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Abstract

The consensus problems in strings is motivated by the requirement of finding commonality

of a large number of strings and has a variety of applications in Bioinformatics. This thesis

presents important theoretical and algorithmic results determining the complexity class of

the consensus string problem and provides a road map for diagnosing unknown genetic

diseases that show Allelic Heterogeneity, a case where a normal gene mutates in different

orders resulting in two different gene sequences causing two different genetic diseases.

In this thesis, we first show the NP-hardness of the consensus string problem under a

well known mutation type, namely transposition as the distance metric. Then we propose

a polynomial time algorithm for the relaxed version of the problem which determines the

existence of a consensus sequence given two input sequences under the inversion and trans-

position metric. Our algorithm detects the existence of a common ancestor gene sequence

given two input DNA sequences with theoretical worst case time complexity of O(n4) for

both the non-overlapping inversion (reversed complement) metric and transposition met-

ric. Here n is the common length of the input sequences. However, for both the inversion

and transposition metric, practically the average and worst case time complexity have been

found to be O(n2) and O(n3) respectively, where the worst case occurs when both input

sequences have similarity of around 90%. Similarly, theoretical worst case space complexity

is O(n3) for both the inversion and transposition metric, whereas it is O(n2) practically for

the inversion metric. Finally, we present a pathway of detecting Allelic Heterogeneity, a

challenging genetic disease, using our algorithm.
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Chapter 1

Introduction

The Consensus String problem is one of the fundamental problems in Stringology. In the

literature, it is also known as the Center String problem or the Closest String problem.

This problem can be defined as follows: given a set of k strings S = {s1, . . . , sk} and a

constant d, find, if it exists, a string s? such that the distance of s? from each of the strings

in S does not exceed d, for some suitable and meaningful definition of the term ‘distance’.

This version of Consensus String problem is NP-complete. However, if we also need to find

out the parameter d, then it becomes NP-hard problem. This problem has been widely

studied in computational biology and combinatorial pattern matching [4, 39, 42]. This the-

sis presents theoretical analysis and algorithms that are at the core of several biological

problems. The National Center for Biotechnology Information (NCBI 2001) defines bioin-

formatics as: “Bioinformatics is the field of science in which biology, computer science, and

information technology merge into a single discipline”. Main motivation of this thesis comes

from the applicability of the Concensus String problem in several problems of computa-

tional biology and bioinformatics. The ultimate goal of bioinformatics is to uncover the

wealth of biological information hidden in the mass of sequence, structure, literature and

other biological data and obtain a clearer insight into the fundamental biology of organ-

isms and to use this information to enhance the standard of life for mankind. The field

of bioinformatics is ever changing and rapidly evolving. There are at least four different

specialized areas within the field of bioinformatics: acquiring of data (working with ma-

chines and equipment, sequencing DNA), storing data (typically working with databases),

developing tools to analyze and visualize data (programming) and analyzing data (statistics,

analysis). In this thesis, we first prove the NP-hardness of the Consensus String problem

for distance metric Transposition. Then we derive an algorithm for a relaxed version of

Consensus String problem that can be used in several biological problems. Here, we target
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a specific problem “Diagnosis of Allelic Heterogeneity, a genetic disorder”. This is a case

where different mutations in the same gene results in different phenotypes which may lead

to diseases with entirely different clinical features [53]. We have mapped the problem of

determining allelic heterogeneity to the well known Consensus String problem by proposing

an algorithm that can be used for deciding whether two input DNA sequences x and y are

mutated (by non-overlapping inversions or transpositions) from the same sequence p. This

is equivalent to determining the existence of a Concensus String (s?), given two strings x

and y of length n on an alphabet of size k = 4 (DNA bases A, T, C, G) under the distance

metric called non overlapping inversion, i.e., reversed complements and transposition. Since

the minimum distance d is not present as a parameter, our problem can be thought of as a

relaxed version of the original Consensus String problem.

One of the first distance metrics studied in the context of strings is the Hamming dis-

tance [36]. Subsequently, the Levenshtein edit distance [43] adds insertions and deletions to

the mismatches as error possibilities. Lowrance and Wagner [46, 64] added the swap opera-

tion to the set of operations defining the distance metric. However, these distance functions

assume that changes between strings occur only locally, i.e., only a small portion of the

string is involved in the mutation event. However, in the biological context, evidence shows

that large scale changes are also possible. For example, large pieces of DNA can be moved

from one location to another (transpositions), or replaced by their reversed complements

(inversions). In [17] the authors first solve approximate string matching problem under a

string distance whose edit operations are transpositions of equal length adjacent factors and

inversions of factors. Further works regarding these metrics were done in [32, 1, 3, 2].

The problem of Consensus String has been intensively addressed in different contexts,

namely, in computational geometry [66], in combinatorial pattern matching [38, 14], and in

string matching where Hamming distance, Swap Distance, and Reversal Distance have been

considered. In this paper, we investigate the Consensus problem under another important

metric, namely, the Transposition metric. It is known that the Consensus String problem is

NP-complete for Hamming distance, even when the characters in the strings are drawn from

the binary alphabet [30, 56]. Amir et al. [7] have proved that Consensus String problem

is NP-complete as well for both swap metric and reversal metric. However, there is good

number of recent works where several genetic algorithms [49], such as, parallel simulated

annealing [45], parallel multi start algorithm [31], ant colony optimization algorithm [28],

memetic algorithm [8] etc. are applied for finding the closest string. Besides these, parame-

terized complexity of the Concensus String problem has been discussed several times in the

literature. Gramm et al. [33, 34] have shown that exact solutions for Concensus String and
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related problems exist for constant distance parameter (d) and constant number of strings

(k). Bodlaender et al. [13] have worked on parameterized complexity of sequence alignment

and Concensus String. The authors in [7] conjectured that the Consensus String problems

for the interchange metric, the transposition metric, and the block interchange metric are

also NP-Complete. In this thesis we partially prove the above-mentioned conjecture. In

particular, we prove that the Consensus String problems for the transposition metric is

NP-complete.

Genome rearrangement problems have been proven so interesting from a combinatorial

point of view that the field now belongs as much to computer science as to biology. From

one cell to another, from one individual to another, and from one species to another, the

content of DNA molecules is often similar. The organization of these molecules, however,

differs dramatically, and the mutations that affect this organization are known as genome

rearrangements [29]. Multiple genome rearrangement and breakpoint phylogeny has been

discussed by Sankoff et al. [54]. Since the genome rearrangement problem for reversal and

transposition have been proven to be NP-hard [18, 15], several approximation solutions have

been proposed for this problem. A 2-approximation algorithm for genome rearrangements

by reversals and transpositions has been proposed by Gu et al. [35]. Later, 1.5 and 1.345

approximation algorithm for sorting by transpositions are proposed by Hartman et al. [37]

and Elias et al. [27] respectively. Yancopoulos et al. [65] has proposed efficient sorting of

genomic permutations by translocation, inversion and block interchange. Bader et al. [9] has

presented a linear-time algorithm for computing only the inversion distance between signed

permutations with an experimental study.

Computer Alignment of molecular sequences is widely used for biological sequence com-

parisons. Amir et al. [6] proposed a new pattern matching paradigm Pattern Matching with

Rearrangements being motivated by the Sorting by Reversals problem [11, 18]. In general,

alignment with inversions does not have a known polynomial time algorithm and a simpli-

fication to the problem considers only non-overlapping inversions. In the previous works of

Schoniger et al. [55] and Vellozo et al. [63], a non-overlapping inversion occurs only in one

string and transforms the string to the other string. On the other hand, the more difficult

version where non overlapping inversions are allowed in both the strings simultaneously,

has been introduced very recently by Cho et al. [21]. The authors in [21] have provided an

O(n3) algorithm using O(n2) space, where n is the size of the two input strings, though their

algorithm fails in returning the correct answers in some cases because of not tracking the

prefixes of the common ancestors. In what follows, whenever we refer to the term ‘inversion’,

we mean non-overlapping inversions.
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Motivations behind this research work and our main contributions are discussed in the

rest of this chapter.

1.1 Motivation Behind the Consensus String Problem

The Consensus problem in strings is motivated by the requirement of finding commonality

of a large number of strings.

1. Computational Geometry: The problem of Concensus String has been intensively ad-

dressed in computational geometry [66] for the minimum enclosing ball problem and

others [38].

2. Stringology: Consensus string in stringology with Hamming distance [30], Levenshtein

edit distance [43], Swap Distance, and Reversal Distance [7], etc. have been considered.

3. Bioinformatics: Consensus string problem has a variety of applications in bioinformat-

ics [20]. The closest string was first introduced and studied in the context bioinfor-

matics by Lanctot et al. [41]. It has biological applications concerning finding similar

regions in multiple DNA, RNA, or protein sequences. It plays an important role in

many application, including universal PCR primer design [26, 41, 47, 60], genetic probe

design [41], antisense drug design [41, 23], finding transcription factor binding sites in

genomic data [58], determining an unbiased consensus of a protein family [10], and

motif-recognition [41, 51, 52]. The closest string problem formalizes these tasks.

4. Networking: It also has application in web searching as a clustering aid. For example,

clustering methods based on closest string via rank distance [25].

1.2 Motivation Behind the Diagnosis of Allelic Het-

erogeneity

Inversion and transposition are the two most common mutations that result in several inter-

esting properties in human genome. Genetic disease is caused by gene mutation, which can

be inherited through generations and can result in new sequences from a normal gene [67].

It is very interesting to know that different mutations in the same gene results in different

phenotypes which may lead to diseases with entirely different clinical features [53]. This

scenario is defined as Allelic Heterogeneity. For example, mutations in the RET gene have
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been implicated in the etiology of Hirshprung disease as well as Multiple Endocrine Neoplasia

(MEN) Type 2 1.

Allelic Heterogeneity is considered to be the greatest challenge for molecular genetic

diagnosis as stated in the book by Meisenberg et al. [50]. It makes the use of usual clinical

diagnostic approach like allele-specific oligonucleotide probes impractical and needs different

approaches like mismatch scanning, gene sequencing, linkage analysis etc., all of which are

highly expensive solutions. Allelic heterogeneity motivates us with its importance in the

field of medical science. It also causes autism and rigid-compulsive behaviors [57]. Very

recently Castellani et al. [19] presents CFTR2, a novel approach for the clinical diagnosis

of genetic disorders emphasizing specially the allelic heterogeneity2. But since the clinical

diagnosis is extremely expensive it is worth investigating whether a tractable/polynomial

time algorithm exists to detect the possibility of allelic heterogeneity.

1.3 Contributions

The main contributions of this thesis can be summarized as follows.

• We have investigated the complexity class of the Concensus String problem under the

transposition metric. The Consensus String problem under the Transposition metric

is proven to be NP-hard by reduction from the already proven NP-hard problem:

Concensus String problem under the Swap Metric.

• We have developed polynomial time algorithms for a relaxed version of the Consensus

String problem under the inversion and transposition metric. In this relaxed version

we have to output the existence of closest string between two input strings.

1. For the non overlapping inversion metric, theoretical running time of our al-

gorithm is O(n4), whereas it is O(n3) practically, for the worst case scenario.

Moreover, for the average case, our algorithm runs in O(n2) practically. Space

complexity of the algorithm is O(n3).

Cho et al. [21] have provided an O(n3) algorithm using O(n2) space (n is the

size of the two input strings) for this same problem we have worked on (non

overlapping inversion metric). But we have found through experimentation that

1http://www.jpgmonline.com/article.asp?issn=0022-3859;year=2007;volume=53;issue=4;
spage=257;epage=261;aulast=Prasun

2http://www.irdirc.org/wp-content/uploads/2013/06/Cutting IRDiRC 2013 Public.pdf
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their algorithm fails in returning the correct answers in some cases because of

not tracking the prefixes of the common ancestors. In this thesis, our presented

algorithm correctly solves this problem with the same time and space complexity.

2. For non overlapping transposition metric, we have analyzed the running time

for fixed length transpositions and all length transpositions. For fixed length

transpositions, the running time and space complexity are O(n3) and O(n2). On

the other hand, for all length transpositions, theoretical running time is O(n4)

and space complexity is O(n3). However, practical running time in worst case

and average case are found to be O(n3) and O(n2) respectively.

• We have presented a roadmap for a non-clinical efficient scheme to aid in the diagnosis

of Allelic Heterogeneity. To this end, this is the first attempt to map the Concensus

String problem to the biomedical problem of detecting the allelic heterogeneity. In

particular, here we use the term common ancestor to indicate the same gene sequence

from which different mutation order gives different gene sequences x and y. Our

aim is to find the common ancestors given x and y as input, where x is the gene

sequence of a known disease caused by mutation of some ancestor gene p, and y is

the gene sequence of an unknown disease. If there exist common ancestors between

x and y, and we find a match with p, then we diagnose that unknown disease y to

be allelic heterogeneous to x. Currently available medical diagnostic techniques, such

as, mismatch scanning, linkage analysis, gene sequencing, etc. all are expensive and

time consuming operations. Our algorithm is not an alternative option for diagnosis

of the allelic heterogeneity. Because, even if our algorithm returns YES, still medical

diagnostic techniques may find those diseases as not allelic heterogeneous. But if

our algorithm returns NO, then those diseases can never be allelic heterogeneous,

and further medical diagnostic approach is unnecessary. So before going through

such costly medical diagnostic techniques, it is better to test first if there is even any

possibility of allelic heterogeneity between two diseases, using our proposed algorithms.

1.4 Organization of This Thesis

The rest of the chapters are organized as follows. In Chapter 2, we describe the basic concepts

on complexity class, Concensus String, distance metrics, and genetic mutations required to

understand the problems and algorithms presented in this thesis. Besides that, we present
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the formal definitions of the problems dealt in this thesis. In Chapter 3, we prove the NP-

hardness of the Concensus String problem under the transposition metric. The algorithm

developed for the relaxed version under the inversion metric and transposition metric are

explained in Chapter 4 and Chapter 5 respectively, along with detailed proofs, lemmas,

counter examples, and experimental analysis. Then in Chapter 6, we discuss the road map

of applying the algorithm in detecting Allelic Heterogeneity, and some other applications

of our algorithm. Finally, in Chapter 7, we conclude our thesis with a brief overview and

future research directions.
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Chapter 2

Preliminaries with Problem

Definitions

This chapter presents the ideas necessary to comprehend the topics covered in this thesis.

We also formally present the three problems we mainly covered in this thesis.

2.1 String

In computer programming, a string is traditionally a sequence of characters. Let Σ be a non-

empty finite set of symbols (alternatively called characters), called the alphabet. A string

(or word) over Σ is any finite sequence of symbols from Σ. For example, if Σ = {A, T, C,G},
then ATCGGAC is a string over Σ.

2.2 Distance Metrics in String Comparison

In mathematics and computer science, a string metric (also known as a string similarity

metric or string distance function) is a metric that measures similarity or dissimilarity

(distance) between two text strings for approximate string matching or comparison and

in fuzzy string searching1. String metrics are used heavily in information integration and

are currently used in areas including fraud detection, fingerprint analysis, DNA analysis,

RNA analysis, image analysis, evidence-based machine learning, database data duplication,

data mining, web interfaces, e.g. Ajax-style suggestions as you type, data integration,

1http://en.wikipedia.org/wiki/String metric
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and semantic knowledge integration. Some frequently used distance metrics are Hamming

distance, Euclidean distance, Levenshtein distance, swap distance, etc.

2.2.1 Hamming Distance

In information theory, the Hamming distance between two strings of equal length is the

number of positions at which the corresponding symbols are different [36]. In another way,

it measures the minimum number of substitutions required to change one string into the

other. For example,

• Hamming distance between karolin and kathrin is 3.

• Hamming distance between 1011101 and 1001001 is 2

2.2.2 Euclidean distance

In mathematics, the Euclidean distance or Euclidean metric is the ‘ordinary’ distance be-

tween two points that one would measure with a ruler, and is given by the Pythagorean

formula2 [24]. In Cartesian coordinates, if p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) are

two points in Euclidean n-space, then the distance (d) from p to q, or from q to p is given

by, d(p, q) = d(q, p) =
√

(q1 − p1)2 + (q2 − p2)2, . . . , (qn − pn)2.

2.2.3 Levenshtein distance

In information theory and computer science, the Levenshtein distance is a string metric for

measuring the difference between two sequences [44]. Informally, the Levenshtein distance

between two words is the minimum number of single-character edits (i.e. insertions, deletions

or substitutions) required to change one word into the other. For example, the Levenshtein

distance between kitten and sitting is 3, since the following three edits change one into the

other, and there is no way to do it with fewer than three edits:

• kitten to sitten (substitution of ‘s’ for ‘k’)

• sitten to sittin (substitution of ‘i’ for ‘e’)

• sittin to sitting (insertion of ‘g’ at the end)

2http://www.encyclopediaofmath.org/index.php?title=Pythagoras theorem&oldid=19490
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Biological mutation operation, e.g. inversion, reversal, transposition etc. (defined later in

Section 2.5, 2.5.1, 2.5.2) are also considered as distance metric in bioinformatics for sequence

analysis.

2.3 Complexity Class

In computational complexity theory, a complexity class is a set of problems that can be solved

by an abstract machine M using O(f(n)) of resource R, where n is the size of the input [22].

We will discuss four major complexity classes P, NP, NP-complete (NPC), and NP-hard,

since these classes are related with the thesis. In this thesis we prove NP-Completeness of

the Concensus String problem under the transposition metric in Chapter 3.

Figure 2.1: Hierarchy of complexity classes
3

• P Class: In computational complexity theory, P, also known as PTIME or DTIME

(O(1)), is one of the most fundamental complexity classes. It contains all decision

problems that can be solved by a deterministic Turing machine using a polynomial

amount of computation time, or polynomial time.

• NP Class: NP is the set of decision problems where the ‘yes’ instances can be accepted

in polynomial time by a non-deterministic Turing machine.

• NP-hard: In computational complexity theory, Non-deterministic Polynomial-time

hard (NP-hard) is a class of problems that are, at least as hard as the hardest problems

in NP. Formally, a problem H is NP-hard when every problem L in NP can be reduced

in polynomial time to H [62].

20



• NPC Class: A decision problem C is NP-complete if,

1. C is in NP, and

2. Every problem in NP is reducible to C in polynomial time [61].

Although any given solution to an NP-complete problem can be verified quickly (in

polynomial time), there is no known efficient way to locate a solution.

2.4 Consensus String Problem

Given a set of strings S = s1, ..., sN and a constant d, it finds, if exists, a string s∗ such

that the distance of s∗ from each of the strings in S does not exceed d, for some suitable

and meaningful definition of the term distance. Also known as Closest String problem in

literature. Please refer to the Figure 2.2 for an illustration.

Figure 2.2: s? = 011001 is the Concensus String of S = {s1, s2, s3, s4}, under the Hamming
distance, with minimum distance, d ≤ 2

This version of the Concensus String problem is NP-complete. However, if we also need

to find out the parameter d, then it becomes NP-hard problem.

2.5 Mutation

In genetics, a mutation is a change of the nucleotide sequence of the genome of an organism,

virus, or extra chromosomal genetic element. Mutations result from errors in the process of

replication, from the insertion or deletion of segments of DNA by mobile genetic elements,

or from unrepaired damage to DNA or to RNA genomes [12, 5, 16]. Large-scale mutations in

chromosomal structure includes deletion, chromosomal translocation, chromosomal inversion

etc.

21



2.5.1 Inversions

Inversion is a chromosomal rearrangement in which a segment of a chromosome is reversed

and complemented. For an illustration please refer to the Figure 2.3.

Figure 2.3: Illustration of an inversion operation

In this example, we consider a DNA sequence x = ATCGATTT . In a DNA sequence,

A− T are complemented base and C −G are complemented base. First inversion of length

4, at index 3 to 6 over x converts it into x′ = ATTAGCTT . Then again, another inversion

of length 2, at index 7 of x′ converts it into x′′ = ATATCGAA. Therefore, two inversion

operations (first one is of length 4 and second one is of length 2) converts x into x′′. Thus,

the inversion distance between x and x′′ is 2.

2.5.2 Transpositions

Transposition is a genetic mutation in which two chromosomal segments of the same size (on

the same or different chromosomes) interchange their positions. For an illustration please

refer to the Figure 2.4.

Figure 2.4: Illustration of a transposition operation

Here. we consider a DNA sequence x = ATCCAATT . First transposition of length 2 at

index 3 to 6, swaps the position of two blocks CC (length 2) and AA (length 2). It results

in x′ = ATAACCTT . Then again, another transposition of length 1, at index 1 to 2, swaps

22



two one sized block A and T , and results in x′′ = TAAACCTT . Thus, two transposition

operations (first one is of length 2 and second one is of length 1) converts x into x′′. So the

transposition distance between x and x′′ is 2.

2.5.3 Allelic Heterogeneity

Allelic Heterogeneity is a genetic disease where different mutations in the same gene re-

sult in different phenotypes which may lead to diseases with entirely different clinical fea-

tures [59]. For an illustration please refer to the Figure 2.5. Here, the gene sequence

P = ATTCGCGGTACAG is mutated in different order in disease 1 and disease 2. In

disease 1, a transposition over x at index 3 to 6 (block TCGC) takes place. Also an in-

version mutation at index 11 to 13 (block CAG) occurs. These two operations results in

gene sequence X = ATCGAGGGTACTG, which cause disease 1. On the other hand, a

transposition operation at index 3 to 6 and an inversion operation at index 7 to 10 over x

results in gene sequence Y = ATCGAG TACCCAG, causing disease 2. So here disease 1

and disease 2 are called allelic heterogeneous with each other, since both of them are resulted

from same parent gene sequence P .

Figure 2.5: Illustration of Allelic Heterogeneity

Some real life examples of allelic heterogeneity are collected from the Journal of Post-

graduate Medicine and reported in Table 2.14.

We end this section with a formal definition of the problem we handle in this thesis.

2.5.4 Formal Definitions of The Target Problems

Problem 1. Determining the complexity class of Concensus String under the distance metric

or distance function: transposition.

4[http://www.jpgmonline.com/viewimage.asp?img=jpgm 2007 53 4 257 33968 1.jpg]
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Table 2.1: Examples of Allelic Heterogeneity
Hurler syndrome IDUA Scheie syndrome

Charcot-marie-tooth neuropathy PMP22 Hereditary neuropathy with pressure palsy
Hyperkalemic periodic paralysis SCN4A Paramyotonia congenita

Creutzfeldt - Jacob disease PRNP Familial fatal insomnia
Pseudohypoparathyroidism IA GNAS1 Albright hereditary osteodystrophy

Kennedy disease AR Androgen insensitivity
Cystic fibrosis CFTR Congenital bilateral absense of vas deferens

Duchenne muscular dystrophy DMD Becker muscular dystrophy
Hirschprung disease RET Multiple endorcrine neoplasia Type 2

Problem 2. Determining the existence of a Concensus String (s∗), given two strings x and

y of length n on an alphabet of size k = 4 under the distance metric called non overlapping

inversion (i.e., reversed complements) and transposition. Since the minimum distance d is

not present as a parameter, it can be thought of as a relaxed version of the original Concensus

String problem.

Problem 3. Present a road map for the application of our algorithm in detecting the genetic

disease Allelic Heterogeneity. For this purpose, the goal is to find the common ancestors

given two DNA sequences x and y as input, where x is the gene sequence of a known disease

caused by mutation of some ancestor gene p, and y is the gene sequence of an unknown

disease. If there exist common ancestors between x and y, and we find a match with p, then

we can diagnose that unknown disease y to be an allelic heterogeneous to x.

The Problem 2 and Problem 3 are almost identical. This is illustrated in Figure 2.6.

Figure 2.6: Mapping the Concensus String problem to the diagnosis of Allelic Heterogeneity

In allelic heterogeneity, a perfect gene p is mutated in different order giving x and y

two defective genes, shown by solid arrows. On the other hand, having x and y, going on

reversed direction (shown by dotted arrow), we can get p as a Concensus String of x and y

with mutations as distance metric. We denote p as the common ancestor gene of x and y.
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• Among the Concensus Strings of x and y, if a match with p is found the test is positive.

Then we can perform additional clinical diagnostic approaches to validate the positive

output.

• If no match is found, the test is negative. Then no need of performing expensive clinical

diagnostic tests, which saves huge energy and costs.

For Problem 3, we use the algorithm developed in Problem 2, but with some additional

steps for detecting the disease.

2.6 Conclusion

In this chapter, we have presented the preliminaries required to understand the following

chapters. We also formally have defined the problem we handle in this thesis. In the next

chapters, we will formally present our proofs for the complexity class of Concensus String

problem under transposition metric and present the algorithms for the relaxed version.

25



Chapter 3

NP-Hardness of The Consensus

String Problem Under the

Transposition Metric

In this chapter, we present the proofs of NP-hardness of the Concensus String problem under

the transposition metrics. This chapter starts with some primary definitions related with

our works, and then we go for the formal proofs.

3.1 Notations and Definitions

Let U be a set, U` be the Cartesian product of U with itself ` times, and dist : U` × U` → R
be a distance function. Let S ⊆ U` and let d ∈ R.

Then sd ∈ U` is a distance d consensus of S (alternately a radius r center of S, or a

center of the radius d ball enclosing S), if dist(s, sd) ≤ d∀s ∈ S.

The Consensus String problem has as its input a set S ⊆ U` and as its output the mini-

mum d ∈ R for which there exists an s∗ ∈ U` where s∗ is a distance d consensus of S. We

call s∗ a consensus or center of S.

Let s = s[1] . . . s[`] be a string over alphabet Σ. A swap permutation for s is a permu-

tation Π : 1, . . . , `→ 1, . . . , ` such that

1. if Π(i) = j then Π(j) = i (characters are swapped);

2. for all i, Π(i) ∈ i− 1, i, i+ 1 (only adjacent characters are swapped);

26



3. if Π(i) 6= i then s[Π(i)] 6= s[i] (identical characters are not swapped).

For a given string s = s[1] . . . s[`] and a swap permutation Π for s we use Π(s) = s[Π(1)]s[Π(2)]...s[Π(`)].

We call Π(s) a swapped version of s. The number of swaps in swapped version Π(s) of s is

the number of pairs (i, i+1) where Π(i) = i+1 and Π(i+1) = i. For strings p = p[1] . . . p[`]

and t = t[1] . . . t[`], we say that p swap matches t if t is a swapped version of p. It is not

difficult to see that if p swap matches t then there is a unique swap permutation which

converts p into t. The number of swaps in that swap permutation is the swap distance of p

and t. Consensus string problem under the swap distance is NP-hard [7].

Given two strings p and t, the mutation distance md(p, t) is based on the following edit

operation:

1. Transposition: A factor of the form ZW is transformed into WZ, provided that |Z| =
|W | > 0. The transposition size in this case is said to be |W | = |Z|. For example,

transposition of size 3 at index 3 of the binary string s =0 1 1 1 0 0 0 0 1 1 is 0 1 0 0 0

1 1 0 1 1.

Each of the operations above is assigned unit cost.

There are strings p, t such that p can not be converted into t by any sequence of trans-

positions, in which case md(p, t) = ∞. When md(p, t) < ∞, we say that p and t have an

md-match. If only transpositions with fixed size (|Z| = k) is allowed then p and t is said

to have a fixed-length transposition match or flt-match, for short. In this case, the mutation

distance is the flt-distance of p and t.

3.2 The Concensus String problem under the transpo-

sition metric

In this section, we show that the Consensus String problem under the Fixed-Length Trans-

position distance (CSFLT) for binary alphabet is NP-hard by reduction from Consensus

String problem under the Swap distance (CSS) for binary alphabet.

The CSS problem: Instance: A finite alphabet Σ, a finite set S ⊆ U` of strings over Σ

with |S| = K, and a positive integer swap distance d ∈ R.

Question: find the string s∗ ∈ U` where s∗ is a distance d consensus of S.

The CSS problem is NP-hard even if Σ = {0, 1} [7]. We assume that Σ = {0, 1} and
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|S| = K.

The CSFLT problem: Instance: A finite alphabet Σ
′
, a finite set S

′ ⊆ U
′

` of strings

over Σ
′

with |S ′| = K ′, a positive integer fixed-length transposition distance d
′ ∈ R′ , and

positive integer fixed-length transposition size k.

Question: find the string s
′∗ ∈ U ′` where s

′∗ is a distance d consensus of S
′
.

Now we transform an instance of the CSS problem to an instance of CSFLT problem ac-

cording to following rules.

1. Σ
′ ∈ {αk, βk} can be found from Σ such that,

(a) αk ← 0, (each 0 is encoded by a block of k consecutive α).

(b) βk ← 1, (each 1 is encoded by a block of k consecutive β).

2. Each string s
′
j ∈ U

′

l can be found from a string sj ∈ Ul such that,

(a) |s′j| = k`, where |sj| = `.

(b) Mapping between the symbols of s
′
j and sj is such that, s

′
j[k× (i−1) +n] = sj[i],

where i = 1, 2, . . . ` and 1 ≤ n ≤ k.

(c) Starting of each block (of k consecutive α or β) of s
′

is recorded in an array

strt indx of size ` such that, the ith block starts at index strt indx[i] = k × (i−
1) + 1 in s

′
, where 1 ≤ i ≤ `. That is, the ith symbol of sj is replaced by the ith

block of s
′
j starting at s

′
j[strt indx[i]].

3. A swap operation over sj at index i is transformed to a transposition operation over

s
′
j of size k starting at index strt indx[i] = k × (i− 1) + 1.

4. Starting index of any transposition operation over s
′
j is to be picked up from strt index

array.

Theorem 1. The CSFLT problem for a binary alphabet is NP-hard.

Proof. (if part:) Given a binary string sj, each character 0 is encoded by k consecutive α

and each character 1 is encoded by k consecutive β (by transformation rule 1 and 2) in s
′
j

and corresponding strt indx array is formed in linear time (by transformation rule 1 and 2).

Therefore, swap of two characters in sj, can be effectively transformed to transposition of

size k in s
′
j. That is, swapping of sj[i] and sj[i+1] is transformed to a transposition operation
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in s
′
j which interchanges the two k sized blocks s

′
j[strt indx[i]] and s

′
j[strt indx[i + 1]] (by

transformation rule 3). Clearly, a solution for the new input of the fixed-length transposition

consensus problem (CSFLT) comes from a solution of the swap consensus problem (CSS)

with the original input, since a swap of 01 to 10 or vice versa in the original input is equivalent

to a transposition that changes αkβk (two k sized blocks giving total 2k characters) to βkαk

or vice versa, and starting index of these characters in the new input can be found by

transformation rule 2. Please refer to Example 1 for an illustration.

(only if part:) We have s
′
j ∈ U

′

l such that each s
′
j consists of a block of k consecutive α

or β, where k is the fixed size of transposition operation. Let z be the number of blocks in

s
′
j. During initializing s

′
j, starting of each k sized block is stored in strt indx array in linear

time where |strt indx| = z. By transformation rule 1, this s
′
j ∈ U

′

l can be transformed to a

sj ∈ Ul by replacing each k sized block of α by a single 0 and each k sized block of β by a

single 1. So the ith block of s
′
j starting at index strt index[i] = j, maps to the ith character

in sj (by transformation rule 2). Any arbitrary transposition operation over s
′
j should start

at some index j picked up from strt indx array (by transformation rule 4). For example,

let us apply transposition at index strt indx[i]. Then it actually interchanges the blocks

s
′
j[strt indx[i]] and s

′
j[strt indx[i+ 1]]. This transposition can be transformed to swapping

of sj[i] and sj[i + 1] (by transformation rule 3). So now we can say that transposition of

size k (interchange of two adjacent k sized blocks, that is 2k characters) in s
′
j is effectively

a swap of two consecutive characters in sj. Clearly, a solution for the original input of the

fixed-length transposition consensus (CSFLT) problem can be transformed to a solution

of the swap consensus problem (CSS) with the new input, since the transpositions in the

original input that change αkβk (total 2k characters) to βkαk or vice versa, can be reduced

to only a possible swap of 01 to 10 or vice versa in the new input such that the character

at the i′th index of s
′
j is mapped to the character at index i = d i′

k
e in sj (by transformation

rule 2). Please refer to Example 2 for an illustration.

Example 1. In this example we illustrate the if part of the reduction explained in Theo-

rem 1. Consider the Consensus problem under the Swap distance with K = 3 and s1 = 0000,

s2 = 0110 and s3 = 1100. The reduction to a fixed-length transposition instance (with trans-

position size k = 2) is as follows:

s1 = 0110→ ααββββαα = s
′
1,

s2 = 1001→ ββααααββ = s
′
2,

s3 = 1100→ ββββαααα = s
′
3.

The string s∗ = 1010 is a Concensus String under the Swap distance for {s1, s2, s3}, since

Swap(1010, 0110)=Swap(1010, 1001)=Swap(1010, 1100)=1.
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s
′∗ = ββααββαα is the Concensus String of {s′1, s

′
2, s

′
3} since transposition at index 1

(interchanging blocks at index 1 and index 3) over s
′
1 makes it equal to s

′∗, transposition

at index 5 (interchanging blocks at index 5 and index 7) over s
′
2 makes it equal to s

′∗, and

transposition at index 3 (interchanging blocks at index 3 and index 5) over s
′
3 makes it equal

to s
′∗.

Example 2. In this example we illustrate the only if part of the reduction explained in

Theorem 1. Consider the Consensus problem under the Transposition distance with K = 3

and s1 = 0000, s2 = 0110 and s3 = 1100 and fixed transposition size k = 2. The reduction

to a Swap instance is as follows:

s
′
1 = ααββββαα→ 0110 = s1,

s
′
2 = ββααααββ → 1001 = s2,

s
′
3 = ββββαααα→ 1100 = s3.

Starting positions of the transpositions over s
′
j should be picked up from strt indx.

The s
′∗ = ββααββαα is the Concensus String of {s′1, s

′
2, s

′
3} since transposition at index

strt indx[1] = 1 (interchanging blocks at index strt indx[1] = 1 and index strt indx[2]=3)

over s
′
1 makes it equal to s

′∗, transposition at index strt indx[3] = 5 (interchanging blocks

at index strt indx[3] = 5 and index strt indx[4]=7) over s
′
2 makes it equal to s

′∗, and trans-

position at index strt indx[2] = 3 (interchanging blocks at index strt indx[2] = 3 and index

strt indx[3]=5) over s
′
3 makes it equal to s

′∗.

The string s∗ = 1010 is a Concensus String under the Swap distance for {s1, s2, s3}, since

Swap(1010, 0110)=Swap(1010, 1001)=Swap(1010, 1100)=1.

The following theorem readily follows from Theorem 1.

Theorem 2. The Consensus String problem for the transposition metric is NP-hard.

Proof. Clearly, the CSFLT problem for a binary alphabet is a restricted version of the

Consensus String problem for the transposition metric. The solution space for general

transposition problem is definitely larger than the fixed length transposition since in general

transposition, same segment can be transposed multiple times. Therefore, solution space

for the Concensus String problem for the transposition metric is larger than that of the

fixed length transposition. So, by the method of proof by restriction the result follows from

Theorem 1.

3.3 Conclusion

Finding a Concensus String from a given set of strings is a hard and challenging problem. In

this chapter we have proved that the Consensus String problem is NP-hard for the transpo-
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sition metric even for a binary alphabet. Future research endeavor could be directed towards

further investigation of other aspects from computational complexity, such as approximation

and fixed parameter complexity for the Concensus String problem under transposition and

inversion metric.
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Chapter 4

Existence of Consensus String Under

The Inversion Metric

In this chapter, we present a polynomial time algorithm for determining the existence of a

consensus string (s?), given two strings x and y of length n on an alphabet of size k = 4

(DNA bases A, T, C, G) under the distance metric called non overlapping inversion, i.e.,

reversed complements. Since the minimum distance d is not present as a parameter, our

problem can be thought of as a relaxed version of the original consensus string problem.

In Section 4.1, we provide some definitions and observations necessary for presenting the

algorithm. Then in Section 4.3 we discuss the main algorithm. We prove the correctness

of our algorithm in Section 4.4. In Section 4.5 and Section 4.6, we discuss the time and

space complexity respectively. We show the experimental result in Section 4.7. Finally we

conclude in Section 4.8 discussing some future research directions.

4.1 Definitions

We consider the biological operation Inversion which is the reverse and complement of a

DNA sequence x. Inversion Sequence, θ is defined as a set of the non overlapping inversions.

So the Inversed Sequence, θ(x) is the resultant DNA sequence after applying the set of

inversions, θ over x. Suppose x = AGGC is a DNA sequence and θ′ = {(1, 2), (4, 4)}, then

θ′(x) = CTGG. Again, θ′(x) upto index 3 is CTG.

Given two sequences x and y of length n, we follow the notation of [21] and use Tx[n+1][n]

and Ty[n + 1][n] to denote the sets of all possible inversions of x and y respectively. In

Figure 4.1, each Tx[j][i] is called an Inversion fragment ; it represents a tuple 〈(p, q), α〉
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(a) (b)

Figure 4.1: (i)Tx[][] for x = AGCCAGCT ; (ii)Ty[][] for y = TCGGGCTT

where α is the base, α ∈ {A,C, T,G} yielded at index i after applying the inversion (p, q)

over x according to the following equation:

〈(p, q), α〉 =


〈(i, i)′, x[i]〉 if j = i (no inversion at index i)

〈(i, j − 1), θ(x[j − 1])〉 if j > i

〈(j, i), θ(x[j])〉 if j < i

(4.1)

The θ(x) can be constructed by connecting the inversion fragments in a path specified

by θ and concatenating their yielded base letters in that order. In Figure 4.1, for a given

θ′ = {(1, 4), (5, 5), (6, 8)}, the θ′(x) = GGCTTAGC is presented by the path shown by

shaded cells in Tx. The θ′(x) up to index i = 3 is GGC. Note that the same inversion

fragment can belong to different inversion sequences and thus can present different inversed

sequences. For θ′, Tx[4][2] presents a fragment that belongs to the inversion (1, 4) accord-

ing to the path: Tx[5][1] → Tx[4][2] → Tx[2][3] → Tx[1][4] ≡ 〈(1, 4), G〉 → 〈(2,3),G〉 →
〈(2, 3), C〉 → 〈(1, 4), T 〉. For θ′′ = {(1, 1), (2,3), (4, 4)′, (5, 8)}, the same fragment belongs to

the inversion (2, 3) according to the path: Tx[4][2] → Tx[2][3] ≡ 〈(2,3),G〉 → 〈(2, 3), C〉.
Clearly, θ′(x) and θ′′(x) are two different inversed sequences of the same DNA sequence x.

Note that, for a fixed θ, there is only one choice as we move from i to i + 1. For example,

only one path, i.e., one inversed sequence can be derived for θ′ (shaded cells) and θ′′ (arrow).

In this way we can generate all possible inversed sequences of x (though not necessary for

our problem). In what follows for the sake of notational ease we will drop x or y from T [][]

when it is clear from the context.

Two inversion fragments T [j′][i] = 〈(p1, p2), α1〉 and T [j′′][i+1] = 〈(q1, q2), α2〉 are called
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Agreed Fragments if one of the following two conditions holds.

Condition 1. p1 + p2 = q1 + q2 and j′ > j′′: As an example, in Figure 4.1, this condition

holds when we move from Tx[5][1] → Tx[4][2] ≡ 〈(1, 4), G〉 → 〈(2, 3), G〉 for the inversion

(1, 4).

Condition 2. q1 = p2 + 1 and j′′ ≥ j′: As an example, in Figure 4.1, this condition holds

when we move from Tx[1][4] → Tx[6][5] ≡ 〈(1, 4), T 〉 → 〈(5, 5), T 〉, i.e., the inversion (1, 4)

finishes and next inversion (5, 5) starts.

Otherwise, we call them disagreed fragments. For example, Tx[5][1] ≡ 〈(1, 4), G〉 and

Tx[5][2] ≡ 〈(2, 4), G〉 are disagreed as none of the conditions holds. Again, for two pairs of

agreed fragments (〈(p1, p2), α1〉, 〈(q1, q2), α2〉) and (〈(q1, q2), α2〉, 〈(r1, r2), α3〉), we say these

two pairs are connected by 〈(q1, q2), α2〉 and thus all these three inversion fragments are

agreed fragments. The Agreed Sequence is formed by taking an inversion fragment from each

column i = 1, 2, . . . , n, such that, for any two consecutive fragments T [j′][i] = 〈(p1, p2), α1〉
and T [j′′][i + 1] = 〈(q1, q2), α2〉, they are agreed fragments. So an agreed sequence actually

presents an inversed sequence, θ(x). In an agreed sequence, we have the following two cases.

Case 1 - Upward movement at index i. It happens in an agreed sequence at index

i when, T [j′][i] and T [j′′][i+ 1] are agreed fragments based on Condition 1. It implies that

an inversion (p, q) is continuing from some index i′ ≤ i. Inversion fragment T [j′][i] involved

in such a scenario is called a continuing inversion fragment for the corresponding θ′. In

Figure 4.1, for θ′, Tx[4][2] is following Case 1 for the inversion (1, 4), and thus is a continuing

inversion fragment.

Case 2 - Horizontal or Downward movement at index i. This happens when T [j′][i]

and T [j′′][i + 1] constitute an agreed fragments based on Condition 2. It implies that an

inversion (p, q) has started at some index i′ ≤ i, ends at index i (having j′ = p = i′ and

j′′ = q = i), and next inversion starts at index i + 1. Involved T [j′][i], is called the end-

ing inversion fragment for the corresponding θ. In Figure 4.1, for θ′, Tx[1][4] belongs to

Case 2 for the inversion (1, 4) and thus is the ending inversion fragment.

Observation 1. In Table T [][], an inversion (p, q) starts at inversion fragment T [q + 1][p],

continue moving upward up to T [p][q], and then it moves horizontal or downward indicating

no change (i.e., (p, p)′) or start of a new inversion.
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The term Pair(t, r) is defined for any inversion fragment T [j][i], where t is the starting

index i′ ≤ i of the last inversion in the inversion sequence θ it belongs to, and r is the current

row j. If the same inversion fragment belongs to multiple inversion sequences then multiple

Pair(t, r) exist for it. In such a case the value of t would be different for different inversion

sequences. Pairs corresponding to the agreed fragments are called Agreed Pairs. Similarly,

a Pair corresponding to continuing inversion fragment is called continuing inversion Pair

which has t 6= −1 and t ≤ i. Also the ending inversion Pair is defined for an end-

ing inversion fragment and has t = −1; in this case r gives the starting index of the last

inversion (by Observation 1). We define another important set, cont inv i′, containing only

the continuing inversion Pairs presenting inversions that started at index i′ and still exist

as continuing inversion Pair, at index i, i ≥ i′. Subset of any cont inv i′ is denoted as

cont inv, that contains single or multiple continuing inversion Pairs (each having the same

value for t) presenting all those inversions which produce the same prefix from index t ≤ i,

up to i.

We define Sx and Sy to be the sets of all possible inversion sets θ over x and y respec-

tively. In general, θx ∈ Sx and θy ∈ Sy are used to present the matching phase. Deciding

whether any consensus sequence exists between two given DNA sequences x and y having

the same length n, involves finding out the existence of common agreed sequences of x and

y. For this purpose we track the matched pairs between Tx[n+1][n] and Ty[n+1][n] for each

index or column i = 1, 2, . . . , n. For the same index i, if an inversion fragment in Tx mapped

by the Pair (t′, r′) and another in Ty mapped by Pair (t′′, r′′), yield the same α, and the

respective inversed sequences θx(x) and θy(y) up to i is the same, then those two pairs are

called Matched Pairs and corresponding inversion fragments are called Matched Fragments.

The matched pairs are denoted as 〈Xsibling〉 - 〈Y sibling〉 for the ease of representation.

Both of Xsibling and Y sibling may contain one or more Pairs. In the rest of the section,

we define some table like data structures that will be used in our algorithm. Each table will

record some information of the matched pairs and will be named based on the type of θ(x)

at each column i. Column i of each table presents some alignment of θx(x) and θy(y) up to

index i.

ICA table[i] - Inversions Completed at i. This table holds rows of 〈Xsibling〉-〈Y sibling〉 ≡
〈(t′, r′)〉-〈(t′′, r′′)〉 ≡ 〈(−1, r′)〉-〈(−1, r′′)〉 presenting an alignment of θx(x) with θy(y) up to

i, where the last inversion in θx and θy are (p′, q′) ≡ (r′, i) and (p′′, q′′) ≡ (r′′, i) respectively

by Observation 1. That is, the last inversions in θx(x) and θy(y) were started at index r′

and r′′ respectively and ends at current index i.
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ISA table x[ ][i] - Inversions Started At i. This table presents an alignment of θx(x)

(upto i), having the last inversion ended at i− 1, and a new inversion starting from i, with

θy(y) (upto i), having the last inversion started before or at i, still continuing or ended at i.

It contains the pairs 〈(t′, r1), . . . , (t′, rs)〉 of x, presenting the Inversions Started at i and

ended at i or later. These pairs map to the inversion fragments Tx[j
′][i], where i ≤ j′ ≤ n+1.

ISA table x[][i] holds k = 4 rows, one for each of the base letters α ∈ {A, T, C,G}
such that the row ISA table x[α][i], holds pairs yielding base letter α at index i. Each row

consists of two fields: Xsibling and Y sibling.

The Xsibling consists of a x cont inv set (having type cont inv) and a x end inv (hav-

ing type ending inversion) Pair. The x cont inv holds the continuing inversion Pairs

starting from index i, and thus have t = i and r = j, j ≥ i + 2. The x end inv is the

ending inversion Pair having t = −1 and r = i or i + 1, representing inversion (i, i)′ (no

change) or (i, i) (flip) respectively.

Initially Y sibling is empty. In the matching phase, Y sibling maintains a list of pointers

to the matched Pairs of Xsibling in T y, and is categorized into two types, namely, single

ending inversion Pair named as y end inv (Type 1) and set cont inv named as y cont inv

(Type 2) where all Pairs have the same t, t ≤ i.

Now we explain the intuition behind keeping these records. Both types of pointers

(Y sibling) mentioned above are considered as matched pairs of x cont inv set. But for

x end inv, only Type 2 pointers are considered as the matched Pairs in this table. For

each Type 1 pointer, i.e., y end inv in Y sibling list, we keep a separate record 〈Xsibling〉
- 〈Y sibling〉 ≡ 〈x end inv〉 - 〈y end inv〉 in the ICA table[i]. Though this creates redun-

dancy but this separation makes the data structure conceptually simpler and keeps the final

decision checking simple at the end of the algorithm. Please refer to the Figure 4.2 for an

illustration.

Observation 2. At any i,
∑

α∈{A,T,C,G} |Xsibling| = n−i+2, where Xsibling ∈ ISA table x[α][i].

Here the total number of continuing inversion pairs is n−i and the number of ending inversion

pairs is 2.

ISB table[i] - Inversions Started Before i. It holds rows 〈Xsibling〉 - 〈Y sibling〉 just

as before presenting alignments of θx(x) yielding α at index i (but having the last inversion

started before i, and still continuing or ended at i), with θy(y) yielding the same base letter

α at index i (having the last inversion started before or at i, and still continuing, or ended

at i). Here the x cont inv set of Xsibling has t = i′ < i and the x end inv holds some
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upper diagonal ending inversion pair. Structure of Y sibling and the intuition behind the

records are the same as that in ISA table[][i] (refer to Figure 4.3).

ISA table y[][i]. It contains 〈Y sibling〉 ≡ 〈y cont inv, y end inv〉 just like the Xsibling

in ISA table x[][i]. This Y sibling is actually get pointed by the Y sibling lists of Xsiblings,

at ISA table x[][i], ISB table[i] and ICA table[i].

The row 〈Xsibling〉 − 〈Y sibling〉 in a table (ICA table[i], ISA table[i], or ISB table[i])

presents an alignment between θx(x) and θy(y) starting from the first index up to index i.

If ‖Xsibling‖ = N1( number of Pairs in Xsibling) and ‖Y sibling‖ = N2, then we call it

an [N1 : N2] alignment.

4.2 Inaccuracy of the Existing Algorithm

by Cho et al. [21]

Cho et al. [21] have provided an O(n3) algorithm using O(n2) space (n is the size of the

two input strings) for the same problem we have worked on. But we have found through

experimentation that their algorithm fails in returning the correct answers in some cases

because of not tracking the prefixes of the common ancestors. For example, there can never

exists any common ancestors between x = GTGGC and y = CTGGT , as the number of

complement bases (A− T and C −G) is different in x and y. But the algorithm of Cho et

al. [21] returns positive for this input and input having the same characteristics. Erroneous

output also produced when number of complement bases is the same. In this thesis we

present a new algorithm which correctly solves this problem with the same time and space

complexity. We further present experimental evidence that our algorithm in practice runs

in quadratic time for the average case in contrast to its theoretical cubic time constraint.

4.3 The Algorithm

Common inversed sequences between x and y are computed by tracking the matched pairs

between Tx[][] and Ty[][] from column i = 1 to n. The following procedures are used in our

algorithm.

Procedure 1. Next Calculation((t′, r′), i, Tx): If the input pair(t′, r′) is of type

continuing inversion, it returns the pointer to one unique next agreed pair with t =
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−1 (if the next agreed pair is ending inversion) or t = t′ (if the next agreed pair is

continuing inversion). Otherwise, if the input pair (t′, r′) is of type ending inversion,

it returns the pointer to the ISA table x[][i+1] as a new inversion is supposed to start from

i+ 1. Similar actions are performed for y if Ty is the input.

Procedure 2. PairUp xColl yColl(collection x, collection y, i): This step is called

at iteration i, with the matched pairs for index i + 1 as input. It sets the 〈collection y〉 ≡
〈y cont inv, y end inv〉 as Y sibling of 〈collection x〉 ≡ 〈x cont inv, x ending inv〉. Thus it

lets the alignment (up to i) of θx(x) and θy(y) proceed one step forward, i.e., from i to i+ 1.

It executes following steps.

step a: If x end inv and y end inv both exist, then pair them up and insert into

ICA table[i+ 1].

step b: Insert a pointer to the y cont inv into the Y sibling list of collection x.

step c: Insert a pointer to the y end inv into the Y sibling list of collection x.

Procedure 3. PairUp xColl ySingle(collection x, single y, i): It works as above

but here the single y is a single pair (t, r). If both collection x and single y are nonempty

(Compatibility Check), it performs the following steps.

step a: If single y is an ending inversion and collection x has x end inv pair, pair

them up and insert into ICA table[i+ 1]

step b: Insert a pointer to single y into the Y sibling list of collection x.

Procedure 4. next calculation collection(x cont inv, x next atcg[], i):

It finds the next agreed pairs of x cont inv and keep those in a child table x next atcg[] such

that x next atcg[α] holds the agreed pairs yielding α. For example, suppose, x cont inv =

〈(t′, r1), (t′, r2), . . . , (t′, rp)〉. For each of these pairs we call next calculation((t′, r′), i, T x),

r′ = 1, 2, . . . , p. Each time as soon as one unique next agreed pair is returned, we add that

to x next atcg[] as follows.

case 1: If the next agreed pair is a continuing inversion pair, yielding α, then insert

into x cont inv of x next atcg[α].

case 2: If the next agreed pair ends at i + 1 (has t = −1) yielding α, then we assign

this Pair to x end inv of x next atcg[α].

Procedure 5. Four Iteration Loop(table x, table y, i):

It pairs up the Xsibling in table x with the Y sibling in table y. For each base letters α ∈
{A, T, C,G}, if table x[α] has non empty Xsibling and table y[α] has non empty Y sibling

(Compatibility Check), then it calls PairUp xColl yColl(collection x, collection y, i) with

collection x=table x[α], and collection y=table y[α].
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(a) (b)

Figure 4.2: (i)Before Initialization; (ii)After Initialization

Now we explain the algorithm using the procedures stated above. The main algorithm

iterates over i = 1 to n − 1. The column i of each of the tables described above actually

represent the alignment of θx(x) and θy(y) up to index i for some θx and θy. So at each itera-

tion i, it processes the rows in three tables: ICA table[i], ISA table[][i], and ISB table[i] to

calculate the next agreed pairs, pair up the matched pairs and insert those into the column

i + 1 of the appropriate table. If for any row 〈Xsibling〉-〈Y sibling〉, next agreed pairs of

Xsibling does not get matched pair from next agreed pairs of Y sibling, then it means no

alignment with the inverted sequence of x presented by that Xsibling exists in y. Thus this

alignment 〈Xsibling〉-〈Y sibling〉 is not passed forward anymore and is rather dropped here.

We will explain the algorithm using an illustrative example. Consider, x = AGCCAGCT

and y = TCGGGCTT given in Figure 4.1.

4.3.1 Initialization

ISA table x[1] and ISA table y[1] are shown in the Figure 4.2. It executes Procedure 5,

i.e., Four Iteration Loop to start aligning x with y by pairing up these two tables. While

calling the procedure, input parameters are set as: table x = ISA table x[1], table y =

ISA table y[1], and i = 1.

4.3.2 Iteration

For each iteration i = 1, 2, . . . , n− 1, following steps are performed.
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Figure 4.3: Demonstration of Step 1 for iteration 1

Figure 4.4: Demonstration of Step 2.1 for α = G in iteration 1

Step 1

Process ICA table[i]: For the first row 〈Xsibling〉-〈Y sibling〉=〈(−1, r′)〉-〈(−1, r′′)〉, we

call Procedure 1, i.e., next calculation((−1, r′), T x, i) and next calculation((−1, r′′), T y, i).

They return pointers to ISA table x[i + 1] and ISA table y[i + 1] respectively. After that,

we call the Four Iteration Loop(ISA table x[i + 1], ISA table y[i + 1]). Other rows of

ICA table[i] are not processed as they involve doing the same assignments (according to

the Merging Case 1 explained later in Observation 5). See Figure 4.3 for an illustration.

Step 2

Process ISA table x[][i]: For each α ∈ {A, T, C,G} we perform Step 2.1, Step 2.2 and

Step 2.3.

Step 2.1

It calls Procedure 4, with x cont inv of ISA table x[α][i], which finds its next agreed pairs

and keeps those in a child table x next atcg[] (see Figure 4.4)
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Figure 4.5: Demonstration of Steps 2.2 and 2.3 for α = A in iteration 1

Step 2.2

For each list item Y sibling[p], in this step we find the alignment of the pairs in x next actg[]

(calculated in the previous step) with the next agreed pairs found from Y sibling[p]. We need

to deal with one of the following cases.

Step 2.2 Case 1. The Y sibling[p] is of type y cont inv having size > 1 (Step 2.2.1 to

Step 2.2.3):

Step 2.2.1: If y next atcg[] of Y sibling[p] is not calculated yet, then call Procedure 4,

i.e., next calculation collection(Y sibling[p], y next actg[], i).

Step 2.2.2: Now both the x next atcg[] and y next actg[] are ready to be paired up.

So we call the Four Iteration Loop( x next atcg[], y next atcg[]).

Step 2.2.3: If Xsibling has x end inv pair, and y next actg[] has not been paired with

ISA table x[][i+ 1] yet (Merging Case 2 explained later in Observation 6), then pair them

up by calling Four Iteration Loop(ISA table x[][i + 1], y next actg[]). Please refer to Fig-

ure 4.5 for an illustration.

Step 2.2 Case 2. The Y sibling[p] is of type y cont inv having size = 1 (Step 2.2.4 to

Step 2.2.6):

Step 2.2.4: We call next calculation((t′, r′), i, Ty), where (t′, r′)=y cont inv. Let the

returned unique next agreed pair yield α and name it pair y.

Step 2.2.5: We call PairUp xColl ySingle(x next actg[α], single y, i).

Step 2.2.6: If Xsibling has x end inv pair, and pair y has not been paired with
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ISA table x[α][i+1] yet (Merging Case 2 ), then we call PairUp xColl ySingle(ISA table x[α][i+

1], pair y, i).

Step 2.2 Case 3. If Y sibling[p] is of type y end inv: If x next atcg[] has not been paired up

with ISA table y[][i+1] yet (Merging Case 3, explained later in Observation 7), then we call

the procedure Four Iteration Loop with input tables: x next atcg[] and ISA table y[i+ 1].

Please refer to Figure 4.5.

Step 2.3

Update the ISB table[i+1]: For each new x next atcg[α] created in Step 2.1, if it has

non empty Y sibling list, then we insert it into ISB table[i + 1] as new rows, where α ∈
{A, T, C,G}. Please see Figure 4.5 for an illustration.

Step 3

Process ISB table[i]: For each row p of ISB table[i]: 〈Xsibling〉 - 〈Y sibling〉, we execute

the Steps 3.1, 3.2, and 3.3. They are identical to Step 2.1, 2.2, 2.3 except the fact that the

row items ISB table[p][i] are used instead of ISA table x[α][i].

4.3.3 Termination

After the iterations complete, if the ICA table[n] contains no row, we return NO indicating

the absence of any consensus sequence between x and y. Otherwise we return Y ES, indi-

cating the existence of some consensus sequence between x and y.

Note here that, the algorithm presented by Cho et al. [21] does not return correct re-

sults because of not tracking the prefix of common ancestors properly which is kept in our

algorithm using the ISA table, ISB table and ICA table.

4.4 Correctness of the Algorithm

Correctness of the algorithm is proven by Lemma 1 and Lemma 2 by showing that no valid

alignment is missed and invalid alignments are canceled as soon as detected. Necessity and

sufficiency of the termination step of the algorithm is proven in Lemma 3 as well.

We observe that each row at column i of each table actually presents an alignment

between θx(x) and θy(y) up to index i. For Lemma 1 we need the following two Observations.
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Observation 3. Split case 1: One alignment is split into multiple new alignments when

ending of the last continuing inversion is reached. This case is ensured by the step b of

Procedure 4, step a of Procedure 2 and 3, and Steps: 2.2.3, 2.2.6, 3.2.3, 3.2.6, case 3 (under

Step 2 & 3) in the algorithm. For an illustration see Example 3 below.

Example 3. In this example we explain Observation 3 with the help of Figure 4.6(i). First,

we explain initialization. Here, three T ’s in the first column of Tx and the two T ’s in

the first column of Ty are the matched Pairs. So Xsibling = [ending inv, cont inv] =

[null, 〈T (1, 4), T (1, 7), T (1, 8)〉] has Y sibling = [〈T (1, 7), T (1, 8)〉]. All the Pairs in cont inv

have t = 1. For simplicity, let us call the three T ’s in Tx[1], Xsib1 as they are pre-

senting continuing inversions started from index 1. Furthermore let us call the two T ’s

in Ty[1], Y sib1 for the same reason. Now we simply present the alignment by 〈Xsib1〉-
〈Y sib1〉=〈T (1, 4), T (1, 7), T (1, 8)〉-〈T (1, 7), T (1, 8)〉. This row appears in the ISA table x[1]

for index 1.

(a) (b)

Figure 4.6: (i) Split case 1 ; (ii) Split case 2

Then in iteration 1, we proceed with this alignment one step forward to index 2 by trans-

ferring this 〈Xsib1〉-〈Y sib1〉 into the ISB table[2] as 〈Xsib1〉-〈Y sib1〉=〈G(1, 3), G(1, 6), G(1, 7)〉-
〈G(1, 6), G(1, 7)〉.

Then we come to iteration 2. Whenever a pair in a set cont inv reaches ending, we

split them into different paths, even if they continue maintaining the same prefix. In other

words, we will break the cont inv into two different sets but each having the same Y sibling

if none of the pairs in Y sibling reach ending. For example, at iteration 2, when we calcu-

late next agreed pairs of 〈Xsib1〉-〈Y sib1〉 = 〈G(1, 3), G(1, 6), G(1, 7)〉-〈G(1, 6), G(1, 7)〉, we

get: 〈G(−1, 1), G(1, 5), G(1, 6)〉-〈G(1, 5), G(1, 6)〉. Note here, one pair G(−1, 1) has reached

ending. So for next index, i.e., 3, in ISB table[3], we keep it in a separate field named
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as ending inv = G(−1, 1). So the new row looks like: 〈Xsib1 : [ending inv], [cont inv]〉-
〈Y sib1〉 = 〈[(−1, 1)], [(1, 5)(1, 6)]〉-〈G(1, 5), G(1, 6)〉.

In iteration 3, after calculating the next agreed pairs, theXsib1 = 〈[(−1, 1)], [(1, 5), (1, 6)]〉
is split into Xsib1 = 〈C(1, 3), C(1, 5)〉 and Xsib4 = 〈C(4, 7), C(4, 8)〉 (resulted by the

ending inv = (−1, 1)] in third index). However, each of those are still pointing at the

same Y sib1 = 〈C(1, 3), C(1, 5)〉. One alignment 〈Xib1〉-〈Y sib1〉 is kept in ISB table[4] and

another alignment 〈Xsib4〉-〈Y sib1〉 is kept in ISA table x[4]. This is necessary because from

now on, Xsib1 and Xsib4 will be following different paths. Just like this, whenever a pair

that is an inversion reaches ending, and new inversion starts, new rows are formed to record

the new alignment.

Observation 4. Split case 2: Alignments can be split before reaching the ending if new

prefix appears. This happens when the next agreed pairs differ by yielding base letter

α ∈ {A,C, T,G} . This split is ensured by the strategy followed in Procedure 4, 2 and 3.

For clarification see the Example 4 below.

Example 4. In this example we explain Observation 4 with the help of Figure 4.6(ii). In ini-

tialization step, we have, 〈Xsib1〉-〈Y sib1〉=〈T (1, 5), T (1, 6), T (1, 7), T (1, 8)〉-〈T (1, 5), T (1, 6),

T (1, 7), T (1, 8)〉 stored at ISA table x[T ][1].

In iteration 1, we proceed with this alignment one step forward to index 2 by transferring

this 〈Xsib1〉-〈Y sib1〉 into ISB table[2]. But here next agreed pairs are different for different

pairs. Two different sets are resulted from Xsib1 as Xsib′1 = 〈A(1, 4), A(1, 6)〉 and Xsib′′1 =

〈G(1, 5), G(1, 7)〉. Also Y sib1 gives Y sib′1 = 〈A(1, 4), A(1, 5)〉 and Y sib′′1 = 〈G(1, 6), G(1, 7)〉.
So the single alignment row presenting a [4:4] alignment is divided into two different rows

as 〈Xsib′1〉-〈Y sib′1〉 (solid arrow) and 〈Xsib′′1〉-〈Y sib′′1〉 (dotted arrow) each presenting [2:2]

alignment and they are placed into the ISB table[2].

Then in iteration 2, these two rows proceed to ISB table[3] as 〈Xsib′1〉-〈Y sib′1〉=〈G(1, 2),

G(1, 5)〉-〈G(1, 2), G(1, 4)〉 (solid arrow) and 〈Xsib′′1〉-〈Y sib′′1〉=〈G(1, 4), G(1, 6)〉-〈G(1, 5), G(1, 6)〉
(dotted arrow).

Lemma 1. No valid alignment is missed

Proof. Each row at column i of each table presents an alignment between θx(x) and θy(y)

up to index i. Based on next agreed pairs, if necessary we split that alignment into multiple

new alignments as explained in Observations 3 and 4. Thus no valid alignment is missed.

Lemma 2. Invalid alignments that is agreed sequences of x not existing in y are canceled

as soon as detected.
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Proof. If in iteration i, for an alignment 〈Xsibling〉-〈Y sibling〉, next agreed pairs ofXsibling

get no matched pair from the next agreed pairs of Y sibling, then the alignment is not passed

forward and rather dropped immediately. This case is ensured by the Compatibility Check

executed inside the Procedures 3 and 5.

We illustrate Lemma 2 using Example 5 below.

Example 5. We explain Lemma 2 using the example in Figure 4.6(ii). In iteration 3, let us

consider the match showed by a solid arrow first. Next agreed pair again splits the Xsib′1
into two sets as Xsib′′′1 =〈A(−1, 1)〉 and Xsib′′′′1 =〈C(1, 3)〉. The next agreed pairs of Y sib′1
are 〈C(−1, 1), C(1, 3)〉. So Y sib′1 is not split by next agreed pairs, since all next agreed pairs

yield the same base letter C. Now, Xsib′′′1 does not get any match from y, so it is dropped

here and only one row, 〈Xsib′′′′1 〉-〈Y sib1〉 = 〈C(1, 3)〉-〈C(−1, 1), C(1, 3)〉 is passed to the

ISB table[4]. That is, no inversed sequence having prefix TAGA exists. Or we can say

that in x, no inversion sequence will be a consensus sequence if it starts with the inversion

(p, q) = (1, 4). So if any Xsibling gets split because of different next agreed pairs (yielding

different base α ∈ {A, T, C,G}) and a set does not get a matched set from the corresponding

next agreed pairs produced by Y sibling, then that alignment will be dropped immediately.

Lemma 3. Checking non emptiness of ICA table[n] is necessary and sufficient to decide

on the existence of consensus sequence.

Proof. Rows in ICA table[n] indicates alignment of θx(x) and θy(y) up to the last index

such that, the last inversion ends at i for both of them. Thus it indicates the existence of a

consensus sequence. If ICA table[n] is empty it means no θx(x) can align with any θy(y) up

to the last index, thus indicating the absence of a consensus sequence among x and y.

4.5 Time Complexity

Before deriving the theoretical time complexity of our algorithm, we first discuss how the

polynomiality of the algorithm is ensured. The number of list items 〈Xsibling〉-〈Y sibling〉
(in ISA table x & ISB table) and the size of Y sibling for each such row affect the runtime.

Here, some alignment presented by a row 〈Xsibling〉-〈Y sibling〉 having ‖Xsibling‖ = N1

and ‖Y sibling‖ = N2 is actually presenting alignment [N1 : N2] using a single row. We

avoid keeping separate rows for each of them as in that case it needs N1 ∗ N2 rows each

presenting the same prefix. Besides that, our algorithm prevents unpredictable increment

of the number of rows in ISA table x[] and ISB table[] by merging overlapping portions
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(a) (b)

Figure 4.7: (i) Merging case 1; (ii) Merging case 2 and 3

of the alignments, thus ensuring a polynomial run time as explained below by observations

and lemma.

Observation 5. Merging case 1: Merging in ICA table[i]. In each iteration i = 1 to n− 1

of the algorithm, at Step 1, we pair up ISA table x[i + 1] and ISA table y[i + 1] through

procedure Four Iteration Loop once only for the non empty ICA table[i]. This ensures the

merging all the alignments presented by the rows of ICA table[i].

Proof. From i+ 1, destiny of all those alignments in ICA table[i] is the same, i.e., sequence

of next agreed pairs of all those alignments is the same for following successive iterations,

until the next ending is reached. In other words, we can say, if any alignment residing in

ICA table[i] is dropped at some later index due to some mismatch, then it will happen for

all other alignments in ICA table[i] as well. So instead of keeping separate rows, we merge

the overlapping portion to avoid the redundant calculation. Notably, it may merge multiple

alignments having different prefixes as well; but this does not create problem as they have

the same destiny from index i+ 1 up to the next ending. Please refer to the Example 6 for

an illustration.

Example 6. In this example we explain Observation 5 with the help of Figure 4.7(i). Two

alignments, one having A as the first letter and the other having T as the first letter are

merged into one at index 2 as they are destined to the same result from that point. Here the

alignment is shown up to index 5. At iteration 4 if the next agreed pair for Y sibling yields

T or some base letter other than A (next agreed pair of Xsibling) then this alignment will

be canceled and not proceeded further. This will happen for both merged sequences.

Observation 6. Merging case 2: Merging alignments in ISA table x[i+ 1] on iteration

i is ensured by Step 2.2.3, 2.2.6, 3.2.3, and 3.2.6 in the algorithm.
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Proof. If different x end inv pairs of x at index i are paired with the same y cont inv from

y, then for each of those x end inv pairs, ISA table x[i + 1] and the next agreed pairs of

that y cont inv need pairing up. As this same pairing up operation is required for all those

matching x end inv pairs, so this is done once only. So we can say that those alignments

presented by the x end inv pairs are merged into one as from now on, their destiny is the

same. For an illustration please refer to Example 7.

Example 7. In this example we explain Observation 6 with the help of Figure 4.7(ii).

In the initialization step, two alignments: 〈A(1, 3)〉-〈A(−1, 2)〉 and 〈T (1, 4)〉-〈T (−1, 1)〉 are

kept in ISA table x[1]. Then in iteration 1, each of those is passed to ISB table x[2]

as 〈C(−1, 1)〉-〈C(2, 7), C(2, 8)〉 and 〈C(1, 3)〉-〈C(2, 7), C(2, 8)〉. Let us call these 〈Xsib′1〉-
〈Y sib2〉 and 〈Xsib′′1〉-〈Y sib2〉. From this point, two different alignment start overlapping.

But still we can’t merge them into one row until the inverted sequences presented by Xsib′1
and Xsib′′1 both reach the ending (reduce to x end inv pair) later at the same index i. But

here only the 〈Xsib′1〉 has reached the ending.

In iteration 2, next agreed pairs are calculated for〈Xsib′1〉-〈Y sib2〉 and 〈Xsib′′1〉-〈Y sib2〉
and passed to ISB table[3] as 〈Xsib3f ′〉-〈Y sib2〉=〈T (−1, 3)〉-〈T (1, 6), T (1, 7)〉 and 〈Xsib′′1〉-
〈Y sib2〉=〈T (−1, 1)〉-〈T (1, 6), T (1, 7)〉 respectively.

Finally, in iteration 3, we see that, the same 〈Y sib2〉=〈T (1, 6), T (1, 7)〉 is paired up with

different ending inv pairs: 〈Xsib3f ′〉 (solid arrow) and 〈Xsib′′1〉 (dotted arrow). That is, two

inversed sequences of x having the same or different prefix have reached the ending at the

same index, i.e., 3 while both have the same 〈Y sib2〉. So now they can be merged into one

record safely as their destiny is the same now. Only one record 〈C(4, 6)〉-〈C(1, 5), C(1, 6)〉
is kept in ISA table x[4].

Observation 7. Merging case 3: Merging alignments in ISB table x[i+ 1] on iteration

i are ensured by case 3 of Steps 2.2 and 3.2 in the algorithm.

Proof. The scenario explained in previous Lemma also happens for the opposite case. That

is, if the same x cont inv from x matches with different y end inv pair of y at the same

index i, then from i + 1, they (different alignments presented by those matched y end inv

pairs) are merged into one record in ISB table x[i + 1]. Please see the Example 8 for an

illustration.

Example 8. In this example we explain Observation 7 with the help of Figure 4.7(ii).

Interchanging the x and y, we get the merged alignment 〈Xsib2〉-〈Y sib4〉=〈C(1, 5), C(1, 6)〉-
〈C(4, 6)〉 in ISB table[4]. Note that, in the previous iteration, the corresponding 〈Xsib 2〉
can be found in either ISA table x[3] or ISB table[3].
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Lemma 4. The algorithm merges overlapping portions of the alignments to avoid redundant

operations and unnecessary increment of rows in ICA table, ISA table, and ISB table.

Proof. This Lemma is proven by Observations 5, 6 and 7.

Now we begin the discussion for deriving theoretical time complexity of our algorithm.

Theoretical worst case and average case time complexity of the algorithm are O(n4) and

O(n3) respectively proven by Lemma 13 and Lemma 15. For deriving the time complexity

of the algorithm, we first show it for the worst case. The worst case scenario is defined

as when each pair from Tx gets some matched pair from Ty thus no alignment is canceled

because of mismatch. We define average case as fifty percent match between the inverted

x and inverted y at each index i = 1, 2, . . . , n thus some alignments are canceled in each

iteration as we step forward. Some Lemmas are provided based on the worst case which are

later used in defining the average case time complexity.

Observation 8. For any i′ = 1, . . . , n− 1, the size of cont inv i′ is n− i′ at iteration i′ (by

Observation 2) and is reduced by one at each iteration i = i′+ 1, i′+ 2, . . . , n− 1, leaving no

continuing inversion pair (starting at i′) at the last index n.

Proof. We observe that, at iteration i′, cont inv i′ are kept in the x cont inv sets of ISA table x[i′]

and has size ‖cont inv i′‖ = n−i′ by Observation 2. At iteration i′, all of these pairs: (t, r) =

(i′, i′ + 2), (i′, i′ + 3), (i′, i′ + 4), . . . , (i′, n+ 1) map to inversions (i′, i′ + 2), (i′, i′ + 3), (i′, i′ +

4), . . . , (i, n). For example, for index 1, these pairs (t, r) = (1, 3), (1, 4), . . . , (1, n + 1) maps

inversions (p, q) = (1, 2), (1, 3), . . . , (1, n) respectively. Now let us see how its size is re-

duced. Let us start with iteration i′. If all of them have matched pair in y then at iteration

i′, we have to perform the next calculation step for each of these pairs, and one of them

namely the pair (t, r) = (i′, i′+ 2) (mapping the inversion (p, q) = (i′, i′+ 1)) reaches ending

in the next index and thus becomes end inv pair=(−1, i′) and its eliminated from the set

cont inv i′ (see the next calculation steps for clarification). So the size of cont inv i′ is

reduced by one at iteration i = i′ + 1. Similarly, in iteration i = i′ + 1 the pair (i′, i′ + 3)

(mapping (p, q) = (i′, i′ + 2)) reaches ending and gets removed from cont inv i′. Thus at

iteration i = i′ + 2, the size of cont inv i′ is again reduced by one. This continues for each

of the next iterations and finally at iteration n− 1, next calculation of (i′, n+ 1) (last pair

in cont inv i) gives pair (−1, i′) and thus reaches ending at index n. So for index n, no

continuing inversion started at i′ is left.

Observation 9. At any iteration i ≥ i′, the size of cont inv i′ can be at most n − i.

Hence, the total number of existing continuing inversion pairs (for x or y) considering all

cont inv i′ equals to i(n− i), where 1 ≤ i′ ≤ i.
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Proof. At index i′, the size of cont inv i′ is n − i′. Then in each next iteration its size is

reduced by one according to Observation 8. So at index i = i′ + 1, its size is n − i′ − 1 =

n− (i′+ 1) = n− i. At the next index i = i′+ 2, size is n− i′− 2 = n− (i′+ 2) = n− i, and

so on. This happens for all 1 ≤ i′ ≤ i. So the total number existing continuing inversion

pairs is i(n− i).

Observation 10. Total number of end inv pairs at itearation i is i+ 1

Proof. We know by Observation 8 that at each iteration i, one end inv pair is created from

cont inv i′. So at iteration i, we get one end inv pair from each cont inv i′, 1 ≤ i′ < i.

Again, two flip pairs (i, i) and (i, i)′ are also end inv found at index i. So the total number

of end inv pairs at itearation i is (i− 1) + 2 = i+ 1.

Lemma 5. At iteration i, Procedure 1 (finding the next agreed pairs) is called once for each

existing continuing inversion Pair, resulting in O(2i(n − i)) calls considering both x and

y.

Proof. By Observation 9, at iteration i, the size of continuing inversion Pairs is O(i(n−i))
for x and O(i(n− i)) for y. We know continuing inversion Pairs reside in x cont inv sets

by definition. At iteration i, for each distinct x cont inv set, we calculate next agreed

pairs only once by calling Procedure 1. This is true even if the same x cont inv exists

multiple times in ISA table x[i] or ISB table x[i], since we use pointer to x cont inv. This

is ensured by the Step 2.2.1 and 3.2.1 in algorithm. This holds true for each y cont inv as

well. So we call Procedure 1 O(i(n − i)) times for both x and y, and thus O(2i(n − i)) in

total. (However, we call the Four Iteration Loop (Step 2.2.2 and 3.2.2) each time the set

x cont inv is encountered in ISA table x[i] or ISB table x[i].) For an illustration please

see the Example 9.

Example 9. We use the same scenario used for split case 1 (Figure 7(i)) for an illustration

of Lemma 5. In iteration 3, though Y sib1 is pointed by the Y sibling list member of both

the Xsib1 and Xsib4, once the next calculation step for Y sib1 is performed (next atcg y[] is

generated) for, say, Xsib4, we do not need to perform the same task again while processing

the alignment holding 〈Xsib1〉−〈Y sib1〉; Rather, we only need to run the Four Iteration Loop

for pairing up the next atcg x[α] of Xsib 1 and next atcg y[α] of Y sib1, α = {A, T, C,G}.

Total number of calls to the Four Iteration Loop depends on the size of Y sibling list

for each 〈Xsibling〉 − 〈Y sibling〉 list items in ISA table x[i] and ISB table[i]. In order to

find the total number of calls to Procedure 5: Four Iteration Loop, we first present some

Observations and Lemmas.
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At some index i > i′, all the existing x cont inv i′ of x resides in ISB table[i]. Now let

us see how many Y siblings they can have in total at index i. For simplicity, let us think

of x cont inv 4 only (i′ = 4). All continuing inversion Pairs in x cont inv 4 represent the

inversion starting from index 4 < i and at index 4, they reside in ISA table x[4]. These

can be divided into k = 4 sets each having on average (n − 4)/k pairs, yielding α, α ∈
{A, T, C,G}. As they proceeds, they may be divided into several more child sets (introduce

new rows) based on the yielding base letter of the next agreed pairs by Observation 4. At

index i, the size of x cont inv 4 is n − i by Observation 9. Similar case happens for all

x cont inv i′, i′ ≤ i . This is also true for all the y cont inv i′, i′ ≤ i. First, let us see how

many x cont inv sets: {Ci′1, Ci′2, . . . , Ci′s} ∈ x cont inv i′ exists at index i. We have the

following Observation.

Observation 11. At any index i > i′, {Ci′1, Ci′2, . . . , Ci′j′ , . . . , Ci′s} ∈ x cont inv i′ are

disjoint sets.

Proof. Same continuing inversion pair does not belong to multiple Ci′j′ ’s. This is so,

because each continuing inversion pair follows a unique path from i′ to i by definition and

each Ci′j′ presents all those inversions where the last inversion started from the same index

t = i′ producing the same inverted sequence, i.e., same prefix from index i′ up to index i.

Any two Ci′j′ ’s say Ci′1 and Ci′2, if got split by Observation 4 somewhere between i′ to i,

then they can not have any common continuing inversion Pair.

Lemma 6. At any index i > i′, the number of disjoint x cont inv set: {Ci′1, Ci′2, . . . , Ci′j′ , . . . , Ci′s} ∈
x cont inv i′ in the worst case is (n− i)/k.

Proof. We define the worst case such that, the number of x cont inv sets from x cont inv i′

is maximized and Four Iteration Loop is called for each x cont inv set where pairing up

operation is performed in each iteration of the loop. To make this happen, each of the

existing Ci′j′ must consist of four continuing inversion Pair to produce at least k = 4 next

agreed pairs. Using this approach, and by Observation 9 and 11 the Lemma is proved.

So we have {C41, C42, . . . , C4′j, . . . , C4(n−i)/k} ∈ x cont inv 4 at iteration i. Then, we

need to know the total size of Y sibling lists considering all the C4′j’s. We have the following

Observation, which basically follows readily following the arguments of Observation 11.

Observation 12. At any index i > i′, {Si′1, Si′2, . . . , Si′s} ∈ y cont inv i′ are disjoint sets.

Observation 13. The Four Iteration Loop is called each time Ci′j′ encounters y cont inv

in its Y sibling list (Steps 2.2.2, 3.2.2 in the algorithm)
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From Observation 13 we can say that, the number of calls to Four Iteration Loop is

maximized when the number of y cont inv sets is maximized. We also want to ensure that

pairing up operation is performed in each iteration of Four Iteration Loop. Thus we have

the following Lemma which is identical to Lemma 6.

Lemma 7. At any index i > i′, the number of disjoint y cont inv sets: {Si′1, Si′2, . . . , Si′j′ , . . . , Si′s} ∈
y cont inv i′ in the worst case is (n− i)/k.

So we have {Si′1, Si′2, . . . , Si′(n−i)/k} ∈ y cont inv i′ for each 1 ≤ i′ ≤ i to be considered as

Y sibling of C4′j’s. To make it more simple, let us first consider only the sets C4′j’s yielding

α = A. Then based on the arguments provided for α = A, we can consider the scenario

for all α ∈ {A, T, C,G}. Now, the number of collection from x cont inv 4 each yielding

A and having k = 4 continuing inversion Pairs is (n − i)/k2 (by similar argument as in

Lemma 6). Let us call them C4 Aj′′ where j′′ = 1, 2, . . . , (n − i)/k2. This is true for all

x cont inv i′. So we have the following two Observations.

Observation 14. The number of distinct sets x cont inv from x cont inv i′ yielding A is

(n− i)/k2 at iteration i in the worst case, where 1 ≤ i′ ≤ i . Let us call them Ci′ Aj′′, where

j′′ = 1, 2, . . . , (n− i)/k2.

Observation 15. The number of distinct sets y cont inv from y cont inv i′ yielding A is

(n− i)/k2 at iteration i in the worst case, where 1 ≤ i′ ≤ i. Let us call them Si′ Aj′′, where

j′′ = 1, 2, . . . , (n− i)/k2.

At iteration i, a C4 Aj′′ can have matched pairs from any y cont inv m where 1 ≤ m ≤ i.

But two different cases occurs as follows.

Case 1: At iteration i, for each y cont inv m, where 1 ≤ m < i′ < i, the total num-

ber of y cont inv in Y sibling considering all Ci′ Aj′′s is (n − i)/k2. So considering all

y cont inv m, total number of calls to the Four Iteration Loop for this case is
∑

m=1,...,i′(n−
i)/k2 = (i′ − 1)(n− i)/k2.

For simplicity, we first prove the Case 1 for i′ = 4 < i, that is for all C4 Aj′′ ∈ x cont inv 4,

by Lemma 8 and Lemma 9 below. Then based on the arguments provided for i′ = 4, we can

prove the case for all i′ < i.

Lemma 8. For 1 ≤ m < 4, each C4 Aj′′ can have multiple y cont inv sets in its Y sibling

from the same y cont inv m.
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Proof. Let us consider the sets {S1 A1, . . . , S1 Aj′′ , . . . , S1 A(n−i)/k2} = y cont inv 1. They

may be paired with different or the same x end inv pairs at index 4 − 1. For each of

those x end inv pairs in x, those matching sets S1 Aj′′ ∈ y cont inv 1 are paired with

ISA table x[A][4] and thus each ISA table x[A][k] can pair with multiple number of col-

lections from y cont inv 1. See the Example 8 provided for Observation 7 for an illustra-

tion.

Lemma 9. For 1 ≤ m < 4, all sets Sm Aj′′ ∈ y cont inv m that exist in the Y sibling list

of all these C4 Aj′′’s are disjoint.

Proof. The same Sm Aj′′ can not exists in the Y sibling list of two different C4 Aj′′s. We

prove it by contradiction. Suppose, two different C4 A1 and C4 A2 align with the same

S1 A1 at i. Pairing between C4 Aj′′ and S1 Aj′′ indicates an alignment of inversed x where

the last inversion started from 4, with inversed y having the last inversion continuing from

1. Two C4 A1 and C4 A2 are disjoint by Observation 3. It implies that they present two

inversed sequences that yield different base letters at some index 4 ≤ i′′ ≤ i and that is

why they were split into two by the split case 2 (otherwise they would have belonged to the

same set). If they align with the same S1 A1 at i, we get a contradiction, because S1 A1

presents all those inversions for which inversed sequences (prefixes) are the same from index

1 up to i, i.e., prefixes do not differ at any index i′′, where 4 ≤ i′′ ≤ i. Thus the Lemma is

proved.

Now from Observations 14, 15, and Lemmas 8, 9, we can say, considering all C4 Aj′′ ,

that the total number of y cont inv sets in Y sibling from y cont inv m is (n − i)/k2 for

each m, where 1 ≤ m < 4. So considering all m, in total we get (4 − 1)(n − i)/k2 sets in

the Y sibling. For each of these sets the Four Iteration Loop is called, and this is true for

all i′ < i. Thus case 1 is proved.

Case 2: Considering all y cont inv m, where 4 ≤ m < i, the total number of calls to the

Four Iteration Loop is (i− i′) for each Ci′ Aj′′, and considering all Ci′ Aj′′ ∈ x cont inv i′,
it is (i− i′)(n− i)/k2. Again, for the sake of simplicity, we prove it for i′ = 4 by Lemma 10.

Later, based on the arguments provided for i′ = 4, we can prove the case for all i′ < i.

Lemma 10. Each C4 Aj′′ can have only one y cont inv set from each y cont inv m, for

4 ≤ m < i, resulting a total of i− 4 y cont inv sets.

Proof. For index m after 4, all of C4 Aj′′s will reside in ISB table[m]. We prove this Lemma

by contradiction. Let us assume that at iteration i, C4 A1 is paired up with two sets say
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S6 A1 and S6 A2 from y cont inv 6, (6 < i). By Observation 4 and Observation 6, all

S6 Aj′′s are disjoint. Two different S6 A1 and S6 A2 means two inversed sequence who

get different at somewhere between index 6 ≤ i′ ≤ i and thus get split by the Observation

4 (split case 2). But at iteration i, all pairs in C4 A1 are presenting the same inversed

sequence from index 4 to i. C4 A1 does not change anywhere up to i, if it were changed

then it would have been split into two child set say C4 A1′ and C4 A1′′ from that index by

split case 2. So we reach a contradiction. So C4 A1 can pair with only one collection say

S6 A1. So the total number of y cont inv sets for each C4 A′′j is (i− 4). Thus the Lemma

is proved.

Therefore, considering all C4 Aj′′s, the total number of y cont inv sets is (i−4)(n−i)/k2

(using Observation 5). For each of these sets the Four Iteration Loop is called, and this is

true for all i′ < i. So case 2 is proved.

Lemma 11. Total number of calls to the Procedure 5: Four Iteration Loop for ISB table[i]

at iteration i is O(ni2/k)

Proof. Continuing from the proof of Lemma 10, considering all C4 Aj′′ ’s, the number of

y cont inv sets is (4−1)(n−i)/k2 (by case 1)+(i−4)(n−i)/k2 (by case 2)=(i−1)(n−i)/k2.
Finally, considering all α ∈ {A, T, C,G} the total number of y cont inv sets in their Y sibling

is (i− 1)(n− i)/k.

Presence of y end inv pairs in Y sibling lists of C4j′ cannot dominate the total number

of calls to the Four Iteration Loop, as, for each C4′j, pairing up between its x next atcg[]

and ISA table y[][i+ 1] is done once only, by Observation 7.

Therefore, considering all x cont inv i′ , i′ < i, the Four Iteration Loop is called (i −
1)(i− 1)(n− i)/k = O(ni2/k) times. So Lemma 11 is proved.

Lemma 12. Total number of calls to the Four Iteration Loop for ISA table[i] at iteration

i is O(i(n− i)/k).

Proof. ISA table x[α][i] gets Y sibling pairs only if in the previous index i−1, some x end inv

have matched pairs from y. Number of x end invs at index i−1 is i by Observation 10. In the

worst case all of those x end invs have matched pairs in y. Let us see how many y cont inv

sets each ISA table x[α][i] can have in their Y siblings. Let us calculate for A first. At

iteration i, we have y cont inv sets Si′ Aj′′ ∈ y cont inv i′, where 1 ≤ j′′ ≤ (n − i)/k2 (by

Observation 6), for all i′ ≤ i. Let us think all of their parent collection were paired up with

the x end inv pairs at index i− 1. No Si′ Aj′′ will exist multiple times into the Y sibling of
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ISA table x[A][i] by the Observation 6. So for A, ISA table x[A][i] has a total of (n− i)/k2

y cont inv sets from each y cont inv i′, where 1 ≤ i′ ≤ i. Thus in total, we have i(n− i)/k2

y cont inv each having size k = 4 and yielding A. Considering all α ∈ {A, T, C,G}, the

total number of y cont inv sets from all y cont inv i′ is i(n − i)/k. So for each of these

sets, the Four Iteration Loop can be called. Again, for each ISA table x[α][i], pair up step

between x next atcg[] andISA table y[α][i] is executed once only by Observation 7. So the

number of y end inv pairs in Y sibling does not dominate the total number of calls to the

Four Iteration Loop. Thus Total number of calls to the Four Iteration Loop for ISA table[i]

at iteration i is O(i(n− i)/k).

Observation 16. Total run time taken by ICA table[i] at iteration i is O(k).

Lemma 13. Worst case runtime of the algorithm is O(n4).

Proof. Using the Observations and Lemmas provided above we explain the worst case run

time for each steps of the algorithm.

Initialization:

It involves filling up the Tx, Ty, and pairing up the ISA table x[][1] and ISA table y[][1].

So it takes O(2n2) +O(k) = O(n2).

Iteration:

At each iteration i = 1, 2, . . . , n− 1, the algorithm calls Steps 1, 2, and 3.

Step 1: It needs O(k) at each iteration i, by Observation 16.

Step 2: Processing ISA table x[][i] depends on two factors:

1. next calculation step: This is done in Steps 2.1 and 2.2.1. Step 2.1 takes O(n − i)
by Observation 8 and Lemma 5. Step 2.2.1. takes O(i(n − i)) by Observation 9 and

Lemma 5. So the total time complexity is n− i+ in− i2 = O(ni).

2. Four Iteration Loop: This is performed in Step 2.2.2 (always), Step 2.2.3 (condition-

ally) and once only for case 3 (under Step 2.2). Total number of calls by Step 2.2.2

and 2.2.3 is O(i(n − i)/k) By Lemma 12. Again, pairing up operation is performed

in each iteration. So each call to the Four Iteration Loop performs k = 4 pairing up

operation. So the total number of pairing up operation is O(i(n− i)).

Step 2.3 takes O(k) if all ISA table x[α][i] for α = {A, T, C,G} have non empty Y sibling

list. So for Step 2, the total time complexity at iteration i is O(ni) +O(i(n− i)) = O(ni).

Step 3: Processing ISB table[i] depends on three factors:
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1. next calculation step: This is done in Steps 3.1 and 3.2.1. The pairs in x cont inv i′′

sets (1 ≤ i′′ < i) are responsible for forming the x cont inv sets of 〈Xsibling :

[x cont inv, x end inv]〉−〈Y sibling〉 rows of the ISB table[i]. Again pairs in y cont inv i′

are pointed by the Y sibling list of these rows, where 1 ≤ i′ ≤ i. So by Lemma 5, the

number of total steps here is O(2i(n− i)).

2. Four Iteration Loop: This is performed in Step 3.2.2 (always), Step 3.2.3 (condition-

ally) and once only for case 3. Total number of calls by Step 3.2.2 is O(ni2/k) By

Lemma 11. Again, pairing up operation is performed in each iteration. So total num-

ber of pairing up operation is O(ni2). For each x end inv, the loop is called at step

3.2.3. But it is negligible because the total number of x end inv pairs considering all

Xsiblings in ISB table[i] is only i− 1 by Observation 10.

3. Transferring step: This is done in Step 3.3. If all the x next atcg[α] of the Xsiblings

created in Step 2.1, has non empty Y sibling list for α = {A, T, C,G}, then each of

them are passed to ISB table[i+ 1]. So it takes O(k(i−1)(n−i)
k

)=O(ni).

So for step 3, the total time complexity at iteration i is O(2i(n − i)) + O(ni2) + O(ni) =

O(2ni(i+ 1)) = O(ni2).

So Step 1, Step 2, and Step 3 take O(k) + O(ni) + O(ni2) = O(ni2) for each iteration,

resulting in O(n4) in total. Here we can see that Step 3 is the dominating step.

Termination:

Decision making takes O(1) that just checks the emptiness of the ICA table[n] (n =last

index of the table).

So in total, worst case time complexity of the algorithm is O(n4). Thus Lemma 13 is

proved.

Now we deduce the run time for the average case. Here, we consider fifty percent

match between the pairs of θx(x) and θy(y) at each iteration i. So we present the following

Lemma 14 to define the maximized size of cont inv i′ considering the average case.

Lemma 14. For the average case, at some iteration i, the size of any cont inv i′, where

i′ < i, is (n− i′)/2i−i′.

Proof. When the cont inv i′ is passed from ISA table x[][i′] to ISB table[i′+1] in iteration

i′, we perform next calculation step n−i′ times by Step 2.1. But all of the next agreed pairs
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do not get matched pairs from y. We assume that fifty percent of the pairs in cont inv i′

gets matched pairs for the next agreed pairs from y. So, in the next iteration, i = i′ + 1,

the size of cont inv i′ becomes (n−i′)
2

in the average case. Again, in iteration i = i′ + 1,

the new set cont inv (i′ + 1) may get introduced which again takes n − (i′ + 1) steps for

next calculation by Step 2.1. This pattern continues. Observing the pattern in Table 4.1,

at some iteration i, the size of any cont inv i′, where i′ < i, is (n−i′)
2i−i′ .

Iteration, i 1 2 3 4

Size of x cont inv 1 (n− 1) (n−1)
2

(n−1)
22

(n−1)
23

= n−1
24−1

Size of x cont inv 2 − (n− 2) (n−2)
2

(n−2)
22

= (n−2)
24−2

Size of x cont inv 3 − − (n− 3) (n−3)
2

= (n−3)
24−3

Size of x cont inv 4 − − − (n− 4) = (n−4)
24−4

Table 4.1: Size of cont inv i′ set for average case at iteration i > i′

Lemma 15. Average case runtime of the algorithm is O(n3).

Proof. From previous Lemmas we see that Step 3 of the algorithm is the dominating step so

we show how its run time gets reduced in the average case. The total number of x cont inv

sets forming the Xsiblings, and the total number of y cont inv sets pointed by the Y sibling

list of Xsiblings, are the main factors that determine the runtime of Step 3. All the obser-

vations remain the same as before. However, the size of cont inv i′, changes to (n− i′)/2i−i′ ,
instead of (n− i). We restate Case 1 and Case 2 below skipping the proofs.

Case 1: For each y cont inv m, where 1 ≤ m < i′, number of y cont inv in Y sibling consid-

ering all Ci′j′ ∈ x cont inv i′ is
(n−m)
2i−mk

. So the total number of calls to the Four Iteration Loop

at iteration i, for x cont inv i′ is 1
k

∑
m=1,...,i′

(n−m)
2i−m . Simplifying the term we get O(n( 2i

′

k2i
)).

Case 2: Considering all y cont inv m, where i′ ≤ m < i, the total number of calls to the

Four Iteration Loop is (i− i′) for each Ci′ Aj′′ . So considering all Ci′ Aj′′ ∈ x cont inv i′ it

is (i− i′) (n−i′)
2i−i′k2

. Therefore, considering all Ci′j′ ∈ x cont inv i′, the total number of calls to

the Four Iteration Loop, at iteration i is (i− i′) (n−i
′)

2i−i′k
.

Considering Case 1 and Case 2, at iteration i > i′, for each x cont inv i′, the total number

of y cont inv sets pointed by their Y siblings is n 2i
′

k2i
+(i− i′) (n−i

′)

2i−i′k
. So, for i′ = 1, 2, . . . , i−1,

we get
∑

i′=1,...,(i−1) n
2i
′

k2i
+(i−i′) (n−i

′)

2i−i′k
= O(ni

k
). So time complexity of Step 3 becomes O(n3)

in the average case. Similarly, the time complexity of Step 2 becomes O(n2) as well in the

average case. So in total the average case time complexity for the algorithm is O(n3).
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4.6 Space Complexity

The table Tx and Ty takes O(n2) space. We implement the ISA x table[] and ISB table[]

as linked lists. So extra memory is not alocated in advance. Thus space complexity is

dominated by the number of list elements 〈Xsibling〉 − 〈Y sibling〉 and the size of Y sibling

for each such element in ISA table x[] and ISB table[]. Processing at iteration i does not

need the contents of column i− 1 of any tables. So, only two columns are needed for those

tables which can be used alternatingly. Therefore, as in the worst case, the total size of

all the Y sibling lists is O(ni) and O(ni2) (by Lemmas 12 and 11) for ISA table x[i] and

ISB table[i] respectively, so the theoretical worst case space complexity becomes O(n3).

However, as in average case, worst case runtime of the algorithm is O(n3) (by Lemma 15),

thus space complexity becomes O(n2).

4.7 Experimental Results

Theoretical worst case and average case time complexity of the algorithm are O(n4) and

O(n3), and theoretical worst case and average case space complexity are O(n3) and O(n2),

proven in Section 4.5 and Section 4.6 respectively. However, practical runtime of the al-

gorithm in average and the worst case are O(n2) and O(n3) respectively. This is apparent

from the experimental results reported in Table 4.2.

Table 4.2: Total number of steps taken by the algorithm for n = 30, 50, 70, 90, 120

n3

Runtime
Result: YES Result: NO

``````````````̀Length, n
Similarity

100% 90% 80% 70% 60% 50% 30% 20% Average Average

27000 30 14849.18 8394.05 6419.14 5556.35 4967.8 4811 4239.89 4167.05 4436.30 3126.20
125000 50 70298.30 31995.65 21814.60 18522.4 16859.3 15980.85 15665.8 15344.95 14502.36 7299.40
343000 70 193353.05 72637.53 46755.95 39899.6 35267 34171.90 32686.6 32861.55 26055.48 20505.75
729000 90 412793.40 117034.50 84772.90 67255.35 61626.85 61766.45 56221.2 56567.7 49514.79 23087.36
1728000 120 980591.30 264070.30 160443.85 127785.05 117576.9 112994.70 110491.15 109703.55 94221.95 58573.14

In our experiments, x and y are selected such that both contain the same number of

bases from the complement category, A − T and G − C. We define the term performance

factor (equivalent to the runtime), as a counter that keeps track of the total number of

statements executed for finding the next agreed Pair (t, r) and pairing the matched agreed

Pairs. So runtime of a test case is calculated by adding the performance factor of the

dominating steps, i.e., Step 2 and Step 3 in the algorithm. For each length n (ranging from

30 to 120), we run the experiment under six categories (columns 3 to 8 of Table 4.2) based

on the percentage of similarity between the input sequences x and y. Under each category,
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Figure 4.8: Time Complexity of our proposed algorithm

we generate twenty sets of test cases by randomly choosing x and y. Then we calculate the

average runtime of the test cases. Worst case occurs when the sequences have a similarity

of around 90% or more; otherwise the runtime becomes O(n2). This is also apparent from

the graph in Figure 4.8. With the decrease in the similarity between x and y, the running

time drops to O(n2) = Cn2 ≈ 7n2. Here, no comparison with previous works is provided as

there exists no other works on our problem (algorithm by Cho et al. [21] is inaccurate thus

not considered).

4.8 Conclusion

In this chapter we have mapped the consensus string problem under the inversion dis-

tance metric to the biomedical problem of detecting the allelic heterogeneity. The proposed

algorithm finds the common ancestor sequence given two mutated sequences where muta-

tion involves only non overlapping inversions. Future research endeavor could be directed

towards other mutation operations such as insertion, deletion, etc. Finding minimum con-

sensus string distance for two input sequences and improving time complexity remain as

future works as well.
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Chapter 5

Existence of Consensus String Under

The Transposition Metric

In this chapter, we present a polynomial time algorithm for determining the existence of a

Concensus String (s?), given two strings x and y of length n on an alphabet of size k = 4

(DNA bases A, T, C, G) under the distance metric called non overlapping transposition.

Since the minimum distance d is not present as a parameter, our problem can be thought of as

a relaxed version of the original Concensus String problem. In Section 5.1, we provide some

definitions and observations necessary for presenting the algorithm. Then in Section 5.2 we

discuss the main algorithm. We prove the correctness of our algorithm in Section 5.3. Then

in Section 5.4 and Section 5.5, we discuss the running time and space complexity respectively.

We show the experimental result in Section 5.6. Finally we conclude in Section 5.7 discussing

some future research directions.

5.1 Definitions

We consider the biological operation Transposition, a genetic mutation in which two con-

secutive DNA segments of same size interchange their positions. We denote a transposition

operation by (i, j) where the operation takes place between the index i to j of a DNA

sequence, and the segment to be interchanged has size j−i
2

(transposition size j−i
2

). For

example, a transposition (3, 8) over the DNA sequence x = AG ACC CTA GTTCGAA

results in AG CTA ACC GTTCGAA (between index 3 to 8). Transposition Sequence, θT

is defined as a set of the non overlapping transpositions. So the Transposed Sequence, θT (x)

is the resultant DNA sequence after applying the set of transpositions, θT over x. Let us

consider the transposition sequence θT
′

= {(3, 8), (10, 15)}, and the same DNA sequence
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Figure 5.1: P − graph for sequence x = ATTCGGTCC with transposition size 3

x = AGACCCTAGTTCGAA. Here, two transposition operations (3, 8) and (10, 15) are

applied on x. Then θT
′
(x) = AGCTAACCGGAATTC. Again, θT

′
(x) upto index 8 is

AGCTAACC.

In order to find out Concensus Strings based on Transposition metric, we use the P −
graph proposed by Pritam et al. [3, 2, 1]. Given a gene sequence X = X1, X2, . . . , Xn, and a

transposition size k, a P−graph, denoted by PG = (V P , EP ), is a directed graph. The vertex

set V P can be partitioned into three disjoint vertex sets namely V P
d own, V P

m iddle, V
P
u p such

that k ≤ up ≤ 1, 1 ≤ down ≤ k, and middle = 0. The partition is defined in a (2k + 1)× n
matrix M as follows. For the sake of notational symmetry, we use M [up], M [middle] and

M [down] to denote respectively the rows M [k], . . . ,M [1], M [0] and M [1], . . . ,M [k] of the

matrix M , respectively. Please refer to Figure 5.1 for k = 3.

Here the path presented by middle row, that is M [0] presents the original gene sequence.

Following the paths in M [up] or M [down] we get the transposed version of the input gene

sequence. Given two sequences x and y of length n, we use Mx[2k+ 1][n] and My[2k+ 1][n]

to denote the sets of all possible transpositions of x and y respectively, where k is the

transposition size. For example, all possible transposed sequences of x can be found by

Mx[2k+ 1][n]. Here the bold path shows the transposed sequence AGGTTTCCC found by

θT
′
= {(2, 7)}.
In practice different sized transposition mutation event might occur simultaneously in

a gene sequence. That is, we can have multiple values for the transposition size k, where

1 ≤ k ≤ kmax ≤ n/2. So by superimposing P −Graphs for different values of k, we can have

the P −Graph showing all possible transpositions of the respective sequence considering all

possible transposition size k. For simplicity we show the P −Graph for k ∈ {1, 2, 3} for the

same sequence x = AGACCCTAG in Figure 5.2.
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Figure 5.2: P −graph for sequence x = ATTCGGTCC with transposition size k ∈ {1, 2, 3}

We define each non-empty M [k, j][i] as a transposition fragment, where k=block size /

transposition size, j ∈ {up,mid, down} and i is the index of the sequence. The column M [i]

actually presents all possible gene bases at index i considering all possible transpositions or

no transposition. Just like the case of inversion fragment presented in previous chapter, from

one transposition fragment M [k, j][i], we can find the next agreed transposition fragment

according to following rules:

1. if j = mid,

(a) if no transposition at index i+ 1, then M [0, 0][i].next = M [0, 0][i+ 1]

(b) if new transposition starts at index i+1, then for each value of k′ ∈ {1, 2, 3, . . . , k max},
M [0, 0][i].next = M [k′, j′][i+ 1], where,

j′ =

 k′ if (i%k′ = 0)

i%k′ Otherwise
(5.1)

2. if j = up,

if (i%k = abs(j) − 1), it indicates the end of the ongoing transposition at M [k, j][i].

So the next agreed fragment,
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(a) if no transposition at index i+ 1, M [k, j][i].next = M [0, 0][i+ 1].

(b) if we consider the start of new transposition at index i + 1, then for each value

of k′ ∈ {1, 2, 3, . . . , n/2},
M [k, j][i].next = M [k′, j′][i+ 1], where,

j′ =

 k′ if (i%k′ = 0)

i%k′ Otherwise
(5.2)

Otherwise, if (i%k 6= abs(j) − 1), it indicates the ongoing transposition at M [k, j][i].

So, the next agreed fragment of M [k, j][i] is M [k, j][i+ 1]

3. if j = down, for any k,

M [k, j][i].next =


M [k,−j][i+ 1] if (i%k = abs(j)− 1), level change/start of the

second block (of size k) in the ongoing transposition

M [k, j][i+ 1] otherwise, just ongoing transposition

(5.3)

One complete agreed sequence represents a transposed sequence. We need to find out

common agreed sequences given Mx and My.

Pair(t, r) which was used in inversion (in previous chapter), is actually not necessary

for transposition. It was used for the algorithm using inversion because the same fragment

could belong to several ongoing inversions starting from several different indexes. But here,

for transposition, the P − graph is built in a way such that one transposition fragment

belongs to only one ongoing transposition starting from one unique index. Thus trans-

position fragment itself is enough for keeping track of the alignments between θTx (x) and

θTy (y). For the same index i, if a transposition fragment in Mx and another in My, yield

the same α ∈ {A, T, C,G}, and the respective transposed sequences θTx (x) and θTy (y) up

to i is the same, then those two fragments are called Matched Fragments and denoted as

〈Xsibling〉 − 〈Y sibling〉.
We define, ending transposition fragment at index i such that it indicates the ending or

completion of an ongoing transposition at index i (which started at index i− 2k) for some

θTx (x). We also define M [mid,mid][i] as no transposition fragment at index i. Similarly, we

define, cont trans i′, the set of row indexes of the transposition fragments presenting θTx (x)

where the current ongoing transposition started at index i′ and continue through the index

i, where i′ ≤ i ≤ i′ + 2k.
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We define Sx and Sy to be the sets of all possible transposition sets θT over x and y

respectively. In general, θTx ∈ Sx and θTy ∈ Sy are used to present the matching phase.

Deciding whether any consensus sequence exists between two given DNA sequences x and

y having the same length n, involves finding out the existence of common agreed sequences

of x and y. For this purpose we track the matched fragments between Mx and My for each

index or column i = 1, 2, . . . , n. The set of matched fragments are denoted as 〈Xsibling〉 -

〈Y sibling〉 for the ease of representation. Both Xsibling and Y sibling may contain one or

more fragments.

In the rest of the section, we define some table like data structures that will be used in

our algorithm. Each table will record some information of the matched fragments and will

be named based on the type of θT (x) at each column i. Column i of each table presents

some alignment of θTx (x) and θTy (y) up to index i.

TSA table x[ ][i] - Transposition Started At i. This table presents an alignment of

θTx (x) (upto i), having the last transposition ended at i−1, and a new transposition starting

from i or no transposition at i. with θTy (y) (upto i), having the last transposition started

before or at i, still continuing or ended at i or no transposition at i. TSA table x[][i] holds

b = 4 rows, one for each of the base letters α ∈ {A, T, C,G} such that, TSA table x[α][i]

keeps the (k, j)s (the row indexes of M x[k, j][i]) in Xsibling, that yields the base α, and

indicates starting of a new transposition at index i (j ∈ down) or no transposition at i

(j = mid). With such fragments of M x, it keeps corresponding matching fragments from

M y in Y sibling.

The Xsibling in particular consists of two members only. One is the mid fragment which

actually indicates no transposition at index i and a set of fragments in down which indicates

start of new transposition operation at index i. So we can call the first one as x no trans i

and the second one as x cont trans i.

Initially Y sibling is empty. In the matching phase, Y sibling maintains a list of pointers

to the matched fragments of Xsibling in T y, and is categorized into two types, namely,

single ending transposition fragment called y end trans and single no transposition frag-

ment called y no trans (both belongs to Type 1) and cont trans called y cont trans (Type

2) where all fragments represent the ongoing transpositions started at i′ ≤ i.

Now we explain the intuition behind keeping these records. Both types of pointers

(Y sibling) mentioned above are considered as matched fragments of x cont trans set and

kept in TSA table x[ ][i]. But for x no trans, only Type 2 pointers are considered as the

matched fragments in this table. For each Type 1 pointer, i.e., y end trans and y no trans
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in Y sibling list, we keep a separate record 〈Xsibling〉 - 〈Y sibling〉 ≡ 〈x no trans〉 -

〈y end trans〉 or 〈x no trans〉 - 〈y no trans〉 in the TCA table[i]. Though this creates

redundancy but this separation makes the data structure conceptually simpler and keeps

the final decision checking simple at the end of the algorithm. Please refer to the Figure 5.5

for an illustration.

TCA table[i] - Transposition Completed at i. This table holds rows of 〈Xsibling〉-
〈Y sibling〉 ≡ 〈(k′, j′)〉-〈(k′′, j′′)〉 presenting an alignment of θTx (x) with θTy (y) up to i, where

the last transposition in θTx and θTy started at index i−2k′ and i−2k′′ respectively, and both

ends at i, or none has transposition at index i. So j′ or j′′ should be up or mid. And both

matched fragments from x and y will have TSA x[][i+ 1] and TSA y[][i+ 1] respectively as

the next agreed fragments.

TSB table[i] - Transpositions Started Before i. It holds rows 〈Xsibling〉 - 〈Y sibling〉
just as before presenting alignments of θTx (x) yielding α at index i (but having the last trans-

position started before i, and still ongoing or ended at i), with θTy (y) yielding the same base

letter α at index i (having the last transposition started before or at i, and still ongoing,

or ended, or no transposition at i). So Xsibling of TSB table[α][i] keeps the (k, j)s for x,

where j should be up or down but not mid. And the corresponding Y sibling keeps the

(k′, j′)s for y, where j′ can be up, down, or mid. Structure of Y sibling and the intuition

behind the records are the same as that in TSA table x[][i].

TSA table y[][i]. It contains 〈Y sibling〉 ≡ 〈y no trans, y cont trans〉 just like the

Xsibling in ISA table x[][i]. This Y sibling is actually get pointed by the Y sibling lists of

Xsiblings, at TSA table x[][i], TSB table[i] and TCA table[i].

5.2 The Algorithm

Common transposed sequences between x and y are computed by tracking the matched

pairs between Mx and My from column i = 1 to n. The following procedures are used in

our algorithm.

Procedure 6. Next Calculation(j, i, k, Mx): If the input fragment Mx[k, j][i] is of

type cont trans (continuing transposition), it returns the row index of one unique next

agreed fragment. Otherwise, if the input fragment is of type ending transposition or

no transposition, it returns the pointer to the TSA table x[][i + 1] as a new transposition

is supposed to start from i+ 1. Similar actions are performed for y if My is the input.
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Procedure 7. next calculation collection(x cont trans, x next atcg[], i):

It finds the next agreed fragments of x cont trans and keep those in a child table x next atcg[]

such that x next atcg[α] holds the agreed fragments yielding α. For example, suppose,

x cont trans = 〈r1, r2, . . . , rp〉. For each of these fragments we call next calculation(r′, i, k,M x),

r′ = 1, 2, . . . , p. Each time as soon as one unique next agreed fragment is returned, we add

that to x next atcg[] as follows.

case 1: If the next agreed fragment is a cont trans fragment, yielding α, then insert

into x cont trans of x next atcg[α].

case 2: If the next agreed fragment ends at i + 1 or is subject to no transposition

at index i + 1 and yield α, then we assign this fragment to x end trans or x no trans of

x next atcg[α].

Procedure 8. PairUp xColl yColl(collection x, collection y, i): This step is called

at iteration i, with the matched fragments for index i+1 as input. It sets the 〈collection y〉 ≡
〈y cont trans, y end trans, y no trans〉 as Y sibling of 〈collection x〉 ≡ 〈x cont trans,
x ending trans, x no trans〉. Thus it lets the alignment (up to i) of θTx (x) and θTy (y) proceed

one step forward, i.e., from i to i+ 1. It executes following steps.

step a: Insert the pairs like (x end trans,x no trans)×(y end trans,y no trans) into

ICA table[i+ 1].

step b: Insert a pointer to the y cont trans into the Y sibling list of collection x.

step c: Insert a pointer to the y end trans into the Y sibling list of collection x.

step d: Insert a pointer to the y no trans into the Y sibling list of collection x.

Procedure 9. PairUp xColl ySingle(collection x, single y, i): It works as above

but here the single y is a row index (k, r) of single fragment. If both collection x and

single y are nonempty (Compatibility Check), it performs the following steps.

step a: If single y is an ending transposition or no transposition and collection x also

has x end trans or x no trans, then pair them up and insert into ICA table[i+ 1]

step b: Insert a pointer to single y into the Y sibling list of collection x.

Procedure 10. Four Iteration Loop(table x, table y, i):

It pairs up the Xsibling in table x with the Y sibling in table y. For each base letters α ∈
{A, T, C,G}, if table x[α] has non empty Xsibling and table y[α] has non empty Y sibling

(Compatibility Check), then it calls PairUp xColl yColl(collection x, collection y, i) with

collection x=table x[α], and collection y=table y[α].
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Figure 5.3: P −graph for sequence x = ATTCGGTCC with transposition size k ∈ {1, 2, 3}

Figure 5.4: P − graph for sequence y = TCATTCGGC with transposition size k ∈ {1, 2, 3}
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Now we explain the algorithm using the procedures stated above. The main algorithm

iterates over i = 1 to n − 1. The column i of each of the tables described above actually

represents the alignment of θTx (x) and θTy (y) up to index i for some θTx and θTy . So at

each iteration i, it processes the rows in three tables: TCA table[i], TSA table[][i], and

TSB table[i] to calculate the next agreed fragments, pair up the matched agreed fragments

and insert those into the column i + 1 of the appropriate table. If for any row 〈Xsibling〉-
〈Y sibling〉, next agreed fragments of Xsibling does not get matched fragments from next

agreed fragments of Y sibling, then it means no alignment with the transposed sequence of

x presented by that Xsibling exists in y. Thus this alignment 〈Xsibling〉-〈Y sibling〉 is not

passed forward anymore and is rather dropped here. We will explain the algorithm using an

illustrative example. Consider, x = ATTCGGTCC, y = TCATTCGGC and transposition

size k ∈ {1, 2, 3} given in Figures 5.3 and 5.4. One of the consensus sequences between those

is ACCTGACAG.

5.2.1 Initialization

TSA table x[1] and TSA table y[1] are shown in the Figure 5.5. It executes Procedure 10,

i.e., Four Iteration Loop to start aligning x with y by pairing up these two tables. While

calling the procedure, input parameters are set as: table x = TSA table x[1], table y =

TSA table y[1], and i = 1.

5.2.2 Iteration

For each iteration i = 1, 2, . . . , n− 1, following steps are performed.

Step 1

Process TCA table[i]: For the first row 〈Xsibling〉-〈Y sibling〉=〈(k′, r′)〉-〈(k′′, r′′)〉, we call

Procedure 1, i.e., next calculation(r′, i, k′, T x) and next calculation(r′′, i, k′′, T y). They

return pointers to TSA table x[i+1] and TSA table y[i+1] respectively. After that, we call

the Four Iteration Loop(TSA table x[i+1], TSA table y[i+1]). Other rows of TCA table[i]

are not processed as they involve doing the same assignments (according to the Merging Case

1 explained later in Observation 19).
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(a) (b)

Figure 5.5: (a)The condition of TSA tables Before Initialization; (b)After Initialization the
ysibling fields of TSA table x[1] are updated, that is the alignment between x and y is
initiated. The TSB table is empty as it should be since no transposition exists that starts
before index 1. The TCA table is empty as well, since in this example no alignment exist
where a transposition completes at index 1.

Figure 5.6: Demonstration of Step 2.1 for α = T in iteration 1

Step 2

Process TSA table x[][i]: For each α ∈ {A, T, C,G} we perform Step 2.1, Step 2.2 and

Step 2.3.

Step 2.1

It calls Procedure 4, with x cont trans of TSA table x[α][i], which finds its next agreed

fragments and keeps those in a child table x next atcg[] (see Figure 5.6)
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Step 2.2

For each list item Y sibling[p], in this step we find the alignment of the fragments in

x next actg[] (calculated in the previous step) with the next agreed fragments found from

Y sibling[p]. We need to deal with one of the following cases.

Step 2.2 Case 1. The Y sibling[p] is of type y cont trans having size > 1 (Step 2.2.1

to Step 2.2.3):

Step 2.2.1: If y next atcg[] of Y sibling[p] is not calculated yet, then call Procedure 4,

i.e., next calculation collection(Y sibling[p], y next actg[], i).

Step 2.2.2: Now both the x next atcg[] and y next actg[] are ready to be paired up.

So we call the Four Iteration Loop( x next atcg[], y next atcg[]).

Step 2.2.3: If Xsibling has x end trans or x no trans fragment, and y next actg[]

has not been paired with ISA table x[][i + 1] yet (Merging Case 2 explained later in

Observation 20), then pair them up by calling Four Iteration Loop(ISA table x[][i + 1],

y next actg[]).

Step 2.2 Case 2. The Y sibling[p] is of type y cont trans having size = 1 (Step 2.2.4

to Step 2.2.6):

Step 2.2.4: We call next calculation(r′, i,My), where My[r
′][i] is the y cont trans frag-

ment. Let the returned unique next agreed fragment yield α and name it fragment y.

Step 2.2.5: We call PairUp xColl ySingle(x next actg[α], fragment y, i).

Step 2.2.6: If Xsibling has x end trans or x no trans, and fragment y has not been

paired up with TSA table x[α][i+ 1] yet (Merging Case 2 ), then we call

PairUp xColl ySingle(ISA table x[α][i+ 1], fragment y, i). Please refer to Figure 4.5 for

an illustration.

Step 2.2 Case 3. If Y sibling[p] is of type y end trans or y no trans: If x next atcg[] has

not been paired up with TSA table y[][i+ 1] yet (Merging Case 3, explained later in Obser-

vation 21), then we call the procedure Four Iteration Loop with input tables: x next atcg[]

and TSA table y[i+ 1]. Please refer to Figure 4.5.

Step 2.3

Update the TSB table[i+1]: For each new x next atcg[α] created in Step 2.1, if it

has non empty Y sibling list, then we insert it into TSB table[i + 1] as new rows, where
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Figure 5.7: Demonstration of Steps 2.2 and 2.3 for α = A in iteration 1

α ∈ {A, T, C,G}. Please see Figure 4.5 for an illustration.

Step 3

Process TSB table[i]: For each row p of TSB table[i]: 〈Xsibling〉 - 〈Y sibling〉, we execute

the Steps 3.1, 3.2, and 3.3. They are identical to Step 2.1, 2.2, 2.3 except the fact that the

row items TSB table[p][i] are used instead of TSA table x[α][i].

5.2.3 Termination

After the iterations complete, if the TCA table[n] contains no row, we return NO indicat-

ing the absence of any consensus sequence between x and y. Otherwise we return Y ES,

indicating the existence of some consensus sequence between x and y.

5.3 Correctness of the Algorithm

Correctness of the algorithm is proven by Lemma 16 and Lemma 17 by showing that no

valid alignment is missed and invalid alignments are cancelled as soon as detected. Necessity

and sufficiency of the termination step of the algorithm is proven in Lemma 18. Since

the observations and lemmas are similar to those for inversion (Section 4.4), so detailed

explanation with example is not provided.

We observe that each row at column i of each table actually presents an alignment be-

tween θTx (x) and θTy (y) up to index i. For Lemma 16 we need the following two observations.

70



Observation 17. Split case 1: One alignment is split into multiple new alignments when

ending of any ongoing transposition (of that alignment) is reached. This case is ensured by

the step b of Procedure 4, step a of Procedure 2 and 3, and Steps: 2.2.3, 2.2.6, 3.2.3, 3.2.6,

case 3 (under Step 2 & 3) in the algorithm. For an illustration see the Example 10 below.

Figure 5.8: Split case 1 (marked by solid circle) and Split case 2 (marked by dotted circle)

Example 10. In this example we explain Observation 17 with the help of Figure 5.8. First,

we explain the initialization. Please refer to the shaded alignments only. At the initialization

step, the transposition fragment Mx[1, 1][1], Mx[2, 1][1] and Mx[3, 1][1] (presenting the base

T) reside in the Xsibling of TSA x[T ][1] as x cont trans 1 (we ignore the alignment with

M [0, 0][1] for this example). Similarly, the matched transposition fragments from y, namely

My[2, 1][1] and My[3, 1][1] are aligned with x cont trans 1 thus included in the Y sibling list

of x cont trans 1 as y cont trans. Now we for the next iterations, we consider only the

alignment between x cont trans 1 and y cont trans 1. Let us denote this alignment as AT .

In iteration 1, these alignment AT is to be passed one step forward. Here, the next

calculation step on x cont trans 1, returns next agreed fragments Mx[1,−1][1],Mx[2, 1][1],

Mx[3, 1][1]. Similarly, the next calculation step on y cont trans 1, returns next agreed

fragments My[2, 1][1], My[3, 1][1]. one transposition fragment Mx[1,−1][1] of x cont trans 1

reach ending at index 2. So we exclude it from x cont trans 1 and add to x end trans. Then

we pass this alignment one step forward by inserting 〈Xsibling = [x end trans], x cont trans 1〉−
〈Y sibling〉 ≡ 〈[(1,−1)], (2, 1), (3, 1)〉 − 〈(2, 1), (3, 1)〉 into the TSB table[2].
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In iteration 2, while processing the alignment AT residing in TSB table[2], we find that

the transposition fragment Mx[1,−1][1] reaches ending at index 2. Thus from this point, we

split the alignment into two alignments (note the solid circle marked around Mx[1,−1][1]).

We call them AT a and AT b. Let us denote the next agreed fragments of y cont trans 1

returning T base as Y sibT 1 ≡ 〈(3, 1)〉. The next agreed fragments of x cont trans 1 (all

are yielding base T) who are still ongoing, are denoted as Xsibling ≡ 〈(2,−1), (3, 1)〉. Now,

in this iteration, we insert one row 〈Xsibling〉−〈Y sibT 1 into the TSB table[3] representing

alignment AT a. We also include Y sibT 1 as Y sibing of the TSA table[T ][3] which indicates

another alignment AT b. In this way we split the alignment when ending of any ongoing

transposition of that alignment is reached.

Observation 18. Split case 2: Alignments can be split before reaching the ending if new

prefix appears. This happens when the next agreed fragments differ by yielding base letter

α ∈ {A,C, T,G} . This split is ensured by the strategy followed in Procedure 4, 2 and 3.

For clarification see the Example 11 below.

Example 11. In this example we explain Observation 18 with the help of Figure 5.8.

Please refer to the previous example 10. In iteration 2, while calculating the next agreed

fragments of Y sibling ≡ 〈(2, 1), (3, 1)〉, we get My[2,−1][3] yielding base C and My[3, 1][3]

yielding base T. Here no transposition has reached ending but two transposition are yielding

different bases. That is why we split the alignment into two as Y sibT 1 = 〈(3, 1)〉 and

Y sibC 1 = 〈(2,−1)〉 (note the dotted circle marked around My[2,−1][3]). Only Y sibT 1

has matched fragments from corresponding Xsibling. So, Y sibT 1 is passed forward to

TSB table[3] and TSA table[T ][3].

Lemma 16. No valid alignment is missed.

Proof. Each row at column i of each table presents an alignment between θTx (x) and θTy (y)

up to index i. Based on next agreed fragments, if necessary we split that alignment into

multiple new alignments as explained in Observations 17 and 18. Thus no valid alignment

is missed.

Lemma 17. Invalid alignments that is agreed sequences of x not existing in y (or vice versa)

are cancelled as soon as detected.

Proof. If in iteration i, for an alignment 〈Xsibling〉-〈Y sibling〉, next agreed fragments of

Xsibling get no matched fragments from the next agreed fragments of Y sibling, then the

alignment is not passed forward and rather dropped immediately. This case is ensured by

the Compatibility Check executed inside the Procedures 3 and 5.
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We illustrate Lemma 17 using Example 12 below.

Example 12. We explain Lemma 17 using the example in Figure 5.8. Please refer to

the Example 11. Here, in iteration 2, from Y sibling, we get Y sibT 1 = 〈(3, 1)〉 and

Y sibC 1 = 〈(2,−1)〉 presenting two sequences TTC and TTT respectively. Here only the

Y sibT 1 is passed forward by inserting into the TSB table[3] and TSA table[T ][3]. But the

Y sibC 1 is dropped here since it has no matched fragments from the next agreed fragments

of corresponding Xsibling. Thus no alignment with TTC can be found from x. In this way

no invalid alignment is passed forward.

Lemma 18. Checking non emptiness of TCA table[n] is necessary and sufficient to decide

on the existence of consensus sequence.

Proof. Rows in TCA table[n] indicates alignment of θTx (x) and θTy (y) up to the last index

such that, the last transposition ends at i or no transposition occurs at i for both of them.

Thus it indicates the existence of a consensus sequence. If TCA table[n] is empty it means

no θTx (x) can align with any θTy (y) up to the last index, thus indicating the absence of a

consensus sequence among x and y.

5.4 Time Complexity

Before deducing the time complexity of our algorithm, we first discuss how the polynomiality

of the algorithm is ensured. The number of list items 〈Xsibling〉-〈Y sibling〉 (in TSA table x

& TSB table) and the size of Y sibling for each such row affect the running time. Our

algorithm prevents unpredictable increment of the number of rows in TSA table x[] and

TSB table[] by merging overlapping portions of the alignments, thus ensuring a polynomial

run time as explained below by observations and lemma. Since the observations and lemmas

presented below are similar to those for inversion (Section 4.5), detailed explanation with

examples is not provided.

Observation 19. Merging case 1: Merging in TCA table[i]. In each iteration i = 1 to n−1

of the algorithm, at Step 1, we pair up TSA table x[i + 1] and TSA table y[i + 1] through

procedure Four Iteration Loop once only for the non empty TCA table[i]. This ensures

the merging all the alignments presented by the rows of TCA table[i].

Proof. From i+1, destiny of all those alignments in TCA table[i] is the same, i.e., sequence of

next agreed fragments of all those alignments is the same for following successive iterations,

until the next ending is reached. In other words, we can say, if any alignment residing in
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Figure 5.9: Merging case 1

TCA table[i] is dropped at some later index due to some mismatch, then it will happen for

all other alignments in TCA table[i] as well. So instead of keeping separate rows onwards,

we merge the overlapping portion to avoid the redundant calculation. Notably, it may merge

multiple alignments having different prefixes as well; but this does not create problem as

they have the same destiny from index i + 1 up to the next ending. Please refer to the

Example 13 for an illustration.

Example 13. In this example we explain Observation 19 with the help of Figure 5.9(i).

Please refer to the shaded alignments only. Two alignments, one having A as the first letter

(dotted arrow) and the other having T as the first letter (bold solid arrow) are present in

the TCA table[2]. Thus they are merged into one from index 3 as they are destined to the

same result from that point. Here the alignment is shown up to index 5. The alignment can

go forward up to index 4 (shown by bold arrow), at index 5 both of them are dropped due

to mismatch in the next agreed fragments of Xsibling and Y sibling.

Observation 20. Merging case 2: Merging alignments in TSA table x[i+1] on iteration

i is ensured by Step 2.2.3, 2.2.6, 3.2.3, and 3.2.6 in the algorithm.

Proof. If different x end trans or x no trans fragments of x at index i are paired with

the same y cont trans from y, then for each of those x end inv or x no trans fragments,

TSA table x[i+ 1] and the next agreed fragments of that y cont trans need pairing up. As

this same pairing up operation is required for all those matching x end trans or x no trans
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fragments, so this is done once only. So we can say that those alignments presented by the

x end trans or x no trans fragments are merged into one as from now on, their destiny is

the same. For an illustration please refer to Example 14.

Example 14. In this example we explain Observation 20 with the help of Figure 5.3 and 5.4.

Here, in iteration 3, the TSA table[T ][3] contains 〈Xsibling〉 − 〈Y sibling〉 ≡ 〈(0, 0)〉 −
〈(2,−1)〉. Also the TSB table[3] contains 〈Xsibling′〉 − 〈Y sibling〉 ≡ 〈(1,−1)〉 − 〈(2,−1)〉.
We can see, the transposition fragment My[2,−1][3] is aligned with two different transposi-

tion fragments from x, namely, the x no trans fragment M [0, 0][3] and the x end trans

M [1,−1][3]. So for both of these fragments from x, the next calculation step returns

TSA table[][4] as next agreed fragments. Thus for both of the alignments, the next agreed

fragment of Y sibling is paired up with TSA table[][4] once only since from now on, their

destiny is the same.

Observation 21. Merging case 3: Merging alignments in TSB table x[i+1] on iteration

i are ensured by case 3 of Steps 2.2 and 3.2 in the algorithm.

Proof. The scenario explained in previous lemma also happens for the opposite case. That

is, if the same x cont trans from x matches with different y end trans or or y no trans

fragments of y at the same index i, then from i + 1, they (different alignments presented

by those matched y end trans or x no trans fragments) are merged into one record in

TSB table[i+ 1]. Please see the Example 15 for an illustration.

Example 15. In this example we explain Observation 21 with the help of Figure 5.3 and 5.4.

In iteration 5, the Xsibling = (2, 1) is paired up with different transposition fragment from

y, namely, the y end trans = My[1,−1][5] and y no trans = My[0, 0][5]. Since both of the

transposition fragments from y returns the TSA table y[][6] as next agreed fragments, thus

only one row (one alignment) for the next agreed fragment of Xsibling = (2, 1) is inserted

into the TSB table[6]. The inserted row is 〈Xsibling〉 − 〈Y sibling〉 ≡ 〈(2, 1)〉 − 〈(0, 0)〉.
This ensures the merging case 3.

Lemma 19. The algorithm merges overlapping portions of the alignments to avoid re-

dundant operations and unnecessary increment of rows in TCA table, TSA table, and

TSB table.

Proof. This lemma is proven by Observations 19, 20 and 21.
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5.4.1 Running Time Complexity for Fixed Length Transposition

Now we first deduce the time complexity for Fixed Length Transposition where the trans-

position size k is fixed. We will prove shortly that the running time complexity of find-

ing the existence of consensus sequence given two input sequences considering fixed length

transpositions is O(nk2), where n is the length of input sequences and k is the fixed trans-

position size. For an illustration, we will use an example with transposition size k = 3,

x = AGACCCTAG, and y = ACACACTGG. P − graph for x and y are given in Fig-

ure 5.10 and 5.11. One consensus sequence between those is ACCTGACAG.

Figure 5.10: P − graph for sequence x = AGACCCTAG with transposition size k = 3

Figure 5.11: P − graph for sequence y = ACACACTGG with transposition size k = 3

Now, from the figures, we can state following observations and lemmas.

Observation 22. At each index, i.e., each column i, at most two transposition fragments

M [j][i] can give two next agreed fragments at a time (as an indication of ending of a trans-
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position and beginning of new transposition or no transposition), all other gives one unique

next agreed fragment (as an indication of ongoing transposition).

Observation 23. At each index, i.e., each column i, the middle transposition fragment

M[mid][i] can be reached from at most two transposition fragments: M [mid][i− 1] (previous

index was not subject to any transposition) or M [Up][i − 1] (one transposition ended at

previous index).

cont trans i′ is actually a singleton set which reduces to an ending transposition frag-

ment M [j][i] at index i = i′ + 2k and j = up. Then for an ending transposition fragment

there are two available next agreed fragments, either M [−j][i + 1] (starting of new trans-

position) or M [0][i + 1] (no transposition). Note here, M [−r][i + 1] and M [0][i + 1] both

are mapped by TSAtable[][i + 1]. That is, next agreed fragments of ending transposition

fragment maps to the TSA table[][i+ 1].

Observation 24. Size of cont trans i′ at i′ is one. It reaches ending at i′′ = i′ + 2k.

Observation 25. At any i,
∑

α∈{A,T,C,G} |Xsibling| = 2, where Xsibling ∈ ISA table x[α][i].

Here the number of members in set cont trans fragments is 1 and no transposition fragment

is 1.

Observation 26. At index i > i′, maximum size of cont trans i′ is one throughout the

index i, where i′ ≤ i ≤ i′ + 2k. Otherwise the set is empty.

Observation 27. At index i > i′, total number of cont trans i′, considering all 1 ≤ i′ ≤ i

is

=0 for 1 ≤ i′ ≤ i− 2k or for i′ > i

=
∑

i−2k≤i′≤i 1

=2k − 1

Observation 28. at index i Total number of ending transposition fragments is one and

no transposition fragments is one.

Observation 29. A fragment in Mx can have at most 2k−1+2 = 2k+1 matched fragments

from My.

Proof. InM y, the number of cont trans fragments, ending trans fragment, and no transposition

fragment at any iteration is in total (2k − 1) + 2 = 2k + 1, each containing single fragment

since transposition size k is fixed. Similar is true for M x also. So if each of them has match
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with all the fragments in M y, then total number of match is (2k + 1)× (2k + 1) = O(k2).

Lets consider the worst case where all of the matched fragments belong to separate set of

matched fragments, e.g., 〈Xsibling1〉 − 〈Y sibling1〉, 〈Xsibling1〉 − 〈Y sibling2〉, . . . . In such

case each of those will take constant time for finding next agreed fragments and pairing

up the next agreed fragments according to the algorithm. Also no same matched fragment

〈Xsibling1〉 − 〈Y sibling1〉 will occur multiple times in TSA, TSB or TCA, as ensured by

the merging cases. So in each iteration, running time complexity is O(k2). This holds true

for each iteration 1 ≤ i ≤ n. So the next lemma is directly followed by the observation.

Lemma 1. The running time complexity of the algorithm is O(nk2).

5.4.2 Running time Complexity for All Length Transpositions

Observation 30. At each index, i.e., each column i, at most kmax transposition fragments

M [j][i] can give kmax next agreed fragments at a time (as an indication of ending of a

transposition and beginning of new transposition or no transposition), all other gives one

unique next agreed fragment (as an indication of ongoing transposition).

Observation 31. At each index, i.e., each column i, the middle transposition fragment

M[mid][i] can be reached from at most one M [mid][i− 1] (previous index was not subject to

any transposition) or at most kmax transposition fragments M [Up][i− 1] (one transposition

ended at previous index).

Observation 32. Maximum size of cont trans i′ at i′ is kmax. It reaches ending at i′′ = i′+

2k. For example, in figure 5.3, the size of cont trans 1 at index 1 is kmax = 3, since it con-

tains the transposition fragments M [1, 1][1] = T , M [2, 1][1] = T , and M [3, 1][1] = C. The

cont trans 1 gets empty at iteration i′′ = 1+2×6−1 = 6, since the last cont transposition

fragment M [3, 1][5] from cont trans 1 turns into ending transposition fragments at itera-

tion 6.

Observation 33. At any i,
∑

α∈{A,T,C,G} |Xsibling| = kmax+1, where Xsibling ∈ ISA table x[α][i].

Here the number of members in set cont trans fragments is kmax and no transposition frag-

ment is 1.

Now we begin the discussion for deriving the theoretical time complexity of our algorithm.

Theoretical worst case time complexity of the algorithm is O(n4) proven by lemma 28. For

deriving the time complexity of the algorithm, we first show it for the worst case. The worst

case scenario arises as when each pair from M x gets some matched pair from M y thus no

alignment is canceled because of mismatch.
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Observation 34. For any i′ = 1, . . . , n−1, the size of cont trans i′ is kmax at iteration i′ (by

Observation 25) and is reduced by one after each 2 iterations i = i′+1, i′+3, i′+5, . . . , n−1,

leaving no continuing transposition pair (starting at i′) at the index i′ + 2kmax − 1.

Proof. We observe that, at iteration i′, cont trans i′ are kept in the x cont trans sets of

ISA table x[i′] and has size ‖cont trans i′‖ = kmax by Observation 25. Now let us see how

its size is reduced. Let us start with iteration i′. If all of them have matched fragments in

y then at iteration i′, we have to perform the next calculation step for each of these pairs,

and one of them namely the fragment indicating the transposition of size one reaches ending

in the next index i = i′ + 1 at M [1, 1][i], and thus becomes end trans fragment and it is

eliminated from the set cont trans i′ (see the next calculation steps for clarification). So

the size of cont trans i′ is reduced by one at iteration i = i′ + 1. Similarly, in iteration

i = i′ + 3 the fragment M[2,j][i] indicates ending of a transposition of size 2, and gets

removed from cont trans i′. Thus at iteration i = i′ + 3, the size of cont trans i′ is again

reduced by one. Then, in iteration i = i′ + 5 the fragment M[3,j][i] reaches ending and gets

removed from cont trans i′. This continues for each of the next iterations and finally at

iteration i = i′+ 2kmax−1, cont trans i′ becomes empty since M [kmax, j][i] becomes ending

fragment indicating the completion of transposition of size kmax that started at i′. So by

index i′ + 2kmax − 1, all the transpositions started at i′ are completed.

Observation 35. At any iteration i ≥ i′, the size of cont trans i′ can be at most kmax −
d(i − i′)/2e. Hence, the total number of existing continuing transposition pairs (for x or

y) considering all cont inv i′ equals to O(k2max), where i− 2kmax + 2 ≤ i′ ≤ i.

Proof. At index i′, the maximum size of cont trans i′ is kmax. Then after each two next

iteration its size is reduced by one according to Observation 34. Let us consider the iteration

i = 7. At this iteration, the transpositions started at index 3 to 7 exists as cont transposition

fragments. Transpositions started at index 1 and index 2 already complete by index 3.

For example, the cont trans 3 contains the fragment M [3,−3][7]; cont trans 4 contains

fragment M [3, 1][7]; cont trans 5 contains M [2,−1][7] and M [3, 2][7]; cont trans 6 contains

M [2, 2][7] and M [3, 3][7]; finally, cont trans 7 cantains M [1, 1][7], M [2, 2][7], M [3, 3][7]. So

if we observe the patern, we can say that at index i, the number of fragments existing in

cont trans i′ is kmax − d(i− i′)/2e.

Observation 36. Maximum number of end trans fragments at iteration i is kmax.

Lemma 20. At iteration i, Procedure 1 (finding the next agreed pairs) is called once for

each existing continuing transposition fragments, resulting in O(2k2max) calls considering

both x and y.
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Proof. From Observation 35, we can say that, at index i, the oldest existing cont trans

set is cont trans i′ where, i′ = i − 2kmax + 2. So we have to take the sum of existing

cont transposition fragments from index i′ to i. Let us consider kmax = 4 and iteration

i = 8. So i′ = 2. Then we can formulate the result in according to the following table.

This patern is preserved for any value of kmax and iteration i. So we can say, the number

of cont transposition fragments: (1 + 2 + 3 + · · · + kmax − 1) + (1 + 2 + 3 + · · · + kmax −
1) + kmax = O(k2max). This is true for both x and y. So we can say total number of

continuing transposition fragments existing at index i is O(2k2max).

Now, according to the Algorithm, at iteration i, for each distinct cont trans set of M x,

we calculate next agreed pairs only once by calling Procedure 1. This is true even if the

same cont trans exists multiple times in TSA table x[i] or TSB table x[i], since we apply

pointer calculation on cont trans. This is ensured by the Step 2.2.1 and 3.2.1 in algorithm.

This holds true for M y as well. So we call Procedure 1 O(k2max) times for both x and y, and

thus O(2k2max) in total. (However, we call the Four Iteration Loop (Step 2.2.2 and 3.2.2)

each time the set x cont inv is encountered in TSA table x[i] or TSB table x[i].)

Total number of calls to the Four Iteration Loop depends on the size of Y sibling list

for each 〈Xsibling〉 − 〈Y sibling〉 list items in TSA table x[i] and TSB table[i]. In order to

find the total number of calls to Procedure 5: Four Iteration Loop, we first present some

observations and lemmas.

At some index i > i′, all the existing cont trans i′ of x resides in TSB table[i]. Now let

us see how many Y siblings they can have in total at iteration i. For simplicity, let us think of

x cont trans 4 only (i′ = 4). All continuing transposition Pairs in x cont trans 4 repre-

sent the transposition starting from index 4 < i and at index 4, they reside in TSA table x[4].

These can be divided into b = 4 sets each having on average kmax/b fragments, yielding α,

α ∈ {A, T, C,G}. As they proceeds, each set may be divided into several more child sets

based on the yielding base letter of the next agreed fragments by Observation 4, thus in-

crease the number of 〈Xsibling〉 − 〈Y sibling〉 rows in TSB table[i]. At index i, the size of

x cont trans 4 is kmax − d(i − 4)/2e by Observation 35 assuming that 4 ≥ i − 2kmax + 2.

Similar case happens for all those x cont trans i′, where i − 2kmax + 2 ≤ i′ ≤ i. That

is, total number of existing x cont trans i′ set is (2kmax − 1). This is also true for all

such y cont trans i′. First, let us see how many sets of cont transposition fragments:

{Ci′1, Ci′2, . . . , Ci′s} ∈ x cont trans i′ exists at index i. We have the following observation.

Observation 37. At any index i > i′, {Ci′1, Ci′2, . . . , Ci′j′ , . . . , Ci′s} ∈ x cont trans i′ are

disjoint sets.
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Proof. Same continuing transposition pair does not belong to multiple Ci′j′ ’s. This is

so, because each continuing transposition fragment follows a unique path from i′ to i by

definition and each Ci′j′ presents all those transpositions where the last transposition started

from the same index t = i′ producing the same transposed sequence, i.e., same prefix from

index i′ up to index i. Any two Ci′j′ ’s say Ci′1 and Ci′2, if got split by Observation 4

somewhere between i′ to i, then they can not have any common continuing transposition

Pair.

Lemma 21. At any index i > i′ ≥ i− 2kmax + 2, the maximum number (the worst case) of

disjoint x cont trans sets: {Ci′1, Ci′2, . . . , Ci′j′ , . . . , Ci′s} ∈ x cont trans i′ is kmax−d(i−i′)/2e
b

.

Proof. We define the worst case such that, the number of x cont trans sets from x cont trans i′

is maximized and Four Iteration Loop is called for each x cont trans set where pairing up

operation is performed in each iteration of the loop. To make this happen, each of the exist-

ing Ci′j′ must consist of four continuing transposition fragments to produce at least b = 4

next agreed fragments. Using this approach, and by Observations 35 and 37 the lemma is

proved.

So we have {C41, C42, . . . , C4′j, . . . , C4kmax−d(i−4)/2e/b} ∈ x cont trans 4 at iteration i.

Then, we need to know the total size of Y sibling lists considering all the C4′j’s. We have

the following observation, which basically follows readily following the arguments of Obser-

vation 37.

Observation 38. At any index i > i′, {Si′1, Si′2, . . . , Si′s} ∈ y cont trans i′ are disjoint

sets.

Observation 39. The Four Iteration Loop is called each time Ci′j′ encounters y cont trans

in its Y sibling list (Steps 2.2.2, 3.2.2 in the algorithm)

From Observation 39, we can say that, the number of calls to Four Iteration Loop is

maximized when the number of y cont trans sets is maximized. We also want to ensure

that pairing up operation is performed in each iteration of Four Iteration Loop. Thus we

have the following lemma which is similar to Lemma 21.

Lemma 22. At any index i > i′, the maximum number of (worst case) disjoint y cont trans

sets: {Si′1, Si′2, . . . , Si′j′ , . . . , Si′s} ∈ y cont trans i′ is kmax−d(i−i′)/2e
b

.
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So we have {Si′1, Si′2, . . . , Si′kmax−d(i−i′)/2e
b

} ∈ y cont inv i′ for each i−2kmax+2 ≤ i′ ≤ i to

be considered as Y sibling of C4′j’s. To make it more simple, let us first consider only the sets

C4′j’s yielding α = A. Then based on the arguments provided for α = A, we can consider the

scenario for all α ∈ {A, T, C,G}. Now, the number of collection from x cont trans 4 each

yielding A and having k = 4 continuing transposition fragments is kmax−d(i−i′)/2e
b2

(by similar

argument as in Lemma 21). Let us call them C4 Aj′′ where j′′ = 1, 2, . . . , kmax−d(i−i′)/2e
b2

. This

is true for all x cont trans i′. So we have the following two observations.

Observation 40. The number of distinct sets of cont transposition fragments from x cont trans i′

yielding A is kmax−d(i−i′)/2e
b2

at iteration i in the worst case, where i − 2kmax + 2 ≤ i′ ≤ i .

Let us call them Ci′ Aj′′, where j′′ = 1, 2, . . . , kmax−d(i−i′)/2e
b2

.

Observation 41. The number of distinct sets y cont trans from y cont trans i′ yielding A

is kmax−d(i−i′)/2e
b2

at iteration i in the worst case, where i − 2kmax + 2 ≤ i′ ≤ i. Let us call

them Si′ Aj′′, where j′′ = 1, 2, . . . , kmax−d(i−i′)/2e
b2

.

At iteration i, a Ci′ Aj′′ can have matched pairs from any y cont trans m where i −
2kmax + 2 ≤ m ≤ i. But two different cases occur as follows.

Case 1: At iteration i, for each y cont inv m, where i− 2kmax + 2 ≤ m < i′ < i, the total

number of y cont trans in Y sibling considering all Ci′ Aj′′s is kmax−d(i−m)/2e
b2

. So consider-

ing all such y cont trans m, total number of calls to the Four Iteration Loop for this case is∑
m=i−2kmax+2,...,i′

kmax−d(i−m)/2e
b2

≤
∑

m=i−2kmax+2,...,i′
kmax

b2
= (i′−i+2kmax−2+1)(kmax/b

2) =

(i′ + 2kmax)(kmax/b
2).

For simplicity, we first prove the Case 1 for i′ = 4 < i, that is for all C4 Aj′′ ∈ x cont trans 4,

by Lemma 23 and Lemma 24 below. Then based on the arguments provided for i′ = 4, we

can prove the case for all i′ < i.

Lemma 23. For 1 ≤ m < 4, each C4 Aj′′ can have multiple y cont trans sets in its

Y sibling from the same y cont trans m.

Proof. Let us consider the sets {S1 A1, . . . , S1 Aj′′ , . . . , S1 A kmax−d(i−i′)/2e
b2

} = y cont trans 1.

They may be paired with different or the same x end trans pairs at index 4− 1. For each

of those x end trans pairs in x, those matching sets S1 Aj′′ ∈ y cont trans 1 are paired

with TSA table x[A][4] and thus each TSA table x[A][k] can pair with multiple number

of distinct collections from y cont trans 1. See the Example 15 provided for Observa-

tion 21 for an illustration. But remember, same S1 Aj′′ is not paired multiple times with

TSA table x[A][4] ensured by the merging case 2 at TSA table x[A][4].
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Lemma 24. For 1 ≤ m < 4, all sets Sm Aj′′ ∈ y cont trans m that exist in the Y sibling

list of all these C4 Aj′′’s are disjoint.

Proof. The same Sm Aj′′ can not exists in the Y sibling list of two different C4 Aj′′s. We

prove it by contradiction. Suppose, two different C4 A1 and C4 A2 align with the same

S1 A1 at i. Pairing between C4 Aj′′ and S1 Aj′′ indicates an alignment of inversed x

where the last transposition started from 4, with transposed y having the last transposition

continuing from 1. Two C4 A1 and C4 A2 are disjoint by Observation 3. It implies that they

present two transposed sequences that yield different base letters at some index 4 ≤ i′′ ≤ i

and that is why they were split into two by the split case 2 (otherwise they would have

belonged to the same set). If they align with the same S1 A1 at i, we get a contradiction,

because S1 A1 presents all those inversions for which inversed sequences (prefixes) are the

same from index 1 up to i, i.e., prefixes do not differ at any index i′′, where 4 ≤ i′′ ≤ i.

Hence the result follows.

Now from Observations 40, 41, and Lemmas 23, 24, we can say, considering all C4 Aj′′ ,

that the total number of y cont trans sets in Y sibling from y cont trans m is kmax−d(i−m)/2e
b2

for each m, where i − 2kmax + 2 ≤ m < 4. So considering all m, in total we get (4 − i +

2kmax − 2) × kmax−d(i−m)/2e
b2

= (4 + 2kmax)(kmax/b
2) sets in the Y sibling. For each of these

sets the Four Iteration Loop is called. We have shown the Case 1 for i′ = 4 and this is true

for any i′ < i. Thus Case 1 is proved.

Case 2: For each Ci′ Aj′′ , considering all y cont trans m, where i′ ≤ m < i, the to-

tal number of calls to the Four Iteration Loop is (i − i′), and considering all Ci′ Aj′′ ∈
x cont trans i′, it is O((i− i′)kmax

b2
). Again, for the sake of simplicity, we prove it for i′ = 4

by Lemma 25. Later, based on the arguments provided for i′ = 4, we can prove the case for

all i′ < i.

Lemma 25. Each C4 Aj′′ can have only one y cont trans set from each y cont trans m,

for 4 ≤ m < i, resulting a total of i− 4 y cont trans sets.

Proof. We prove this lemma by contradiction. For index m after 4, all of C4 Aj′′s will reside

in TSB table[m]. Let us assume that at iteration i, C4 A1 is paired up with two sets say

S6 A1 and S6 A2 from y cont trans 6, (6 < i). By Observation 4 and Observation 6, all

S6 Aj′′s are disjoint. Two different S6 A1 and S6 A2 means two transposed sequence who

get different at somewhere between index 6 ≤ i′ ≤ i and thus get split by the Observation

4 (split case 2). But at iteration i, all pairs in C4 A1 are presenting the same inversed

sequence from index 4 to i. C4 A1 does not change anywhere up to i, if it were changed
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then it would have been split into two child set say C4 A1′ and C4 A1′′ from that index by

split case 2. So we reach a contradiction. So C4 A1 can pair with only one collection say

S6 A1. So the total number of y cont trans sets for each C4 A′′j is (i− 4). Hence the result

follows.

Therefore, considering all C4 Aj′′s, the total number of y cont trans sets is
∑

i′≤m≥i(kmax−
d(i − m)/2e)/b2 = O((i − i′)kmax/b

2) (using Observation 5). For each of these sets the

Four Iteration Loop is called, and this is true for all i′ < i. So Case 2 is proved.

Lemma 26. Total number of calls to the Procedure 5: Four Iteration Loop for ISB table[i]

at iteration i is O((2k2max(i+ kmax))/b).

Proof. Continuing from the proof of Lemma 25, considering all C4 Aj′′ ’s, the number of

y cont trans sets is (i′+2kmax)(kmax/b
2)(bycase1)+(i− i′)kmax

b2
)(bycase2) =i′ kmax

b2
+2k

2
max

b2
+

ikmax

b2
− i′ kmax

b2
=ikmax

b2
+ 2k

2
max

b2
. Finally, considering all α ∈ {A, T, C,G} the total number of

y cont trans sets in their Y sibling is ikmax

b
+ 2k

2
max

b
.

Presence of y end trans pairs in Y sibling lists of C4j′ cannot dominate the total number

of calls to the Four Iteration Loop, as, for each C4′j, pairing up between its x next atcg[]

and TSA table y[][i+ 1] is done once only, by Observation 21.

Therefore, at iteration i, considering all x cont trans i′ , i − 2kmax + 2 ≤ i′ < i,

the Four Iteration Loop is called (i − i + 2kmax − 2)(ikmax

b
+ 2k

2
max

b
) = 2ik

2
max

b
+ 4k

3
max

b
=

O(k
2
max(i+kmax)

b
) times. So Lemma 26 is proved.

Lemma 27. Total number of calls to the Four Iteration Loop for TSA table[i] at iteration

i is O(k
2
max

b
).

Proof. TSA table x[α][i] gets Y sibling pairs only if in the previous index i − 1, some

x end trans have matched pairs from y. Number of x end transs at index i − 1 is kmax

by Observation 10. In the worst case all of those x end transs have matched pairs in y. Let

us see how many y cont trans sets each TSA table x[α][i] can have in their Y siblings. Let

us calculate for A first. At iteration i, we have y cont trans sets Si′ Aj′′ ∈ y cont trans i′,
where 1 ≤ j′′ ≤ (kmax−d(i−i′)/2e)

b2
(by Observation 6), for all i − 2kmax + 2 ≤ i′ ≤ i. Let

us think all of their parent collection were paired up with the x end trans pairs at index

i − 1. No Si′ Aj′′ will exist multiple times into the Y sibling of TSA table x[A][i] by the

Observation 20. So for A, TSA table x[A][i] has a total of (kmax−d(i−i′)/2e)
b2

y cont trans

sets from each y cont trans i′, where i − 2kmax + 2 ≤ i′ ≤ i. Thus in total, we have∑
i−2kmax+2≤i′≤i(

(kmax−d(i−i′)/2e)
b2

= O(k
2
max

b2
). y cont trans each having size k = 4 and yield-

ing A. Considering all α ∈ {A, T, C,G}, the total number of y cont trans sets from all
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y cont trans i′ is O(k
2
max

b
). So for each of these sets, the Four Iteration Loop can be called.

Again, for each TSA table x[α][i], pair up step between x next atcg[] and TSA table y[α][i]

is executed once only by Observation 21. So the number of y end trans pairs in Y sibling

does not dominate the total number of calls to the Four Iteration Loop. Thus Total number

of calls to the Four Iteration Loop for TSA table[i] at iteration i is O(k
2
max

b
).

Observation 42. Total running time for processing the TCA table[i] at iteration i is O(b).

If TCA table[i] is non empty then the Four Iteration Loop runs performing O(b) assign-

ments. See the step 1 and merging case 1 for clarification.

Lemma 28. Worst case running time of the algorithm is O(n4).

Proof. Using the observations and lemmas provided above it is easy to deduce the worst

case running time for each step of the algorithm, as follows.

Initialization:

It involves filling up the Mx, My, and pairing up the TSA table x[][1] and TSA table y[][1].

So it takes O(nk2max) +O(k) = O(nk2max).

Iteration:

At each iteration i = 1, 2, . . . , n− 1, the algorithm calls Steps 1, 2, and 3.

Step 1: It needs O(k) at each iteration i, by Observation 42.

Step 2: Processing TSA table x[][i] depends on two factors:

1. next calculation step: This is done in Steps 2.1 and 2.2.1. Step 2.1 takes O(kmax) by

Observation 25 and 34. Step 2.2.1. takes O(k2max) by Observation 35 and Lemma 20.

So the total time complexity is O(kmax) +O(k2max) = O(k2max).

2. Four Iteration Loop: This is performed in Step 2.2.2 (always), Step 2.2.3 (condition-

ally) and once only for case 3 (under Step 2.2). Total number of calls by Step 2.2.2 and

2.2.3 is O(k2max/b) By Lemma 27. Again, pairing up operation is performed in each

iteration. So each call to the Four Iteration Loop performs b = 4 pairing up operation.

So the total number of pairing up operation is O(k2max).

Step 2.3 takes O(b) if all TSA table x[α][i] for α = {A, T, C,G} have non empty Y sibling

list. So for Step 2, the total time complexity at iteration i is O(k2max) +O(k
2
max

b
) = O(k2max).

Step 3: Processing TSB table[i] depends on three factors:
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1. next calculation step: This is done in Steps 3.1 and 3.2.1. The pairs in x cont trans i′′

sets (i − 2kmax + 2 ≤ i′′ < i) are responsible for forming the x cont trans sets of

〈Xsibling : [x cont trans, x end trans]〉−〈Y sibling〉 rows of the TSB table[i]. Again

pairs in y cont trans i′ are pointed by the Y sibling list of these rows, where i−2kmax+

2 ≤ i′ ≤ i. So by Lemma 20, the number of total steps here is O(2k2max).

2. Four Iteration Loop: This is performed in Step 3.2.2 (always), Step 3.2.3 (condition-

ally) and once only for case 3. Total number of calls by Step 3.2.2 is O((2k2max(i +

kmax))/b) By Lemma 26. Again, pairing up operation is performed in each iteration. So

total number of pairing up operation is O(2k2max(i+kmax)). For each x end trans, the

loop is called at step 3.2.3. But it is negligible because the total number of x end trans

pairs considering all Xsiblings in TSB table[i] is only kmax by Observation 10.

3. Transferring step: This is done in Step 3.3. If all the x next atcg[α] of the Xsiblings

created in Step 2.1, has non empty Y sibling list for α = {A, T, C,G}, then each of

them are passed to ISB table[i+1]. So it takes O(b×(kmax
kmax−d(i−i′)/2e

b
)) = O(k2max).

Tcsize

So for Step 3, the total time complexity at iteration i is O(2k2max) + O(2k2max(i + kmax)) +

O(k2max) = O(3k2max + 2ik2max + 2k3max) = O(2k2max(i+ kmax)).

So Step 1, Step 2, and Step 3 take O(b) +O(k2max) +O(2k2max(i+ kmax)) = O(2k2max(i+

kmax)) for each iteration i, resulting in O(k2max(n
2 +nkmax)) = O(n4) (if we consider kmax =

n/2) in total. Here we can see that Step 3 is the dominating step.

Termination:

Decision making takes O(1) that just checks the emptiness of the TCA table[n] (n =last

index of the table).

So in total, worst case time complexity of the algorithm is O(n4). Thus Lemma 28 is

proved.

5.5 Space Complexity

The space needed for storing the P − graph of x and y is O(nk2max). For storing the

agreed fragments, TSA table[i] allocates O(k max2) space (by Lemma 27), and TSB table[i]

allocates O((2k2max(i+ kmax))) space (by Lemma 26), for each iteration i = 1, 2, . . . , (n− 1).

While processing the ith column of TSA table or TSB table, values of previous columns are
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not required, thus can be freed. So storing the agreed fragments needs O(n3) space in total.

Thus, the space complexity of the algorithm is O(n3).

5.6 Experimental Results for All Length Transposition

Theoretical worst case time complexity of the algorithm is O(n4) proven in Lemma 28.

However, practical running time of the algorithm in the worst case and average case are

O(n3) and O(n2) respectively. This is apparent from the experimental results reported in

Table 5.1.

Table 5.1: Total number of steps taken by the algorithm for n =
10, 20, 30, 40, 50, 60, 70, 90, 120

n2 n3 Length, n
Running Time

Result: YES Result: NO
Worst Average

100 1000 10 501.4 212.6 87.25
400 8000 20 3483.4 1034.6 201.75
900 27000 30 11623.2 2047.6 486.5
1600 64000 40 26745.4 3722.2 1000.5
2500 125000 50 48951.6 4629 1382.75
4900 343000 70 133693.8 12616.2 2046.25
8100 729000 90 290609.4 27454.4 3001
14400 1728000 120 687939.4 84960.8 5052.5

Comments O(n3) O(n2) O(n2)

In our experiments, x and y are selected such that y is a permutation of x (otherwise

there can never be any Concensus String among them since in transposition only the blocks

in a string are transposed or swapped but no new base is generated, thus our algorithm

returns NO as well). We define the term performance factor (equivalent to the running

time), as a counter that keeps track of the total number of statements executed for finding

the next agreed fragments M [j, k][i] and pairing the matched agreed fragments. So running

time of a test case is calculated by adding the performance factor of the dominating steps,

i.e., Step 2 and Step 3 in the algorithm. For each length n (ranging from 10 to 120), we run

the experiment under three categories (columns 4 to 6 of Table 5.1). Under each category,

we generate ten sets of test cases by randomly choosing x. Then we calculate the average

running time of the test cases. The column 4 shows the worst case running time (when the

y is equal to x). Then the column 5, presents the running time in average case. The average
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Figure 5.12: Time Complexity of our proposed algorithm

case is generated by selecting y as an arbitrary permutation of x. Finally column 5, (where

the y is selected as an arbitrary permutation of x) shows the running time of the algorithm

for returning NO when there exist no Concensus String between x and y.

Worst case running time is O(n3) as apparent from the experiments. We can see from

the Table 5.1, the average case and false case running time are O(n2). This is also apparent

from the graph in Figure 5.12. With the decrease in the similarity between x and y, the

running time drops to O(n2) = Cn2 ≈ 5n2.

Here, no comparison with previous works is provided since there exists no other works

on our problem.
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5.7 Conclusion

In this chapter we have mapped the Concensus String problem under the transposition met-

ric to the biomedical problem of detecting the allelic heterogeneity. Our proposed algorithm

finds the common ancestor sequence given two mutated sequences where mutation involves

only non overlapping transposition. Future research endeavor could be directed towards

other mutation operations as distance metric and simultaneous application of inversion and

transposition mutations.
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Chapter 6

Diagnosis of Allelic Heterogeneity

In this chapter, we first discuss the traditional clinical approaches for diagnosing allelic

heterogeneity in Section 6.1. Then we see how our algorithms can help in detecting alel-

lic heterogeneity in Section 6.2. We also present some other utilities of our algorithm in

Section 6.3.

6.1 Clinical Approach for Diagnosing Allelic Hetero-

geneity

Clinically several approaches are available for the detection of allelic heterogeneity. The

allele-specific oligonucleotide probe is used in some cases for detection of allelic heterogene-

ity1. But the same approach is not applicable for all types of allelic heterogeneity. In the

X-linked clotting disorder hemophilia B, for example, more than 2000 different mutations

in the gene for clotting factor IX have been observed in different patients. This degree of

allelic heterogeneity makes the use of allele-specific oligonucleotide probes impractical. In

such cases, following clinical techniques are followed to obviate this problem:

1. Mismatch Scanning: This is done by amplifying the exons of the gene and hybridizing

the PCR products from the patient with the corresponding products from the normal

gene. The mismatch can be detected either by chemical reagents that cleave selectively

at the site of the mismatch or by electrophoresis under partially denaturing conditions.

1https://www.inkling.com/read/principles-of-medical-biochemistry-meisenberg-simmons-3rd/chapter-
11/allelic-heterogeneity-is-the
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2. Gene Sequencing: Sequencing all exons of the gene is used in genetic disorder according

to the report of National Center for Biotechnology Information2 and [40].

3. Linkage Analysis: In this case, no attempt is made to identify the mutation. Instead,

a known genetic marker that is located next to the mutated gene is analyzed. The

mutation is inherited along with the marker simply because they are close together on

the same DNA molecule, and meiotic recombination between the gene and the marker

is very rare.

However, all of these are expensive and time consuming operations. Our algorithms are

never the alternative of all these medical diagnostic approaches. Because, even if our algo-

rithm returns YES, still medical diagnostic techniques may find those diseases as not allelic

heterogeneous. But if our algorithm returns NO, then those diseases can never be allelic

heterogeneous, and further medical diagnostic approach is unnecessary. So before going

through such costly techniques, it is better to test first if there is even any possibility of

allelic heterogeneity between two diseases, using our proposed algorithms.

Detection of an unknown disease as allelic heterogeneous with a known genetic disease

helps in medication and treatment. For this purpose whole genome sequencing is required

which takes around 12 to 13 weeks (data collected from https://www.genetests.org).

Besides, diagnosis of such disease needs approaches like mismatch scanning, gene sequencing,

linkage analysis etc., all of which are highly expensive solutions as apparent from the cost

estimates provided in Table 6.1. For example, diagnosis of Hurler syndrome or Scheie

syndrome I takes three to four weeks with gene sequencing approach and costs around

$2,050.

Table 6.1: Gene name with corresponding allelic heterogeneous diseases and diagnosis details
(data is collected from: https://www.genetests.org/tests; http://www.ggc.org/)

Gene
Allelic Heterogeneous Disease Diagnosis Details

Disease 1 Disease 2 Diagnostic Method Cost Time
IDUA Hurler syndrome Scheie syndrome I Sequencing $2,050 3 weeks
CFTR Cystic Fibrosis Congenital Absence of the Vas Deferens Sequencing $1,310.00 3 - 4 weeks
DMD Duchenne Muscular Dystrophy Becker Muscular Dystrophy MLPA $500 2 weeks
RET Hirschsprung Disease Multiple endocrine neoplasia Type 2 Sequencing $1,160.00 3 - 4 weeks

2http://www.ncbi.nlm.nih.gov/pubmed/24066368
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6.2 Steps for Detecting Allelic Heterogeneity Using

Our Algorithms

In this section we explain the process for both the inversion and transposition operations.

For detecting allelic heterogeneity, generating all the consensus sequences is not mandatory.

We just need to check if some specific ancestor gene sequence p exists as a consensus sequence

of input sequences x and y. For instance, suppose we have an unknown disease χ and we

want to see if it is allelic heterogeneous with the disease Cystic Fibrosis, i.e., if both of these

are mutated from the same gene CFTR according to the Table 2.1 in Section 2.5.3. For this

purpose we input gene sequence of χ and Cystic Fibrosis as x and y respectively. We denote

the ancestor CFTR gene sequence as p. Let the length of the sequences be n. After Tx (or

Mx) and Ty (or My) are initialized, we do a small trick for detecting allelic heterogeneity.

For each index i, we keep Tx[j][i] = 〈(p, q), α〉 if the base α matches with the base at p[i],

where 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1. Otherwise we set null to Tx[j][i] (similar is done

on Mx in case of transposition). Similar approach is followed for Ty[j][i] (or My) as well.

Reinitializing Tx and Ty in this approach needsO(n2) time (in case of all length transposition,

reinitializing Mx and My needs O(n3) time). Then we run our main algorithm and ignore

the nullified cells in Tx and Ty (or Mx and My). If the algorithm terminates returning Y ES,

it indicates existence of the ancestor gene p as a consensus sequence. That means there is

a possibility of allelic heterogeneity among the two diseases. So we can perform additional

clinical diagnostic approaches to validate the output. On the other hand, if the algorithm

returns NO, it indicates nonexistence of the common gene sequence p from which both χ and

Cystic Fibrosis could be derived. So they are definitely not allelic heterogeneous. Therefore

there is no need of performing expensive clinical diagnostic tests, which saves huge energy

and costs. For an illustration please refer to the flowchart shown in Figure 6.1

6.3 Other Applications

Though detecting allelic heterogeneity does not demand generating all the common ancestor

sequences, but if we maintain predecessor links among the agreed pairs (in case of inversion)

or agreed fragments (in case of transposition) for either x (links in Tx for inversion and links

in Mx for transposition) or y (links in Ty for inversion and links in My for transposition),

then it keeps track of all those agreed sequences starting at index 1 and ending at index n.

After the algorithm terminates, these connections resemblance a tree type structure (from

right to left). So applying DFS on this structure gives us all possible common ancestor
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Figure 6.1: Steps for diagnosing allelic heterogeneity that involves only inversion mutation.
For the case of transposition, similar steps are followed (just use Mx and My instead of Tx
and Ty).

sequences. For example, applying this approach for the transposition mutation on the

sequences x = ATTCGGTCC and y = TCATTCGGC gives following common ancestor

gene sequences:

1. ATTCGGTCC

2. TACTGGTCC

3. TCATGGTCC

4. ATTCTCGGC

5. TACTTCGGC

6. TCATTCGGC

This actually extends the utility of our algorithm since it can meet other scenarios in compu-

tational biology where retrieving all possible common ancestor gene sequences is necessary.

For example, when studying breed-related hereditary conditions, a common practice for

breeders and medical experts alike is to compare pedigrees of affected or carrier dogs. In

doing so, there is a tendency to trace back to common ancestors and blame these individuals
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as carriers or progenitors of a defective gene. For this purpose the closest common ancestor

analysis is performed to determine the minimum age of a defective gene in the population -

and therefore its possible genetic spread3,4. This allows breeders to determine the minimum

breadth of the gene pool that is liable for carrying the defective gene, and that requires ge-

netic counseling. This is usually done by analyzing the family tree which is time consuming

and expensive in term of genetic tests. However, it is possible that no common ancestor

is found after traversal in the family tree. So before doing this complex task of identifying

the common ancestor career gene, its helpful if we can run a simple algorithm that returns

existence of common ancestors. If it returns true/yes, only then biologists can attempt for

analyzing the family tree. This is what our algorithms does in O(n3) running time (practical

running time).

3http://pawpeds.com/pawacademy/genetics/commonancestor/
4http://www.pcagenetics.com/ARTICLES/095-Epidemiological-Studies.html
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Chapter 7

Conclusion

Algorithms for sequence analysis are of central importance in computational molecular biol-

ogy and coding theory. One of the widely known problem in this field is the Closest String

Problem (CSP), or Consensus String Problem. In this thesis we add a new problem to

the NP-hard family: Consensus String problem with transposition metric. Then we pro-

vide algorithm for a relaxed version of the Consensus String problem under inversion and

transposition metric. The algorithm can be applied in several biological problems, including

diagnosis of allelic heterogeneity, a challenging problem in molecular genetic diagnosis.

In this chapter, we draw conclusion by highlighting the major contributions made in this

thesis. We have also provided some directions for future research.

7.1 Major Contribution

The contributions that have been made in this thesis are enumerated as follows.

• We have investigated the complexity class of the Consensus String problem under

the inversion and transposition metrics. The Consensus String problem under the

transposition metric has been proven to be NP-hard by reduction from the already

proven NP-hard problem: Consensus String problem under the Swap Metric.

• We have develop polynomial time algorithms for a relaxed version of the Consensus

String problem under the inversion and transposition metric. In this relaxed version

we have to output the existence of Closest String between two input strings.

1. For the non overlapping inversion metric, theoretical run time of our algorithm is

O(n4), whereas it is O(n3) practically, for the worst case scenario. Moreover, for
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the average case, our algorithm runs in O(n2). Space complexity of the algorithm

is O(n3).

Cho et al. [21] have provided an O(n3) algorithm using O(n2) space (n is the

size of the two input strings) for this same problem we have worked on (non

overlapping inversion metric). But we have found through experimentation that

their algorithm fails in returning the correct answers in some cases because of

not tracking the prefixes of the common ancestors. In this thesis, our presented

algorithm correctly solves this problem with the same time and space complexity.

2. For non overlapping transposition metric, we have analyzed the running time

for fixed length transpositions and all length transpositions. For fixed length

transpositions, the running time and space complexity are O(n3) and O(n2). On

the other hand, for all length transpositions, theoretical running time is O(n4)

and space complexity is O(n3). However, practical running time in worst case

and average case are found to be O(n3) and O(n2) respectively for the all length

transpositions.

• We have presented a roadmap for a non-clinical efficient scheme to aid in the diagnosis

of allelic heterogeneity. In particular, here we use the term common ancestor to

indicate the same gene sequence from which different mutation order gives different

gene sequence x and y. Our aim is to find the common ancestors given x and y as input,

where x is the gene sequence of a known disease caused by mutation of some ancestor

gene p, and y is the gene sequence of an unknown disease. If there exist common

ancestors between x and y, and we find a match with p, then we diagnose that unknown

disease y to be allelic heterogeneous to x. Currently available medical diagnostic

techniques, such as, mismatch scanning, linkage analysis, gene sequencing, etc. all are

expensive and time consuming operations. Our algorithm is not an alternative option

for diagnosis of the allelic heterogeneity. Because, even if our algorithm returns YES,

still medical diagnostic techniques may find those diseases as not allelic heterogeneous.

But if our algorithm returns NO, then those diseases can never be allelic heterogeneous,

and further medical diagnostic approach is unnecessary. So before going through

such costly medical diagnostic techniques, it is better to test first if there is even any

possibility of allelic heterogeneity between two diseases, using our proposed algorithms.
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7.2 Future Plan

A number of future research directions arise out of our work as discussed below.

1. The issue of the parameterized complexity of Consensus String has been raised several

times in the literature [13, 33, 34, 48]. The approximation and fixed parameter com-

plexity for the Consensus String problem under transposition and inversion metrics

are still unknown and a good topic to work on in future.

2. Our algorithm mainly detects the existence of Closest Strings, and keep track of all

possible common ancestor strings given two input strings x and y. Finding the Closest

String or the Consensus String under the transposition metrics is NP-hard, already

proven in Chapter 3. However, there is good number of recent works where several

genetic algorithms [49], such as, parallel simulated annealing [45], parallel multi start

algorithm [31], ant colony optimization algorithm [28], memetic algorithm [8] etc. are

applied for finding the Closest String. An interesting future work would be the analysis

of such genetic algorithms for the inversion metric and transposition metric.

3. Future research endeavor could be directed towards developing algorithms considering

other mutation operations such as insertion, deletion, etc [44] (levenshtein distance)

since in many allelic heterogeneity such mutations occur frequently.

4. Developing algorithm for finding minimum Consensus String distance for two in-

put sequences (fixed parameter version considering only two input strings) under the

transposition and inversion metrics remains as future work as well.

5. Another research direction could be to improve the time complexity of the current

algorithms.

6. Another interesting direction could be to devise algorithms that can handle simulta-

neous application of inversion and transposition. It will increase the utility of our

algorithm since in many practical cases these two mutations happen side by side.

7. Finally, testing with real dataset to prove the validity of our pathway of detecting

allelic heterogeneity. For this purpose we need gene sequence of some genetic diseases

involving allelic heterogeneity, where only inversions or only transpositions cause the

disorder.
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[26] Joaquin Dopazo, A Rodŕıguez, JC Sáiz, and F Sobrino. Design of primers for pcr

ampiification of highly variable genomes. Computer applications in the biosciences:

CABIOS, 9(2):123–125, 1993.

[27] Isaac Elias and Tzvika Hartman. A 1.375-approximation algorithm for sorting by trans-

positions. Computational Biology and Bioinformatics, IEEE/ACM Transactions on,

3(4):369–379, 2006.

[28] Simone Faro and Elisa Pappalardo. Ant-csp: An ant colony optimization algorithm

for the closest string problem. In SOFSEM 2010: Theory and Practice of Computer

Science, pages 370–381. Springer, 2010.

[29] Guillaume Fertin. Combinatorics of genome rearrangements. MIT press, 2009.

[30] Moti Frances and Ami Litman. On covering problems of codes. Theory Comput. Syst.,

30(2):113–119, 1997.
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