
M.Sc. Engg. (CSE) Thesis

A Novel Architecture for Mitigating Cold Start Problem in
Serverless Computing

Submitted by

Khondokar Solaiman

1017052017

Supervised by
Dr. Muhammad Abdullah Adnan

Submitted to
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering

January 2023

Dedicated to my parents

Acknowledgement

I am thankful to my thesis supervisor Dr. Muhammad Abdullah Adnan for his exceptional
guidance and persistent pursue of excellence to push me in right direction. Moreover, I want to
mention my thesis board members specially Dr. Mahmuda Naznin and Dr. Rifat Shahriyar and
many reviewers for their valuable advises and suggestions to ameliorate my thesis.

Finally, I am grateful to Allah and would like to express my heartfelt gratitude to everyone to
make this thesis possible even in this unprecedented COVID pandemic times.

Dhaka
January 24, 2023

Khondokar Solaiman
1017052017

iii

Contents

Candidate’s Declaration i

Board of Examiners ii

Acknowledgement iii

List of Figures viii

List of Tables x

List of Algorithms xi

Abstract xii

1 Introduction 1
1.1 Inception of Serverless . 1

1.1.1 Cold Start Problem in Serverless . 2
1.2 Formulation of WLEC . 3

1.2.1 Key Features . 3
1.2.2 Major Findings . 3
1.2.3 Design Flaws . 4

1.3 Consideration of Fault Tolerance . 4
1.4 Conceptualization of AdWaLEC . 4

1.4.1 Principal Aspects . 5
1.4.2 Scope of AdWaLEC . 5
1.4.3 Major Takeaways . 5

1.5 Main Contributions of the Thesis . 6
1.6 Objective of the Thesis . 7
1.7 Major Challenges . 7
1.8 Thesis Organization . 7

2 Background & Motivation 9
2.1 Cloud Computing . 9

iv

2.1.1 Definition . 9
2.1.2 Basic Architecture . 10
2.1.3 Cloud Deployment Models . 11
2.1.4 Cloud Service Models . 13
2.1.5 Virtualization . 21

2.2 Serverless Computing . 23
2.2.1 Emergence and Contextualization . 24
2.2.2 Serverless Platforms . 25
2.2.3 Challenges Ahead . 28
2.2.4 Serverless in Action . 33

2.3 Architectural Perspective . 37
2.4 Background Investigation . 37
2.5 Current Trends . 37

3 Related Works 40
3.1 Platform Based Approaches . 40
3.2 Architecture Based Approaches . 41
3.3 Application Based Approaches . 43
3.4 From Stateless to Stateful Serverless . 44
3.5 Rank Correlation Based Works . 45
3.6 Fault Tolerant System Focused Works . 45

4 Preliminaries 47
4.1 Pannier . 47

4.1.1 S2LRU* . 48
4.1.2 Survival Queue . 49
4.1.3 Invalidation and Access Bitmaps . 49
4.1.4 Ghost Cache and Access Counter . 50
4.1.5 TIRE System . 50

4.2 OpenLambda . 50
4.2.1 Lambda Store . 51
4.2.2 Local Execution Engine . 52
4.2.3 Load Balancer . 52
4.2.4 Lambdaware Database . 52

4.3 Rank Correlation and Rank Correlation Coefficient 52
4.3.1 Rank Correlation . 53
4.3.2 Rank Correlation Coefficient . 53
4.3.3 Spearman’s Rank Correlation Coefficient 53
4.3.4 Mathematical Formulation of ρ . 54

v

4.4 Fault-Tolerant System . 55
4.4.1 Goal of Fault-Tolerant System . 55
4.4.2 Reason Behind Faults . 56
4.4.3 Components of Fault Tolerance . 57
4.4.4 Common Techniques of Fault Tolerance 58

4.5 Thundra . 60
4.6 Cold Start . 61
4.7 Cache Replacement Policy in Container Management 61

5 WLEC 63
5.1 Overview of WLEC . 63
5.2 WLEC Components . 64

5.2.1 S2LRU++ . 64
5.2.2 Template Container List . 65
5.2.3 Warm Time . 66
5.2.4 Container Header . 66

5.3 Container Management Service . 67
5.3.1 CMS Function . 67
5.3.2 Work Flow . 68

5.4 Optimization . 70
5.4.1 Recycling of Workers . 70
5.4.2 Load Balancing . 70
5.4.3 Package Caching . 70

6 Advance WLEC 71
6.1 WaLCoR . 71
6.2 Fault Manager . 73

6.2.1 Fault Detection . 74
6.2.2 WaLCoR Management . 74
6.2.3 Failover Process Management . 74

6.3 Determination of ρ, R′
f i

and Rf i
. 75

6.3.1 Priority Factor . 75
6.3.2 Container Count . 75
6.3.3 Steps to Determine Spearman’s Rank Correlation Coefficient 75
6.3.4 Computed Replica Factor . 76
6.3.5 Replica Factor . 77

6.4 Achieving Fault Tolerance . 77
6.4.1 Mitigating Single Point of Failure . 77
6.4.2 Adaptive Container Selection . 78

vi

6.4.3 Data Consistency Assurance . 78
6.4.4 Data Corruption Mitigation . 79

7 Evaluation & Results 80
7.1 Evaluation of WLEC . 80

7.1.1 Experiment Testbed . 80
7.1.2 Methodology . 81
7.1.3 Results . 81

7.2 Evaluation of AdWaLEC . 86
7.2.1 Experiment Testbed . 87
7.2.2 Experiment Methodology . 87
7.2.3 Results . 88
7.2.4 Case Study: Image Resizing . 93

8 Future Work 95
8.1 Enhancing Versatility . 95
8.2 Security . 95
8.3 Queue vs Stack . 96
8.4 Windows Container Support . 96

9 Conclusion 97

References 99

List of Publication 113

Index 114

A Algorithms 115
A.1 Algorithm for Initialization function . 115
A.2 Algorithm for OnRequest function . 115
A.3 Algorithm for QueuePlacing function . 115

vii

List of Figures

2.1 Cloud architecture . 10
2.2 Layers of cloud . 10
2.3 Cloud deployment models . 11
2.4 Interaction of different clouds . 13
2.5 Cloud service models . 14
2.6 Infrastructure as a service model . 15
2.7 Platform as a service model [52] . 16
2.8 Software as a service model . 17
2.9 Function as a service model of AWS . 17
2.10 Database as a service model [126] . 18
2.11 Network as a service model . 19
2.12 Container as a service model . 20
2.13 Disaster recovery as a service model . 21
2.14 Virtualization trend . 22
2.15 Role of serverless users . 34
2.16 User cases of serverless architecture . 34
2.17 Frameworks for serverless architecture used by users 36
2.18 Tools for serverless architecture used by users 36
2.19 Readiness latency in unpause, fresh start, and restart case for OpenLambda . . . 38

4.1 Container based flash caching [69] . 48
4.2 S2LRU* in Pannier [69] . 49
4.3 OpenLambda architecture . 51
4.4 Fault tolerance goals . 55
4.5 Fault tolerance techniques . 59

5.1 OpenLambda with WLEC . 64
5.2 WLEC architecture. 65
5.3 WLEC workflow . 69

6.1 AdWaLEC in OpenLambda . 71
6.2 Container structure of template container list with log file 72

viii

6.3 WaLCoR sequence . 73
6.4 Tasks of fault manager . 74
6.5 OpenLambda system controller . 78

7.1 Cold start invocation vs worker . 82
7.2 Duration vs worker . 83
7.3 Worker invoked vs worker . 84
7.4 Mean invocation vs worker . 85
7.5 Maximum start-up latency vs worker . 86
7.6 Occupied memory vs worker . 87
7.7 Cold start frequency vs memory . 88
7.8 Latency vs memory . 89
7.9 Container invoked vs memory . 90
7.10 Mean invocation vs memory . 91
7.11 Maximum start-up latency vs memory . 91
7.12 Occupied memory vs memory . 92
7.13 Recovery latency vs memory . 93
7.14 Latency vs platform . 94

ix

List of Tables

2.1 Responsibility in Serverless and serverful platform comparison 39

5.1 Table of header components . 66
5.2 Table of symbols of CMS . 67

7.1 Table of parameters and their values, default values are in bold 81
7.2 Mean, variance, and standard deviation of percentage improvement between

no warm and proposed strategy across different metrics on both experimental
environments. ∗ was taken only on Local VM and the improvement was shown
between WLEC to No warm and WLEC to All warm strategy 83

x

List of Algorithms

1 Algorithm for container initialization . 115
2 Algorithm for container selection . 116
3 Algorithm for container placement . 116

xi

Abstract

Features like no server maintenance, low cost, and elasticity are attracting
developers to build applications utilizing the functions-as-a-service (FaaS)
architecture on serverless platforms. Researchers have proposed various fixes to
overcome the cold start problem, a well-known issue of serverless architecture. In
this thesis, we address the cold start problem of the serverless platform. Our study
shows that we can not get rid of cold start time because of the on-demand nature
of the FaaS model. In addition, developers are adopting FaaS for critical stateful
applications to retain the architecture’s benefits.
Consequently, the need for an adaptive and intelligent fault-tolerant technique for
FaaS architecture has transpired. It has become evident that the classic Retry
technique is neither reliable nor efficient for handling such critical applications.
Admittedly, mitigating cold start latency and achieving fault tolerance for serverless
has remained an open problem. Therefore, we propose Warm Lambda Equipped
Container (WLEC), a container management architecture that utilizes a modified
Two Segmented Least Recently Used (S2LRU) structure called S2LRU++ inspired
by the S2LRU* architecture of Pannier. Then, we evaluate WLEC in both AWS and
Local VM environments with OpenLambda with six different metrics. Assessing
the practical implication and performance, we realize the shortcomings of WLEC
and decide to alleviate them. Subsequently, we have developed Advance Warm
Lambda Equipped Container (AdWaLEC) that addresses cold start latency and fault
tolerance with replication-based strategies.
Moreover, AdWaLEC redesigns WLEC-one of the cold start mitigation solutions,
by improving container replication of template container list utilizing Spearman’s
rank correlation coefficient to reduce cold start delay. Next, it also incorporates a
reliable fault tolerance scheme for the ubiquitous serverless model called Warm
Lambda Container Replication (WaLCoR) that leverages container-associated logs.
Further, we have implemented AdWaLEC in the OpenLambda platform, evaluated
it with Azure Function trace with seven different metrics, and compared it with four
different approaches. For instance, AdWaLEC shows a 77.23% reduction in cold
start frequency, a 27.36% decrease in cold start latency, and a 29.95% increase in
invocation per container compared to the baseline of OpenLambda.

xii

Chapter 1

Introduction

The advancement of cloud computing now makes it possible to define the new concept of
serverless computing. It often refers to developers running applications without managing any
server dependencies. They do not require any provisioning scheme or management of servers.
Serverless computing has become one of the most popular emerging technology for modern
cloud-based systems. The serverless architecture lets us focus on the core product and business
logic instead of responsibilities like operating system (OS) access control, patching, provisioning,
right-sizing, scaling, and availability. Different versions of the service models, like Infrastructure
as a service (IaaS), Software as a service (SaaS), and Platform as a service (PaaS), are provided
by the cloud providers. Serverless is in the fourth category: Functions as a service (FaaS) [26],
based on runtime-level virtualization. In the FaaS model, the developers need not think about
the runtime that the code uses. They need to write code based on the platform and use a way
that the platform supports and uses the library provided by the platform. Such attractive features
have caught developers’ attention and are gaining popularity in application development and
deployment. FaaS service providers include Amazon Lambda [2], Google Cloud Functions [3],
Azure Functions [5], OpenLambda [51], Apache OpenWhisk [1], OpenFaaS [6] etc.

1.1 Inception of Serverless

In earlier settings, applications needed their environment, including hardware and software.
The introduction of virtualization has made it possible to share the same hardware for multiple
operating systems known as Virtual Machine (VM) [17]. Later container-based virtualization
allowed us to use the same OS and H/W for different applications. The repackaging of Unix-style
processes combined with distribution tools has gained huge favor among developers, known as
Docker [41]. However, the Lambda model is the latest virtualization model that allows sharing of
runtime resources. It has revolutionized the concept of Serverless Computing. With the Lambda
model, applications are seen as a set of functions called lambda functions instead of a collection

1

1.1. INCEPTION OF SERVERLESS 2

of servers and developers. Different lambda handlers are written to handle different kinds of
requests. As we browse available lambda services, we find that lack of complete control over the
lambda model hinders the implementation of the lambda model in real life. All the core sections:
request distribution, code files, and code executions- are hidden from the developer because of
security, consistency, resource management, and performance issues [113]. The lack of control
in code execution on specific containers results in increased start-up time, also known as the cold
start problem.

1.1.1 Cold Start Problem in Serverless

Specifically, the cold start mainly refers to the time delay from receiving a lambda request in the
application to the start of executing code for that request. Alternatively, the time of preparing
a container to serve any request is called cold start. As a result, the absence of any built-in
mechanisms to counter cold start leads to the same problem for all lambda models in the industry.
Thus, the only possible way out from the developers’ end is to send continuous hello request
actively to keep those lambda containers warm.

Serverless service providers have been working on the issue since the inception of the serverless
concept. However, no generalized approach has been attained yet. Nonetheless, platform-specific
solutions are surfacing from time to time. AWS-one of the major serverless service provider-has
recently proposed SnapStart [100] which shows promises to finally solve the ever-persistent
issue. In addition, no extra cost for SnapStart also makes it attractive to adopt for serverless
applications. On the other hand, since it is particularly crafted keeping in mind the lambda
architecture, the effectiveness of SnapStart for other service providers remains a question for the
future. Though SnapStart service may be expanded for other functions, it should be noted that it
is only available for Java 11 functions till now (as of writing this thesis). Therefore, its impact
and scope are heavily limited to a small subset of applications right now. Similarly, the lack
of proper mechanisms for handling fault tolerance, uniqueness, randomness, dynamic network
connections, and ephemeral data makes a strong case for further study in this field to find better
solutions. Admittedly, SnapStart provides a strong baseline for future research for other similar
service providers such as OpenWhisk, Google Cloud, and Azure functions.

Furthermore, researchers have proposed various methods to reduce cold start delay in [89],
[29], [73], [102], [45]. Similar replication-based approaches of recent times include time series
forecasting model [56], retention-aware container caching [91], managing pool of function
instances model [75], introducing new scheduler [116], function start-up reduction [104],
prediction based warm up strategy [132]. However, previous works ignore disparate and
unpredictable request patterns, adaptivity, and platform abstraction and suffer from high memory
costs. Additionally, none of the aforementioned methods intends to facilitate fault tolerance
along with the cold start mitigation technique. Thus, cold start remains a challenging problem

1.2. FORMULATION OF WLEC 3

even now for FaaS service providers. In our thesis, we aim to develop a platform independent
cold start mitigation scheme that

1.2 Formulation of WLEC

In addition, after the introduction of OpenLambda-an open-source lambda model implementation,
developers and researchers now have more control over the architecture of the lambda model than
ever before [51]. Here, we propose WLEC to counter the cold start problem for the conventional
lambda model and implement it in the OpenLambda Platform. Pannier [69], a container-based
caching policy, encourages the architectural idea for WLEC.

1.2.1 Key Features

WLEC uses a modified version of the Two Segmented Least Recently Used (S2LRU++) instead
of the standard two-queue S2LRU model. The specialty of S2LRU++ is that it is a container-ware
S2LRU model and uses three queues rather than two. The three queues are cold, warm, and
the template queue in S2LRU++. These queues hold containers that run the lambda functions.
Containers are placed in these queues based on their usage, invocation time, wake-up time, state,
and other parameters and are managed by the CMS (Container Management Service). CMS
continuously monitors the state of the containers and can move, destroy and initialize them
accordingly. CMS consists of three main functions: Initialization initiates a container with
corresponding flags and variables, QueuePlacing handles the transition of a container from one
queue to another, and OnRequest handles the request selecting the best container to serve the
request at any given time.

1.2.2 Major Findings

We test the performance of WLEC architecture from our comparison of six different metrics with
the ubiquitous lambda model. We define these metrics and compute them for the OpenLambda
platform in the Local VM and AWS VM setup. By further computation of these metrics, we show
that WLEC reduces average cold start invocation cases by 31% and the average duration of cold
start by 23.5% in AWS VM. For memory consumption, we find WLEC architecture consumes
about half of the memory of traditional All-Warm methods. Besides, we observe about a 31.25%
increase in invocations per container while a 70.2% reduction in start-up latency compared to the
fresh start scenario for AWS VM. We also find that Advance WLEC reduces the number of cold
start invocation cases by 12.68% and the average duration of cold start invocation by 25.09%
in AWS VM compared to the OpenLambda baseline. In the case of memory consumption, we
find Advance WLEC architecture consumes about 18.04% less memory than the traditional

1.3. CONSIDERATION OF FAULT TOLERANCE 4

All-Warm method. Besides, we find about an 18.19% increase for invocations per container
while an 18.97% reduction for start-up latency compared to the fresh start scenario for AWS
VM.

1.2.3 Design Flaws

However, the number of redundant containers of each type of function in WLEC was static
and designed as one-time user-defined parameters. Hence, it considers that the user has prior
knowledge regarding the requests’ nature, like frequencies and response times. However, it may
be possible that the system owner does not have any prior understanding of request frequencies,
or it is hard to predict the request pattern. In such cases, optimization of WLEC can be impossible
for naive system owners. Thus, it will be reasonable to introduce an intelligent method that will
dynamically determine the replication number for each type of container in runtime. Besides,
WLEC suffers from a single point of failure issue since the failure of WLEC will halt the system
from serving any request.

1.3 Consideration of Fault Tolerance

Further, an essential aspect of any system is fault tolerance (FT). Nevertheless, the sole stateless
nature of serverless architecture has made it difficult to implement traditional fault-tolerant
models. However, now the popular trend and adoption of serverless in critical applications have
created the scope of thinking fault tolerance techniques for serverless architecture. Furthermore,
we find that researchers are devising new strategies for adopting stateless serverless functions for
stateful transaction operations like Cloudburst [109], programming models [37], PORTALS [107],
Pheromone [135], CRUCIAL [22], FAASM [103]. On top of that, Serverless architecture is being
adopted into other diversified and trending fields like machine learning, edge computing, etc. To
illustrate, Distributed Deep Neural Network (DDNN) training framework-λDNN [131], Graph
Neural Network (GNN) framework-Dorylus [114] exhibit researchers’ interest in serverless.
Therefore, research works regarding fault tolerance are getting more attention than ever. For
instance, Beldi [136], Boki [57], Threshold-Based Adaptive Fault Tolerance (TBAFT) [96],
Atomic Fault-Tolerant (AFT) shim [108] are some of the recent works are to mention a few.
Yet, none of the approaches consider a cold start in its formulation resulting in hundreds of
milliseconds of latency.

1.4 Conceptualization of AdWaLEC

Thus, We introduce Advance WLEC (AdWaLEC)-an extension scheme of WLEC architecture
that facilitates dynamic replica containers and determines their amount based on the need during

1.4. CONCEPTUALIZATION OF ADWALEC 5

runtime.

1.4.1 Principal Aspects

We propose an adaptive container replication model based on one of the most well-known and
robust ranking methods named Spearman’s Rank Correlation Coefficient. The reason behind
choosing this ranking method is that it makes no assumption about the ranks and can deal with
many outliers. As our system needs to be able to deal with any request patterns, it will be the
most effective in this case. We provide an alternative pathway with the baseline OpenLambda
model to solve the single point of failure problem of WLEC. We also introduce a fault tolerance
mechanism for AdWaLEC named WaLCoR to provide fault-tolerant attributes. The WaLCoR
combines the traditional Record and play and Checkpointing method. Additionally, to mitigate a
single point of failure problem, we keep another alternative path in Advance WLEC to serve the
request during any failure.

1.4.2 Scope of AdWaLEC

AdWaLEC utilizes replication and redundancy to mitigate cold start and achieve fault tolerance
simultaneously. As our scheme employs redundancy and replication to achieve fault tolerance,
it replaces containers instead of fixing faulty containers. WaLCoR-a part of AdWaLEC-only
considers container-related transient faults. To clarify, other common faults, such as hardware,
network, and external service-related faults, are out of the scope of our study. However, WaLCoR
takes advantage of the template container log to achieve consistency with other containers
residing in different queues.

1.4.3 Major Takeaways

We evaluate AdWaLEC using seven different metrics with the OpenLambda platform by
comparing it with four previously proposed well-known methods: baseline, all warm, SOCK,
and WLEC. We compute each metric with a random selection of Azure functions from [102]. We
find that AdWaLEC reduces cold start frequency compared to baseline and all warm approaches
by 77.23% and 42.21%, respectively. AdWaLEC also reduces new container invocation by
13.84% compared to SOCK. We also get higher container invocation per container than baseline,
all warm and SOCK by 29.95%, 30.39%, and 10.88%, respectively. In terms of maximum
start-up latency, our proposed scheme shows 67.68% less latency than SOCK. However, SOCK
consumes 16.14% less memory than AdWaLEC. However, AdWaLEC outperforms all warm in
the case of memory consumption by 26.49%. Recovery latency metrics indicate that AdWaLEC
ensures container recovery regardless of memory availability. AdWaLEC shows 82.6% and
85.43% less recovery latency compared to SOCK and all warm approaches. To conclude, we

1.5. MAIN CONTRIBUTIONS OF THE THESIS 6

implement AdWaLEC on a real-time application to determine its impact in a pragmatic scenario.

1.5 Main Contributions of the Thesis

The main contributions of this thesis are as follows:

• Firstly, we discuss various reasons, contributors, and impacts of cold start in the
OpenLambda platform. Besides, we explore the traditional approaches and recent studies
to minimize cold start time for containers and their suitability in the lambda model.

• In addition, we propose an integrated, structured approach to counter the cold start problem.
We develop WLEC, an S2LRU++ based architecture to handle the containers in a more
structured fashion to ensure less start-up latency and better concurrency than the ubiquitous
lambda model.

• After that, we describe the design, components, workflow, and implementation of WLEC
in the OpenLambda platform and evaluate it using Local VM and AWS VM with different
metrics.

• Further, considering the limitation of WLEC, we develop a multifaceted scheme named
AdWaLEC-an improved WLEC architecture that facilitates not only the cold start
mitigation but also fault tolerance for FaaS architecture.

• Next, we introduce an adaptive container replication model using Spearman’s Rank
Correlation Coefficient and integrate it with WLEC to mitigate cold start latency.

• Then, we solve the single point of failure problem for WLEC.

• Later, we present a reliable fault tolerance technique for serverless platforms named
WaLCoR, the first of its kind.

• Subsequently, we implement AdWaLEC in the OpenLambda platform and evaluate it using
Azure Function trace with seven different metrics. We provide an extensive performance
comparison of AdWaLEC with baseline, all warm, SOCK, and WLEC approach.

• Finally, we employ WLEC and AdWaLEC with a real-time image resizing application
from the Amazon Web Service (AWS) lambda pool and show the impact in a practical
scenario.

1.6. OBJECTIVE OF THE THESIS 7

1.6 Objective of the Thesis

The main objective of this thesis can be divided into three main questions. Firstly, How to
develop a scheme that can mitigate cold start latency significantly for ubiquitous serverless
applications? Secondly, How to design a fault-tolerant serverless architecture for critical FaaS
applications? Finally, How to formulate one combined solution that can answer the previous two
questions ensuring reduced cold start latency and fault tolerance? In summary, our objective is
to design a reliable and effective fault-tolerant scheme consolidated with an adaptive cold start
mitigation strategy.

1.7 Major Challenges

Cold start mitigation has become a burning question for cloud researchers. Large and critical
applications required dealing with chained requests and interlinked applications. Thus, a single
request may require booting up multiple containers with functions and getting a response.
Consequently, cold start latency may increase exponentially from a single request for clients.
Dealing with such cases with a structured strategy will be a crucial design challenge. Similarly,
conventional fault tolerance techniques like Retry, Record and play, Checkpointing are designed
for stateful architectures. However, serverless applications are stateless by nature. Hence,
developing a fault tolerance scheme for stateless applications would be a significant obstacle
to overcome. Integrating both solutions into a single scheme can have an unknown effect on
the overall architecture. To sum up, we must formulate a novel, robust, efficacious, and high-
performance solution that can facilitate cold start mitigation and fault tolerance effectively and
efficiently.

1.8 Thesis Organization

From here on, in Chapter 2, we discuss the motivations behind our work. In Chapter 6, we
mention diverse and relevant previous research works that discuss the reduction of the cold
start time, rank correlation, and fault tolerance for serverless platforms. Then we provide the
necessary definitions and in-depth descriptions of most of the terms and components we used
later in our work in Chapter 4. We describe Pannier, OpenLambda and its various components,
Ranking correlation and correlation coefficients, Thundra, Cold Start, and the role of cache
replacement policies in our work for container management. After that, in chapter 5, we describe
WLEC in detail, along with all the components and CMS functions of WLEC. Later, we narrated
Advance WLEC, its components, function, and fault tolerance in Chapter 5. Then we move on
to Chapter 7, evaluating our schemes with the OpenLambda setup. Our performance comparison
shows how WLEC can play a leading role in minimizing cold start time, whereas Advance

1.8. THESIS ORGANIZATION 8

WLEC can be potent in providing fault tolerance for serverless architecture. Next, in Chapter 8,
we look at some of the possible future works of our thesis, and finally, in Chapter 9, we conclude
our thesis on a promising note.

Chapter 2

Background & Motivation

In this chapter, we discuss our motivations behind choosing cold start time minimization as our
research topic. We analyze the current condition of the OpenLambda platform and determine the
effects of the cold start time. We also explore established methods for handling cold start delays
for serverless service providers.

2.1 Cloud Computing

The immense unpredictable demand for dynamic, real-time web service in the current web 2.0
era, along with the 4th industrial revolution, has paved the path for the rapid adoption of large-
scale cloud computation services. The idea of virtualization and the need for on-demand dynamic
resources for storage, computation, processing, and scaling pushed us to the cloud revolution
in the IT field. Cloud computing can be considered an extension of the previous concept of
“Grid Computing”. However, the main focus of grid computing was grid middle-ware-based
decentralized, distributed, parallel computer architecture. In contrast, cloud computing relies on
virtualization, on-demand service, and automatic ultra-high scaling [127].

2.1.1 Definition

The term “Cloud” basically refers to the collection of computer resources that collectively
provide millions of services to its users. In another definition, “ A cloud is a pool of virtualized
computer resources” [95]. The fundamental nature of interactive, middleware-free, and user-
focused architecture design distinguishes a cloud from its antecedent grid architecture. So, Cloud
computing is a computing model that utilizes these clouds(virtualized resources) and shares their
information, software, and other resources with different devices over the internet to provide
maximum computation power.

9

2.1. CLOUD COMPUTING 10

Figure 2.1: Cloud architecture

2.1.2 Basic Architecture

The basic architecture of cloud computing is shown in fig 2.1. A general cloud application has
two main parts: front end and back end.

When a user wants a cloud service, he needs to go to the application home page, also known as
front end. Users can access it via a mobile, desktop, or laptop client. From there, the user sends
a request for the cloud service to the back end. The front end contains all the services available
on the page. The request goes to the back end via an API designed by the service provider.

The second part, back end, contains all the resources and codes required to process the requested
service and send a response to the front end. It contains resources like storage, database, codes
for request processing, etc. The response is also sent using the same API that brought the request.
All cloud applications follow this same architecture for customer service delivery.

Figure 2.2: Layers of cloud

For cloud computing architecture, the cloud can be divided into six layers shown in fig 2.2 [55].

2.1. CLOUD COMPUTING 11

The lowest layer of the cloud consists of hardware like cables, plugs, switches, etc. The next
layer above the hardware is the server. Cloud hosts a large number of servers. Servers are
installed and maintained according to the need of the cloud owner. Servers vary from simple
authentication servers with low resources to large data processing servers with thousands of cores
of processors. The next layer is Infrastructure. Resources within a server or distributed among
multiple servers can be combined using virtualization techniques. These packaged virtualized
resource bundles are called infrastructures of the cloud. Each Infrastructure can hold one or
multiple platforms. Hence, the platform layers come in. Here, it can host one or multiple
applications. The application layer holds all the applications hosted in the cloud. Finally, the
client layer provides simple client interfaces to connect with the applications of the application
layer.

2.1.3 Cloud Deployment Models

There are various cloud deployment models based on their usage, requirement, and user base.
We discuss the five most commonly used models. They are Public cloud, Private cloud, Hybrid
cloud, Community cloud, and Virtual Private cloud. A representation of various cloud models is
shown in fig 2.3.

Figure 2.3: Cloud deployment models

Public Cloud

A cloud system developed and managed by service providers but open to being used by the
general public is called a public cloud. It is also known as External Cloud, Multi-tenant Cloud.
The main advantage of using the public cloud is that the users do not have to worry about cloud
management while they can focus on the application. But a primary concern of the public cloud
is security through data bridge on the public cloud is rare. It is especially appealing for small

2.1. CLOUD COMPUTING 12

users and enterprises with no budget for large infrastructures like data centers. Users get the
service via web browsers removing the necessity of installing any additional application for the
service. Users pay only for the duration of service, known as the pay-per-use model. Some
prominent public cloud providers include AWS, Azure, and Google Cloud.

Private Cloud

A private cloud is a special kind of cloud that is managed, maintained, and used exclusively only
by the consumers of a single organization. It is also known as Internal Cloud, Enterprise Cloud,
and On-Premise Cloud. Generally, if any organization has its own data center, a private cloud is
the best option to utilize the already available Infrastructure and resources. It provides strong
security, privacy, and governance over the data. However, the main drawback is the constant
maintenance which can become too costly.

Community Cloud

When some organizations jointly develop and manage a cloud infrastructure that is used by the
community from those organizations focusing on some common concerns is called community
cloud. The cost of maintaining these clouds is spread among the members. So, it reduces the cost
of maintenance significantly. Community clouds can also be managed by a third party if agreed
upon. Typically, organizations with common shared interests become part of a community cloud.

Hybrid Cloud

A hybrid cloud is a unique cloud environment comprising private and public clouds. This kind of
cloud is mainly used in enterprises because of its practicality in day-to-day use. On the one hand,
it facilitates secure, private customer data. On the other hand, it can leverage external cloud
resources as needed for large-scale computation. The accommodation of these two significant
features has made the hybrid cloud the most popular choice among large organizations. It allows
shifting workloads between private and public clouds when necessary, causing less cost than
expanding the private cloud. It provides more flexibility and better options to businesses for data
deployment.

In fig 2.4, we have shown an example of various communications and interactions of hybrid
clouds. Enterprises have their private clouds, which directly communicate within the enterprise
network. Then a public cloud also can connect with these private clouds. Enterprise networks also
can directly communicate with the public cloud. But private cloud to public cloud communication
should be happening with the help of a virtual private cloud to ensure data and network security.

2.1. CLOUD COMPUTING 13

Figure 2.4: Interaction of different clouds

Multi-Cloud

The multi-Cloud deployment model involves multiple public or private cloud service providers
or a combination of both. Here, multi-cloud service providers can engage multiple vendors
for public and private cloud services. It provides redundancy and ensures a low chance of
service interruption incidents like DDos, Disaster, or Power outrage issues. Users can choose
a vendor based on the data requirement regardless of the public and private nature of the data.
It eliminates the vendor lock-in limitation. The multi-cloud model offers high availability, low
latency, flexibility, cost optimization, and risk mitigation. It guarantees high computing power
and storage availability at the same time. However, dealing with multiple vendors and service
providers may result in complex operational overhead and high attack surface area for system
exploitation.

Virtual Private Cloud

Another recent cloud deployment model is Virtual Private Cloud(VPC), implemented by Amazon.
It creates a secure bridge between users’ private and service providers’ public clouds. The security
of the private cloud is conserved through a Virtual Private Network(VPN), and in a public cloud,
end dedicated isolated resources are provisioned to provide data privacy.

2.1.4 Cloud Service Models

Cloud services are now considered a part of the larger Anything-as-a-Service model, also known
as “XaaS”. It means anything in a cloud environment, like storage, computing, network, database,

2.1. CLOUD COMPUTING 14

logging, identity, mobility, content, etc., can be presented to a consumer as a service. Starting
from the Infrastructure-as-a-Service(IaaS) to Data Recovery-as-a-Service(DRaaS) shown in
fig 2.5, all these services are designed utilizing the typical cloud architecture of a simple request-
response model without writing any extra codes. Most of these services are also open-sourced,
meaning they are free to use and provide high flexibility, scalability, and easy-to-access features.
Here we discuss some of the most widely known as-a-services.

Figure 2.5: Cloud service models

IaaS

IaaS stands for Infrastructure-as-a-service. In this service model, service providers allocate
virtual resources like storage, processor, networks, and other resources upon the request of users.
Users utilize these resources according to their needs and emancipate them after usage. Users
are only billed for the time that the resources were in use. The main advantage here, this model
removes users’ need for infrastructure amelioration for ephemeral demands. Users do not need
to intervene in the resource management and control of the resources. Utilizing the distributed
computing systems of the service provider, consumers can achieve the fastest service delivery
rather than waiting for the tasks to finish one by one until the end. Thus, providing ultra-high
scalability and concurrent execution for large and complex computations. IaaS service examples
include GoGrid, Amazon EC2, Amazon S3, etc.

In fig 2.6, we find a general concept of the IaaS service model. Here, various clients are connected
with small-scale cloud data centers managed by the broker. These small-scale cloud data centers

2.1. CLOUD COMPUTING 15

are called cloudlets. The broker maintains the cloudlets with the help of cloud info service. The
broker is connected to a larger data center that hosts many VMs. The service provider manages
all the cloudlets, the broker interfaces, and the data center behind them.

Figure 2.6: Infrastructure as a service model

PaaS

The Platform-as-a-Service model is a service delivery model where service providers offer tools
and software for the developers to build their services by combining those resources. It removes
the need to buy new software and tools for the development process, and developers do not
require to worry about the issues related to software life cycles like version management of the
platform, upgrading the platform, libraries, packages, and codes according to it. It becomes
the service provider’s responsibility to grant the opportunity to developers to focus on the
application services. Services of PaaS include developing, testing, deploying, hosting, versioning,
monitoring, etc. It also allows developers to run multiple versions of a system simultaneously.
However, a significant drawback of PaaS is the need for more tools to migrate old services from
on-premise to the PaaS platform and support only a small bunch of programming languages.
Microsoft Azure, Google Sites, SAP Cloud Platform, etc.

The basic architecture of the PaaS service is shown in fig 2.7. Here, we can see the service model
of the popular PaaS service provider Heroku. It helps developers with a container management
ecosystem to make the software delivery process more app-centric. Developers utilize all the
tools and platform features to create the desired application and services. The platform handles
all the maintenance, versioning, load balancing, and package management tasks. It facilitates
developers to focus on application creation and delivery process. Heruko keeps the application
up-to-date by managing the patching, upgradation, and other maintenance-related tasks.

2.1. CLOUD COMPUTING 16

Figure 2.7: Platform as a service model [52]

SaaS

A Software-as-a-Service model is a software licensing and delivery model where users use
licensed software on a subscription basis. Users use the software from their devices’ web
browsers. Though researchers argue that it goes against the free software model, it has gained
massive popularity among consumers. The easy access feature removes any need to install
software and hardware requirements. That’s why it’s also called On-demand software, Hosted
Software, and Web-based Software. Users can customize the configuration based on their needs.
However, these settings are based on predefined customization options of the software. It also
enables distributed computing features of the software back end. The major drawback of SaaS
can be latency, over-dependency on internet speed, and data security. An example includes
Salesforce.com, Gmail, Facebook, etc.

We have shown a fundamental structure of SaaS in fig 2.8. An application of SaaS follows
a subscribed-based policy. The application is hosted in the cloud and available to the users
through an application interface. Here, we see that behind the application lie servers, databases,
and codes. The vendor also manages all these components and hosts in the cloud. The vendor
manages all the servers and handles scaling, load balancing, and versioning. Users only access
the application.

FaaS

Function-as-a-Service is the newest service model among the cloud service. In this model,
service providers allow users to design and run their application functionalities utilizing the cloud
resources provided by the service provider without going through the complexity of building

2.1. CLOUD COMPUTING 17

Figure 2.8: Software as a service model

and maintaining the Infrastructure for the development process. Unlike PaaS, FaaS does not
require a constantly running process. The FaaS model only starts a process upon getting a
request for specific function execution. As a result, processing initial requests may take several
seconds, but consequent requests are processed within milliseconds. Users only need to pay for
the function execution time resulting in lower cost and higher scalability, allowing cost-free idle
time. Amazon Lambda, OpenLambda, and Microsoft Azure Functions are some examples of
FaaS services.

Figure 2.9: Function as a service model of AWS

Fig 2.9 provides a general architectural overview of FaaS applications. A user sends requests

2.1. CLOUD COMPUTING 18

to the API gateway of the FaaS service provider. The API gateway triggers a lambda function
based on the request parameters and configuration status. the lambda executes a request and
completes a task; for example, put an item in DynamoDB as shown in fig. The lambda returns
the output to the API gateway. The gateway passes the request to the user. The service provider
manages resources, libraries, packages, and environments for the lambda that executes when a
request arrives.

DBaaS

Database-as-a-Service is a service model where users can set up, operate and scale using a
standard set of primitives in any database that the service provider manages. So, consumers do
not need to worry about what kind of database he is using as the same set of interactions are used
for SQL, NoSQL, and Object-Oriented Databases. Amazon first introduced it with its Amazon
RDS service in 2009. The abstraction of the service provides more features like versioning,
scalability, flexibility, migration, provisioning, and concurrency. DBaaS also ensure data security
and reliability through its huge distributed cloud setup. Many applications can use the same
data without any configuration changing though they can be for different platforms like Android,
ios, or windows. DBaaS examples are IBM Cloud Databases, Oracle Autonomous Databases,
Google BigQuery, etc.

Figure 2.10: Database as a service model [126]

Here, we show an example of DBaaS in fig 2.10. We find that database users request data from
the database owner. The database owner, however, does not host any data permanently; instead,
he outsources data from a Cloud Service Provider (CSP). Based on the request received from the
database users, the database owner sends a query to the CSP. The CSP fetches that data with a
query result returned to the database owner. The database owner then returns the requested data

2.1. CLOUD COMPUTING 19

to the database user. The database owner manages user privileges, user groups, and user policies.
CSP ensures data integrity, confidentiality, and security.

NaaS

NaaS stands for Network-as-a-Service. It can be defined as a service delivery model where
service providers supply a virtual network environment to the customer by consolidating network
hardware and software resource. It eliminates the need to set up any network for testing and
simulation tasks for the consumer. The network virtualization technique plays a key role in
NaaS. Service providers utilize the same physical network to build multiple small or large virtual
networks. These networks can communicate with each other for performance evaluation. It adds
availability, reliability, and agility for contemporary static network environment. NaaS provider
includes Senet-LoraWAN,

Figure 2.11: Network as a service model

An orthodox example of a NaaS service provider is Cloudflare, shown in fig 2.11. In the figure,
we can see that NaaS provides a bridge between clients and applications. Clients from enterprises
or general users use NaaS-provided networks to communicate with the application, websites
in the cloud, and the public internet. Cloudflare’s NaaS service includes DDoS protection,
Warp, Internet Access, Network Interconnections, Transits, and Gateway services. As it runs
on a subscription-based policy, users are charged based on the number of subscribed features.
Enterprise users can utilize customized subscription plans based on their requirements.

CaaS

Container-as-a-Service is a cloud service model that lets developers deploy and manage
applications through container-based abstraction using on-premises data centers or the cloud.

2.1. CLOUD COMPUTING 20

The service provider offers an orchestration framework in which the containers are maintained
automatically. It encourages the current containerization trend for cloud-native apps and micro-
services. Consumers only pay for the resources consumed by their containers for the running
duration. CaaS stands in between IaaS and PaaS. Users can achieve portability and flexibility
as developers can efficiently move them between cloud environments. Developers can scale
it both vertically and horizontally. Because of the isolation and autonomy nature of CaaS, an
application can effectively achieve increased security, efficiency, and reduced latency. The most
famous example of CaaS is Kubernetes by Google and Redhat OpenShift.

Figure 2.12: Container as a service model

In fig 2.12, we have shown a basic structure of CaaS services. CaaS service providers provide the
underlying virtualization and virtual machine setup. Here, we can find that two virtual machines
have been created: VM A and VM B. With the help of docker, configured and prepared by the
vendor, developers deploy their containers into these virtual machines. As the containers are
transferred into these virtual machines, appropriate libraries crate the compatible environment
for the containers to run appropriately on these virtual machines. Thus developer remains free
from the issues like memory management, CPU management, or disk management.

DRaaS

Data Recovery-as-a-Service offers replication and hosting-related services for physical and
virtual servers to provide fail-over support in case of catastrophic events like a natural disaster,
power outage, or any other kind of business disruption. The requirements and expectations are
documented in the service level agreement, and the service provider offers DRaaS service on
a pay-per-use basis. The off-site data recovery lets the service provider take a DR action plan

2.1. CLOUD COMPUTING 21

in times of actual disaster since off-site locations are less likely to be affected than itself. It
removes the cost of maintaining multiple secondary backup data centers for customers. DRaaS
providers use automated, intelligent data replication mechanisms rather than like-to-like ones.
An important issue is trust between enterprise and service provider, data security, and effective
data replication. Flexential, Carbonite, and Infrascale are some DRaaS service providers.

Figure 2.13: Disaster recovery as a service model

A popular DRaaS vendor in the international market is Veeam. Fig 2.13 shows a disaster recovery
service model of Veeam. We can find that Veeam maintains a replication of each VM of the
on-premise server VMs. Encryption-based SSL/TLS connection is used in the replication transfer
process between the host and the cloud recovery site. The secured cloud gateway ensures that
all replications are kept in the cloud in the most orderly and secure manner. Besides, Veeam
provides solution design and implementation features for all replicated applications. 24/7 live
support is also required to guarantee a secured, uninterrupted backup process behind the scene.

2.1.5 Virtualization

Virtualization is a term used heavily in a cloud environment despite the birth of the concept in
the 1960s. Virtualization can be defined as a transparent emulation of the computer resource
to facilitate higher access of the resources to the users, which is absent in physical form. The
computer resources include storage, network, hardware, etc. Significant benefits of virtualization
include memory expansion, resource optimization, fault tolerance, and higher availability.
Developers use a tool called hypervisor to create a virtual machine over the host machine.

2.1. CLOUD COMPUTING 22

Figure 2.14: Virtualization trend

In earlier settings, applications needed their environment, including hardware and software.
The introduction of virtualization has made it possible to share the same hardware for
multiple operating systems (OS) known as Virtual Machine (VM) [17]. Later container-based
virtualization allowed us to use the same OS and H/W for different applications. The repackaging
of Unix-style processes combined with distribution tools has gained huge favor among developers,
known as Docker [41]. However, the Lambda model is the latest virtualization model that allows
sharing of runtime resources. It has revolutionized the concept of Serverless Computing.

OS-level Virtualization

OS-level virtualization is a special kind of operation system virtualization that allows running
multiple isolated userspace instances over the same kernel [98]. The userspace instances are
known as containers. These containers work like their own entities having all the features of a
general OS. The containers allow the allocation of unique resources like CPU, RAM, storage,
and network settings. They can be run separately or concurrently based on the demand. Different
applications are assigned into individual containers to ensure isolated and dedicated resources
for each application. The containers can communicate with each other for optimum resource
usage. Features like high concurrency support, resource optimization, load balancing among the
nodes, security, and hardware independence are implemented through OS-level virtualization.
A drawback of OS-level virtualization is flexibility. It does not support guest instances that are
different from host instances. For example, the Linux host instance functions well with other
Linux distributions but does not support Windows.

Storage Virtualization

Storage virtualization is a pooling technique that consolidates storage from multiple physical
storage devices and makes it available to applications that appear as one harmonious storage

2.2. SERVERLESS COMPUTING 23

device. This virtual technique allows applications to spread their data over multiple storage
devices removing the single-point failure problem of the data. The storage is virtually controlled
from one central console. The technology requires software to identify available physical storage
spaces and accumulate them to present them in a virtual environment. These virtual storage
have a standard read-write operation mechanism for physical drives. One significant advantage
of storage virtualization is data redundancy and replication over multiple disks. Two primary
storage virtualization methods are block-based storage virtualization and file-based storage
virtualization.

Network Virtualization

Network virtualization creates an abstraction of network resources by combining physical and
software network resources to be delivered through a central software-based administrative
entity. These abstractions are called virtual networks. This virtual network allows network
administrators to move virtual machines over different domains without configuring the network.
It also enables running multiple virtual network overlays over the same physical network. Thus it
makes the network agile, dynamic, and efficient and reduces the provisioning for new application
time from week to minute. This virtualization is popular with developers’ software testing
as developed can simulate the network environment and deploy the application to determine
performance over any network. VLAN is the most common example of network virtualization
by virtualizing large LANs into smaller network modules.

2.2 Serverless Computing

Serverless computing is just the latest edition of the “as a service” model of cloud computing.
Different versions of the model, like Infrastructure as a service (IaaS), software as a service
(SaaS), and Platform as a service (PaaS) have been provided by the cloud providers offering
customers different levels of resources like software subscriptions to whole computing systems.
Serverless is in the fourth category: Functions as a service (FaaS) [26], which is based on
runtime-level virtualization. In the FaaS model, the developer does not need to think about the
runtime that the code uses. He needs to write code based on the platform and use a way that the
platform supports and uses the library provided by the platform.

With the Lambda model, applications are seen as a set of functions called lambda functions
instead of a collection of servers and developers. Different lambda handlers are written to handle
different kinds of requests. As we browse available lambda services, we find that the lack of
complete control over the lambda model hinders the implementation of the lambda model in
real life. All the core sections: request distribution, code files, and code executions- are hidden
from the developer because of security, consistency, resource management, and performance

2.2. SERVERLESS COMPUTING 24

issues [113]. The lack of control in code execution on specific containers results in increased
start-up time, also known as the cold start problem. Specifically, the cold start mainly refers to
the time delay from receiving a lambda request in the application to the start of executing code
for that request. Alternatively, the time of preparing a container to serve any request is called
cold start. As a result, the absence of any built-in mechanisms to counter cold start leads to the
same problem for all lambda models in the industry. Thus, the only possible way out from the
developers’ end is to send continuous hello request actively to keep those lambda containers
warm.

2.2.1 Emergence and Contextualization

Using the serverless platform can primarily be compared with a task like loading an image in
cloud storage or adding an image thumbnail to a database table. Because similarly to the above,
in serverless user writes a cloud function into his chosen language, uploads it into the platform,
and picks an event that should trigger the running function. Every other thing is the concern of the
service provider. Service providers’ responsibilities include time-consuming jobs like instance
selection, scaling, deployment, versioning, security, logging, monitoring, etc. Hence, allowing
much freedom to the programmer and taking advantage of a high-level language. We will call
the traditional approach of application development with consideration of server environment as
serverful cloud computing. A responsibility comparison with serverful and serverless approaches
is shown in table 2.1, indicating how serverless architecture provides programmers opportunities
to focus on the core application.

The main difference between serverful and serverless platforms can be discussed in three main
points.

• Separation of computation and storage: The storage space and computation are provided,
provisioned, and scaled separately. In traditional serverful applications, the common
practice is to have them on the same server, which becomes an impediment whenever only
one needs to scale exceptionally high and independently. For serverless, storage can be
provided by the same or separate provider and keep them on different physical entities
than physical computation machines. The computation is also stateless.

• No resource allocation: The execution of the function code does not need to allocate and
manage memories before its’ execution. Most serverful applications need to explicitly
manage their memories to ensure proper code execution in runtime because, otherwise,
memory leaks are risky. But for serverless architecture, memories are fully managed by
the service provider, and memories get allocated at runtime according to the need for
resources for execution.

• Payment based on the resource used, not resource allocated: Previously, in serverful

2.2. SERVERLESS COMPUTING 25

applications, users needed to pay the server provider according to the resource provisioned
for that specific application. Developers tend to allocate additional resources than they
need to support burst requests in peak hours. So, they had to pay for those additional
resources for the whole time though they are only used in peak hours. But in a serverless,
billing is done only for the resource used. Hence, eliminating the cost of standby resources.
But users get additional resources in peak hours utilizing serverless platforms’ dynamic
resource allocation policy and are only billed for those peak hours.

The popularity of the serverless platform is influenced strikingly by cloud functions(FaaS).
However, FaaS also owes its success to BaaS offerings as they existed in cloud platforms and
services from the beginning. These services represent serverless computing in a more general
form. An essential advantage of serverless over PaaS is allowing the developers to bring their
libraries to the platform-providing their vast support for customizing applications according to
their use cases. Kubernetes has become a famous ”container orchestration” technology to deploy
microservices. However, some confuse it with serverless architecture. A notable difference is
Kubernetes is mainly a management model for serverful applications developed by Google. The
primary use case for Kubernetes is to deploy an application on a cloud built for on-premise use
only. Thus, bringing out the idea of a hybrid cloud. A hybrid cloud is when an application is
partly run from local hardware, and other parts are run from the cloud. However, the adoption of
primarily serverless diminishes the value of hybrid could. Another difference of Kubernetes is it
is billed according to the resource allocated rather than the resource used. Edge computing can
also be seen as a unique serverless platform with embedded serverless execution in edge devices.

2.2.2 Serverless Platforms

Various platforms have provided serverless service. In this section, we provide a brief description
of major serverless service providers. We discuss their architecture, features, use cases, distinctive
traits, and high-profile consumers. Though other emerging open-source platforms are expanding
their businesses in serverless service, we only mention the key players that can provide enterprise-
level solutions and support such large applications.

AWS Lambda

AWS Lambda was the first public cloud service provider to initiate serverless computing service
for consumers in 2014. AWS utilizes its other services like AWS S3, AWS Edge, AWS
Fargate, DynamoDB, AWS EFS, Amazon Athena, Amazon Kinesis, etc., to ensure isolated and
independent service with AWS SAM. The event-driven computing service runs code responding
to events and automatically manages computing resources. AWS starts a lambda container and
provides the environment to execute codes for use cases like image uploads, object uploads,

2.2. SERVERLESS COMPUTING 26

updates to DynamoDB, and sensor readings from IoT-connected devices. AWS containers are
based on native Linux architecture. Provisioning based on custom HTTP requests to trigger
backend services and scale back when resources are not required can be done using lambda.
AWS Gateway API and AWS Cognito can handle the authentication and authorization tasks.
AWS supports various development languages like Node.js, Python, Java, Ruby, Go, C#, and
.NET. The maximum compressed size limit of the lambda package is 50 MB, and the maximum
uncompressed size limit is 250 MB.

IBM OpenWisk

IBM announced its own version for function-as-a-service back in 2016 based on Apache
OpenWisk. OpenWisk also works similarly to AWS Lambda with an event-driven architecture
and lets developers trigger responses to the events. It enables the user to design microservices
that execute code when an event like a mouse clock or sensor data retrieval from IoT end
devices. It offers chaining to connect multiple applications developed separately. Integrated
container support eliminated vendor lock-in by letting developers run custom codes on Docker
containers. It supports languages like Node.js, Swift, PHP, Python, and Java. It is also compatible
with other built-in cognitive services like Watson and Weather. A differentiating point of IBM
OpenWisk from Google Cloud Functions and AWS Lambda is their emphasis on Docker
container integration. Use cases of IBM Openwisks are the serverless web application, API
development, and integration, mobile applications with serverless back ends, making searchable
videos, microservices, etc. Notable customers of high ranks include GreenQ, articoolo, SiteSpirit

etc.

Google Cloud Functions

Google cloud function is a serverless platform to develop and execute cloud functions and use
such functions as building blocks for large applications. It was developed in 2016 to connect
various google provided services and bring them in front of the developers so that they can
be monitored with the help of tools like Cloud Trace or Cloud Debugger. These functions let
developers trigger codes from other google services like Google Cloud, Firebase, and Google
Assistant, or even via HTTP calls from any web or mobile application back ends. These cloud
functions can be written using JavaScript, Python 3, Go, NodeJs, or Java runtimes.

Cloud functions also have access to the Google Service Account credential, allowing seamless
authentication with other cloud services like Cloud Vision. Binding a cloud function with a trigger
of an event allows users to catch the event and act on it accordingly. The fine-grained, on-demand
nature of Cloud Function makes it a perfect candidate for lightweight AAPIs and Webhooks.
Other use cases include sentiment analysis, video and image analysis, virtual assistants and
conversational experiences, real-time stream processing, real-time file processing, serverless IoT

2.2. SERVERLESS COMPUTING 27

backends, serverless mobile backends, integration with third-party APIs, etc. Major customers
of Google Cloud Functions include ebay, PayPal. HSBC, 20 Century Fox, LG CNS etc.

Azure Functions

An azure function is an event-driven serverless computing platform that works with triggers
and binding of functions with those triggers to facilitate simplified and accelerated application
development. The platform started its journey in limited release in March 2016 by Microsoft.
The azure function was designed to extend existing Azure application services and empower
them with capabilities like code implementation triggered by events occurring in the Azure cloud
or other third-party services. Fully integrated with other Azure services and development tools,
its end-to-end development experience allows developers to build and debug functions locally on
any major platform like Windows, Linux, or macOS.

Automated scaling and provisioning of serverless nature provide simple orchestration for complex
orchestration challenges. The pay-per-execution trait encourages deploying the same application
in different hosting environments according to the application’s needs. Azure function support
various languages for its application developments like .NET, Python, NodeJs, Java, etc. The
built-in security and monitoring tools like Azure Application Insights and Azure Monitor equip
developers to spot bottlenecks and failure hotspots across the application architecture pipeline.
The enterprise-grade FaaS platform also has PowerShell support and Durable Function feature,
which provides a way for stateful applications to be defined in a programmatic serverless manner.
Use cases of Azure function include time-based processing(Corn workloads), Software-as-a-
Service (SaaS) event processing, mobile backends, real-time stream processing(IoT), or real-time
bot messaging. High profile Azure functions include Relativity, FujiFilm, direct.one, Hotailors

etc.

Oracle Functions

Oracle functions is a Function-as-a-Service provider that allows serverless benefits like
fully managed, on-demand, high scalability, and multi-tenancy service. It utilizes docker
containerization and enterprise-grade Oracle Cloud Infrastructure. It is built upon the open-
source Fn project, a container native serverless platform. Oracle functions are also integrated
with Oracle services like Oracle Cloud Infrastructure Identity and Access Management(IAM)
to provide secured authentication and authorization service. Users can access via Console,
CLI, or REST API. We can automate various tasks based on the state change of infrastructure
resources of oracle cloud using the Oracle assigned identified called Oracle Cloud ID(OCID).
However, the limited availability release of Oracle Functions has the constraint of a maximum of
10 applications and 20 functions in a tenant. The maximum data limit to send to a function or to
receive as a response has a maximum limit of 6MB.

2.2. SERVERLESS COMPUTING 28

Oracle functions support various languages like Java, Python, NodeJs, Go, Ruby, etc.
The administrator can also control the access of different resources by setting up groups,
compartments, and policies. The rules defined for each entity are easy to set up and intuitive.
It also provides predefined event types for subscribing to Oracle Cloud Infrastructure Native
Service resource changes. Use cases of Oracle functions include back ends of event-driven
applications for web and mobile, real-time file processing solutions, real-time stream processing,
DevOps, and enterprise-level security solutions.

Cloudflare Workers

Cloudflare workers are the serverless platform by Cloudflare to allow developers to develop
applications without the concern of infrastructure. Cloudflare workers’ runtime uses the V8

engine, the same engine used by Chromium and nodeJs. These workers’ functions run on
the globally distributed network of thousands of machines called Cloudflare’s Edge Network.
Each machine hosts an instance and can run thousands of user-defined apps. Workers are built
on lightweight contexts that group variables with the code allowed to mutate them, known as
isolates. When other serverless service providers use containerized processes, Workers pay the
overhead of JavaScript runtime. However, the isolate can run essentially limitless scripts and start
almost a hundred times faster than a node process on a container. Isolates are also resilient and
continuously available for the request duration, but isolates may get evicted in case of hitting the
script limit, resource shortage, etc. Workers’ instances may handle multiple concurrent requests
in a single-threaded event loop. But there is no guarantee that two requests will land on the same
instance. Computation per request is another essential trait of Workers.

Cloudflare Workers supports languages like JavaScript, C, C++, and Rust. It also supports 0ms
cold starts with script isolates. It has built-in support for Edge storage: a low-latency key-value
data store. It provides the ability to generate static assets like images, SVGs, and PDFs on the
fly and to deliver them as static assets to users. It is also ten times less expensive than other
serverless platforms with an exceptional free plan. Uses cases of Cloudflare Workers include
customized affordable e-commerce experiences, enforcing secured custom authorization and
authentication, robust, granular test deployment with Workers KV, and controlling cheaters,
spammers, trolls, and other bad actors by storing IPs and user IDs. Major high-profile customers
of Cloudflare Workers are npm, Discord, Maxmind. Optimizely, Cordial etc.

2.2.3 Challenges Ahead

In this section, we explore various limitations of contemporary serverless architecture. We
mention various problems identified by the application developers and how they are affecting user
experience. These limitations can also be viewed as challenges ahead for serverless platforms to
be adopted as the first application development platform choices for developers. We also tell how

2.2. SERVERLESS COMPUTING 29

these challenges could be tackled and various proposed methods by the developer to avoid various
bottlenecks and overheads of traditional serverless architecture. We discuss issues like function
chaining, heterogeneous hardware support, fault tolerance service, communication overheads,
best storage solution, vendor dependency, start-up minimization, coordination mechanisms, etc.

Function Chaining

Diverse applications are required to fulfill the need of clients; sometimes, developers may need
to design applications where multiple functions need to be executed to serve the request. This
sequential execution of FaaS functions is an important requirement for applications with heavy
workloads. However, this service is only available to a limited number of serverless service
providers like IBM Action Sequences or AWS Step Functions [9]. The trigger process of these
sequenced functions can be divided into two types. (1)External event triggers functions using
the client request process. (2)Internal event triggers a new function as a part of the execution
workflow of another function. Existing serverless architecture treats them as the same and often
requires a full end-to-end function call path. Hence, it incurs undesired latency. But such latency
can easily be avoided by sharing information about function states of member functions within
the same function stack.

Heterogeneous Hardware Support

In this age of machine learning and artificial intelligence, it has become eminent that cloud
services need to process large workloads that have never been seen before. As a result, the
need to combine specialized hardware has become critical for service providers. The stagnant
performance improvement of x86 microprocessors and DRAMs approaching the maximum
capacity per chip are indications for the service providers to explore other approaches to
meet future challenges. One such approach can be the widespread use of Domain Specific

Language(DSL) [50]. DSL enables developers to write applications specifying cost-effective
hardware requirements. Even developers can code targeting such hardware resources. It is
possible to write code using a high-level language like Python or JavaScript that would create
hardware-software co-design leading to a language-specific custom processor. These processors
can be one to three magnitude faster than contemporary ones. We are already watching the
evolution of such designs as Graphics Processing Units (GPU) to Tensor Processing Units (TPU).
TPU outperforms GPU by 30x. Though this hardware-software co-design may clash with the
“hardware independence” philosophy, we may think of it as soft binding to hardware rather than
a hard one. So, dynamic physical decision-making to utilize available heterogeneous resources
on the fly may change the course of serverless architecture.

2.2. SERVERLESS COMPUTING 30

Ensuring Secured Fault Tolerant Service

The ephemeral and distributed nature of serverless applications has made it challenging to design
a fine-grained security model. We need access to private keys, storage objects, and temporary
local resources to develop such a model. One such model can be a capability-based access
control mechanism using cryptographically protected security contexts. Cloud applications’
physical co-residency causes hardware-level side-channel attacks or Rowhammer [62] attacks.
A randomized scheduling algorithm with physical isolation can prevent such attacks. Another
vulnerability of cloud functions is that they can leak access patterns and timing information
through communication. The widely distributed nature of cloud functions makes these leaked
sensitive information an excellent tool to interrupt services. The practice of decomposing
serverless applications into small functions also exacerbates the situation. The adoption of
specific network pattern protection algorithms can be the solution for it. Users demand fine-
grained system-level security isolation for each function. But providing such function-level
sandboxing without caching execution environment to facilitate state sharing between repeated
function invocations with short start-up time is a daunting task for security researchers. One
solution can be taking a snapshot of the instances of each function to start a clean slate.

Reduction of Communication Overhead

In modern cloud architecture, the standard communication mechanisms among different cloud
entities are broadcast, aggregation and shuffle. These operations are incredibly familiar among
machine learning and big data applications as they need to share information and communicate
with different cloud entities. From the previous communication pattern of VM-based instances,
we now have a function-based communication pattern which has become too costly in some
cases. In VM-based architecture, local instances within the same VM could share data with a
single message for broadcast communication. But in function-based communication, the locality
concept got excluded. They result in the requirement message propagation for each of the
functions. It has increased by message operation by k times, where k is the number of function
instances per container. For aggregation, it has also increased over time. Moreover, for shuffle
communication, the number of message operations is swelled by k2̂ times. It is challenging to
reduce the communication overhead because contemporary algorithms like leader election or
consensus do not apply to the transient nature of serverless architecture. A robust and effective
algorithm must be developed to reduce communication overhead.

Optimized, Efficient and Affordable Storage Solution

The current architecture of serverless platforms shows us the need for a different type of storage
to make considerable performance improvements. Researchers propose two different types of
storage Serverless Ephemeral Storage and Serverless Durable Storage [58].

2.2. SERVERLESS COMPUTING 31

The transient nature of serverless architecture explains the need for special ephemeral storage.
This storage is critical to maintaining the application’s state during the application’s lifetime.
Once the application finishes, it can be discarded, aligning with the stateless nature of serverless
applications. Researchers need to build a distributed in-memory service with an optimized
network stack to provide such a store. The state of the applications stored in this temporary
storage will allow applications to share and exchange states between functions during the
application’s lifetime. The key features of such a storage solution are automatic scaling, the
transparent allocation of memory, and free after the termination of the application with access
protection and performance isolation.

Serverless database application requires long-term data storage and the mutable-state semantics
of a file system. These applications need longer retention and outstanding durability than
serverless ephemeral storage. Researchers propose to leverage an SSD-based distributed store
paired with a distributed in-memory cache. A key challenge would be managing low latency
in distributed entities, cost-efficiency and high performance, and combining multiple existing
cloud storage offerings. Ephemeral storage, transparent provisioning, memory isolation, security,
and high performance should also be available here. One significant difference would be that
resource reclamation was automatic in the previous one but would be only based on explicit
command in the latter. Moreover, it must ensure extended durability, confirming fault tolerance
to any acknowledged writes.

Inevitable Vendor Lock-in

Though code dependency over the cloud platform environment is minimal, applications developed
over serverless platforms can become highly dependent on the service provider. As the platform
provides all the basic features like authentication, monitoring, and configuration management,
developers require keeping that in mind when designing the application. Serverless architecture
also facilitates incentives to let client applications connect directly to other resources that are
required and utilized by the application. These services generally come through the service
providers’ API. It makes the application highly reliant on the platform. Consequently, it reduces
the flexibility of the application. Hence, if developers want to move the application from one
platform to another platform would require a significant level of rewriting of existing code. So,
over-dependency on vendors has become a severe limitation for serverless architecture.

Improved Co-ordination Mechanism

The state-sharing model of serverless applications can be compared with the contemporary
producer-customer design pattern. Consumers require to know the availability of products as
soon as possible from the producers. Likely, one function might need to signal other functions
about the state or condition of a function when available and might also require coordination with

2.2. SERVERLESS COMPUTING 32

more functions. Such a signaling mechanism will improve micro-second level latency, reliable
delivery, and broadcast with group communication. However, implementing such a signaling
algorithm would require extensive exploration as currently distributed algorithms would not
suffice the requirements.

Start-up Minimization

The start-up time can be divided into three parts. (1) scheduling and starting resources to run
the cloud function, (2) downloading the application software environment to run the function
code, and (3) performing application-specific start-up tasks such as loading and initializing
data structures and libraries. Researchers have proposed lightweight isolation-based models as
resource scheduling, and initialization may incur significant delays and overheads.

One approach has been proposed to reduce application environment-related delay based on
unikernels [58]. Unikernels are specifically designed to avoid these overheads in two ways. One,
unlike traditional operating systems where hardware detection, application of user configurations,
and data structure allocations are made dynamically, in unikernels, these costs are averted
by statically allocating data structure and hardware detection mechanism. Two, unikernels
only include drivers and libraries strictly required by the applications. So, unikernels have a
lower footprint as they are tailored for specific applications. Another popular approach is to
dynamically and incrementally load libraries as applications invoke them.

Reduction of application-specific initialization delays may require some out-of-the-box thinking.
One recent proposal by researchers is to include a readiness signal in API to avoid sending work
to function instances before they can start processing it [58]. Cloud providers can also perform
start-up tasks ahead of time. This can include tasks like booting a VM with a popular operating
system and loading a set of pre-configured libraries based on the type of application.

Cookies and Sessions

The architecture of serverless is based on the short-lived, stateless lambda functions. But in
serverful applications, users typically expect web applications that consist of many different but
related interactions among web applications themselves. In such applications, the traditional
practice of the developers is to keep a shared view of cookies from the browser, which is
interacted with by the applications whenever necessary. But the stateless nature of lambda
functions does not support this concept. So, it is challenging for lambda providers to allow
developers a shared view of cookie sate across application calls issued by the end-users.

In modern web applications, two-way data exchange is typical between servers and clients during
a single session. This exchange is typically managed and facilitated by WebSockets or by long
polls. These protocols are especially challenging for Lambdas because those protocols are based
on long-lived TCP connections. Suppose the TCP connections are maintained within a Lambda.

2.2. SERVERLESS COMPUTING 33

Handler customers will be charged even when the handler is idle, which directly contradicts
the pay-as-you-go principle of serverless platforms. Alternatively, to manage TCP connections
outside of the handlers, providers need to manage connections for new Lambda invocations and
past invocations.

Data Aggregators

As we live in an era propelled by information, applications must evolve to handle and manage
large data sets. Hence, applications now require to make search queries to search, feed and
analyze them for application purposes. So, parallelism over different data shards is critical to
managing such applications. But building such an application over lambda is highly challenging
because of the need for exceptional lambda support.

A solution for such a case could be a coordinated tree structure of Lambda functions. Leaf
Lambdas will filter and process data locally, and a front-end Lambda will combine the results. It
would be critical in performance prospects if Lambda leaves could be co-located with the data
when they filter and transform large data sets. Custom data stores need to be built with lambda
leaves to achieve that. Hence, it opens the possible adoption of diverse aggregator applications
for pre-processing the data. Various APIs for coordination with a variety of backends will be
required.

2.2.4 Serverless in Action

A recent study was conducted by serverless.com in their blog in 2020 to understand the adaption
rate, problems, feelings of developers, and prospects of serverless architecture in [47]. So, they
created a survey name the “State of Serverless Community” survey. They distributed the survey
through their newsletter, blog page, Facebook, Twitter, and other social media to connect with
the serverless application developers. They found a total of 137 responses from all around the
globe including participants from North America, Europe, and the rest of the world. Four aspects
were analyzed from the survey: (1) Use case of serverless. (2) Frameworks used, (3) Tools and
language used, and (4) Future optimism ranking. But to better understand the result we need to
realize about the participants first.

Participants Analysis

To better understand survey responses, the participants were asked questions. Fig 2.15 shows
the role distribution of survey takers in the pie chart. We can see almost 60% of the participants
count as a developer, which can be further divided into three main categories Front-end
Developer(8.5%), Fullstack Developer(9.2%), and Backend Developer(44.6%). Almost 28% of
the participants come from positions like Engineering Manager(15.4%) and Executives(12.3%).

2.2. SERVERLESS COMPUTING 34

Engineering Manager

15.4%

Executive

12.3%

Other

10%

Backend Developer

44.6%

Fullstack Developer

9.2%
Front-end Developer

8.5%

Figure 2.15: Role of serverless users

The rest, around 10%, come from various diverse roles like DevOps, Architect, Product Manager,
etc. The popularity among businesses was also a significant concern. The survey shows start-ups
are more likely to adopt serverless, counting almost half of the respondents. However, large
companies also showed interest in serverless architecture, finding 39% of respondents are from
SMBs and 15% are from enterprise-level solutions.

0 20 40 60 80 100

Web service

Internet tooling

Data processing

Chat bots

Others

Internet-of-things 23

33

23

34

28

65

Percentage

Figure 2.16: User cases of serverless architecture

Use Case of Serverless

Though serverless is still in its early days, it is utilized for mission-critical workloads by
developers. From the survey, a horizontal bar graph is shown in fig. 2.16. We see about 50%

2.2. SERVERLESS COMPUTING 35

of the respondents use it for regular work purposes, which is enormous compared to its recent
development. Then we find 21% of the survey takers use it for side projects, but 22% participants
have experimented with serverless platforms but have yet to utilize it for projects. Among the
use cases, we find that developers use it primarily for web service tasks like API development
and management, consisting of 65% of the respondents. Chatbots, Internal tools, and Internet-of-
things all count for over 20% individually. A significant 34% of the participants use it for data
processing. However, 33% of the respondents utilize it for other purposes like mobile backends,
research, and development tasks.

Providers and Frameworks Used

Here, we try to find the most accessible frameworks and providers of serverless architecture
among participants. A breakdown of providers used by the respondent is shown in fig. 2.17.
For providers, we find that AWS Lambda is the most popular for the choice of 96% participants.
Then Azure came in second with 6%, and then behind that, Google Cloud Functions covered
only 4%. Lastly, OpenWhisk and Webtask came last, with 2% voted by participants.

We show the findings by analyzing fig. 2.17. Surprisingly, 76% respondents prefer AWS
serverless framework, also known as lambda framework. Apex was the second most popular,
having only 10% responses. Others like ClaudiaJS, Chalice, and Sparta have 5% or fewer
responses which means they are rarely popular among developers. However, 19% of survey
takers do not use any framework, and only 6% use other frameworks. So, we can easily recognize
the uncontested popularity of the lambda model among serverless architecture users.

Tools and Language Used

This survey indicates the most popular tools for serverless application developers to monitor
the architecture’s performance. In fig. 2.18, we can see CloudWatch of Amazon Web Service
is the most popular monitoring tool among developers comprising 80% responses. New Relic
came second for being used by 14% responders. In the third Data fog with 11% user response.
All other monitoring tools like Splunk, IOpipe, Sumo Logic, and AppDynamics cover 5% or
less individually. However, Developers use other tools for different purposes that only cover 7%
responses.

A prime concern for serverless applications is language support. So, the survey has a question
regarding the programming language used by the developers. We find that majority of the
respondents that are 75%, use NodeJs as their development language. It is understandable
because NodeJs was the first language supported by the serverless platform. In the second
position, we find Python with 15% and then Java with 8%. This small pool of language support is
one of the impediments to the extensive adaptation of serverless architecture. So, other language
support would need to be available soon.

2.2. SERVERLESS COMPUTING 36

0 20 40 60 80 100

Chalice

ClaudiaJS

Apex framework

Serverless framework

Sparta

None

Other 6

19

1

76

10

5

2

Percentage

Figure 2.17: Frameworks for serverless architecture used by users

0 20 40 60 80 100

New Relic

Data Dog

CloudWatch

Splunk

AppDynamics

Sumo Logic

IOpipe

Other 7

5

1

5

3

80

11

14

Percentage

Figure 2.18: Tools for serverless architecture used by users

2.3. ARCHITECTURAL PERSPECTIVE 37

2.3 Architectural Perspective

Container-based virtualization has now become a cornerstone of cloud platforms and data centers.
But the need for runtime-level virtualization to make easily deployable and elastic applications
with lightweight bundling opens up a new door in the virtualization concept named lambda
model. So, the recent development of OpenLambda has made it possible to take a closer look at
many problems and research areas of runtime-level virtualization. The three critical components
of the lambda model are 1) the application packaging system, which bundles server runtime
with the required library (e.g., execution engine), 2) the memory and server time-sharing
between applications, and 3) the registry store, which stores the codes for applications. These
codes are called lambda functions. The packaged execution engine forms a sandbox known
as workers/containers. Most other platforms keep the worker creation and code execution
management out of developers’ hands for security and maintenance reasons [124]. The platform
providers manage the workers; hence, developers have no control over content management. As
a result, the cold start problem remained an issue to be resolved.

2.4 Background Investigation

To improve the performance overheads of these secured serverless platforms, concepts like load
balancing and packaging have been proposed [118]. Besides, the built-in load balancer also
helps reduce the workers’ response times. Pipsqueak [88], a shared packaging tool to reduce
the start-up time of cloud functions, has also been introduced. It caches the required packages
of functions at each worker in the sleeping state of the function. It has a wake-up and forking
mechanism and a cache tree to support multiple dependencies. Nonetheless, its lack of elasticity
and redundant cache loading on each worker seems like an overhead for large libraries like
Pandas [84]. Function scheduling is also famous for load balancing to reduce response time.
As no intelligent decision-making method is available to minimize the number of workers or to
reuse the already packaged worker, they find minor usability in real-life applications.

2.5 Current Trends

The current trend is to keep workers warm to avoid the sizeable cold start delay. The AWS
lambda service has this feature enabled, keeping some warm workers(around 10) per application
in the memory to minimize the latency [124]. These workers are always kept in memory by AWS.
These naive workers cause large memory consumption, less re-usability, and non-intelligent
lambda function assigning. Even all serverless platforms have different kinds of features. We
show the state-wise average timing for a worker of OpenLambda in Fig. 2.19 by making 1000
lambda requests with 20 workers. We find fresh-start and restart - 1000 times and 10000 times

2.5. CURRENT TRENDS 38

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104

50

100

Delay(s)

Pe
rc

en
to

fO
pe

ra
tio

n(
%

) unpause
fresh start

restart

Figure 2.19: Readiness latency in unpause, fresh start, and restart case for OpenLambda

more delay than unpause state. Here, WLEC will try to ensure warm workers for every request,
intelligent lambda function assigned to the workers, concurrent request handling, and re-usability
of the workers with proper worker lifetime.

2.5. CURRENT TRENDS 39

Table 2.1: Responsibility in Serverless and serverful platform comparison

Characteristics Serverless Platform Serverful Platform

When the program is
run

On event selected by Cloud
User

Continuously until explicitly
stopped

Programming language
Javascript, Python, Java, C#,
Go

Any

Program state Stateless Stateful

Maximum memory size 0.125-3 GiB 0.5-1952 GiB

Maximum local storage 0.5 GiB 0-3600 GiB

Maximum run time 900 seconds None

Minimum accounting
unit

0.1 seconds 60 seconds

Price per accounting
unit

$0.0000002 $0.0000867 - $.4080000

Operating system and
libraries

Cloud provider select Cloud user select

Server instance Cloud provider select Cloud user select

Scaling Cloud provider responsible Cloud user responsible

Deployment Cloud provider responsible Cloud user responsible

Fault tolerance Cloud provider responsible Cloud user responsible

Monitoring Cloud provider responsible Cloud user responsible

Logging Cloud provider responsible Cloud user responsible

Chapter 3

Related Works

Various efforts to reduce the start-up cost of containers have been proposed recently. As serverless
computing is the newest concept, new research has just started. We have divided the related
works into six main categories and discussed them in this chapter.

3.1 Platform Based Approaches

In this section, we discuss research works related to performance enhancement and performance
analysis. We also mention their impact on other serverless platforms. McGrath et al. [83] made
an analysis where they showed that different platforms suffer from cold start time problems. They
showed Big platforms like Azure [5], OpenWhisks [1], Google Cloud [3], and AWS [2] face cold
start around 15 min mark of the container’s last invocation. They designed a high-performance
focused serverless platform and implemented it in .NET, where they used Windows containers
as a function execution environment. However, their main focus was single-function execution.
Baldini et al. showed the challenges of the serverless platform and defined cold start as a problem
that occurs from the scaling to zero feature [20]. Their article surveyed all existing serverless
platforms from academia, industry, and open-source projects. Then they identified their key
characteristics. Besides, the flexibility of serverless architecture has inspired developers to build
their applications on it. From simple image resizing applications in [76] by Liston et al. to video
encoding applications using thousands of small workers, [44] by Fouladi et al. are available in
AWS Lambda for benchmarking the platform performance.

Furthermore, AWS has presented a new feature called SnapStart [100] for lambda functions
to reduce cold start latency for Java 11 functions. Before starting the invocation, it takes a
snapshot of the function and stores it in a multi-tiered cache. The memory and disk state of
the function after initialization is stored in the snapshot. Subsequently, the stored snapshot is
used to facilitate fast lambda container initialization for following requests. Admittedly, using a
previously stored snapshot eliminates INIT phase and moves to the next phase INVOKE. Thus,

40

3.2. ARCHITECTURE BASED APPROACHES 41

resulting in 10x faster startup performance than before for Java environments. In addition, a
major advantage of SnapStart compared to provisioned concurrency is that it is free. Nonetheless,
SnapStart is only applicable for fully qualified lambda ARNs. Another pitfall of SnapStart is that
function initialized with a unique value (e.g. unique ID, unique secrets), network connections,
and temporary data require total overhauling to be used through SnapStart. Further, SnapStart
does not come with any fault tolerance scheme as well. Again, the degree of concurrency
supported by SnapStart remains a contentious matter and it is exclusively designed for AWS
lambda architecture.

Here we mention some of the most recent related works and endeavors designed to provide
a clear view to delineate the impact of colds start in the performance of serverless platforms.
Researchers illustrate the root cause and the effect of cold start in various platforms in studies
such as [20], [83]. Authors described a container management scheme named Pagurus that
re-purposes a warm container in [73]. Zijun et al. proposed a lightweight, secure container
runtime called RunD [72] to support high-density deployment and high concurrency startup.
Sashko et al. introduced a spawn start mechanism to analyze performance issues across three
FaaS providers [97]. Ping et al. suggested leveraging a pool of function instances to mitigate
cold start latency [75]. Paulo et al. presented a strategy named Checkpoint/Restore In Userspace
(CRIU) that reduces function startup time utilizing function instance cloning [104]. Prediction
based strategies like Adaptive Warm-Up Strategy (AWUS) [132], time series forecasting [56],
retention-aware container caching [91] and scheduling based strategies such as OWL [116],
FaaSRank [134] have showed substantial potential. Baird et al. [19] showed the performance
difference between the AWS platform’s warm and cold containers. The article also provided a
detailed overview of lambda handlers and event-based lambda invocations in the AWS platform.

Malishev [80] compared different languages like Golang, Python, Java, .Net, and NodeJs in cold
start timing. He also tested with different memory sizes like 128MB, 1024MB, and 3008MB
of a container. McAnlis [82] tried to reduce cold start by trimming the dependencies. Yet it
proved to be very language-dependent. Another approach was dependency caching, which also
suffers from the same problem and non-scalability. He also described a lazy loading concept
that can be implemented in a lambda function to reduce the cold start time. Cordova [32]
introduced a warming-up function and delay mechanism. But warming up all lambda functions
costs a large memory and is non-scalable. He also proposed allocating more memory for the
lambda containers, but memory allocation is costly in the serverless platform, making the idea
impractical for large applications.

3.2 Architecture Based Approaches

Oakes et al. proposed SOCK [89], an optimized lambda container system with modified
Zygote [61] provisioning along with a three-tier caching mechanism to counter kernel overhead.

3.2. ARCHITECTURE BASED APPROACHES 42

Authors use Linux cgroups primitives to avoid container bottlenecks, with results in 18X speedup
over Docker. SOCK uses lean containers to avoid the expensive operations required to create
general containers, which leverages a three-step lambda container creation model. The three-tier
caching system comprises of (1)handler cache, which maintains idle handler containers in
the form of pause containers without consuming any CPU resources, (2)install cache includes
a pre-installed large set of static packages on disk to isolate them from handlers in case of
malicious content within the packages, and (3)import cache manages Zygote containers and
selectively activate them based on the import cache policy to reduce CPU memory consumption.
But the implementation was bounded by only the python package caching, specifically PiPy
repository [31]. Another concern is that Zygote provisioning often runs into compatibility issues
in the case of concurrent cases.
Chen et al. proposed BIG-C [29], a container-based preemptive task scheduling for clusters with
heterogeneous workloads. Immediate and Graceful, two types of preemption, were proposed
to handle task scheduling for short and long jobs in a shared cluster. Authors implement their
design with the task preemption technique of Hadoop YARN and its resources. The architecture
of BIG-C consists of a resource monitor (RMon), a preemptive fair scheduler at the resource
manager of each cluster, and a container allocator and a container monitor at each node manager
of the machine. However, the reclamation of memory of preempted tasks and delay caused
by memory restoration becomes a major overhead for BIG-C. The authors argue that such
overhead is avoided most of the tune due to graceful preemption. But considerable performance
degradation is inevitable if graceful preemption fails to satisfy short job demands.
For VM-level cold boot, we find LightVM [81], a lightweight virtualization technique with a
lower boot time than a Docker-based container and constant boot time no matter how many
VMs are already running. It was achieved using unikernels for specialized applications and with
Tinyx, a tool that enables the creation of tailor-made, trimmed-down Linux virtual machines.
Besides, LightVM is based on optimized Xen to offer fast boot times. A complete redesign of
Xen’s control plane, transforming the centralized operation to a distributed one so that minimal
interactions with the hypervisor make LightVM a completely new option for server administrators.
However, issues like portability, complexity, generality, and the need for significant engineering
efforts have made LightVM less inspiring to replace ubiquitous containers.
Another recent approach was proposed in [85], where authors try to reduce the cold start time
utilizing the pause containers. Steps include pre-creating networks and connecting them to
function containers so that the delay involving network creation and establishment of connection
can be removed from the critical step of the startup. The network pre-creation tasks follow
Kubernetes and pause containers concept. These pre-created network containers are called pause
containers. They are then kept in a pool of similar containers and maintained by pause container

pool manager (PCPM). The pool management is done by following three key steps. (1) Build

phase is responsible for initialization and setup tasks of the FaaS framework. Several pause

3.3. APPLICATION BASED APPROACHES 43

containers are launched, and a free pool is created by PCPM with associated identifiers of the
pause containers. (2) In Execution phase, the invoker queries the pool manager and obtains
the identifier, which is then used to attach the new container to the associated pause container.
Later, the pause container gets removed from the free pool. (3) Finally, during Completion phase,
the function execution finishes, and the corresponding container is recycled or terminated. The
invoker informs the pool manager and reclaims the pause container resource. Nonetheless, a
critical drawback of PCPM architecture is that it only considers network-related delays for cold
start problems. Additionally, Wang et al. designed a middleware system named FAASNET [123]
for FaaS workloads to alleviate container provisioning utilizing an adaptive function tree structure.
Besides, optimizing resource allocation and configuration are also explored in [128] and [43],
respectively.

3.3 Application Based Approaches

Cui [34] proved that the cold start improvement techniques of lambda functions are more
effective in the case of python and node js because of the pip and npm package management
tools, respectively. He showed that java and C# suffer 100 times more start time than python. He
also mentioned that the code and memory size linearly increase cold start time. Besides author
says idle timeout for lambda is not constant. For AWS, it depends on a specific region’s demand
and supply of resources. He added higher memory(RAM) tends to take more time to stay warm,
and deployment package size does not affect cold start time.
Approaches like function scheduling [7], package caching, and load balancing were also explored
to improve response time for new concurrent requests. [35] showed how concurrency can affect
the cold start and showed the huge impact on the response time for lambda functions. Daly et al.

created Lambda Warmer [36], a lightweight module that uses the “ping” method of CloudWatch
Event to keep specific lambda functions warm.
Lakhsman [42] showed a way where he warms up all the functions every 20 min to make them
warm and calls it a hack to reduce the start-up latency. He argues that using a single wake-up
function is better than using a different wake-up lambda for each function. He shows why
warm-up after every 20 minutes is a better choice for lambda users, and a cost overview is
discussed that will still be within the budget. Finally, he emphasizes that AWS Lambda SDK is
the best choice for war-up tasks as it reduces invocation time and keeps uniform lambda with
different event sources.
Serhat [28] described the pros and cons of cold start and elaborated on the reason behind them.
He emphasizes that it is specifically essential when there are sync applications, low request
volume, use of statically typed language, or deployment of a new version of the application. He
mentions how it can cause frustration among users because of the lack of controls on the user
end for managing those containers. He elaborated that a cold start may cause timeouts to the

3.4. FROM STATELESS TO STATEFUL SERVERLESS 44

calling functions as a chain reaction. He mentions major factors that increase cold starts, like
code size, virtual private cloud, HTTP calls, the requirement of the classpath, memory size, and
language choice. He recommends ways out, like increasing memory, warming up, etc.
Kotlin et al. introduced a parallel execution mechanism for FaaS workloads utilizing Intel
Memory Protection Keys to reduce function interaction latency [64]. Ashraf et al. introduced
SONIC, a data passing management tool that optimized data passing [77]. Jie et al. presented a
serverless platform named TETRIS [70] to ensure lower memory consumption through combined
batching and concurrent execution for deep learning services with tensor redundancy. Ashraf
et al. designed ORION-an optimization technique for serverless DAGs to reduce End-to-End
(E2E) latency [78].
However, none of the previous works provides a platform and language-independent serverless
architecture to simultaneously ensure reduced cold start delay and high concurrency support.

3.4 From Stateless to Stateful Serverless

Vikram et al. developed a stateful FaaS platform named Cloudburst that uses a data cache to
improve storage access latency [109]. Furthermore, it provides a centralized key-value store
for functions to share states and data to facilitate interdependent function execution. Zhipeng
et al. proposed Boki that leveraged a shared log API to provide durability, consistency, and
fault tolerance for serverless function [57]. Martijn et al. , using Apache Flink StateFun,
builds a novel programming model which enables serverless functions to perform stateful
transaction operation [37]. Minchen et al. argued that serverless functions should follow
a data-centric approach to couple function flow and data flow tightly. Further, the authors
proposed a novel serverless platform named Pheromone [135] that ensures high usability, broad
applicability, and latency reduction between function invocation and data exchange. Peter et

al. developed a Database Management System (DBMS) backed transactional FaaS framework
named Apiary [65] with scheduling and tracing layers to ensure efficient clustering and truncating
communication overhead. Jonas et al. developed a programming model named PORTALS [107]
for stateful serverless systems to ensure atomic streams and atomic processing contracts. Daniel
et al. proposed CRUCIAL-a system to facilitate high parallel execution for stateful serverless
applications. Simon et al. described a performance-enhancing runtime name FAASM [103] for
stateful serverless applications to ensure resource fairness, memory safety, and in-memory state
sharing. Anurag et al. suggested a far-memory system named Jiffy that stores ephemeral states to
match resource demand for stateful serverless applications [60]. Adil et al. proposed a high-level
programming model to ease developers’ burden for creating stateful serverless functions and
deploying them in the cloud [8]. Martijn et al. discussed transaction orchestration using a
proposed programming model and implementation to guarantee exactly-once processing [39].
Claudio et al. provided three solutions for reducing performance bottlenecks during data transfer

3.5. RANK CORRELATION BASED WORKS 45

for edge networks [30]. We also find recent works for reducing performing bottlenecks and
performance enhancement strategies such as [135], [22], [103], [60] and [74].

3.5 Rank Correlation Based Works

In [133], Emine et al. proposed a new average precision-based rank correlation coefficient
called AP correlation with a probabilistic interpretation. It acts similarly to Kendall’s correlation
if the errors are distributed uniformly. However, it provides a lower value than Kendall’s if the
top/bottom of the list has more errors. Comparison of the effectiveness among various ranking
correlation coefficients was shown by Trastion [112]. Sathya et al. proposed a Spearman’s
rank correlation coefficient based on practical web content mining with minimum irrelevant and
redundant data, also known as outliers [21]. Anca et al. proposed a new ranking correlation
coefficient name ClasSi that deals with class label rankings. It also introduces a new distance
function to calculate the similarity among classes [54]. Hauke et al. provided a comparison study
between Pearson’s and Spearman’s correlation coefficient on the same set of data [49]. We can
find recent applications of Spearman’s correlation in correlation studies with COVID-19 and
weather [117], dementia [18], meteorological parameters [66].

3.6 Fault Tolerant System Focused Works

In [94], Brian et al. discussed various aspects that a system needs to have to be considered as
a fault-tolerant system. Improvement on the traditional lineage-based failure recovery model
was presented by Stephanie et al. by introducing the Lineage Stash model [125]. Diyu et al.

introduced HyCoR, a fault-tolerant mechanism for containers based on container replication
utilizing a hybrid of traditional checkpointing and replay methods [138]. Vikram et al. presented
a fault-tolerant system called Atomic Fault Tolerant (AFT) shim that can guarantee atomic read
and write operation [108]. Pascal et al. proposed a benchmark tool for serverless platforms
to identify their performance in terms of fault tolerance and other aspects [79]. Heus et al.

introduced a new programming model to handle stateful distributed transactions with serverless
architecture and showed that it performed better than traditional two-phase commit transaction
architecture [38]. A hybrid fault tolerance technique named Threshold-Based Adaptive Fault
Tolerance(TBAFT) was introduced by Ajay et al. [96]. TBAFT is developed by combining
proactive and reactive strategies to ensure high throughput, decreased migration, and execution
time overhead. Yilei et al. suggested a byzantine fault tolerance framework called Byzantine
Fault Tolerant Cloud (BFT Cloud) [137] that guarantees robustness in case of crashes and
arbitrary behavior faults. Zhang et al. proposed a library named Beldi to write fault-tolerant
transactional stateful serverless functions. Authors assert its effectiveness and affordability

3.6. FAULT TOLERANT SYSTEM FOCUSED WORKS 46

by implementing it with three different applications [136]. Wubin et al. provided a high
availability-based fault tolerance study by comparing availability between a container and virtual
machines [71]. Yasmin et al. showed a comparison of the performance of various FaaS platforms
like Kubeless, Fission, and OpenFaaS concerning fault tolerance, energy consumption, and
extensibility [24]. Siyuan et al. pointed out a communication framework named Hoplite [140] to
ensure fault tolerance for task-based distributed systems based on efficient dynamic data transfer
scheduling. We can find a comprehensive overview of fault-tolerant issues regarding cloud
computing in [94], [10], [67], [71]. Other noteworthy fault-tolerant tools consist of a scalable
data store called UNISTORE [25], FaaSdom [79], and Olive [101].

Chapter 4

Preliminaries

In this chapter, we would like to discuss some of the concepts that would be important in
understanding the thesis. Definitions are also provided for terminologies that we will use later
in this work. Definitions not mentioned in this chapter have been discussed when they are
mentioned in other chapters. Here at first, in section 4.1, we discuss Pannier, which significantly
influences our work. Then in section 4.2, we elaborate on the OpenLambda platform and its major
components. Next, we mention the Thundra platform and its utilization in our work in section
4.5. After that, we define cold start in section 4.6. In our last section 4.7, we explain various
contemporary cache replacement policies used in-memory cache management in ubiquitous
computing systems.

4.1 Pannier

Pannier is a caching system proposed by Cheng et al. in 2015 [69]. It is for flash devices and is
designed after container-based systems. The unique feature that it provides besides caching is
the identification of divergent containers. Divergent containers have blocks with varying access
patterns. A survival queue based on the survival time is used to rank the containers, a priority
queue. The survival time denotes the period that the container remains alive. A container is
alive if it has live data or data currently in use and validated by the system. Pannier uses one
of the most common cache policies, the Least Recently Used (LRU) policy. Yet to make it
effective, Pannier takes it one step further. Instead of basic LRU, they use two segments LRU
called S2LRU. Not only that, it further modifies it to become container aware, transforming it to
S2LRU+. So it can handle the containers fluently with the same queue model. S2LRU introduces
hot and cold data from the two segments to segregate them. Another essential feature is the TIRE
system, a multi-step feedback controller to throttle flash writes. It also extends the lifespan of the
flash device’s read writes by a significant margin. Fig. 4.1 describes the architecture of Pannier.
The three main techniques of Pannier are:

47

4.1. PANNIER 48

• Leveraging block access counts to manage cache containers.

• Incorporating block aliveness as a property to improve flash cache space efficiency.

• Designing a multi-step feedback controller to ensure the flash cache does not wear out in
its lifespan while maintaining performance.

Pannier also maintains a global clock named “Wall Clock” to keep track of the insertion
operations in the cache read/write, which may cause invalidation. The clock value later assigns
the decay point and survival time. An invalidation bitmap is used, which keeps a bit for each
block in the cache and can keep track of the valid or invalid caches. So, a simple mechanism is if
any cache block gets invalidated, the corresponding access bit is cleared in the bitmap. Pannier
also uses a concept called “ghost cache”, which stores the metadata, manages the counter for any
block, especially for the evicted ones. As it only stores metadata, it can even store more than the
physical cache size, which reduces the tracking overheads. Though block-based caching provides
superior per-block tracking to container-based caching, Pannier proposes new mechanics to
reduce the tracking overhead by combining and relocating the blocks.

Figure 4.1: Container based flash caching [69]

4.1.1 S2LRU*

Pannier has a unique cache mechanism system that takes advantage of the contemporary two-
segmented cache management model. This traditional model is called S2LRU. A significant

4.1. PANNIER 49

advantage of this data segregation is to protect the second-level cache locality. The fundamental
basis of Pannier is S2LRU. However, it needs to be container-aware to make it adaptive and
intuitive for Pannier. The authors proposed that S2LRU can be container-aware by managing
the container granularity instead of the block granularity named S2LRU+. To do that, S2LRU+
inserts a new container into the MRU position in the cold queue. Whenever a hit occurs on
a container, the container is promoted to the hot queue. The migration from the hot and cold
queues is also at container granularity. Container information structures are maintained through
the reference of S2LRU+ entries. However, S2LRU+ is further modified to suit Pannier by
implementing modified insertion, promotion, and reinsertion operations to support divergent
containers and segregation of hot and cold blocks. A structure of S2LRU* is shown in fig. 4.2.

Figure 4.2: S2LRU* in Pannier [69]

4.1.2 Survival Queue

One of Pannier’s most complex challenges was managing the divergent containers in the cache.
Without proper identification, these containers could survive for a long time because of the small
number of repeatedly accessed blocks. Pannier introduces a survival queue with its S2LRU*
structure to manage such divergent containers. As they get identified by the system, they get
copied to form a new container to segregate them from hot and cold data. They resulted in the
free of the original container. The authors mentioned two new parameters named decay point and
survival time for each container to describe when to inspect a container. These parameters also
define how long a container can stay in the cache. The survival queue is ranked using survival
time. It also points to container information structures shared with S2LRU* structures. The wall
clock was used to determine each container’s decay point and survival time.

4.1.3 Invalidation and Access Bitmaps

To equip Pannier with better block-based validation, Pannier uses an invalidation bitmap. This
bitmap tracks the blocks of each container. A bit is reserved for tracking whether that block is
validated or invalidated.

4.2. OPENLAMBDA 50

Again, an access bitmap is introduced to keep track of the access footprint. Similarly, a bit is
reserved for defining if that corresponding block has been accessed since it was written to flash.
If a block gets invalidated, the corresponding access bit is cleared from the bitmap.

4.1.4 Ghost Cache and Access Counter

An 8-bit counter was maintained to keep track of the block access. This counter is also called the
access counter. A counter for blocks of Pannier in the cache and those recently evicted from the
cache was used using a particular type called ghost cache. These caches were configured to track
more than the actual physical cache size to keep Pannier more effective and clean. It was made
possible by the intelligent choice of keeping only the key and access counter in the ghost cache.
This key and access counter is referred to as metadata for the cache. Researchers also tweaked
it with different techniques to reduce tracking overheads. The ghost cache was set to hold two
times the actual cache size. It was later used for insertion and reinsertion purposes of Pannier.

4.1.5 TIRE System

TIRE stands for Throttle Insertions and Reinsertions for Erasures. TIRE manages lifespan-related
tasks and plays a vital role in implementing Pannier. Flash devices have a respective usable
lifespan of 2-10K erase cycles, and the admission control component ensures that the flash cache
does not wear out. Maintaining the flash erasure quota is the principle of the TIRE admission
policy. TIRE uses a credit-based approach to manage the quota. The execution time was split
into quanta as an accounting period, and an eraser quota was set for a specific period.

4.2 OpenLambda

As the lambda model provides far more elasticity and scalability for container-based applications,
it has become essential to have an open-source lambda service to facilitate low-cost research in
this field [86]. OpenLambda is an Apache-licensed serverless computing project written in Go
and based on Linux containers. This new paradigm opens interesting challenges for execution
engines, databases, schedulers, and other systems. Besides, the LambdaBench comes as a bonus
tool with the OpenLambda package. LambdaBench is a new benchmark suite for applications in
the lambda programming model. The project provides a complete set of tools to make it easier
for later research attempts in this platform to evaluate new designs, models, and implementations
in subsystem levels within the platform. OpenLambda consists of 4 subsystems which coordinate
with each other to run the lambda handler. The components are as follows:

4.2. OPENLAMBDA 51

Figure 4.3: OpenLambda architecture

4.2.1 Lambda Store

In a serverless container-based environment, someone must host and distribute handler code
across different lambda containers according to their demand. To respond to lambda requests, it
has to be robust and fast. The Lambda store provides this facility to OpenLambda. It makes the
handler codes more effective and easy for developers. As most lambdas are written in interpreted
languages, the store has to provide the corresponding compilers for languages like Java and
JavaScript. Just-in-time (JIT) compilers are suitable for python to provide dynamic profiling
for performance improvement. Handling all these things in each lambda function may become
costly. So the store should provide central support for any serverless platform. The store should
support most of the packages so developers can use them in the lambda invocations. If the
package is unavailable at the store, it has to collect via the internet and then combined with
running the invocations that need those packages. But a package-aware platform would be able to
handle these packaging issues behind the scenes, affecting very little performance. Some popular
packages may include npm, pip, etc. As these packages may become very large, maintaining
them for lambda would be a bottleneck. Managing and resolving the package may reduce the
start-up latency for other platforms.

4.3. RANK CORRELATION AND RANK CORRELATION COEFFICIENT 52

4.2.2 Local Execution Engine

A sandbox for executing handlers is the heart of the Lambda architecture. AWS Lambda uses
containers to sandbox handlers [93] but avoids the overheads of Elastic BS [13] and other
container-based services by sharing servers and runtime between different instances. The cold
start depends on the architecture of the execution engine heavily. AWS reuses the containers to
minimize start-up time and ensure the efficient use of resources. In the case of OpenLambda,
it uses the same reuse mechanics [121] along with multiple handlers for the same container.
Unfortunately, even with this optimization, Lambdas are significantly slower than containers at
low request volumes.

4.2.3 Load Balancer

OpenLambda intends to minimize the load balancing time, ensuring the localities of different
aspects of the system. Previous cluster schedulers like Sparrow [90] took 100ms for balancing,
whereas OpenLambda took only 10ms [119]. The load balancing mechanism highly relies on the
locality management of the system. The localities considered in this case were session locality,
code locality, and data locality.

4.2.4 Lambdaware Database

The support of user-defined functions [130] in the databases creates a great way for lambda
functions to be used on cloud-based databases. For architectural purposes, databases need to
be distributed. As S3 [12] supports DynamoDB [40], OpenLambda supports databases like
RethinkDB [122], CouchDB [14] and DynamoDB. Relaxed consistency models were also
evaluated in the context of RPC handlers for OpenLambda. An application may require that all
RPC calls from the same client have a read-after-write guarantee, but weaker guarantees may be
acceptable between different clients, even when those clients read from the same entity group.
So, the creation of better compute models for lambda functions depends on which actor accesses
that function.

4.3 Rank Correlation and Rank Correlation Coefficient

Rank correlation is a common way nowadays that is utilized to perform information retrieval
and estimation tasks. Various ranking correlation measurement methodology has been proposed
by researchers to quantitatively or qualitatively measure the association among ordinal variables.
Hence, various ranking correlation coefficients are developed to handle different and exceptional
cases with non-linear, non-deterministic, non-parametric statistical data.

4.3. RANK CORRELATION AND RANK CORRELATION COEFFICIENT 53

4.3.1 Rank Correlation

A rank correlation is an ordinal measurement of association among variables and indicates
the relationship among the ranking of such ordinal variables. Research in the field of value
estimation and information retrieval often uses a ranking list of variables to predict unknown
values. We can divide the correlation methods into three main categories.

• Unweighted Rank Correlation This is the most basic form of correlation among variables.
All the variables are considered equal in weight. Examples of unweighted rank correlation
models are Spearman rank correlation, Kendall rank correlation etc.

• Correlation of Scores In this method, a scoring system is used to make the correlation
among ordered categorical data. This method assigns the first arbitrary equal-interval
scores to the ordinal level. Then classical statistical methods are applied based on the
scores.

• Weighted Rank Correlation The assumption of linear or non-linear relationships among
variables can sometimes be impossible to understand truly. In such cases, weight is
introduced among the variables. Even most of the correlation measurement incorporates
an implicit weighting scheme. Similarly, the robustness and flexibility of the weight
rank correlation method make it more suitable than any other method. Example includes
Weighted Spearman rank correlation, Weighted Kendall rank correlation etc.

4.3.2 Rank Correlation Coefficient

A rank correlation coefficient calculates the degree of existing similarity between ranked variables
and assesses the significance of the relationship among the variables. These coefficients are
calculated differently by different rank correlation methods. Ex: Spearman’s Rank Correlation
Coefficient(ρ), Kendall rank correlation coefficient(τ). Each method has its rank correlation
coefficient and is used based on its use cases. But all the coefficient determined how significant
the relation among variables are. For compatibility and better understanding, the coefficients are
usually constructed to vary between -1 to +1. The higher magnitude (+1/-1) value shows that the
variables have a positive relationship and maintain a strong association. But a negative value
means the variables maintain strong association but in the opposite order. A value of 0 indicates
that variables do not have any relation, but that does not necessarily indicate that variables are
independent.

4.3.3 Spearman’s Rank Correlation Coefficient

The Spearman’s rank correlation coefficient method identifies the strength and direction (positive
or negative) of the correlation between two variables [106]. In statistics, Spearman’s correlation

4.3. RANK CORRELATION AND RANK CORRELATION COEFFICIENT 54

coefficient is denoted by the Greek letter ρ. It is a non-parametric measure of rank correlation and
statistical dependence between two variables. It assesses the association between two variables
that can be described with a monotonic function. It is appropriate for both continuous and
discrete ordinal variables.

Spearman’s correlation is similar to the Pearson correlation, which also involves the rank values
between two variables. The notable difference, however, is while Pearson’s correlation assesses
the linear relationship, Spearman’s correlation assesses the monotonic relationship. If there are
no repeated values, a perfect Spearman’s correlation will have a value between -1 to +1 if each
variable is a perfect monotone function of the other. It is observed that the correlation between
two variables will be high when variables have a similar rank and low when variables have
dissimilar values [27].

4.3.4 Mathematical Formulation of ρ

Let x1, x2,...,xn and y1, y2,...,yn be two samples of size n. Rxi
denotes the rank of x1 compare

to the other values of the x sample, for i = 1, 2, ..., n. Rxi
= 1 if xi is the largest value of x,

Rxi
= 2 if xi is the second largest value of x etc., until Rxi

= n if xi is the smallest value of x.
In the same way, Ryi denotes the rank of yi. for i = 1, 2, ..., n. The Spearman’s rank correlation
denoted as ρ , is defined by:

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
(4.1)

where di = Rxi
−Ryi .

If several observations have the same value, those observations will be given an average rank.
However, if there are many average ranks, it is best to correct to calculate the coefficient with the
following equation:

ρ =
Sx + Sy −

∑n
i=1 d

2
i

2
√
Sx.Sy

(4.2)

where

Sx =
n(n2 − 1)−

∑g
i=1(t

3
i − ti)

12
(4.3)

with g the number of groups with average ranks and ti the size of group i for the x sample, and

Sy =
n(n2 − 1)−

∑h
j=1(t

3
j − tj)

12
(4.4)

with h the number of groups with average ranks and tj the size of group j for the y sample.

4.4. FAULT-TOLERANT SYSTEM 55

However, if there are no average ranks, the observations are seen as groups of size 1, meaning
that g = h = n and ti = tj , for i, j = 1, 2, ..., n. and

Sx = Sy =
n(n2 − 1)

12
(4.5)

4.4 Fault-Tolerant System

The advent of new hacking methodologies and an increased number of security-unaware naive
users have made system exploitation a common problem for application designers. At the same
time, the fourth industrial revolution (4IR) inspired the adoption of inter-connected systems
with the help of the internet. Thus, hackers and exploiters are finding new ways to compromise
systems and achieve personal gain through numerous attack strategies. Despite the advent of
new technologies to withstand such attacks, the systems still seem vulnerable to attacks like
service interruption and Denial of Service (DoS) attacks. Consequently, the need for automatic
fault-tolerant and mitigation systems is increasing daily. Various architectures and schemes are
proposed to take on the challenge of unique scenarios.

4.4.1 Goal of Fault-Tolerant System

A fault-tolerant system needs to achieve dependability to be considered a fault-tolerant system.
Yet, the “Dependable system” must have certain criteria; otherwise, the term seems ambiguous.
So, Abdeldjalil et al. defines four definite aspects that should be fulfilled by any fault-tolerant
systems [68]. The aspects are shown in Fig. 4.4 as follows:

Figure 4.4: Fault tolerance goals

4.4. FAULT-TOLERANT SYSTEM 56

Availability

This indicates that an ideal fault-tolerant system would be available 100% of the time. Thus, the
system is never down and always ready to be used.

Reliability

Reliability presents that Users can trust its outcomes all the time and without any doubt. Hence,
this system can be relied upon in every critical situation and never fails.

Maintainability

System is efficiently and promptly maintainable. It shows that the system can mitigate any failure
at a moment’s notice and without service disruption. As a result, it ensures seamless service
continuation for the users.

Safety

Users can use the system without the risk of personal data leaks, data loss, or privacy breaches.
It guarantees that users’ data is protected and safe even in catastrophic situations.

4.4.2 Reason Behind Faults

Though the reason for a system failure can not be easily categorized, thousands of issues can
lead to system failure. It can even be accidental or intentional. However, system-level faults can
be mainly divided into two main components: hardware failure and system Bugs.

Hardware Failure

Hardware-level failure contributes to most reported failure incidents. Connection disruption,
expired device components, power outages, natural disasters, server failure, temperature, and
environmental hazards can lead to hardware failure. Sometimes in consideration of cost and
maintenance, these cases are unavoidable. However, redundancy is the most practical solution to
hardware failure.

Software Bugs

Software bugs refer to errors in the design or development face of software that lead to abrupt
system failure. About 60-90% of system failures are caused by buggy software. Lack of testing in
the development phase, proper deployment and configuration, lack of specification, and shortage

4.4. FAULT-TOLERANT SYSTEM 57

of full-proof tools lead to software bugs. However, most of these faults are transitory and can be
easily mitigated by good version controlling and other fault-tolerant techniques. According to
[10], software bugs can be divided into two main categories:

• Request Stage Failures: This occurs when a request fails without acquiring application
resources. Requests do not access the resources and do not hold any resources. So, these
failures are mostly seen in primary and new systems. They are less costly and easy to fix.
For instance, overflow and timeout are the most common request stage failures.

• Execution Stage Failures: Execution failures point to failure during the request processing
stage. Unlike request stage failures, execution failures occupy resources. Hence, many
failures may become costly and detrimental to the system. These are complex, and failure
identification and remediation may become unfeasible and unavoidable. Sometimes,
remediation requires a complete system overhaul. Resource missing, database failure,
hardware failure, and resource shortage are typical examples of execution stage failure.

4.4.3 Components of Fault Tolerance

In computer systems, three components play a vital role in creating a fault-tolerant system. These
components and their implications are considered in terms of the maintenance and operating
cost, quality of service, and fault detection capabilities. The components are as follows:

Redundancy

Redundancy refers to having multiple components rather than only a single component to do a
specific job. It removes the single point of failure. If the main component faces any issue, the
redundant component will take the job and resume the operation. It provides time for the fixation
of principal components and eliminates any chance of business interruption.

Diversity

Diversity means having different types of components responsible for the same job. Diversity
protects from the built-in faults within a system. Diversity ensures fault tolerance by introducing
components from various sources and software with different designs.

Replication

Replication indicates having a backup copy of a system. It mainly utilizes the backup copy to
restore any system in times of failure. Replication is a more complex process than any other two.
It involves multiple copies of systems and subsystems to provide the same results. We can also
use replication to identify the faulty component.

4.4. FAULT-TOLERANT SYSTEM 58

4.4.4 Common Techniques of Fault Tolerance

All systems generally introduce some fault tolerance mechanisms in case of execution failures.
Similarly, cloud systems are not an exception. Based on the criticality of the system, different
strategies are employed. Though various techniques for fault tolerance in cloud computing
(FTCC) have been proposed since the emergence of cloud computing, these can be categorized
into two main groups. They are:

Reactive Fault Tolerance

Reactive fault tolerance (RFT) techniques are the most popular among developers. RFT
techniques focus on the recovery process and sustain the failure. They are generally coupled
with robust data loss prevention and recovery methods to avoid any data loss. They do not take
any preventive measures but focus on the fast recovery of the system. So, RFT techniques are
passive. Some most widely utilized RFT strategies are as follows:

• Retry: Retry is the most common technique that can be found in all systems to
some degree. It indicates repeating the same operation in case of failure. However,
a predetermined number of retries is set before reporting a timeout. This technique
is incredibly convenient for transient faults like network connectivity failure, resource
shortage, temporary unavailability of service, and components. A significant advantage of
the Retry technique is that it does not necessarily cost additional resources compared
to others. Consequently, making it particularly appealing for naive and low-budget
systems. Nevertheless, it may incur undesirable situations, for instance, ambiguity,
pointless redundancy, and race conditions.

• Record & Replay: It refers to the mechanism for maintaining a secondary copy for the
primary entity. The primary entity sends instructions and data over a dedicated link to the
secondary copy. Then the secondary copy replicates all the execution steps by replaying
the primary entity. However, for complex function chaining and multi-threading, the non-
determinant nature of this strategy often suffers from the lack of synchronization of the
replica. However, it is considered the easiest and most reliable way for small and simple
applications. In times of failure, the secondary entity replaces the primary entity to provide
seamless service continuation. For instance, James et al. proposed HQ replication [33]
that achieves fault tolerance against byzantine faults.

• Checkpointing: It refers to the ability to store different stages of a computation in a log
and replay the computation later using the log to provide the same output without changing
the behaviour of the computation. The logged stages are called checkpoints, and replaying
the computation is called a restart. It is one of the later high-availability strategies suitable

4.4. FAULT-TOLERANT SYSTEM 59

for applications with a large computation cycle and various complex stages. It is less costly
and requires fewer resources as all the data are not copied or replicated continuously like
Record and Replay strategy. However, cases like data races and incomplete checkpointing
can lead to the failure of the restart process. The Non-blocking Coordinated Checkpointing
Algorithms [111] developed by Surender et al. can be brought up as an example.

• Migration: Migration indicates replacing one resource with another resource. It
can replace physical resources like servers or logical resources like containers and
VMs. Migration provides physical and logical separation of failed requests and a new
environment for request execution. Various efficient and intuitive migration techniques
have been proposed previously. However, it suffers from migration latency, cost overhead
and security risks. Yet it facilitates easy request management and load balancing. For
example, a power and cost-aware migration technique pMapper [120] was proposed by
Akshat et al.

• User Defined: User-defined fault tolerance can also be known as exception handling-
based fault tolerance. Developers write specific code to avoid a system failure in case of
any unexpected condition reached during code execution. Exception handling is a naive
approach to achieving fault tolerance since it is impossible to anticipate all such unexpected
occasions. However, developers usually handle fundamental cases like network errors,
resource shortages etc. It is especially effective to avoid system crashes and maintain
parallel request processing.

Figure 4.5: Fault tolerance techniques

4.5. THUNDRA 60

Proactive Fault Tolerance

Proactive fault tolerance (PFT) techniques have defined preemptive measures to avoid system
failure. Researchers are trying to develop various intelligent PFT strategies. Unlike RFT, PFT
minimizes the risk of system failure by anticipation and proper system assessment. They are
active and can be effective for critical systems. Some promising PFT strategies are as follows:

• Software Rejuvenation: It refers to the planned reboot of the system to change a particular
state of the application. It is utilized based on request patterns and system behaviour. If a
system reacts slowly for a prolonged period, the reboot of the system may evade the system
crash. Besides, clearing cache memory, buffer overflow, and memory blocking are also
efficacious. Prediction-based fine-tuned software rejuvenation strategies are introduced by
Jean et al. [16].

• Self-Healing: Self-healing indicates the automatic detection of faulty modules of a system
and the replacement of such modules to reduce the risk of system failure. Systems are
generally equipped with multiple instances of the same module. Thus, requests can be
easily rerouted to the alternative module in case of failure. It ensures a seamless service
to the user. It is effective in case of load balancing and burst request management. An
example of such a self-healing-based framework is presented by Tanim et al. for distributed
software systems [48].

• Preemptive Migration: It indicates active monitoring and analysis of system modules.
Intelligent preemptive migration can eliminate the risk of system failure. It may require
colossal computation resources and integration of various tool feeds to generate an effective
migration strategy to replace low-performing faulty modules.

4.5 Thundra

Thundra [115] is an open-source tool which provides a deep insight into a serverless environment.
Thundra collects and correlates all the metrics, logs, and traces to quickly identify problematic
invocations and analyzes external services associated with any lambda function. With zero
overhead and automated instrumentation capabilities, Thundra frees developers to write code
without worrying about bulking up their Lambdas or wasting time chasing black-box problems.
As we search for good warm-up techniques for existing lambda functions in OpenLambda, we
find that Thundra provides this service more efficiently, such as saving the work to create a
warm-up service centrally for all the workers in the cluster. So, we use Thundra to warm up the
selective lambda functions located in the cold queue to keep them warm.

4.6. COLD START 61

4.6 Cold Start

As we discussed earlier, to execute a function for the first time or after having the function’s code
or resource configuration updated, the system will spin up a container to execute this function.
All the code and libraries will be loaded into the container. The code will then run, starting
with the initialization code. The initialization code is the code written outside the handler. This
code is only run when the container is created for the first time. Finally, the Lambda handler is
executed. This set-up process is considered a cold start [63]. Initially, the cold start time may
seem like a redundant problem, but in the case of applications with a large number of requests,
cold start becomes noticeable as it may take around 10min to respond.

4.7 Cache Replacement Policy in Container Management

The cache is the most expensive memory of a computer, but it provides the least access time
and fastest response time. If we keep data in RAM or Hard Disk, it takes a long time to serve
to handle simple requests. When frequent requests come for the same data, it is wise to keep
that data close to avoid searching the long memory devices [129]. So, the cache holds the most
recently used data in the processor. But the problem is the size of the cache. It is costly for
computers to use large caches. So, it becomes a challenge to use this low memory optimally. Data
are frequently written and erased according to the need. As the cache becomes full, replacing
the old data with the new one is essential. As the cache doesn’t allow random placement, the
data replacement mechanism is organized in a very structured pattern, also known as “Cache
Replacement Policies”. It plays a pivotal role in different memory hierarchy systems. Different
cache replacement policies have been developed to reduce the cache miss and latency, like LRU,
MSU, LSU, SRLU, LIFO, TLRU, PLRU, RR, LFU, and Pannier in [59, 92]. The main objective
is to utilize the cache and other resources more effectively. Among all the cache replacement
policies, LRU is the most common. It exhibits thrashing behaviour for memory-intensive
workloads that do not fit in the available cache.

In our problem, we have containers that, when serving any request, will be warm, and, later,
it can go cold because of no further call in a threshold time. However, if we can keep all the
containers warm, it will remove the container restart time. As the containers are warm, we can
say they are ready to serve any request, and all necessary packages are installed already. The
serverless platform will serve any lambda request instantly. But keeping all the containers warm
will consume a large number of resources. As we can compare it with cache memory, like all
data in the cache, all container in a warm state is impossible. So we need to do it selectively. As
cache provides different policies to do the job, we also need a container replacement policy to
switch containers between warm and cold queues. So we propose a modified S2LRU+ policy
called S2LRU++ along with a third queue called “Template Container List”. As the replacement

4.7. CACHE REPLACEMENT POLICY IN CONTAINER MANAGEMENT 62

is about containers instead of memory blocks, it brings more challenges in the architecture,
especially for lambda containers.

Chapter 5

WLEC

In this chapter, we discuss the solution to minimize cold start time by defining WLEC architecture
for serverless platforms. First, we provide an overview of the general serverless concept then
we describe various components of WLEC architecture. We briefly mention the necessity
of each component’s structure and how they work together to provide a reduced cold start
time. We briefly discuss S2LRU++, Template Container List, Warm Time, Container Header,
Container Management Service, Container Management Service Function, and Optimization as
the components of WLEC architecture.

5.1 Overview of WLEC

Fig. 5.1 shows the architecture of OpenLambda with WLEC. It consists of 3 main components.
a)Load balancer based on Nginx [87], which receives the client request and assigns this request
to a worker. The load balancing mechanism highly relies on the locality management of the
system. The localities considered in this case were session locality, code locality, and data
locality. b)Lambda store is also known as a registry that holds all the codes to handle different
kinds of user requests. c)Execution engine, which consists of many workers. Each worker works
as a sandbox based on a Linux container to execute code files, the function code associated
with the lambda request issued by the client. We can see that WLEC works as a middleware
for the load balancer and registry to provide the best worker available at any time for function
execution. The internal architecture of WLEC is shown in Fig. 5.2, including all the components.
The components are described in section 5.2. One of the most challenging parts of the design
of WLEC is concurrent request and late request(after 15min) handling. The most challenging
perspectives in this research are to address both design challenges with a single system and to
manage the system accordingly. We assume that we can control the invocation of containers in
lambda functions.

63

5.2. WLEC COMPONENTS 64

5.2 WLEC Components

In this section, we describe the main components of WLEC. We define the terms and components
used in architecture. Then we narrate CMS and its sub-functions and their algorithms. Next, we
delineate the workflow of WLEC.

5.2.1 S2LRU++

S2LRU is a partition technique used to make two segments, one for the probationary and the
other for the protected segments. In the standard S2LRU algorithm, new data are inserted into
the most recently used (MRU) position in the probationary segment. On a hit, data are promoted
from the probationary segment to the MRU position in the protected segment. If data in the
protected segments get hit, they are promoted to the MRU position of the same segment. When
the protected segment exceeds its predefined size (e.g. half of the cache size), the LRU data are
migrated to the MRU position in the probationary segment. For clarity, we rename the protected
and probationary segments as the warm queue and cold queue [139] respectively shown in
Fig. 5.2. Here we use containers instead of data. For S2LRU++, we maintain another queue
named template container list, a copy of warm containers for each type of application request
to serve any concurrent request. We will place the lambda containers with respective functions
in the hot and cold queues instead of the data. The term “Data hit” is replaced with “Container
invocation”. So, container placement is managed using the number of invocations of a container.

Figure 5.1: OpenLambda with WLEC

5.2. WLEC COMPONENTS 65

Figure 5.2: WLEC architecture.

5.2.2 Template Container List

A list of container which holds the duplicate container of all the containers in the current warm-up
list. Here, the term duplicate container means another container with the same library packaging
and environment configurations of a container that it is cloned from to serve any similar incoming
lambda requests. If any concurrent request is issued for any lambda functions currently serving,
another request will be passed to the copy container of this list. It reduces the cold start as the
container is already packaged with the necessary libraries. As this list of containers is processed
in the system’s background, no cold start occurs for the request. After completing the response,
the container is not pushed to any other queue as it is created to handle the concurrent requests
only. If it is not busy, this copy container is destroyed, and the respective warm-up container
moves to the cold queue simultaneously. As we try to minimize the cold start time, concurrency
handling is a significant factor. We use this template list specifically to maximize the concurrency
factor. However, the size of this template container list depends on the application. The total
number of supported lambda request types defines its size. We also introduce a variable named
the concurrency factor. It defines the number of copies a worker will have in the template
container list. For example, the video transcoding application in [46] supports two different
lambda requests from clients for HLS and DASH video coding. So, there will be two duplicate
containers in the template container list with concurrency factor 1. Hence, the template container
list size will be only 2 in this case.

5.2. WLEC COMPONENTS 66

Table 5.1: Table of header components

ftype meta data about lambda function
qtype the location queue of the container
status execution status of lambda function
wtime warm time of the container
hit hit count of the container

5.2.3 Warm Time

For every container in the warm queue, there should be a warm time in that container header.
It indicates the time stamp when a container should leave the warm-up queue. Warm time
is maintained in the container header using Hr:Min:Sec format. The warm time of a lambda
container will change based on its last invocation time. So, the warm time needs to be updated
according to its last invocation time. For a container, its warm-up time is calculated as follows:

warmTime = invocationT ime+ atime.

In the case of the first invocation, the invocation time will be the initialization time of the
container. The atime is the default time a container can live in the warm queue. Invocation time is
configurable and varies from platform to platform from 15min to 45min. We assume a container
can stay active for 15 minutes from its last invocation because 15 minutes is considered standard
alive time in other serverless platforms like AWS, Azure, etc.

5.2.4 Container Header

We define some flags and variables in the header section to maintain, monitor and keep track
of the containers. We propose five headers for every container in OpenLambda. The header
parameters can be divided into two parts: Function parameters and Container parameters.
Function parameters are maintained for each lambda, but container parameters are maintained
for each. When a new lambda function is invoked in any container, the container parameters
get updated if it is already initialized. Because lambda parameters get updated every time
upon invocation. The ftype and status variables are maintained for the lambda functions. The
other three qtype, wtime and hit are used for the container, which holds a lambda function. In
the initialization period, these flags are assigned and initialized by the Container Management
Service and are also maintained and updated by the CMS in runtime. Every container has a
header with the fields shown in table 5.1.

5.3. CONTAINER MANAGEMENT SERVICE 67

5.3 Container Management Service

CMS is the system that manages all the containers and their placement in queues. Whenever a
lambda container is created, the container’s management is done using CMS. CMS is a unique
service that also incorporates and manages all the requests in WLEC. From request handling
issued by a client to serving the request-all, the functionalities are maintained and served by
CMS. As a container is created, the related flags are created by CMS, and through these flags
and related algorithms defined in the CMS function section, the container is transferred to its
rightful position. The architecture of CMS consists of two queues and one container list named
warm, cold, and template container list, respectively. The containers kept in these structures are
the principal concern of our architecture. If any container becomes invalid, it is tracked by CMS
and evicted from these container structures. The symbols used in CMS algorithms are listed in
table 5.2.

5.3.1 CMS Function

This section defines fundamental CMS functions as three functions and their algorithms.
The three functions are Initialization, QueuePlacing, and OnRequest. The functions, their
functionalities, and descriptions are given below:

Initialization()

When a new container is invoked, the headers are set accordingly. The hit count is incremented
and is placed in the Qc. Thus the qtype is set to 0. The ftype is set from the metadata of the lambda
function provided by the function writer. Status is set to 1 when it is in the execution phase.
Back to 0 when it has finished the execution. wtime is updated according to the algorithm 1.
The initialization function is invoked every time a new lambda function is created. The lambda
function needs to be packaged in a container to serve any request from the client application.

Table 5.2: Table of symbols of CMS

Qc cold queue
Qw warm queue
Lt Template container list
c a container

LRU least recently used
MRU most recently used
λtype lambda function type
tvalue threshold number to change queue
atime alive time(15 min)

5.3. CONTAINER MANAGEMENT SERVICE 68

The new container selection is determined in the OnRequest function. WLEC must create any
container not found in the queues through the initialization method. The algorithm for the
initialization of containers is given in 1.

QueuePlacing()

The QueuePlacing function works as a caretaker of these lambda containers initialized earlier.
When a container has hit value 0, it is placed in Qc in the LRU position. If it gets another hit,
container c is then moved to the MRU position of Qc. If it gets more requests, then the hit
count gets incremented every time. If the hit count crosses tvalue, it is then moved to the MRU

position of Qw. Each time atime is updated on a hit. When the now() crosses the atime, then c is
pushed to the Qc. The algorithm is given in 3.

OnRequest()

This function is called whenever a request is issued from the client side. After the validation
check of the request, a lambda container is picked from the queues using this function for
executing the requested lambda function.

The logic is to first search in the cold queue. If found, it is returned instantly as it was kept
warm by warm-up calls. If the cold queue does not have the container, it is searched in the warm
queue. If the same type of container is found in the warm queue, then the state of the container is
evaluated to determine if it is busy. If the status flag shows that it is not busy, then it means no
request is in the processing state currently for that container then that container is returned. If it
is busy, then this request is a concurrent request. So, the corresponding template container list is
searched. When the corresponding container is found, the corresponding template container is
returned to serve the request. A new container is needed if no suitable container in all the queues
is found. Thus the initialization function is invoked to provide the new container to serve the
request. The algorithm is given in 2.

5.3.2 Work Flow

When a request is issued from the client side, the request is sent to the OnRequest method of
CMS. This client request can get, post, or put requests. The OnRequest method searches the cold
and warm queues for the container that can serve the client request optimally. If any container
is found, then that container is returned to serve the request. If the container is warm but busy
serving any concurrent request, then the template container list provides the temporary container
restored in the list. Then a new template container of the same type is created in the template list,
and new pointer points from the same type of busy containers are in the warm queue to handle
the next concurrent request for the same container. If the previously assigned container serves

5.3. CONTAINER MANAGEMENT SERVICE 69

Figure 5.3: WLEC workflow

the request, that container gets deleted from the template list.

If no container is found in the lists, a new container must be issued. So, the initialization method
is called, and a new container is returned to serve the request. All the corresponding flags are
updated according to the algorithm of the initialization phase.
After serving a request, all the flags like hit, wtime are updated by CMS. Then the QueuePlacing
method is called to place the lambda container in its respective position. The method checks the
flags and variable values to determine which queue should hold the container. If it belongs to the
warm queue, another template of the container is created in the template container list to serve
any concurrent request. All containers in these queues are maintained, updated, and served by
CMS using only CMS functions.

5.4. OPTIMIZATION 70

5.4 Optimization

We evaluated our architecture, and WLEC initially performed well. However, after 3hours of
running time, the system got slower in our setup. After some investigation, we found that some
optimizations were needed to make the architecture more viable and optimal than before. They
are listed below:

5.4.1 Recycling of Workers

We found significant performance improvement after enabling scheduled recycling of the
containers. We removed containers from the cold queue according to the sorted alive time.
The queue became less crowded and easier to search. So, the excellent and qualified container’s
search time was lower than before.

5.4.2 Load Balancing

We also enabled load balancing to make proper distribution of lambda functions along with the
warm container. It should be noted that load balancing is an optional feature of OpenLambda.
We used round-robin load balancing, which also contributed to reduced response time. This
uniform distribution of requests to the containers made the template containers more likely to be
used and ensured the reusability of the warm containers.

5.4.3 Package Caching

For library and code packaging with Python 2.7.14, we used the Pipsqueak package caching tool
to manage the packaging at each worker. It caches and maintains the Python interpreters in a
sleeping state. This pre-installed package also reduced response time latency and eliminated
downloading, installing, and importing packages in the workers.

The above optimizations alleviated the request handling procedure for OpenLambda, and our
proposed architecture showed no slowdown in the runtime of our evaluation period.

Chapter 6

Advance WLEC

In this chapter, first, we describe the WaLCoR fault tolerance model and its workflow. Then
we describe the determination of the Replica Factor (Rf i

) and Computed Replica Factor (R′
f i

)
using Spearman’s rank correlation coefficient to achieve dynamic replication of containers in
the Template Container List. We present a high-level overview of WaLCoR implementation in
Fig. 6.1 as a part of AdWaLEC in the OpenLambda architecture.

Figure 6.1: AdWaLEC in OpenLambda

6.1 WaLCoR

High availability is one of the critical factors for fault-tolerant applications nowadays. It refers to
the ability of a system to be continuously functional and available to be used 99.999% of the time.
However, keeping any system highly available requires special care for the architectural design

71

6.1. WALCOR 72

and a handy fault-tolerant mechanism in place. As digitization is taking place in all sectors of
our world, critical systems like air traffic control, oxygen supply management, and emergency
response require 100% availability. Two strategies are commonly practiced in applications to
achieve high availability, such as Record & Replay and Checkpointing.

In our case. to enhance the high availability feature in AdWaLEC, we introduce Warm Lambda
Container Replication (WaLCoR). WaLCoR utilizes the initial recording mechanism for the
input from Record and Replay but uses the checkpoint feature only to replay the execution stages
in times of failure. Thus, it makes WaLCoR more efficient for serverless computation than
the individual Record and Replay strategy and Checkpointing. The stateless nature of lambda
functions makes it difficult to track the execution stages. To overcome this challenge, we divide
the checkpointing into three main stages. 1)Input loaded, 2)Execution finished, and 3)Response
sent.

In our case. to enhance the high availability feature in AdWaLEC, we introduce Warm Lambda
Container Replication (WaLCoR). WaLCoR utilizes the initial recording mechanism for the
input from Record and Replay but uses the checkpoint feature only to replay the execution stages
in times of failure. Thus, it makes WaLCoR more efficient for serverless computation than
the individual Record and Replay strategy and Checkpointing. The stateless nature of lambda
functions makes it difficult to track the execution stages. To overcome this challenge, we divide
the checkpointing into three main stages. 1)Input loaded, 2)Execution finished, and 3)Response
sent.

Figure 6.2: Container structure of template container list with log file

AdWaLEC includes a log file in each of the secondary replicas in the Template container list
that is shown in 6.2. The primary container in the Hot queue sends over its input to the replica
at the start of request processing. We know that template containers are already packaged with
required libraries and dependencies. Upon receiving the input from the primary container, the
log is updated with the “Input loaded” flag. The input gets loaded to the secondary replica. An
acknowledgment message is sent to the primary replica after the completion of input loading.
The primary lambda container continues its function execution. After finishing the execution,
the message is sent to the secondary replica. The log of the secondary replica is updated with the
“Execution finished” flag. After sending the response to the request, the primary container sends
another message with “Response sent”. It is also noted in the log file. The sequence diagram is
shown in Fig. 6.3.

6.2. FAULT MANAGER 73

Figure 6.3: WaLCoR sequence

In times of failure at the container level, including cases like container corruption, data corruption,
or computation failure, the fault manager sends the instruction to one of the replicas of the
template container to start the execution of the function following the log stored in it, and the
result is sent as a response. Hence, it can ensure high availability for warm containers using the
template container list of AdWaLEC.

6.2 Fault Manager

Fault management and tolerance require efficient and effective continuous monitoring and fault
detection mechanisms of any system. Besides, the WaLCoR management and fail-over process
handling inspire us to incorporate a new entity into the AdWaLEC architecture. We name it
Fault Manager. It handles container monitoring, fault detection, WaLCoR management, and
fail-over process management. The processes are run based on their needs and provide fault
tolerance service to the AdWaLEC. It ensures a separate fault tolerance management entity
without delaying the function execution process. A basic structure of fault manager is shown in

6.2. FAULT MANAGER 74

Fig 6.4. The task of each process are described below:

Figure 6.4: Tasks of fault manager

6.2.1 Fault Detection

The first task of the fault manager is to monitor each of the containers in hot, cold, and template
container queues. The container monitoring process is running continuously to monitor each
container periodically. If any of the queues exhibit suspicious behaviour, the fault manager can
stop, destroy and relocate the container accordingly. For convenience, we consider that failure
after 05 successive execution of a function as a fault incident. Unresponsive and idle containers
are treated by relocating them to a cold queue. Through the container monitoring process, if any
containers are identified as unresponsive and idle, it is considered faulty. For each detection, the
primary container is shut down, and the secondary container is updated and checked with the
last message in the log. Then the WaLCoR management process is called.

6.2.2 WaLCoR Management

The whole WaLCoR process is also monitored by the WaLCoR Management process of the
Fault Manager. It ensures that every primary container communicates with its secondary pair as
intended in the system design. If any discrepancies are found, the log messages are sent again.
If that does not resolve the issue, the primary container is restarted. Besides, if any container
requires to execute up to its log flag, the Fault Manager initiates such a process.

6.2.3 Failover Process Management

In case of failure, the fail-over process management process takes control. The last flag is
checked with the secondary lambda container log. If it matches, It discards the faulty primary
container using a global garbage collector and frees the space. The secondary container starts
executing the lambda function following the log entry. After reaching the last checkpoint, the
secondary container is moved to the place of the primary container. It resumes function execution,
and a second replica is created by replicating the secondary one.

6.3. DETERMINATION OF ρ, R′
F I

AND RF I
75

6.3 Determination of ρ, R′f i and Rf i

In this section, we calculate the Spearman’s rank correlation coefficient (ρ) from the two variables
container count (Cci) and priority factor Pf i

. Then we utilize ρ to determine Computed Replica
Factor R′

f i
and finally we compute Replica Factor Rf i

from R′
f i

.

6.3.1 Priority Factor

The priority factor parameter indicates the importance level of certain types of requests. It works
as same as weights for functions. Developers set the priority factor value based on their business
importance with clients’ suggestions. The priority factor can only be a positive integer number,
which takes a value between 1 and 10. Hence, the value 10 priority factor means that function has
the highest priority, and value 1 indicates the low priority. So, the (Pf i) is an ordinal value and
largely depends on the client’s choice. However, identifying the priority of function provides us
with the knowledge to predict request traffic. It also helps us to organize the template container
list with the right redundant containers. Based on the assigned value, this parameter is passed
with the containers and sent to the Advanced WLEC. It is later used along with Cci to make
the rank correlation using Spearman’s rank correlation coefficient (ρ). Finally, the ρ is used to
determine Rf i

and R′
f i

.

6.3.2 Container Count

The container count parameter records the total number of containers currently active in the hot
queue at a single time of a certain type. This value is updated whenever a new container joins
the hot queue. Advance WLEC maintains the value for each container in the n array. So, the
Cci value will always be a positive integer. The value can start from 0 to +∞. Here, 0 indicates
that a specific type of request has yet to be issued so far. Hence, no lambda container in the hot
queue has served it in recent times. This is also a significant parameter to calculate the Rf i

and
R′

f i
later using ρ.

6.3.3 Steps to Determine Spearman’s Rank Correlation Coefficient

We assume that they are independent and ordinal. From our collection of values, we find that
both of them follow a linear pattern. So, Spearman’s rank correlation coefficient would be the
best correlation coefficient for our case. We emulate the following steps to determine ρ:

Step 1 We assume that two variable Cci and Pf i
has no association. This is called Null

Hypothesis.

6.3. DETERMINATION OF ρ, R′
F I

AND RF I
76

Step 2 Then, we rank each variable individually. We rank them from lowest to highest. The
highest value of each variable is ranked as 1, and from there on, we rank the rest of the
data. Hence, we create two ranked list for each variable Cci and Pf i

named RCci
and RPfi

.
When the variables’ values are the same, we take the average of their rank.

Step 3 For each ranked list we compute the rank difference di using the following equation.

di = RCci
−RPfi

(6.1)

Step 4 We determine the square of ranked difference called di
2.

Step 5 We find the value of ρ with the equation 4.1 for Cci and Pf i
. However, if we find that more

than 50% of the ranked list values of either of the variable (Cci and Pf i
) has an average

value/fraction number rather than a clear ranked integer ranked number, we modify the
equation 4.2 as following:

ρ =
SCci

+ SPfi
−
∑n

i=1 d
2
i

2
√
SCci

.SPfi

(6.2)

where
SCci

=
n(n2 − 1)−

∑g
i=1(t

3
i − ti)

12
(6.3)

with g is the number of groups with average ranks and ti the size of group i for the x

sample, and

SPfi
=

n(n2 − 1)−
∑h

j=1(t
3
j − tj)

12
(6.4)

with h the number of groups with average ranks and tj the size of group j for the y sample.

We use the value of ρ to find later the Computed Replica factor R′
f i

and Replica factor Rf i
for

each container type.

6.3.4 Computed Replica Factor

The replica factor is a special variable introduced specifically in Advanced WLEC. The dynamic
value assigned to the containers based on their request frequencies and priority can be considered
a better approach to handling unpredictable burst request patterns. Therefore, the size of the
template container list will also be dynamic. The R′

f i
value is directly calculated from Spearman’s

rank correlation coefficient and Cci . One important thing to remember is that ρ can be positive or
negative. But Pf i

will always be positive and can be zero. So, to avoid negative R′
f i

, we take the
absolute value of ρ. Accordingly, to avoid fractional value for R′

f i
, we take the ceiling value

of the multiplication of Cci and ρ. Compared with the WLEC, Advanced WLEC containers do

6.4. ACHIEVING FAULT TOLERANCE 77

not have an individual replica for each. Rather multiple same types of containers can have one
template container. The R′

f i
is calculated with the following equation:

R′
fi
= ⌈Cci ∗ |ρ|⌉ (6.5)

6.3.5 Replica Factor

The R′
f i

value is passed to the Advanced WLEC manager to determine if that is valid. Hence,
we determine the replica factor, Rf i

. The R′
f i

is compared to the total number of existing
active containers (Cci) of that type. Here, the number of active containers is the sum of the hot
containers from the Hot Queue and Template Container List of any specific lambda container
type. This is done to ensure that we do not destroy any active functional containers currently
processing a lambda request. The Rf i

factor for Template Queue formation is determined with
the following equation.

Rfi =

R′
f i

if R′
f i
≥ Cci

Cci otherwise

The Rf i
is passed to the Initialization function to create the template lambda container in the

template container list.

6.4 Achieving Fault Tolerance

In the design phase of our Advanced WLEC architecture, we deliberately took those decisions
that will provide fault tolerance features compared to WLEC. So, in this section, we describe
our proposed methods, changes, and modifications of the previous WLEC. We also describe the
logical reason for taking that decision route and how our architecture achieves fault tolerance.

6.4.1 Mitigating Single Point of Failure

OpenLambda, as well as all other lambda service providers, use ubiquitous random container
selection methodology. A criticism of WLEC architecture was the central management of
containers. It can easily lead to the single point of failure issue of the architecture. In terms
of fault tolerance, the Single Point of Failure refers to the case where the failure of a specific
component of a design can fail the whole system. The over-dependency on the S2LRU++ model
of WLEC design is responsible for it. In Advance WLEC, we keep the baseline request serving
process intact as a backup solution to our proposed architecture. So, in case of failure in our

6.4. ACHIEVING FAULT TOLERANCE 78

architecture, requests are served automatically following the baseline method ensuring service
continuation.

6.4.2 Adaptive Container Selection

For Advanced WLEC, we adjust the WLEC architecture with a redundant container management
system to mitigate the single-point failure fault tolerance. We use the traditional OpenLambda
container selection process. It uses a random selection of containers rather than a selection based
on previous request processing records. Initially, only the traditional random container selection
is active. Based on the request pattern, the path controller component of the OpenLambda system
controller calculates the rate of cold start cases. If the path controller reports that the cold start is
transpired for more than 15% of the requests, then the controller switches the container selection
process from random to an S2LRU++ based WLEC model. From our 20 simulations, we decided
that 15% was the threshold value that provides satisfactory performance for OpenLambda. After
that, the WLEC kicks in and maintains the latency within the state-of-the-art cold start latency.

Figure 6.5: OpenLambda system controller

6.4.3 Data Consistency Assurance

For function chaining in serverless platforms, it is evident that data atomicity and data consistency
requires close attention. The stateless nature of serverless architecture has affliction towards
transaction processing. We find that stateful approaches are proposed to handle transactional
workloads utilizing serverless architecture. But for starters, we introduce buffers to handle cases
like a single lambda request trying to update the same variable multiple times. Instead of writing
the value each time, we keep them in the buffer. This buffer is present in both the primary and
secondary lambda container. The log of the secondary container also tracks each concurrent
value change. We commit the value only after the completion of the entire request. Hence, we
avoid latency regarding updating the same variable multiple times. Thus, it also ensures data
atomicity and data consistency.

6.4. ACHIEVING FAULT TOLERANCE 79

6.4.4 Data Corruption Mitigation

The effectiveness of any fault tolerance system depends on the data corruption mitigation success
of that system. Advance WLEC shows promise as it has a redundant copy of processing data
always present in the secondary lambda container of the template container list. Suppose any bad
request or intentional actions create a situation where data gets corrupted in the warm container.
In that case, the application can recover that data from the secondary container as data is loaded
there too. Besides, the secondary container’s log also helps track each step of the primary
container’s request processing phase. It provides the opportunity to do forensics to identify why
data corruption occurred.

Chapter 7

Evaluation & Results

In this chapter, we evaluate our proposed methodologies-WLEC and AdWaLEC, after
implementing them with various metrics. We assess their merit in different circumstances.
We divide our evaluation process into two sections. First, we analyze the performance of WLEC
in OpenLambda and compare different metrics from our settings to realize its effectiveness.
Then, similarly, we evaluate AdWaLEC in OpenLambda and make a comparison with other
approaches.

7.1 Evaluation of WLEC

The different numbers of workers are used to evaluate the performance of the WLEC approach.
All the metrics are plotted to compare the performance with traditional approaches like the
All warm or No warm approach. Here, All warm approach means a customized system of
warming every worker initialized in OpenLambda for request handling. Details are described
by Cordova [32]. Periodic ping requests are issued to each worker to keep them alive for a
specific amount of time which is mentioned in the warming system. On the other hand, No warm
approach excludes any customized warming mechanism. This approach uses only the typical
OpenLambda setup.

7.1.1 Experiment Testbed

We did all the experimentation in the OpenLambda environment with two different virtual
machine setups. One of them was on a local laptop computer, and another setup was on Amazon
Web Server with an EC2 instance. In both cases, we used Ubuntu 14.01 as the Operating System.
For simplicity, we used the default setup of OpenLambda from the Github repository [15]. We
wrote the lambda functions in Python [15]. So, we also took the warm-up functions in the same

80

7.1. EVALUATION OF WLEC 81

Table 7.1: Table of parameters and their values, default values are in bold

Parameter Value
ftype get, post, apiCall, dbOp
qtype 0,1,2
status 0,1
wtime 15,20,25
hit 0, 1, 2...
tvalue 25,50,100
atime 15, 16, 17 ..

concurrencyFactor 0, 1, 2, 3 ..

language—the local machine VM was assigned 40GB hard disk space with 2GB RAM with four
vCPU. The AWS VM was a t2.micro instance with one vCPU, 1GB memory, and EBS-type
storage with 8GB storage space. We used AWS’s US East region for our computation.

7.1.2 Methodology

For every experiment, we varied the total number of workers to 500, 1000, 1500, 2000, 2500,
and 3000. We used ten different lambda functions from [23] as our workload and invoked
them randomly. We kept the request number as same as the worker number. For warming, we
used the Thundra [115] default warm-up mechanism using a lambda function call without any
parameter. The metrics were calculated according to the AWS metrics definition provided in
their documentation [99]. We took ten simulations with each parameter set and then calculated
the mean. We kept ten requests per min as a standard request policy for both Local and AWS
simulations. We set the cold and warm queue size maximum of 1/3 of the total available workers
for each. Besides, client requests to these lambda functions were random to ensure a bias-free
result. The value of the concurrency factor was two throughout the whole experiment. The
parameters and respective values used for our experimentation are shown in Table. 7.1.

7.1.3 Results

Now, we illustrate the results of our evaluation regarding WLEC with six different metrics and
then show a performance comparison. We define each metric and then compute them with our
testbed setup in both platforms with OpenLambda. Next, we provide a quantitative improvement
report against each stated metric with variances and standard deviations in the case of both
Local and AWS VM in Table 7.2. Finally, an analogy of WLEC over a real-time image-resizing
serverless application is incorporated.

7.1. EVALUATION OF WLEC 82

Number of Cold Start Invocation

The number of cold start invocation metric shows the count of workers that faced cold start
during invocation initiated by the lambda functions. In our experiment, we count the number of
cold starts that occurred with the change in the number of workers. Fig. 7.1 shows the number of
workers that suffer cold start problems. We find that the number grows with the available worker
number proportionally. As more requests are sent, more containers are initialized, increasing
invocations that suffer cold start in both Local and AWS VM cases. But with our WLEC, we find
that the cold start occurrence is decreased by about 27% and 31%. Besides, we also find that
AWS VM shows slightly better results. The better package management of AWS VM causes
it. Though initially, we see a decline in the number of cold start invocations, as the number of
workers grows, the superiority of WLEC gets more apparent, and we find 4x fewer containers
that suffered a cold start at 3000 available workers.

500 1,000 1,500 2,000 2,500 3,000

200

400

600

800

1,000

worker

co
ld

st
ar

ti
nv

oc
at

io
n

normal(Local VM)
WLEC(Local VM)
normal(AWS VM)
WLEC(AWS VM)

Figure 7.1: Cold start invocation vs worker

Average Cold Start Duration

This metric shows the average time the cold-started worker takes to respond to lambda requests.
The ratio of total cold start duration to the number of cold starts for all workers determines it.
Fig. 7.2 compares it for AWS and local VM, where we find that WLEC reduces the number of
cold start occurrences and the duration of cold start simultaneously. As the cold start is found,
the latency is shown on Y-axis. We find that the cold start duration decreases slightly with the
number of available workers for all cases. Initially, the cold start duration is longer with less
number of workers. We assume that the cold start duration shortens because of the caching
and reuse of workers by WLEC. We can see a 21% improvement for Local VM whereas 23.5%
improvement for AWS VM with WLEC in addition to around 4.5% standard deviation.

7.1. EVALUATION OF WLEC 83

500 1,000 1,500 2,000 2,500 3,000

2

4

6

8

·10−2

worker

du
ra

tio
n(

s)

normal(Local VM)
WLEC(Local VM)
normal(AWS VM)
WLEC(AWS VM)

Figure 7.2: Duration vs worker

Number of Container Invoked

This metric counts the total number of containers invoked by the requests from any event or call
from the pool of available workers. Like lambda function invocation count, it is also a metric
in the serverless platform but only limited to the containers themselves. For the OpenLambda
environment, The number indicates how many workers are invoked to the corresponding requests,
which correspond to lambda events [11]. We change the number of available workers and then
make the same number of requests to the lambda functions. We do not select any specific lambda

metrics environment mean variance S.D.

Total number of Container Invoked Local VM 21.534 23.544 4.852
AWS VM 23.558 18.771 4.332

Average number of Invocation Per Invoked Container Local VM 27.964 71.324 8.445
AWS VM 31.256 61.336 7.832

Number of Cold Start Invocation Local VM 60.53 174.026 13.191
AWS VM 60.53 174.027 13.192

Average duration of Cold Start Invocation Local VM 32.544 3.352 1.830
AWS VM 25.44 33.970 5.828

Maximum StartUp Latency Local VM 70.218 644.589 25.389
AWS VM 77.63 374.009 19.339

Occupied Memory∗ Local VM(WLEC to No Warm) 39.288 40.272 6.346
Local VM(WLEC to All Warm) 50.36 7.942 2.818

Table 7.2: Mean, variance, and standard deviation of percentage improvement between no warm
and proposed strategy across different metrics on both experimental environments. ∗ was taken
only on Local VM and the improvement was shown between WLEC to No warm and WLEC to
All warm strategy

7.1. EVALUATION OF WLEC 84

function. We instead keep it random. We do this simulation for both the Local VM and AWS
VM. In Fig. 7.3, we took the different numbers of available workers and made the same number
of requests to the lambda functions. The functions then invoked the workers. From the plot, we
can see as the number of workers increases, the number of invocations also increases. The reason
here is as the number of workers increased, more fresh workers were available for a lambda
function. The invocation increase also indicates that the requests invoke more workers, and less
concurrency occurs in the workers. But as the workers’ number grows larger than 2000, we see
a slight sluggishness at the invoked container number. It must result from the saturation of the
required number of free workers. Yet, the WLEC architecture implementation always invokes
less number of containers to respond to the requests because of its reuse principle of workers.
Between Local and AWS VM, we find AWS invoked slightly more container invocation, which
may be caused by network delay.

500 1,000 1,500 2,000 2,500 3,000
400

800

1200

worker

w
or

ke
ri

nv
ok

ed

normal(Local VM)
WLEC(Local VM)
normal(AWS VM)
WLEC(AWS VM)

Figure 7.3: Worker invoked vs worker

Average Invocation per Invoked Container

The ratio of total lambda requests to the number of invoked containers calculates the Average
Invocation per Invoked Container metric. This metric approximates the number of times the
requests invoke a worker. Dealing with burst requests requires the repeated invocation of available
workers. High invocation per invoked container indicates a reduction of fresh starts of workers
resulting in less cold start occurrence. From this metric, we can predict how many workers may
need to be warmed to deal with the burst if any burst has come. We show the mean number
of invocations for each invoked container in Fig. 7.4. We can also denote it as a mean of the
number of requests handled by each worker. We find, in both AWS and Local VM, the mean of
invocation per invoked container is low with the small number of available workers. As it gets

7.1. EVALUATION OF WLEC 85

more available workers, the mean gets lower. However, WLEC uses the same workers as much
as possible, providing higher invocation per worker. The mean increases with the request number
because more workers can be alive. Even so, this leads to more invocations in the same workers.
From our calculation, we see 27.96% and 31.25% mean invocation increase per container with
8.4% and 7.8% S.D., respectively, for Local and AWS instances.

500 1,000 1,500 2,000 2,500 3,000
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

worker

m
ea

n
in

vo
ca

tio
n

normal(Local VM)
WLEC(Local VM)
normal(AWS VM)
WLEC(AWS VM)

Figure 7.4: Mean invocation vs worker

Maximum Start-up Latency

Start-up latency [99] means the time workers take to take the first fresh start. Maximum start-up
latency was calculated from the maximum time taken by any of the given workers. This metric
is directly linked to our cold start reduction as the start-up time contributes most of the cold time
for the workers. Low latency indicates that the system takes less time to prepare for request
handling.Fig. 7.5 shows how the start-up latency is affected by the number of available workers
in cold and warm conditions. As we can see, initially, the start-up latency is low in the cold state,
but as the number of workers increases, the latency also increases proportionally, as expected.
But for a higher number of workers, especially from 2500 workers, the latency graph jumped
and continued upward afterward. The latency becomes a severe issue as it starts to take around
8 min for 3500 workers in our setup. So, if we use WLEC, we observe that the curve does not
jump up like before for any number of workers. Even for 3000 workers, it only takes around
15sec in both AWS and VM instead of the 372sec maximum delay shown earlier-resulting 77.6%
and 70.2% start-up time reduction.

7.2. EVALUATION OF ADWALEC 86

500 1,000 1,500 2,000 2,500 3,000

0

100

200

300

400

Number of Worker

L
at

en
cy

(s
)

normal(Local VM)
WLEC(Local VM)
normal(AWS VM)
WLEC(AWS VM)

Figure 7.5: Maximum start-up latency vs worker

Occupied Memory

We use another metric named Occupied Memory to describe memory consumption for the
different numbers of workers. It indicates the total sum of the memory occupied by all
warm containers. It shows the lightness of the architecture, which leads to higher memory
availability for concurrent executions. Besides, a better architecture will always cause less
memory occupation despite serving the same number of requests. Fig. 7.12 shows how the
OpenLambda platform behaves in the case of the different number of available workers in the
Local VM environment. No warm setup requires less memory, but the performance degrades
rapidly because of no caching. For all warm architecture, the memory requirement is unrealistic
for large applications as it keeps all the containers warm. Instead of WLEC, we can see that
the memory requirement is halved from all warm approach though the performance remains
acceptable. We keep the container size at 10MB. We also find around 39.28% more memory
required for WLEC over no warm approach. On the other hand, we reduce total occupied
memory by 50.36% compared to all warm strategy.

7.2 Evaluation of AdWaLEC

Now, we assess the performance improvements of AdWaLEC. This section explains our
implementation of AdWaLEC and describes our evaluation process in detail. We discuss
our experiment testbed and methodology for AdWaLEC. Then, we compare AdWaLEC with
approaches such as baseline, all warm, SOCK, and WLEC. Likewise, we show the worthiness and
effectiveness of AdWaLEC using the same OpenLambda platform. In addition, we implement
AdWaLEC and WLEC with a real-time image resizing application to determine and compare

7.2. EVALUATION OF ADWALEC 87

1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5
·104

Number of Worker

O
cc

up
ie

d
M

em
or

y(
M

B
)

no warm all warm WLEC

Figure 7.6: Occupied memory vs worker

their acceptability and practicality in a realistic layout.

7.2.1 Experiment Testbed

We evaluate the performance of AdWaLEC for serverless architecture utilizing the OpenLambda
platform. We use Amazon Web Server with an EC2 instance with Ubuntu 14.01 as the Operating
System. We run our experiment on an m5.8xlarge instance with 32 vCPU, 128 GB RAM, and
200 GB EBS storage in AWS’s Asia Pacific (Singapore) region for our simulation. We utilize
the Azure Function trace from [102] to simulate different function invocation scenarios varying
in execution time, memory usage, and cold start latency. However, [102] contains a collection
of over 50,000 functions in addition to their execution times, memory sizes, and invocation
timestamps. For better-tailored performance, we filter the data set and make a representative
collection of 1000 functions based on their invocation frequency. We select 50 random functions
from the representative collection for our experiment. For simplicity, we used the default setup of
OpenLambda from the Github repository [15] written in Python. We put OpenLambda container
sizes fixed at 400 MB as [102] suggests 90% applications consume less than 400 MB memory.

7.2.2 Experiment Methodology

For every experiment, we vary the memory size from 50%(64 GB) available memory to up to
100%(128 GB). Then we use 50 random functions selected from the representative collection
trace. We take about ten simulations with each parameter set and then calculate the average
for the analogy. To provide better insight regarding AdWaLEC, we compare performance with

7.2. EVALUATION OF ADWALEC 88

the state-of-the-art technique-SOCK approach from [89], baseline OpenLambda, WLEC and
all warm approaches. Here, baseline means using the default keep-alive policy (10 min) of
OpenLambda. On the contrary, the all warm approach indicates all the containers are warmed
utilizing [36]. A random priority factor value was set before the simulation, where each function
was assigned to a value starting from 1 to 10 based on their invocation frequency. The container
count was calculated on the runtime to determine the Replica factor. Other parameters and their
respective values are taken from [105].

7.2.3 Results

Now, we illustrate the results of our evaluation regarding AdWaLEC with seven different metrics
and provide a performance comparison. First, We define each metric and then compute them with
our testbed setup with OpenLambda. Then, We calculate the outcome for AdWaLEC, WLEC,
SOCK, baseline, and all warm approaches and plot them for better understanding. Finally, we
implement AdWaLEC on a real-time image resizing application to discern the impacts for a
practical case.

50 60 70 80 90 100

20

40

60

80

100

memory(%)

co
ld

st
ar

tf
re

qu
en

cy
(%

)

baseline
all warm
SOCK
WLEC

AdWaLEC

Figure 7.7: Cold start frequency vs memory

Cold Start Frequency

The cold start frequency shows the percentage of containers to the total requests that faced cold
start at the time of invocation, initiated by the lambda functions. Fig. 7.7 shows the percentage
of containers that suffer cold start problems. We find that the number grows with the available
memory proportionally for all cases. Nevertheless, with AdWaLEC, we find that the cold start
occurrence is decreased by about 77.23% and 42.21% to baseline and all warm approaches,

7.2. EVALUATION OF ADWALEC 89

respectively. However, an important takeaway is that AdWaLEC does not linearly increase cold
start occurrence and almost remains the same, outperforming SOCK by 33.84% on average.
The dynamically created replica containers are always present to serve any incoming request in
our AdWaLEC scheme. Hence, the cold start occurrence remains constant for every available
memory case.

Cold Start Latency

This metric shows the average time the cold-started container takes to respond to lambda requests.
Fig. 7.8 compares all five approaches. The cold start latency decreases slightly with the available
memory space for all cases. For AdWaLEC, we find that the average cold start duration is slightly
higher than WLEC. It might occur because of the constant number of container replication
strategies of WLEC. In this case, WLEC outperforms AdWaLEC by 17.62%. However, we find
that AdWaLEC performs better for higher available memory space than SOCK. The large zygote
forking overhead of SOCK may cause it. We also find 27.36% and 18.72% cold start latency
reduction than baseline and all warm approaches, respectively.

50 60 70 80 90 100
2

4

6

8

·10−2

memory(%)

la
te

nc
y(

s)

baseline
all warm
SOCK
WLEC

AdWaLEC

Figure 7.8: Latency vs memory

Container Invoked

This metric counts the percentage of containers invoked by the requests from any event or
call from the pool of available containers. From Fig. 7.9, we can see that as the container’s
percentage decreases, the percentage of memory increases. The reusing nature of the already
invoked container of AdWaLEC ensures the reuse of idle containers rather than creating a new

7.2. EVALUATION OF ADWALEC 90

one. So, as the memory increases, the invoked container percentage decreases. AdWaLEC
decreases new container invocation by 23.5% and 22.6% to baseline and all warm approaches.
Besides, we find AdWaLEC improves container reusability by 13.84% and 3.8% against SOCK
and WLEC, respectively. AdWaLEC achieves this by avoiding new container creation and
adopting replica containers.

50 60 70 80 90 100
30

40

50

60

70

memory(%)

co
nt

ai
ne

ri
nv

ok
ed

(%
)

baseline
all warm
SOCK
WLEC

AdWaLEC

Figure 7.9: Container invoked vs memory

Invocation per Container

The ratio of total lambda requests to the number of invoked containers calculates the Invocation
per Container metric. Fig. 7.10. We find that mean invocation increases as memory increases.
However, AdWaLEC uses the same containers as much as possible, which provides a higher
invocation per container. From our calculation, we find that AdWaLEC has 29.95% and 30.39%
better invocation per container than baseline and all warm approaches. As SOCK creates a
new container efficiently with the help of zygote provisioning instead of ensuring reusability,
AdWaLEC also exceeds SOCK by 10.88%.

Maximum StartUp Latency

Startup latency means the time workers take to make the first fresh start. Maximum Startup
latency was calculated from any container’s maximum time taken to serve a request. Fig. 7.11
shows how the startup latency is affected by the number of available containers in the case of
cold and warm conditions. For AdWaLEC, it remains constant like WLEC also. When a large
number of requests create template-ready containers, they incur latency. However, AdWaLEC
creates replica containers behind the scene and always ensures ready containers available for

7.2. EVALUATION OF ADWALEC 91

50 60 70 80 90 100
1

1.5

2

2.5

3

memory(%)

m
ea

n
in

vo
ca

tio
n

baseline
all warm
SOCK
WLEC

AdWaLEC

Figure 7.10: Mean invocation vs memory

function invocation. This AdWaLEC provides the lowest latency of all other approaches in this
study. We find that AdWaLEC outperforms baseline and SOCK by 77.28% and 67.68%. WLEC
performs better for lower memory availability, but AdWaLEC exceeds WLEC by 28.43% on
average for higher memory availability.

50 60 70 80 90 100

50

150

250

350

memory(%)

la
te

nc
y(

s)

baseline
all warm
SOCK
WLEC

AdWaLEC

Figure 7.11: Maximum start-up latency vs memory

Occupied Memory

Occupied memory indicates the total percentage of memory occupied by all containers. It
shows the lightness of the architecture, which leads to higher memory availability for concurrent

7.2. EVALUATION OF ADWALEC 92

executions. Fig. 7.12 shows a comparison of occupied memory amount in the case of the
different amounts of available memory. For all warm architecture, the memory requirement is
unrealistic for large applications as it has massive memory consumption. As all containers are
kept warm, it almost consumes the whole available memory space. In the case of AdWaLEC,
memory consumption is relatively lower (about 26.49%) than all warm approach. The replica
containers of AdWaLEC contribute to a higher memory consumption than SOCK. We think
this is a reasonable trade-off between fault tolerance and memory consumption for AdWaLEC.
AdWaLEC also outperforms the baseline by 6.69%. WLEC occupies more memory than
AdWaLEC initially but later, it shows improvement in higher memory availability cases and
reduces consumption by 26.45% because of its static container replication scheme.

50 60 70 80 90 100

40

50

60

70

80

90

100

memory(%)

oc
cu

pi
ed

m
em

or
y(

%
)

baseline
all warm
SOCK
WLEC

AdWaLEC

Figure 7.12: Occupied memory vs memory

Recovery Latency

We measure the capabilities of AdWaLEC at the time of execution failure using the recovery
latency metric. Here, we start our experiment with a similar amount of available containers. After
10 min of execution, we reduce the number by half. We terminate those containers randomly.
Hence, it is most likely, that many of those containers will be middle of execution in times
of termination. This scenario will force the corresponding template containers to run a fault
tolerance scheme and provide the response by following the process mentioned in the WaLCoR
sequence. Recovery latency reduces with memory as higher memory ensures a warm container
for function execution shown in Fig. 7.13. Only all warm and AdWaLEC can provide fault
tolerance capability for low memory availability. However, keeping all the warm containers
causes a high recovery time because of the high searching and container creation latency. We
find that recovery is possible only for SOCK, baseline, and WLEC for 70% or higher available

7.2. EVALUATION OF ADWALEC 93

memory. The WaLCoR mechanism of AdWaLEC contributes to 82.6% and 85.43% recovery
latency reduction compared to SOCK and all warm approaches. For critical applications where
requests are highly valued and do not necessarily deal with continuous burst flow, our recovery
latency would not impede AdWaLEC adoption.

50 60 70 80 90 100

0

200

400

600

800

memory(%)

re
co

ve
ry

la
te

nc
y(

se
c)

baseline
all warm
SOCK
WLEC

AdWaLEC

Figure 7.13: Recovery latency vs memory

7.2.4 Case Study: Image Resizing

To realize the impact of AdWaLEC, we evaluate AdWaLEC by implementing it in a real-time
serverless application. For that, we consider an application from the AWS lambda application
pool. Then we modify the application based on OpenLambda architecture rather than its typical
AWS build. Next, we implement it in the OpenLambda platform and calculate both platforms
and compute latency in baseline, with WLEC and AdWaLEC, to present a proper comparison.
We use an on-demand image resizing application from [76] to evaluate AdWaLEC with the
real-time application. In Fig. 7.14, We determine the platform and compute instance latency of
the image resizing application with an average of 20 runs. The result shows that the compute and
platform latency is reduced to 224sec and 576sec for AdWaLEC. So, it is improved by 37.95%
and 65.67% compared to the baseline OpenLambda setup for compute and platform instances
respectively. Nonetheless, WLEC shows 55.90% and 88.76% less latency for the platform and
compute instance respectively compared to AdWaLEC. The latency overhead can be attributed
to the initial computation of the correlation coefficient.

7.2. EVALUATION OF ADWALEC 94

baseline WLEC AdWaLEC
0

500

1,000

1,500

2,000

2,500

3,000

Platform(OpenLambda)

L
at

en
cy

(m
s)

platform compute

Figure 7.14: Latency vs platform

Chapter 8

Future Work

Though we try to make WLEC as advanced as possible, more research is required to eliminate
the cold start problem. Elimination may require proper and effective redesigning of serverless
platforms like AWS, OpenWhisks, and Google Cloud. But redesigning will always cost more
effort, resources, and time. Large containers and divergent containers prove a big challenge
for our architecture. Enabling WLEC to be compatible with other lambda platforms can also
take time and effort. It is also an open problem for Warm Up architecture to solve the random
container picking issue in the serverless platform. Instead of a warm queue structure, a warm
stack or consistent hashing [110] can also be another topic of interest.

8.1 Enhancing Versatility

The next step is implementing AdWaLEC in other open-source serverless platforms like
OpenWhisk, OpenFaaS [6], and Knative [4]. Furthermore, we intend to evaluate AdWaLEC
performance with divergent workloads like AWS Lambda Function trace and Google Cloud
Function trace. In addition, we plan to assess the merit of using other rank correlation coefficients
such as Pearson’s r and Kendall’s τ . Besides, Fine-tuning the user-given priority values and
including weighted schemes can be an exciting topic for researchers to investigate.

8.2 Security

In this work, we mainly focus on the design, implementation, and effectiveness of WLEC
architecture. We plan to consider the security concern of WLEC for our next research step.
We plan to improve WLEC’s features like intrusion detection, misuse detection, and security
automation before code execution. Our plan also extends to make WLEC compatible with
other security services for serverless architecture like virus scanning, compliance checking,
and incident response. Various attacks like side-channel attacks, man-in-the-middle attacks,

95

8.3. QUEUE VS STACK 96

Eavesdropping, Malware installation, etc., still pose a prime threat to serverless architecture
and WLEC. We intend to design a similar threat management system like the Serverless Threat-
Intelligence Platform proposed by Sanghyun et al. [53]. It will ensure secure function code
execution, seamless integration with other security tools like AWS X-Ray, and automatic
vulnerability scanning with the recommendation to thwart such vulnerability.

8.3 Queue vs Stack

One potential research idea regarding WLEC is introducing a stack rather than a queue. We
want to experiment by implementing WLEC with stack and find out how it will behave. It is
possible to get better performance in case of some special conditions. It is another research topic
to design using stack and queue. These approaches may lead to the flexible and versatile design
of container caching depending on application and platform constraints. Further extensive study
is required to find the viability of such architecture.

8.4 Windows Container Support

Another new research area can be the windows container support for AdWaLEC architecture. As
OpenLambda workers are purely Linux-based, windows-based workers remain another prospect
to be explored. It will make AdWaLEC a versatile solution and ensure future integration with
Azure services. It will open a new dimension for AdWaLEC regarding architectural modification
and performance-oriented designing. Automated support for old and new windows OS versions
will also be a challenge to overcome.

Chapter 9

Conclusion

In this chapter, we review the ideas discussed in this thesis and how these ideas helped this thesis
to achieve its goal.

In this thesis, we have addressed the cold start problem of serverless architecture, also known
as “Faas”. We have introduced a container caching mechanism named WLEC to minimize the
cold start time. We discussed our design choices and implementation process of WLEC and then
showed our experiment result.

At first, we started with the contemporary cloud architecture and its implementation variations
like public, private and hybrid cloud. Then we mentioned the evolution of cloud computing
to an as-a-service cloud model. We have delineated eight as-a-service models and provided a
primary overview for all of them. Later, we explored various virtualization techniques used
for the previously mentioned service model and showed their significance for the “Function-
as-a-Service” model. Next, we studied contemporary serverless architecture and reviewed its
advantages over traditional architecture. Then, we have considered major serverless service
providers of the ubiquitous market. After that, we have provided a detailed discussion of
the future challenges for serverless architecture. Next, we have mentioned a survey result to
understand the current demand for serverless models among professionals. Then we mentioned
the scope of this thesis, main contributions, and thesis organization.

In Chapter 2, we have mentioned the background and motivation behind this thesis. We first
discussed the architectural perspective to present the need for an architecture-based solution.
Then, we presented our investigation regarding cold start time in the current OpenLambda
architecture. We have also shown the latency for different container states. Later, we explored
current practices and trends for minimizing cold start time in various serverless service providers.

In Chapter 3. we have narrated a few related works associated with our thesis. Here, we have
discussed the works in six main categories. We first mentioned some performance analysis
studies. We have divided those studies into platform-based approaches and cold start time-
based approaches. Next, we have mentioned some recent research studies regarding cold

97

98

start minimization. We have also divided these studies into architecture and application-level
approaches. Then for AdWaLEC, we mention research studies regarding the formulation of rank
correlation and its diverse applications. Next, we state various fault-tolerant-focused works to
discuss the importance and implication of fault-tolerant systems. We have mentioned the most
recent and relevant approaches to our knowledge in this chapter.

In Chapter 4, we have defined some terms used throughout this thesis. In the meantime, we also
described some related architectures that have inspired our WLEC design choice. For example,
we described Pannier, OpenLambda, and S2LRU* architecture details. In the last part of this
section, we mentioned some standard cache replacement policies to understand our S2LRU++
approach in WLEC better.

In Chapter 5, we have provided an overview of WLEC in OpenLambda to show the placement of
WLEC. Then we discussed details of the components of WLEC like S2LRU++, Template
Container List, Warm Time, and Container Header. Later, we introduced the Container
Management Services and its three main functions- Initialization, QueuePlacing, and OnRequest.
Next, we have described the workflow and optimization of WLEC.

In Chapter 6, we have discussed Advance WLEC and its components and working methodology.
We have mentioned WaLCoR and Fault Manager in detail. Then we pointed out the steps to
determine Spearman’s coefficient and computed the replica factor and replica factor. Later we
have narrated how WaLCoR helps serverless architecture to achieve fault tolerance.

In Chapter 7, we evaluated WLEC and AdWaLEC in two different setups and discussed the
results. We described the evaluation process that we have considered. Then we mentioned
the experimental testbed and methodology. Next, we have discussed all metrics and their
determining process that we have used for our thesis. We have compared the result of each
metric to understand the behavior of WLEC and AdWaLEC in all those cases. We have added a
recovery latency metric for AdWaLEC. Finally, we have examined AdWaLEC in an open-source
application regarding image resizing to realize their practical effectiveness.

In Chapter 8, We have explained some open problems and compelling ideas regarding WLEC
and AdWaLEC. We have discussed potential security issues and their probable solutions. Then
we proposed an idea regarding stacks to replace queues of WLEC. Later, we also mentioned
windows container support for WLEC to make it compatible with windows based serverless
services like Azure.

References

[1] Apache openwhisk. https://openwhisk.apache.org. Date last accessed on 13-
11-2022.

[2] AWS Lambda. https://aws.amazon.com/lambda/. Date last accessed on 10-11-
2022.

[3] Google cloud functions. https://cloud.google.com/functions/. Date last
accessed on 01-11-2022.

[4] Knative. https://knative.dev/docs/. Date last accessed on 03-11-2022.

[5] Microsoft azure functions. https://azure.microsoft.com/en-us/

services/functions/. Date last accessed on 01-11-2022.

[6] OpenFaaS. https://github.com/openfaas/faas. Date last accessed on 18-11-
2022.

[7] ABAD, C. L., BOZA, E. F., AND VAN EYK, E. Package-aware scheduling of FaaS
functions. In International Conference on Performance Engineering (2018), pp. 101–106.

[8] AKHTER, A., FRAGKOULIS, M., AND KATSIFODIMOS, A. Stateful functions as a
service in action. Proceedings of the VLDB Endowment (PVLDB) 12 (August 2019),
1890–1893.

[9] AKKUS, I. E., CHEN, R., RIMAC, I., SATZKE, M. S. K., BECK, A., ADITYA, P., AND

HILT, V. SAND: Towards High-Performance Serverless Computing. The Proceedings of

USENIX Annual Technical Conference (USENIX ATC ’18). (July 2018), 923–935.

[10] ALSHAYEJI, M. H., AL-ROUSAN, M., YOSSEF, E., AND ELLETHY, H. A study on
fault tolerance mechanisms in cloud computing. International Journal of Computer and

Electrical Engineering 10, 1 (March 2018), 62–71.

[11] AMAZON WEB SERVICE. Invoking Lambda Functions,
2014. https://docs.aws.amazon.com/lambda/latest/dg/

invoking LambdaF unctions.html, Date last accessed on 29-10-2019.

99

REFERENCES 100

[12] AMAZON WEB SERVICE. S3 events. https://docs.aws.amazon.com/lambda/
latest/dg/with-s3.html, 2014. Date last accessed on 01-08-2019.

[13] AMAZON WEB SERVICE. Deploying Elastic Beanstalk Applications from Docker
Containers. http://docs.aws.amazon.com/elasticbeanstalk/latest/

dg/createdeploydocker.html, 2018. Date last accessed on 20-08-2019.

[14] ANDERSON, J. C., LEHNARDT, J., AND SLATER, N. CouchDB: The Definitive
Guide. http://guide.couchdb.org/draft/notifications.html/, 2009.
Date last accessed on 04-08-2019.

[15] APACHE. OpenLambda. https://github.com/open-lambda/open-lambda,
2016. Date last accessed on 09-11-2019.

[16] ARAUJO, J., MATOS, R., MACIEL, P., VIEIRA, F., MATIAS, R., AND TRIVEDI, K. S.
Software rejuvenation in eucalyptus cloud computing infrastructure: A method based
on time series forecasting and multiple thresholds. In 2011 IEEE Third International

Workshop on Software Aging and Rejuvenation (Hiroshima, Japan, November 2011),
IEEE, pp. 38—-43.

[17] ARPACI-DUSSEAU, R. H., AND ARPACI-DUSSEAU, A. C. Operating Systems: Three

Easy Pieces, 0.91 ed. Arpaci-Dusseau Books, 2015.

[18] AZARPAZHOOH, M. R., AMIRI, A., MOROVATDAR, N., STEINWENDER, S., ARDANI,
A. R., YASSI, N., BILLER, J., STRANGES, S., BELASI, M. T., NEYA, S. K., KHORRAM,
B., ANDALIBI, M. S. S., ARSANG-JANG, S., MOKHBER, N., AND NAPOLI, M. D.
Correlations between COVID-19 and burden of dementia: An ecological study and review
of literature. Journal of the Neurological Sciences 416 (September 2020).

[19] BAIRD, A., HUANG, G., MUNNS, C., AND WEINSTEIN, O. Serverless Architectures
with AWS Lambda. In Serverless Architectures with AWS Lambda (2017), AWS.

[20] BALDINI, I., CASTRO, P., CHANG, K., CHENG, P., FINK, S., ISHAKIAN, V.,
MITCHELL, N., MUTHUSAMY, V., RABBAH, R., SLOMINSKI, A., AND SUTER, P.
Serverless Computing: Current Trends and Open Problems. In Research Advances in

Cloud Computing (2017), pp. 1–20.

[21] BAMA, S. S., AHMED, M. S. I., AND SARAVANANA, A. Mathematical Approach for
Mining Web Content Outliers using Term Frequency Ranking. Indian Journal of Science

and Technology 8 (July 2015), 1–5.

[22] BARCELONA-PONS, D., SUTRA, P., SÁNCHEZ-ARTIGAS, M., PARÍS, G., AND

GARCÍA-LÓPEZ, P. Stateful serverless computing with CRUCIAL. ACM Transaction on

Software Engineering Methodology 31, 3 (March 2022), 1–38.

REFERENCES 101

[23] BLOCK, J. AWS-Lambda-List. https://github.com/unixorn/aws-lambda-
list, 2018. Date last accessed on 22-10-2019.

[24] BOUIZEM, Y. An Approach for Energy-Efficient, Fault Tolerant FaaS Platforms. In
19th ACM/IFIP International Middleware Conference (Rennes, France, December 2018),
pp. 1–2.

[25] BRAVO, M., GOTSMAN, A., DE RÉGIL, B., AND WEI, H. UniStore: A fault-tolerant
marriage of causal and strong consistency. In Proceedings of the 2021 USENIX Annual

Technical Conference (ATC’ 21) (July 2021), USENIX Association, pp. 923–937.

[26] BURNS, B., GRANT, B., OPPENHEIMER, D., BREWER, E., AND WILKES, J. Lessons
learned from three container management systems over a decade. In Communications of

ACM (2016).

[27] CARUSO, J. C., AND CLIFF, N. Empirical size, coverage, and power of confidence
intervals for spearman’s rho. Educational and Psychological Measurement 57 (1997),
637–654.

[28] CHAN, S. Everything you need to know about cold starts in AWS Lambda, 2018. https:
//hackernoon.com/cold-starts-in-aws-lambda-f9e3432adbf0, Date
last accessed on 05-11-2019.

[29] CHEN, W., RAO, J., AND ZHOU, X. Preemptive, Low Latency Datacenter Scheduling
via Lightweight Virtualization. The Proceedings of USENIX Annual Technical Conference

(USENIX ATC ’17). (July 2017), 251–263.

[30] CICCONETTI, C., CONTI, M., MINGOZZI, E., AND PASSARELLA, A. Stateful Function
as a Service at the Edge. Computer 55, 9 (2022), 54–64.

[31] COMMUNITY, P. Python Package Index, 2019. https://pypi.org/, Date last
accessed on 16-02-2020.

[32] CORDOVA, A. Cold starting AWS Lambda functions. https://read.acloud.guru/
cold-starting-lambdas-2c663055589e, 2018. Date last accessed on 24-08-
2019.

[33] COWLING, J., MYERS, D., LISKOV, B., RODRIGUES, R., AND SHRIRA, L. HQ
replication: a hybrid quorum protocol for byzantine fault tolerance. In OSDI ’06:

Proceedings of the 7th symposium on Operating systems design and implementation

(CA, USA, November 2006), USENIX Association, pp. 177—-190.

[34] CUI, Y. Does coding language, memory or package size affect cold starts of AWS
Lambda?, 2017. https://read.acloud.guru/does-coding-language-

REFERENCES 102

memory-or-package-size-affect-cold-starts-of-aws-lambda-

a15e26d12c76, Date last accessed on 20-09-2019.

[35] CUI, Y. Wrong thinking about cold start, 2018. https://theburningmonk.com/
2018/01/im-afraid-youre-thinking-about-aws-lambda-cold-

starts-all-wrong/, Date last accessed on 24-10-2019.

[36] DALY, J. Lambda Warmer, 2018. https://pillow.readthedocs.io/en/

latest/, Date last accessed on 15-08-2019.

[37] DE HEUS, M., PSARAKIS, K., FRAGKOULIS, M., AND KATSIFODIMOS, A. Distributed
transactions on serverless stateful functions. In Proceedings of the 15th ACM International

Conference on Distributed and Event-based Systems (DEBS ’21) (NY, USA, June 2021),
Association for Computing Machinery, pp. 31–42.

[38] DE HEUS, M., PSARAKIS, K., FRAGKOULIS, M., AND KATSIFODIMOS, A. Distributed
transactions on serverless stateful functions. In Proceedings of the 15th ACM International

Conference on Distributed and Event-based Systems (DEBS ’21) (Italy, June 2021), pp. 31–
42.

[39] DE HEUS, M., PSARAKIS, K., FRAGKOULIS, M., AND KATSIFODIMOS, A. Transactions
across serverless functions leveraging stateful dataflows. Information Systems 108

(September 2022).

[40] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A.,
PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHALL, P., AND VOGELS, W. Dynamo:
Amazon’s Highly Available Key-value Store. In Symposium on Operating Systems

Principles(SOSP’07) (2007).

[41] DIRKMERKEL. Docker: lightweight Linux containers for consistent development and
deployment. Linux Journal 2014, 02 (March 2014).

[42] DIWAAKAR, L. Resolving cold start in AWS Lambda, 2017. https://medium.com/
@lakshmanLD/resolving-cold-start-804512ca9b61, Date last accessed
on 25-09-2019.

[43] FARAHABADY, M. R. H., LEE, Y. C., ZOMAYA, A. Y., AND TARI, Z. A QoS-Aware
resource allocation controller for function as a service (FaaS) platform. In International

Conference on Service-Oriented Computing (ICSOC) (Malaga, Spain, November 2017),
ACM, pp. 241–255.

[44] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BALASUBRAMANIAM, K. V., ZENG,
W., BHALERAO, R., SIVARAMAN, A., PORTER, G., AND WINSTEIN, K. Encoding,

REFERENCES 103

Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads. In

14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17)

(March 2017), 363–376.

[45] FUERST, A., AND SHARMA, P. FaasCache: Keeping serverless computing alive with
greedy-dual caching. In Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS ’21)

(NY, USA, April 2021), ACM, pp. 386–400.

[46] GIRINATHAN, J., AND BRECKINRIDGE, R. Simple Serverless Video On Demand (VOD)
Workflow. https://aws.amazon.com/blogs/networking-and-content-

delivery/serverless-video-on-demand-vod-workflow/, 2018. Date
last accessed on 13-11-2019.

[47] GOTTLIEB, N. State of the Serverless-Community Survey Results, 2019. https://
www.serverless.com/blog/state-of-serverless-community, Date last
accessed on 23-10-2020.

[48] HASAN, T., IMRAN, A., AND SAKIB, K. A case-based framework for self-healing
paralysed components in distributed software applications. In The 8th International

Conference on Software, Knowledge, Information Management and Applications (SKIMA)

(Dhaka, Bangladesh, December 2014), IEEE, p. 1–7.

[49] HAUKE, J., AND KOSSOWSKI, T. M. Comparison of values of Pearson’s and Spearman’s
correlation coefficient on the same sets of data. Quaestiones Geographicae 30 (June
2011), 87–93.

[50] HELLERSTEIN, J. M., FALEIRO, J. M., GONZALEZ, J. E., SCHLEIER-SMITH, J.,
SREEKANTI, V., TUMANOV, A., AND WU, C. Serverless computing: One step forward,
two steps back. CoRR abs/1812.03651 (2018).

[51] HENDRICKSON, S., STURDEVANT, S., HARTER, T., VENKATARAMANI, V., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Serverless Computation with
OpenLambda. In 8th USENIX Workshop on Hot Topics in Cloud Computing(Hot

Cloud’16) (Denver, CO, USA, June 2016), USENIX Association.

[52] HEROKU. The heroku platform. https://www.heroku.com/platform, 2021.
Date last accessed on 14-07-2021.

[53] HONG, S., SRIVASTAVA, A., SHAMBROOK, W., AND DUMITRAS, T. Go Serverless:
Securing Cloud via Serverless Design Patterns. In 10th USENIX Workshop on Hot Topics

in Cloud Computing(Hot Cloud’18) (Boston, MA, USA, July 2018), pp. 48–53.

REFERENCES 104

[54] IVANESCU, A. M., WICHTERICH, M., AND SEID, T. ClasSi: Measuring Ranking
Quality in the Presence of Object Classes with Similarity Information. In PAKDD’11:

Proceedings of the 15th international conference on New Frontiers in Applied Data Mining

(2011), pp. 185–196.

[55] JADEJA, Y., AND MODI, K. Cloud computing - concepts, architecture and challenges.
In International Conference on Computing, Electronics and Electrical Technologies,

ICCEET (2012), pp. 877–880.

[56] JEGANNATHAN, A. P., SAHA, R., AND ADDYA, S. K. A time series forecasting approach
to minimize cold start time in cloud-serverless platform. In 2022 IEEE International Black

Sea Conference on Communications and Networking (BlackSeaCom) (Sofia, Bulgaria,
June 2022), IEEE, pp. 325–330.

[57] JIA, Z., AND WITCHEL, E. Boki: Stateful serverless computing with shared logs. In
ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP ’21) (Germany,
October 2021), ACM, pp. 691–707.

[58] JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V., TSAI, C., KHANDELWAL, A., PU,
Q., SHANKAR, V., CARREIRA, J., KRAUTH, K., YADWADKAR, N. J., GONZALEZ,
J. E., POPA, R. A., STOICA, I., AND PATTERSON, D. A. Cloud programming simplified:
A berkeley view on serverless computing. CoRR abs/1902.03383 (2019).

[59] KAREDLA, R., LOVE, J. S., AND WHERRY, B. G. Caching Strategies to Improve Disk
System Performance. In Computer (1994).

[60] KHANDELWAL, A., TANG, Y., AGARWAL, R., AKELLA, A., AND STOICA, I. Jiffy:
Elastic far-memory for stateful serverless analytics. In Proceedings of the Seventeenth

European Conference on Computer Systems (EuroSys ’22) (RENNES, France, April
2022), USENIX Association, pp. 697—-713.

[61] KIM, K. Android Zygote and Dalvik VM, 2017. http://davinci-

michelangelo-os.com/2017/02/06/android-zygote-dalvik/, Date
last accessed on 13-12-2019.

[62] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE, D., WILKERSON,
C., LAI, K., AND MUTLU, O. Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors. Proceeding of the 41st Annual

International Symposium on Computer Architecuture (ISCA’14) (June 2014), 361–372.

[63] KOSTEIKO, G. How to keep AWS Lambda function containers
warm. https://stackoverflow.com/questions/51210445/

REFERENCES 105

how to keep desired amount of aws lambda function containers warm,
2018. Date last accessed on 17-10-2019.

[64] KOTNI, S., NAYAK, A., GANAPATHY, V., AND BASU, A. Faastlane: Accelerating
function-as-a-service workflows. In Proceedings of the 2021 USENIX Annual Technical

Conference (ATC’ 21) (July 2021), USENIX Association, pp. 957–971.

[65] KRAFT, P., LI, Q., KAFFES, K., SKIADOPOULOS, A., KUMAR, D., CHO, D., LI, J.,
REDMOND2, R., WECKWERTH, N., XIA, B., BAILIS, P., CAFARELLA, M., GRAEFE,
G., KEPNER, J., KOZYRAKIS, C., STONEBRAKER, M., SURESH, L., YU, X., AND

ZAHARIA, M. Apiary: A dbms-backed transactional function-as-a-service framework.
unpublished, July 2021.

[66] KUMAR, G., AND KUMAR, R. R. A correlation study between meteorological parameters
and COVID-19 pandemic in Mumbai, India. Journal of Diabetes & Metabolic Syndrome:

Clinical Research & Reviews 14 (November 2020), 1735–1742.

[67] KUMARI, P., AND KAURU, P. A survey of fault tolerance in cloud computing. Journal of

King Saud University - Computer and Information Sciences 33 (2021), 1159–1176.

[68] LEDMI, A., BENDJENNA, H., AND HEMAM, S. M. Fault tolerance in distributed systems:
A survey. In 3rd International Conference on Pattern Analysis and Intelligent Systems

(PAIS) (Algeria, October 2018), IEEE, pp. 1–5.

[69] LI, C., SHILANE, P., DOUGLIS, F., AND WALLACE, G. Pannier: A Container-based
Flash Cache for Compound Object. In Proceedings of the 16th Annual Middleware

Conference, Middleware’15 (2015), pp. 50–62.

[70] LI, J., ZHAO, L., YANG, Y., ZHAN, K., AND LI, K. TETRIS: Memory-efficient
serverless inference through tensor sharing. In Proceedings of the 2022 USENIX Annual

Technical Conference (ATC’ 22) (CA, USA, July 2022), USENIX Association, pp. 473–
488.

[71] LI, W., AND KANSO, A. Comparing Containers versus Virtual Machines for Achieving
High Availability. In IEEE International Conference on Cloud Engineering (Tempe, AZ,
USA, March 2015).

[72] LI, Z., CHENG, J., CHEN, Q., GUAN, E., BIAN, Z., TAO, Y., ZHA, B., WANG, Q.,
HAN, W., AND GUO, M. RunD: A lightweight secure container runtime for high-density
deployment and high-concurrency startup in serverless computing. In Proceedings of the

2022 USENIX Annual Technical Conference (ATC’ 21) (CA, USA, July 2022), USENIX
Association, pp. 53–68.

REFERENCES 106

[73] LI, Z., GUO, L., CHEN, Q., CHENG, J., XU, C., ZENG, D., SONG, Z., MA, T., YANG,
Y., LI, C., AND GUO, M. Help rather than recycle: Alleviating cold startup in serverless
computing through inter-function container sharing. In Proceedings of USENIX Annual

Technical Conference (USENIX ATC ’22) (CA, USA, July 2022), USENIX Association,
pp. 69–84.

[74] LIN, C., MAHMOUDI, N., FAN, C., AND KHAZAEI, H. Fine-grained performance and
cost modeling and optimization for FaaS applications. IEEE Transactions on Parallel and

Distributed Systems (January 2021), 1–20.

[75] LIN, P., AND GLIKSON, A. Mitigating cold starts in serverless platforms: A pool-based
approach. In Computing Research Repository (CoRR) (2019), vol. abs/1903.12221.

[76] LISTON, B. Resize Images on the Fly with Amazon S3, AWS Lambda, and Amazon
API Gateway, 2017. https://aws.amazon.com/blogs/compute/resize-

images-on-the-fly-with-amazon-s3-aws-lambda-and-amazon-

api-gateway/, Date last accessed on 21-11-2019.

[77] MAHGOUB, A., SHANKAR, K., MITRA, S., KLIMOVIC, A., CHATERJI, S., AND

BAGCHI, S. SONIC: Application-aware data passing for chained serverless applications.
In Proceedings of the 2021 USENIX Annual Technical Conference (Carlsbad, CA, United
States, July 2021), USENIX Association, pp. 973–988.

[78] MAHGOUB, A., YI, E. B., SHANKAR, K., ELNIKETY, S., CHATERJI, S., AND BAGCHI,
S. ORION and the Three Rights: Sizing, Bundling, and Prewarming for Serverless
DAGs. In Proceedings of the 16th USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’22) (CA, USA, July 2022), USENIX Association, pp. 303–320.

[79] MAISSEN, P., FELBER, P., KROPF, P., AND SCHIAVONI, V. FaaSdom: a benchmark
suite for serverless computing. In Proceedings of the 14th ACM International Conference

on Distributed and Event-based Systems (DEBS ’20) (Montreal, Quebec, Canada, July
2020), pp. 73–84.

[80] MALISHEV, N. Lambda Cold Starts, A Language Comparison, 2018.
https://medium.com/@nathan.malishev/lambda-cold-starts-

language-comparison-a4f4b5f16a62, Date last accessed on 30-10-2019.

[81] MANCO, F., LUPU, C., SCHMIDT, F., MENDES, J., KUENZER, S., SATI, S., YASUKATA,
K., RAICIU, C., AND HUICI, F. My VM is Lighter (and Safer) than your Container.
Proceedings of the 26th Symposium on Operating Systems Principles, SOSP’17 (October
2017), 218–233.

REFERENCES 107

[82] MCANLIS, C. How to keep desired amount of AWS Lambda function containers warm,
2018. https://medium.com/@duhroach/improving-cloud-function-

cold-start-time-2eb6f5700f6, Date last accessed on 16-10-2019.

[83] MCGRATH, G., AND BRENNER, P. R. Serverless Computing: Design, Implementation,
and Performance. In IEEE 37th International Conference on Distributed Computing

Systems Workshops (2017).

[84] MCKINNEY, W. Pandas. https://pandas.pydata.org/, 2008. Date last accessed
on 23-11-2019.

[85] MOHAN, A., SANE, H., DOSHI, K., EDUPUGANTI, S., NAYAK, N., AND

SUKHOMLINOV, V. Agile Cold Starts for Scalable Serverless. Proceedings of The

11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’19). (July 2019),
57–67.

[86] MURAT. Metadata. http://muratbuffalo.blogspot.com/2017/05/paper-
review-serverless-computation.html, 2009. Date last accessed on 17-08-
2019.

[87] NGINX. NGINX as HTTP load balancer. http://nginx.org/en/docs/http/
load balancing.html, 2009. Date last accessed on 06-09-2019.

[88] OAKES, E., YANG, L., HOUCK, K., HARTER, T., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Pipsqueak: Lean Lambdas with large libraries. In IEEE

Internatinal Conference Distributed Computer System Workshops(ICDCSW) (2017).

[89] OAKES, E., YANG, L., ZHOU, D., HOUCK, K., HARTER, T., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. SOCK: Rapid Task Provisioning with Serverless-
Optimized Containers. the Proceedings of USENIX Annual Technical Conference

(USENIX ATC ’18). (July 2018), 57–67.

[90] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STOICA, I. Sparrow: Distributed,
Low Latency Scheduling. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles (2013), pp. 69–84.

[91] PAN, L., WANG, L., CHEN, S., AND LIU, F. Retention-aware container caching for
serverless edge computing. In IEEE INFOCOM 2022 - IEEE Conference on Computer

Communications (London, UK, May 2022), IEEE, pp. 1069–1078.

[92] PANCHAM, CHAUDHARY, D., AND GUPTA, R. Comparison of Cache Page Replacement
Techniques to Enhance Cache Memory Performance. In International Journal of Computer

Applications (2014).

REFERENCES 108

[93] PILLAI, T. S., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Fractured
Processes: Adaptive, Fine-Grained Process Abstractions. In Proceedings of the 2014

Conference on Timely Results in Operating Systems (TRIOS ’14) (2014).

[94] RANDELL, B. System Structure for Software Fault Tolerance. IEEE Transactions on

Software Engineering SE-1, 2 (June 1975).

[95] RANI, D., AND RANJAN, R. K. A Comparative Study of SaaS, PaaS and IaaS in
Cloud Computing. International Journal of Advanced Research in Computer Science and

Software Engineering 4, 6 (June 2014), 458–461.

[96] RAWAT, A., SUSHIL, R., AGARWAL, A., SIKANDER, A., AND BHADORIA, R. S. A
new adaptive fault tolerant framework in the cloud. IETE Journal of Research (April
2021).

[97] RISTOV, S., HOLLAUS, C., AND HAUTZ, M. Colder than the warm start and warmer than
the cold start! experience the spawn start in faas providers. In ApPLIED ’22: Proceedings

of the 2022 Workshop on Advanced tools, programming languages, and Platforms for

Implementing and Evaluating algorithms for Distributed systems (Sofia, Bulgaria, July
2022), ACM, pp. 35–39.

[98] SARATHY, V., NARAYAN, P., AND MIKKILINENI, R. Next Generation Cloud
Computing Architecture: Enabling Real-Time Dynamism for Shared Distributed Physical
Infrastructure. Proceedings of the Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WET ICE’10) (June 2010), 48–53.

[99] SERVICE, A. W. AWS Metrics, 2010. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/viewing metrics with cloudwatch.html, Date last
accessed on 21-02-2020.

[100] SERVICE, A. W. Improving startup performance with Lambda SnapStart. https:

//docs.aws.amazon.com/lambda/latest/dg/snapstart.html, 2022. Date
last accessed on 18-12-2022.

[101] SETTY, S., SU, C., LORCH, J. R., ZHOU, L., CHEN, H., PATEL, P., AND REN,
J. Realizing the fault-tolerance promise of cloud storage using locks with intent.
In Proceedings of the 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’16) (GA, USA, November 2022), USENIX Association, pp. 501–
516.

[102] SHAHRAD, M., FONSECA, R., ÍÑIGO GOIRI, CHAUDHRY, G., BATUM, P., COOKE, J.,
LAUREANO, E., TRESNESS, C., RUSSINOVICH, M., AND BIANCHINI, R. Serverless in
the wild: Characterizing and optimizing the serverless workload at a large cloud provide.

REFERENCES 109

In Proceedings of USENIX Annual Technical Conference (USENIX ATC ’22) (CA, USA,
July 2020), USENIX Association, pp. 205–218.

[103] SHILLAKER, S., AND PIETZUCH, P. FAASM: Lightweight isolation for efficient stateful
serverless computing. In Proceedings of the 2020 USENIX Annual Technical Conference

(ATC’ 20) (CA, USA, July 2020), USENIX Association, pp. 419–433.

[104] SILVA, P., FIREMAN, D., AND PEREIRA, T. E. Prebaking functions to warm the
serverless cold start. In 21st International Middleware Conference (Middleware ’20)

(Delft, Netherlands, November 2020), ACM, pp. 1–35.

[105] SOLAIMAN, K., AND ADNAN, M. A. WLEC: A not so cold architecture to mitigate
cold start problem in serverless computing. In IEEE International Conference on Cloud

Engineering (IC2E) (Sydney, Australia, April 2020), IEEE, pp. 144–153.

[106] SPEARMAN, C. The proof and measurement of association between two things. American

Journal of Psychology 15 (1904), 72–101.

[107] SPENGER, J., CARBONE, P., AND HALLER, P. Portals: An extension of dataflow
streaming for stateful serverless. In Proceedings of the 2022 ACM SIGPLAN International

Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software

(Onward! ’22) (Auckland, New Zealand, December 2022), ACM.

[108] SREEKANTI, V., WU, C., CHHATRAPATI, S., GONZALEZ, J. E., HELLERSTEIN, J. M.,
AND FALEIRO, J. M. A fault-tolerance shim for serverless computing. In Proceedings of

the Fifteenth European Conference on Computer Systems (EuroSys ’20) (New York, USA,
April 2020), pp. 1–15.

[109] SREEKANTI, V., WU, C., LIN, X. C., SCHLEIERSMITH, J., FALEIRO, J. M.,
GONZALEZ, J. E., HELLERSTEIN, J. M., AND TUMANOV, A. Cloudburst: Stateful
Functions-as-a-Service. Proceedings of the VLDB Endowment (PVLDB) 13, 11 (2020),
2438–2452.

[110] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings

of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications, SIGCOMM’01 (2001), pp. 149–160.

[111] SURENDER, CHAUHAN, R., AND KUMAR, P. Hierarchical non-blocking coordinated
checkpointing algorithms for mobile distributed computing. International Journal of

Computer Science and Security (IJCSS) 3 (2010), 518–524.

REFERENCES 110

[112] TARSITANO, A. Comparing The Effectiveness Of Rank Correlation Statistic. Tech. rep.,
Università della Calabria, Dipartimento di Economia, Statistica e Finanza ”Giovanni
Anania”- DESF, Italy, 2009.

[113] THALHEIM, J., BHATOTIA, P., FONSECA, P., AND KASIKCI, B. Cntr: Lightweight
OS Containers. In Proceedings of 2018 USENIX Annual Technical Conference, USENIX

ATC’18 (2018), pp. 199–212.

[114] THORPE, J., QIAO, Y., EYOLFSON, J., TENG, S., HU, G., JIA, Z., WEI, J., VORA, K.,
NETRAVALI, R., KIM, M., AND XU, G. H. Dorylus: Affordable, Scalable, and Accurate
GNN Training with Distributed CPU Servers and Serverless Threads. In Proceedings of

the 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI

’21) (July 2021), USENIX Association, pp. 495–514.

[115] THUNDRA. Thundra: Serverless Observability for AWS Lambda. https://

docs.thundra.io/, 2018. Date last accessed on 06-09-2020.

[116] TIAN, H., LI, S., WANG, A., WANG, W., WU, T., AND YANG, H. OWL: Performance-
aware scheduling for resource efficient function-as-a-service cloud. In Symposium on

Cloud Computing (SoCC ’22) (San Francisco, CA, USA, November 2022), ACM.

[117] TOSEPU, R., GUNAWAN, J., EFFENDY, D. S., AHMAD, L. O. A. I., LESTARI, H.,
BAHAR, H., AND ASFIAN, P. Correlation between weather and Covid-19 pandemic in
Jakarta, Indonesia. Journal of Science of The Total Environment 725 (July 2020).

[118] TOTOY, G., BOZA, E. F., AND ABAD, C. L. An Extensible Scheduler for the
OpenLambda FaaS Platform. In Min-Move’18, ACM (2018).

[119] VAN KESTEREN, A. Xmlhttprequest. https://xhr.spec.whatwg.org/, 2004.
Date last accessed on 05-07-2019.

[120] VERMA, A., AHUJA, P., AND NEOGI, A. pMapper: Power and migration cost aware
application placement in virtualized systems. In Middleware: ACM/IFIP/USENIX

9th International Conference on Distributed Systems Platforms and Open Distributed

Processing (Leuven, Belgium, December 2008), USENIX Association, pp. 243—-264.

[121] WAGNER, T. Understanding container reuse in AWS Lambda. https://

aws.amazon.com/blogs/compute/container-reuse-in-lambda/, 2014.
Date last accessed on 02-11-2019.

[122] WALSH, L., AKHMECHET, V., AND GLUKHOVSKY, M. RethinkDB — Rethinking
Database Storage. In Hexagram 49 (2009).

REFERENCES 111

[123] WANG, A., CHANG, S., TIAN, H., WANG, H., YANG, H., LI, H., DU, R., AND CHENG,
Y. FaaSNet: Scalable and fast provisioning of custom serverless container runtimes at
alibaba cloud function compute. In Proceedings of the 2021 USENIX Annual Technical

Conference (ATC’ 21) (July 2021), USENIX Association, pp. 443–457.

[124] WANG, L., LI, M., ZHANG, Y., RISTENPART, T., AND SWIFT, M. Peeking Behind
the Curtains of Serverless Platforms. In Proceedings of 2018 USENIX Annual Technical

Conference, USENIX ATC’18 (2018), pp. 133–145.

[125] WANG, S., LIAGOURIS, J., NISHIHARA, R., MORITZ, P., MISRA, U., TUMANOV, A.,
AND STOICA, I. Lineage stash: fault tolerance off the critical path. In Proceedings of the

27th ACM Symposium on Operating Systems Principles (SOSP ’19) (Huntsville, Ontario,
Canada, October 2019), pp. 338–352.

[126] WANG, X., WU, Q., AND ZHANG, Y. T-db: Toward fully functional transparent
encrypted databases in dbaas framework. ArXiv abs/1708.08191 (2017).

[127] WEINHARDT, P. D. C., ANANDASIVAM, W. A., BLAU, D. B., BORISSOV, N., MEINL,
T., MICHALK, W. W., AND STÖSSER, D. J. Cloud Computing – A Classification,
Business Models, and Research Directions. Business & Information Systems Engineering

1, 5 (October 2009), 391–399.

[128] WEN, J., WANG, Y., AND LIU, F. StepConf: SLO-aware dynamic resource configuration
for serverless function workflows. In IEEE INFOCOM 2022 - IEEE Conference on

Computer Communications (London, UK, May 2022), IEEE, pp. 1868–1877.

[129] WIKIMEDIA. Cache replacement policies. https://en.wikipedia.org/wiki/
Cache replacement policies, 2010. Date last accessed on 15-08-2019.

[130] WIKIMEDIA. User defined function. https://en.wikipedia.org/wiki/User-
defined function, 2012. Date last accessed on 15-10-2019.

[131] XU, F., QIN, Y., CHEN, L., ZHOU, Z., AND LIU, F. λdnn: Achieving predictable
distributed dnn training with serverless architectures. IEEE Transactions on Computers

71 (January 2021), 450–463.

[132] XU, Z., ZHANG, H., GENG, X., WU, Q., AND MA, H. Adaptive function launching
acceleration in serverless computing platforms. In 2019 IEEE 25th International

Conference on Parallel and Distributed Systems (ICPADS) (Tianjin, China, December
2019), IEEE, pp. 9–16.

[133] YILMAZ, E., ASLAM, J. A., AND ROBERTSON, S. A New Rank Correlation Coefficient
for Information Retrieval. In The 31st Annual International ACM SIGIR Conference

(Singapore, July 2008), pp. 587–594.

REFERENCES 112

[134] YU, H., IRISSAPPANE, A. A., WANG, H., AND LLOYD, W. J. FaaSRank: Learning to
schedule functions in serverless platforms. In 2021 IEEE International Conference on

Autonomic Computing and Self-Organizing Systems (ACSOS) (Washington, DC, USA,
September 2021), IEEE, pp. 31–40.

[135] YU, M., CAO, T., WANG, W., AND CHEN, R. Following the Data, Not the Function:
Rethinking Function Orchestration in Serverless Computing. In Proceedings of the 20th

USENIX Symposium on Networked Systems Design and Implementation (NSDI’ 23) (MA,
USA, April 2023), USENIX Association. accepted to be appeared.

[136] ZHANG, H., CARDOZA, A., CHEN, P. B., ANGEL, S., AND LIU, V. Fault-tolerant and
transactional stateful serverless workflows. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’20) (Banff, Alberta, Canada, November 2020),
pp. 1187–1204.

[137] ZHANG, Y., ZHENG, Z., AND LYU, M. R. Bftcloud: A byzantine fault tolerance
framework for voluntary-resource cloud computing. In 2011 IEEE 4th International

Conference on Cloud Computing (Washington, DC, USA, July 2011), IEEE, pp. 444–451.

[138] ZHOU, D., AND TAMIR, Y. HyCoR: Fault-Tolerant Replicated Containers Based on
Checkpoint and Replay. Computing Research Repository (CoRR) abs/2101.0958 (January
2021).

[139] ZHOU, Y., CHEN, Z., AND LI, K. The Multi-Queue Replacement Algorithm for
Second Level Buffer Caches. In Proceedings of the 2001 USENIX Annual Technical

Conference(USENIX ATC’01) (2001).

[140] ZHUANG, S., LI, Z., ZHUO, D., WANG, S., LIANG, E., NISHIHARA, R., MORITZ,
P., AND STOICA, I. Hoplite: Efficient and fault-tolerant collective communication for
task-based distributed systems. In ACM SIGCOMM 2021 Conference (SIGCOMM ’21)

(USA, August 2021), ACM, pp. 641–656.

List of Publication

[1] SOLAIMAN, K., and ADNAN, M.A., “WLEC: A Not So Cold Architecture to Mitigate
Cold Start Problem for Serverless Computing,” IEEE International Conference on Cloud

Engineering(IC2E), (April, 2020), Sydney, Australia, pp. 144-153.

113

Index

CMS, 67
Initialization, 67
OnRequest, 68
QueuePlacing, 68

Cold start, 61
CouchDB, 52

DASH, 65
docker, 22
DynamoDB, 52

Elastic BS, 52

FaaS, 23

HLS, 65

IaaS, 23

Nginx, 63

OpenLambda, 50
Lambda bench, 50
Lambda store, 51
Lambdaware database, 52
Load balancer, 52
Local execution engine, 52

PaaS, 23
Pandas, 37
Pannier, 47

Ghost cache, 48
Wall clock, 48

Pipsqueak, 37
Proactive Fault Tolerance, 60

Preemptive Migration, 60
Self-Healing, 60
Software Rejuvenation, 60

Rank Correlation, 53
Rank Correlation Coefficient, 53
Reactive Fault Tolerance, 58

Checkpointing, 58
Migration, 59
Record & Replay, 58
Retry, 58
User Defined, 59

RethinkDB, 52

S2LRU, 47
S2LRU++, 64

Cold queue, 64
LRU, 64
MRU, 64
Warm queue, 64

SaaS, 23
Serverless Computing, 22
Software Bugs, 56

Execution Stage Failures, 57
Request Stage Failures, 57

Sparrow, 52
Spearman’s Rank Correlation Coefficient,

53

Template container list, 65
Thundra, 60

Virtual Machine, 22

114

Appendix A

Algorithms

A.1 Algorithm for Initialization function

In Algorithm 1 we show how to initialize a new container in WLEC

Algorithm 1 Algorithm for container initialization
create container c
hit←− hit++
qtype ←− 0
wtime ←− now() + atime

Qc.push(c)
return c

A.2 Algorithm for OnRequest function

In Algorithm 2 we show how WLEC selects a container when a request is issued

A.3 Algorithm for QueuePlacing function

In Algorithm 3 we show how WLEC determines the placement of a container after a request in
served by that container

115

A.3. ALGORITHM FOR QUEUEPLACING FUNCTION 116

Algorithm 2 Algorithm for container selection
if request is valid then

for each c ∈ Qw do
if c.ftype = λtype and c.status = 0 then
c.hit←− c.hit++
return c

else if c.ftype = λtype and c.status = 1 then
c.Initialization()
Lt.LRU ←− c
return c from Lt

end if
end for
for each c ∈ Qc do

if c.ftype = λtype then
c.hit←− c.hit ++
return c

end if
end for
c.Initialization()
c.hit←− c.hit++
return c

else
invalid request

end if

Algorithm 3 Algorithm for container placement
if c.hit = 0 or c.hit < tvalue then
Qc.LRU ←− c
c.wtime ←− now() + atime

else if c.hit < tvalue and qtype = 0 then
Qc.MRU ←− c
c.wtime ←− now() + atime

else if c.hit > tvalue and qtype = 0 then
Qc.pop()
Qw.MRU ←− c
c.wtime ←− now() + atime

Lc ←− c
else if c.atime < now() and qtype = 1 then
Qc.MRU ←− c
c.wtime ←− now() + atime

else
no change

end if

Generated using Postgraduate Thesis LATEX Template, Version 1.03. Department of
Computer Science and Engineering, Bangladesh University of Engineering and

Technology, Dhaka, Bangladesh.

This thesis was generated on Sunday 22nd January, 2023 at 9:21am.

117

