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ABSTRACT 

Pedestrian crashes have become a major safety concern in urban areas throughout the 

world, including Bangladesh. This scenario is no better in Dhaka, the capital and 

megacity of Bangladesh. From 1998 to 2014, more than 10 thousand crashes 

occurred here, and 4,514 pedestrians died in those crashes. To improve this critical 

situation, researchers have been trying to identify the contributory factors behind 

pedestrian crashes through studies at both macroscopic and microscopic levels. 

Macroscopic level pedestrian crash occurrences analysis and microscopic level 

pedestrian crash severity analysis are the most common techniques used for 

identifying contributory factors behind pedestrian crashes. Recent literature suggests 

to improve pedestrian safety by altering the built environment of urban areas 

considering its effect on pedestrian crashes. Therefore, identifying contributory built 

environment factors behind pedestrian crashes is important to reduce the number of 

crashes and their severity level.  

In the case of macroscopic level pedestrian crash occurrences analysis, built 

environment-related factors have primarily been examined in the developed 

countries, resulting in a limited understanding of the phenomenon in the context of 

developing countries. Methodologically, these studies mostly used global regression 

models, which failed to incorporate spatial autocorrelation and spatial heterogeneity. 

Although a few of these studies used spatial regression models, they applied them 

randomly without following a comprehensive logical framework behind their 

selections. This study aimed to develop a comprehensive spatial regression modeling 

framework to examine the relationships between pedestrian crash occurrences and 

the built environment at the macroscopic level in Dhaka. Using secondary data, the 

study applied one global non-spatial model, two global spatial regression models, 

and two local spatial regression models following a comprehensive spatial regression 

modeling framework. The analysis results identified the factors that were found to 

significantly contribute to pedestrian crash occurrences in Dhaka. Those factors were 

employed person density, mixed and recreational land use density, primary road 

density, major intersection density, and share of non-motorized modes. Except for 

the last factor, all the other ones were positively related to pedestrian crash density. 
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Among the five models used in this study, the multiscale geographically weighted 

regression (MGWR) performed the best as it calibrated each local relationship with 

distant spatial scale parameter. The findings and recommendations presented in this 

study would be useful for reducing pedestrian crashes and choosing the appropriate 

model for crash analysis. 

In the case of microscopic level pedestrian crash severity analysis, a large 

number of studies tried to explore the relationships between the built environment 

and pedestrian crash severity in developed countries. Unfortunately, there is a lack of 

similar studies in developing countries, especially Bangladesh. Methodologically, the 

contributory factors influencing pedestrian crash severity are commonly identified 

through global logistic regression (GLR) models. However, these models are unable 

to capture the spatial heterogeneity in the relationships between the dependent and 

independent variables. The local logistic regression model, such as geographically 

weighted logistic regression (GWLR), can potentially overcome this issue. Still, the 

application of local logistic regression to model pedestrian crash severity is absent in 

the literature. Therefore, this study applied the GWLR technique to explore spatially 

heterogeneous relationships between the natural and built environment-related 

factors with pedestrian crash severity in Dhaka. First, using secondary data, a binary 

logistic regression model was developed to identify significant factors influencing 

pedestrian crash severity. Results of the model showed that the probability of fatal 

pedestrian crash occurrence increased at night, in unlit locations, and during adverse 

weather conditions. Also, the likelihood of fatal crashes increased on straight and flat 

roads and at locations with more bus stops. On the other hand, the chance of fatal 

crashes reduced around institutional land uses and when medians exist on roads. 

Finally, this study explored spatial variation in the effect intensity of these significant 

variables across the study area using the GWLR technique. High-intensity variation 

across the study area was found for road geometry and institutional land use factors. 

On the other hand, low-intensity variation was found for light conditions and the 

presence of median factors. This technique can be applied in any area, and the results 

would be helpful to provide insights into the spatial dimension of traffic safety.  
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CHAPTER 1: INTRODUCTION 

1.1 Background of the Study 

Pedestrian crashes have become a major safety concern in urban areas throughout the 

world, especially in developing counties. Around 1.35 million people die every year 

due to traffic crashes, and 22% of them are pedestrians. Significantly, more than 90% 

of those deaths happen in developing countries [1]. This situation is no better in 

Bangladesh. The Accident Research Institute (ARI) of BUET found that about 84 

thousand traffic-related casualties occurred in Bangladesh from 1998 to 2014 [2]. Of 

these, 28 thousand were pedestrians. In addition, 13.3% of the pedestrian casualties 

occurred in Dhaka, the capital and megacity of Bangladesh. 

To improve this grave situation, researchers around the world have conducted 

a large number of studies both at macroscopic and microscopic levels to identify the 

contributory factors behind pedestrian crashes by examining the relationship between 

crash occurrences and crash-inducing factors [3-5]. Understanding the contributory 

factors behind crashes is very important to take effective countermeasures to reduce 

crashes and their severity level, and subsequently, to improve pedestrian safety [6, 

7]. Pedestrian crash occurrences (frequency/rate/density) analysis at a macroscopic 

level and pedestrian crash severity analysis at a microscopic level are the most 

common techniques used for identifying contributory factors behind pedestrian 

crashes [8]. 

In recent years, macroscopic level crash occurrences analysis has become 

popular among transportation planners for alleviating safety-related problems [9]. In 

such analysis, crash numbers are aggregated at a spatial unit (e.g., counties, block 

groups, wards, census tracts, traffic analysis zones) to examine its association with a 

number of crash-inducing contributory factors of the spatial unit [4, 5]. This type of 

analysis helps to identify safety problems in larger areas, explain spatial variation in 

crash frequency, and develop long-term safety improvement policies [8]. On the 

other hand, crash severity analysis uses the severity level of each crash (e.g., fatal, 

non-fatal) as the dependent variable and examines its relationship with all the 
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potential crash-inducing contributory factors [6]. This analysis is also very helpful in 

identifying contributory factors at a more microscopic level than the previous one, 

and consequently, helps to reduce crashes and their severity level [6]. 

In the sustainable development age, urban planners advocate effective urban 

planning strategies (e.g., compact city development, TOD, smart growth) to re-

design cities by altering their built environment [10-12]. These strategies help to 

develop sustainable cities by minimizing travel distance, reducing automobile uses, 

and increasing active mode use by increasing mixed, high density, and transit-

oriented development within the cities [11, 13]. However, one of the sustainable 

development goals is to reduce the number of crashes and their severity level in the 

cities [1]. This goal is often neglected by urban and transportation planners [14]. This 

leads to dire consequences for the pedestrians, the most vulnerable segment of the 

road users [1]. Urban and transportation planners can improve pedestrian safety by 

altering the built environment of urban areas considering its relationships to 

pedestrian crash occurrences and their severity level [14].  

Several studies have tried to explore the impact of the built environment on 

pedestrian crash occurrences [5, 7, 8, 14-19] and pedestrian crash severity [20-22] in 

the context of developed countries, e.g., western and European countries; whereas, 

there is a scarcity of literature in the context of developing countries, especially for 

the global south region. However, it is essential to explore contextual differences in 

crash factor identification as contributory crash factors could vary from one context 

to another [6]. Extremely high population density in urban areas, speedy growth of 

population, unplanned land use and transportation system, heterogeneous traffic 

movement, and poverty are among the major challenges in the cities of the 

developing countries, which make the built environment of these cities different from 

the developed countries’ cities [23]. Without contextualization, knowledge regarding 

contributory crash factors would be limited and not be helpful to take proper 

countermeasures [24].  

For modeling crash frequency and crash severity, most of the previous studies 

used non-spatial global regression models [6, 15, 16, 25-28]. However, non-spatial 

global regression models are unable to consider major characteristics of spatial data, 



3 
 

including spatial dependency (spatial auto-correlation) and spatial non-stationarity 

(spatial heterogeneity) [29]. Crash occurrences are spatial phenomena having both 

spatial characteristics [3, 30, 31]. Local spatial regression models can acknowledge 

both spatial dependence and spatial non-stationarity [32, 33]. The application of 

global or local spatial regression models in crash-related studies is very rare. 

However, this approach could produce more reliable and accurate results [9, 34]. 

Therefore, to explore the relationship between built environment and pedestrian 

crash occurrences as well as pedestrian crash severity, it would be worthwhile to 

apply all the potential global and local regression models and find out the best one 

among them, which could produce more reliable and accurate results.  

To address the existing contextual and methodological gaps in the existing 

literature, this study aimed to explore the effects of the built environment on the 

pedestrian crash occurrences and severity in Dhaka using spatial and non-spatial 

regression models and find out the model, which performs the best. 

1.2 Objectives of the Study 

The objectives of the study are as follows:  

 To explore the effects of the built environment on pedestrian crash 

occurrences at a macroscopic level. 

 To explore the effects of the built environment on pedestrian crash severity at 

a microscopic level.  

 To compare the local and global as well as spatial and non-spatial regression 

models used to examine the relationship between the built environment and 

pedestrian crashes. 

1.3 Organization of the Thesis 

This thesis is organized into seven chapters. In Chapter 1, the background, aim, and 

objectives of the study are presented. A comprehensive literature review was 

conducted to summarize the findings from the previous studies and identify 
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methodological challenges and gaps existing in the literature, which are outlined in 

Chapter 2. A detailed methodological framework and limitation of this study are 

described in Chapter 3. Chapter 4 discusses the findings related to the examination 

of the effects of the built environment on pedestrian crash occurrences at a 

macroscopic level. In Chapter 5, the effects of the built environment on pedestrian 

crash severity are explored and discussed. In Chapter 6, case-specific analyses are 

presented to bridge between macroscopic and microscopic analysis. Major findings 

of the research and recommendations are summarized in Chapter 7.  
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CHAPTER 2: LITERATURE REVIEW 

In this chapter, findings from the existing literature related to the effects of built 

environment factors on pedestrian crash occurrences and pedestrian crash severity 

are presented after conducting an extensive literature review. Then, the knowledge 

and methodological gaps existing in the literature are discussed. After that, existing 

pedestrian safety-related studies conducted in Bangladesh are summarized. The main 

contributions of this study are summarized at the end of this chapter.  

2.1 Factors Influence Pedestrian Crash Occurrences and Severity 

To determine how authorities can create a safer walking environment for the 

pedestrians by reducing pedestrian crashes, a large number of studies tried to explore 

the relationship between a variety of factors with pedestrian crash occurrences and 

crash severity outcome. 

In macroscopic pedestrian crash occurrences analysis, first, the number of 

pedestrian crashes that occurred within a particular time period is aggregated at a 

spatial unit, mostly the lowest administrative unit: counties, block groups, wards, 

census tracts, traffic analysis zones [4, 5]. Then, spatial unit-wise crash frequency/ 

rate/ density is estimated and used as the dependent variable. Finally, models are 

developed to explore relationships between the dependent variable with a variety of 

independent variables of the spatial unit [35]. Since this type of analysis uses 

aggregate data of the spatial unit, it is not possible to incorporate individual crash-

related factors, for example: pedestrian and driver characteristics (e.g., age, gender, 

experience), crash details (e.g., time of occurrences, locational attributes, weather 

condition). In general, two types of crash-inducing factors are considered in such 

studies: a) socio-economic factors and b) built environment factors. 

To identify the effects of socio-economic factors on pedestrian crash 

occurrences, researchers considered a variety of factors: population density [14, 15], 

employment density [8, 16, 18], proportion of children/ senior citizen [16, 36], 

proportion of population from different race [7, 15], poverty level/ median income 

[16, 18], and so on. The effects of built environment factors on pedestrian crash 
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occurrences are described in Section 2.1.1. As this study wanted to explore the 

relationships between pedestrian crash occurrences and the built environment, only 

two socio-economic factors were considered: population and employment density. 

These two variables are also considered as important variables to measure the built 

environment [37]. Therefore, they were incorporated into the study. Previous studies 

showed that the rest of the socio-economic factors had limited contribution to such 

studies, which was also a major reason for omitting these variables [17, 35]. 

In the case of microscopic level pedestrian crash severity analysis, the 

severity (e.g., fatal, non-fatal) of each individual crash is considered as dependent 

variable and models are developed to explore the relationship between crash severity 

outcomes with a variety of independent variables [6, 27, 38]. These independent 

variables can be divided into five broad categories: a) pedestrian characteristics, b) 

driver characteristics, c) vehicle characteristics, d) natural environment 

characteristics, and e) built environment characteristics. Pedestrian characteristics 

related factors include gender, age, alcohol intake condition, behavior, and clothing 

of the pedestrian [39-42]. Driver characteristics include gender, age, skill, alcohol 

intake condition, and experience of the drivers [40, 42, 43]. Vehicle characteristics 

include vehicle type, vehicle speed, and vehicle fitness [6, 42-44]. Details of the 

natural and built environment factors are presented in Section 2.1.2. Though the 

primary aim of the study was to focus on built environment factors, this study also 

incorporated natural environment factors along with built environment factors to 

make the study more comprehensive. The rest of the factors were not included due to 

having a large number of missing values in the data set, which is also discussed in 

detail in Section 3.4.2. 

2.1.1 Influence of Built Environment on Pedestrian Crash Occurrences 

Several studies tried to explore the impact of the built environment on pedestrian 

crash occurrences in the context of developed countries, for example, western and 

European countries [5, 7, 8, 14-19]. These studies mostly considered three 

characteristics of the built environment to explore the relationship with pedestrian 

crash occurrences: a) density, b) land use, and c) roadway and traffic. 
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Among the density variables, population and employment density were found 

to be significant in the previous studies. Areas having high population density were 

associated with higher pedestrian crashes [16, 18]. However, conflicting findings 

were found in the case of employment density. A large number of studies showed a 

positive association between pedestrian crash frequency and employment density [8, 

16, 18]. In contrast, an opposite association was also found in the study of Chen and 

Zhou [14]. 

Conflicting findings were found from the existing literature regarding the 

relationship between pedestrian crash occurrences and land use. The proportion of 

commercial land use had a positive association with pedestrian crash occurrences [7, 

8, 17, 19]. However, inconsistent findings were found regarding industrial and 

residential land use. Several studies found that residential and industrial land use 

proportions were negatively associated with pedestrian crash frequency [8, 14, 15]. 

Conversely, a positive association was also found in quite a few studies [7, 16-18]. 

For recreational (e.g., open space/ park) and mixed land use, prior studies showed 

both positive [15, 17, 45, 46] and negative [7, 8, 19] associations with pedestrian 

crash occurrences.  

In the case of roadway and traffic characteristics related variables, the density 

of different road classes and intersections had a significant association with 

pedestrian crash occurrences. A higher proportion of local roads were correlated with 

fewer pedestrian crashes [8, 18]. However, this relationship was found opposite for 

collector and arterial roads [8, 16, 19]. Three-legged intersection density was 

negatively associated with pedestrian crash occurrences [15]. On the other hand, the 

density of more complicated intersections (e.g., four-legged intersection, five-legged 

intersection) was positively associated with pedestrian crashes [14, 15, 18]. Sidewalk 

density was negatively related to pedestrian crash occurrences [14, 18]. On the other 

hand, areas with higher transit station/ bus stop density were likely to have more 

pedestrian crashes [7, 8, 15]. Prior studies also showed that the modal share of 

walking [14] and households without vehicles [18, 47] were positively associated 

with the frequency of pedestrian crashes. A summary of the significant factors 

affecting pedestrian crash occurrences is presented in Figure 2-1. 
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Figure 2-1: Factors influencing pedestrian crash occurrences 

2.1.2 Influence of Built Environment on Pedestrian Crash Severity 

A large number of studies have tried to identify contributory factors influencing 

pedestrian crash severity mostly in the context of developed countries; also, a few of 

the studies are from developing countries [e.g., 6, 20-22, 28, 41, 44, 48, 49, 50]. 

Previous studies showed that built environment characteristics had a significant 

relationship with the pedestrian crash severity. Those contributory built environment 

factors can be categorized broadly into three categories: (1) roadway characteristics, 

(2) land use characteristics, and (3) presence of key features. In addition, previous 

studies also found the natural environment factors (e.g., time of day, day of the week, 

season, weather condition, light condition) influential. Details of these factors and 

their relationships with pedestrian crash severity are presented in Table 2-1. 

Table 2-1: Findings from previous studies on contributory natural and built 

environment factors influencing pedestrian crash severity 

Factors Major findings 

Natural environment characteristics 

Time of day Previous studies reported that pedestrian crashes that occurred at night 

tended to be more severe than those that happened during the day [40, 

50, 51].  

Day of week The likelihood of fatal crashes increased during weekends compared to 

weekdays [50, 52]. 
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Factors Major findings 

Season of year Previous studies showed contradicting results regarding the effect of 

season on pedestrian crash severity. For example, the chance of fatal 

pedestrian crashes increased during the summer season, as per Pour-

Rouholamin and Zhou [40]. However, Mohamed, Saunier, Miranda-

Moreno and Ukkusuri [53] reported that severity tended to increase 

during the winter and fall. 

Light condition Uniform results were reported regarding lighting conditions in the 

literature. The probability of fatal pedestrian crash occurrence increased 

at dark and unlit locations as well as places where street lights were not 

present [40, 41, 49, 50, 54]. 

Weather condition Most studies found that adverse weather (e.g., foggy, rainy) increased 

pedestrian crash severity compared to fair weather [6, 41, 50, 55, 56]. 

However, Kim, Ulfarsson, Shankar and Kim [43] reported the opposite 

result. 

Built environment characteristics 

Roadway characteristics 

Location Previous studies showed that pedestrian crashes that occurred at 

intersections tended to be less severe than crashes that occurred at non-

intersection locations [44, 48, 57, 58]. 

Traffic control Consistent results were reported in the literature about the relation 

between traffic control and pedestrian crash severity. Severity outcomes 

tended to be milder if crashes occurred at locations where traffic signals 

or signs or any control system were available compared to the places 

where any control system was absent [20, 40, 49, 56, 59]. 

Presence of 

median 

Zafri, Prithul, Baral and Rahman [6] found that a median on the roadway 

reduced the probability of fatal pedestrian crash occurrence. In contrast, 

opposite results were also reported in the previous studies [20, 40]. 

Road geometry Previous studies found that the likelihood of fatal crashes increased if 

the crash occurred on a curved and inclined road compared to straight 

and flat roads [50]. However, Zafri, Prithul, Baral and Rahman [6] 

reported the opposite result. 

Road surface The likelihood of fatal crashes increased if the collision occurred on 

untarred roads compared to tarred roads [50]. 
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Factors Major findings 

Road class If the pedestrian crash occurred on the road having a higher speed limit 

or more lanes, the crash outcome was likely to be more severe [40, 54]. 

Some studies also reported that pedestrian crashes on major roads tended 

to be more severe than local roads [43, 48].  

Land use characteristics 

Residential land 

use 

The probability of a fatal pedestrian crash tended to be lower if the crash 

occurred in a residential area [21]. 

Commercial land 

use 

Pedestrian crashes in a commercial area tended to be more severe [43, 

48].  

Industrial land use The likelihood of fatal crashes decreased in an industrial area [44]. 

Presence of key features 

Bus stop density The chances of fatal and severe pedestrian injuries decreased with 

increasing bus stop density [20, 49, 60]. 

Presence of school There is no consensus regarding whether the pedestrian crash that 

occurred near a school tended to be more severe or not. Some studies 

found that the presence of schools near crash locations decreased the 

chance of fatal crashes [20, 48], whereas Clifton, Burnier and Akar [49] 

reported the opposite result.  

From the findings presented in the Table 2-1, it is clear that though several 

factors had a similar effect on pedestrian crash severity in all the studied areas, a 

large number of factors also had contradictory effects (e.g., the season of the year, 

weather condition, presence of median, road geometry, and presence of school) due 

to the contextual differences. So, it is necessary to explore the effects of the natural 

and built environment on pedestrian crash severity in the context of Dhaka to reduce 

crashes and their severity in the city. 

2.2 Methodological Challenges 

2.2.1 Pedestrian Crash Occurrences Analysis 

To identify the contributory factors behind pedestrian crash occurrences at a 

macroscopic level, most of the previous studies used non-spatial global regression 

models, including ordinary least squares (OLS) [16], Poisson, and negative binomial 
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regression models [15, 25, 26]. Global models are powerful statistical modeling tools 

that help to develop an overall model for the whole study area based on all 

observations of the area considering consistent (homogeneous) relationships between 

the dependent variable and independent variables over geographical space (spatial 

stationarity) [31]. Besides, non-spatial models are developed considering that all the 

observations are independent from each other [61]. Therefore, global non-spatial 

regression models are unable to consider major characteristics of spatial data, 

including spatial autocorrelation (spatial dependency) and spatial heterogeneity 

(spatial non-stationarity) [62]. Furthermore, spatial heterogeneity in relationships 

could be present if spatial dependence is found in the spatial data [31].  

Crash occurrences are spatial phenomena that are usually found to be 

spatially correlated (spatial autocorrelation) and heterogeneous like all other spatial 

phenomena [3, 34]. Therefore, parameters estimated through global models for the 

whole study area may not truly represent local relationships in a large portion of the 

area as they fail to consider the spatial heterogeneity nature of the relationships [4]. 

In addition, estimated coefficients through non-spatial global models could be biased 

if spatial autocorrelation is present in the model [63]. Hence, non-spatial global 

models often produce unreliable results [64]. 

To address the limitations of non-spatial global regression models, 

researchers from various disciplines (e.g., ecology, sociology, epidemiology, public 

health, transportation, and geography) used global and local spatial regression 

models [31, 65]. Two of the widely used global spatial regression models are the 

spatial lag model (SLM) and spatial error model (SEM) [66, 67]. Few studies also 

used SLM and SEM to model crash occurrences for addressing spatial 

autocorrelation [63, 68]. Though these two models help develop more accurate 

results than non-spatial global regression models [63], they cannot address the spatial 

non-stationarity characteristics [31]. 

Local regression models acknowledge spatial heterogeneity and estimate 

localized version of parameters for each relationship between the dependent variable 

and independent variables across the study area, considering that their relationship 

may vary over space [69]. These models generate a separate model for each location 
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of the study area considering spatial relationships with its neighbors [34]. 

Geographically weighted regression (GWR) is the most popular and widely used 

local regression technique [70]. However, very few traffic safety-related studies are 

available, which used different types of GWR for modeling crash occurrences: GWR 

for crash rate modeling [34], geographically weighted Poisson regression (GWPR) 

[3, 9], and geographically weighted negative binomial regression (GWNBR) [4] for 

crash frequency modeling. These studies’ results showed that GWR (and other forms 

of GWR) performed better than the non-spatial global models [9, 34]. 

Spatial scale is the most fundamental concept of geographic information 

science. Various spatial processes could operate at different spatial scales [71]. In a 

macroscopic crash modeling study, the GWR model explored local relationships 

between the dependent variable and independent variables considering a constant 

spatial scale (global bandwidth) [34]. However, local relationships between the 

dependent and independent variables could operate at different spatial scales (local 

bandwidth for each relationship) [69]. For this reason, the estimation through the 

GWR could be inaccurate and biased [62]. Multiscale geographically weighted 

regression (MGWR) is the latest, extended, advanced, and flexible version of GWR, 

which develops the model by allowing spatial relationships between dependent and 

independent variables to operate at different spatial scales. Many studies in other 

disciplines show that MGWR produces more accurate results than GWR [65, 69, 71]. 

However, to the best of our knowledge, the application of MGWR for modeling 

crash occurrences at the macroscopic level is totally absent in the literature though it 

can potentially produce better results. 

Apart from this aspect, all the available studies on macroscopic crash 

modeling using global and local spatial models are fragmented and unconnected. 

They just showed the application of only one local spatial model or only global 

spatial regression models and compared the results with the non-spatial global 

model. These studies applied spatial regression models randomly without following a 

comprehensive logical framework behind their model selections. However, no spatial 

model can effectively address both the spatial data characteristics (spatial 

autocorrelation and spatial heterogeneity) [61]. In other words, the appropriateness of 
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applying a spatial model depends on the spatial data characteristics [62]. Comber, 

Brunsdon, Charlton, Dong, Harris, Lu, Lü, Murakami, Nakaya and Wang [62] 

pointed out that the application of the GWR model in a large number of studies has 

yielded some problems, which raise the question of whether the researchers selected 

the appropriate modeling technique and adequately comprehended the model’s input, 

output, and assumptions. These problems make the application of the GWR model 

inappropriate and incomplete. Therefore, a study is required to develop a 

comprehensive framework of spatial regression modeling and compare non-spatial 

and spatial regression models to determine which spatial model should be 

appropriate for modeling crash occurrences at a macroscopic level in a given 

situation. However, there is no comprehensive study available in the literature. 

2.2.2 Pedestrian Crash Severity Analysis 

For crash severity analysis, most of the previous studies used global logistic 

regression (GLR) models: binary logistic regression [6, 54, 72, 73], multinomial 

logistic regression [27, 28, 50, 59, 74], ordered logit or probit model [48, 53, 75-77], 

ordered response model [40, 78], and generalized ordered probit model [49]. The 

GLR models are powerful statistical modeling tools that help to develop an overall 

model for the whole study area based on all observations of the area. Like the above-

mentioned global regression model, they also consider a consistent relationship 

between the dependent and independent variables over the space (spatial stationarity/ 

spatial homogeneity) [31, 79]. Therefore, these models cannot capture the spatial 

variation (spatial non-stationarity/ spatial heterogeneity) in the relationships between 

the dependent and independent variables [80]. However, the relationships between 

crash severity and crash-inducing factors could vary significantly over the 

geographical space.  

The local logistic regression model can capture spatial heterogeneity in the 

relationships between crash severity and crash-inducing factors by allowing the 

coefficient of each independent variable to vary over the geographical space [79, 81]. 

Geographically weighted logistic regression (GWLR) is a popular and effective local 

logistic regression modeling technique that has been successfully used in different 

fields, such as epidemiology [80, 82], transportation [83], geology [84], and hazards 
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[79]. However, to the best of the author’s knowledge, the application of the local 

regression model in the crash severity-related study is absent in the literature. 

Therefore, to explore the relationships between the natural and built environment-

related factors with pedestrian crash severity, it would be worthwhile to apply the 

GWLR method, which could produce more reliable and accurate results than GLR 

models by exploring spatially varying relationships. 

2.3 Pedestrian Safety Research in Bangladesh 

There were negligible numbers of studies available on pedestrian safety in 

Bangladesh until a few years back. However, pedestrian safety-related research has 

been growing in the recent years. Those studies can be classified into four broad 

categories: i) pedestrian crash pattern analysis, ii) exploring risky pedestrian 

behavior, iii) site (hotspot) specific pedestrian safety analysis, and iv) pedestrian 

crash severity. Nevertheless, no study was found that focused on the macroscopic 

level crash occurrences analysis in the context of Bangladesh. 

In pedestrian crash pattern analysis, simple descriptive analysis is conducted 

to explore pedestrian crash patterns [85-89]. In pedestrian risky behavior analysis, 

researchers tried to explore the pedestrian’s risky walking and road crossing 

behaviors [90-98]. In site (hotspot) specific pedestrian safety analysis, several roads/ 

intersections/ areas are selected to investigate pedestrian safety-related problems and 

recommend solutions [99-101]. In addition, a study was also found that identified 

pedestrian crash hotspots in Dhaka [88].  

In pedestrian crash severity analysis, researchers identified factors 

influencing crash outcome (whether the crash outcome would be fatal or non-fatal) in 

Dhaka [6, 102, 103] and the highways of Bangladesh [104]. Those studies did not 

consider comprehensive built environment factors, especially land use and the 

presence of a key feature (hospital, school, bus stop), which remains a gap in the 

literature. In addition, all these studies used global regression model, for example, 

binary logistic regression [6, 104], latent segmentation-based ordered logit [102], 

multinomial logit [103], ordered logit [103], and partial proportional odds model 
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[103]. This also showed the importance of exploring spatial variation in the 

relationship between built environment factors with pedestrian crash severity. 

2.4 Gaps and Contribution of the Study 

This study attempted to fill two gaps in the literature: 

a) Contextual gap: Relationship between built environment with pedestrian crash 

occurrences and pedestrian crash severity has primarily been examined in 

developed countries, resulting in a limited understanding in the context of 

developing countries, including Bangladesh. To address the contextual gap in the 

literature, this study aimed to explore the relationship between the built 

environment with pedestrian crash occurrences and pedestrian crash severity in 

the context of a developing country’s city: Dhaka, the megacity and capital of 

Bangladesh. By far the largest city in the country, Dhaka has unique built 

environment characteristics and travel behavior patterns [23, 105]. As one of the 

most crash-prone cities in the world, it is a good case for conducting this study 

and would be a significant contribution to literature. 

b) Methodological gaps: Another contribution would be addressing the 

methodological gaps: i) absence of application of advanced MGWR model and 

lack of comprehensive spatial regression modeling framework in the macroscopic 

crash study and ii) absence of exploring the spatially heterogeneous relationship 

between crash severity and the built environment at a microscopic level. 

Therefore, this study aimed to propose a comprehensive spatial regression 

modeling framework incorporating the MGWR model. The framework 

incorporated spatial autocorrelation and spatial heterogeneity as well as 

considered the spatial scale of spatial processes. This framework was aimed to 

apply in this study to model macroscopic pedestrian crash occurrences to find the 

appropriate modeling technique, which could produce more reliable and accurate 

results. In the case of pedestrian crash severity analysis, this study would 

contribute by exploring the spatially heterogeneous relationship between 

pedestrian crash severity and the natural and built environment by applying the 

local logistic regression technique. The findings of this study would be helpful 

for transportation and urban planners to identify appropriate modeling 



16 
 

techniques, better understand the relationship between pedestrian crash 

occurrences and the built environment, as well as take proper countermeasures to 

reduce crashes and ensure a safe city for pedestrians. 
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CHAPTER 3: METHODOLOGY 

In this chapter, the study area for this study is designated first. Then, data sources, 

data collection procedures, and database preparation for analysis are presented in 

separate sections. Finally, the data analysis procedure, including model specification 

and development, is described in detail. 

3.1 Study Area 

In this study, Dhaka City Corporation (DCC) area was taken as the study area. This 

area consists of two city corporations - Dhaka South City Corporation (DSCC) and 

Dhaka North City Corporation (DNCC). These two administrative areas are divided 

into 92 wards, the lowest unit of administrative area in Dhaka [106]. In addition, in 

the Revised Strategic Transport Plan (RSTP), the DCC area was divided into 92 

Traffic Analysis Zones (TAZ) coinciding with the administrative boundary of the 

wards. The average size of each ward/ TAZ is around 150 hectares. Ward/ TAZ was 

used as the spatial analysis unit because these smallest administrative units have the 

comprehensive demographic data in the census. Figure 3-1 shows the map of the 

study area. Map with ward number is presented in the Appendix (Figure A1). The 

missing part in the upper-middle portion of the study area is Dhaka Cantonment, 

which is not included within the DCC area (Figure 3-1). 

Dhaka is one of the most densely populated megacities in the world with a 

population density of 45,000 inhabitants per square kilometer area [23, 107]. This 

city is also by far the largest city in the country and the commercial and 

administrative hub of the country. On a regular working day, around 21 million trips 

are generated within the study area [105]. Among the trips, around 20% of the trips 

are walking trips (Figure 3-2). Huge traffic congestion, poor public transport service, 

lack of coordination among the transportation stakeholders, absence of adequate 

pedestrian facilities, insufficient parking facilities, operation of motorized and non-

motorized modes on the same roads, an increasing number of private vehicles (e.g., 

car, motorcycle), the mismatch between land use and transportation infrastructure, 

and a large number of road crashes are some of the major transportation-related 

problems within the study area [107].  
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Figure 3-1: Map of the study area: Dhaka City Corporation 

 

Figure 3-2: Modal share in Dhaka 
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From 1998 to 2014, more than 10 thousand crashes occurred here, and 4,514 

pedestrians have died in those crashes [2]. Figure 3-3 shows that the number of 

crashes in Dhaka fluctuated between 300-450 per year and more than 300 people 

died yearly in those crashes. In addition, more than 55% of those crashes involved 

pedestrians. Among the deaths related to crashes, around 70% were pedestrians.  

 
Figure 3-3: Number of crashes and deaths in Dhaka from 2010-2014 

3.2 Data Collection and Processing 

3.2.1 Pedestrian Crash Occurrences Analysis 

To analyze pedestrian crash occurrences, a GIS-based database for the study area 

was prepared, incorporating pedestrian crash occurrence and built environment 

characteristics-related data. Pedestrian crash data along with their location were 

collected from the Accident Research Institute (ARI) of Bangladesh University of 

Engineering and Technology (BUET). According to the database, a total of 1,309 

pedestrian crashes occurred between 2010 and 2015 in the study area. Using the 

location of the crash data, the number of pedestrian crashes that occurred in each 

ward was determined. Then, pedestrian crash density was calculated by dividing the 

pedestrian crash frequency by the area of the corresponding ward. This study used 

pedestrian crash density as the dependent variable.  

200

250

300

350

400

450

500

20
10

20
11

20
12

20
13

20
14

Fr
eq

ue
nc

y 

Year 

Total number of crashes Total number of crashes involving pedestrian

Total number of death Total number of pedestrian death



20 
 

To cover maximum dimensions of the built environment, this study 

categorized independent variables under three broad headings: density 

characteristics, land use characteristics, and roadway and traffic characteristics. 

Density characteristics were represented by ward-wise population density, job 

density, and employed person density. Density data were obtained from ‘Population 

and Housing Census: Community Series, Zila: Dhaka, 2011’ and ‘Economic Census 

2013’ documents, which were prepared by the Bangladesh Bureau of Statistics 

(BBS). The density of six land use types was calculated for each ward: residential, 

commercial, industrial, mixed, recreational, and institutional. Land use data were 

collected from the Detailed Area Plan (DAP) (2015) of Dhaka, which was prepared 

by the Capital Development Authority (RAJUK).  

Roadway and traffic characteristics included ward-wise local road density, 

collector road density, arterial road density, minor intersection density, major 

intersection density, and link-node ratio. Traffic characteristics included non-

motorized modes trip share, public transport share, private modes share, and 

paratransit modes share. Physical road network data were obtained from RAJUK 

(2016) and they were cross-checked using Open Street Maps (OSM) 2019. The 

density of different road classes, intersection density, and link-node ratio were 

calculated using the collected database. Traffic characteristics-related data were 

collected from RSTP, which was prepared by DTCA. All the above-mentioned 

collected data were attached with their corresponding ward in the GIS-based 

database. Table 3-1 briefly describes all the independent and dependent variables for 

pedestrian crash occurrences analysis. A detail description of the dependent and 

independent variables is presented below. 

Dependent Variable:  

 Pedestrian crash density: Here, the dependent variable was ward-wise 

pedestrian crash density. In ArcGIS, all the pedestrian crash data were first 

plotted according to their latitude and longitude. Then, the number of crashes 

in each ward was estimated through the spatial join tool. Then, pedestrian 

crash density was derived by dividing the crash frequency by the area of the 

corresponding ward (hectare). 
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Independent Variables: 

Density characteristics related factors 

 Population density: This variable was calculated by dividing the number of 

people living in a ward by the corresponding ward’s area (hectare). 

 Job density: Job density at the ward level was calculated as the number of 

jobs available in a ward divided by the total area of the ward (hectare). 

 Employed person density: This variable at the ward level was calculated as 

the ratio of the number of employed persons living in a ward and the total 

area of the ward (hectare). 

 Land use characteristics related factors 

 Residential, commercial, industrial, recreational land use density: RAJUK 

marked residential, commercial, industrial, and open space areas in the DAP 

(2015). From the DAP, areas of residential use, commercial use, industrial 

use, and open space in each ward were estimated in hectares. Then, densities 

of residential, commercial, industrial, and recreational uses were estimated by 

dividing the residential, commercial, industrial, and open space area (hectare) 

by the total area of the corresponding ward (hectare), respectively.  

 Mixed land use density: RAJUK also delineated mixed use areas in the DAP 

(2015). Three types of mixed land use were found in DAP (2015): a mixture 

of commercial and industrial, a mixture of commercial and residential, and a 

mixture of commercial, industrial and residential. This study dissolved these 

three categories into a single category and named it mixed land use. The area 

of mixed land use in each ward was estimated in hectares from the DAP. 

Then, the density was estimated by dividing the mixed use area (hectare) by 

the total area of the corresponding ward (hectare). 

 Institutional land use density: RAJUK marked administrative and 

institutional land use areas in the DAP (2015). This study dissolved these two 

categories into a single category and named it institutional land use. From the 
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DAP, the area of institutional land use in each ward was estimated in 

hectares. Then, the density was estimated by dividing the institutional use 

area (hectare) by the total area of the corresponding wards (hectare). 

Roadway and traffic characteristics related factors 

 Local, secondary, and primary road density: In Dhaka, a clear road hierarchy 

was absent. Therefore, in this study, local roads were defined as roads having 

one or two-lane, secondary roads were defined as roads having four-lane, and 

primary roads were defined as roads having six-lane or more. The local, 

secondary, and primary road densities were calculated by dividing the length 

of local, secondary, and primary road in a ward (meter) by the total area of 

the corresponding ward (hectare), respectively 

 Minor and major intersection density: In RSTP, DTCA mentioned major and 

minor roads of Dhaka based on traffic volume. If all the legs of an 

intersection were part of the major road network of Dhaka, this intersection 

was considered as major intersection in this study. Otherwise, the intersection 

was termed as minor intersection. Numbers of minor and major intersections 

presented in each ward were calculated first. Then, densities of minor and 

major intersection at the ward level was calculated by dividing the number of 

minor and major intersections in a ward by the total area of the corresponding 

wards (hectare), respectively.      

 Link-node ratio: The link-node ratio is a measure of connectivity. This 

variable at the ward level was calculated as the ratio of the number of links in 

a ward and the number of nodes in the corresponding ward. A node is an 

intersection of the transportation network. In comparison, a link is a roadway 

between two intersections. A higher value of this variable means better 

connectivity. 

 Modal share of non-motorized, public, private, and paratransit modes: This 

variable presents the percentage of total trips in a ward was made by non-

motorized (e. g., walking, cycling, rickshaw), public (e. g., bus, train), private 

(e.g., car, microbus, motorcycle), and paratransit (e. g., CNG, leguna) modes. 
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Table 3-1: Variable description for pedestrian crash occurrences analysis  

Variable name Variable description/ Unit 
Data 
Source 

Dependent variable 
Pedestrian crash density Pedestrian crash frequency/ total area [ha] ARI, BUET 
Independent variable 
Density characteristics related factors 

Population density Number of people/ total area [ha] 

BBS 
Job density Number of jobs available/ total area [ha] 
Employed person 
density 

Number of employed persons live in/ total area 
[ha] 

Land use characteristics related factors 

Residential land use 
density 

Residential area [ha]/ total area [ha] 

RAJUK 

Commercial land use 
density 

Commercial area [ha]/ total area [ha] 

Industrial land use 
density 

Industrial area [ha]/ total area [ha] 

Mixed land use density Mixed used area [ha]/ total area [ha] 
Recreational land use 
density 

Recreational area [ha]/ total area [ha] 

Institutional land use 
density 

Institutional area [ha]/ total area [ha] 

Roadway and traffic characteristics related factors 

Local road density One-or two-lane road length [m]/ total area [ha] 

OSM, 
RAJUK 

Secondary road density Four-lane road length [m]/ total area [ha] 
Primary road density Six-lane or more road length [m]/ total area [ha] 
Minor intersection 
density 

Number of minor intersections/ total area [ha] 

Major intersection 
density 

Number of major intersections/ total area [ha] 

Link-node ratio Number of nodes/ number of links 
Non-motorized modes 
share 

Percentage of the total trip by non-motorized 
modes 

DTCA 
Public mode share 

Percentage of the total trip by public transport 
mode 

Private modes share 
Percentage of the total trip by private transport 
modes 

Paratransit modes share Percentage of the total trip by paratransit modes  
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3.2.2 Pedestrian Crash Severity Analysis 

From the collected 1,309 pedestrian crash data (Section 3.2.1), around 1,166 crash 

data were found usable after data cleaning for pedestrian crash severity analysis. 

These collected crash data also included crash severity level, address and geolocation 

of crash location, roadway characteristics at the crash location, time of crash 

occurrence, and weather condition at the time of the crash.  

Three dimensions of the built environment were covered in this analysis: 1) 

roadway characteristics, 2) land use characteristics, and 3) presence of key features. 

Land use data were collected from Detailed Area Plan (DAP) (2015) in shapefile 

format, which was prepared by RAJUK. This study considered three key features: 

educational institute, hospital, and bus stop. Data of educational institutes and 

hospitals were collected from the DAP. Bus stop data were obtained from ‘Dhaka 

Bus Network and Regulatory Reform Implementation Study and Design Work 

2012’, which was prepared by DTCA.  

Previous studies showed that the built environment’s impact could be better 

captured if built environment characteristics surrounding 250m of each crash 

location are considered [102, 108]. Therefore, the proportion of different types of 

land uses, and presence of educational institutes, hospitals, and the number of bus 

stops within 250m from each crash location were estimated from the shapefile and 

joined with the corresponding crashes based on the crash location. In this way, a 

geodatabase was prepared in shapefile format. Descriptions of the collected data 

(independent variable) are presented in Table 3-2. 
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Table 3-2: Independent variables for pedestrian crash severity analysis 

Main 
dimension 

Sub dimension Factor Levels 
Data Source 

Natural 
environment 
characteristics 

 

Season 
Summer, rainy 
season, winter 

ARI, BUET 

Time of day Day, night 
Light condition Well-lit, Unlit 
Weather 
condition 

Good, adverse 
(e.g., rainy, foggy) 

Built 
environment 
characteristics 

Roadway 
characteristics at 
the crash location 

Location 
Non-intersection, 
intersection 

Traffic control 
Uncontrolled, 
controlled 

Presence of 
median 

No, yes 

Road geometry 
Straight and flat, 
others (e.g., curve, 
slope) 

Road surface Brick, sealed 

Road class 
Highway, others 
(e.g., city road, 
feeder road) 

Land use 
proportion within 
250 m buffer 
from crash 
incidence 
location 

Residential  RAJUK 
Commercial  
Industrial   
Mixed   
Institutional   
Restricted   
Open space   

Presence of key 
features within 
250 m buffer 
from crash 
incidence 
location 

Presence of 
educational 
institute 

No, yes 

Presence of 
hospital 

No, yes 

Number of bus 
stop 

 
DTCA 
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3.3 Data Analysis and Model Estimation 

3.3.1 Modeling Pedestrian Crash Occurrences 

This study proposed a spatial modeling framework to explore the effects of the built 

environment on pedestrian crash density incorporating spatial autocorrelation and 

spatial heterogeneity. It is presented in Figure 3-4. This framework was developed 

with the help of previous literature [e.g., 61, 62, 69, 109]. 

 

Figure 3-4: Spatial regression modeling framework for pedestrian crash occurrence 

modeling 

3.3.1.1 Specification and estimation of ordinary least squares (OLS) model 

For all spatial regression analyses, the OLS model is the appropriate starting point 

[61, 110]. The OLS is a global non-spatial modeling technique that helps to model 

the linear relationships between a continuous dependent variable and a set of 

independent variables assuming constant and stationary relationships over the 

geographical space. The OLS form in this study is characterized by:  
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              ,   i = 1,…….., n 

Here,    is the pedestrian crash density in Ward i, intercept is expressed by 

  ,    is the matrix of built environment-related independent variables,  random error 

is expressed by   , and   is the matrix of regression coefficients. 

In the first step of this study, an OLS model was developed. Before 

developing the model, Pearson’s correlation coefficients were estimated to explore 

the correlation among the independent variables. Strongly correlated variables (r > 

0.6) were not considered for developing the model to eliminate multicollinearity in 

the OLS model. Outliers of the dataset were also treated. Using the rest of the 

independent variables, this study calibrated an OLS model through a stepwise 

forward procedure. The presence of multicollinearity within the model was assessed 

through condition number (CN) and Variance Inflation Factor (VIF). The OLS model 

was estimated through the GeoDa software. Uttara Ward (Figure 3-1) was not 

included in the model development process because this ward is disconnected from 

the other wards, which could affect the estimation of the spatial models. 

3.3.1.2 Checking the presence of spatial autocorrelation in OLS model 

As the OLS model is a global non-spatial model, this model is not appropriate if the 

residuals of the model are spatially correlated (spatial autocorrelation) [34]. After 

developing the OLS model, Moran’s I tool was used to assess the presence of spatial 

autocorrelation in the residuals. A significant Moran’s I value indicates the presence 

of spatial autocorrelation, which emphasizes the need to develop global spatial 

regression models such as SLM and SEM [62, 63].  

3.3.1.3 Specification and estimation of the spatial lag model (SLM) and spatial 

error model (SEM) 

The SLM can incorporate spatial autocorrelation between the dependent and 

independent variables by integrating a “spatially-lagged dependent variable” in the 

model [65, 109]. SLM is denoted as: 

                    ,   i = 1,…….., n 
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Where,    = pedestrian crash density in Ward i;    = intercept;      matrix 

of built environment-related independent variables in Ward i;   = spatial 

autoregressive parameter (Rho), and    = spatial weights matrix. The magnitude of 

spatial interdependency is measured by Rho, and    states how observations are 

related to one another.  

The SEM model considers that error terms or residuals of the OLS are 

spatially correlated [111]. Hence, error terms are divided into a random error term 

and an error term [65]. The following equation expresses the SEM model: 

                    ,    i = 1,…….., n 

Where, at Ward i,    is the error’s spatial component; the intensity of 

correlation between these components is expressed by λ (Lamda); uncorrelated error 

term (spatially) is expressed by   ;    is the spatial weights matrix;      indicates 

the magnitude of the correlation between the spatial component of the errors with 

each other for nearby observations. This model accounts for spatial autocorrelation in 

error through the spatial weights matrix. 

In this study, these two models were developed using the GeoDa software 

incorporating first-order Queens’ contiguity weight matrix. This study used the same 

significant independent variables of the OLS model to calibrate these two models for 

comparison. 

To decide the better modeling approach between the SLM and SEM, it is 

necessary to check the results of Lagrange Multiplier (LM)-lag and Lagrange 

Multiplier (LM)-error tests of the OLS model [109]. If the result of the LM-lag is 

found to be significant and LM-error is not, then it should be appropriate to develop 

the SLM model. The SEM model should be developed when the result of LM-error is 

significant while LM-lag is not. If both LM-lag and LM-error are significant, the 

Robust LM-lag and Robust LM-error results need to be checked. If the result of 

Robust LM-error is significant and Robust LM-lag is not, then the SEM model 

should be developed. The SLM model should be developed if the result of the Robust 

LM-lag is significant while Robust LM-error is not. If both Robust LM-lag and 
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Robust LM-error are significant, it is necessary to look at the one with a lower p-

value [109]. 

3.3.1.4 Checking the presence of spatial heterogeneity in the OLS model 

This study used the Breusch-Pagan test to assess the presence of spatial non-

stationarity (spatial heterogeneity) in the residuals of the OLS model. This 

characteristic indicates that the relationships between the dependent and independent 

variables vary over the geographical space [33]. A significant result of this test 

indicates the presence of spatial non-stationarity, which highlights the necessity for 

developing local spatial regression models such as GWR and MGWR [61, 62].  

3.3.1.5 Specification and estimation of geographically weighted regression 

(GWR) and multiscale GWR (MGWR) models 

Unlike global regression models’ estimated parameters that are the same for the 

whole study area, the GWR is used to develop local models for each location 

separately to show the spatial varying association between dependent and 

independent variables [69]. The GWR model is generally expressed by the following 

equation [65, 112]:  

        ∑       
 
       ,    i = 1,………., n; k = 1,………., p 

Where, at Ward i, K is the built environment-related independent variable 

within each ward, which varies from variable 1 to variable p; the value of Kth 

independent variable is expressed by    ;     is the local regression coefficient for 

Kth independent variable; intercept parameter is expressed by    , and     is the 

random disturbance.  

The GWR modeling technique can capture the spatial variations in the 

relationships between the dependent variable and independent variables considering 

a constant spatial scale (a global bandwidth) across the study area [62]. However, 

this approach might not be appropriate when relationships between dependent and 

independent variables vary at several spatial scales [69]. The MGWR modeling 

technique can solve this problem by developing local models for each location 
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separately to explore the local associations between the dependent and independent 

variables at various spatial scales [71]. This modeling technique can incorporate 

different bandwidths (local bandwidth) across the study area, and the general form of 

this model is as follows [65]: 

   ∑        
 
       ,    i = 1,……….,n   ; k = 1,………., p 

Where all the parameters are as same as the equation of the GWR model 

except     . The bandwidth parameter is expressed by     , which is used for the 

estimation of the kth relationship. A more detailed discussion on GWR and MGWR 

could be found in the study of Comber, Brunsdon, Charlton, Dong, Harris, Lu, Lü, 

Murakami, Nakaya and Wang [62] and Fotheringham, Yang and Kang [71]. 

In this study, these two models were calibrated using MGWR 2.2 software 

incorporating the same significant independent variables of the OLS model. This 

study used the fixed kernel because the size of the wards was moderately uniform in 

the study area. In addition, this study used the “Golden Section” for bandwidth 

searching and “AICc” as optimization criteria to develop these two local models.  

To identify the better modeling approach between the GWR and MGWR, it is 

necessary to check the bandwidths of the MGWR model. If the bandwidths for all the 

independent variables of the MGWR model show a global trend (tend to be equal), 

then the GWR modeling approach suits better. On the other hand, if the bandwidth(s) 

of one or more independent variables deviate from the global bandwidth and show a 

local trend, then the MGWR modeling approach would be appropriate [62].  

3.3.1.6 Comparison of all the estimated models 

After developing all the five models, this study evaluated their performance based on 

the statistics of R2, adjusted R2, Akaike information criterion (AIC), corrected Akaike 

information criterion (AICc), and CN. It is worthy to mention that the GeoDa does 

not provide adjusted R2 and AICc statistics for SLM and SEM. Therefore, these two 

models were compared with others based on AIC statistics. Besides, spatial 

autocorrelation is generally not a problem for a well-specified GWR or MGWR 

model [61]. Therefore, this study measured the presence of spatial autocorrelation in 
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residuals of the developed SLM, SEM, GWR, and MGWR models through Moran’s 

I method for further comparison. 

3.3.2 Modeling Pedestrian Crash Severity 

This study developed a GLR and a GWLR model. Here, the severity of a pedestrian 

crash was used as the dependent variable, which had two categories: fatal and non-

fatal (merging grievous, simple injury, and motor collision levels into the non-fatal 

category due to their lower frequency as well as for simplicity). Table 3-2 shows the 

independent variables for developing the model.  

3.3.2.1 Specification and estimation of binary logistic regression (BLR) model 

As the dependent variable had two categories, this study used binary logistic 

regression (BLR) as GLR for modeling. A BLR model was developed through a 

stepwise forward procedure using Statistical Package for the Social Sciences (SPSS) 

software. 

The BLR is a modeling technique that estimates the relationships between a 

binary nature dependent variable with multiple independent variables [113]. This 

model cannot explore spatial variation in the relationships and estimates a single 

coefficient for each independent variable for the whole study area [114]. The BLR 

model can be defined according to the following equation. 

  (
 

   
)                          

Where,   (
 

   
) is the probability of fatal crash occurrence, intercept is expressed by 

  , and    is the coefficient of the    independent variable. 

3.3.2.2 Specification and estimation of geographically weighted logistic 

regression (GWLR) model 

On the other hand, the GWLR method can explore spatial variation in the 

relationships between dependent and independent variables by developing a local 

model for each observation [81, 83]. For developing a local model in an observation 

location, neighboring observations are also included in the modeling process. 
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Bandwidth size decides the number of neighboring observations, which will be 

considered for developing each local model [80]. There are two types of bandwidth: 

fixed distance (specify considering distance around the modeled observation) and 

adaptive distance (specify the number of neighboring observations to consider 

around modeled observation). Heavier weights are given to the observations near the 

modeled observation point than those located further away [80, 115]. The number of 

developed local models through the GWLR technique is equal to the number of total 

observations. Therefore, a coefficient is estimated for each independent variable for 

an observation. The coefficients of all the local models collectively express the 

spatially heterogeneous relationship between the dependent variable and each of the 

independent variables over the geographical space. The GWLR model can be 

expressed as the following equation. 

   
  

    
  ∑   (     )       

 
 

Here,      

    
  is the probability of fatal crash occurrence for the jth observation; 

    and    are the ith independent variable and error at jth observation, respectively. 

The x, y location of jth observation are expressed through        .   (     ) is the 

coefficient for the ith independent variable at jth observation. For this study, adaptive 

bandwidth was used for GWLR modeling. Detail of bandwidth selection are 

described in Section 5.2.2. The GWLR models were developed using MGWR 2.2 

software. 

3.3.2.3 Comparison of the estimated BLR and GWLR models 

In addition, the VIF was used to assess multicollinearity among the independent 

variables in the developed models. A VIF statistic of less than five indicates the 

absence of multicollinearity-related problems in the model. After developing the 

BLR and GWLR models, this study compared the deviance, percent deviance 

explained, and Akaike Information Criterion (AIC) statistics of the models to 

evaluate their performance. 
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3.3.3 Case analysis 

After conducting macroscopic and microscopic analysis, for detail crash analysis, 

this study selected three wards having very high crash density and analyzed crash 

pattern in those wards. Those three wards are Dhanmondi, Saidabad, and Ramna.  

3.4 Limitation of Work 

3.4.1 Pedestrian Crash Occurrences Analysis 

Like most studies on similar issues, this study also has some limitations. The first 

limitation of this study is the small sample size (n=92). In general, all the 

macroscopic studies were conducted with a small sample size (n < 100), which is a 

common limitation in these types of research [4]. The second inherent limitation is 

the use of aggregated data, which forced to reduce the detail. As a result, the 

individual-level data were inevitably lost. The third, fourth, and fifth unavoidable 

limitations are study-area specific. The third limitation is that some of the roads of 

Dhaka are located on the boundary of the wards. Therefore, some biased estimations 

could happen due to this. The fourth limitation is underreporting of crash data in 

Bangladesh as well as the use of relatively older crash data (2010-2015) in this study. 

At the time of data collection, it was found that crash data after 2015 was not 

available as those data were being processed by ARI, BUET. The fifth limitation is 

the absence of traffic flow data of Dhaka, which is generally considered an important 

independent variable and included in these types of models. However, some studies 

developed a macroscopic crash occurrence model without traffic flow data [4]. Also, 

traffic flow is heavily dependent on built environment factors. So, the effect of traffic 

flow might be covered through the built environment variables.  

3.4.2 Pedestrian Crash Severity Analysis       

There are several limitations present in the pedestrian crash severity analysis. First, 

underreporting of crash data, especially non-fatal crash data, is commonplace in 

Bangladesh, like in other developing countries. Therefore, missing a portion of the 

non-fatal crashes might cause inaccuracy in the estimated results. Second, this study 

could not consider several important crash-inducing factors (e.g., pedestrian 
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characteristics, vehicle characteristics, speed factors, driver characteristics) due to 

data unavailability, missing data, and model simplicity. Considering those factors 

might improve the model explaining power. Third, the GWLR model estimates 

relationships between the dependent variable and all the independent variables using 

a single (global) bandwidth. However, it might be possible that the relationship 

between the dependent variable and each independent variable operates in different 

local bandwidths. If the GWLR model can estimate using several optimal 

bandwidths for each relationship between dependent and independent variables, the 

model performance could be significantly improved. 
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CHAPTER 4: EFFECTS OF BUILT ENVIRONMENT 

ON PEDESTRIAN CRASH OCCURRENCES 

This chapter shows the analyses and results of the first objective: to explore the 

effects of the built environment on pedestrian crash occurrences at a macroscopic 

level. First, descriptive statistics are presented in a summarized way. Then, the 

estimation and results of the models are described in detail. Finally, a discussion on 

the results of the models as well as the implication of the results in planning are 

presented at the end portion of the chapter. 

4.1 Descriptive Statistics 
Descriptive statistics of all the dependent and independent variables are presented in 

Table 4-1. The results indicate that there were approximately 0.09 pedestrian crashes 

per hectare area in the study area on average. Pedestrian crash density varied 

enormously from ward to ward, ranging from zero crashes per hectare to 0.63 crashes 

per hectare (Figure 4-1). 
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Table 4-1: Descriptive statistics of dependent and independent variables for 

pedestrian crash occurrences analysis 

Variable name Mean Std. dev. Max Min 
Dependent variable 
Pedestrian crash density 0.09 0.12 0.63 0 
Independent variable 
Demographic characteristics related factors 

Population density 834.81 593.91 3707.54 44.73 
Job density 286.79 234.64 1000 13.71 
Employed person density 364.58 364.48 2282 23.59 
Land use characteristics related factors 

Residential land use density 0.372 0.30 0.83 0 
Commercial land use density 0.014 0.04 0.21 0 
Industrial land use density 0.008 0.05 0.49 0 
Mixed land use density 0.245 0.29 0.87 0 
Recreational land use density 0.026 0.05 0.34 0 
Institutional land use density 0.054 0.10 0.52 0 
Roadway and traffic characteristics related factors 

Local road density 260.2 154.1 1291.2 23.4 
Secondary road density 22.7 26.5 144 0 
Primary road density 11.3 14.5 84.8 0 
Minor intersection density 1.46 1.03 7.2 0.2 
Major intersection density 0.03 0.03 0.2 0 
Link node ratio 0.77 0.11 1.05 0.6 
Non-motorized modes share 62.1 14.1 91 28.6 
Public mode share 23.5 9.4 43.9 3.2 
Private modes share 7.9 5.3 22.9 1.3 
Paratransit modes share 6.3 2.7 14.5 1.1 
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Figure 4-1: Spatial distribution of pedestrian crash density 
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4.2 Results of the Estimated Models 

4.2.1 Ordinary Least Squares (OLS) model 

The results of the estimated OLS model are presented in Table 4-2. Six independent 

variables were found to be statistically significant: employed person density, mixed 

land use density, recreational land use density, primary road density, major 

intersection density, and non-motorized modes share. Figure 4-2 shows the spatial 

distribution of the significant independent variables. Multicollinearity among the 

independent variables in the model was absent as all the VIF statistics were less than 

two, and the CN of the model was below 30. The model statistics show that the 

overall model was statistically significant (p < 0.01). The model had an R2 value of 

0.6348, indicating that the six significant independent variables could explain 

63.48% variation in the pedestrian crash density across Dhaka. All the significant 

variables had a positive relationship with pedestrian crash density except non-

motorized modes share (Table 4-2). 

Table 4-2: Results of the OLS model 

Factors Coefficient Std. error t-statistic p-value VIF 

Intercept -0.1411 0.0732 -1.92 0.057  

Employed person density 0.0001 0.00002 4.54 -0.000* 1.4 

Mixed land use density 0.2329 0.0686 3.39 0.001* 1.7 

Recreational land use 
density 

2.8698 1.0043 2.85 0.005* 1.3 

Primary road density 0.0032 0.0006 5.44 0.000* 1.3 

Major intersection density 0.8985 0.2111 4.25 0.000* 1.1 

Non-motorized modes 
share -0.0012 0.0006 -2.07 0.040** 1.2 

Model statistics: F(6, 82) = 23.766, p = 0.000, R2 = 0.6348, Adjusted R2= 0.608,  AIC= –
213.419, AICc= –209.61,Condition Number (CN)= 26.42 
*significant at 99% confidence level, ** significant at 95% confidence level 
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Figure 4-2: Spatial distribution of the significant independent variables of the OLS 

model 
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To check if the results of the OLS model are acceptable, it was necessary to 

examine whether spatial autocorrelation or spatial non-stationarity was found in the 

model. The Moran’s I diagnostics of residual for the model was not found to be 

statistically significant (MI= 0.061, p > 0.05) (Table 4-3). This result confirmed the 

absence of spatial autocorrelation in the model. On the other hand, this study used 

the Breusch-Pagan (BP), Koenker-Bassett (KB), and White tests to determine 

whether the residuals had a non-constant variance (spatial non-stationarity) across 

the wards. Results of all the spatial non-stationarity diagnostics were found to be 

statistically significant (p < 0.01), indicating that associations between pedestrian 

crash density with at least one or more independent variables were non-stationarity 

(Table 4-3). This result highlights that the OLS technique was not the best approach 

for modeling the pedestrian crash density. Therefore, the modeling approach needed 

to be changed. Under the circumstances, the local spatial regression modeling 

approaches (e.g., GWR and MGWR) usually perform better than the OLS since these 

approaches can explore the local relationships and account for spatial non-

stationarity characteristics.  

Table 4-3: OLS diagnostics 

Test df MI Value p-value 

Diagnostics for spatial autocorrelation of residual 

Moran's I  0.061 1.3356 0.181 

Lagrange Multiplier (lag) 1  0.171 0.679 

Robust LM (lag) 1  0.079 0.778 

Lagrange Multiplier (error) 1  0.758 0.383 

Robust LM (error)        1  0.666 0.414 

Diagnostics for spatial non-stationarity of residual 

Breusch-Pagan (BP) test 6  31.804 0.000* 

Koenker-Bassett (KB) test 6  22.226 0.001* 

White test 27  48.312 0.007* 
*statistically significant at 99% confidence interval, ** statistically significant at 95% 

confidence interval 
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4.2.2 Spatial Lag Model (SLM) and Spatial Error Model (SEM) 

Since there was an absence of spatial autocorrelation in residuals of the OLS model, 

it was not necessary to develop the SLM and SEM. However, these two models were 

developed for comparison purposes in this study. Table 4-4 shows the summary 

results of the SLM and SEM. All the six independent variables of the OLS were 

found to be significant in both models. The coefficients of the independent variables 

show a positive association with the dependent variable except non-motorized modes 

share. The R2 and AIC statistics of these two models were almost similar to the 

statistics of the OLS model (Table 4-2 and Table 4-4). This finding indicates that 

these two models failed to deliver better results than the OLS model due to the 

absence of spatial autocorrelation. However, the MI statistics show that these two 

models minimize the magnitude of spatial autocorrelation more than the OLS model 

(Table 4-3 and Table 4-4). Both Rho of the SLM and Lamda of the SEM were 

insignificant (p > 0.05). Finally, the results of the Breusch-Pagan (BP) test were 

found to be significant (p < 0.01), indicating the presence of spatial non-stationarity 

characteristics in both models. These two global spatial models failed to address the 

spatial non-stationarity characteristics of the OLS model, which emphasized the need 

to develop local spatial regression models.  

Table 4-4: Results of SLM and SEM 

Variable Coefficient Std. error z-value p-value 
SLM SEM SLM SEM SLM SEM SLM SEM 

Intercept -0.149 -0.143 0.073 0.071 -2.043 -2.031 0.040 0.042 
Employed person 
density 0.0001 0.0001 0.00002 0.00002 4.737 4.76 0.000* 0.000* 

Mixed land use 
density 0.234 0.232 0.066 0.067 3.552 3.477 0.000* 0.000* 

Recreational land 
use density 2.83 2.794 0.965 0.966 2.932 2.892 0.003* 0.003* 

Primary road 
density 0.0032 0.0032 0.0005 0.0005 5.663 5.644 0.000* 0.000* 

Major intersection 
density 0.884 0.93 0.208 0.21 4.252 4.443 0.000* 0.000* 

Non-motorized 
modes share -0.0012 -0.0012 0.0006 0.0006 -2.017 -2.058 0.043 0.039 

Rho  0.0434  0.112  0.388  0.697  
Lamda  0.142  0.152  0.939  0.347 
SLM: R2= 0.635, AIC= -211.578, MI= 0.041, Breusch-Pagan (BP) test- BP= 33.386, p-value= 0.000 
SEM: R2= 0.639, AIC= -214.201, MI= 0.005, Breusch-Pagan (BP) test- BP= 33.832, p-value= 0.000 
*statistically significant at 99% confidence interval, ** statistically significant at 95% confidence 
interval 
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4.2.3 Geographically Weighted Regression (GWR) and Multiscale GWR 

(MGWR) 

To address the problem of spatial non-stationarity of the OLS model, this study 

developed two local regression models: GWR and MGWR. Though multicollinearity 

was absent in the global model, it could be present in the local models. Therefore, 

local collinearity diagnostics were carried out in both GWR and MGWR models. 

Both models’ highest local CN statistics were found below 30, indicating the absence 

of multicollinearity in the local models. Table 4-5 summarizes the results of both 

models. The adjusted R2 (0.604), AIC (–211.447), and AICc (–209.613) of the GWR 

model were found similar to the OLS model (adjusted R2 = 0.608, AIC= –213.419, 

and AICc= –209.61). Besides, this study found a much higher adjusted R2 (0.726) 

and a much lower AIC (-235.173) and AICc (–223.812) for the MGWR model than 

the OLS model. In addition, the MGWR model also minimized the magnitude of the 

spatial autocorrelation in the residuals from the OLS model (Table 4-5). All these 

statistics indicate that although the GWR model performed similarly to the OLS 

model, a large improvement was found in the MGWR model’s performance.  

The interquartile range (IQR) indicates that the GWR model coefficients 

showed lower variation than the MGWR model for the primary road density and 

major intersection density (Table 4-5). The reason behind the lower variation could 

be that the global bandwidth of the GWR model (bandwidth= 35018m) was much 

wider than the bandwidths for these two variables in the MGWR model (bandwidth 

of primary road density = 1112m, and major intersection density= 3848m). However, 

for the rest of the independent variables, variation in the coefficients was almost 

similar in both GWR and MGWR models. The reason could be that the global 

bandwidth of GWR was found similar to the local bandwidths for the other 

independent variables in the MGWR model (approximate bandwidth= 35021 m). 

In the GWR model, all the independent variables had very low IQR statistics, 

indicating that relationships between these variables with pedestrian crash density 

did not vary much within the study area (Table 4-5). In other words, the 

relationships between the dependent variable and independent variables were global. 

In the case of the MGWR model, IQR statistics were found higher for primary road 

density (median= 0.0025 and IQR= 0.0016) and major intersection density (median= 
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0.54 and IQR= 0.287), indicating the presence of strong spatial variation (Table 4-5). 

Therefore, these relationships were local along with their bandwidths. Apart from 

these two variables, other independent variables of the MGWR model showed global 

relationships within the study area, as indicated by IQR statistics (Table 4-5). 

Figure 4-3, Figure 4-4, and Figure 4-5 show the spatial distribution of the 

coefficients and significance levels of the independent variables of the GWR and 

MGWR models. Comparison of the coefficients would be helpful to develop a clear 

understanding of the spatial variation of the relationships as well as the importance of 

considering spatial scale variation. The coefficients of employed person density, 

mixed land use density, recreational land use density, and non-motorized modes 

share did not vary much within the study area and were found to be significant in all 

areas in the both GWR and MGWR models (Figure 4-3, Figure 4-4, and Figure 

4-5). These variables were estimated through a global bandwidth in GWR and 

MGWR models. The relationships between pedestrian crash density with primary 

road density and major intersection density varied locally within the study area 

according to the MGWR model (Figure 4-4 and Figure 4-5). Primary road density 

had a strong relationship with pedestrian crash density in the middle-western 

(Gabtoli) part of Dhaka and had a moderately strong relationship in the south-eastern 

(Jatrabari and Sayedabad) part (Figure 4-4). However, the relationship was not 

found to be significant in most of the northern parts of the study area (Figure 4-4). In 

addition, the spatial distribution of the coefficients of major intersection density 

showed a clear pattern as per the MGWR model. The coefficients were higher in the 

north-western part and declined towards Dhaka’s south-eastern, eastern, and north-

eastern parts (Figure 4-5). This relation was not significant in most of the eastern 

parts of the study area. Contradictorily, the relationships between pedestrian crash 

density with primary road density and major intersection density were global as per 

the GWR model (Figure 4-4 and Figure 4-5). 
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Table 4-5: Coefficient, bandwidth, and models statistics of the GWR and MGWR models 

 GWR (Bandwidth (BW)=35018 m) MGWR 

Variables 1Q Med 3Q IQR 1Q Med 3Q IQR BW (m) 

Intercept –0.141421 –0.141181 –0.141003 0.0004 -0.086738 -.086728 -0.086719 0 35021 

Employed person density 0.000111 0.000111 0.000111 0 0.000123 0.000123 0.000124 0 35018 

Mixed land use density 0.232681 0.232911 0.233191 0.0005 0.152602 0.152617 0.152631 0 35021 

Recreational land use density 2.871986 2.873784 2.875835 0.0038 2.138127 2.139147 2.140039 0.0019 35021 

Primary road density 0.003250 0.003254 0.003259 0 0.002107 0.002509 0.003720 0.0016 1112 

Major intersection density 0.892968 0.896205 0.901302 0.0083 0.473215 0.540172 0.760698 0.2875 3848 

Non-motorized modes share -0.001248 -0.001247 -0.001246 0 -0.000990 -0.000989 -0.000989 0 35021 

Model Statistics 

R2 0.636 0.783 

Adjusted R2 0.604 0.726 

AIC -211.447 -235.173 

AICc -209.613 -223.812 

MI 0.061 -0.045 

1Q = 1st quartile, Med = median, 3Q = 3rd quartile, IQR = interquartile range 
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Figure 4-3: The effects of employed person density (above) and mixed land use 

density (below) in describing pedestrian crash density using GWR (left) and MGWR 

(right) models 
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Figure 4-4: The effects of recreational mixed land use density (above) and primary 

road density (below) in describing pedestrian crash density using GWR (left) and 

MGWR (right) models 
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Figure 4-5: The effects of major intersection density (above) and non-motorized 

modes share (below) in describing pedestrian crash density using GWR (left) and 

MGWR (right) models 
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4.3 Discussion 

4.3.1 Model Estimation 

This study explored the effects of the built environment on pedestrian crash density 

in Dhaka, Bangladesh. First, a global non-spatial OLS model was estimated, ensuring 

that multicollinearity was not an issue in the model. Six independent variables were 

found to be significant in the model. This study then developed two global spatial 

regression models: SLM and SEM. These models can consider the issue of spatial 

autocorrelation. However, the residuals of the OLS model were not spatially 

correlated. As a result, using the SLM and SEM was not necessary for this study, and 

the performance of these two models was not better than the OLS model. 

The presence of spatial non-stationarity in the residuals of the OLS model 

emphasized the need to develop local spatial regression models. This study 

developed two local spatial models: GWR and MGWR, to explore the local 

relationships between the independent variables and pedestrian crash density. From 

the results, it could be concluded that the GWR model failed to explore the local 

relationships since this technique considered a global bandwidth for all the 

independent variables to explore their relationships with pedestrian crash density. On 

the other hand, the MGWR model used variable-specific bandwidths. This facilitated 

capturing the local relationships between pedestrian crash density with primary road 

density and major intersection density. Therefore, all the model evaluation statistics 

vastly improved for the MGWR model compared to the GWR model. The R2 and 

adjusted R2 statistics increased in the MGWR model compared to the OLS model by 

14.8% and 11.8%, respectively. The AIC and AICc statistics of the MGWR were 

found much lower than the OLS model suggesting a considerable improvement. The 

MI statistics were also found lower for the MGWR model than the OLS model 

indicating the model was able to curb the spatial autocorrelation-related problem. 

Besides, the model evaluation statistics were found to be similar in both GWR and 

OLS models, indicating no improvement in the GWR model. Therefore, the MGWR 

method was found to be the best approach for modeling pedestrian crash density in 

this study. This result was found consistent with the results of the previous studies in 



49 
 

other disciplines where the researchers compared the performance of non-spatial and 

spatial regression models [e.g., 65, 69]. 

4.3.2 Model Findings and Implications for Planning 

4.3.2.1 Density related factors  

Among the density variables, employed person density was statistically significant in 

all the developed models. This variable had a positive and homogeneous relationship 

with pedestrian crash density throughout the study area. This result was consistent 

with previous studies [e.g., 8, 16]. A large number of the people of cities in 

developing countries, including Dhaka, choose public or paratransit modes as 

primary mode and walking as their access and egress mode while making a 

commuting trip [105, 116]. Therefore, conflicts at transit stations (bus stop/ 

paratransit station) between vehicles and pedestrians are unavoidable as the stations 

are not well designed and well designated, as well as for overcrowding [117, 118]. In 

most cases, people need to wait and access the primary mode standing on the primary 

road, which makes them highly vulnerable [119]. In general, the number of 

commuting trips was higher in wards having higher employed person density; as a 

result, more pedestrian crashes occurred in those wards. Implementation of a proper 

integrated multi-modal transport plan could be helpful to reduce conflicts and 

improve pedestrian safety conditions in wards having high employed person density. 

4.3.2.2 Land use characteristics related factors  

This study found density of mixed and recreational land use significant in all the 

developed models. Pedestrian crash density was higher in wards with higher mixed 

land use density. This result was found consistent with the results of previous studies 

[17, 45]. However, the finding was the opposite in the study of Wang and 

Kockelman [19]. Several land use types are placed in the same zone in a mixed land 

use area. Different types of land use attract different modes: both motorized and non-

motorized, leading to a high volume of motorized and non-motorized traffic [4]. In 

developing countries, mixed land use developed spontaneously rather than in a 

planned way. Therefore, the movement of a high volume of heterogeneous modes in 

an unplanned ward increases conflicts between travel modes and pedestrians, and 
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consequently, increasing crash density [45]. In high mixed land use wards, reducing 

speed and volume of the motorized vehicles, increasing non-motorized modes share, 

segregating the movements of motorized and non-motorized modes, and ensuring 

safe access to destinations could improve pedestrian safety. Provision of proper 

pedestrian facilities, implementation of travel demand management-related 

strategies, as well as appropriate design of streets could be helpful to achieve the 

above-mentioned performance in mixed used wards.    

Pedestrian crash density was also higher in wards having high recreational 

land use density. This result was found consistent with the study of Ukkusuri, 

Miranda-Moreno, Ramadurai and Isa-Tavarez [15]. However, opposite results were 

found in the study of Osama and Sayed [8] and Ukkusuri, Hasan and Aziz [7]. A 

possible explanation could be that pedestrians near the recreational area are less 

attentive on the road due to focusing on recreational activities, physical exercises, 

and gossiping with other, which makes the pedestrian vulnerable near the 

recreational area, and leads to increase pedestrian crashes. Further studies need to be 

conducted to explore pedestrian behavior and vulnerability near the recreational area. 

Pedestrian awareness-raising programs should be taken near the recreational area. 

Proper street design is also necessary to control the speed of the vehicles near the 

recreational area to reduce crash exposure. 

4.3.2.3 Roadway and traffic characteristics related factors  

Three variables related to roadway and traffic characteristics were found to be 

significant in this study: primary road density, major intersection density, and non-

motorized modes share. Primary road density had a positive relation with pedestrian 

crash density. Pedestrian crash density was higher in the wards with higher primary 

road density. This result was consistent with previous studies [e.g., 8, 19]. The 

primary road could be a proxy variable of traffic volume [4], which was not 

incorporated in this study due to the unavailability of the data. Generally, primary 

roads can be characterized as high vehicular traffic volume and high vehicular speed 

[8]. These roads also provide access to the low-speed traffic in the surrounding land 

use [4]. Since the condition of the pedestrian facilities in the primary roads is not 

good enough (e.g., blockage of the footpath, unusable condition of the footpath, 
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absence of footpath and proper crossing facilities), pedestrians need to share the 

primary road with vehicles in Dhaka [6]. Therefore, conflicts between pedestrians 

and high-speed traffic increase, resulting in increasing pedestrian crash density. In 

this study, this relationship was local in the MGWR model. The association was 

found stronger in Gabtoli, Sayedabad, and Jatrabari areas. This could be because, 

through these areas, two national highways connect Dhaka with other parts of the 

country. In addition, two largest bus terminals are also located there. A high volume 

of heavy vehicles move through these highways, and many passengers arrive at and 

depart from these terminals. Therefore, a large number of pedestrian crashes 

occurred on these primary roads. This relationship was not found significant in most 

of the north part of the city. The possible explanation could be the presence of fewer 

primary roads in those wards (Figure 4-4). To address the situation, retrofitting the 

primary roads and surrounding areas is necessary to separate pedestrians and 

motorized traffic. Also, vehicle operating speed needs to be controlled to improve 

pedestrian safety. In addition, a complete street scheme could be taken on the 

primary roads of Dhaka. Bypass roads could be constructed to separate inter-city 

traffic from intra-city traffic, and consequently, reduce traffic volume on the primary 

roads. Close attention should be given in areas having strong impact of primary road 

density on pedestrian crash density.  

It was also found that pedestrian crash density increased in the wards having 

higher major intersection density. This result was found consistent with previous 

studies indirectly [e.g., 14, 15]. Those studies showed that pedestrian crashes 

occurred more in complicated intersections. In major intersections, traffic volume 

was found to be very high. Furthermore, a large number of pedestrians crossed the 

road at major intersections where the condition of pedestrian crossing facilities is not 

good enough in the context of developing countries [120]. Since traffic signals are 

not functional at major intersections of Dhaka and traffic police control these 

intersections focusing on vehicle traffic, non-compliance behaviors are commonplace 

at the major intersections by both pedestrians and drivers [97]. Besides, in some 

major intersections, foot overbridges are provided to facilitate pedestrians to cross 

the road safely. However, many people are reluctant to use those foot overbridges to 

cross the road [121]. As a result, conflicts increase at major intersections, and 
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consequently, pedestrian crash increases. This relationship was also found 

heterogeneous throughout the study area. A strong association was found in the 

middle and north-western parts of the city. It could be because of the presence of 

major arterial roads and national highways in those parts, which create several 

vulnerable intersections where crashes occurred more frequently (Figure 4-5). 

Installing traffic signals considering pedestrian needs, providing proper pedestrian 

crossing facilities, pedestrian safety campaign to encourage pedestrians to adopt safe 

crossing behavior, and prioritizing pedestrians at major intersections could decrease 

conflicts and improve pedestrian safety.  

Finally, non-motorized modes share had a negative and homogeneous effect 

on pedestrian crash density. This result was not consistent with the study of Chen and 

Zhou [14]. Increasing non-motorized mode share reduces the number of conflicts 

with the motorized vehicle in that ward, and subsequently, pedestrian crash density is 

reduced. Therefore, each ward could encourage the non-motorized mode to reduce 

pedestrian crashes. It could be achieved by restructuring the urban built environment 

by implementing appropriate planning strategies, such as TOD, smart growth, and 

compact development, and adopting complementary traffic management measures.   
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CHAPTER 5: EFFECTS OF BUILT ENVIRONMENT 

ON PEDESTRIAN CRASH SEVERITY 

This chapter covers the second objective of this thesis: to explore the effects of the 

built environment on pedestrian crash severity at a microscopic level. At the 

beginning of the chapter, descriptive statistics are summarized. After that, the 

estimation and results of the global and local models are described in detail. At the 

end of the chapter, discussion on the results of the models as well as the implication 

of the results for planning are presented. 

5.1 Descriptive Analysis 

Out of 1,166 pedestrian crashes, the severity level of 924 crashes (79.2%) were fatal.  

The rest of the 20.8% crashes were non-fatal, indicating a significantly higher 

number of fatal crashes than non-fatal crashes reported in the study area. This study 

shows the spatial distribution of fatal and non-fatal crashes in Figure 5-1 and the 

descriptive statistics of independent variables in Table 3-2. 
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Figure 5-1: Location of pedestrian crashes by their severity 
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Table 5-1: Descriptive statistics of independent variables for pedestrian crash 

severity analysis 

Factors 
Level of severity 

Total Fatal [N (%)/μ 
(σ)] 

Non-fatal [N 
(%)/μ (σ)] 

Natural environment characteristics 
Season 

Summer 295 (78.9%) 79 (21.1%) 374 (32.1%) 
Rainy season 317 (81.7%) 71 (18.3%) 388 (33.3%) 
Winter 312 (77.2%) 92 (22.8%) 404 (34.6%) 

Time of day 
Day 563 (76.7%) 171 (23.3%) 734 (63.0%) 
Night 361 (83.6%) 71 (16.4%) 432 (37.0%) 

Light condition 
Well-lit 858 (78.3%) 238 (21.7%) 1096 (94.0%) 
Unlit 66 (94.3%) 4 (5.7%) 70 (6.0%) 

Weather condition 
Good 896 (78.9%) 239 (21.1%) 1135 (97.3%) 
Adverse  28 (90.3%) 3 (9.7%) 31 (2.7%) 

Built environment characteristics 
Roadway characteristics at the crash location 
Location 

Non-intersection 664 (79.4%) 172 (20.6%) 836 (71.7%) 
Intersection 260 (78.8%) 70 (21.2%) 330 (28.3%) 

Traffic control 
Uncontrolled 471 (80.1%) 117 (19.9%) 588 (50.4%) 
Controlled  453 (78.4%) 125 (21.6%) 578 (49.6%) 

Presence of median 
No 240 (85.1%) 42 (14.9%) 282 (24.2%) 
Yes 684 (77.4%) 200 (22.6%) 884 (75.8%) 

Road geometry 
Straight and flat 887 (79.8%) 225 (20.2%) 1112 (95.4%) 
Others 37 (68.5%) 17 (31.5%) 54 (4.6%) 

Road surface 
Brick 7 (87.5%) 1 (12.5%) 8 (0.7%) 
Sealed 917 (79.2%) 241 (20.8%) 1158 (99.3%) 

Road class 
Highway 298 (82.5%) 63 (17.5%) 361 (31.0%) 
Others  626 (77.8%) 179 (22.2%) 805 (69.0%) 

Land use proportion within 250 m buffer from crash incidence location 
Residential land use 0.287 (0.18) 0.285 (0.18)  
Commercial land use 0.082 (0.09) 0.081 (0.09)  
Industrial land use 0.021 (0.07) 0.016 (0.06)  
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Factors 
Level of severity 

Total Fatal [N (%)/μ 
(σ)] 

Non-fatal [N 
(%)/μ (σ)] 

Mixed land use 0.115 (0.11) 0.119 (0.12)  
Institutional land use 0.051 (0.11) 0.067 (0.13)  
Restricted land use 0.064 (0.14) 0.053 (0.13)  
Open space land use 0.028 (0.07) 0.033 (0.07)  
Presence of key features within 250 m buffer from crash incidence location 
Presence of educational institute 

No 190 (82.3%) 41 (17.7%) 231 (19.8%) 
Yes 734 (78.5%) 201 (21.5%) 935 (80.2%) 

Presence of hospital 
No 630 (79.9%) 158 (20.1%) 788 (67.6%) 
Yes 294 (77.8%) 84 (22.2%) 378 (32.4%) 

Number of bus stop  0.82 (0.55) 0.75 0.58)  

5.2 Results of the Estimated Models 

5.2.1 Binary Logistic Regression (BLR) 

This study estimated a BLR model to explain the probability of fatal crash 

occurrence in the study area. Table 5-2 shows the results of the estimated model, 

including coefficient (ᵝ ), standard error (S. E.), p-value, odds ratio (OR), and upper 

and lower limit of OR at 95% confidence interval. There was an absence of 

multicollinearity among the independent variables, assessed through the VIF test (all 

VIF statistics < 1.2). The overall model was found statistically significant at a 99% 

confidence level (p < 0.01). Seven independent variables were found to be 

statistically significant in the model. Those variables are the time of day, light 

condition, weather condition, presence of median, road geometry, institutional land 

use, and number of bus stop. Detail interpretation of the results is provided in 

Section 5.3.2.   
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Table 5-2: Binary logistic regression model results 

Independent variable 
Coef.  
( ᵝ ) S. E. p-value 

Odd 
Ratio 
(OR) 

95% C.I. for OR 

Lower Upper Difference 

Intercept 3.295 0.876 0.000 26.990    

Time of day (ref: day)        

Night 0.332 0.164 0.042 1.394 1.012 1.921 0.909 

Light condition (ref: unlit)        

Well-lit -1.391 0.534 0.009 0.249 0.087 0.708 0.621 

Weather condition (ref: adverse)        

Fair -1.173 0.618 0.058 0.309 0.092 1.039 0.947 

Presence of median (ref: absent)        

Present -0.620 0.189 0.001 0.538 0.372 0.779 0.407 

Road geometry (ref: others)        

Straight and flat 0.842 0.317 0.008 2.321 1.248 4.316 3.068 

Institutional land use -1.152 0.593 0.052 0.316 0.099 1.010 0.911 

Number of bus stop 0.225 0.131 0.086 1.252 0.968 1.619 0.651 
Model statistics 
Highest VIF value=1.13 
   = 43.362, df = 07, p-value = 0.000 
Deviance: 1148 
Percent deviance explained: 0.036 
AIC: 1164 

 

5.2.2 Geographically Weighted Logistic Regression (GWLR)  

This study wanted to estimate a well-fitted and well-explained GWLR model to 

identify the spatial variation in the magnitude of effects of the independent variables 

across the study area. An optimal bandwidth selection is essential for estimating a 

well-fitted and well-estimated GWLR model. However, it is difficult to select an 

optimal bandwidth as there is an absence of clear guidelines for optimal bandwidth 

selection. In general, researchers use the AIC optimization technique to determine 

optimal bandwidth while estimating the GWLR model. Therefore, this study 

estimated a GWLR model with adaptive bisquare kernel function using the AIC 

optimization technique. However, according to Guo, Ma and Zhang [122], AIC 

optimization might not always produce optimal bandwidth. Therefore, this study also 

decided to develop three other models using three different adaptive bandwidths: 291 
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(25% of total observations), 583 (50% of total observations), and 875 (75% of total 

observations). Then, these four models were compared to identify the model with 

optimal bandwidth. The OR statistics of these four GWLR models were summarized 

and presented in Table 5-3. Model fitness parameters of the developed models are 

shown in Table 5-4. Multicollinearity was not an issue for any of the four developed 

GWLR models since the highest local VIF statistic for all the models was less than 2 

(Table 5-4). 

Bandwidth was found 1,165 in the GWLR model, which was developed using 

the AIC optimization technique. This model is named as GWLR-1165 model in this 

study. This bandwidth indicated that 1,165 points were included under an adaptive 

bandwidth to develop each local model. The total number of observations was 1,166 

in this study. As almost all the points were considered to develop each of the local 

models, the developed GWLR model using the AIC optimization technique failed to 

explore a substantial portion of the variation in the intensity of effects of the 

independent variables. This was confirmed by comparing the difference between 

95% C.I. for OR of the BLR model with the OR range of the GWLR-1165 model 

(Table 5-2 and Table 5-3). Similar to this study, previous studies also showed that 

large bandwidth failed to explore local variations and estimated results that 

converged to the global model estimators [122, 123]. On the other hand, model 

fitness parameters showed that this model had the lowest AIC statistics among the 

four models, indicating comparatively better model fit (Table 5-4). However, the 

lowest percent deviance explained statistics and the highest deviance statistics of this 

model showed poor model fit compared to the other three models.  

Among the four models, the GWLR model with a bandwidth of 291 (GWLR-

291) showed the highest variation in the intensity of effects of the independent 

variables, and the GWLR-1165 showed the lowest (Table 5-3). The rest of the two 

models showed moderate variation. The GWLR model with a bandwidth of 583 

(GWLR-583) showed comparatively larger variations than the GWLR model with 

875 (GWLR-875). So, it could be said that GWLR models tended to be more global 

in nature (like the BLR model) with an increase in the bandwidth size. Comparing 

the OR range of the GWLR-291 model with the difference between 95% C.I. for OR 
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of the BLR model, it could be easily identified that the GWLR-291 model 

overestimated the variation, which is more likely to be unreasonable (Table 5-2 and 

Table 5-3). Previous studies also showed that the GWR models with smaller 

bandwidth sizes might overestimate and overfit the local models [4, 122]. The 

percent deviance explained and deviance statistics were found the best for this model 

as this model operated on a much more local scale. However, its AIC statistic is 

relatively higher than other GWLR models indicating poor model fit.  

From the above discussion, it is clear that the GWLR-291 and GWLR-1165 

were not well-fitted and well-explained models for this study. Now, comparing the 

OR range of the rest two models with the difference between 95% C.I. for OR of the 

BLR model, it was found that the GWLR-583 explained the variation of the intensity 

of effects of the independent variables better than the GWLR-875 (Table 5-2 and 

Table 5-3). Although the GWLR-875 could explain a portion of the intensity 

variation, there was still a fair portion of the variation which remained unexplained. 

In addition, a minimal reduction in the AIC statistics was found for the GWLR-875 

compared to the GWLR-583, indicating a very marginal improvement for the 

GWLR-875 model (Table 5-4). However, the percent deviance explained and 

deviance statistics substantially improved in the GWLR-583 model than the GWLR-

875 model. Therefore, it could be concluded that the GWLR-583 was a 

comparatively better performed and better-fitted model among the four developed 

GWLR models. In the latter part of the chapter, the results of the GWLR-583 model 

have been interpreted and explained. The spatial distribution of the OR statistics of 

the model's independent variables is presented in Figure 5-2. Details of the results 

are discussed in the following section (Section 5.3.2). 
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Table 5-3: Summary statistics of odds ratio (OR) estimated through the GWLR 

 

Minimum Median Maximum Range 

Bandwidth 291 583 875 1165 291 583 875 1165 291 583 875 1165 291 583 875 1165 

Intercept 0.53 5.87 9.72 14.72 587.73 23.13 19.44 20.20 797837 240.49 84.17 36.22 797836 234.62 74.45 21.50 

Time of day 0.75 0.91 1.12 1.20 1.26 1.31 1.25 1.37 3.12 2.37 1.78 1.56 2.37 1.46 0.66 0.36 

Light condition 0.00 0.09 0.14 0.18 0.23 0.19 0.23 0.26 0.98 0.46 0.32 0.29 0.98 0.37 0.18 0.11 

Weather condition 0.00 0.02 0.21 0.28 0.08 0.37 0.36 0.34 5.08 0.89 0.50 0.43 5.08 0.87 0.29 0.15 

Presence of median 0.27 0.36 0.40 0.48 0.61 0.60 0.61 0.61 1.10 0.78 0.64 0.63 0.83 0.42 0.24 0.15 

Road geometry 0.14 1.37 1.61 2.27 2.25 2.56 2.54 2.55 13.68 8.44 4.44 3.20 13.54 7.07 2.83 0.93 

Institutional land use 0.00 0.12 0.18 0.21 0.35 0.26 0.27 0.32 13017302 3.68 0.57 0.43 13017302 3.56 0.39 0.22 

Number of bus stop 0.49 0.83 1.14 1.16 1.27 1.21 1.30 1.25 2.68 1.59 1.34 1.32 2.19 0.76 0.20 0.16 

 

Table 5-4: Model fitness parameter of the GWLR models 

Fitness parameter GWLR-291 GWLR-583 GWLR-875 GWLR-1166 

Deviance 1081 1120 1137 1144 

Percent deviance explained 0.092 0.06 0.045 0.039 

AIC 1191 1176 1173 1168 

Highest VIF statistics 1.26 1.18 1.16 1.14 
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Figure 5-2: Spatial distribution of odds ratio (OR) of the GWLR-583 model 
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5.3 Discussion 

5.3.1 Model Estimation 

Comparing both BLR and GWLR-583 model, this study found that the deviance 

value was reduced from 1,148 (for BLR model) to 1,120 (for GWLR-583 model), 

and the percent deviance explained value was increased from 0.036 (for BLR model) 

to 0.6 (for GWLR-583 model). A large improvement in the deviance value indicated 

that local models fitted well while explaining the spatial data compared to the BLR 

model. In addition, the percent deviance explained value increased by about 0.024, 

indicating that the GWLR-583 model also improved the explaining power of 

pedestrian crash severity compared to the BLR model. Therefore, it can be said that 

both models have the capability to model pedestrian crash severity, but the GWLR-

583 model was more efficient and able to identify spatial variation in the 

relationships between crash severity and independent variables.  

Although these two model fitness parameters showed a significant 

improvement in the GWLR-583 model compared to the BLR model, the AIC 

statistics indicated the opposite result. The AIC statistics increased in the GWLR-

583, indicating deterioration in the model performance. It is important to note that 

the GWR techniques are primarily used to explore spatially heterogeneous 

relationships between the dependent and independent variables. They are not usually 

used to improve performance compared to the global models [79, 115]. Finally, it 

can be concluded that the GWLR-583 model was superior to the BLR model in 

explaining the spatial relationships between pedestrian crash severity and 

independent variables, including exploring spatial variation in the relationships, 

which was the main purpose of using the GWLR model in this study. 

5.3.2 Model Findings and Implications for Planning 

5.3.2.1 Natural environment characteristics 

The results of the BLR model identified the significant independent variables, and 

the GWLR model showed the spatial variation of their intensity. Among the natural 

environment characteristics, time of the day, light condition, and weather condition 
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were found to be significant. The likelihood of fatal crash occurrence increased 1.39 

times if the crash occurred during the night compared to the day (Table 5-2). This 

result was found to be consistent with previous studies [40, 50]. In general, traffic 

volume is comparatively lower, vehicle operating speed is much higher, and a larger 

volume of heavier vehicles operates during the night period compared to the day 

period in Dhaka. Also, visibility is poor during the night than day. Therefore, the 

fatal crash risk might increase during the night period. Time of day had the highest 

variation in the intensity of effect among the natural environment characteristics 

related factors across the study area (Range: 0.91–2.37) (Table 5-3). Figure 5-2 

shows that this variable had much more impact on the northern side of the study area 

and was less impactful in the central part. The presence of an international airport 

and two national highways, which connect Dhaka with other parts of the country, 

might keep the northern area busy with pedestrians and heavy vehicles at night and 

could be the reason behind the results.  

On the other hand, the probability of a fatal crash decreased 0.249 times if the 

collision occurred at a well-lit place than a dark place. Fair weather conditions also 

reduced the likelihood of fatal crashes 0.3 times compared to adverse weather 

conditions (Table 5-2). Previous studies also showed similar results [41, 49, 50]. 

However, Kim, Ulfarsson, Shankar and Kim [43] reported the opposite result in the 

case of weather condition. The visibility of pedestrians and drivers is significantly 

reduced at unlit places and during adverse weather conditions (e.g., rainy, foggy), 

and consequently, leading to an increase in the chance of fatal crashes [6, 50]. Other 

reasons that might increase fatal crash probability could be the malfunction of the 

vehicle, slippery roads, waterlogging, huge traffic congestion, and risky driving 

behavior during the adverse weather, especially rainy weather [6]. The light 

condition had comparatively lower intensity variation (Range: 0.09–0.46), and the 

weather condition had a comparatively higher variation in intensity (Range: 0.02–

0.89) across the study area (Table 5-3). The impact of light conditions was 

significantly higher in the northern area and lesser in the southern part of the study 

area. The reason could be the presence of very wide roads in the northern areas, 

where street lights or lights from surrounding structures might fail to illuminate the 

wide road properly. Besides, higher intensity of impact was found in the southern 
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part of the study area in case of weather conditions (Figure 5-2). The southern part 

of the city is much older than the northern part. Therefore, the northern part of the 

city was developed in a more planned way with better infrastructures and drainage 

facilities. Whereas, southern part was developed spontaneously without providing 

proper infrastructures and draining facilities. Therefore, impact of weather condition 

might be found much higher in the southern part. 

To minimize the effects of natural environment factors that increase 

pedestrian crash severity, a proper street lighting system should be installed and 

operated to illuminate the whole road network, especially in footpath and crossing 

locations. In addition, problems of the street lighting system (e.g., absence of lights, 

faulty lights, difficulty in maintenance and monitoring, load shedding, and so on) 

need to be solved. Finally, education and training programs for drivers and 

pedestrians need to be taken to reduce pedestrian crashes and their severity during 

unlit and adverse weather conditions.   

5.3.2.2  Built environment characteristics 

5.3.2.2.1 Roadway characteristics 

Among the roadway characteristics at the crash location, presence of median and 

road geometry were significant. The likelihood of a fatal crash decreased 0.53 times 

if the crash occurred on a road with a median compared to the road without median 

(Table 5-2). This result was found consistent with Zafri, Prithul, Baral and Rahman 

[6]. However, the opposite result was also found in the previous literature [40, 43]. 

According to Zafri, Prithul, Baral and Rahman [6], without a median, discipline in 

the vehicle flow on the road is hampered, and conflicts increase; additionally, 

pedestrians find it difficult to cross wide roads where medians are not present. 

Therefore, the fatal crash risk increased on roads having no median. In addition, the 

probability of fatal crashes increased 2.3 times on straight and flat roads compared to 

curved and sloppy roads (Table 5-2). The opposite result was reported in the study of 

Amoh-Gyimah, Aidoo, Akaateba and Appiah [50]. Straight and flat roads allow 

vehicles to operate at high speed. Therefore, the high speed of the vehicles led to 

increase fatal crash probability [6]. The presence of median had a higher impact in 
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the northern part and lower impact in the central part of the study area; however, this 

result was found opposite for road geometry (Figure 5-2). 

Medians need to be provided on wide roads as per design standards to 

minimize the effects of roadway factors that increase the probability of fatal crashes. 

The provision of a narrow median might not facilitate pedestrians to cross safely. 

Median should work as a refuge island so that the pedestrians can wait on it while 

crossing. Also, a proper vehicular speed control mechanism needs to be installed on 

the roadways, especially on straight and flat roads. The speed limit needs to be 

assigned on each road and should be shown through proper traffic signage and 

marking. The traffic control devices (e.g., traffic signal, marking, stop sign, 

crosswalk) need to be installed to control the speed of the vehicle, especially at the 

locations where pedestrians cross regularly. In addition, the speed restriction rule 

should be strictly enforced so that no vehicle exceeds the limit.  

5.3.2.2.2 Land use characteristics 

Institutional land use was the only variable that was found to be significant among 

the land use variables. The likelihood of fatal crashes decreased if the institutional 

land use proportion increased surrounding the pedestrian crash location (Table 5-2). 

The reason could be that pedestrian facilities, speed control mechanisms, and traffic 

management surrounding institutional land use were comparatively better than other 

areas, and consequently, reduced fatal crash risk. Institutional land use had a larger 

variation in the magnitude of effect across the study area (Range: 0.12–3.68) (Table 

5-3). This variable had a higher impact in the central and northern parts of the study 

area (Figure 5-2). On the other hand, the impact of this variable was found the 

opposite in the southern part of the study area. In that part, with an increase in the 

institutional land use proportion, the likelihood of fatal crashes increased. The reason 

behind the result could be that the northern and central part have upscale institutions 

than the southern part, where better road infrastructure and pedestrian facilities are 

available. It is also mentionable that a negligible amount of institutional land use is 

present in the southern part of the study area. Further studies should be conducted on 

the pedestrian facilities in institutional areas and replicate the good practices in the 

other areas. 
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5.3.2.2.3 Presence of key features    

The number of bus stops was also found to be a significant variable. A higher 

number of bus stops surrounding pedestrian crash locations tended to increase the 

fatal crash occurrence probability (Table 5-2). This result was not found consistent 

with previous studies [20, 49]. The higher number of bus stops means a higher 

number of conflicts between heavy vehicles (bus) and pedestrians at the time of 

loading and unloading passengers since bus stops in the study area were not well-

structured and well-marked, as well as there is a lack of discipline at bus stops [118]. 

Also, there is a tendency for embarking on and disembarking from a running bus in 

the study area as the buses often do not completely come to a halt at bus stops. These 

might be the reasons behind the higher probability of fatal crash occurrences. A 

small variation was found in the intensity of the impact of this variable throughout 

the study area (Range: 0.83–1.34) (Table 5-3). This variable had higher intensity of 

impact in the central and southern part of the study area. The presence of three 

largest bus terminals of the city in those parts (Gabtoli, Mohakhali, and Sayedabad) 

could be the reason behind this result. Implementation of proper design, including 

safety elements in the design of these terminals and bus stops, and ensuring road 

users’ discipline at these locations could ensure pedestrian safety.  

5.3.3 GWLR model prediction 

The GWLR-583 model estimated a map of the predicted probability of fatal crash 

occurrence across the study area (Figure 5-3). The map shows that the northern part 

of the study area had the highest likelihood of fatal crash occurrence. Multiple 

factors, such as time of day, light condition, presence of median, and institutional 

land use, had a higher magnitude of impacts in the northern part of the city, which 

might make this part more fatal crash-prone. In contrast, the central and southern 

parts of the study area had a moderate probability of fatal crash occurrence. 
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Figure 5-3: Probability of fatal crash occurrence estimated through GWLR-583  
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CHAPTER 6: CASE ANALYSIS: LINKAGE BETWEEN 

MACROSCOPIC AND MICROSCOPIC ANALYSIS 
In this chapter, first, the relationship between pedestrian crash occurrences and crash 

severity was explored. Then, three wards having the highest crash density were 

selected, and a detail observational analysis was conducted to explore the 

relationship between crash occurrences and severity with built environment factors.  

6.1 Relationship between Pedestrian Crash Occurrences and 

Crash Severity 
To assess the relationship between pedestrian crash occurrences and crash severity, 

this study divided all the wards into five types based on pedestrian crash density: 

very low, low, moderate, high, and very high. Distribution of fatal and non-fatal 

crashes among the five types of wards was estimated and presented in Table 6-1. 

Findings from the table show that 38% of the fatal crashes occurred in very high 

crash density wards and 6.1% of them occurred in very low density wards. In the 

case of non-fatal crashes, 5.1% and 39% of the non-fatal crashes occurred in very 

low and very high crash density wards, respectively. From the table, it is clear that 

distribution of fatal and non-fatal crashes in the five types of wards was almost equal. 

The result of the Chi-Square Test of Independence was found insignificant (p > 0.1), 

indicating there was no association between pedestrian crash severity and crash 

density. More specifically, crash severity did not depend on how many crashes took 

place in a location. 

Table 6-1: Relationship between macroscopic level pedestrian crash density 

(crash/ha) and microscopic level crash severity 

Crash 

severity 

Crash density in a ward  

Very low 

(0-0.02) 

Low 

(0.02-0.05) 

Moderate 

(0.05-0.1) 

High 

(0.1-0.17) 

Very high 

(0.17-0.45) 

Fatal 6.1% 9.9% 25.7% 20.3% 38.0% 

Non-fatal 5.1% 9.2% 26.2% 20.5% 39.0% 

Chi-Square Test of Independence: χ2 = 0.352, df = 4, p-value = 0.9861  
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6.2  Case Analysis: High Pedestrian Crash Density Wards 

In the macroscopic and microscopic analysis, this study considered the proportion of 

different land uses in wards and within 250m buffer from each crash location, 

respectively. However, it was not possible to answer the question: what was the 

impact of the immediate/closest land use/ building use on pedestrian crash 

occurrences and crash severity from the previous analyses. Therefore, for detail crash 

analysis, this study selected three wards with very high crash density and analyzed 

crash pattern in those wards. Those three wards are Dhanmondi, Saidabad, and 

Ramna. In the following sub-sections, this study presents the findings of the case-

specific analysis. 

6.2.1 Case 1: Dhanmondi  

In Dhanmondi, around 65 crashes occurred from 2010 to 2015. Among them, 49 

crashes had a fatal outcome. Almost all the crashes occurred on the major roads of 

Dhaka: Mirpur road, Satmasjid road, and Manik Mia Avenue (Figure 6-1). These 

roads can be characterized by substantial motorized and non-motorized traffic 

volume as well as wide roads with heavy vehicles. However, very few crashes also 

occurred on the local roads. In addition, the crash frequency was found higher near 

major intersections. These two results are consistent with the findings of the 

macroscopic crash occurrences analysis, which showed that crashes occurred more in 

the wards having higher primary road density as well as major intersection density. 

Though the ward is used predominantly for residential purposes, very few 

crashes occurred in front of the residential buildings. Crashes occurred mostly in 

front of commercial buildings. A sizable number of crashes also occurred in front of 

the buildings, which were used for mixed and educational purpose. The reason could 

be that residential buildings have low activity as well as attract few people 

throughout the day. On the other hand, commercial, mixed, and educational buildings 

can attract a huge number of people as well as vehicles throughout the day. In 

addition, people are usually boarding and alighting from the public transport near 

these types of buildings. Also, they might need to cross the wide roads to access 

these types of buildings. In short, a large number of complex activities occurred 

around commercial, mixed, and educational buildings, which increased crash 
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frequency in front of them. In macroscopic pedestrian crash occurrences analysis, 

this study found that pedestrian crash density was higher in wards having higher 

mixed land use density, which is consistent with this finding.   

Apart from this, it is worth to mention that fatal and non-fatal crashes were 

found to occur in the same places. So, it is difficult to find any identical pattern in the 

distribution of fatal and non-fatal crash occurrences.  

 
Figure 6-1: Crash distribution and building use in Dhanmondi 



71 
 

6.2.2 Case 2: Saidabad 

Around 26 crashes occurred in Saidabad from 2010 to 2015. Among them, 20 

crashes had a fatal outcome. Like Dhanmondi, most of the crashes occurred on major 

roads (Dhaka-Sylhet Highway), near major intersections, as well as in front of 

commercial, mixed, and educational buildings (Figure 6-2). Apart from this, crashes 

occurred mostly around the Saidabad Bus Terminal. Here, it is difficult to find any 

identical pattern in the distribution of fatal and non-fatal crashes like Dhanmondi. 
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Figure 6-2: Crash distribution and building use in Saidabad 

6.2.3 Case 3: Ramna 

In Ramna, around 56 crashes occurred from 2010 to 2015. Among them, 41 crashes 

had a fatal outcome. Like Dhanmondi and Saidabad, most of the crashes occurred in 

major roads (Kakrail Road, Moghbazar Road, Outer Circular Road, Kazi Nazrul 
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Islam Avenue, and Baily Road), near major intersections, as well as in front of 

commercial, mixed, and educational building use (Figure 6-3). It is worthy to 

mention that Ramna Park had increased crash frequency in front of Kakrail mosque, 

which was found consistent with the result of the macroscopic analysis of this study. 

Kakrail mosque is a very vibrant large mosque of Bangladesh, which attracts a large 

number of people throughout the day. So, the place becomes busy with many 

activities due to the presence of Ramna Park and Kakrail mosque, and consequently, 

crashes occurred more there. In addition, it is difficult to find any identical pattern in 

the distribution of fatal and non-fatal crashes like Dhanmondi and Saidabad. 

 
Figure 6-3: Crash distribution and building use in Saidabad 
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6.2.4 Summary from Case Analysis and Implication for Planning 

From the case-specific analysis, it is worthy to mention that crashes occurred more 

on major roads as well as major intersections. In addition, crashes also occurred more 

near buildings/ spaces used for commercial, mixed, educational, and recreational 

purposes. From the macroscopic crash occurrences analysis, this study found that the 

crash density was higher in wards with higher densities of major road and 

intersection as well as mixed and recreational land use. These findings were found 

consistent with case-specific analysis. So, the recommendations suggested in the 

macroscopic analysis for these factors are also valid and applicable here (See Section 

4.3.2).  However, one of the interesting and unique findings of the case analysis is 

that crashes occurred more in front of commercial and educational buildings as well 

as a large vibrant mosque. Pedestrian safety needs to be improved adjacent to 

commercial area, educational institute, and mosque through different types of 

measures. Attention should be paid to minimize potential pedestrian-vehicle conflicts 

by separating pedestrians from vehicular movement through safe walkways and 

crossings. Traffic management measures also need to be put in place to control the 

vehicular speed. Land use measures like providing pedestrian precincts in suitable 

commercial hubs could be useful. These measures could be complemented by safety 

awareness-raising campaigns.  
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CHAPTER 7: CONCLUSION 

This study aimed to explore the effects of the built environment on the pedestrian 

crash occurrence and pedestrian crash severity through non-spatial and spatial 

regression models in the context of Dhaka, Bangladesh. Findings of the pedestrian 

crash occurrences analysis suggested that six significant built environment factors 

affected pedestrian crash density in the study area. These factors are employed 

person density, mixed land use density, recreational land use density, primary road 

density, major intersection density, and non-motorized modes share. Pedestrian crash 

density had a positive relationship with all the variables except non-motorized modes 

share. In addition to that, spatial relationships between pedestrian crash density with 

primary road density and major intersection density were found local according to 

the MGWR model. An important contribution of this study was that it provides a 

methodological framework for using spatial regression methods to explore the effects 

of the built environment on pedestrian crash occurrence incorporating spatial 

autocorrelation and exploring spatial non-stationarity relationships considering 

various spatial scales. This study suggested that the MGWR method has a great 

potential for macroscopic crash modeling to estimate more accurate results than other 

traditional models. This technique also helps to explore local relationships at 

different spatial scales.  

On the other hand, results of the pedestrian crash severity analysis found that 

the probability of fatal crash occurrence increased at night period, unlit place, and 

during adverse weather. The likelihood of fatal crashes was reduced on the roads 

where median was available, and a higher proportion of institutional land use was 

found surrounding the road. Also, fatal crashes tended to occur more at straight and 

flat roads and roads where a higher number of bus stops were presented. This study 

explored spatial variation in the intensity of the relationships between pedestrian 

crash severity with significant natural and built environment-related factors using the 

GWLR modeling technique. Higher intensity variation was found for road geometry 

and institutional land use variables. On the other hand, lower intensity variation was 

found for light condition and presence of median factors. The results of this study 
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identified that the GWLR model had a better explaining capability than the BLR 

model.  

To bridge between macroscopic and microscopic analysis, this study selected 

three high crash density wards and analyzed crash and built environment pattern to 

find more comprehensive results. The findings of this analysis were found consistent 

with the findings of the macroscopic analysis. However, additional findings were that 

crashes occurred more around commercial and educational buildings as well as in 

front of large mosques. 

Based on the findings of this study, this study suggested recommendations 

that would help the urban and transport planners to improve pedestrian safety in 

developing countries. A summary of those recommendations are presented below. 

 Implementation of an integrated multimodal transport plan and proper design 

of bus stops and bus terminals could ensure pedestrian safety by ensuring safe 

transfer from one mode to another.  

 Retrofitting the existing primary roads and surrounding areas, taking a 

complete street scheme, providing pedestrian facilities according to the 

standard, and providing median on the major roads could decrease the 

vulnerability of the pedestrians on the major roads. 

 In major intersections, it is recommended to provide proper pedestrian 

crossing facilities considering their needs, install traffic control devices (e.g., 

traffic signals, marking, stop signs, crosswalks), and prioritize pedestrians to 

ensure safe crossing opportunities.   

 Vehicle operating speed needs to be controlled on each major road, especially 

in mixed, commercial, recreational, and educational areas. Speed limit should 

be shown through proper traffic signage and marking. In addition, the speed 

restriction rule should be strictly enforced so that no vehicle exceeds the 

limit. 

 To increase non-motorized traffic volume, especially in mixed use areas, it is 

recommended to restructure the urban built environment by implementing 

appropriate planning strategies, such as TOD, smart growth, and compact 

development, and adopting complementary traffic management measures.  
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Travel demand management related strategies should be implemented to 

reduce vehicular traffic volume. Pedestrian precincts could be encouraged in 

highly dense commercial areas. 

 A proper street lighting system must be installed and operated to minimize 

the effect of unlit condition and adverse weather condition.  

 Awareness-raising programs for both pedestrians and drivers should be taken 

to ensure pedestrian safety. 
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Figure A1: Map of the study area 
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