
Real time Train, Vehicle and Pedestrian Detection System

for Automated Railway Level Crossing

By

Jiban Mahmud Joy

POST GRADUATE DIPLOMA IN INFORMATION AND COMMUNICATION

TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Dhaka-1000

March 2022

The project titled "Real time Train, Vehicle and Pedestrian Detection System for Automated

Railway Level Crossing" submitted by Jiban Mahmud Joy, Roll No. 1018311029, Session

October, 2018 has been accepted as satisfactory of the requirement for the degree of Post

Graduate Diploma in Information and Communication Technology is on 9 April, 2022.

ROARD OF EXAMINERS

1. Mohammad Muntasir Hassan

Lecturer
IICT, BUET, Dhaka-1000'

2. Dr. Md. t{Lrbaiy'at l]ossain Monclal

Profbssor

IICT, BUET, Dhaka- 1 000.

3. Dr. Md. Islam

Professor

IICT, BUET, Dhaka-1000

Chairman

Member

Member

ii

!!!

.(o1pnuqu1n1 uuqrl

t

'euro1d1p ro aa6ep ,ftrego pJu.ras

eqf roJ er.)q,re.eEe Pe}lIIIIqns ueoq lou sBq tl Jo ilsd dus ro 1coford sHr]sqr per"lcep ,(qeraq sr q

uollBrBlte(I elBpIpuBS

r^-

Dedicated

To

My Parents and Daughter

Table of Contents

Title Page No.

Board of Examiners……………………………………………………………………………….ii

Candidate Declaration……………………………………………………..…………………..…iii

Table of Contents………………………………………………………………………...……….v

List of Figures……………………………………………………………………………………vii

Acknowledgement………………………………………………………………………………viii

Abstract…………………………………………………………………………………………..ix

CHAPTER ONE

1. Introduction……………………………………………………………………………………..1

1.1 Background and present state of the problem…………………………………………1

1.2 Objectives with specific aims…………………………………………………………2

1.3 Possible outcome……………………………………………………………………...2

1.4 Organization of the project……………………………………………………………3

CHAPTER TWO

2. Literature Review…………………………………………………………………………...4

2.1 Detection system………………………………………………………………………4

2.2 Types of algorithms of object detection system………………………………………4

2.2.1 Fast R-CNN……………………………………………………………………….4

2.2.2 Faster R-CNN……………………………………………………………………..5

2.2.3 Histogram of oriented gradients (HOG)……………………………………….....6

2.2.4 Region-based convolutional neural networks (R-CNN)………………………….7

2.2.5 Region-based fully convolutional network (R-FCN)………………………….....8

2.2.6 Single shot detector (SSD)……………………………………………………….10

2.2.7 Spatial pyramid pooling (SPP-net)………………………………………………11

2.2.8 YOLO……………………………………………………………………………12

CHAPTER THREE

3. Methodology…………………………………………………………………………………..13

3.1 Beginning…...……………………………………………………..…………………13

3.2 Analysis of the proposed system…………………………………………..…………13

3.3 Block diagram of the system………………………………………………………....13

3.4 Platform ready for our system………………………………………………………..14

3.5 Outline of methodology/ experimental design……………………………….……....15

CHAPTER FOUR

4. Results and Discussions……………………………………………………………………….17

4.1 Introduction…………………………………………………………………………..17

4.2 Result and discussions……………………………………………………………….17

4.3 Output………………………………………………………………………………..17

4.3.1 Train detection……………………………………………………………………..17

4.3.2 Pedestrian detection………………………………………………………………..21

4.3.3 Bus detection…..…………………………………………………………………..21

4.3.4 Truck detection…..…………………………………………………….…………..22

4.3.5 Car detection..………………………………………………………….…………..23

4.4 Real time train detection…………………………………………..……..…………..23

CHAPTER FIVE

5. Conclusion…………………………………………………………………………………...24

5.1 Conclusion………………………………………………………………………….24

5.2 Suggestions for future works……………………………………………………….24

References………………………………………………………………………………………26

Appendix……………………………………………………………………………….….........29

List of Figures

Title Figure Caption Page No.

Figure 2.1: Fast R-CNN network…………………………………………………………….5

Figure 2.2: The architecture of Faster R-CNN……………………………………………....6

Figure 2.3: Histogram of oriented gradients (HOG)…………………………………………7

Figure 2.4: Architecture of the region based convolutional neural network………….……..8

Figure 2.5: Region based fully convolutional networks R-FCN architecture………….…….9

Figure 2.6: Single shot detector (SSD)………………………………………………….…..10

Figure 2.7: Spatial pyramid pooling (SPP-net)……………………………………….….….11

Figure 2.8: YOLO architecture………………………………………………….………..…12

Figure 3.1: Block diagram of the proposed system…………………………………….…...14

Figure 4.1 (a): Long distance real time train detection via webcam……………………………18

Figure 4.2 (b): Real time train detection at a time two trains via webcam……………………..18

Figure 4.3 (c): Real time train detection when train overlap via webcam…………………...…19

Figure 5: Dusty weather train detection………………..………………………………….19

Figure 6: Foggy weather train detection…………………………………………………..20

Figure 7: Rainy weather train detection………………………………………….………..20

Figure 8: Pedestrian detection………………………..…………………………/………...21

Figure 9: Bus detection ..……………………..…………………………….……/……….22

Figure 10: Truck detection…….…………………………………….………….…/……….22

Figure 11: Car detection……………………………………………….…………../……….23

Acknowledgement

First of all, I express my gratefulness to the Almighty Allah for enabling me to perform this task

successfully. I would like to express my deepest sense of gratitude to my honorable supervisor,

Mohammad Muntasir Hassan, Lecturer, Institute of Information and Communication

Technology (IICT), Bangladesh University of Engineering and Technology (BUET), for his

scholastic supervision, valuable guidance, adequate encouragement and helpful discussions

throughout the progress of this work and for giving me the opportunity to conduct this project. I

am highly grateful to him for allowing me to pursue this study under his supervision. I am

grateful to pursue my project under his supervision. Without his assistance, this project would

not have succeeded.

I would like to convey my thanks to Professor Dr. Md. Rubaiyat Hossain Mondal, Director and

Dr. Md. Saiful Islam, Members, lICT, BUET. Their insightful suggestions and inspirations gave

me the courage to do this work.

I gratefully acknowledge the restless support and advice of my fellow classmate and friend

during the design and implementation phase of this project. I want to thanks to my project

supervisor, Mohammad Muntasir Hassan for giving his valuable time and helping while I was

buying the apparatus for my project. My special thanks to all the teachers, students and staffs of

lICT, BUET.

Finally, I am much grateful to my family members especially to my parents, all of my friends

and well-wishers for their encouragement and supports.

Author

Abstract

In this project, we have analyzed images and videos of the train from different angles in different

train stations of Dhaka in different environmental conditions. With these recorded videos we

have developed a real time train detection system. We have used OpenCV, SSD model, and

frozen inference graph for increased detection speed. In addition, the system can perform

dynamic detection of vehicles and pedestrians. In this detection system, we compare the real time

image with the model images containing for vehicle detection with preset threshold values. If the

resultant value is higher than the threshold value, then the system detects the presence of the

object i.e., vehicles or pedestrians. In the beginning we worked with images to make this

detection system. After being successful there, we shifted to the moving images i.e., video. After

successfully analyzing the images from the video, we started working with real-time video

footages. In the case of real-time videos, many frames come together, and they are converted into

images, and are matched with the model of the detection system. With higher frame rates, the

system performs slower. That is why we optimized the frame rate so that the system can operate

in real time with adequate accuracy. Although we started working with YOLO model, later we

shifted to the Single Shot Detector (SSD) model as the later was faster and more accurate. The

proposed system can enable an automated level-crossing system in Bangladesh for which

accurate and faster detection of the train is a key component.

CHAPTER ONE

Introduction

There are many unprotected rail crossings in Bangladesh and collision occurs between the train

and other vehicle in these crossings very frequently. The problem is especially severe in rural

and sub-urban areas where the level-crossings are unmanned and unprotected. In these

unfortunate cases, a number of people perish every year, and many properties are damaged.

Considering these situations, we have taken a project to detect trains in real-time which is a key

aspect in automated level-crossing system. The inputs are images, video and real time camera

data. In this detection system, we have compared the real time image with preset threshold

values. The threshold value is carefully set for successful and accurate detection of the train. If

the resultant value is higher than the threshold value, then the train is detected otherwise the

system assumes that there is no train. In the beginning we have worked with images to make this

detection system. After being successful there, we have started working with videos. After being

successful, we have worked with real-time footages from the camera. In the case of video and

camera, many frames come together. By converting them into images we have matched the

output with the image detection system. In this process, the system becomes a bit slow. That is

why we have worked by removing some frames so that the system can work in real-time without

compromising accuracy. This system was made with the YOLO model. Later we had used the

Single shot detector (SSD) model instead of the YOLO model to make the detection faster [5].

The threshold value was optimized to exclusively detect the desired object like trains, other

vehicles or pedestrians.

1.1 Background and present state of the problem

According to a 2021 data there are 964 unmanned railway level crossings in Bangladesh and

serious accidents occur frequently in these rail crossings [6]. Automated rail crossing system can

aid in this respect to prevent this unwanted loss of lives and resources. An essential part of

automated level crossing system is to detect the train for which several techniques are available

and commercially employed [3,5,7]. As an alternative, we are proposing here real-time train

detection from the live feed employing OpenCV (version 4.5.2) [7] that is based on

convolutional neural network [8,5]. Moreover, this method can detect other vehicles and

pedestrians as well which is necessary to ensure that the railway line is free from potential

obstacles. Here the challenges are to detect the desired objects in real time with limited

computational resources and to ensure accuracy. In recent times, different object detection

methods have garnered tremendous improvement, but the problem remains unresolved in

uncontrolled places, especially when objects are placed indiscriminately in a chaotic and

confined environment. In this regard, a real time object detection system especially for trains and

other vehicles is essential for automated railway level crossing.

1.2 Objectives with specific aims

The objective of this project is to analyze different images to detect train, other vehicles and

pedestrians and generate unique signal for each of them. To achieve this goal, we have

determined the following objectives

i. Detection of the train, other vehicles and pedestrians using coco.names data set and

OpenCV SSD mobile net version 3

ii. To achieve faster detection from real time video feed by employing different frame

rates without compromising accuracy.

iii. To detect the desired objects in foggy, dusty and rainy water.

1.3 Possible outcome

Successful completion of the project will assist in automated railway level crossing system and

instigate further research in this field [3]. Considering this detection system first of all we have

classified the image. In this case here are also training images of the system. Secondly we have

focused object classification and localization. In this case the image has a background part, but

our system only detects our specified object that is called localization. Third is multiple objects

detection and localization. In this case the image there are many objects at a time in one image.

They are separately detected and localized separately. The traditional object detection model

there are three stages one is informative region selection another is feature extraction and one

another is classification. Region proposal based framework is composed of three correlated

stages, including region proposal generation, feature extraction with CNN [9], classification and

bounding box regression, which are usually trained separately. Regression or classification based

framework is one-step frameworks based on global regression or classification, mapping

straightly from image pixels to bounding box coordinates and class probabilities, can reduce

expense. Two significant frameworks one is you only look once (YOLO), and another is single

shot multi box detector (SSD). We have used SSD of our system to detect object.

1.4 Organization of the project

Chapter 1 of this report describes the introduction and relevant background of this project.

Chapter 2 of this report, issues from all aspects of developing the proposed system has been

reviewed from the literature.

Chapter 3, methodologies of the proposed system has been discussed in detail.

Chapter 4 step by step design and development and obtained results of the proposed system have

been discussed.

In the final chapter (Chapter 5), conclusion and recommendation for future works has been

stated. The project report ends with an appendix A that contains the program code of the system.

CHAPTER TWO

Literature Review

2.1 Detection system

One of the main safety requirements of a train system is that before a train is moving along a

section of train line, there should be no other traffic. Thus, the ability to detect the presence of a

train on a particular stretch of track is a key enabling for automated level crossing system and

automatic signaling, and it is an integral part of modern train control.

2.2 Types of algorithms of object detection system

1. Fast R-CNN

2. Faster R-CNN

3. Histogram of oriented gradients (HOG)

4. Region-based convolutional neural networks (R-CNN)

5. Region-based fully convolutional network (R-FCN)

6. Single shot detector (SSD)

7. Spatial pyramid pooling (SPP-net)

8. YOLO, etc.

2.2.1 Fast R-CNN

Fast R-CNN is fast region based convolutional neural networks and they are known to machine

learning models for computer vision and specifically for object detection [10]. RPN (Region

proposal network) try to find out this area where the object can be possibly found. Finally, we

have got the area where the object is present. Then we have labeled that area as a foreground

class where we have got an object in an image we have identified the label that area as a

foreground class. In figure 2.1, the area where the object is not present showing the area [11]. All

area where the object is not present this area should get label as background class. The task of

RPN is to predict foreground and background anchor boxes and finally the anchor boxes which

are labeled as foreground class got the next stage.

Figure 2.1: Fast R-CNN network [11]

2.2.2 Faster R-CNN

Faster R-CNN means fast region based convolutional neural networks are known to machine

learning models for computer vision and specifically of object detection [12]. The area of the

object in the picture can be found where object can be found if you see the picture where the

object can be possibly found. In this stage have showed the output of this RPN region of the

object [13]. The output of the object is the anchor boxes which are labeled as foreground class.

This is also a sub CNN network where some convolutional neural network tasks are performed.

It can work as a feature map. Another stage is ROI (Region of interest) pooling.

Figure 2.2: The architecture of Faster R-CNN [13]

2.2.3 Histogram of oriented gradients (HOG)

HOG is a feature of utilizing to detect an object in image processing and other computer vision

techniques [14]. This stage is changed the image vertical and horizontal change. The whole

image divided into 16x16 blocks of 50 percentage overlapping. The process of detection object is

`same as fast R-CNN and Faster R-CNN.

Figure 2.3: Histogram of oriented gradients (HOG) [15]

2.2.4 Region-based convolutional neural networks (R-CNN)

The R-CNN is a technique of combination of region proposals with CNNs [16]. It is the selective

search that means an image where we have found some objects. Selective search is flowing color

changing technique which portion change the color and that portion contains an object. All of

that similar color is the select bounding box that the region of the object.

Input Image

Normalise gamma & colour

Compute gradients

Weighted vote into spatial &

orientation cells

Collect HOGs over detection

window

Figure 2.4: Architecture of the region based convolutional neural network [17]

2.2.5 Region-based fully convolutional network (R-FCN)

R-FCN is known for machine learning models for computer vision and specificity of object

detection. This detection process is a regionally based fully convolutional network for accurate

and efficient object detection [18]. This method uses position sensitive score map to solve two

issues. First are the translation and the variance issue in image classification. And second is the

translation variance issue in object detection.

Voting System

Average Pooling

Conv

Conv

ROI Pooling

Conv

Conv

Conv

RPN

RIO + Score

Features

….

RIO Features

Input Image

Features

Bounding Boxes

…. Features

….

Figure 2.5: Region based fully convolutional networks R-FCN architecture [19]

2.2.6 Single shot detector (SSD)

SSD is a technique for detecting objects in an image using a single deep neural network [20].

This approach discreteness the output space of bounding boxes into a set of default boxes over

different aspect ratios of the output objects ratio. Discrediting, the method scales per feature map

of the object location. The SSD network combines the predictions from multiple features of

maps with different resolutions to naturally handle objects of various sizes of the objects. Our

proposed method is flowed this process.

Figure 2.6: Single shot detector (SSD) [21]

Advantages of SSD

SSD completely eliminates proposal generation and subsequent pixel or feature resembling

stages and encapsulates are in a single deep network [22]. Easy to detect trains and

straightforward to integrate into the systems that requires a detection component. SSD has

competitive accuracy of methods that utilize an additional object proposal step, and it is much

faster while providing a unified framework for both training and inference.

2.2.7 Spatial pyramid pooling (SPP-net)

SPP-net is a network structure that can generate a fixed-length representation regardless of image

size or scale [23]. Aggregate pooling is also robust to object distortions. With these advantages,

SPP- net should in general ameliorate all CNN- grounded image bracket methods. The power of

SPP- net is also significant in object discovery. Using SPP- net, we have ciphered the point maps

from the entire image only formerly, and also pool features in arbitrary regions (sub-images) to

induce fixed- length representations for training the sensors. Precisely divide each walnut half

into equal slices. Use shanks wisely, so they do not fall piecemeal. Place a slice of walnut on top

of each cut date. Sprinkle it with cinnamon greasepaint and serve.

Figure 2.7: Spatial pyramid pooling (SPP-net) [24]

2.2.8 YOLO

YOLO is an object detection algorithm which works coco.names data sets. It is a simple

regulation problem which takes an input image learns the class probability and then the bounding

box coordinate [25]. It is a single shoot detector which detects the image in a single scan. It is

also faster but struggles with small object as it is a single shoot detector or sometimes it misses

the small objects which are there. It is better because it is fast and does the detection in a single

scan.

Figure 2.8: YOLO architecture [26]

CHAPTER THREE

Methodology

3.1 Beginning

In train detection system is main issue of managing the quality of image frames. The image

qualities are a major part of the object detection system. The resolution of the image has

increased the frame number is also increased. In number of frames increases its need extra time

is for executing. In this case the process is sometimes slow [22].

3.2 Analysis of the proposed system

This project concentrates on the frame issues for maintaining the image frame. An SSD with

OpenCV technique has been introduced in the proposed to minimize the frame and time

consumption for detection an object. The object is detected in sequence with each other of the

frames and move to the next frame. If each frame is executed in every short span of time human

eye can see the result until the frame is not ended.

3.3 Block diagram of the system

The basic units of the proposed system can be divided into seven parts.

1. Real time image converted

2. Extract features from a real time image

3. Reference image model (Object)

4. Extract features from image

5. Match Features of both

6. Calculate the object matching value

7. Recognize the object and display if the threshold value is less than

Here the real time image is collected from a camera or other sources and sends it to the next

stage. Then features are extracted from the real time image and the data is collected which is

used in future for matching the reference model data. Reference image model (Object) is pre-

trained images with labeling. The features of the data set images are extracted and sent to the

matching table. The matching is based on which parts are match and how much percentage is

matched. The next stage is execution. Then object is recognized if the stored matching value is

greater than the threshold value. Then it sends to the labeling stage. The name of vehicle is

labeled in the displayed frame.

Figure 3.1: Block diagram of the proposed system

3.4 Platform for the system

Python is installed in our computing system. Its version 3.9.5 is updated from the official python

website via command prompt. We have also downloaded python packages, cuda, numpy,

OpenCV etc. We have downloaded object detection model file from github. We used sublime

text as the code editor.

Numpy

NumPy is library of the Python programming language, adding support for large, multi-

dimensional array and matrix, along with a large collection of high-level mathematical function

Capturing the real-time video

Real time video converted to images

Extraction of features from the

converted images

Matching the features of both images

Calculate the object matching value

Recognize and label the object

Reference image model (Object)

Extract features from image

to operate over these arrays. The ancestor of NumPy, Numeric, was originally created by Jim

Hugunin with contributions from several developers. In 2005 Travis Olphant created NumPy by

incorporating features of computing Numarray into Numeric, with extensive modifications.

NumPy is open-source software and has many contributors. NumPy is open-source software and

has many contributors.

OpenCV

OpenCV is a library of programming functions mainly aimed at real time computer vision.

Originally developed by Intel, it is later supported by Willow Garage than issues. The library is a

cross-platform and free to use under the open-source BSD license.

ImageAI

The imageAI provides an API to recognize 1000 different objects in a picture using pre-trained

models that was trained on the ImageNet-1000 dataset. The model implementations provided are

SqueezeNet, ResNet, InceptionV3 and DenseNet.

Anaconda

Anaconda environment is installed for this detection system. At times, it made the system

slower, so we turned it off.

Jedi

Jedi for auto compilation of python code is installed.

3.5 Outline of methodology/ experimental design

You only look once- YOLO (OpenCV) is a unique being a state-of-the-art, real-time object

detection system that offers higher detection accuracy at a faster speed. Further, by reducing the

frame rate, higher detection speed can be achieved without compromising the accuracy. The

proposed method can have significant impact in the automation of railway level crossings [27].

Considering this detection system first of all we have classified the image. In this case, here are

also training images of the system. Secondly, we have focused object classification and

localization. In this case the image has a background part, but our system only detects our

specified object that is called localization. Third is multiple objects detection and localization. In

this case the image there are many objects at a time in one image. They are separately detected

and localized separately. The traditional object detection model, there are three stages one is

informative region selection another is feature extraction and one another is classification.

Region proposal based framework is composed of three correlated stages, including region

proposal generation, feature extraction with CNN, classification and bounding box regression,

which are usually trained separately. Regression or classification based framework is a one-step

framework based on global regression or classification, mapping straightly from image pixels to

bounding box coordinates and class probabilities, can reduce expenses. Two significant

frameworks one is YOLO, and another is single shot multi box detector (SSD) [28]. We have

used SSD by our system to detect objects. The objectives have achieved by the following

methodologies-

i. The model has trained using coco.names dataset.

ii. The classification of images is using vector matrix of array and list.

iii. Accuracy, precision and threshold value have calculated for different objects.

iv. The frame rate has been optimized for achieving higher detection speed.

v. Live video feed has been used to test the trained model.

vi. The model has trained to detect objects from foggy and rainy images.

CHAPTER FOUR

Results and Discussions

4.1 Introduction

This chapter describes the result and discussions of our project.

4.2 Result and discussions

All of the objects are passed through the matching condition. If the condition is true, then next

stage processes and shows our desired output. Otherwise, it moves to the next frame. Several

times the system could not detect the presence of train due to the inferior quality of the image. In

those cases, the object matching value is less than the threshold value.

4.3 Output

In Kamalapur Railway Station, Dhaka, we ran our system and detected train in real time through

webcam footages. Some screenshots of those instances are given below.

4.3.1 Train detection

The program was launched from the platform of Kamalapur Railway Station, when the train

arrived at the platform, train detection took place. As shown in Figure 4.1 (a), the train is

detected as soon as it comes in front of the camera, even if the distance is long. As shown in

Figure 4.1 (b), two or more trains in the same image can be detected simultaneously. As shown

in Figure 4.1 (c), if more than two trains are moving within the same frame, the system can

detect the trains well.

The system was then tested in different environmental conditions. Figure 5 shows that even in

dusty weather the system can detect the presence of the train. Figure 6 shows the performance of

the detection system in foggy weather. Figure 7 shows that our project can actually detect the

train in rainy weather as well. So, we can say that whatever the weather condition is, our project

is successful in detecting objects in that weather.

Figure 4.1 (a): Long distance real time train detection via webcam

Figure 4.1 (b): Real time detection of two trains in the same frame. The frame is captured using

webcam.

Figure 4.1 (c): Real time detection of overlapping trains

Figure 5: Train detection in dusty environment.

Figure 6: Train detection in foggy weather.

Figure 7: Train detection in rainy weather.

4.3.2 Pedestrian detection

After we launched our project, if a pedestrian comes in front of the camera, then our project can

detect pedestrians. It can detect multiple persons in the same image. Figure 8 shows the

pedestrian detection performance of the system. So, we can say that our project can detect a train

or a pedestrian passing through in front of the camera.

Figure 8: Pedestrian detection

4.3.3 Bus detection

The program is able to detect a number of vehicles including passenger bus. While the program

is running, if a bus comes in front of the camera, then the program can detect bus. It can detect

multiple buses in the same image. Figure 9 shows an instance of bus detection by the program.

Figure 9: Bus detection

4.3.4 Truck detection

Then we tested the system to detect truck in roads. After launch of the program, if a bus comes in

front of the camera, then the system can detect presence of the truck in the frame. It can detect

multiple trucks in the same image. Figure 10 shows the performance of the system in truck

detection.

Figure 10: Truck detection

4.3.5 Car detection

The program is equipped to detect cars as well. It can detect multiple cars in the same image.

Figure 11 shows the car detection performance in a dynamic environment. So, we can conclude

that our project can detect multiple objects whether it is a train or other vehicles like bus, truck,

car or even a pedestrian coming in front of the camera.

Figure 11: Car detection

4.4 Real time train detection

In the above images, we have added screenshots of real time train, vehicles and pedestrian

detection using laptop webcam and running the detection program. In real time object detection,

we first labeled images, then set up our training repository of train and other vehicles and then

executed the detection program. The labeled data are saved in a directory or folder. When the

label is matched, then given an object label and shown as output.

CHAPTER FIVE

Conclusion

5.1 Conclusion

Real time train, vehicle and pedestrian detection system for automated railway level crossing

system is a modern technique. This detection system is a software system that is running an

infinity loop for webcam and terminated point for fixed resources. The Single shot detector is

faster than previous advanced techniques (YOLO) and is significantly more accurate. SSD

predicts category scores, and box shifts for a fixed number of default boundary boxes using

convolution filters applied to feature maps. To obtain a high precision, we have produced

predictions of different scales from characteristic maps of different dimensions, and then

separate the predictions in relation to appearance. These functions lead to high precision, even

for low resolution input images. Other algorithms normally use object proposal methodology

where they would come up with a way to break down the image segmented into parts to suggest

where they could potentially be objects. Algorithms like this sacrifice precision. Therefore,

researchers came up with an interesting solution where they do everything in one single shot.

The system just looks at the picture once; it does not need to return to the picture again, it doesn't

need to run a lot of convolutional neural networks.

5.2 Suggestions for future works

Computers have become the most important technology of our last lives and can solve

increasingly difficult problems. Specifically, computers are generally better than humans in

repetitive tasks, which require a great deal of data and computation. In the past ten years,

computers have become so powerful that they can be used for complex tasks. This project

elucidates one of those highly computerized applications that became possible in the recent year,

which is the detection of objects. The complex task of finding objects within a specific image or

video frame.

The future of object detection technology is proving itself, and much like the original Industrial

Revolution, it has the potential, at the very least, to free people from tedious work that have done

more efficiently and effectively by machines. Thus, these challenges circumvent the need for a

lot of training requiring a massive number of datasets to serve more nuanced tasks, with its

continued evolution, with the features and techniques that make it possible, it might soon become

the next great thing in the future.

In future we will work on this project in hardware parts and implementing of the project.

References

A Burgos, A Goni, A Illarramendi , and J Bermudez , "Real-Time Detection of Apneas on a

PDA," IEEE Transactions on Information Technology in Biomedicine, pp. 995-1002, 2009.

Biswas D, Su H, Wang C, Stevanovic A, and Wang W, "An automatic traffic density

estimation using Single Shot Detection (SSD) and MobileNet-SSD," Physics and Chemistry

of the Earth, pp. 176-184, Apr 2019.

Banuchandar J, Kaliraj V, Balasubramanian P, Deepa S, and Thamilarasi N, "Automated

unmanned railway level crossing system.," International Journal of Modern Engineering

Research (IJMER), vol. 2(1), pp. 458-463, Jan 2012.

Pawełczyk M and Wojtyra M, "Real world object detection dataset for quadcopter

unmanned aerial vehicle detection," IEEE Access, vol. 8, pp. 174394-409, Sep 2020.

Xu T, Sun X, and Diao W, "ASSD: Feature aligned single-shot detection for multiscale

objects in aerial imagery," IEEE Transactions on Geoscience and Remote Sensing, Jun

2021.

"Making level crossings safer," The Financial Express, January 2021.

Zhao ZQ, Zheng P, and Xu ST, "Object detection with deep learning: A review," IEEE

transactions on neural networks and learning systems, vol. 30(11), pp. 3212-3232, 2019.

Ho RK, Wang Z, and Tang SS, "Real-time object detection technology in railway

operations," 2021.

Ji Y, Zhang H, and Zhang Z, "CNN-based encoder-decoder networks for salient object

detection: A comprehensive review and recent advances," Information Sciences, vol. 546,

pp. 835-857, Feb 2021.

Wen L, Ding J, and Loffeld O, "Video SAR moving target detection using dual faster R-

CNN," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

vol. 14, pp. 2984-2994, Feb 2021.

Shilpa Ananth, "Fast R-CNN for object detection," Towards Data Science, Aug 2019.

Mansour RF, Escorcia-Gutierrez J, and Gamarra M, "Intelligent video anomaly detection

and classification using faster RCNN with deep reinforcement learning model," Image and

Vision Computing, vol. 112, p. 104229, Aug 2021.

Deng , Zhipeng & Sun , and Hao & Zhou , "Multi-scale object detection in remote sensing

imagery with convolutional neural networks," ISPRS Journal of Photogrammetry and

Remote Sensing, May 2018.

Khan MN, Das A, and Ahmed MN, "Multilevel weather detection based on images: A

machine learning approach with histogram of oriented gradient and local binary pattern-

based features," Journal of Intelligent Transportation Systems, vol. 25(5), pp. 513-532, Sep

2021.

Lu , Heng & Ma , and Lei & Fu , "Landslides Information Extraction Using Object-Oriented

Image Analysis Paradigm Based on Deep Learning and Transfer Learning," Remote

Sensing, vol. 12, p. 752, Feb 2020.

Yee LR, Kamaludin H, and Safar NZ, "Intelligence Eye for Blinds and Visually Impaired by

Using Region-Based Convolutional Neural Network (R-CNN).," JOIV: International Journal

on Informatics Visualization, vol. 5(4), pp. 409-414, Dec 2021.

Horak , Karel & Sablatnig , and Robert , "Deep learning concepts and datasets for image

recognition: overview 2019," p. 100, AUG 2019.

Huang H, Huang Y, and Mu X, "Research on Recognition and Location Method of Insulator

in Infrared Image Based on Deep Learning," Journal of Physics: Conference Series, vol.

2087, p. 012090, Nov 2021.

Nguyen-Meidine , Le Thanh & Granger , and Eric & Kiran , "A Comparison of CNN-based

Face and Head Detectors for Real-Time Video Surveillance Applications," Nov 2017.

Jee G, Gm H, and Gourisaria MK, "Efficacy Determination of Various Base Networks in

Single Shot Detector for Automatic Mask Localisation in a Post COVID Setup," Journal of

Experimental & Theoretical Artificial Intelligence, pp. 1-20, Oct 2021.

Jonathan Hui , "SSD object detection: Single Shot MultiBox Detector for real-time

processing," Mar 2018.

Chen DJ, Hsieh HY, and Liu TL, "Adaptive image transformer for one-shot object

detection," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 12247-12256, 2021.

Kumar S and Gaur D, "Thermal Object Detection Using Yolov3 and Spatial Pyramid

Pooling," Proceedings of International Conference on Machine Intelligence and Data

Science Applications, pp. 553-565, 2021.

Dewi and Christine , "Evaluation of Robust Spatial Pyramid Pooling Based on

Convolutional Neural Network for Traffic Sign Recognition System," Electronics, May

2020.

Warnicke A and Jönsson J, "Implementation of a Vision System for an Autonomous

Railway Maintenance Vehicle: Track and Object Detection with YOLO, Neural Networks

and Region Growing.," 2021.

Wu and Jiatu, "Complexity and accuracy analysis of common artificial neural networks on

pedestrian detection," MATEC Web of Conferences, Jan 2018.

Fayyaz, M.A.B, and C., Johnson, "Object detection at level crossing using deep,"

Micromachines, vol. 11(12), p. 1055, 2020.

"Track vacancy detection systems," Siemens.

S Yadav, "Deep learning based safe social distancing and face mask detection in public,"

International Journal for Research in Applied, vol. 8(7), pp. 1368-1375, 2020.

Appendix

#Variable set for train

 if (names[c])=='train':

 print("\n\n")

 print("Train found")

 break

 else:

 print("\n\n Train not found")

Image load

img = cv2.imread("C:/Users/joy_c/Dropbox/Personal/BUET/Project/Jibon.jpg" , 1)

0 for black, 1 for color image

print("image in Pixel \n", img);

cv2.imshow("Output Image", img)

cv2.waitKey(2000)

print("First image end ")

#url = "http://192.168.0.113:8888/shot.jpg"

img2 = cv2.imwrite("Copy.jpg", img)

cv2.destroyWindow("img");

img_copy = cv2.imread("C:/Users/joy_c/Dropbox/Personal/BUET/Project/copy.jpg", 0)

cv2.imshow("Output Image Live", img_copy)

cv2.waitKey(5000)

print("Second image Copy end")

#Webcame video

cap1 = cv2.VideoCapture(0)

default webcame 0, set webcame 1

cap1.set(3, 640) # 3 for width of image upper for openCV

cap1.set(4, 480) # 4 for height of image up to down

cap1.set(10, 100) # 10 for Brightness of image

while True:

 success, imgv1 = cap1.read()

 cv2.imshow("Webcame ", imgv1)

 if cv2.waitKey(100) & 0xFF == ord('q'):

 break

print("End webcame")

Video load

cap = cv2.VideoCapture("C:/Users/joy_c/Desktop/road.mp4")

while True:

 success, imgv = cap.read()

 cv2.imshow("Video", imgv)

 if cv2.waitKey(100) & 0xFF == ord('q'):

 break

print("End video")

print("End of the program");

cv2.destroyAllWindows()

Face detection

import cv2

XML file load haarcascade_frontalface_default.xml

faceCascade=

cv2.CascadeClassifier("C:\\Users\\joy_c\\AppData\\Roaming\\Python\\Python39\\site-

packages\\cv2\\data\\haarcascade_frontalface_default.xml")

Image load

img = cv2.imread('C:/Users/joy_c/Dropbox/Personal/BUET/Project/Copy.png')

the input image is converted to gray scale

imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(imgGray,1.1,4)

for (x,y,w,h) in faces:

 cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)

cv2.imshow("Face of mouth", img)

cv2.waitKey(0)

Train detection

import cv2

import numpy as np

yolov3.weights, yolov3.cfg, coco.names, detection.py and other files three are same folders

load = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg')

classes = []

with open('coco.names', 'r') as f:

 classes = f.read().splitlines()

#img = cv2.imread('zidane.jpg')

cap = cv2.VideoCapture(0)

while True:

 _, img = cap.read()

 height, width, _ = img.shape

 # image scaling

 blob = cv2.dnn.blobFromImage(img, 1/255, (416, 416), (0, 0,0), swapRB = True, crop =

False)

 '''

 # How many frames

 for b in blob:

 for n, img_blob in enumerate(b):

 cv2.imshow(str(n), img_blob)

 '''

 load.setInput(blob)

 output_layers_names = load.getUnconnectedOutLayersNames()

 layerOutPuts = load.forward(output_layers_names)

 boxes = []

 confidences = []

 class_ids = []

 for output in (layerOutPuts):

 for detection in output:

 scores = detection[5:]

 class_id = np.argmax(scores)

 confidence = scores[class_id]

 if confidence > 0.5:

 center_x = int(detection[0]*width)

 center_y = int(detection[1]*height)

 w = int(detection[2]*width)

 h = int(detection[3]*height)

 x = int(center_x - w/2)

 y = int(center_y - h/2)

 boxes.append([x, y, w, h])

 confidences.append((float(confidenc)))

 class_ids.append(class_id)

 #print(len(boxes))

 indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)

 #print(indexes.flatten())

 font = cv2.FONT_HERSHEY_PLAIN

 colors = np.random.uniform(0, 255, size = (len(boxes), 3))

 if len(indexes) > 0:

 for i in (indexes.flatten()):

 x,y,w,h = boxes[i]

 label = str(classes[class_ids[i]])

 if label=='train':

 confidenc = str(round(confidences[i], 2))

 color = colors[i]

 cv2.rectangle(img, (x, y), (x+w, y+h), color, 2)

 cv2.putText(img, label + " " + confidenc, (x, y+20), font, 2, (255,

255, 255), 2)

 cv2.imshow('Output_File To exit press q 2 times', img)

 key = cv2.waitKey(1)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

cap.release()

'''

if label == 'train':

 print('Train detection successfull')

else:

 print('Train detection unsuccessfull')

'''

cv2.destroyAllWindows()

#Sound set for train

 if (label)=='train':

 print("\n\n")

 x=37

 y=2500

 for i in range(2):

 win32api.Beep(x,y)

 #if cv2.waitKey(1) & 0xFF == ord('q'):

 # break

 x+=100

 y-=120

 ## break

 #time.sleep(2) # Delay 2 seconds for next time detection

 #else:

 #break;

 #print("\n Train not found")

show the reference image

##cv2.imshow("ref_image", ref_image)

initialize the camera object so that we

can get frame from it

cap = cv2.VideoCapture(0)

looping through frame, incoming from

camera/video

while True:

 # reading the frame from camera

 _, frame = cap.read()

 # calling face_data function to find

 # the width of face(pixels) in the frame

 face_width_in_frame = face_data(frame)

 # check if the face is zero then not

 # find the distance

 if face_width_in_frame != 0:

 # finding the distance by calling function

 # Distance finder function need

 # these arguments the Focal_Length,

 # Known_width(centimeters),

 # and Known_distance(centimeters)

 Distance = Distance_finder(

 Focal_length_found, Known_width, face_width_in_frame)

 # draw line as background of text

 cv2.line(frame, (30, 30), (230, 30), RED, 32)

 cv2.line(frame, (30, 30), (230, 30), BLACK, 28)

 # Drawing Text on the screen

 cv2.putText(

 frame, f"Distance: {round(Distance,2)} CM", (30, 35),

 fonts, 0.6, GREEN, 2)

 # show the frame on the screen

 cv2.imshow("frame", frame)

 # quit the program if you press 'q' on keyboard

 if cv2.waitKey(1) == ord("q"):

 break

closing the camera

cap.release()

closing the windows that are opened

cv2.destroyAllWindows()

#/*Project Coding*/

import cv2

thres = 0.65 # Threshold to detect object

cap = cv2.VideoCapture("recording_video/IMG_0979.mp4")

cap.set(3,1280)

cap.set(4,720)

cap.set(10,70)

classNames= []

class_ids = []

classFile = 'coco.names'

with open(classFile,'rt') as f:

classNames = f.read().rstrip('\n').split('\n')

configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'

weightsPath = 'frozen_inference_graph.pb'

net = cv2.dnn_DetectionModel(weightsPath,configPath)

net.setInputSize(320,320)

net.setInputScale(1.0/ 127.5)

net.setInputMean((127.5, 127.5, 127.5))

net.setInputSwapRB(True)

#boxes = []

#colors = np.random.uniform(0, 255, size = (len(boxes), 3))

while True:

success,img = cap.read()

classIds, confs, bbox = net.detect(img,confThreshold=thres)

 #print(classIds,bbox) # Array of objects

iflen(classIds) != 0:

forclassId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox):

 #cv2.rectangle(img, (x, y), (x+w, y+h), color, 2)

 #cv2.rectangle(img,box,color=(0,255,0),thickness=2)

label = str(classNames[classId-1])

 #print(label)

if (label=='train' or label=='bicycle' or label=='car' or label=='bus' or label=='truck'):

 cv2.rectangle(img,box,color=(0,255,0),thickness=2)

 cv2.putText(img,classNames[classId-1].upper(),(box[0]+10,box[1]+30),

 cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2)

 cv2.putText(img,str(round(confidence*100,2)),(box[0]+200,box[1]+30),

 cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2)

 print(label, ' Detect')

 #print("Length = ", len(label))

cv2.imshow("Output File press q to exit",img)

key=cv2.waitKey(1)

if key == ord('q') or key == 27:

 break

cap.release()

'''

if label == 'train':

 print('Train detection successfull')

else:

 print('Train detection unsuccessfull')

'''

cv2.destroyAllWindows()

