Cornstarch dissolved in water is the most prevalent daily example of 

a non-Newtonian fluid. Temperature and pressure are the only variables used to 
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characterize Newtonian fluids' behavior like water. On the other hand, the physical 

behavior of a non-Newtonian fluid depends on the forces acting on it from second to 

second. In other words, non-Newtonian fluids are fluids that neither obey Newton's 

rule of viscosity nor behave like water. Non-Newtonian fluids include blood, liquid 

plastic, and polymer solutions. More details are available in Batchelor and G. K. [4]. 

 

 
Figure 1.3: Classification of fluid 

1.2.6 Compressibility  

Compressibility is a property of fluid that measures the change in density and 

consequently, the change in the volume of a fluid during motion under the action of 

external forces [5]. The compressibility is expressed in terms of Mach number (M) 

which is defined by 

0

speed of fluid
 speed of sound 

u
M


= =  

1.2.7 Compressible Flow and Incompressible Flow 

Compressible flow is that type of flow in which the density of the fluid changes 

from point to point in other words the density (  ) is not constant for the fluid [54]. 

Thus, mathematically, for the compressible flow  
constant   

Incompressible flow is that type of flow in which the density of the density (  ) is 

constant for the fluid flow. Liquids are generally incompressible gases are 

compressible [5]. Mathematically, for the compressible flow  

constant =  

 



Chapter 1 

 Page 23 

  
Figure 1.4: Compressibility 

1.2.8 Viscosity 

The viscosity of a fluid that changes a lot with temperature measures how hard it is 

to change shape. When two fluid layers move next to each other, friction forces 

build up between them. The slower layer tries to slow down the faster layer. In this 

case, the fluid property viscosity is used to measure how much internal resistance 

there is to flow. All fluid flows have some viscous effects, so no   has no 

consistency. The viscosity of liquids goes down as the temperature rises, but the 

viscosity of gases goes up as the temperature rises. More details are available in 

Çengel and Yunus [2]. 

1.2.9 Viscous Flow 

The viscous properties of the fluid dominate the flow patterns of such flows, which 

are referred to as viscous flows. This occurs when the velocity gradients in a fluid 

are rather substantial. The flow near to the pipe walls may be considered as viscous 

flows [1]. 

1.2.10 Newton’s Law of Viscosity  

If the shearing stress,   , enlargements by increasing the force P, the rate of shearing 

strain also increases in direct proportion to that,  

 . .,  
du du

i e
dy dy

   =  

where    is the dynamic viscosity of the fluid. This principle is known as Newton’s 

law of viscosity. More details are available in Çengel and Yunus [2]. 
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1.2.11 Effectiveness 

Baffle Effectiveness: 
Baffle effectiveness ( fE ) is the parameter that quantifies the heat transfer 

enhancement inside the cavity with a baffle compared to the case with no baffle [17] 

and is defined as follows 

baffle
f

withoutbaffle

Q

Q
E =  

 

 

The effectiveness of baffle fE =1 indicates that the addition of baffles to the surface 

does not affect heat transfer. The heat conducted to the baffle through the base area 

equals the heat transferred from the same area to the surrounding medium. 

 The effectiveness of baffle fE  < 1 indicates that the baffle acts as insulation, 

slowing down the heat transfer from the surface. This situation can occur when 

baffles made of low thermal conductivity materials are used. Effectiveness of baffle 

fE > 1 indicates that the baffle enhances heat transfer from the surface, as they 

should. However, the use of baffles cannot be justified unless fE  is sufficiently 

larger than 1. Baffle surfaces are designed to maximize the effectiveness of a 

specified cost or minimize cost for the desired effectiveness. More details are 

available in Hagen [1]. 

Angle Effectiveness: 

Angle effectiveness ( efA ) is the characteristic that measures the heat removal 

coefficient within the cavity when an angle is used, as discussed in previous sections 

when there is except angle . 
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1.3 DIMENSIONLESS PARAMETERS 

Fluid behavior is greatly influenced by a collection of dimensionally insignificant 

values known as the "dimensionless parameters" of fluid mechanics. Mechanical 
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engineers often use dimensionless numbers. Here, the variables are either divided 

into groups that perfectly cancel one another or pure integers with no units. For 

example, using a dimensionless number as a ratio of two other numbers is possible, 

and the dimensions of the numerator and denominator will cancel. The 

dimensionless parameters may gauge certain features of the flow's significance. This 

investigation will explore several dimensionless parameters relevant to it in this 

section. 

1.3.1 Prandtl Number ( Pr ) 

The relative consistency of the velocity and thermal boundary layers is suitably 

characterized by the dimensionless parameter Prandtl number, which is defined as 

Momentum diffusivity /
Thermal diffusivity / ( )

p

p

c
Pr

k C k

  

 
= = = =  

where   is the kinematic viscosity (momentum diffusivity), 



 = ,   is the 

thermal diffusivity and 
)( pc

k


 = ,   is the dynamic viscosity, k  is the thermal 

conductivity, pc  is the specific heat and   is the density. It is named after Ludwing 

Prandtl, who introduced the concept of boundary layer in 1904 and made significant 

contributions to boundary layer theory. The Prandtl number of fluids ranges from 

less than 0.01 for liquid metals to more than 100,000 for heavy oils. When the 

Prandtl number is small, as in Pr <<1, thermal diffusivity is the dominant factor. In 

contrast, when Pr > >1, the momentum diffusivity becomes the dominant factor in 

the conduct [1]. 

1.3.2 Rayleigh Number (Ra) 

The Rayleigh number of a fluid is a dimensionless number connected with heat 

transport inside the fluid. When the Rayleigh number is less than the significant 

level for that fluid, heat transfer is mainly in conductance; when the Rayleigh 

number is more than the significant level, heat transfer is primarily in convection. 

The Rayleigh number, named after Lord Rayleigh, is described as a Grashof number 
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function, representing the relationship between buoyancy and viscosity inside fluid 

and the Prandtl number. 

( ) 3Prx x s
g

Ra Gr T T x



= = −  

This value is used to describe free convection near a vertical wall. 

where Pr = Prandtl number, g = gravity, x = characteristic length (in this case, length 

of cavity), Ts = Temperature of surface, T∞ = Quiescent temperature, ν = kinematic 

viscosity, α = thermal diffusivity, and β = thermal expansion coefficient. More 

details are available in Çengel and Yunus [2].  

1.3.3 Grashof Number (Ga) 

The Grashof number (Gr) is a dimensionless number in fluid dynamics and heat 

transfer which approximates the ratio of the buoyancy to viscous force acting on a 

fluid. It frequently arises in the study of situations involving natural convection and 

is analogous to the Reynolds number, and define as 

3

2

( )wg L T T
Gr

v
 −

=  

where g  denotes gravity acceleration,   is the volumetric thermal expansion 

coefficient, wT  denotes wall temperature, T denotes ambient temperature, L  

denotes characteristic length, and v  denotes kinematic viscosity. The Grashof 

number Gr  follows the same procedure as the Reynolds number Re  does in forced 

convection in free convection. Therefore, the Grashof number is essential for 

identifying whether the fluid flow in free convection is laminar or turbulent. The 

critical value of the Grashof number is about 910  for vertical plates. Thus, when 

Grashof numbers exceed 910 , the flow regime on a vertical scale becomes turbulent. 

More details are available in Çengel and Yunus [2]. 

1.4 LITERATURE REVIEW 

Many researchers have extensively explored natural convection within the cavity for 

different orientations, various types of nano-fluids for both steady and unsteady 
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numerical cases. The addition of a baffle to the cavity's wall substantially impacts 

both flow patterns and heat transfer. Davis [7] investigated the natural convection of 

air in a square cavity and presented a benchmark numerical solution. Tasnim et al. 

[8] analyzed heat transmission inside a squared enclosure by including a baffle on 

such a heated surface using numerical methods. Moreover, they found that the 

maximum increase in thermal transmission occurs when the baffle is stretched to its 

maximum length. Ambarita et al. [9] detected laminar free Convection heat transport 

in an air-filled rectangular cavity having a couple of insulated baffles connected to 

its horizontal sidewalls. It has been shown that, when compared to the same cavity 

without baffles and the addition of two baffles having non-dimensional lengths 

greater than 0.5 changes the flow and temperature fields. Jani et al. [10] investigated 

MHD free convective heat inside a square cavity heated from bottom sides and 

cooled from another sides. Also, they observed that the intensity of the magnetic 

field and the Rayleigh number significantly impacted the heat transfer processes, 

temperature distribution, and flow characteristics inside the cavity. The impact of a 

thick horizontal partial partition connected to one of the active walls of a 

differentially heated square enclosure was studied by Nag et al. [11]. Barakos et al. 

[12] studied laminar and turbulent models with wall functions for flows revisiting 

natural convection flow in a square cavity. They reported that for thin boundary 

layers, dense, non-uniform grids catch most flow and heat transport characteristics 

exceptionally effective. Due to significant temperature differences, Mayeli and 

Sheard [13] explored free convection and entropy generation in skew and square 

cavities: A Gay-Lussac type vorticity stream-function method. Free convective heat 

transfer in a square porous cavity with sinusoidal temperature distributions on 

vertical walls covered with nanofluid was analyzed by Sheremet and Pop [14] 

utilizing Buongiorno's mathematical model. Ren et al. [15] investigated Laminar 

natural convection in a square cavity with 3D random roughness components while 

considering the fluid's compressibility. Amini et al. [16] used numerical simulations 

to investigate the free convective fluid movement also heat transport within a 

symmetrically cooled square cavity, including a fin connected through its hot lower 

wall. They found that the flow and heat transmission within the cavity was very 

efficient. Elatar et al. [17] studied Numerically laminar free convection within a 

square cavity including a singular horizontal fin. They also found that raising the 

conductivity ratio for every value of Rayleigh numbers may increase the fin's 
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efficiency. It is also discovered that, in general, the fin's efficiency improves with the 

lengthening of the fin. Ali et al. [18] scrutinized free convection in a porous square 

cavity with a sinusoidally changing temperature distribution on the lower wall. 

Asad et al. [19] investigated numerically inside a lid-driven square enclosure with a 

vertical fin of MHD mixed convection heat transfer. Finally, they found that the 

Richardson number influences the fluid movement area within the enclosure. The 

Richardson number (Ri) impacted the magnetic field intensity as well as isotherms. 

 Pop et al. [20] examined heat transmission and entropy generation in combined 

convection of nanoparticles inside an angled skew enclosure may occur 

simultaneously. A wide variety of skewed angles, volume fractions, the flow area 

properties, and heat transference components including Richardson numbers are 

investigated in that study. Thohura et al. [21] carried out mathematical simulations 

of non-Newtonian power-low fluid movement within a lid- driven skewed enclosure. 

Erturk et al. [22] examined Numerical solutions of two-dimensional relatively 

constant incompressible flow inside a driven skew enclosure. Nayak et al. [23] 

deliberated a numerical analysis of combined convection with entropy production in 

a differentially heated skewed enclosure for a Cu-water nanofluid. Sharaban et al. 

[24] studied the mixed convective flow of power-law fluids in a lid-driven 

skew cavity. The natural convective heat was studied by Misirlioglu et al. [25] in a 

skewed undulating framework filled by a porous medium. According to their 

research, Heat is often transported from the heated wall inside the porous material. 

However, the heat transference rate is strongly reliant on the surface waviness and 

Rayleigh number of the porous channel. Chamkha et al. [26] explored the fluid-

structure interactions in free convection flow in an inclined enclosure with 

something like a comfortable undulating fin as well as partly heating. Benmenzer 

and Si-Ameur [27] evaluated natural convective heat induced by heat generation in 

an angled porous enclosure. Their research discovered that increasing the heat flow 

causes an increase in the fluid flow intensity. Baytas [28] analyzed the entropy 

generation during free convection inside an angled pore enclosure. Selamat et al. 

[29] reported free convection in an angled porous enclosure with temperature 

differences along the sidewalls. For the most part, they found numerical data that 

support the notion that the most extraordinary natural convective is based on the 

inclination angle, with the maximal Nusselt number occurring at various wave 
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numbers for various incline degrees. Sivasankaran et al. [30] examined free 

convection in a sloping pore triangle cavity with different heat transfer 

characteristics. For low Rayleigh numbers, heat transmission is influenced by 

conductance throughout the fluid particles, and subsequently, convective heat is 

impacted by rising Darcy-Rayleigh numbers.  

Free convection in a porous rectangular cavity having sinusoidal temperature 

distributions on both sidewalls was studied by Wu et al. [31], Using a thermal non-

equilibrium model. Wang et al. [32] studied the impacts of temperature-dependent 

characteristics on free convection for power-law nanoparticles in rectangular cavity 

having periodic temperature profile. Bendehina et al. [33] examined the 

consequences of sinusoidal transmission of heat on laminar free convection in a 

wavy shape rectangular cavity. Varol et al. [34] researched a Numerical solution of 

free convective heat transfer for a porous rectangular enclosure, including a 

sinusoidally changing temperature gradient on the lower surface. It has also been 

observed that the effects of aspect ratio become substantial, particularly at more 

extensive levels of the magnitude of the sinusoid.  

Hassinet et al.  [35] carried out numerical study on natural convection in a porous 

cavity that was partly hot and cool by periodic heating at the vertical surfaces. 

Furthermore, they have discovered that the conduction heat-transfer management is 

also appropriate for low sinusoidal temperature functions. Saeid [36] investigated 

natural convective flow in a porous medium with sinusoidal temperature fluctuations 

at the bottom wall. He discovered that, for a certain Rayleigh number, the 

mean Nusselt number rises when the non-dimensional distance of the heating 

element is increased. Increasing the size of the hot part, however, results in a 

reduction in the heat transmission per unit area of the heat source. Using numerical 

simulations, Zahmatkesh [37] analyzed the heat transmission mechanism and 

entropy production features within a four equal-sided porous medium with 

sinusoidal heat fluctuations on the symmetric and anti-symmetric sidewalls. In 

addition, it was discovered that, even though anti-symmetric temperature boundary 

conditions result in more excellent thermal conductivity, they are associated with a 

significantly increased rate of entropy production. Numerical study of free 

convection in a pore cavity having periodic heated boundary conditions was also 
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explored by Wu et al. [38]. Also observed that the values of the average Nusselt 

number continuously rise as its porosity grows, and this is true for all periodicity 

parameters.  Chattopadhyay et al. [39] studied mixed convection flow patterns in a 

dual lid-driven oscillatory heated pore enclosure. That was the top priority of their 

research to investigate the Darcy impact and even the influence of magnitude and 

phase variations under sinusoidal boundary conditions, which they accomplished. 

Cheong et al. [40] applied various heat sources in a porous shell, including the flow 

of free convection and internal heat, to explore convection patterns inside a 

sinusoidal cavity. They saw that the higher magnitude and more significant 

fluctuations improve heat transmission, and a wavy cavity transfers heat faster than a 

square cavity. Asad et al. [41] numerically studied the heat transfer properties of 

natural convective flow within an enclosed medium with perpendicular undulating 

walls. Their experiments indicated that the material's perspective ratio, including 

surface waviness, significantly influences the heat-releasing properties. 

Free convection inside an undulating cavity containing three-dimensional heat 

sources was explored by Oztop et al. [42] in their study. According to the findings of 

their investigation, variations throughout the interior to exterior Rayleigh number 

ratios and the magnitude of the undulating wall affected both the flow field and heat 

transport properties. Whenever the magnitude of the undulating wall became 

prominent, it was anticipated that more excellent heat transferal rates would occur. 

According to Singh et al. [43], Mathematical analysis of free convection inside an 

wavy enclosure and to use a meshfree strategy: the effect of corner heating. In 

addition, it has been found that the heat transmission rate for undulating surfaces is 

more significant than that for flat surfaces. Asad et al. [44] investigated the impact 

of fin size and position on free convection flow in an irregular cavity with a straight 

fin. They concluded that the size and placement of the Fins had a significant impact 

on the movement also heat transmission properties inside the undulating cavity. 

Alsabery et al. [45] discussed the impact of non-homogeneous nano-fluid modeling 

on transient combined convection in a dual lid-driven irregular cavity containing a 

solid circular cylinder. 

 According to Hussein et al. [46], the Influence of baffles width on free convection 

in a cavity containing various nanoparticles was investigated. Finally, they 

discovered that raising the Rayleigh number, the baffle lengths, the material volume 
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fraction, and the aspect ratio all helped increase the intensity of the fluid flowing and 

the convection in the system. Taylor et al. [47] explored A mathematical model of 

the Navier–Stokes equation that used the finite element method. Free convection of 

a two-dimensional enclosure having a periodic top heated wall was inquired by 

Sarris et al. [48]. They took noted the impact of conductance decreases when the 

Rayleigh number is much enough. Sankar et al. [49] studied the impacts of the thin 

baffle's size and position on free convection in a vertical circular cavity. Asad et al. 

[50] investigated the free convection flow numerically in a hexagonal cavity, 

including a perpendicular fin. In this study, the effects of fin length variation on the 

Rayleigh number are discussed in detail. Djaomazava et al. [51] conducted 

numerical instructions of natural convection in an upward channel with sinusoidal 

process on one of its partitions. In that study, the researchers looked at the impacts 

of controlling variables such as Rayleigh number, slope angle, baffle measures, solid 

quantity fraction, and perspective ratio on the system's heat transport properties and 

movement patterning. Bilgen and Yedder [52] investigated natural convection inside 

an enclosure with heating and cooling that using sinusoidal temperature profiles on 

one side. Free convection in a porous horizontal cylindrical annular with sinusoidal 

boundary conditions was examined by Khudhayer et al. [53]. Asad et al. [54] 

studied the effect of an enclosed space rectangle heat source on convective heat 

transfer via a triangular cavity. Frederick et al. [55] analyzed a three-dimensional 

free convection in a finned cubical cavity. Islam et al. [56] investigated the MHD 

natural convection heat transport and fluid flow of a nanofluid in a skewed cavity 

numerically. 

According to the above literature review, natural convection inside the enclosure 

was investigated under various boundary conditions, both with and without a baffle. 

In contrast, only a small number of studies has been done on the effect of skew 

angles for different Rayleigh numbers on a differentially heated wall inside a skewed 

cavity. For the aim of this investigation, a skewed cavity with a horizontal baffle 

connected to the thermal wall, while the other wall is at sinusoidal temperature. To 

determine the impact of skew angle on heat removal capability within a skewed 

cavity with sinusoidal temperature distribution, numerical research will be carried 

out at different Rayleigh number. Additionally, the efficiency and effectiveness of 

skew angles and baffle lengths will be studied. 
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1.5 MOTIVATION 

From the literature survey, it could be claimed that natural convection inside the 

enclosure was investigated under various boundary conditions, both with and 

without a baffle. In contrast, only a small number of studies has been done on the 

effect of skew angles for different Rayleigh numbers on a differentially heated wall 

inside a skewed cavity. Furthermore, skew angle efficiency and effectiveness in 

these circumstances deserve due attention since there has been no systematic study 

of these features under different design conditions. It is important to use free 

convection heat transfer when developing efficient heat transfer devices, such as 

nuclear reactors and solar collectors, as well as electrical equipment. The literature 

survey indicates that a little attention has been paid to investigate the heat transfer 

characteristics of the free convection in a skewed cavity having a horizontal baffle 

using sinusoidal boundary condition. There is ample scope of study to observe the 

characteristics of fluid flow and heat transfer due to the variation of skew angle as 

well as baffle size, which forms the basis for the motivation behind the present 

study. 

1.6 OBJECTIVES OF THE PRESENT STUDY 

From the review of earlier investigations, it is apparent that very little study has been 

conducted on the impact of baffle length and skew angle for different Rayleigh 

numbers on a differentially heated wall within a skewed cavity. This study was 

carried out numerically, and the related results were shown using streamlines, 

isotherms, velocity, and temperature profiles, local and average Nusselt numbers and 

related graphs and charts. 

The precise objectives of the current study are to: 

i. Investigate the heat transfer due to horizontal baffle attached to the heated 

inclined right wall of the skewed cavity with sinusoidal boundary 

condition at the left wall. 
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ii. Study the influence of physical parameters such as the Rayleigh number on 

the flow field within the skewed cavity under sinusoidal boundary 

condition. 

iii. Analyze the effects due to the variation of the skew angles as well as for 

different length of baffles attached to the right wall of the skewed cavity. 

It is expected that the present numerical investigation will contribute to the research 

for finding more efficient and better energy equipment. The output of this 

investigation is expected to be helpful for the researchers and experimentalists in the 

field of solar energy collectors, nuclear reactor temperature control, room 

ventilation, fire prevention, electrical cooling equipment, biological and geothermal 

equipment, etc. 

1.7 OUTLINE OF THE THESIS 

This dissertation is divided into four chapters. In chapter 1, a brief introduction is 

provided, along with the specific objectives. It also contains an overview of previous 

work on fluid flow and heat transfer in cavities. It has been categorized in this state-

of-the-art review to highlight distinct elements of the preceding research that have 

been conducted. Following that, a post-mortem of a recent historical event is 

presented to illustrate the consequences of fluid flow and heat transfer in cavities 

under various boundary conditions. 

The computational technique for the problem of viscous incompressible flow is 

presented in Chapter 2. The finite element method is used in this work, and it is 

discussed in detail. With a sinusoidal boundary condition and free convection flow 

in a skewed cavity, we explored the impacts of the baffle inside the skewed 

enclosure. 

An in-depth parametric investigation of free convection in a sinusoidally skewed 

cavity with sinusoidal boundary condition is carried out in Chapter 3. The effects of 

significant characteristics such as Rayleigh number, Prandtl number, and physical 

parameters such as the skewness of the cavity on the flow and heat field in the 

enclosure have been investigated for three different values of Rayleigh number. 
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Finally, in Chapter 4, the dissertation is brought to a close with conclusions and 

comparisons. Final recommendations for further investigation of the present 

predicament are presented in this section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

CHAPTER 2 

MATHEMATICAL MODELLING AND COMPUTATIONAL 

TECHNIQUE 

2.1 MATHEMATICAL MODELLING  

Free convection is a term used to describe the heat transfer that happens as a result 

of temperature variations that change the density of the fluid and, as a result, the 

relative buoyancy of the fluid (natural convection). The mathematical model, which 

comprises a collection of partial differential equations and boundary conditions, 

serves as the starting point for any numerical approach. Solution methods are often 

created for specific equations and are not generic. Even if it is impracticable, it is not 

impossible to develop a general-purpose solution approach, i.e., one that can be used 

to all flows. On the other hand, as with other general-purpose tools, they are seldom 

optimal for any one application. The generalized governing equations, based on the 

conservation laws of mass, momentum, and energy, are employed to calculate the 

results. Because heat transfer depends on various elements, dimensional analysis is 

provided to demonstrate the significant non-dimensional components that was 

impact the dimensionless heat transfer parameter, i.e., the Nusselt number. 

2.2 PHYSICAL MODEL 

The schematic geometry of two-dimensional convection in a skewed cavity with 

boundary conditions is shown in Figure 2.1. The inclined left wall is deliberated at a 

sinusoidal temperature, while the inclined right wall is kept at a constant hot 

temperature ( hT ) and the remaining walls are insulated. The heated right wall is 

equipped with a baffle. The baffle length, thickness, and location are denoted by l, d, 

and b, respectively. S indicates the inclined and horizontal wall in the model. For the 

baffle location, b (x, y) defined by   
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Furthermore, α denotes the skew angle. Gravitational forces work vertically 

downward. Additionally, it is referred to as constant, two-dimensional, and 

incompressible flow. 

 
Figure 2.1: Model with boundary conditions.  

 

2.3 COMPUTATIONAL TECHNIQUE 

Computational fluid dynamics (CFD) has been rapidly gaining popularity over the 

past several years for technological and scientific interests. For many problems of 

industrial interest, experimental techniques are extremely expensive or even 

impossible due to the complex nature of the flow configuration. Analytical methods 

are often valuable for studying the fundamental physics involved in a particular flow 

problem; however, these methods have limited direct applicability in many exciting 

problems. The dramatic increase in computational power over the past several years 

has led to a heightened interest in numerical simulations as a cost-effective method 

of providing additional flow information, not readily available from experiments, for 

industrial applications, as well as a complementary tool in the investigation of the 

fundamental physics of turbulent flows, where analytical solutions have so far been 

unattainable. However, it is not expected (or advocated) that numerical simulations 

replace theory or experiment, but that they are used in conjunction with these other 

methods to provide a complete understanding of the physical problem at hand. 

Mathematical models of physical phenomena may be ordinary or partial differential 

equations, subject to analytical and numerical investigations. For example, the 

partial differential equations of fluid mechanics and heat transfer are solvable for 
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only a limited number of flows. To obtain an approximate solution numerically, we 

have to use a discretization method, which approximates the differential equations 

by a system of algebraic equations, which can then be solved on a computer. The 

approximations are applied to small domains in space and/or time, so the numerical 

solution provides results at discrete locations in space and time. Much as the 

accuracy of experimental data depends on the quality of the tools used, the accuracy 

of numerical solutions depends on the quality of discretization used. Computation 

involves forming a set of numbers that constitutes a practical approximation of a 

real-life system. The outcome of the computation process improves the 

understanding of the performance of a system. Thereby, engineers need CFD codes 

to make physically realistic results with good quality accuracy in simulations with 

finite grids. Contained within the broad field of computational fluid dynamics are 

activities that cover the range from the automation of well-established engineering 

design methods to the use of detailed solutions of the Navier-Stokes equations as 

substitutes for experimental research into the nature of complex flows. CFD has 

been used for solving a wide range of fluid dynamics problems. It is more frequently 

used in engineering fields where the geometry is complicated or some vital feature 

that cannot be dealt with standard methods. More details are available in Patankar 

[3] and Ferziger & Perić [6]. 

2.3.1 Discretization Process 

After choosing a mathematical model, one must choose an appropriate discretization 

technique, that is, a method for approximating the differential equations with a 

system of algebraic equations for the variable at a collection of discrete locations in 

space and time known as grid points [6]. 

2.3.2 Numerical Grid 

The numerical grid defines the discrete locations at which the variables are to be 

calculated, which is essentially a discrete representation of the geometric domain on 

which the problem is to be solved. It divided the solution domain into a finite 

number of sub-domains (elements, control volumes, etc.). Some of the options 

available are structural (regular) grid, block-structured grid, unstructured grids, etc. 
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2.3.3 Finite Approximations  

Following the choice of grid type, one has to select the approximations to be used in 

the discretization process. In a finite difference method, approximations for the 

derivatives at the grid points have to be chosen. In a finite volume method, one has 

to select the methods of approximating surface and volume integrals. Finally, in a 

finite element method, one must choose the functions and weighting functions [5]. 

2.3.4 Solution Technique 

Discretization yields an extensive system of non-linear algebraic equations. The 

method of a solution depends on the problem. For unsteady flows, methods based on 

those used for initial value problems for ordinary differential equation (marching in 

time) is used. At each time step, an elliptic problem has to be solved. Pseudo-time 

marching or an equivalent iteration scheme usually solves steady flow problems. 

Since the equations are non-linear, an iteration scheme is used to solve them. These 

methods use successive linearization of the equations, and iterative techniques 

almost always solve the resulting linear systems. The choice of solver depends on 

the grid type and the number of nodes involved in each algebraic equation [5]. 

2.3.5 Discretization Approaches 

The first step to numerically solve a mathematical model of physical phenomena is 

numerical discretization. Each component of the differential equations is 

transformed into a “numerical analog,” which can be represented in the computer 

and then processed by a computer program built on some algorithm. Several 

discretization methods are available for the high-performance numerical 

computation in CFD [6]. Those include: 

➢ Finite volume method (FVM) 

➢  Finite element method (FEM) 

➢ Finite difference method (FDM) 

➢ Boundary element method (BEM) 

➢ Boundary volume method (BVM) 
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Galerkin finite element method (FEM) has been used in the present numerical 

computation. 

2.3.6 Finite Element Method 
The finite element method (FEM) is a powerful computational technique for solving 

problems that are described by partial differential equations or can be formulated as 

functional minimization. The basic idea of the finite element method is to view a 

given domain as an assemblage of simple geometric shapes, called finite elements, 

for which it is possible to systematically generate the approximation functions 

needed in the solution of partial differential equations by the variational or weighted 

residual method. The computational domains with irregular geometries by a 

collection of finite elements make the method a valuable practical tool for the 

solution of boundary, initial, and eigenvalue problems arising in various engineering 

fields. The approximation functions, which satisfy the governing equations and 

boundary conditions, are often constructed using ideas from interpolation theory. 

Approximating functions in finite elements are determined in the nodal values of a 

physical field that is sought. A persistent physical problem is transformed into a 

discretized limited element problem with unknown nodal values. A system of linear 

algebraic equations should be solved for a linear problem. Values inside finite 

elements can be recovered using nodal values. More details are available in Ferziger 

and Perić [6]. 

The significant steps involved in finite element analysis of a typical problem are: 

1. Discretization of the domain into a set of finite elements (mesh generation). 

2. Weighted-integral or weak formulation of the differential equation to be 

analyzed. 

3. Development of the finite element model of the problem using its weighted-

integral or weak form. 

4. Assembly of finite elements to obtain the global system of algebraic 

equations. 

5. Imposition of boundary conditions. 

6. Solution of equations. 

7. Post-computation of solution and quantities of interest. 
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2.3.7 Mesh Generation 

Mesh generation is the practice of generating a polygonal or polyhedral mesh that 

approximates a geometric domain. The term "grid generation" is often used 

interchangeably. Typical uses are rendering a computer screen or physical 

simulation such as finite element analysis or computational fluid dynamics. In the 

finite element method, mesh generation is the technique to subdivide a domain into a 

set of sub-domains, called finite elements. For example, the Figure 2.2 shows a 

domain, c
  is subdivided into a set of sub-domains, e

  with boundary e
 [6]. 

 

Figure 2.2: Finite element discretization of a domain 

The computational domains with irregular geometries by using a set of finite 

elements make it a valuable practical tool for solving boundary value issues that 

arise in a wide range of engineering disciplines. The finite element mesh of the 

current physical domain is shown in Figure 2.3. 

 

Figure 2.3: Mesh generation 
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2.3.8 Algorithm 

The iterative Newton-Raphson method was the first to propose the algorithm; the 

discrete versions of the continuity, momentum, and energy equations are solved to 

obtain the value of the velocity and temperature. It is essential to make accurate 

predictions about the initial values of the variables. The numerical solutions for the 

variables are then produced while the convergent criteria are met. This is the last 

step. The flow chart (Figure 2.4) illustrates a simple algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Flow chart of the computational procedure 
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2.4 GOVERNING EQUATIONS ALONG WITH BOUNDARY 

CONDITIONS 

The following are the governing differential equations by Ambarita et al. [9] for 

natural convection flow are 

 

0
u v
x y

 
+ =

 
 (2.1) 

21u u p
v

x y x
u u



  
+ = − + 

  
 (2.2) 

( )21v v p
v g T Tcx y x

u v  


  
+ = − +  + −

  
 (2.3) 

2T T
v

x y
u 
 

+ =  
 

 (2.4) 

where u and v are the velocity components along x and y axes, p  is the pressure,   

is the density,  is the dynamic viscosity,   is the thermal expansion coefficient, T  

is the temperature and   is the thermal diffusivity. 

2.4.1 Boundary conditions 

All the boundaries have no-slip conditions, and the horizontal plane walls are 

adiabatically controlled in this system. The left inclined wall is kept at a sinusoidal 

condition by Varol et al. [34] as follows: 

On the inclined left wall: ( )  Sin 2  ref
y

T y T T
S

=  
 
 
 

 
 (2.5a) 

On the inclined right wall: 0, ;hu v T T= = =     (2.5b) 

On the top and bottom adiabatic wall: 0;
T
y

u v


=


= =  (2.5c) 

For the baffle: 0, ;hu v T T= = =  (2.5d) 

 
The governing equations (1)-(4) are resolved into non-dimensional forms by 

utilizing the dimensionless parameters: 
2

2, , , , , , , ,c

h c

T Tx y uS vS pS d l b
X Y U V P D L B

S S T T S S S


  

−
= = = = = = = = =

−
 (2.6) 
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The dimensionless governing equations are: 

0
U V
X Y
 

+ =
 

 (2.7) 

2Pr
U U P

V
X Y X

U U
  

+ = − + 
  

 (2.8) 

2Pr Pr
V V P

V Ra
X Y X

U V 
  

+ = − +  +
  

 (2.9) 

2V
X Y

U
 


 

+ = 
 

 (2.10) 

 
The parameters Ra and Pr are representing to be Rayleigh and Prandtl number are 

defined as follows: 

3( )
, ,h c

p

g T T S
Ra Pr

C

  


  

−
= = =  

(2.11) 

where   is the kinematic viscosity,   denotes thermal conductivity and pC  denotes 
the specific heat. 
 
The dimensionless boundary conditions for the transformed governing equations are: 
On the inclined right wall: 0, 1U V = = =  (2.12a) 

On the upper and lower adiabatic walls: 0U V
Y


= = =


 (2.12b) 

On the inclined left wall: ( ) in 20, S YU V  = = =  (2.12c)  

For the baffle: 0, 1U V = = =  (2.12d) 

 

Nusselt Number: 

The performance rate of heat transport can be obtained by using the following 
equations of the Nusselt number, 

surface
localNu

N


= −


 
 

(2.13) 

  

The average Nusselt number on the sloping right inclined wall is examined in this 

section. 

1

0
dSavg localNu Nu=    (2.14) 
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Effectiveness 
Baffle effectiveness is a variable that measures the heat conversion augmentation 

inside an enclosure where the baffle is compared to a case without baffle, defined by 

Elatar et al. [17] as follows: 

baffle
f

withoutbaffle

Q

Q
E =   (2.15) 

Angle effectiveness ( efA ) is the characteristic that measures the heat removal 

coefficient within the cavity when an angle is compared to a case 090 = . 

0

0

90

90

ef

Q

Q
A  



 

=

=  
 
    (2.16) 

 

2.5 NUMERICAL ANALYSIS 

The numerical solution of the governing equations and boundary conditions is 

accomplished using Galerkin weighted residual finite element techniques. This study 

has not presented the solution flow charts and specific computational processes 

because the fundamental numerical analysis has been preserved in the built-in 

function of COMSOL Multi-physics. 

2.5.1 Finite Element Formulation and Computational Procedure 

Natural convective heat alteration performance by linking Galerkin weighted 

residual (GWR) finite element process; the governing dimensionless equations (2.7) 

-(2.10) together with the non-dimensional boundary conditions (2.12a) -(2.12d) are 

solved numerically. 

To derive the finite element equations, the method of weighted residuals Taylor and 

Hood [47] is applied to the equations (2.7) – (2.10) as  

0
A

U V
N dA

X Y

  + = 
  

  
(2.17) 
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2 2

2 2A A A

U U P U U
N U V dA H dA Pr N dA

X Y X X Y  

        + = − + +    
         

    
(2.18) 

2 2

2 2A A A

A

V V P V V
N U V dA H dA Pr N dA

X Y Y X Y

Ra Pr N dA

  



        + = − + +    
         

+

  



 

 

(2.19) 

2 2

2 2A A
N U V dA N dA

X Y X Y 

        + = +  
      

   
(2.20) 

where A is the element area, N ( α = 1, 2, … …, 6) are the element interpolation 

functions for the velocity components and the temperature, and H ( λ = 1, 2, 3) are 

the element interpolation functions for the pressure. 

Gauss’s theorem is then applied to equations (2.18) -(2.20) to generate the boundary 

integral terms associated with the surface tractions and heat flux. Then equations 

(2.10) -(2.12) become, 

00

A A

xA S

U U P
N U V dA H dA

X Y X

N NU U
Pr dA N S dS

X X Y Y

 

 


     + +   
     

   
+ + = 

    

 

 

 

 

(2.21) 

00

A A A

yA S

N NV V P V V
N U V dA H dA Pr dA

X Y Y X X Y Y

Ra Pr N dA N S dS

 
 

 

         + + + +     
           

− =

  

 

 

 

(2.22) 

w wA A Sw

N N
N U V dA dA N q dS

X Y X X Y Y
 

 

         + + + =   
        

    
(2.23) 

Here (2.21) -(2.22) specifying surface tractions (Sx, Sy) along outflow boundary S0 

and (2.23) specifying velocity components and fluid temperature or heat flux (qw) 

that flows into or out from domain along wall boundary Sw.  
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The basic unknowns for the above differential equations are the velocity components 

,U V  the temperature,   and the pressure, P. The six-node triangular element is 

used in this work for the development of the finite element equations. All six nodes 

are associated with velocities as well as temperature; only the corner nodes are 

associated with pressure. This means that a lower order polynomial is chosen for 

pressure, and which is satisfied through continuity equation. The velocity component 

and the temperature distributions and linear interpolation for the pressure 

distribution according to their highest derivative orders in the differential equations 

(2.7) -(2.10) as  

( ),U X Y N U =  (2.24) 

( ),V X Y N V =  (2.25) 

( ),X Y N   =  (2.26) 

( )  PHYXP =,  (2.27) 

where β = 1, 2, … …, 6; λ = 1, 2, 3. 

Substituting the element velocity component distributions, the temperature 

distribution, and the pressure distribution from equations (2.24) -(2.27), the finite 

element equations can be written in the form, 

0x yK U K V    
+ =  (2.28) 

( )x y x xx yy uK U U K V U M P Pr S S U U          
+ + + + =  (2.29) 

( )x y y xx yy

v

K U V K V V M P Pr S S V

Ra PrK Q

         

  


+ + + +

− =
 (2.30) 

( )x y xx yyK U K V S S Q         
  + + + =  (2.31) 
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where the coefficients in element matrices are in the form of the integrals over the 

element area and along the element edges S0 and Sw as  

,x xA
K N N dA 

=   (2.32a) 

,y yA
K N N dA 

=   (2.32b) 

,x xA
K N N N dA  

=   (2.32c) 

,y yA
K N N N dA  

=   (2.32d) 

A
K N N dA  =   (2.32e) 

, ,xx x xA
S N N dA 

=   (2.32f) 

, ,yy y yA
S N N dA 

=   (2.32g) 

,x xA
M H H dA 

=   (2.32h) 

,y yA
M H H dA 

=   (2.32i) 

00 xS
Q N S dS 

=   (2.32j) 

00 yS
Q N S dS 

=   (2.32k) 

w wSw
Q N q dS 

=   (2.32l) 

These element matrices are evaluated in closed form ready for numerical simulation. 

Details of the derivation for these element matrices are omitted herein. 

The derived finite element equations (2.28) -(2.31) are nonlinear. These nonlinear 

algebraic equations are solved by applying the Newton-Raphson iteration technique 

by first writing the unbalanced values from the set of the finite element equations 

(2.28) -(2.31) as, 
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p x yF K U K V   
= +  (2.33a) 

( )

u x y x

xx yy u

F K U U K V U M P

Pr S S U Q

       

  

= + +

+ + −
 (2.33b) 

( )

v x y y

xx yy v

F K U V K V V M P

Pr S S V Q

       

  

= + + +

+ −
 (2.33c) 

( )x y xx yyF K U K V U S S Q           
 = + + + −  (2.33d) 

This leads to a set of algebraic equations with the incremental unknowns of the 

element nodal velocity components, temperatures, and pressures in the form, 

0 0

0

0

ppu pv

uuu uv up

u v

vu vv v vp v

FK K p
FK K K u
FK K K

vK K K K F





   






                = −         
          

 

 

(2.34) 

where ( )uu x x y xx yyK K U K U K V Pr S S      
= + + + +  

uv yK K U


=  

0uK  = , up xK M


=  

vu xK K V


=  

( )vv x y y xx yyK K U K V K V Pr S S      
= + + + +  

vK Ri K = − , vp yK M


=  

u xK K 
= , v yK K 

=  

( )x y xx yyK K U K V S S     
= + + +  

0pK = , pu xK K


= , pv yK K


=  and 0p ppK K = =  



Chapter 2 

 Page 49 

The iteration process is terminated if the percentage of the overall change compared 

to the previous iteration is less than the specified value. 

To solve the sets of the global nonlinear algebraic equations in the form of matrix, 

the Newton-Raphson iteration technique has been adapted through PDE solver with 

MATLAB interface. The convergence of solutions is assumed when the relative 

error for each variable between consecutive iterations is recorded below the 

convergence criterion ε such that 1n n


+
 −  , where n is number of iteration and 

, ,U V  = . The convergence criterion was set to ε = 10- 5.  
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2.5.2 Grid Size Sensitivity Test 

The current investigation makes use of a non-uniform free triangular and untagged 

grid structure. The significance of grid size on the precision of expected outcomes is 

investigated using five distinct grid structures of finite elements. The numerical 

findings are seen in Table 2.1 and in Figure 2.5; they indicate that there are no major 

improvements near the Grid - 8 and beyond. As a result, the Grid - 8 offered a 

suitable approach for all this investigation's computations. 

Table 2.1:  Grid testing for avgNu at various grid sizes for 0 60 = and 4 10Ra =  

Grid size Nodes Elements 
avgNu  

Grid - 1 207 365 1.0147516836523418 

Grid - 2 395 721 1.0520702553090469 

Grid - 3 590 1090 1.0935497209932326 

Grid - 4 890 1668 1.1052335134905118 

Grid - 5 1590 3026 1.1237723365748096 

Grid - 6 2639 5076 1.1482213550982552 

Grid - 7 4940 9602 1.1621835303699541 

Grid - 8 13178 25849 1.1799940912535507 

Grid -9 41608 82294 1.1874665563900535 

 

 
Figure 2.5: Grid testing for avgNu  versus several elements 
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2.5.3 Validation of the Numerical Scheme 

The current numerical code is validated by contrasting it to the previously reported 

work Elatar et al. [17], as shown in Figure 2.6. The variation of local Nusselt 

number are highly identical and can visualize the strong unification of present results 

with Elatar et al. [17], as viewed in Figure 2.6. 
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Figure 2.6: Comparisons between the outcome of Elatar et al. [17] and present work 
at 4 10 , 0.50 0.71.Ra  L = , Pr = =  
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Table 2.2: Comparisons of the average Nusselt number on cold wall among Elatar et 
al. [17], Nag et al. [11] and present work at 6 10 , 0.20 and 0.71Ra  L = , Pr = =  is 
given in the following table: 

B 0.02 0.04 0.1 

Nag et al [11] 8.672 8.710 8.947 

Elatar et al. [17] 8.861 8.888 9.033 

present works 8.778 8.843 8.897 

As shown in Table 2.2, the average Nusselt numbers are in good agreement with 

those reported by Nag et al. [11], and Elatar et al. [17]. These comprehensive 

validation efforts demonstrate the robustness and accuracy of the present numerical 

method.



   

 

                        CHAPTER 3 

RESULTS AND DISCUSSION 

1. Results and Discussions 

This study examines the set of parameters for constant Prandtl number Pr = 1.41, 

skew angles 0 0(15 165 ).  The length of the baffle (L = 0.20, 0.30, 0.50), the 

location of the baffle is set on the middle point of the right inclined wall, and the 

thickness of the baffle (D = 0.005) for the Rayleigh number 3 6(10 10 )Ra  are used 

for the investigation. The sinusoidal amplitude 0.50 =  have been numerically 

analyzed for the temperature distribution and the flow sequence due to natural 

convection on the skewed cavity having an inclined left wall temperature varying 

sinusoidally. The results are shown graphically using velocity profiles, local Nusselt 

numbers, and heat transfer rates based on the average Nusselt number ( avgNu ) and 

the average fluid temperature. The baffle effectiveness ( fE ) and angle effectiveness 

( efA ) are shown as well as the measures of the baffle and skew angle performance. 

Results and the discussion are given using 3 cases starting with the effect of the 

skew angles for the fixed baffle length L = 0.20. 

Case-I: (Effect of the skew angles for the baffle length L= 0.20) 

Findings from streamlines: 

Figure 3.1(a)-(f) show streamlines for different Rayleigh numbers 3 6(10 10 )Ra   

with baffle lengths (L = 0.20), where the baffle is attached at the middle position of 

the inclined right wall inside the skewed enclosure. From Figure 3.1(a)-(f), it is 

found that the maximum velocities gradually increase with the increase of the 

Rayleigh number for all the cases of the skew angles. For different skew angles at a 

fixed baffle position, a larger principal cell was created, with its center roughly in 

the center of the cavity. Figure 3.1(a)-(f) illustrates that for higher Rayleigh number 

from 5 10Ra = to 6 10Ra = , the center of the cell looks to get divided for all skew 

angles.  
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Moreover, all other values of the Rayleigh numbers at a constant baffle size and 

location produce one cell. Furthermore, at 610Ra =  for the skew angles 

( 0 0 090 , 120 ,  and 150  = = = ), the middle of the cell is separated into two cells. 

The flow structure becomes more substantial as the Rayleigh numbers increase, 

overlooking the moving vortices that climb the wall for baffle sizes and skew angles.  

The fluid flow is transmitted from the heated partition of inclined vertical wall in the 

cavity due to the buoyancy's effect. 

The streamlines characterize how the strength of buoyancy inside the cavity is 

significant when Ra is between 4 10Ra =  and 5 10Ra = . There is also at least 

elliptic-shaped vortex inside the cavity. When 6 10Ra = , the strength of buoyancy 

inside the cavity is even more significant, and an elliptic-shaped cell appears inside 

the cavity once again. The schematic fact behind it is that the higher Rayleigh 

number increases the buoyancy force to influence the flow field. In the streamline of 

figure 3.1(a)-(f), we observed the maximum velocity progressively rising with 

increases in the skew angle up to 0 90 =  for all the instances of the baffle lengths. 

After that, by raising the skew angle to 0 165 = , the maximum velocity gradually 

decreases. Coincidently the skew angle 0 15 =  and 0 165 =  produces the same 

value which is 0.0018 1ms− at 310Ra =  as expected. Furthermore, as previously 

stated, the maximum velocity increases as the Rayleigh number rises. In clockwise 

and counterclockwise rotating directions, two small cells are formed in the left and 

right corners, respectively. Finally, for the baffle length L = 0.20 the maximum 

velocity at 0 90 =   is 149ms−  with 6 10Ra = . 
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Figure 3.1 (a): Streamline variations for various skew angles ( 0 015 , 30and = = ) 

at L = 0.20. 
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Figure 3.1(b): Streamline variations for various skew angles ( 0 045 , 60and = = ) 
at L = 0.20. 
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Figure 3.1(c): Streamline variations for various skew angles ( 0 075 , 90and = = ) 

at L = 0.20. 

 

 

 



Chapter 3 

 

 Page 58 

 1050 1200 

Ra
 =

 1
03  

  

Ra
 =

 1
04  

  

Ra
 =

 1
05  

  

Ra
 =

 1
06  

 

  

Figure 3.1(d): Streamline variations for skew angles ( 0 0105 , 120and = = ) 

 at L = 0.20. 
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Figure 3.1 (e): Streamline variations for skew angles ( 0 0135 , 150and = = ) 

 at  L = 0.20. 
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Figure 3.1 (f): Streamline variations for skew angles ( 0165 = ) at L = 0.20. 

Findings from isotherms: 

The conduction dominant heat transfer is demonstrated in Figure 3.2 (a)-(f), the 

results in the form of isotherms, which include for various Rayleigh number 
3 6(10 10 )Ra  , for various skew angles 0 0(15 165 )   at a constant baffle length 

and position. From Figure 3.2(a)-(c), the isotherm lines inside the enclosures become 

even more significant for all the values of Rayleigh number 
3 6 0(10 10 ) at = 45Ra   . Again, from Figure 3.2 (d)-(f), the isotherm lines within 

the enclosure become significant and the curvature get densed on the lower side of 

the baffle and top corner of left inclined surfaces for all skew angles and the 

Rayleigh numbers for constant baffle size and location. Also found that the isotherm 

lines exhibit variability for the Rayleigh number 3 6(10 10 )Ra  . The curve of the 

isotherms augments with increasing Ra, and got thickened to the inclined side walls 

and at the baffle surfaces, which means growing heat transfer through convection. 
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Figure 3.2 (a): Isotherm variations for skew angles ( 0 015 , 30and = = )  
at L = 0.20. 
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Figure 3.2 (b): Isotherm variations for skew angles ( 0 045 , 60and = = ) 
at L = 0.20. 
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Figure 3.2 (c): Isotherm variations for skew angles ( 0 075 , 90and = = )  
at L = 0.20. 
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Figure 3.2 (d): Isotherm variations for skew angles ( 0 0105 , and 120 = = )  
at L = 0.20. 
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Figure 3.2 (e): Isotherm variations for skew angles ( 0 0135 , and 150 = = )  
at L = 0.20. 
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Figure 3.2 (f): Isotherm variations for skew angles ( 0165 = ) at L = 0.20. 
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Velocity profiles for L = 0.20 at Pr = 1.41. 

Figure 3.3(a)-(b), show the effect of Rayleigh number on velocity profile along the 

horizontal centerline for different skew angles 0 0(15 165 )   with a constant 

baffle length L = 0.20, baffle thickness D = 0.005, Rayleigh number 3 6(10 10 )Ra   
at a fixed position of the baffle inside the cavity. From Figure 3.3(a)-(b), For Ra = 

103 and 4 10Ra =  the dimensionless velocity changes are insignificant. For higher 

Ra values the velocity changed significantly for all the skew angles. In general, for 

the higher Rayleigh number; the magnitude of the maximum and minimum velocity 

increased. 
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Figure 3.3 (a): Effect of Rayleigh number on velocity profile along the horizontal 
centerline for different skew angles 0 0(15 90 )   with L = 0.20. 
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Figure 3.3 (b): Effect of Rayleigh number on velocity profile along the horizontal 
centerline for different skew angles 0 0(105 165 )   with L = 0.20. 
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Temperature profiles for L = 0.20 at Pr = 1.41. 

Figure 3.4(a)-(b) demonstrates the effect of Rayleigh number on temperature profile 

along the horizontal centerline for different skew angles 0 0(15 90 )   with a 

constant baffle length L = 0.20, baffle thickness D = 0.005, and Rayleigh number 
3 6(10 10 )Ra  with the sinusoidal heat transfer magnitude. When the Rayleigh 

number increases, temperature rises sharply close to the left and right walls, but 

temperature variation becomes insignificant around the central-most region of the 

cavity for skew angles 0 0(30 150 )  . Somewhat similar trend of temperature 

variations are observed for skew angles 0 015   and 165 = = as expected. 

α = 150 

 

α = 300 

 
 

α = 450 

 

 
α = 600 

 
 

α = 750 

 

 
α = 900 

 
Figure 3.4 (a): Effect of Rayleigh number on temperature profile along the 
horizontal centerline for different skew angles 0 0(15 90 )   with L = 0.20. 
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Figure 3.4(b): Effect of Rayleigh number on temperature profile along the 

horizontal centerline for different skew angles 0 0(105 165 )   
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Local Nusselt number for L = 0.20 at Pr = 1.41. 

Figure 3.5(a)-(b) depicts the local Nusselt number ( LNu ) on the heated right inclined 

wall, including baffle exteriors at the value of baffle length (L = 0.20), baffle 

thickness D = 0.005 and Rayleigh number 3 6(10 10 )Ra   at 0.50 = . It remarked 

that the sketches of the LNu  is more significant top side of the baffle for all the 

Rayleigh numbers at all the skew angles. It also demonstrates that the curves of the 

LNu  are significantly changed with the increase of Rayleigh number.  
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Figure 3.5 (a): Effect of Rayleigh number on local Nusselt number on heated right 

inclined wall for different skew angles 0 0(15 90 )   with L = 0.20. 
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Figure 3.5 (b): Effect of Rayleigh number on local Nusselt number on heated right 

inclined wall for different skew angles 0 0(105 165 )   with L = 0.20.
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The average fluid temperature and Average Nusselt number for varying skew angles 

and Rayleigh number (Ra) at a constant baffle location (B) while the values of the 

other parameters are kept at their default values examined by Figure 3.6, Figure 3.7 

and quantitative data in Table 3.1, Table 3.2 respectively. 

Average fluid temperature for L = 0.20 at Pr = 1.41. 

From Figure 3.6, the average fluid temperature decreases gradually with increasing 

skew angle up to 090 =  , and then increases except for the Rayleigh number 
410Ra =  at the baffle size L = 0.20 while the other parameters are kept constant. 

In Figure 3.6 and the numerical value in Table 3.1, increasing the Ra causes the 

average fluid temperature to increase continuously for all baffle sizes at the fixed 

position of the baffle. Furthermore, according to Table 3.1, the greatest average fluid 

temperature within the cavity was 2.799003281896193, which was discovered at 
610Ra = in this case. 

 

 
Figure 3.6: Effect of Rayleigh number on average fluid temperature on the cavity 

surface for different skew angles 0 0(15 165 )   with L = 0.20. 
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Table 3.1: Average fluid temperature variations for various skew angles at L = 0.20. 

Average Nusselt number for L = 0.20 at Pr = 1.41 

Figure 3.7 depicts the arrangement of the avgNu  on the right inclined wall, which 

includes a baffle surface with the impact of Rayleigh numbers (Ra) and the skew 

angles. The value of the remaining parameters are constant. The mean Nusselt 

number increases in proportion to the increase of Rayleigh number for a given baffle 

size. when the Rayleigh number is increased at a uniform baffle length, the 

buoyancy force increases, and heat transfer improves. Table 3.2 shown the 

numerical value of a mean Nusselt number on the right inclined wall, including the 

baffle surface with multiple Ra. Furthermore, according to Table 3.2, the maximum 

avgNu  was 6.504006769659389 on the heated area exposed for the skew angle 

090 = and 610Ra = . 

Angles 
Average Fluid Temperature 

310Ra =  410Ra =  510Ra =  610Ra =  
015 =  1.3298282093        1.2952472424        1.2549578733        2.0614891956         
030 =  1.1748430123 1.1269059735 1.5079010577 2.1167123586 
045 =  1.0834959011 1.1464622006 1.4991251635 1.9416687104 
060 =  1.0381491351 1.1628759564 1.4738770770 1.7894931933 
075 =  1.0249120773 1.1828520783        1.4597295681        1.7041112916        
090 =  1.0332856116         1.2182915054         1.4775736024        1.6893000820        
0105 =  1.0564201368        1.2704036890        1.5399988866         1.7465116907        
0120 =  1.0915034152         1.3317389480         1.6620960320        1.8982433289         
0135 =  1.1393406878        1.3788837668        1.8373984405        2.1867930812         
0150 =  1.2099394659        1.3757958678        1.9577202041        2.6644465995         
0165 =  1.3365827926        1.3741960259        1.7136847496        2.7990032818         
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Figure 3.7: Effect of Rayleigh number on average Nusselt number along the 

inclined right wall for different skew angles 0 0(15 165 )   with L = 0.20. 
 

Table 3.2: Average Nusselt number variations for various angle at L = 0.20. 

 

 

 

Angles 
Average Nusselt number 

310Ra =  410Ra =  510Ra =  610Ra =  
015 =  0.6911928943 0.6923993507 1.0021230489 2.6728478277 
030 =  0.7078622611 0.8638242266 1.9879864196 4.2906092015 
045 =  0.7390572439 1.1849635416 2.5318009894 5.3701602683 
060 =  0.7732729137 1.3872335798 2.9350310378 6.0566975748 
075 =  0.7988776454 1.4899013973 3.1801586522 6.4498470552 
090 =  0.7684292872        1.4468817554         3.1888141155         6.5040067696         
0105 =  0.7965396170         1.4381447312          3.1862041144        6.4587367229         
0120 =  0.7729924647        1.2782138324        2.8942667098        6.0848609959         
0135 =  0.7420212383        1.0587499572        2.3914321738         5.3520693411         
0150 =  0.7118537042        0.8213948795        1.6706713596         4.0552398252         
0165 =  0.6949969893        0.7012709806        0.8794864498         2.0104456232        
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Case-II: (Effect of the skew angles for the baffle length L= 0.30) 

In this case, the numerical investigation of natural convection heat transfer in 

presence of sinusoidal boundary condition within the skewed cavity having 

horizontal baffle are numerically presented. The results obtained by the variations of 

Rayleigh numbers, different skew angles and the heat transfer rate at baffle length L 

= 0.30. The results of this study are shown in Figures 3.8- 3.15. 

Findings from streamlines: 

Figure 3.8(a)-(f) show streamlines for different Rayleigh numbers 3 6(10 10 )Ra  , 

skew angles 0 0(15 165 )  . In this case, the baffle is connected to the inclined 

right wall within the skewed enclosure. Figure 3.8(a)-(f) shows that the maximum 

velocity in the streamline steadily increase with the increase of the Rayleigh number 

in the streamline for all the skew angles. For the different the skew angles, the 

maximum velocity increases steadily with increase the value of Rayleigh number. 

For the constant baffle length and location, a minor primary cell looks an oval was 

produced in the center of the cavity. The cell's center seems to split into different 

cells at all skew angles for the Rayleigh number 610Ra = except at 0165 =  as seen 

in Figures 3.8. The flow structure becomes more significant, disregarding the 

moving vortices that ascend the wall as Rayleigh number and skew angles increase. 

For all the cases of the Rayleigh number shown in figures 3.8(a)-(f), the maximum 

velocity rises gradually as the skew angle increases up to 0 90 = . After then, the 

maximum velocity steadily lowers by progressively increase the skew angle. For 

completeness, it states that the skew angles of 015 =  and 0165 =  both generate 

the same result, which is 0.0018 1ms−  at 310Ra = . Moreover, it is analogous to the 

preceding case. 

Aside from that, as previously mentioned, when the Rayleigh number rises, the 

maximum velocity increases as well. As a result, the maximum velocity is 48 1ms−  

for 610Ra = at an angle of 0 90 = .  



Chapter 3 

 

 Page 77 

 150 300 

Ra
 =

 1
03  

 
 

 
 

Ra
 =

 1
04  

  
 

 

Ra
 =

 1
05  

 
 

 

 

Ra
 =

 1
06  

 

  
 

 

Figure 3.8(a): Streamline variations for the skew angles ( 0 015 , and 30 = = ) 
at L=0.30. 
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Figure 3.8(b): Streamline variations for various skew angles ( 0 045 , and 60 = = ) 

at L = 0.30. 
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Figure 3.8(c): Streamline variations for the skew angles ( 0 075 , and 90 = = ) 

at L = 0.30. 
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Figure 3.8 (d): Streamline variations for the skew angles ( 0 0105 , 120and = = )  

at L = 0.30. 
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Figure 3.8(e): Streamline variations for skew angles ( 0 0135 , 150and = = )  

at L = 0.30. 
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Figure 3.8(f): Streamline variations for the skew angles ( 0165 = ) at L = 0.30. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

 

 Page 83 

Findings from isotherms: 

Figures 3.9(a)-(f) exhibits the prevalent heat transfer conductance; the findings are 

presented in isotherms containing multiple Rayleigh numbers ( 0 015 165  ) at a 

constant baffle length (L = 0.30) and location. According to Figure 3.9, the 

isotherms lines within the enclosures become significantly more substantial for all 

the skew angles at 610Ra = . Figure 3.9(a)-(f) shows that for concentrate towards a 

left inclined surface and the lower side of the baffle surface are denser for all the 

variations of the skew angle and the Rayleigh numbers. When the Rayleigh number 

increase, the isotherm lines show more noticeable. And that the isotherm lines are 

influencing more inside the enclosure, resulting in increased heat transfer through 

convection. 
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Figure 3.9(a): Isotherm variations for skew angles ( 0 015 90  ) at L = 0.30. 
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Figure 3.9(b): Isotherm variations for skew angles ( 0 045 , and 60 = = )  

at L = 0.30. 
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Figure 3.10 (c): Isotherm variations for skew angles ( 0 075 , and 90 = = )  
at L = 0.30. 
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Figure 3.9(d): Isotherm variations for skew angles ( 0 0105 , and 120 = = )  
at L = 0.30. 
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Figure 3.9(e): Isotherm variations for skew angles ( 0 0135 , and 150 = = )  

at L = 0.30. 
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Figure 3.9(f): Isotherm variations for skew angle ( 0 165 = ) at L = 0.30. 
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Velocity profiles for L = 0.30 at Pr = 1.41 

Figure 3.10(a)-(b) exhibits the impact of various skew angles ( 0 015 165  ), and 

Rayleigh number 3 6(10 10 )Ra   on velocity profiles toward the horizontal 

centerline with baffle thickness D = 0.005, for constant baffle length and location 

inside the cavity. For the lowest Rayleigh number ( 310Ra = and 410Ra = ) the 

dimensionless velocity increases insignificantly as seen in the Figure 3.10. On the 

contrary, for higher Rayleigh number the dimensionless velocity profiles 

transformed significantly for all the skew angles. The fundamental amplitude of the 

maximum and minimum velocities also augments for the Rayleigh number grows, 
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Figure 3.10 (a): Effect of Rayleigh number on velocity profile along the horizontal 
centerline for different skew angles 0 0(15 90 )   with L = 0.30. 
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Figure 3.10 (b): Effect of Rayleigh number on velocity profile along the horizontal 
centerline for different skew angles 0 0(105 165 )   with L = 0.30. 
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Temperature profiles for L = 0.30 at Pr = 1.41 

From Figure 3.11(a)-(b), the influence of the temperature profiles s along the 

horizontal centerline for different skew angles ( 0 015 165  ) and Rayleigh number 
3 6(10 10 )Ra  , baffle thickness D = 0.005 with sinusoidal heat transfer magnitude 

( 0.50) =  shown in the plots. When the Rayleigh number increases, temperature 

become more crucial within the cavity. the curvature of the temperature lines 

becomes more prominent inside the enclosure due to the increased significance of 

the temperature. but temperature variation becomes insignificant around the central-

most region of the cavity for skew angles 0 0(30 150 )  . As expected, a somewhat 

similar trend of temperature changes is scrutinized for skew angles 
0 015   and 165 = = . 
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Figure 3.11 (a): Effect of Rayleigh number on temperature profile along the 
horizontal centreline for different skew angles 0 0(15 90 )   with L = 0.30. 
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Figure 3.11 (b): Effect of Rayleigh number on temperature profile along the 
horizontal centreline for different skew angles 0 0(105 165 )   with L = 0.30. 



Chapter 3 

 

 Page 93 

Local Nusselt number for L = 0.30 at Pr = 1.41 

Figure 3.16 displays the Effect of Rayleigh number 3 6(10 10 )Ra   on local Nusselt 

number along the inclined right wall for different skew angles 0 0(15 90 )  , 

including baffle exteriors for the value of baffle length (L = 0.30) and baffle 

thickness (D = 0.005) at ( 0.50) = . It was observed that the curvature of the local 

Nusselt number ( LNu ) substantial for all skew angles except at 015 = . It also 

indicates that when the Rayleigh number increases, the curvature lines of the local 

Nusselt number rise in elevation. 
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Figure 3.12 (a): Effect of Rayleigh number on local Nusselt number along the 

inclined right wall for different skew angles 0 0(15 90 )   with L = 0.30. 
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Figure 3.12 (b): Effect of Rayleigh number on local Nusselt number along the 

inclined right wall for different skew angles 0 0(105 165 )   with L = 0.30. 
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Figure 3.13 and Figure 3.14 represent the average fluid temperature and average 

Nusselt number for varying skew angles, as well as the Rayleigh number (Ra) at a 

constant baffle location (B). At the same time, the values of the other parameters are 

kept at their default values. The quantitative data in Table 3.3 and Table 3.4 show 

the magnitude of the average fluid temperature and average Nusselt number for 

varying skew angles and Rayleigh number (Ra) at a constant baffle length (L) and 

baffle location (B). 

Average fluid temperature for L = 0.30 at Pr = 1.41 

When the skew angle is increased to 090 = , the average fluid temperature declines 

progressively, except at the skew angle 030 = . Increased Ra causes the average 

fluid temperature to increase for all skew angles when the baffle is in the stationary 

position, as illustrated in Figure 3.13 and the numerical value in Table 3.3. 

Furthermore, according to Table 3.3, the highest mean fluid temperature inside the 

cavity is 2.6914052935736750 at 0150 = , which was observed in this instance. 

 
Figure 3.13: Average fluid temperature variations for skew angles and Ra  

at L = 0.30. 
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Table 3.3: Average fluid temperature variations for skew angles and Ra. 

Angles 
  Average fluid temperature 

310Ra =  410Ra =  510Ra =  610Ra =  
015 =  1.31334447305 1.2813186060 1.2519007691 1.9580465232 
030 =  1.17528847738 1.1276112087 1.4344542759 2.0580953665 
045 =  1.09865388408 1.1287291222 1.4651487470 1.9838041511 
060 =  1.05662046025 1.1472254175 1.4850104360 1.8511382210 
075 =  1.04105016589 1.1751397312 1.4924169790 1.7668503529 
090 =  1.04563778148 1.2152484750 1.5172122107 1.7511702997 
0105 =  1.06531698757 1.2653800719 1.5804068444 1.8113724259 
0120 =  1.09732039091 1.3154249032 1.6947023750 1.9658220469 
0135 =  1.14159721168 1.3463270270 1.8442758195 2.2530562144 
0150 =  1.20450229227 1.3417128368 1.9013777601 2.6914052935 
0165 =  1.31822059694 1.3527676151 1.6641008997 2.6615099520 

Average Nusselt number for L = 0.30 at Pr = 1.41 

Figure 3.14-3.15 shows the arrangement of the average Nusselt number ( avgNu ) on 

the right inclined wall, including the baffle surface with the impact of skew angles 

( 0 015 165  ) within the skewed cavity for various values of Rayleigh numbers 
3 6(10 10 )Ra  . The most significant investigation results are to Augment the heat 

transfer rate increasing the skew angle to 090 =  for all the Rayleigh numbers. 

After that, the heat transfer rate decreases for all the Rayleigh numbers by increasing 

the skew angle to 0165 = . The mean Nusselt number augments with the increase 

of the Rayleigh number and varying skew angles at a regular baffle size and 

location. As a result, we can conclude that the heat transfer rate increases as the 

Rayleigh number increases. The buoyancy force rises, and heat transmission 

improves as the Rayleigh number grows at a uniform baffle length. Because of the 

convergence of these curves, it is easy to note that the influence of skew angles with 

the baffle placements on the heated wall is less evident. Table 3.4 shows the 

numerical value of a mean Nusselt number along the right inclined wall, including 
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baffle surface with different values of skew angles and Rayleigh numbers. Also, 

including Table 3.4, the highest avgNu  is 5.954877283556091 along heated surface 

exposed at 090 = , 610Ra = . 

 

Figure 3.14: Impact of Nuavg for various skew angle and Ra for L = 0.30. 
 
 

0 015 90 = −  

 

0 0105 165 = −  

 

Figure 3.15: Impact of Nuavg for various skew angle and Ra at L = 0.30. 
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Table 3.4: Average Nusselt number variations at L = 0.30 for several skew angles. 

Angles Average Nusselt number 
310Ra =  410Ra =  510Ra =  610Ra =  

015 =  0.6112808549 0.6124265266 0.8822105649 2.2262156937 
030 =  0.6509568379 0.7588398532 1.6664389042 3.7123003808 
045 =  0.6868521060 1.0014415932 2.1979866820 4.887453769 
060 =  0.7151717554 1.1799940912 2.6224620731 5.537871649 
075 =  0.7342273186 1.2810496176 2.8633059361 5.863326647 
090 =  0.7409135400 1.3018375270 2.9298714450 5.954877283 
0105 =  0.7343268366 1.2389821991 2.8291725266 5.833615801 
0120 =  0.7164800346 1.1012491598 2.5434667240 5.450182766 
0135 =  0.6902587740 0.9193783588 2.0633616430 4.747949960 
0150 =  0.6561407152 0.7351962283 1.4239681852 3.505464552 
0165 =  0.6172627331 0.6227160443 0.7777603321 1.707626249 
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Case-III: (Effect of the skewed angle for the baffle length L = 0.50) 

In this case, the numerical outputs of the natural convection heat transfer analysis in 

sinusoidal boundary conditions in a skewed cavity with a horizontal baffle. The 

required results were obtained by the variety of Rayleigh numbers, skew angles at 

the baffle length L = 0.30. In this case, the data are shown in Figures 3.16 - 3.25 was 

obtained by finite-element method.  

Findings from streamlines: 

For various Rayleigh numbers ( 3 6(10 10 )Ra  ) and skew angles 0 0(15 165 )  , 

Figures 3.16(a)-(f) depict streamlines for the baffle length maintained at L=0.50 is 

connected at the middle position of the inclined right wall inside the skewed 

enclosure. From the Figure 3.16, the maximum velocity gradually rises with increase 

of the Rayleigh numbers for all the skew angles. Furthermore, the maximum 

velocity gradually rises with the increase of the skew angles. For different skew 

angles at a fixed baffle position, a larger principal cell was created, with its center 

roughly in the center of the cavity. There is at least one irregular elliptic-shaped 

vortex inside the cavity. When the buoyancy strength inside the cavity becomes even 

more remarkable, an elliptic-shaped cell emerges within the cavity once again. From 

the Figure 3.16, we can see that the maximum velocity gradually augments for the 

skew angle increase up to 090 =  for all the Rayleigh numbers. By increasing the 

skew angles to 0165 = , the maximum velocity drops steadily. As previously 

mentioned, the maximum velocity increases as the Rayleigh number grows. 

 Finally, with the baffle length L= 0.50, the maximum velocity at 090 =  and 
610Ra = is 149ms− . 
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Figure 3.16(a): Streamline variations for the skew angles ( 0 015 , 30and = = )  

at L = 0.50 
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Figure 3.16(b): Streamline variations for the skew angles ( 0 045 , 60and = = ) 
 at L = 0.50 
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Figure 3.16(c): Streamline variations for the skew angles ( 0 075 , 90and = = )  
at L = 0.50 
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Figure 3.16(d): Streamline variations for the skew angles ( 0 0105 , 120and = = ) 

 at L = 0.50. 
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Figure 3.16(e): Streamline variations for the skew angles ( 0 0135 , 150and = = )  
at L = 0.50 
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Figure 3.16(f): Streamline variations for the skew angle ( 0165 = ) at L = 0.50 

Findings from isotherms: 

At a fixed baffle length (L = 0.50) and position B = 0.50, figures 3.17(a)-(f) show 

the predominant heat transfer conductance. The findings are provided in isotherms 

with multiple Rayleigh numbers ( 0 015 165  ) and skew angles ( 0 015 165  ). 

The top and lower side of the baffle and left-inclined surface are denser for all skew 

angles and Rayleigh numbers. In addition, the isotherm lines exert more significant 

influence within the enclosure, increasing heat transfer through convection. Findings 

from isotherms in this case highly similar to the other cases as described before.  
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Figure 3.17(a): Isotherm variations for skew angles ( 0 015 , 30and = = ) 
at L = 0.50. 
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Figure 3.17(b): Isotherm variations for skew angles ( 0 045 , 60and = = ) 

at L = 0.50. 
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Figure 3.17(c): Isotherm variations for skew angles ( 0 075 , 90and = = ) 

at L = 0.50. 
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Figure 3.17(d): Isotherm variations for skew angles ( 0 0105 , 120and = = ) 

at L = 0.50. 
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Figure 3.17(e): Isotherm variations for skew angles ( 0 0135 , 150and = = )  

at L = 0.50 
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Figure 3.17(f): Isotherm variations for skew angle ( 0165 = ) at L = 0.50 
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Velocity profiles for L = 0.50 at Pr = 1.41 

Figure 3.18(a)-(b) show Effect of Rayleigh number 3 6(10 10 )Ra   on velocity 

profile along the horizontal centerline for different skew angles 0 0(15 165 )   

with L = 0.50 and baffle thickness D = 0.005 at a given location of baffle within the 

cavity. It seems that at 310Ra = and 410Ra = , the dimensionless velocity rises only 

insignificantly, as seen in Figure 3.18(a)-(b). we can see from the figure 3.18, the 

dimensionless velocity changes consequently in the first half of the arc length for the 

higher values of the Rayleigh number. But in the second half its movement 

insignificant. 

α = 150 

 

α = 300 

 
α = 450 

 

α = 600 

 
α = 750 

 

α = 900 

 
Figure 3.18 (a): Effect of Rayleigh number on velocity profile along the horizontal 

centerline for different skew angles 0 0(15 90 )   with L = 0.50. 
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Figure 3.18 (b): Effect of Rayleigh number on velocity profile along the horizontal 
centerline for different skew angles 0 0(105 165 )   with L = 0.50. 
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Temperature profiles for L = 0.50 at Pr = 1.41 

Figure 3.19(a)-(b) demonstrate the impact of temperature line distributions along the 

horizontal central axis for different Rayleigh numbers and skew angles. The baffle 

thickness D = 0.005, the skew angles, and the Rayleigh number 3 6(10 10 )Ra   

values with sinusoidal amplitude ( 0.50) =  are calculated for the temperature 

profiles. Similarly, we can say like velocity profiles; the dimensionless temperature 

profiles increase only insignificantly when 310Ra =  and 410Ra = . When the 

Rayleigh number increases, the temperature lines within the cavity become more 

significant, which implies that the curvature of the temperature lines becomes more 

prominent because of the increased significance of the temperature lines within the 

cavity. 

α = 150 
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Figure 3.19 (a): Effect of Rayleigh number on temperature profile along the 
horizontal centreline for different skew angles 0 0(15 90 )   with L = 0.50. 



Chapter 3 

 

 Page 115 

 
α = 1050 

 

 
α = 1200 

 

 
α = 1350 

 

 
α = 1500 

 

α = 1650 

 
Figure 3.19 (b): Effect of Rayleigh number on temperature profile along the 
horizontal centerline for different skew angles 0 0(105 165 )   with L = 0.50. 
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Local Nusselt number for L = 0.50 at Pr = 1.41 

Figure 3.20(a)-(b) Effect of Rayleigh number on local Nusselt number along the 

heated inclined right wall for different skew angles 0 0(15 165 )   with L = 0.50, 

which includes baffle exteriors. Also observed was that as the skew angle reaches 
090 = , the top side of the Baffle becomes crucial for all Rayleigh numbers. after 

that, when the skew angle exceeds 090 = , the top side of the Baffle becomes more 

momentous. It also demonstrates that when the Rayleigh number increases, the 

curvature lines of the Local Nusselt number become more noticeable and curvier. 

However, we also found that in these graphs at the skew angles 0 0( 15 ,and 165 ) = , 

the Local Nusselt number is not changed noticeably. 

α = 150 
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Figure 3.20(a): Effect of Rayleigh number on local Nusselt number along the 
heated inclined right wall for different skew angles 0 0(15 90 )   with L = 0.50. 
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Figure 3.20 (b): Effect of Rayleigh number on local Nusselt number along the 
heated inclined right wall for different skew angles 0 0(105 165 )   with L = 0.50. 
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Average fluid temperature for L = 0.50 at Pr = 1.41 

At a constant baffle size (L) and position, the average fluid temperature was 

measured across various Rayleigh numbers (Ra) and skew angles ( 0 015 165  ). 

The quantitative data in Table 3.5 shows the numerical results. Figure 3.21 shows 

that increase the skew angle for various   Rayleigh numbers causes the average fluid 

temperature to increase slowly to 045 = . After then, According to Table 3.5 and 

Figure 3.21, the average fluid temperature decreases very gradually when the skew 

angles increase to 090 = . Furthermore, for all the Rayleigh numbers, the fluid's 

temperature rises by the remaining skew angles. However, when the Rayleigh 

number is between 310Ra = and 610Ra =  for all skew angles, the temperature 

increases to 0150 = . Table 3.5 shows that for 610Ra =  and 0150 = , the mean 

fluid temperature within the cavity is 2.7796661231853808. That's remarkable. 

 
Figure 3.21: Effect of Rayleigh number on average fluid temperature for different 

skew angles 0 0(15 165 )   with L = 0.50. 
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Table 3.5: Average fluid temperature variations for various angle at L= 0.50. 

 

Average Nusselt number for L = 0.50 at Pr = 1.41 

Impact of the average Nusselt number avgNu  on the right inclined wall is seen in 

Figure 3.22-3.23, which includes a baffle surface to accommodate the effect of 

Rayleigh numbers (Ra) and different skew angles. In comparison, the remaining 

parameter's values are constant. For the fixed baffle size and position, the average 

Nusselt number augments proportionally to increase of the Rayleigh number. 

Consequently, the rate of heat transfer rises with increasing skew angle up to 
090 = . For the higher Rayleigh number over the length of the baffle, the buoyancy 

force increases, and heat transfer progresses. Due to the convergence of these 

curves, it is simple to observe that as the Rayleigh number grows, the effect of skew 

angles on the heated wall becomes more evident. The numerical value of a mean 

Nusselt number along a right inclined wall, including a baffle surface with various 

Ra, is investigated in Table 3.6. Moreover, Table 3.6 displays that the most crucial 

Angles Average fluid temperature 
310Ra =  410Ra =  510Ra =  610Ra =  

015 =  1.3408756700 1.3283495406 1.2814309556 1.6017035187 
030 =  1.2466087555 1.2181630163 1.3506975091 2.0260972282 
045 =  1.1697804137 1.1643746072 1.4421009848 2.0645714631 
060 =  1.1192745117 1.1581082093 1.4976676268 1.9474060385 
075 =  1.0936807014 1.1800764322 1.5302797859 1.8635495932 
090 =  1.0902912780 1.2163077719 1.5690859630 1.8503019718 
0105 =  1.1051905388 1.2556759633 1.6383226877 1.9179360574 
0120 =  1.1380427453 1.2871677612 1.7496126881 2.0892083423 
0135 =  1.1900106855 1.3040285267 1.8561840284 2.3973113464 
0150 =  1.2653885280 1.3229230248 1.7837681490 2.7796661231 
0165 =  1.3756245251 1.3878225308 1.5275206248 2.3352839975 
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value of the average Nusselt number for L = 0.50 is 4.946919651676246 along the 

heated region exposed at  610Ra = , and 090 = . 

 
Figure 3.22: Impact of avgNu  for various skew angles and Ra at L = 0.50. 

 

0 015 90 = −  

 

0 0105 165 = −  

 

Figure 3.23: Impact of Nuavg for various skew angle and Ra at L = 0.50. 
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Table 3.6: Average Nusselt number variations for various angle at L = 0.50. 

 
 
 
 
 
 
 

Angles Average Nusselt number 
310Ra =  410Ra =  510Ra =  610Ra =  

015 =  0.6790639444 0.6789698591 0.7470317659 1.5651626337 
030 =  0.7033315536 0.7245220084 1.2631044489 3.1636523424 
045 =  0.7072195048 0.8112130522 1.8140130665 4.1700532931 
060 =  0.7100698586 0.9251558719 2.2003592516 4.6820249764 
075 =  0.7129388230 1.0101215639 2.4067898323 4.9312143022 
090 =  0.6716049764 0.9852357230 2.4078930287 4.9469196516 
0105 =  0.7114457597 0.9900600142 2.3686432448 4.8891336753 
0120 =  0.7123883969 0.9001751585 2.1039311678 4.5922981424 
0135 =  0.7117384764 0.8004694436 1.6722252979 3.9969765397 
0150 =  0.7143276019 0.7357080411 1.1388151723 2.8878226859 
0165 =  0.7249782791 0.7262669497 0.7734922767 1.3238379655 
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Effectiveness: 
As displayed in Figure 3.24 for various baffle sizes, the impact of the baffle 

effectiveness inside the cavity with three distinct values is Rayleigh number (Ra), 

while the remaining parameters are kept constant. From Figure 3.24, the 

effectiveness of the baffle increasing with increasing the Rayleigh number at fixed 

baffle size and position and illustrates that the baffle position (B) has a negligible 

influence on baffle efficiency for all values of baffle length (L). Moreover, Table 

3.7 reviews the statistical value of baffle effectiveness within the cavity for three 

distinct baffle surfaces, and Ra. From this Table 3.7, it can be noted that Ef < 1 

for B = 0.5 at Ra = 104, although it is more than 1 at Ra = 105 and Ra = 106 for all 

the baffle lengths. Based on the numerical data, it seems that the baffle placement 

does not much affect their efficacy for baffle lengths L = 0.20 and 0.0. Moreover, 

from Table 3.4 the best baffle effectiveness is 1.133198480 audited at B = 0.50, L = 

0.50 and Ra = 106. 

 
Figure 3.24: Baffle effectiveness  

 
Table 3.7: Baffle effectiveness for various baffle lengths at several Ra. 

Baffle effectiveness 

Baffle size 410Ra =  510Ra =  610Ra =  

L = 0.20 0.97082578 1.002069822 1.036471742 

L = 0.30 0.96283171 1.034152063 1.091026113 

L = 0.50 0.97164991 1.049468746 1.133198480 
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Figure 3.25 indicates the influence of the skew effectiveness within the enclosure for 

numerous skew angles with four various values of Rayleigh number (Ra) while the 

other parameters are held constant.  Similarly, as seen in Figure 3.25, we have 

separated the effectiveness into two groups. Figure 3.25 shows that the effectiveness 

of skew angles decreases mildly with increasing skew angles for the Rayleigh 

numbers 310Ra = and 410Ra = , respectively, and demonstrates that the Rayleigh 

number has a minor impact on the efficiency for all values of skew angles. On the 

other hand, increases in Rayleigh number also increase the effectiveness.  

Furthermore, the statistical significance of skew effectiveness inside the cavity for 

four different Rayleigh numbers is discussed in Table 3.8. It can be shown in Table 

3.8 that efA  is less than 1 for 410Ra = and 510Ra =  including the skew angle up to 

075 = , except for 015 = , and efA  is more than 1 for all other skew angles, with 

the exception of 075 = . According to the numerical data, the skew angles have 

little effect on their effectiveness for skewness. However, because of the varying 

values of the skew angle, effectiveness varies dramatically as the Rayleigh number 

changes from 310  to 610 , except for 0105 = , which includes all the variations in 

the skew angle. Furthermore, according to Table 3.8, the most influential 

effectiveness of skew angles is 1.536918079 audited at an angle 0150 = and 
610Ra = . 
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0 015 90 = −  

 
(a) 

0 0105 165 = −  

 
(b) 

Figure 3.25: efA   for different angle and Ra at Pr = 1.41. 
 

Table 3.8: Skew effectiveness efA  for various skew angles at several Rayleigh number. 
 

Angles Skew effectiveness 
310Ra =  410Ra =  510Ra =  610Ra =  

015 =  1.256022397 1.054367590 0.825132279 1.118135982 
030 =  1.123991977 0.927885311 0.945453949 1.175268543 
045 =  1.050702168 0.928805216 0.965684785 1.132844790 
060 =  1.010503330 0.944025392 0.978775695 1.057086350 
075 =  0.995612615 0.966995438 0.983657374 1.008954042 
0105 =  1.018820290 1.041252137 1.041651809 1.034378225 
0120 =  1.049426876 1.082432877 1.116984403 1.122576169 
0135 =  1.091771196 1.107861524 1.215568796 1.286600289 
0150 =  1.151930729 1.104064613 1.253204889 1.536918079 
0165 =  1.260685699 1.113161335 1.096814861 1.519846444 
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CONCLUSIONS 

The numerical result was verified by comparing the local Nusselt number obtained 

by the code to previously published data for existing study. The finite element 

technique is used to solve governing equations. It is found that the results of the 

comparisons with the published works are in perfect accord. The effects of the skew 

angle and the length of the baffle on the skewed cavity have been investigated. 

Different concepts and findings have been examined in depth in the appropriate 

chapters of the thesis. The current chapter summarizes the ideas given and the 

findings acquired in previous work that has been previously reported. This is added 

to a section discussing the potential for additional research in related exploration 

domains.  

4.1 SUMMARY OF THE MAJOR OUTCOMES 

Three distinct baffle lengths are employed in this study: Case-1 ( 0.20L = ), Case-2 

( 0.30L = ), and Case-3 ( 0.50L = ), with the Prandtl number selected as Pr = 1.41 in 

each of the studies. 

The following main conclusions could be drawn from the present study: 

(i) When the Rayleigh number increases, both the flow strength and the heat 

transfer increase in all circumstances. Increase in the Rayleigh number causes 

changes in the velocity profiles, the local Nusselt number, the heat transfer rate, 

and an increase in the average Nusselt number. For the most considerable value 

of the Rayleigh number 610Ra = , the best results are obtained in Cases 1 and 3. 

There is a strong influence of the natural convection parameter Ra on the flow 

and temperature fields. 

(ii) The influence of the baffle length on fluid flow and temperature field is 

pronounced in all cases having higher baffle length increases the heat transfer 

rate as well as the average fluid temperature whereas the average Nusselt number 

decreased. The best result is found for the baffle length of L = 0.50. 
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(iii) At the baffle length L = 0.20, the optimal heat transfer rate is attained for the 

highest 610Ra =  . 

(iv) The maximum velocity gradually increasing with increases in the Rayleigh 

number in the streamline for all the cases of the baffle lengths. 

(v) The maximum velocity grows gradually with increasing skew angle up to 
090 =  for all instances of the baffle lengths in the streamline. After that, by 

increasing the skew angle to 0165 = , the maximum velocity steadily falls. 

(vi) The baffle effectiveness is enriched by increasing Ra for different values of 

baffle length. It is also found that the baffle effectiveness grows with the 

expansion of the baffle length. The maximum baffle effectiveness 

was 1.133198480 at the baffle length L = 0.50 and 610Ra = . 

(vii)  By raising Ra for various values of the skew angle, the skew effectiveness may 

dramatically improve. Further, we observed that the effectiveness of the skew 

angle changes irregularly with the change of the skew angle. When the Rayleigh 

number 610Ra =  and the skew angle 0150 = , the maximum skew 

effectiveness was 1.536918079. 
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4.2 FURTHER WORKS 

The following can be put forward for the further works as follow-ups of the present 

research as. 

❖ Investigation can be performed by using magnetic fluid instead of electrically 

conducting fluid within the porous medium and changing the boundary 

conditions of the cavity’s walls. 

❖ The study can be extended for turbulent flow using different fluids, different 

thermal boundary conditions such as constant heat flux or radiation and unsteady 

flow. 

❖ Only two-dimensional fluid flow and heat transfer has been analyzed in this 

thesis. So, this deliberation may be extended to three-dimensional analyses to 

investigate the effects of parameters on flow fields and heat transfer in cavities.  

❖ This thesis only considers a single baffle; however, it may be developed to 

include parallel or series baffles. 

❖ The investigation may be prolonged by varying the form of the cavity. 

❖ The research may be refined to include nanofluids.
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