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Abstract

The advancement of location-aware technologies enables generating an
unprecedented amount of trajectories representing the daily commuting patterns of
dwellers in a city. A wide variety of location-based services have started capitalizing
on these spatio-temporal footprints of users in enhancing existing services and
developing new services. In this thesis, we propose a new location-based service,
namely crowdshipping, that enables a service delivery company to exploit users’
daily commuting patterns to deliver a packet from one place to another using crowd.
In particular, our proposed service engages users in shipping goods near their regular
itinerary (with a small detour) while minimizing the total cost of the delivery. We
take into account the commuters’ choice of transport and the involvement of multiple
commuters in delivering a package. A major challenge in solving such a query is
to select a set of candidate trajectories (i.e., users) from a large trajectory database
that can deliver a packet with minimum cost. To address this challenge, we propose
a solution based on two indexes. We first build a summary index to capture the
overall commuting patterns of the users in the space. This index sets up a regional
connectivity network with the trajectories passing through them, which helps us to
identify the initial search space for a package to be delivered. We then use a second
index by grouping the trajectories based on their spatio-temporal co-visiting patterns.
It helps prune the trajectories in temporal domain while searching for an answer.
Besides, it helps group the trajectories with spatial and temporal locality together in
the physical disk pages. To evaluate our proposed approach we compare it with a
baseline based on a traditional spatial index (quadtree) on large real-world trajectory
datasets. Experiments show that our efficient index performs an order of magnitude
better than the baseline on the real data both in terms of runtime and I/O cost.

ix



Chapter 1

Introduction

1.1 Motivation

With the widespread use of the GPS technology over the last decade, millions of personalized
trajectories (i.e., spatio-temporal footprints) are produced everyday from various platforms like
transportation companies, map-based services, social media, and so on. For instance, people
nowadays share their daily commuting trips of Uber and Bikely besides sharing real-time
location using map services like Google Maps. This generates huge volumes of trajectories,
representing the daily commuting patterns of millions of individuals, specially in large cities.
The overwhelming amount of trajectories can potentially facilitate many interesting location-
based services including ridesharing [1], public transport route construction [2], driving route
recommendation [3], crowdsourcing based task assignment [4, 5] and so on. One of the key
location-based services that can be benefited from these daily commuting trajectories is the
package or parcel delivery service. It has vast application encompassing but not limited to online
shopping, meal delivery service, courier service and so on.

We have seen an unprecedented explosion of package delivery services in recent years. Amazon
shipped 1.9 billion packages in 2019 followed by 4.2 billion packages in 2020 in US only [6].
Besides, FedEx, one of the leading logistic companies in US, shipped approximately 2.1 million
packages in the last fiscal year [7] making a revenue of 93.51 billion dollars [8]. Likewise, Uber
made a revenue of approximately 5.2 billion dollars from its delivery services only in the first
half of 2022 [9, 10]. These evidences indicate that the target market of parcel delivery is huge
and thus an efficient approach to it has a commercially good potential. In this thesis, we propose
a new location-based service, namely, crowdshipping, that enables a service delivery company
to exploit users’ daily commuting patterns to deliver a package (also often called packet in this
literature).

Suppose a customer wants to deliver a package from an origin to a destination through a delivery
service provider that is using the crowd (daily commuters) to ship packages. Commuters may

1
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Figure 1.1: An Example of Crowd-source Package Delivery using Daily Commuters

have a regular travel pattern and can take several transports for traveling from one place to
another. A commuter may only be interested in participating in the package delivery if she does
not need to deviate more than a certain distance from her usual route. Also since it may not be
possible for a single commuter to complete the end-to-end delivery of the package, engaging
multiple commuters in the delivery of a single package may be required. A package, in its
delivery life cycle, can be stored temporarily by a keeper at an intermediate location (e.g., in a
smart locker at a train station or in a shop that chooses to participate in the delivery process),
where keepers can receive the package from one deliverer, store it for some time, and hand it
over to another deliverer or the receiver. In this process, the delivery service provider needs to
find the route for the package combining one or more deliverers and keepers that minimizes the
cumulative delivery cost and delivers the package within a stipulated time.

1.1.1 A Map Based Example

Consider the example in Figure 1.1. There are six commuter trajectories denoted as t1 to t6

and two intermediate packet storage locations (i.e., keepers), k1 and k2. The transport modes
along the trajectory segments are represented by lines in different styles (see figure legend). For
instance, commuter t2 travels by e-scooter followed by bus along her trajectory. Suppose that a
customer wants to send a packet from S to D within a deadline of two hours. So, we need to find
a path comprising of a set of trajectories (commuters) and packet keepers to deliver the packet
in the minimum possible cost without violating the delivery deadline. For simplicity, assume
we model the cost in terms of total delivery duration. In this example, there are two possible
paths for the packet to reach its destination: i) t2 can pick it up from S and drop it off at D
since she travels close to both the packet source and the destination; ii) t1 can pick up the packet
from S, drop it off at k1, and, t3 can pick it up from k1 and take it to D. In the latter case, the
keeper k1 stores the packet temporarily until t3 picks it up from there. This relaxes the constraint
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of both the commuters to be at the same location at the exact same time for packet handover.
Now between the choices of {t2} and {t1, k1, t3} to deliver the packet, we choose the one with
the minimum duration meeting the delivery deadline. Assume that t2 will start her journey 30
minutes after the packet is available at S and takes 20 minutes of e-scooter ride followed by
a 10 minutes bus ride totalling to 60 minutes (30 + 20 + 10) for delivering the packet from S

to D. On the other hand, say, t1 starts 5 minutes after the packet is available at S and takes 10
minutes bus ride to ship the packet from S to k1. So, the total time t1 takes to ship the packet
is 15 minutes (5 + 10). Then k1 keeps it for 5 minutes before t3 picks it up from there. Finally,
t3 takes a 5 minutes train ride followed by a 10 minutes bus ride to drop it at D, totalling to
15 minutes. So, the total delivery time in this path is 35 minutes (15 + 5 + 15) for the packet
delivery. As t2 incurs higher cost taking 60 minutes compared to 35 minutes via {t1, k1, t3} for
the packet delivery, the best option is to choose {t1, k1, t3}.

1.2 State of the Art

The traditional package delivery services usually involve dedicated delivery persons to achieve a
delivery task. For instance, Uber, Amazon and Foodpanda make contract with deliverers who
work solely for delivering parcels of their customers [11–13]. This requires the delivery persons
to make extra movements according to the delivery locations. Although Amazon Flex and
Walmart have recently introduced crowdshipped delivery services [14] besides their dedicated
delivery wing, they do not match their delivery requests with the commuting paths of the
participants. On the other hand, our goal is to engage daily commuters in parcel delivery by
reusing their regular itinerary pattern and requiring little extra movement. Here, we briefly
discuss existing works on crowdshipping and their limitations.

Existing works on crowdshipping either process the query offline or solve it in a unimodal
transportation scenario, e.g., taxi, for a few OD (origin-destination) pairs. Most of the studies
that address the crowdshipping problem usually formulate it as an integer linear programming
(ILP) problem [15, 16] and provide offline solutions. For instance, given a set of delivery tasks, a
set of OD pairs for the vehicles, and a set of constraints, Arslan et al. [16] aim at maximizing the
total profit using an ILP formulation and solve the ILP using a batch-wise recursive approach of
assigning sets of tasks to the vehicles. Similarly, Chen et al. [15] formulates the ILP given a set
of agent routes and task nodes subject to two sets of constraints. They solve it using a greedy
heuristic that assigns a task to an agent having the least travel time for detour. Likewise, some
works [14, 17] model crowdshipping as a vehicle routing problem with occasional drivers and
solve it by adapting a mixed integer programming formulation.

Recently, Chen et al. [18] have modeled the package delivery problem as an arriving on time
problem where they construct a package transport network, consisting of interchange stations
and edges connecting them, as a subset of the available road network from taxi pick-up drop-off
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pairs only. The major limitations of existing works are as follows: i) Integer Linear Programming
based solutions (e.g., [16, 17]) are offline in nature and are not scalable for large user base and
thus are not suitable for many real-life applications; and ii) the query-based solution such as the
approach in [18] only consider taxi pick-up and drop-off points to design a package delivery
network. More importantly none of the existing approaches exploits user commuting trajectories
to include a wide user base in crowdshipping, which is the main focus of this thesis.

1.3 Modeling

To alleviate the constraints of limited spatial coverage and the offline nature of the solution,
we formulate the crowdshipping problem as an online location-based query service. Given the
available commuter trajectories, our proposed crowdshipping query aims at finding a minimum
cost delivery path for a package given its source, destination and a delivery time window which
spans from the earliest time the package is available at the source to the deadline of shipping it
to the destination.

We model the query as a trajectory matching problem. As a baseline solution, we first construct
a graph by mapping the trajectory points spatially to the road network and augmenting with their
temporal attributes. We also map the keepers to the road network nodes and add bidirectional
edges to support detour from the nearby trajectories. We then run an informed search (e.g., A*
search [19]) to find a path for a given package delivery request. Since the number of nodes
may be large for their spatio-temporal representation and the number of edges may be large for
retaining travel information like time, duration, transport, detour etc., the graph can be huge
compared to the static road network graph. We cannot efficiently prune the candidates for this
graph construction with traditional spatial indexes. As a result, path finding in this graph may be
intractable. Moreover, the graph needs to be updated with the addition of new trajectories.

1.4 Solution Overview

1.4.1 Challenges

A key challenge in efficiently answering the crowdshipping query lies in quickly finding, from
a large trajectory database, the trajectories that have orientation and spatio-temporal locality
similar to the package delivery request. Since there can be millions of commuters in a city, we
need to process millions of trajectories while answering the crowdshipping query, which is a
major obstacle to a scalable and practical solution. We need to match the trajectories with the
packet origin-destination with a cost minimization objective and join the overlapping ones via
the keepers allowing a detour threshold. Thus, we need to organize them in such a way that not
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only helps prune the irrelevant trajectories, but also ensures minimum disk access to answer the
query.

1.4.2 Pruning with Two Indexes

To alleviate the challenge of pruning trajectories, we want to retrieve only those trajectories
which can contribute to a delivery task. We design two different indexes: i) the first index helps to
summarize the spatial connectivity using a quadtree to identify a set of candidate trajectories that
most likely contribute to delivering a packet; and ii) the second index groups the user trajectories
based on spatio-temporal co-visiting patterns using morton-code-based quadtree, which enables
us to further prune trajectories. By combining the above two indexes, we achieve an order of
magnitude performance improvement over the baseline solutions both in terms of processing
time and I/O costs.

1.5 Contributions

The contributions of the thesis are summarized as follows:

• We first formulate the package delivery query using a large trajectory database comprising
of user daily commuting routes, which helps us to deliver packages between any source-
destination locations in a city by exploiting user trajectories.

• We propose two novel index structures, summarizing the trajectory orientation with one
index and capturing their co-visiting patterns with the other one. They both help us to
prune a large number of irrelevant trajectories.

• We introduce a best-first exploration to prune spaces from their connectivity through the
trajectories and use an informed search technique for matching the pruned trajectories with
the package delivery request.

• We conduct experiments on real-world datasets to demonstrate the efficiency and
effectiveness of our proposed indexes and algorithms in terms of processing time testifying
the online nature of query processing, I/O cost and success rate of package delivery.

1.6 Thesis Organization

We organize the rest of the writing as follows. Chapter 2 presents a background of spatio-
temporal databases and traditional indexing schemes and highlights the distinctions with some
related works. Chapter 3 formally defines the crowdshipping query as best packet delivery path
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query and extends it to m best paths. Then, Chapter 4 outlines modeling the query to a trajectory
matching problem and providing a baseline solution by mapping it to path finding in a graph.
Next, Chapter 5 describes the our two proposed index structures and how we exploit them for
spatio-temporal pruning of the solution candidates from a large trajectory database. Chapter 6
experimentally shows the efficiency and effectiveness of our approach on real world datasets by
comparing with a baseline. Finally, Chapter 7 concludes our works and presents future research
directions relating to our problem.



Chapter 2

Background and Related Works

2.1 Background

We introduce the readers to some basic concepts related to spatio-temporal databases. For
example, we highlight spatial, temporal and spatio-temporal data, some traditional indexing
schemes and so on in this section.

2.1.1 Introduction to Spatio-temporal Database

Spatial Data

Spatial data refers to any attribute of an object in terms of its location, position, boundary,
direction and so on. It deals with information related to the geography or the geometry of
objects [20]. For example, points, polylines, polygons etc. are used to denote different spatial
objects like a particular location, connecting roads, district or country boundaries etc. on a
map. Besides, latitude, longitude, elevation corresponding to different objects in the geographic
coordinate system is also considered as spatial data and sometimes called geospatial data [21,22].

Spatial Database

A spatial database is one that is optimized for storing and querying on spatial data [20]. If spatial
data is stored using the traditional B-tree indexes in RDBMS, finding nearby spatial objects or
those within a spatial range is inefficient. This is because traditional indexes are not optimized to
deal with spatial queries. Besides, retrieval of spatial objects from physical disks is easier if they
are stored based on spatial locality. Spatial databases provide these functionalities.

7
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Temporal Data

Data containing timestamps indicative of the its other attributes being valid based on the specific
time instance or time window is referred to as temporal data [20]. Traditional DBMS provide
datatypes for working with temporal data. For example, Oracle provides datatime datatypes to
work with temporal data [23].

Spatio-temporal Data

Spatio-temporal data has both spatial and temporal attributes [24] as the name suggests. When
spatial data is augmented with temporal attribute, e.g. timestamps, indicating the spatial data to be
applicable at its temporal counterpart, it is called spatio-temporal data. For example, movement
trajectory of a vehicle is captured with spatio-temporal data. The trajectory is basically a
sequence of timestamped locations besides other optional attributes. So it can be stored as a
sequence of points, each having a location (e.g., latitude, longitude when we consider geospatial
data) at a particular time.

Spatio-temporal Database

Spatio-temporal database stores and processes spatio-temporal data (example: trajectory
database). These databases requires index structures for both the spatial and the temporal
dimensions of the spatio-temporal objects [20]. It retains the spatio-temporal locality of the
objects and processes both spatial and temporal queries efficiently. The locality may depend
on the nature of the query being processed. Trajectory database is a good example of a spatio-
temporal database.

2.1.2 Traditional Spatial Indexes

A spatial index is the underlying data structure of a spatial database. It facilitates fast access to
spatial data [25] by grouping the objects with spatial locality. Thus objects that are expected to
be retrieved together from a spatial query are stored together. Usually trees of different structures
are used in spatial indexing. R-tree and Quadtree are examples of two such trees.

R-tree

The R-tree is one of the primitive spatial indexes proposed by Antonin Guttman in 1984 [26]. It
groups the spatial objects in rectangles, further considers them as spatial objects and groups these
rectangles hierarchically. These rectangles are called minimum bounding rectangle (MBR) as
they encompass the spatial objects with minimum possible bounding area. Each node of R-tree
corresponds to a list of MBRs and the leaf nodes hold the MBRs containing the original spatial
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Figure 2.1: Spatial objects distributed in the space

objects. These MBRs at the leaf nodes are directly mapped to physical disk blocks. Each MBR
can hold at most a threshold number of objects. The threshold is determined from the size of the
spatial objects and the disk page size (typically 4096 bytes for example).
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Figure 2.2: R-tree constructed with spatial objects of Figure 2.1

Let us consider an example with six spatial objects. We denote them as points, p1 , ... , p6,
distributed over the space, as shown in the figure 2.1. Suppose we want to index them using an
R-tree where each node of the R-tree can hold at most two spatial objects. The resulting R-tree
groupings are shown in the figure 2.2(a). In order to keep the area of the bounding rectangles
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minimum, {p1, p2}, {p3, p4}, {p5, p6} are grouped in three MBRs, R1, R2.1, R2.2 respectively.
Then the MBRs of R2.1, R2.2 are again grouped into a larger MBR R2. The resulting structure of
the R-tree is shown in the figure 2.2(b).

Quadtree

Quadtree is another renowned traditional spatial index proposed by Hanan Samet [27] in 1984. It
is a hierarchical data structure that works by partitioning the available space into four equal-sized
quadrants. Each leaf node of a quadtree can hold a threshold number of spatial objects. Each
intermediate node holds the pointers to its four child nodes. The capacity threshold of a quadtree
leaf depends on the size of a disk page and the size of the spatial objects. The objects grouped
in a single quadtree leaf are typically stored in the same physical disk page while those of the
nearby quadtree leaves either share the same disk page or occupy the adjacent ones.
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Figure 2.3: Quadtree constructed with spatial objects of Figure 2.1

Let us again consider the example of figure 2.1. Assume we now want to index them using a
quadtree where the capacity of each node is limited to two spatial objects. The partitioning of
space is shown in the figure 2.3(a). The space is initially divided into Q1, Q2, Q3, Q4 quadrants
resulting in p1 to be in Q1 node, p2 in Q3 node and the rest in Q2 node. Since Q2 now contains
more than two points, it is further divided into its four children node, namely, Q2.1, Q2.2, Q2.3,
Q2.4. Now Q2.2 holds two points while the other child nodes of Q2 holds at most one point. So
no further partitioning is required. Note that, unlike R-tree leaves, quadtree leaves can be empty
(e.g., Q2.1 and Q4). Figure 2.3(b) shows the structure of the resulting quadtree.



2.1. BACKGROUND 11

p
1

p
2

p
5

p
3

p
4

p
6

Q 1 Q 2

Q 2.1 Q 2.2

Q 2.3 Q 2.4

Q 3 Q 4

b1

b2 b3

b4 b5

b6 b7

0100 10 11

0100 10 11

01

00

10

11

01

00

10

11

(a)

Morton Code Binary Number Range
b1 0000 to 0011
b2 0100
b3 0101
b4 0110
b5 0111
b6 1000 to 1011
b7 1100 to 1111

(b)

Figure 2.4: Morton ordering of the quadtree nodes constructed with spatial objects of Figure 2.1

Morton Code

While organizing the spatial objects under different quadtree leaves in the physical disk pages, we
need a linear ordering of the quadtree nodes. Morton ordering is such a linear ordering technique
using a space filling curve of Z shape, and therefore, alternatively called the Z-order [28]. In
this approach, each quadtree node is filled continuously using a Z-shaped curve and assigned a
range of unique codes, also known as the morton code. The code is generated by enumerating
the coordinate axes with binary numbers and interleaving them bit by bit. For example, let us
consider figure 2.4(a) where the Z-pattern starts from Q1, visits the children of Q2 recursively
(i.e., Q2.1, Q2.2, Q2.3, Q2.4), goes to Q3 and finishes at Q4. These nodes are assigned morton
numbers b1 to b7 sequentially. Since Q2 is divided into its children, we need two bits per
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coordinate axis to represent each smallest quadtree nodes uniquely. As a result, we get the binary
number range 0000 to 0011 for b1 by interleaving 00 with 00 to get 0000, 00 with 01 to get 0001,
01 with 00 to get 0010, and 01 with 01 to get 0011. Similarly, we get the binary number range
for each morton code as shown in figure 2.4(b). Note that, the linear ordering of the quadtree
nodes helps store the spatial objects they contain to nearby disk pages. For example, assume
each disk page can hold two points. Since b1 contains only p1, b3 contains p3 and p4, we can
store p1 in a single disk page and p3 and p4 in the following page. Next, as b4 contains p5 and b5

contains p6, we can store them both in the next page. Finally as we can store p2 (contained in b6)
in the following disk page. Thus we exploit the benefits of morton code.

2.2 Related Works

The related body of works encompasses package or parcel delivery, particularly in crowdsourced
context, spatio-temporal trajectory indexing, trajectory matching and join, and so on. In this
section we discuss the relevant studies on each of these topics and distinguish with our work.

2.2.1 Crowdsourced Package Delivery

We find two categories of approaches towards addressing the crowdsourced package delivery
problem. The first one is offline formulation of the problem using integer linear programming
and the second one is online query oriented. In the former approach, the problem is mostly based
on advanced planning given all the information while in the latter approach, it needs to address
the problem on the fly based on the users’ demand. Next we elaborate them followed by some
miscellaneous works from orthogonal perspectives.

Integer Linear Programming Formulation

Most of the studies on the crowdsourced package delivery solve different variants of the problem
offline using integer linear programming (ILP) techniques [14–17,29]. Chen et al. [15] formulate
the problem as ILP, given a set of agent routes and task nodes imposing two sets of constraints.
They propose a solution based on greedy heuristic by allocating a task to an agent who needs
a minimum detour to do the job. Arslan et al. [16] construct ILP with the objective of profit
maximization given some delivery tasks and vehicle OD pairs subject to a set of constraints.
They provide an exact recursive algorithm for assigning sequences of tasks to the vehicles.
Besides, they introduce rolling horizon framework that performs batch processing of offline
ILP solution providing an abstraction for an online solution. But as the solution neither works
with multipoint trajectories, nor shows scalability in terms of runtime, it is not amenable to the
purely online nature of the queries that we study in this work. Besides, Archetti et al. [14] model
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crowdshipping as a vehicle routing problem with occasional drivers and solve it by adopting a
mixed integer programming formulation. Their motivation is to involve the in-store customers to
deliver goods to online customers on their way home. They assume the model to be static, i.e.,
the delivery requests and the availability of the drivers are known beforehand. Macrina et al. [17]
extend the work of Archetti et al. [14] by augmenting time windows for the occasional drivers
and delivery requests, and further develop their work by introducing transshipment nodes [29].
However, they address crowdshipping as a route planning problem, model it on a complete
directed graph and impose constraints on time, flow, capacity to formulate and solve an integer
programming problem.

Online Query Formulation

To the best of our knowledge, online formulation of the crowdshipping query is an uncommon
research problem. Only a recent study has addressed the crowdshipping problem as an online
query. Chen et al. [18] have formulated package delivery as an arriving on time problem. They
use historic taxi OD pairs to build a package transport network in a unimodal private transport
setting. They design an adaptive taxi scheduling algorithm that finds a maximum arriving-on-
time probability path for each packet request. They generate the packet source and destination
randomly at the interchange stations and assign random deadlines. Their method is based on the
decision of whether to choose a taxi to send the packet to the next interchange station or to wait
for an upcoming ride. They introduce several heuristics to make this decision. We, on the other
hand, consider commuting trajectories on both public and private transports on the whole road
network space. As a result, our approach to the problem is more robust, generic and trajectory
oriented.

Miscellaneous

Crowdshipping is also considered as a challenging problem from the supply chain management,
economic and environmental perspectives. For instance, Le et al. [30] reviews current practice
in crowdshipping from the perspective of supply, demand and operations and management and
find out the scopes of improvement. Besides, Gatta et al. [31] evaluates the environmental and
economic impacts of public transport based crowdshipping in urban areas to assess the potential
of involving the crowd in this service. We, on the other hand, focus on how we can match the
commuter trajectories in a spatio-temporal database to accomplish the crowdshipping task from
an orthogonal perspective.
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2.2.2 Spatio-temporal Indexes

Variants of the traditional spatial indexing data structures like R-tree and Quadtree are usually
extended for temporal queries to form spatio-temporal indexes. The R-tree groups the nearby
spatial objects together in rectangles, referred to as Minimum Bounding Rectangles (MBRs), in
a hierarchical pattern. The MBR of the root node spans the whole space while those of child
nodes cover sub-regions of the entire space. The Quadtree, in contrast, divides the available
space recursively into four disjoint equally sized quadrants until a quadrant contains at most a
given threshold number of spatial objects.

Introducing spatio-temporal trajectory indexes based on the variants of R-tree (e.g., [32,33]), and
Quadtree (e.g., [34]) has been widely researched. These studies can be broadly categorized into
two directions: (i) The first approach represents a trajectory as a set of independent points. Then
it aims to design data structure for indexing the independent points. In this indexing approach,
points that are spatially co-located but are not necessarily from the same trajectory, are stored
together. An additional auxiliary data structure stores the link among different points of an object
at the cost of extra storage. (ii) In the second approach, the connectivity between consecutive
points of a trajectory is taken into account during the index structure construction. Thus it is
expected that all/most of the points of the same trajectory are stored together.

Independent Spatial and Temporal Index

Segregation of the spatial and the temporal attributes has been addressed in several R-tree variants,
namely MR-tree [35], HR-tree [36], MV3R-tree [37]. These studies focuses on constructing
separate R-trees based on spatial attributes of the trajectories for different temporal windows.
In another study, the authors augment B-tree with time window boundaries and construct the
Start-End timestamp B-tree (SEB-tree) [38]. The SEB-tree partitions the search space into
different zones and assigns a B-tree index for each zone, where the spatio-temporal objects in a
zone are sorted by their timestamps. All these indexes belong to the first category of indexes.

Trajectory Locality Preservation

The second group of indexes emphasizes on the connection between points of a trajectory
while indexing them. For instance, the temporal dimension is augmented with the 2D spatial
counterpart in a 3D R-tree [32] that can handle the spatial and the temporal queries similarly.
The trajectories, in this approach, are plotted in 3D comprising of two spatial and one temporal
dimensions. They are then bounded by spatio-temporal MBRs that are indexed by the 3D R-tree.

The spatio-temporal R-tree (STR-tree) [33] is an R-tree variant that partially conserves trajectory
locality trying to keep the trajectory segments together. Yet, the segments of a trajectory may be
distributed over several STR-tree nodes and nearby trajectories may be stored in different groups.
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On the other hand, the trajectory-bundle tree (TB-tree) [33] chooses trajectory preservation
over spatial locality. It is also an R-tree based index where each leaf node holds only the
segments belonging to the same trajectory. But different trajectory segments that are spatially
close, are stored separately to uphold trajectory preservation. Trajectory retrieval during query
processing requires multiple iterations in both STR-tree and TB-tree indexes. The segments are
incrementally fetched as the query processing interacts with different nodes. As a result, we
cannot adopt them to our packet delivery query since a deliverer cannot carry a packet on some
disjoint segments of her trajectory.

Trajectory Segmentation

The Scalable and Efficient Trajectory Index (SETI), proposed in [39] comprises of a multilevel
index to handle the scalability issues more efficiently. SETI basically deals with the spatial
attributes and the temporal properties in two levels of index. The first level divides the spatial
domain into uniform non-overlapping cells of a fixed size. The coordinates of the endpoints of
a trajectory segment help determine which cell it belongs to. In case a segments crosses cell
boundaries, it is split into multiple segments so that each split belongs to one cell only. The
second level of index uses R-trees to index the temporal spans. Each cell of the first level index
contains a second level R-tree. Each R-trees stores the minimum and maximum timestamps
of a cell, i.e., the minimum and maximum timestamps of all the trajectory segments belonging
to the current cell as per their spatial orientation. Thus, spatial and temporal dimensions are
processed independently in the SETI indexing approach. So the spatio-temporal range queries
are answered quickly using this approach through independent filtering at two levels of the index.
However, we cannot use this index since whole trajectory retrieval is costly for segment-wise
storing. Many R-trees associated with the spatial cells may need to be traversed for retrieving all
the segments of a trajectory. In our package delivery query, whole trajectories are important as
they indicate the involvement of different deliverers.

Some recent indexing techniques also relies on the trajectory segmentation approach. For
instantce, TrajStore, TrajTree [40], TQ-tree [34] uses this idea for indexing trajectories.
TrajStore partitions trajectories into segments and clusters the segments with spatio-temporally
locality on the disk page. In TrajTree, sub-trajectories with their bounding boxes are stored at the
leaf nodes while an intermediate node maintain a sequence of the bounding boxes of their child
nodes. Ali et al. [34] propose a two-level quadtree index to store co-located trajectory segments
hierarchically, so that longer and shorter trajectories are grouped separately in addition to their
colocated pattern. This index is suitable for a special group of trajectory coverage query.
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2.2.3 Trajectory Matching

Besides trajectory construction and indexing, trajectory matching or similarity search with
respect to query trajectory, set of POIs or time windows has been addressed in several studies.
These studies aim at finding one or more trajectories based on their similarity or overlap with
another trajectory, their cumulative proximity with a set of point locations, their intersection with
query time windows or their distance-wise ranking from neighboring trajectories. The similarity,
proximity, ranking metrics depend on the applications addressed in the studies. We omit the
studies on trajectory construction and mining in this literature as it is out of the scope.

Trajectory Search by Trajectory Similarity

Studies have defined trajectory similarity in different ways. For example, Chen et al. [41] uses edit
distance between two trajectories as their similarity metric. Besides, Shang et al. [42] consider
both spatial and textual attributes of the trajectories to determine their similarity. Frentzos et
al. [43] propose a metric to identify the dissimilarity between two trajectories and find top k

similar trajectories with respect to a query trajectory by adopting a best first technique. Besides,
six similarity measures on a real taxi trajectory dataset and their comparative review is presented
in [44].

Besides, unlike the unweighted assumption for similarity metrics in the aforementioned studies,
several studies consider the metric to be weighted. For instance, Shang et al. [45] assigns weights
to each point along the query trajectory based on the choice of the users. They find the top
k similar trajectories by considering the weighted trajectory points in the similarity function.
They perform the matching by iterating over the query trajectory points and checking if circles
around them intersect with the available trajectories. The notion of the weight of the points
is modeled by circles of different radii around them. Points with greater weight have circles
with larger radii. The similarity is calculated by considering how many points are touched by a
trajectory. However, since we are interested in matching only two spatial points, packet source
and destination by means of possibly joining the indexed trajectories, our main challenge lies in
efficient retrieval of trajectories that may possibly be joined to connect them. So adopting the
similarity search for the source-desination pair is not an efficient alternative to our solution.

Trajectory Search by Point Location

Tang et al. [46], Han et al. [47] address the problem of finding nearby trajectories given a set
of points. While Tang et al. [46] matches the trajectories to the given points modeling the cost
as a sum of distances from the points, Han et al. [47] calculates the closeness with respect
to travel time. Both of them index the available trajectory points using R-tree independently
without preserving their trajectory locality variants and find k nearest trajectories with respect
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to the query points. However, in our proposed BDPT query, trajectory locality is important
because two different trajectory segments indicate two different commuters. Once a commuter
receives a packet, she cannot hand it over until there is a packet keeper to facilitate this exchange
process. Therefore, matching different points from different trajectories with the packet source
and destination does not serve our purpose.



Chapter 3

Problem Formulation

We formally define the crowdshipping query in this chapter. So, we first introduce some key
terms and concepts. Next we mathematically express the cost metric. Then we formulate the
queries using the defined terms and mathematical concepts.

3.1 Terms and Notations

Let, T be a set of trajectories where each trajectory represents the daily travel path of a commuter.
A trajectory t is defined as a sequence of spatio-temporal points, i.e., t = {p1, p2, ..., p|t|}. Each
point is represented as p(l, τ), where l is the location and τ is the time when location l is visited
by t. The trajectory t, therefore, has |t|-1 segments where the i-th (1 ≤ i < |t|) segment is
denoted by si = (pi, pi+1,mi). Here, mi is the transport mode used by t to go to pi+1 from pi.

Packet Delivery Request is a quadruple (S,D, τe, τl), where S is the source, D is the destination,
τe is the earliest packet pickup time, and τl is the latest packet delivery time. We denote this
request as Preq.

Packet Requester, denoted by r, is a user who requests a packet delivery.

Packet Deliverer is a commuter who delivers a packet from one place to another. We denote
a deliverer as d. Each deliverer has an associated trajectory t. We use the terms a deliverer d
and her trajectory t interchangeably throughout the thesis. The set of all deliverers available for
delivering a packet is denoted by T .

Packet Keeper is a storage space or a user who keeps the packet in the middle of a multi-hop
delivery. We denote a keeper as k = (l, τo, τc) where l represents its location, τo and τc represent
its opening and closing times, respectively. In other words, the keeper is not available before τo

or after τc. The set of all keepers is denoted by K.

Detour Constraint (δ): A deliverer may not want to deviate too much from her original travel
route. The distance threshold δ denotes the maximum distance any deliverer is willing to deviate
from her route. Since the travel time depends on the distance δ, it is not considered separately.

18
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Besides, she may only be interested in the deviation at exchange junction points. For example,
let a deliverer trajectory be t1 = {p1, p2, p3, p4}, where she goes from p1 to p2 on foot, p2 to
p3 by train and p3 to p4 by bus. Now, since she may only want to deviate her journey from
any of its junction points to pickup a delivery packet and deliver it to the destination or to an
intermediate stop, the source of the packet should preferably be somewhere near p1 or p2 or p3,
and the destination of the packet should preferably be somewhere near p2 or p3 or p4.

Delivery Path: Given a packet request, Preq, a delivery path is an ordered sequence of packet
deliverers and keepers who can collaboratively deliver the packet from the source to the
destination of Preq while satisfying the detour constraint δ. We represent a delivery path as
π(Preq) = {di1 , kj1 , di2 , kj2 , ...kjn−1 , din} where the amount of detour for a deliverer dix to fetch
a packet from keeper k(j−1)x

and drop it at keeper kjx (1≤ x ≤ n, dix ∈ T and kjx ∈ K) is no
more than δ. We denote the set of delivery paths for a packet request as Π(Preq).

Best Delivery Path: Our goal is to serve a packet delivery request, Preq, with the minimum cost

subject to the detour constraint δ. The cost is a generic term that may depend on the application
or the user. Essentially, we need to find a delivery path π, i.e., a sequence of packet deliverers
and keepers to deliver packet incurring the minimum possible cost.

3.2 Delivery Cost Function

The cost of a delivery path can be defined in terms of delivery time or path length. So the fastest
or the shortest delivery is possible based on the choice of the cost function. Besides the detour
constraint, δ is considered in cost computation to introduce a binary notion that defines cost as a
finite quantity if and only if detour distance is within the allowed limit δ.

The cost of a packet delivery consists of three components: (i) a fixed cost for the distance; (ii)
a cost for detour i.e., deviation from the regular trajectory of a deliverer; and (iii) the cost for
storing the packet at the keeper.

Cost of a Delivery Path, π: If a packet delivery request Preq is delivered via a delivery path,
π(Preq) = {di1 , kj1 , di2 , kj2 , ...kjn−1,din

}, then we can define cost of the delivery path π as follows.

Cost(π) =
n−1∑
x=1

Cost(dix , kjx) + Cost(kjx) + Cost(kjx , dix+1) (3.1)

Cost(d, k) =
b−1∑
i=a

Cost(d.si) + Costδ(d.pb, k) (3.2)

Here Cost(d.s) is the measure of cost along each trajectory segment of the packet deliverer d,
usually in terms of time or distance. Deliverer d receives the packet at its d.pa point and hands
it over going to keeper k from d.pb point (1 ≤ a ≤ b ≤ |d|). The corresponding detour cost is
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denoted as Costδ(.). We assume the deliverer always returns to the same point after a detour on
her trajectory. The detour distance is calculated for going to the keeper from a trajectory point
and returning to the trajectory and is represented as follows.

Disdetour(d.p, k) = Dis(d.p, k.l) +Dis(k.l, d.p) (3.3)

Costδ(d.p, k) =

Disdetour(d.p, k) if Disdetour(d.p, k) ≤ δ

∞ otherwise
(3.4)

The Dis(.) function is generic. It can accommodate both Euclidean and road network distances.

Cost(k, d′) = Costδ(d
′.pa′ , k) (3.5)

Here, Cost(k, d′) consists of only the detour cost from a point pa′ of the deliverer d′. It is
calculated in the same way as finding Costδ(d.p, k) using Equations 3.3 and 3.4. Finally,
Cost(k) of Equation 3.1 is required to store the packet at keeper k to facilitate packet handovers.

3.3 Formal Definition of Best Packet Delivery Queries

Now we formally define the best and the m-best delivery path queries for a packet request as
follows.

Definition 1. BDPT (Best Delivery Path Query). Given a set T of deliverers’ trajectories, a set K

of keepers at different locations of the city, a packet delivery request Preq, and a detour distance

threshold δ, the best delivery path query finds a delivery path π such that Cost(π) ≤ Cost(π′)

for every other delivery path π′.

Definition 2. m-BDPT (m-Best Delivery Paths Query). Given a set T of deliverers’ trajectories,

a set K of keepers at different locations of the city, a packet delivery request Preq, a detour

distance threshold δ, and an integer m (1 ≤ m) the m-BDPT query finds the top-m delivery

paths Πm(Preq) from the set of all delivery paths Π(Preq) such that ∀π ∈ Πm, ∀π′ ∈ Π \ Πm,

Cost(π) ≤ Cost(π′).



Chapter 4

Modeling and Baseline

To answer the BDPT query, we need to identify the commuter trajectories, that can participate
in delivering a packet, from a large trajectory database. These trajectories should be spatio-
temporally conforming to the packet delivery request. Specifically, they should pick the packet
from the source, exchange it from one commuter to another via the keepers, and drop it at the
destination without requiring to deviate from their regular itineraries by more than a pre-specified
amount.

In this chapter, we first formulate the problem as a path finding problem on the graph constructed
from commuter trajectories and packet keepers, where we can adopt an informed search based
baseline solution.

4.1 Modeling User Trajectories

To answer the BDPT query, we construct a graph, hereafter referred to as TrajGraph, with
commuter trajectories. The trajectories are spatially mapped to the existing road network and
augmented with temporal attributes. When a packet delivery is requested, our goal is to find a
best delivery path for it in the TrajGraph.

Suppose a packet has to be delivered from S to D as shown in Figure 4.1. t1, t2, ... t7 represents
trajectories of some packet deliverers and k1, k2 denote two packet keepers. Each user trajectory
consists of a sequence of timestamped locations indicating her regular itinerary profile. A keeper
is denoted by a single timestamped location only. Both the trajectory points and the keepers are
represented as nodes in the TrajGraph while the edges i.e. trajectory segments holds the cost
of traveling from one point to the next one, based on the transportation mode.

The nodes of TrajGraph are represented spatio-temporally, i.e., with both location and
timestamps. The spatial attribute holds two coordinates while the temporal attribute consists of
time window indicating the availability of the user at the specific location. The time window can
be expressed as either the start and end of window [τs, τe] or the midpoint and range on either

21
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Figure 4.1: Packet delivery example using TrajGraph

side (τmid, τrange). In the latter case (as shown in Figure 4.1), the start-end time window can be
calculated as [τmid − τrange, τmid + τrange]. The duration of the availability of a keeper at her
specific TrajGraph node is supposed to be significantly higher than that of a trajectory node,
as explicitly shown in the Figure 4.1. The edges hold travel cost along a trajectory taking the
transportation mode and additional detour cost (if applicable) into consideration. Attributes like
time, distance which can directly be derived from adjacent nodes, are not stored to save memory
requirement. Note that, a key challenge of modeling multiple transport modes used by the same
user to travel between a particular source destination pair is resolved by adding parallel edges
with appropriate costs.

Let us consider the example of Figure 4.1. Here, only the spatio-temporal attributes of each
trajectory are shown. Transportation mode, breakdown of costs etc. are omitted from the figure
for brevity. For instance, trajectory t5 consists of 3 nodes with timestamps 18:00, 19:00, 19:30
respectively. Though there is an associated time range with each node to specify the time
windows, we have omitted it in the example. We can assume a suitable value of τrange (say, 10
minutes) based on the itinerary profile of a deliverer.
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4.2 Base Solution using Path Finding Algorithm

In order to process the BDPT query, the source and destination of a packet request, Preq are
connected to the existing spatio-temporal TrajGraph. This is done simply by mapping the
source and destination to a set of nearby nodes. We achieve this by maintaining a traditional
spatial index (e.g. a quadtree) for the trajectories and running a range query on it with the source
and destination locations. A similar approach is applied for the keepers during TrajGraph

construction. Each keeper node is bidirectionally connected to its nearby nodes. Note that,
these edges are crucial in joining trajectories to complete a packet delivery and contributes to
detour cost if they exist in any packet delivery path. Different modes of transports between
two TrajGraph nodes via different trajectories are modeled by adding multiple parallel edges.
Alternatively, a single edge for only public transport may suffice assuming both private and
public transport user can travel along it.

Algorithm 1: findDeliverer(Preq, TrajGraph)
Input: Packet request Preq, Trajectory graph TrajGraph
Output: A list of packet deliverers

1.1 (LS , LD)← Filter (Preq, now, TrajGraph)
1.2 bestPaths← ∅
1.3 for node ∈ LS do
1.4 temp← shortestPath(node, LD, T rajGraph)
1.5 bestPaths.insert(temp)

1.6 bestPath← top(bestPaths)
1.7 pktDeliverers← trajectories(bestPath)

1.8 return pktDeliverers

The Filter(.) function on line 1.1 maps the source and destination of the packet delivery request
Preq to TrajGraph nodes. It filters out the spatially distant and temporally disjoint nodes (i.e.,
those which have time window ending before Preq.τe or starting after Preq.τl). It then assigns the
potential source and destination nodes to two lists, LS and LD respectively. Note that, starting
from a node of LS and reaching one of LD accomplishes a delivery task. In BDPT we seek for
such a path incurring the minimum cost. The priority queue bestPaths, initialized at line 1.2
orders the possible delivery paths according to their costs. In the loop of line 1.3-1.5 the shortest
paths i.e., those with smaller costs are found iterating over all source nodes. The shortestPath(.)

function in line 1.4 is generic and thus can adopt to any cost associated with the TrajGraph

edges. In line 1.5, the paths (if found) are inserted into the priority queue. Finally the best path
from the priority queue is obtained using a generic top(.) function (line 1.6) that extract the best
element considering the chosen cost metric. It can adopt to the user choice to minimize path
length or duration. The list of deliverers and keepers of the best path are extracted and returned
on line 1.7-1.8.

Note that, this algorithm allows packet handover only via keepers and allows detour to reach the
source, destination or intermediate packet keeper nodes. These edges have already been added
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in the graph between heterogeneous entities, e.g., a packet deliverer node and a packet keeper
node during construction, to facilitate detour. A packet can be transferred from one deliverer
to another using these detour edges. The cost of a detour edge is considered more than that of
a regular edge representing a trajectory segment because the deliverer needs to get back to her
trajectory after handing over the packet. So, the cost of returning to her regular itinerary needs to
be augmented. We use the notion of detour edges as an efficient and approximate alternative to
processing a complex detour query. Here, we take advantage of the constraint that the detour
distance is bounded by a spatial threshold, that we have denoted as δ. Thus we address the
challenge of computing detour cost and incorporating it as a part of our solution.

4.3 Best First Informed Search

The performance of algorithm 1 depends on the size of the TrajGraph i.e., the number of
trajectories used in its construction. We primarily use a traditional spatial index for organizing
the trajectories, retrieve the relevant ones with an appropriate range query for a delivery request
and use an A* search [19] based algorithm on them. Note that, this is the detailed algorithm
mentioned on line 1.4 of Algorithm 1.

Algorithm 2: minWA*Path(start, nodeList, TrajGraph)
Input: Source node start, list of destinations nodeList, trajectory graph TrajGraph
Output: A best delivery path from start to nodeList

2.1 Initialize a min heap: H ← ∅
2.2 Initial state: S : (node, path, wg)← (start, start, 0)
2.3 fweight(S)← 0
2.4 H.insert(fweight(S), S)
2.5 while H.notEmpty() do
2.6 (w, S)← H.pop()
2.7 if S.node ∈ nodeList then return S.path
2.8 for adjNode ∈ S.node.neighbors do
2.9 if adjNode.timeSlot > S.node.timeSlot then

2.10 S′.node← adjNode
2.11 S′.path← append(S.path, adjNode)
2.12 wg ← gweight(S.node, adjNode, timeSlot)
2.13 S′.wg ← S.wg + wg

2.14 for destination ∈ nodeList do
2.15 wh ← hweight(adjNode, destination)
2.16 fweight(S′)← S′.wg + wh

2.17 H.insert(fweight(S′), S′)

2.18 path← ∅
2.19 return path

Instead of exhaustively exploring nodes in all directions, the A* search based algorithm 2
proceeds in a specific direction, i.e., from source to destination of the packet request. We use a
cost approximation for the unexplored part of a path using a generic heuristic function hweight(.)

(line 2.15). It can simply give the euclidean distance between current node and destination or
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the time required using the fastest available mode of transport depending on the choice of cost
function. Detour cost to be incurred along the path is ignored to make it admissible by avoiding
overestimation of remaining cost. The algorithm augments temporal checking on line 2.9 to
prune spatially compliant states that would otherwise be further processed.

4.4 Processing m-BDPT

The m-BDPT is an extension of the BDPT query. To answer the m-BDPT query, we generalize
the solution of BDPT query. We compute the top-m paths comprising of commuter trajectories in
Algorithm 2 instead of the best path only. For this purpose, we retrieve top-m paths in Algorithm
1. We can modify the top(.) function at line 1.6 to pick top-m items from the list for this.

The algorithm 2 can be modified by adding the paths to a list instead of returning at line 2.7.
When its cardinality reaches m we return the list of best m delivery paths.



Chapter 5

An Efficient Index Based Solution

Though the baseline solution described above provide a solution for the BDPT query by
formulating the trajectory matching problem as a path finding problem, its complexity depends
on the size of TrajGraph. The size of TrajGraph depends on number of trajectories used in
its construction as trajectory points contribute to the nodes while trajectory segments contribute
to the edges of this graph.

Unfortunately, trivially indexing the trajectories with a quadtree and running range query on
it, we are unable to prune most of the non-promising trajectories. As a result, a large number
of trajectories contributes to a large TrajGraph. However, only the trajectories having spatio-
temporal conformity with a packet delivery request can take part in its delivery process. We
need an efficient method for identifying and joining trajectories based on their spatio-temporal
conformity for a packet delivery request.

Thus we design two indexes for quickly selecting candidate trjaectories and pruning the
trajectories based on their spatio-temporal conformity. The purpose of the first index is to
summarize the spatial connectivity of the regions using commuter trajectories. It helps us quickly
prune the irrelevant subspaces. The second index further helps us group the co-visiting trajectories
together on the physical disk aiding temporal pruning and ensuring lower I/O overhead.

5.1 SQ-index

We observe that if some trajectories visit packet source but does not move towards the destination
or vice versa, they have low potential of being on the delivery path. And if a region near the
source contains many trajectories moving towards the destination, retrieving the trajectories in
that region increases the chance of a successful delivery. The same is true for a region, near the
destination, having many trajectories moving towards it from the source. These observations
encourage us design an index structure where the search space can be pruned considering
trajectory directions.

26
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We propose an index based on the spatial directional property of the commuter trajectories.
This index stores a summarized information of the regional connectivity by the trajectories they
contain. It helps identify trajectories which are more likely to be joined to complete a packet
delivery request, and thereby excludes the unnecessary ones. It helps in minimizing the volume
of trajectories to be considered for a packet delivery request. So we can overcome the challenge
of dealing with a huge TrajGraph with an overwhelming amount of trajectories, by filtering
only the promising ones, more likely to be involved in the packet delivery.

The basic structure of this index is based on a quadtree. The available dataspace is partitioned
using a quadtree structure and morton codes are used to enumerate its nodes. Each of the leaf
nodes of the quadtree holds a triplet (ID, Outgoing Blocks, Incoming Blocks). Here ID

represents the morton code used to identify the node. Outgoing Blocks is a list of nodes which
are directly reachable from the current node via some of the trajectories passing through it.
Similarly Incoming Blocks represent list of nodes from which the current node is directly
reachable via the corresponding trajectory points they contain. So the leaves of the quadtree are
interconnected and the connections are represented as a list. Note that, a large value, for example,
1000 points per node, is set as the threshold for partitioning the quadtree nodes to focus on a
summary of the trajectory orientation and to limit the size of this graph.

For example, let us consider a quadtree with nodes enumerated with morton codes as shown in
Figure 5.1. The nodes are linearly ordered following a Z-pattern. Accordingly, the top-left node
is numbered 0, top-right one is numbered 1, bottom-left one is numbered 2 and the bottom-right
one is numbered 3. When a node needs to be subdivided for having more than a threshold
number of points, its children nodes get its morton codes as prefix. As a result, the top-left,
top-right, bottom-left and bottom-right children of the node with morton code 0 are numbered
0.0, 0.1, 0.2 and 0.3 respectively. All the nodes in the quadtree are numbered in this manner and
hereafter are referred to with their morton numbers. Now, the node 0.3 contains points from two
trajectories, t3 and t4. The trajectory t4 goes to 1.2 and and t3 goes to node 3 from here. So the
list of its outgoing blocks of 0.3 is {1.2, 3} (Figure 5.2(a)). Similarly, the incoming blocks of
0.3 are 0.2 via t3 and 1.2 via keeper k1 (Figure 5.2(b)). Note that, in case of presence of packet
keepers near the boundary of any two adjacent nodes, it is assumed that the keeper connects
them bidirectionally i.e. they both are added to each others’ incoming and outgoing block list.

We can further augment time windows with the incoming and outgoing links or with the SQ-index
blocks. We can store them as bitmap and prune irrelevant blocks in constant time with bitwise
operations only. But we have skipped it for simplicity to emphasize mainly on spatial matching
with the first index.
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5.2 Best First Exploration with SQ-index

The performance of algorithm 2 directly depends on the number of trajectories used in the
construction of the TrajGraph. The SQ-index, in fact, is introduced to facilitate the omission
of irrelevant trajectories with respect to a packet delivery request.

Given a packet delivery request Preq, we can map its source and destination to the nearby blocks
of the SQ-index. We explore outwards from the blocks close to the source. We do the same for
the blocks close to the destination exploring inwards. If there is an overlap in the outgoing and
the incoming blocks, we keep track of the overlapping block. Since overlap in the blocks may
not always ensure trajectory join given the detour constraint δ, we incrementally add blocks to
the pool of the outgoing and incoming ones from the current exploration state and repeat the
process of overlap checking. When the overlap count crosses a threshold i.e., we have found
enough overlapping blocks or the pools of the blocks are exhausted, the process stops. We then
backtrack from the overlapping blocks to get a list of all potential SQ-index blocks and retrieve
their underlying trajectories only. The count of overlapping blocks is important because in case
of too few overlaps, we may not retrieve the trajectories that can be joined and in case of too
many overlaps, some redundant trajectories may be retrieved. So the overlap count works like an
estimation of whether some trajectories passing through them can be joined to serve the packet
delivery request or not.

Algorithm 3 SQReduce(.) finds a reduced list of potential deliverer trajectories using SQ-index
for constructing TrajGraph. The algorithm takes a packet request Preq and the SQ-index as
input and gives a list of deliverers as output using algorithm 1. Line 3.1 - 3.4 initializes the
lists of overlapping blocks, explored outblocks (i.e., outgoing blocks), explored inblocks (i.e.,
incoming blocks) and all SQ-index blocks to be retrieved. Line 3.5 - 3.6 finds nearby blocks of
packet source and destination. The outblocks and inblocks are incrementally expanded (line 3.7 -
3.19) until a threshold number of overlapping blocks have been found. On line 3.9, a promising
outblock is fetched from the current pool of outblocks denoted by O via a generic function
NextPotentialOutBlock(.). This function assesses the potential of a candidate outblock based
on the application. For instance, in our problem the potential is measured by how close it
moves to the destination. We calculate the distance from the center of a node to the destination
to quantify this. The most potential outblock is then added to the potential block list and to
the outblock set unless already explored (line 3.9 - 3.11). It is then matched with the already
explored inblocks (line 3.12) and is added to the list of overlapping blocks in case of an overlap
(line 3.13). Unless the count has reached the threshold value, a similar process is repeated by
expanding the inblocks backwards (line 3.14 - 3.29). Note that, OutNeighbors(.) (line 3.11)
returns the list of neighbors by moving forward along the trajectories from the current outblock
while InNeighbors(.) returns those by moving backwards from the current inblock.

The potential trajectories from the list of potential blocks are retrieved (line 3.20-3.22) after the
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Algorithm 3: SQReduce (Preq, SQ-index)
Input: Packet Delivery Request Preq , Summary Index SQ-index
Output: A list of packet deliverers

3.1 Initialize an empty list of overlapping blocks; Loverlap ← ∅
3.2 Oexplored ← ∅
3.3 Iexplored ← ∅
3.4 Lsq ← ∅
3.5 O ← GetNearbyBlocks(S, SQ-index)
3.6 I ← GetNearbyBlocks(D, SQ-index)
3.7 while Size(Loverlap) < threshold do
3.8 o← NextPotentialOutBlock(O)
3.9 if o ̸∈ Oexplored then

3.10 Oexplored ← Oexplored ∪ o
3.11 O ← O ∪OutNeighbors(o)
3.12 if Overlaps(o, Iexplored) then
3.13 Loverlap ← Loverlap ∪ o

3.14 i← NextPotentialInBlock(I)
3.15 if Size(Loverlap) < threshold and i ̸∈ Iexplored then
3.16 Iexplored ← Iexplored ∪ i
3.17 I ← I ∪ InNeighbors(i)
3.18 if Overlaps(i, Oexplored) then
3.19 Loverlap ← Loverlap ∪ i

3.20 for each block ∈ Loverlap do
3.21 Lsq ← Lsq ∪ backtrack(block)
3.22 trajectories← Retrieve(Lsq)
3.23 TrajGraph← ConstructGraph(trajectories)
3.24 pktDeliveres← findDeliverer(Preq , TrajGraph)
3.25 return pktDeliverers

while loop terminates. The list of potential SQ-index blocks are obtained by backtracking from
the overlapping blocks to the initial outblocks and inblocks (line 3.21). The reduced TrajGraph

is constructed with only the potential trajectories and is passed to algorithm 1 (line 3.23-3.24)
which returns the list of packet deliverers.

5.3 Spatio Temporal Co-Visit Index (STCoV-index)

The SQ-index helps us estimate a reduced set of trajectories that are good candidates of delivering
a packet considering their spatial attribute. But in SQ-index we set a high threshold for the
quadtree leaves resulting in too many trajectory points in each leaf. Besides they hold points
of many different trajectories. As a result, we cannot map them to the physical disk blocks.
Besides, the trajectories retrieved in the last step may not be joined if their timestamps are
non-overlapping, specifically, with those of nearby keepers. So, for aiding the temporal matching
for trajectory join and for further organizing them in the disk blocks to reduce the I/O overhead,
we introduce a quadtree based flat time index. We observe that if some trajectories can participate
in a packet delivery, their points are spatially co-located and have overlaps in the time-instant.
This index combines the strengths of a quadtree, a linear temporal index and an R-tree.
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We use the STCoV-index to transform the trajectories to a new coordinate space. Firstly, we
use a quadtree for spatially indexing the trajectory points, i.e., their latitude and longitude based
coordinates and enumerate the leaves with a space filling curve (Morton code). We then map
the timestamps of these points to a linear time index consisting of several time buckets. Each
of the buckets in the time index gets an identifier. For instance, if the timestamp of a point
is 09:00, it may be assigned to bucket 9. Thus, each trajectory point gets a spatial id from
the morton code of the quadtree and a temporal id from the flat time index. Each trajectory
is then represented as a sequence of tuples of spatial and temporal ids. We interpret the new
representation as a transformation to new coordinates. The x-axis and y-axis denote the spatial
and temporal dimensions respectively. Next we cluster the trajectories that are nearby in this
transformed space. For a quick clustering technique, we use an R-tree whose leaves contain the
trajectory points in the transformed coordinates. Each leaf is mapped to a disk page and we store
this disk-page id in the corresponding time buckets of the respective quadtree leaves. Since the
purpose of the R-tree is only to cluster the trajectories instead of its traditional usage in query
processing, we do not store its hierarchical structure to save memory.

Example. Fig. 5.3, 5.4, 5.5 demonstrate how we construct the STCoV-index. Suppose there

are seven commuter trajectories, {t1, . . . , t7} Fig. 5.3(a). Each quadtree node contains at most,

θ = 3 points. The quadtree partitions the whole space into four quadrants Q1, . . . , Q4. As

each quadtree node contains 4 or more trajectory points, the blocks are further divided, e.g.

Q2 is divided into Q2.1, . . . , Q2.4. We assign a number to each quadtree block by applying a

linear ordering (e.g., z-ordering). Assume, these numbers are b1, b2, ..., b16. Then the timestamps

associated with trajectory points are assigned time-bucket number between ω1 and ω8 (Fig.

5.3(b)) based on which time bucket they fall into. Thus we get a new representation of the

trajectories t1, . . . , t7 as a sequence of (bi, ωj) tuples. We then plot these points to a new co-

ordinate system in a 2D space using a unique color for each trajectory (Fig. 5.4). The trajectory

objects are expressed as MBRs in this transformed space. Finally, These MBRs are clustered

using an R-tree. Each R-tree leaf node, R1, . . . , R4 maps to a physical disk-page. We store the

disk-page references in different quadtree blocks of the STCoV-index, as shown in Fig. 5.5.

5.3.1 Quadtree Based Partition

In this step, we use a quad-tree to partition the points of the commuter trajectories. Each leaf-level
quadrant can contain at most a threshold θ number of trajectory points. Let us consider seven
trajectories t1 = {t1.p1, t1.p2, t1.p3, t1.p4}, t2 = {t2.p1, t2.p2, t2.p3, t2.p4}, . . . , t7 = {t7.p1, t7.p2,
t7.p3} where each trajectory point ti.pj = ti.(lj, τj) denoting a tuple of timestamped location.
The spatial points of these trajectories are recursively divided using a quadtree as shown in
Figure 5.3(a), where we set θ = 3. We can see quadtree blocks Q1, Q2, Q3, Q4. Division into
lower level is omitted for brevity.
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5.3.2 Spatio-temporal Transformation

In the next step, we linearly order the quadtree leaves using a space filling curve. We specifically
use a z-order curve [28], to number them. We call such a number, the spatial id sid of the
block. In a z-order space filling curve, we get an integer number sid for each (x, y) block,
where id = x1y1x2y2...xbyb is generated using bit-interleaving of the binary representation of
x = x1x2...xb and y = y1y2...yb. Thus, in the spatial domain each trajectory is represented as a
list of spatial ids. Figure 5.3(a) shows the z-order of the quadtree blocks, which are numbered
as b1, b2, . . . , b16. Similarly, each timestamp of a trajectory is mapped to a time bucket and
assigned a temporal id ωid. Figure 5.3(b) shows ωid: ω1, ω2, . . . , ω8 of different timestamps of
all trajectories. Thereby, each trajectory can be represented as a sequence of (sid, ωid) tuples.
For instance, t1 is represented as (b1, ω3), (b2, ω4), (b5, ω5), (b6, ω6).

5.3.3 R-tree Based Grouping

After the trajectories are transformed spatio-temporally, we group the them using an R-tree.
Each set of points originating from the same trajectory in the new coordinates is represented
as an MBR. The trajectories corresponding to the nearby MBRs have co-visiting property, i.e.,
they tend to travel to the same/nearby locations at similar times. We group such trajectories
by employing R-tree to group their MBRs at its leaf. The leaf nodes of the R-tree corresponds
to disk-pages. Figure 5.4 shows the grouping of different trajectories in the transformed space
using an R-tree. Here we can see points of the trajectories in different colors, and each set of
points of a single trajectory is represented as an MBR. These MBRs are grouped together to
form an R-tree where each leaf level node, R1, R2 etc. corresponds to a disk-page.

Each trajectory now has a disk-page id where it is physically stored. This disk-page reference is
stored at leaf-blocks of the quadtree containing any point of the trajectory. More specifically,
at each quadtree block, we maintain a list of temporal ids denoting the time range of trajectory
points and the disk-page reference is mapped to the appropriate temporal id so that during query
processing, spatio-temporal pruning of trajectory blocks is possible.

Example:

Let us consider the example of Figure 4.1 to demonstrate our solution to the BDPT query. Assume
we have constructed both the SQ-index (Figure 5.1, 5.2) and the STCoV-index (Figure 5.5) using
these trajectories. Suppose, the packet delivery request source (S) and destination (D) spatially
maps to the SQ-index blocks 0.2 and 3 respectively, (Figure 5.1). The outgoing blocks of 0.2
include block 0.3, 2 while the incoming blocks of 3 are 0.3, 1.3, 2 (Figure 5.2(a), (b)). Block
0.2 is added to the explored outblocks, Oexplored while block 3 is added to the explored inblocks,
Iexplored after the first iteration. Suppose, the most potential outblock calculated next is 0.3 and
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the most potential inblock is 2. So, these blocks are added to the respective explored block lists
while their neighbors are enqueued for gradual exploration. The overlap count increases to 1
assuming block 2 is retrieved from the outblock pool in the next iteration. Assume, the process
terminates when overlap count reaches 2. In the reverse expansion of incoming blocks, say, node
0.3 is retrieved from the outblock pool as the most potential candidate. As a result, overlap count
reaches 2, and we have block 0.2, 2, 0.3, 3 from the SQ-index contributing to the packet delivery
request. The potential of SQ-index blocks may depend on distance from source/destination,
trajectory density and so on. We run range query on STCoV-index with the blocks 0.2, 2, 0.3, 3
found from SQ-index. They overlap with STCoV-index blocks b3, b4, b9 ... b16. Since ω1 and
ω6 spans from 15:00 to 16:00 and 20:00 to 21:00 containing earliest packet pickup time (15:30)
and the latest delivery time (21:00) respectively, we search for time buckets ω1 to ω6 in each
of these STCoV-index blocks. For example, b3 block has two trajectory points, one from t2,
falling in ω2 time bucket and the other from t3, falling in ω5 time bucket. As a result, (b3, ω2)
holds the disk page id R2 containing t2 and (b3, ω5) also holds R2 as it contains t3 as well. Note
that, if there are time buckets, in a STCoV-index node, that are temporally disjoint from the
packet delivery time window, the disk pages associated with such tuples can safely be pruned.
Finally, we retrieve the disk pages containing the trajectories and construct TrajGraph with
them. In our example, R1, R2, R3 disk pages, i.e., t1 . . . t6 trajectories are retrieved. We exclude
any trajectory that may further be temporally incompliant and construct TrajGraph with the
remaining ones. If we consider time as the cost metric for convenience, we see that, deliverer t3
can take the packet to destination at 20:30 while t2 and t5 combinedly can take it to destination
at 19:30. So the best scheme would be to send the packet via deliverer t2 and t5.

It is important to note that in our proposed index, we only use R-tree to organize the spatio-
temporally co-located objects in the disk, and then use the disk references in the quadtree index.
Thus, during the query processing time, it does not need to intersect with large number of R-tree
nodes. The quadtree based partitioning of the space can easily prune the space based on a given
query, and when it comes to retrieve the candidate objects (that meets with the query object), the
system can fetch it using from the disk page in a single pass.



Chapter 6

Experimental Evaluation

In this chapter, we present the experimental evaluation for our solution to answer the BDPT
query. To the best of our knowledge, there is no prior work that answers the BDPT query in
a whole road network space supporting multiple modes of transports considering commuter
trajectories. We, therefore, compare our approaches with a baseline. Specifically, we compare
the following three methods.

(i) Baseline (BL): In this method, the trajectories are indexed using only a traditional spatial
index. Specifically, the trajectories visiting the bounding box of Preq considering the source and
destination locations, are retrieved by executing a range query in a quadtree. Then TrajGraph

is constructed with all the retrieved trajectories and processed for finding a sequence of best
deliverers and keepers. (ii) SQ-index (SQ): We use our proposed SQ-index to summarize
trajectories based on spatial orientation. Using Algorithm 3, we exploit the SQ-index for pruning
disk blocks containing trajectories at the first level. We then execute a spatial range query
on the traditional index to retrieve relevant trajectories and construct TrajGraph with them.
(iii) SQ STCoV-index (SQST): In addition to the SQ-index, we use STCoV-index instead of a
traditional index. After the spatial pruning using SQ-index, the trajectories are further pruned
with STCoV-index. This shows the merits of our two index structures.

6.1 Experimental Settings

We implemented our data structures and algorithms in Java (JDK 1.8) and conducted the
experiments in a PC equipped with Intel core i5-3570K processor and 8 GB of RAM. We
design our experiments to estimate performance in disk-based solution although we actually use
in-memory data structures in the experiments.

36
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6.1.1 Trajectory Datasets

We use a public transport trip dataset of Melbourne (Melbourne Myki) [48] and a taxi trip dataset
along with the public transport network of New York City [49] to evaluate the performance of
our methods. We perform the necessary preprocessings on them and pick a smaller temporal
window to work with homogeneous travel patterns.

Myki Dataset

We use the user trajectories of five weekdays from the Myki dataset for running experiments.
Specifically we extract the public transport trips of Melbourne on the weekdays of the last week
of June, 2018. The dataset contains user id, transport mode, vehicle, route, stoppage, event,
timestamp, latitude, longitude and so on where we construct the trajectories grouping by user id
and sorting by the events of getting on and getting off the vehicles. Moreover, we cluster the
nearby trajectory points to remove the redundant stoppage ids. From this dataset, we obtain over
half a million multipoint trajectories (554,650 to be exact) of Myki commuters with bus, train
and tram as their modes of transport. Besides, we find a total of 22,345 stoppages along the
transport routes inside the city of Melbourne.

NYC Taxi Dataset

The NYC Taxi dataset consists of taxi trips of users. Unlike the Myki dataset, the trips in this
dataset are represented by pickup-dropoff pairs. Each row in the dataset contains passenger id,
pickup location (longitude and latitude) and time, dropoff location and time, fare, vehicle no.
and so on representing a two-point taxi trajectory. We extract the taxi trips of two weekdays,
specifically, January 6 and January 7, 2016 to run our experiments. Thus we extract around
697,248 raw taxi trips subject to further preprocessing.

As our main focus is working with public transports, we map the taxi trips to the existing public
transport network of New York City [50] without changing the timestamps. For this mapping,
we pick the a bus stoppage within a close range (say, 100 meters) from each end point of a taxi
trip. We discard the trajectories that do not map to any bus stops. Moreover, we cluster the nearby
stops to the busier ones to ensure higher trajectory density at the stops. Thus we synthetically
transform two point taxi trajectories to public transport trips. However, these trips still consists
of two end points only, and therefore, the experiments show slightly different outcomes on this
dataset compared to that of Myki public transport trip data.

Packet Keeper Generation

For the packet keepers, we pick some busy stoppages from the datasets and choose some nearby
locations as the packet source and the destination randomly. To identify the busy stops, we
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Parameters Ranges
Dataset MM, NYC
# of Trajectories (T ) 100k, 250k, 400k, 550k
Keepers as % of stoppages (k) 10, 25, 50, 100
Preq duration in hours (τP ) 0.5-1, 1-2, 2-4, 4-8, 8-24
Max. detour in km (δ) 0.5, 1, 2, 4

Table 6.1: Parameters for Experiments on Myki and NYC Datasets

observe the frequency of visiting the stops by the daily commuters along their typical travel
itineraries at different times. Besides, we randomly pick a time from the pick hours at the packet
source as the earliest pickup time for the packet and vary the packet duration to identify the latest
delivery time.

6.1.2 Performance Evaluation and Parameterization

We have studied the efficiency, effectiveness, and scalability of our proposed approaches and
compared with the baseline. We have varied several parameters for comparison. Table 6.1 shows
the parameters and their range of values where the default values are shown in bold. For each of
the configurations, only one parameter is varied while the others are fixed at their the default
values. Note that, we use this parameter setting for the default Myki dataset. We modify the
default packet duration for the NYC dataset since it basically contains two point trajectories and
thereby exhibits lower success rate in packet delivery for the previous setting. We denote the
Myki dataset with MM and the NYC Taxi dataset with NYC.

We have studied the impact of each parameter on the runtime and the total number of blocks
accessed for measuring efficiency and scalability respectively. As argued in [51], reporting
the actual I/O cost may be misleading not only because the I/O cost largely depends on the
disk type but also because it is significantly affected by various factors many of which are
system dependent or not easily controllable. Therefore, we report the number of blocks accessed
(i.e., # of I/Os) instead of the I/O cost. As the STCoV-index in our approach saves R-tree
leaves which directly correspond to disk blocks, the task of measuring number of I/Os when
SQ STCoV-index is used is achieved by counting distinct R-tree leaves accessed. In the baseline
and SQ-index method where we use a traditional quadtree index, we make a simple assumption
that the trajectories whose first points are contained in the same quadtree nodes, can be grouped
together or in the nearby disk blocks. We use the same value for the trajectory capacity of disk
blocks as that of an R-tree leaf in the STCoV-index. Thus each trajectory id has a corresponding
virtual disk block id which contributes to measuring the number of I/Os.

We generate 100 sets of packet delivery request queries with the same settings and report the
average performance. For each set of query generation, we randomly choose two stoppages for
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packet request with the required criteria (e.g., specific distance).

Our proposed summary index, SQ-index may provide a sub-optimal solution if a packet cannot
be delivered with the pruned trajectories but joining some distant trajectories can deliver it. So,
we also demonstrate the effectiveness of our solutions in terms of percentage of packets delivered.
Some packets can indeed be undeliverable for the directional nature of the trajectories due to
their temporal attributes. Alternatively, if the packet source and destination are parts of separate
connected components of the TrajGraph a packet cannot be delivered given an arbitrary amount
of time. So, the effectiveness is more accurately measured in terms of percentage of deliverable
packets delivered. We retrieve and run path finding algorithms for all the trajectories to guarantee
whether a packet is deliverable or not. While we find the effectiveness of both our approaches
using SQ-index and SQ STCoV-index identical to this exact solution for smaller cases, we
exclude the comparison as the other performance metrics of the exact solution would be far
worse than that of the baseline.

6.1.3 Experimental Results on Myki Dataset

We vary different parameters and present the CPU time and number of I/Os in the following.
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Figure 6.1: Evaluating BDPT for varying number of trajectories in MM dataset

(i) No. of trajectories: We vary the number of public transport trips in the MM dataset from
100k to 550k choosing randomly from the available trips of a week. Figures 6.1(a) & (b)
show the average processing time, and # of I/Os, respectively, for the Baseline, SQ-index, and
SQ STCoV-index.

We observe that the SQ-index is twice as good as Baseline in terms of both processing time and
number of block access. As SQ-index summarizes the directional orientation of the trajectories
before indexing points in a quadtree (as done in Baseline), it can prune nearly half of the
trajectory dataset. The spatio-temporal grouping of the trajectories in the STCoV-index of
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Figure 6.2: Evaluating BDPT for varying % of packet keepers in MM dataset

SQ STCoV-index results in 1 order of magnitude faster processing time and I/O overhead than
SQ-index. This is because the pruned regions from STCoV-index still contains many trajectories
with disjoint timestamps with the packet delivery time window. Since working with a larger
trajectory dataset requires more processing, we observe an increase in runtime and # of I/Os with
the increase in the number of trajectories for all the approaches.

(ii) Percentage of packet keepers: We choose a subset of available stops as packet keepers. We
vary the ratio of the cardinality of this set of keepers to the number of stops from 10% to 100%,
and report the average processing time & # of I/Os to deliver a packet. The results (Figure 6.2)
show that SQ-index is about two times better compared to Baseline whereas SQ STCoV-index
outperforms SQ-index by more than 1 order of magnitude in terms of both the CPU time and # of
I/Os. Since keepers have little contribution in trajectory retrieval, # of I/Os remains unchanged
for all three methods. The gradual increase of runtime of all of the approaches gradually increase
with the number of stops, as more users can contribute in the delivery process. However, the
I/Os in each approach remain almost constant because trajectory retrieval depends mainly on the
number of trajectories and packet duration while it depends little on the keepers.

(iii) Detour threshold (δ): We intuitively expect more trajectories to be joined via keepers with
the increase of δ. Our experimental findings supports the intuition resulting in higher runtime for
processing the BDPT query. The results (Figure 6.3) demonstrate SQ-index is almost twice as
good as Baseline in terms of efficiency (i.e. query processing time and number of block access).
Moreover, SQ STCoV-index is around 1 order of magnitude more efficient than Baseline.

(iv) Packet Duration: Since the number of candidate trajectories to deliver a packet increases
with the increase in packet delivery request duration, the runtime and block access of SQ STCoV-
index increases because it retrieves larger number of trajectories from the SQ-index. However,
based on the packet duration, we cannot prune more trajectories from SQ-index or Baseline as
they do not have a temporal index and thereby no temporal filtering scheme before trajectory
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Figure 6.3: Evaluating BDPT for varying detour distance (δ) in MM dataset
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Figure 6.4: Evaluating BDPT for varying packet duration in MM dataset

retrieval. As a result, we find their curves almost horizontal. Figure 6.4 shows that SQ STCoV-
index still outperforms the Baseline in terms of runtime and # of I/Os by 1 order of magnitude
while only SQ-index can reduce them to half of those of the Baseline.

Packet Delivery Rate & Cost-Ratio: To demonstrate the effectiveness of the BDPT query, we
measure the percentage of packets successfully delivered while varying the keeper percentage,
detour threshold (δ) and packet duration. We also measure the cost of the packet deliveries which
are successful in all three methods. Otherwise, the cost comparison is not meaningful since we
consider it to be infinite in case of an unsuccessful delivery. We use the term cost-ratio to denote
the relative delivery cost with respect to the baseline and report it for the successful deliveries. We
find that our approaches can achieve the same delivery rate and cost as the baseline (Figure 6.5,
6.6). We have also achieved the same delivery rate and cost for different methods varying the
number of trajectories. But unlike the other parameters, it does not show an increasing trend
possibly because their coverage area does not change much. So, we omit the result for brevity.
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Figure 6.5: Evaluating packet delivery rate of BDPT for varying the percentage of keepers, the
detour threshold δ, and the packet duration in MM dataset
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Figure 6.6: Evaluating cost of successful deliveries of BDPT for varying the percentage of
keepers, the detour threshold δ, and the packet duration in MM dataset

6.1.4 Experimental Results on NYC Dataset

Similar to our approach for the Myki dataset, we present the results of our experiments on the
NYC dataset in the following.

(i) No. of trajectories: We choose between 100k to 550k two-point NYC taxi trips mapped
to the public transport stoppages randomly from the available trajectories of two weekdays.
Figures 6.7(a) & (b) show the average processing time, and # of I/Os, respectively, for the
Baseline, SQ-index, and SQ STCoV-index.

In terms of I/O, the performance is as good as that of Myki dataset as shown in the Figure 6.7(b)
since SQ-index requires around half the number of block accesses compared to Baseline and
SQ STCoV-index outperforms Baseline by an order of magnitude. But in terms of the runtime,
SQ-index achieves around 25% decrease while SQ STCoV-index performs twice as fast as the
Baselineas Figure 6.7(a) demonstrates (note that, the vertical axis of is in linear scale unlike that
in log scale in the Figure 6.1(a)). The relatively lower performance gain in runtime is possibly
because of working with two-point trajectories and mapping them a limited number of busy
stoppages. However, we have calculated the runtime independently from the impact of the
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Figure 6.7: Evaluating BDPT for varying number of trajectories in NYC dataset
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Figure 6.8: Evaluating BDPT for varying % of packet keepers in NYC dataset

I/O cost. Since the I/O cost is a major bottleneck in disk based systems, the performance of
SQ STCoV-index would be even better if the actual runtime considering trajectory retrieval from
physical disks into account.

Besides, we see an increasing trend in the runtime and the # of blocks accessed with the increase
in the number of trajectories similar to that of the Myki dataset.

(ii) Percentage of packet keepers: We vary the ratio of packet keeper count to the total stoppage
count from 10% to 100%, and show the average processing time & # of I/Os to deliver a packet.
The results (Figure 6.8) show that SQ-index performs approximately 25% faster than Baseline
and SQ STCoV-index outperforms Baseline by around half the amount of CPU time. The I/O
performance is however similar to the results for Myki dataset (Figure 6.2(b)).

(iii) Detour threshold (δ): We vary the detour threshold of the commuters from 500m to
4km and find that although the runtime of SQ-index shows slightly irregular pattern, it does
not get worse than Baseline while SQ STCoV-index outperforms Baseline by 50% of runtime
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Figure 6.9: Evaluating BDPT for varying detour distance (δ) in NYC dataset

0

2

4

6

0.5-1 1-2 2-4 4-8 8-24

T
im

e 
(s

ec
)

Max Packet Duration (hour)

BL
SQ

SQST

102

103

104

105

0.5-1 1-2 2-4 4-8 8-24

# 
of

 B
lo

ck
s 

A
cc

es
se

d

Max Packet Duration (hour)

BL
SQ

SQST

(a) (b)

Figure 6.10: Evaluating BDPT for varying packet duration in NYC dataset

(Figure 6.9). The results of measuring I/O is similar to that of varying the other parameters (e.g.,
an order of magnitude performance gain by SQ STCoV-index over the Baseline and around 50%
gain over the Baseline by SQ-index).

(iv) Packet Duration: Figure 6.10 shows that SQ STCoV-index still outperforms the Baseline
in terms of # of I/Os by an order of magnitude and in terms of runtime by approximately 50%.
The SQ-index too, follows results of experiments on Myki dataset in terms I/O while it achieves
nearly 25% faster runtime than the Baseline. Note that, the packet duration has little impact on
the performance of Baseline and SQ-index since both use a traditional spatial index as explained
in the results on Myki dataset. Thus their runtime and I/O curves are almost horizontal. In
fact, the decrease in the runtime of Baseline for higher duration is because of higher succesful
deliveries. The runtime and I/O of SQ STCoV-index increases in case of upto 24 hours packet
duration. This is because we have total 48 hours of temporal span from the trajectories (since
trajectories of 2 weekdays are considered) and when we consider around half of the total window
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Figure 6.11: Evaluating packet delivery rate of BDPT for varying the number of trajectories, the
detour threshold δ, and the packet duration in NYC dataset

0.98

0.99

1

1.01

100k 250k 400k 550k

R
el

at
iv

e 
D

el
iv

er
y 

C
os

t w
rt

 B
L

# of Trajectories

SQST
SQ

0.98

0.99

1

1.01

500 1000 2000 4000

R
el

at
iv

e 
D

el
iv

er
y 

C
os

t w
rt

 B
L

Max Detour (km)

SQST
SQ

0.98

0.99

1

1.01

0.5-1 1-2 2-4 4-8 8-24

R
el

at
iv

e 
D

el
iv

er
y 

C
os

t w
rt

 B
L

Max Packet Duration (hour)

SQST
SQ

(a) (b) (c)

Figure 6.12: Evaluating cost of successful deliveries of BDPT by varying the number of
trajectories, the detour threshold δ, and the packet duration in NYC dataset

in the packet duration, the temporal pruning capability gets curtailed.

Packet Delivery Rate & Cost-Ratio: We measure the packet delivery rate, i.e., percentage of
packet delivered from the packet source to destination within the delivery time window and the
cost-ratio, i.e., the relative cost in successful deliveries with respect to the baseline to assess the
effectiveness of our solution to the BDPT query on the NYC dataset. We vary the number of
trajectories, detour threshold (δ) and packet duration and find that our technique achieves nearly
the same success rate as the baseline (Figure 6.11) and exactly the same cost-ratio (Figure 6.12).
Specifically, with the increase in the number of trajectories the packet delivery rate reaches
from 22% to 50% demonstrating the merits of more commuters involved in the delivery process
(Figure 6.11(a)). Besides, with the increase in packet duration from 0.5-1 hours to 8-24 hours,
the success rate increases to 12% to 79%. The increase in the maximum detour, however, impacts
the delivery rate in the NYC dataset less than that of the other parameters, possibly because of
our synthetic mapping of the taxi trajectories to the public transport stops. We get a delivery
rate between 49% to 53% when we vary the detour from 500m to 4km. The cost incurred in
SQ-index and SQ STCoV-index are the same as that of Baseline in case of successful deliveries
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as found experimentally.

We have also achieved nearly the same delivery rate and cost for Baseline, SQ-index and
SQ STCoV-index (around 50% with at most 2% deviation across the methods) while varying the
percentage of keepers. We have omitted the result to avoid any confusion as it does not show an
increasing trend, possibly because not requiring more keepers for joining commuter trajectories
which are already mapped to the busy stoppages.

Note that, in all the aforementioned cases, the SQ-index and SQ STCoV-index delivery rates are
same while they lag the delivery rate of Baseline by a small margin (1% for example). This is
because pruning the trajectories from the spatial connectivity network through SQ-index can
sometimes prune a candidate solution that may contribute to packet delivery through distant
locations. Besides, when the packets are deliverable in all three methods, we find the cost of
SQ-index and SQ STCoV-index exactly the same as that of Baseline. So the approximation loss,
as found from the experiments is negligible.



Chapter 7

Conclusion

We have introduced the crowdshipping problem as a location oriented online query (BDPT). In
this query, we find a delivery path comprising of daily commuter trajectories and packet keepers
with an objective of minimizing cost given a packet delivery request. While the state-of-the-art
techniques solve the problem offline or for taxi OD pairs only, we have addressed it as a trajectory
database problem with commuter trajectories for engaging more users. We have then proposed
a baseline solution to the BDPT query as a trajectory matching problem based on an informed
search for path finding in trajectory graph containing information of the trajectory points and
segments. For scalability of the solution, both in terms of CPU time and number of I/Os, we
have introduced two novel quadtree-based indexes for pruning the candidates for the graph
construction. We have exploited the spatial connectivity of regions through the trajectories
and the trajectory co-visiting patterns in these indexes. By combining these two indexes, we
have found the performance in terms of CPU time and number of I/Os to improve by an order
of magnitude compared to the baseline. Besides, we have discussed the generalization of our
solution to finding the m best paths in the m-BDPT query.

Although we have formulated the problem as an online query, we have not considered the
capacity of the commuters, size of the packets etc. while delivering a packet. There are scopes
for novel works incorporating these additional constraints in the online trajectory matching.
Besides, while considering the historic itinerary profile of the commuters, the likelihood of
predicted future trajectories can be taken into account to maximize the throughput. Finding and
deploying a suitable probability aggregation model for this probabilistic trajectory matching may
have a good potential in future researches. Moreover, the trajectory indexing schemes we have
proposed may not be limited to our proposed query only. Their applicability, in general, to other
query problems calls for further independent studies.
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