
i 
 

EFFECT OF MASS ECCENTRICITY ON VIBRATION 

OF A STOCKBRIDGE DAMPER 

 
By 

Md. Sharful Insan 

1018102086 
Submitted in partial fulfillment of the requirement for the degree of  

Master of Science in Mechanical Engineering 

 

 
 

 

Under the Supervision of 

Dr. Muhammad Ashiqur Rahman 
Professor 

Department of Mechanical Engineering 

Bangladesh University of Engineering & Technology 

 

 

 
Department of Mechanical Engineering 

Bangladesh University of Engineering and Technology 

Dhaka-1000, Bangladesh 

 

July 2022 







iv 
 

LIST OF CONTENTS 

 

  Chapter  Title  

Title page  

Board of Examiners 

Candidate’s Declaration  

List of Contents 

List of Symbols & Abbreviations 

List of Figures  

List of Tables 

Acknowledgement  

Abstract 

 

 

Page No. 

i 

ii 

iii 

iv 

vi 

vii 

xiv 

iv 

ivi 

           1 INTRODUCTION 1 

 1.1 The influence of the stockbridge damper on aeolian vibration of 

conductors 

1.2 Motivation for this study 

1.3 (a) Objectives with specific aims 

(b) Possible outcome 

1.4  Outline of methodology 

1.5 Thesis overview 

 

1 

 

2 

2 

3 

3 

4 

          

            2 

 

 

 

 

 

 

             

 

 

LITERATURE REVIEW 

2.1 Study of previous works 

2.2 Brief description of vibration damping devices 

      2.2.1 Stockbridge damper 

      2.2.2 Working Principle of stockbridge damper 

      2.2.3 Bending parameters in stockbridge damper 

      2.2.4 Specification and material properties of stockbridge damper 

 

 

 

5 

5 

8 

9 

10 

12 

13 

 

 



v 
 

            3 GOVERNING EQUATIONS 15 

             3.1 General 

3.2 Myklestad’s method for vibration in bending mode 

3.3 Coupled flexure-torsion vibration method 

 

15 

15 

18 

              

           4       

 

 

 

 

 

 

 

 

 

 

            5 

 

RESULTS AND DISCUSSION 

4.1 Validation of the computational procedure of uncoupled bending 

vibration analysis for 3 DOFS 

4.2 Stockbridge damper natural frequency analysis due to mass 

eccentricity 

Case 1: Stockbridge damper acting as a 2 DOFS (Long side)  

Case 2 : Stockbridge damper acting as a 2 DOFS (Short side) 

Case 3: Stockbridge damper acting as a 3 DOFS (Long side)  

Case 4: Stockbridge damper acting as a 4 DOFS (Long Side) 

 

 

CONCLUSIONS AND RECOMMENDATIONS    

5.1 Conclusions 

5.2 Recommendations for future work 

REFERENCES 

APPENDIX-A Stockbridge damper acting as a 2 DOFS  

APPENDIX-B Stockbridge damper acting as a 3 DOFS (Short side)  

APPENDIX-C Stockbridge damper acting as a 4 DOFS (Short side) 

APPENDIX-D Programming code 

APPENDIX-E Alternative method for finding natural frequency 

                                     

 

21 

21 

 

23 

 

23 

32 

40 

49 

 

 

57 

57 

58 

59 

62 

72 

88 

103 

106 

 

 

 

 

 

 

 

 



vi 
 

LIST OF SYMBOLS & ABBREVIATIONS 

 

h   Torsional influence coefficient (  

  
) 

      Mass moment of inertia about elastic axis (kgm2) 

      Mass moment of inertia about center of gravity (kgm2) 

    Diameter of the messenger cable (m) 

    Modulus of elasticity (GPa) 

    Shear force (N) 

    Eccentricity of the damper (mm) 

    Center of gravity 

     Torque (Nm) 

    Moment of inertia (m4) 

    Radial direction 

    Tangential direction 

      Flexural rigidity of elastic axis (Nm2) 

M   Bending moment (Nm) 

    Damper mass (kg) 

    Linear displacement (m) 

                    Torsional rotation of elastic axis  

ω      = Natural frequency (rad/s) 

                       Angular displacement (rad) 

    Shear modulus (GPa) 

    Time (s) 

  

    

  

  

Distance of center of gravity from the elastic axis (m) 

Length of the stock bridge damper (m) 

      Degree of freedom  

        Two degrees of freedom system  

        Three degrees of freedom system  

        Four degrees of freedom system  

   

 

 



vii 
 

LIST OF FIGURES 

Figure    Page 

Figure 2.1 Tuned dampers a) spring-piston damper b) pneumatic damper 

and stockbridge damper. 

       8 

 53 

Figure 2.2 

Figure 2.3 

Figure 2.4 

Figure 2.5 

 

Figure 2.6 

Figure 2.7 

Figure 3.1 

Figure 3.3.1 

Figure 3.3.2 

Figure 4.1.1 

Figure 4.1.2 

 

Figure 4.3 

 

Figure 4.3.1 

 

Figure 4.3.2 

 

Figure 4.3.3 

 

Figure 4.3.4 

 

Figure 4.3.5 

 

Figure 4.3.6 

 

Figure 4.4 

Parts of a stockbridge damper. 

Original concrete block design of stockbridge damper. 

The messenger (left) and the individual wire strands. 

Representations for a) the first mode, b) the second mode of a 

symmetrical stockbridge damper. 

Moment and force acting on the damper’s messenger cable. 

Asymmetric stockbridge damper. 

Typical section of an idealized beam [9]. 

Lumped mass system (Isometric view). 

  th section of couple flexure-torsion vibration [9]. 

Lumped parameter system [9]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration [Example problem in [9]. 

Lumped parameter system in stockbridge damper [Long side & 

lumped masses are at equal distance for 2DOFS]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration for 2 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS. 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 2 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS. 

Lumped parameter system in stockbridge damper [Long side & 

9 

10 

10 

11 

 

12 

13 

16 

19 

20 

21 

22 

 

23 

 

24 

 

25 

 

26 

 

27 

 

28 

 

29 

 

30 



viii 
 

 

Figure 4.5 

 

Figure 4.5.1 

 

Figure 4.5.2 

 

Figure 4.5.3 

 

Figure 4.5.4 

 

Figure 4.6 

 

Figure 4.7 

 

Figure 4.7.1 

 

Figure 4.7.2 

 

Figure 4.7.3 

 

Figure 4.7.4 

 

Figure 4.7.5 

 

Figure 4.7.6 

 

Figure 4.8 

 

Figure 4.8.1 

 

Figure 4.8.2 

 

lumped masses are at unequal distance for 2DOFS]. 

Lumped parameter system in stockbridge damper [Short side & 

lumped masses are at equal distance for 2DOFS]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration for 2 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS. 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 2 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS. 

Lumped parameter system in stockbridge damper [Short side & 

lumped masses are at unequal distance for 2DOFS]. 

Lumped parameter system in stockbridge damper [Long side & 

lumped masses are at equal distance for 3DOFS]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration for 3 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 3 DOFS. 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 3 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 3 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 3 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 3 DOFS. 

Lumped parameter system in stockbridge damper [Long side & 

lumped masses are at unequal distance for 3DOFS]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration for 3 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 3 DOFS. 

 

32 

 

33 

 

34 

 

35 

 

36 

 

37 

 

40 

 

41 

 

42 

 

43 

 

44 

 

45 

 

46 

 

49 

 

50 

 

51 

 



ix 
 

Figure 4.8.3 

 

Figure 4.8.4 

 

Figure A.1 

 

Figure A.1.1 

 

Figure A.1.2 

 

Figure A.1.3 

 

Figure A.1.4 

 

Figure A.1.5 

 

Figure A.1.6 

 

Figure A.2 

 

Figure A.2.1 

 

Figure A.2.2 

 

Figure A.2.3 

 

Figure A.2.4 

 

Figure A.2.5 

 

Figure A.2.6 

 

Figure B.1 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 3 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 3 DOFS. 

Lumped parameter system in stockbridge damper [Long side & 

lumped masses are at unequal distance for 2DOFS]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration for 2 DOFS [  =0 mm,   =0 mm]. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS [  =0.1 mm,   =0.05 mm]. 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 2 DOFS. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS [  =0.2 mm and   =0.1 mm]. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS [  =0.4 mm and   =0.08 mm]. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS [  =0.05 mm and   =0.025 mm]. 

Lumped parameter system in Stockbridge damper [Short side & 

lumped masses are at unequal distance for 2DOFS]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration for 2 DOFS [  =0 mm,   =0 mm]. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS [  =0.1 mm,   =0.05 mm]. 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 2 DOFS  

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS [  =0.2 mm,   =0.1 mm]. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS [  =0.4 mm,   =0.08 mm]. 

Displacement vs. Natural frequency in coupled bending-twisting 

vibration for 2 DOFS [  =0.05 mm,   =0.025 mm]. 

Lumped parameter system in stockbridge damper [Long side & 

52 

 

53 

 

62 

 

62 

 

63 

 

64 

 

64 

 

65 

 

66 

 

66 

 

67 

 

68 

 

69 

 

69 

 

70 

 

71 

 

72 



x 
 

 

Figure B.1.1 

 

Figure B.1.2 

 

 

Figure B.1.3 

 

Figure B.1.4 

 

Figure B.1.5 

 

 

Figure B.1.6 

 

 

Figure B.2 

 

Figure B.2.1 

 

Figure B.2.2 

 

 

Figure B.2.3 

 

Figure B.2.4 

 

Figure B.2.5 

 

 

Figure B.2.6 

 

 

lumped masses are at unequal distance for 3DOFS]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration for 3 DOFS [  =0 mm,   =0 mm and   =0 mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.1 mm,   =0.05 mm and   =0.01 

mm]. 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 3 DOFS. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.2 mm,   =0.1 mm,   =0.02 mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.4 mm;   =0.08 mm and   =0.016 

mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.05 mm;   =0.025 mm and   =0.005 

mm]. 

Lumped parameter system in stockbridge damper [short side 

equal distance for 3DOFS]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration for 3 DOFS [  =0 mm,   =0 mm and   =0 mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.1 mm,   =0.05 mm and   =0.01 

mm]. 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 3 DOFS. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.2 mm,   =0.1 mm,   =0.02 mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.4 mm;   =0.08 mm and   =0.016 

mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.05 mm;   =0.025 mm and   =0.005 

mm]. 

 

72 

 

73 

 

 

74 

 

75 

 

76 

 

 

77 

 

 

77 

 

78 

 

79 

 

 

80 

 

80 

 

81 

 

 

82 

 

 



xi 
 

Figure B.3 

 

Figure B.3.1 

 

Figure B.3.2 

 

 

Figure B.3.3 

 

Figure B.3.4 

 

Figure B.3.5 

 

 

Figure B.3.6 

 

 

Figure C.1 

 

Figure C.1.1 

 

 

Figure C.1.2 

 

 

Figure C.1.3 

 

Figure C.1.4 

 

 

Figure C.1.5 

 

 

Lumped parameter system in stockbridge damper [Short side 

unequal distance for 3DOFS]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration for 3 DOFS [  =0 mm,   =0 mm and   =0 mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.1 mm,   =0.05 mm and   =0.01 

mm]. 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 3 DOFS. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.2 mm,   =0.1 mm,   =0.02 mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.4 mm;   =0.08 mm and   =0.016 

mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 3 DOFS [  =0.05 mm;   =0.025 mm and   =0.005 

mm]. 

Lumped parameter system in stockbridge damper [Long side 

unequal distance for 4DOFS]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration for 4 DOFS [  =0 mm,   =0 mm,   =0 mm and   =0 

mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 4 DOFS [  =0.1 mm,   =0.05 mm,   =0.01 mm 

and   =0.001 mm]. 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 4 DOFS. 

Displacement vs. Natural frequency in coupled bending 

vibration for 4 DOFS [  =0.2 mm;   =0.1 mm;   =0.02 mm and 

  =0.002 mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 4 DOFS [  =0.3 mm;   =0.08 mm;   =0.016 mm 

and   =0.002 mm]. 

82 

 

83 

 

84 

 

 

85 

 

85 

 

86 

 

 

87 

 

 

88 

 

88 

 

 

89 

 

 

90 

 

90 

 

 

91 

 

 



xii 
 

Figure C.1.6 

 

 

Figure C.2 

 

Figure C.2.1 

 

 

Figure C.2.2 

 

 

Figure C.2.3 

 

Figure C.2.4 

 

 

Figure C.2.5 

 

 

Figure C.2.6 

 

 

Figure C.3 

 

Figure C.3.1 

 

 

Figure C.3.2 

 

 

Figure C.3.3 

 

Figure C.3.4 

Displacement vs. Natural frequency in coupled bending 

vibration for 4 DOFS [  =0.05 mm,   =0.025 mm,   =0.005 

mm and   =0.0025 mm]. 
Lumped parameter system in stockbridge damper [Short side 

equal distance for 4DOFS]. 

Displacement vs. Natural frequency in uncoupled bending 

vibration for 4 DOFS [  =0 mm,   =0 mm,   =0 mm and   =0 

mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 4 DOFS [  =0.1 mm,   =0.05 mm,   =0.01 mm 

and   =0.001 mm]. 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 4 DOFS. 

Displacement vs. Natural frequency in coupled bending 

vibration for 4 DOFS [  =0.2 mm;   =0.1 mm;   =0.02 mm and 

  =0.002 mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 4 DOFS [  =0.3 mm;   =0.08 mm;   =0.016 mm 

and   =0.002 mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 4 DOFS [  =0.05 mm,   =0.025 mm,   =0.005 

mm and   =0.0025 mm]. 

Lumped parameter system in stockbridge damper [Short side 

unequal distance for 4DOFS]. 
Displacement vs. Natural frequency in uncoupled bending 

vibration for 4 DOFS [  =0 mm,   =0 mm,   =0 mm and   =0 

mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 4 DOFS [  =0.1 mm,   =0.05 mm,   =0.01 mm 

and   =0.001 mm]. 

Displacement vs. Natural frequency in uncoupled bending and 

coupled bending-twisting vibration for 4 DOFS. 

Displacement vs. Natural frequency in coupled bending 

92 

 

 

92 

 

93 

 

 

94 

 

 

95 

 

95 

 

 

96 

 

 

97 

 

 

97 

 

98 

 

 

99 

 

 

100 

 

100 



xiii 
 

 

 

 

 

Figure C.3.5 

 

 

Figure C.3.6 

 

 

Figure E.1 

Figure E.2 

 

vibration for 4 DOFS [  =0.2 mm;   =0.1 mm;   =0.02 mm and 

  =0.002 mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 4 DOFS [  =0.3 mm;   =0.08 mm;   =0.016 mm 

and   =0.002 mm]. 

Displacement vs. Natural frequency in coupled bending 

vibration for 4 DOFS [  =0.05 mm,   =0.025 mm,   =0.005 

mm and   =0.0025 mm]. 

Deflection of a cantilever beam. 

Cross-sectional view of stockbridge damper mass. 

 

 

101 

 

 

102 

 

 

106 

106 

 

 

 



xiv 
 

LIST OF TABLES 

Table   Page 

Table 1 

 

 

Table 2 

 

 

 

Table 3 

 

 

Table 4 

 

 

 

Table 5 

 

 

 

Table 6 

 

 

Table 7 

 

 

 

Table 8 
 
 
Table 9 
 

 

Comparison of uncoupled bending & coupled bending-twisting 

natural frequency for 2 DOFS (Long side and lumped masses are at 

equal distance) 

Summary of the natural frequency of uncoupled bending and coupled 

bending-twisting vibration for 2 DOFS for different values of mass 

eccentricity (Long side and lumped masses are at equal and unequal 

distances) 

Uncoupled bending & Coupled bending-twisting Natural Frequency 

Comparison for 2 DOFS (Short side and lumped masses are at equal 

distance) 

Summary of natural frequency of uncoupled bending and coupled 

bending-twisting vibration for 2DOFS for different values of mass 

eccentricity (Short side and lumped masses are at equal and unequal 

distances) 

Summary of natural frequency of uncoupled bending and coupled 

bending-twisting vibration for 2 DOFS for different values of mass 

eccentricity (Long side and short side where lumped masses are at 

equal and unequal distance) 

Uncoupled bending & coupled bending-twisting natural frequency 

comparison for 3 DOFS (Long side and lumped masses are at equal 

distance) 

Summary of natural frequency of uncoupled bending and coupled 

bending-twisting vibration for 3 DOFS for different values of mass 

eccentricity (Long side and Short side where lumped masses are at 

equal and unequal distances) 

Uncoupled bending & coupled bending-twisting natural frequency 
comparison for 4 DOFS ((Long side and lumped masses are at equal 
distance) 
Summary of natural frequency of uncoupled bending and coupled 
bending-twisting vibration for 4 DOFS for different values of mass 
eccentricity (Long side and Short side where lumped masses are at 
equal and unequal distances). 

26 

 

 

31 

 

 

 

33 

 

 

38 

 

 

 

39 

 

 

 

43 

 

 

47 

 

 

 

50 

 

54 

 



xv 
 

ACKNOWLEDGEMENT 

 

 

It is a great pleasure and privilege for me to present this thesis on “EFFECT OF MASS 

ECCENTRICITY ON VIBRATION OF A STOCK BRIDGE DAMPER”. The author 

would like to express his deep gratitude and indebtedness to his supervisor Dr. 

Muhammad Ashiqur Rahman, Professor, Department of Mechanical Engineering, 

Bangladesh University of Engineering and Technology (BUET), for his continuous 

inspirations, great interest, constructive criticism, super guidance, remarkable advice and 

invaluable supports during this research. The author would also like to thank him for his 

careful reading and correction of this thesis.  

Very special thanks are due for all the teachers of the Department of Mechanical 

Engineering, BUET for their help to the author during the whole period of his M.Sc. 

Engineering course. 

The author is also indebted to all staff of the solid mechanics lab of Department of 

Mechanical Engineering, BUET, for their cordial help and assistance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 
 

ABSTRACT 

Natural frequency is a system’s most important dynamic attribute. Resonance 

occurs when a time-varying force is applied to a system with a frequency that is equal to 

the system's natural frequency. This will result in the system's maximum amplitude, 

which could lead to system failure. A stockbridge damper is typically used worldwide as 

well as Bangladesh for damping vibration of overhead transmission lines. This work aims 

to investigate the change in vibration characteristics when the mass eccentricity of a 

stockbridge damper triggers a torsional mode of vibration in addition to the existing 

bending mode. We considered typical data of a stockbridge damper used in Bangladesh 

and modeled this stockbridge damper as a double cantilever beam having long and short 

sides. Each side was divided into two DOFS, three DOFS, and four DOFS. The natural 

frequencies are calculated on both sides by keeping the lumped masses at equal and 

unequal distances. 

 

This study is based on two methods– The Myklestad’s method used for uncoupled 

bending analysis and coupled flexure-torsion vibration method used for bending-twisting 

analysis. In this respect, a computer program is developed. This developed computational 

program has a graphical representation that shows stockbridge damper’s characteristics in 

terms of the displacement (y) versus natural frequency (ɷ) curves.  

 

 First, it is analyzed how mass eccentricity affects vibration. It is found that the 

natural frequency of coupled flexure-torsion vibration is greater than that for the 

uncoupled bending vibration. Natural frequency is increased when mass eccentricity is 

gradually increased for 2DOFS. The natural frequency is further increased for 3DOFS 

and 4DOFS. Briefly it can be concluded that if the value of mass eccentricity increases, 

the natural frequency will also increase, and vice versa for both sides of the stockbridge 

damper. 

  

 Second, the impact of lumped mass distance on vibration is analyzed. Lumped 

mass distance has shown a great impact on the natural frequency of the stockbridge 

damper. The natural frequency was calculated first keeping lumped masses at equal 

distances and keeping the same lumped masses at unequal distances. For the long side of 

2DOFS,    for mode shape 1 is increased by 20.1% and    for mode shape 2 is 

decreased by 45.3% at unequal distance compared to equal distance. Where    and    



xvii 
 

represent the first and second natural frequencies of the system respectively. However, on 

the short side, natural frequency is increased in both    and    by 30.2% and 63.4%, 

respectively. On the long side of the stockbridge damper and unequal distances of lumped 

masses for 3DOFS, the natural frequency    is increased for mode shape 1 by 15%,    

for mode shape 2 by 22.2%, while    is decreased for mode shape 3 by 39% compare to 

the case when lumped masses were kept at equal distance. But on the short side of 

unequal distance, the natural frequencies are increased by 43.7%, 83.4%, and 81.1% 

respectively. Now for long side unequal distance of 4DOFS, the natural frequency    for 

mode shape 1 is increased by 8.5%,    for mode shape 2 by 17.7%, but    is decreased 

for mode shape 3 by 17.8% and    for mode shape 4 by 26.5%, where    and    

represent the third and fourth natural frequency of the system respectively.  However, in 

short side, the natural frequency    for mode shape 1 is increased by 9.2%,    for mode 

shape 2 is increased by 22.6%, and    for mode shape 3 is increased by 25.6% but    is 

changed randomly.  

 

 Third, the effect of DOF on vibration is analyzed. The natural frequency is 

changed as DOF increases. Between 2 and 3 DOFS, the natural frequency is increased in 

3DOFS by 50.3% for mode shape 1(  ) and by 44.9% for mode shape 2 (  ) on the long 

side equal distance and also increased 48.2 % and 45.6 % for long side unequal distance. 

On the short side and an equal distances, the natural frequencies in mode shapes 1(  ) 

and 2(  ) are increased by 51.2% and 15.1%, respectively. Regarding the unequal 

distance, the natural frequencies in mode shapes 1(  ) and shape 2(  ) have likewise 

increased by 50% and 73.6%, respectively. 

 

 In comparison to 3 DOFS with 4 DOFS, the natural frequency is increased in 

4DOFS by 22.4% for mode shape 1(  ), 27% for mode shape 2(  ), and 17.1% for 

mode shape 3(  ) in long side equal distance and 17.2%, 25.3% and 26.9% for long side 

unequal distance. In short side and equal distance, natural frequency in mode shape 

1(  ), mode shape 2(  ) and mode shape 3(  ) is decreased by 54.4%, 28.8% and 

75.9% respectively and also decreased 69%, 52.9% and 76.1% for unequal distance 

respectively. Thus we can conclude that mass eccentricity, the separation between lumped 

masses, and DOF have a significant influence on vibration in both coupled flexure torsion 

vibration and uncoupled bending vibration of stockbridge damper.  
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The loss of energy from the oscillatory system results in the decay of amplitude of 

vibration. Generally, in forced vibration with damping, energy dissipation (  ) depends 

on many factors such as temperature, frequency or amplitude. We considered the simplest 

case of energy dissipation with viscous damping. The energy dissipated per cycle 

becomes,    = πcω  . Where, c= damping co-efficient, ω = natural frequency, X = 

amplitude of vibration. The preceding equation at resonance becomes,   = 2ζπk   

where, ζ= damping ratio, k= spring constant. In present analysis ζ is very small and 

therefore was not considered in mathematical modelling. 
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CHAPTER 1                                             

                                                                                                                INTRODUCTION             

1.1 The influence of the stockbridge damper on aeolian vibration of conductors 

Stockbridge dampers are used to suppress aeolian vibrations on overhead 

transmission lines. Overhead power transmission lines get exposed to wind motions that 

cause them to vibrate. Aeolian vibrations are the most common kind of vibrations 

observed in transmission lines and are caused by vortex shedding due to the flow of 

natural wind. Aeolian vibrations can cause fatigue and eventual failure of the 

transmission lines. In order to deal with these negative effects of aeolian vibrations, 

stockbridge damper is the most conveniently and commonly used damper. Stockbridge 

damper is used to reduce the intensity of vibrations on power lines in order to extend their 

life. Stockbridge damper system can control the aeolian vibrations in a transmission line 

by dissipating excitation energy through the self-excitation of the damper system. A 

stockbridge type damper transforms vibration energy it absorbs into thermal energy and 

acoustic energy. This energy is dissipated, reducing the steady-state amplitude of aeolian 

vibration of a conductor damper system.  There have been a number of designs of 

dampers or damping mechanisms to reduce the severity of aeolian vibration. The severity 

of this vibration depends on a number of factors, including the velocity and direction of 

the wind, the tension in the conductor, and the total number of damping system. The 

stockbridge damper targets oscillations due to aeolian vibration; it is less effective outside 

the amplitude and frequency range. Stockbridge damper has a great influence to reduce 

aeolian vibration of conductors to increase their lifespan. It is commonly accepted that the 

stockbridge dampers cause a reduction in the amplitude of aeolian vibration because of 

their dissipative power. During its operation, the damper’s messenger cable vibrates and 

bending stress is developed. The change of resonance frequency as well as the related 

bending stress of the messenger cable can be used to make the life assessment of the 

stockbridge damper.  
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1.2 Motivation for this study 

 Overhead transmission lines (current carrying conductors) and their hardware 

fittings fail mainly due to unavoidable aeolian vibration. Therefore, stockbridge dampers 

are primarily used to suppress or reduce vibrations of those transmission lines. A few 

recent studies (numerical as well as experimental) on this damper are listed in [1-8]. The 

vibration behavior, primarily the normal modes and the resonant frequencies, characterize 

the effectiveness of the stockbridge damper [1-3]. In [4] the numerical simulations and 

parametric studies showed a correlation between the increase of natural frequencies and 

the change in the geometry of the counterweight. The natural frequencies and the 

subsequent mode shapes of this damper, based on both analytical and finite element 

models are presented in [4]. Design sensitivity analysis of the resonant frequency of a 

Stockbridge damper was done in [5]. It considered several design parameters, including 

length of the messenger wire, inertia of the counterweight, and gyration radius of the 

counter-weight [5]. During its operation, the damper’s messenger cable vibrates and 

bending is developed. Therefore, the results of the vibration damper feature can provide a 

basis for the optimum design of the stockbridge damper [6]. The efficiency of vibration 

damping is analyzed in the frequency domain corresponding to aeolian frequencies[7]. 

Two-mass dampers were analyzed and their dynamic characteristics were presented and 

described by the power function in the frequency domain [7]. Hysteric damping property 

of the stockbridge damper was investigated in [8]. In previous studies [1-8] it was 

assumed that mass center of the damper is perfectly on the centroid axis and thus 

vibration of the stockbridge damper system only in bending mode was considered.  

 But due to unavoidable imperfections, mass center is not likely to be exactly on 

the centroidal axis. Therefore, vibration behavior of stockbridge dampers, taking into 

account the effect of mass eccentricity, should be rigorously explored. In this context, this 

thesis aims to investigate the effect of mass eccentricity on vibration of the stockbridge 

damper. 

 

1.3 (a) Objectives with specific aims 

Aim of this work is to investigate the change in vibration characteristics when 

mass eccentricity of a stockbridge damper triggers torsional mode of vibration in addition 

to existing bending mode.  
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The specific aims of this study are:  

(i) To study the general physical and geometrical properties of the stockbridge 

dampers typically used in Bangladesh for damping vibration of overhead 

transmission lines (current carrying conductors).  

(ii) To analyze the vibration characteristics of the stockbridge damper system in 

bending mode.  

(iii) To analyze the coupled bending and torsional vibration effect of the 

stockbridge damper due to change in its center of gravity from the centroidal 

axis.  

(iv) To study the effect of different essential parameters (geometric and physical 

properties of the same damper) on vibration of the same damper.  

       

(b) Possible outcome 

Stockbridge dampers are primarily used to suppress or reduce vibrations of 

transmission  lines. Therefore, this thesis would help to predict the change in vibration 

behavior of overhead transmission lines in Bangladesh due to coupled flexure torsional 

vibration of the stockbridge damper. 

 

 

 1.4 Outline of Methodology 

A classical vibration analysis procedure, known as Myklestad’s method [9], will 

be used to progressively compute the deflection, slope, bending moment, twisting 

moment and shear force from one section to the next one of the vibrating damper. Briefly, 

this is accomplished assuming the natural frequency and using equilibrium equations. The 

boundary conditions must also be satisfied. Thus the results will be obtained numerically 

in terms of the natural frequencies (ɷ) versus displacement (y) curve. For this purpose, a 

computer code will be developed in Matlab and in Engineering Equation Solver (EES) 

software. Next, reliability of the code will be checked. This will be accomplished by 

comparing the results generated by the code with the solutions for typical problems 

available in the literature [9].  
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Major steps will be as follows: 

i. To carefully study a typical stockbridge damper used in Bangladesh. This is to 

determine all the required physical and geometrical properties to be used in 

vibration analysis.   

ii. To numerically determine the natural frequencies and mode shapes of a 

stockbridge damper by Myklestad’s method. This step will cover only uncoupled 

flexural vibration. 

iii. To select reasonable value of mass eccentricity of the damper from [10]. This 

mass eccentricity will invariably induce vibration in twisting mode in addition to 

the bending mode analyzed in the previous step. Changed natural frequencies 

and normal modes of vibration of stockbridge damper will be determined again.  

iv. Change in vibration behavior due to coupled flexure-torsion vibration at different 

modes (especially, at higher modes) will be analyzed. 

Any change in damping capacity of the stockbridge damper (due to different values of 

mass eccentricity); will be determined in terms of resonant frequencies. 

  

1.5 Thesis overview 

 This work is divided into five main chapters. This present chapter introduces the 

importance of stockbridge damper and shows the work objectives, possible outcome and 

outline of methodology. Chapter 2 and chapter 3 contain the literature review of previous 

works and all the mathematical formulations respectively. 

Chapter 4 presents the majority of the results obtained, as well as the effect of mass 

eccentricity analysis on vibration of the stockbridge damper. 

Finally, chapter 5 presents the conclusions of this work as well as the proposed future 

works. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Study of previous works 

A large number of studies are reported in the literature dealing with the effect of 

dynamic behavior of stockbridge damper, out of which only a few are discussed. 

Overhead transmission lines (current carrying conductors) and their hardware fittings fail 

mainly due to unavoidable aeolian vibration. Therefore, stockbridge dampers are 

primarily used to suppress or reduce vibrations of those transmission lines. A few recent 

studies (numerical as well as experimental) on this damper are listed in references. The 

vibration behavior, primarily the normal modes and the resonant frequencies, 

characterized the effectiveness of the stockbridge damper. 

Barbieri et al. [1] gave a mathematical model and practical review of dynamic 

behavior of stockbridge damper. This work is to validate a nonlinear mathematical model 

(finite element method) for dynamic simulation of stockbridge dampers of electric 

transmission line cables. To obtain the mathematical model, a nonlinear cantilever beam 

with a tip mass was used. The mathematical model incorporates a nonlinear stiffness 

matrix of the element due to the nonlinear curvature effect of the beam.  

Barbieri et al. [2] did experimental and numerical investigation of nonlinear 

dynamical behavior of a wire-rope isolator and an asymmetric stockbridge damper. The 

wire-rope isolator system was excited using an electromechanical shaker with constant 

values of acceleration, and the stockbridge damper was excited using a cam machine with 

different profiles. In this work, the physical parameters used in a Bouc-Wen model were 

adjusted using PSO method through the comparison between numerical and experimental 

results for two different systems: wire-rope isolator and stockbridge damper. The 

vibration behavior, primarily the normal modes and the resonant frequencies, 

characterized the effectiveness of the stockbridge damper. 

 Vaja et al. [4] presented an analytical model of a novel aeolian vibration damper 

with an increased number of resonant frequencies. The analytical model is used to deduce 

the resonant frequencies of the damper. A 3D finite element model has been developed to 

validate the analytical model. The natural frequencies and the subsequent mode shapes of 

both analytical and finite element models are presented. An experiment is conducted to 



Chapter 2                                                                                             Literature Review 

6 
 

validate the proposed models. The numerical simulations and parametric studies 

conducted previously showed a correlation between the increase of natural frequencies 

and the change in the geometry of the counterweight. 

Kim [5] carried on the design sensitivity analysis of the resonant frequency of a 

stockbridge damper. It considered several design parameters, including length of the 

messenger wire, inertia of the counterweight, and gyration radius of the counter-weight. 

The design guidelines for a stockbridge damper were derived from the sensitivity analysis 

results. 

Kalombo et al. [6] have determined the bending stress of stockbridge damper 

messenger cable. During its operation, the damper’s messenger cable vibrates and 

bending is developed. Therefore, the results of the vibration damper feature can provide a 

basis for the optimum design of the shock absorbers. The analyzed model represents a 

component of a non-destructive procedure that can be used to predict the remaining life of 

stockbridge damper as well as evaluating their condition. 

Golebiowska and Dutkiewicz [7] have shown the experimental analysis of 

efficiency of mass dampers. The efficiency of vibration damping is analyzed in the 

frequency domain corresponding to aeolian frequencies. Two-mass dampers were 

analyzed and their dynamic characteristics were presented and described by the power 

function in the frequency domain. 

Foti and Martinelli [8] have shown the hysteretic behavior of stockbridge 

dampers. Aim of this work was to develop a simple, but accurate, mechanical model of a 

stockbridge damper to use in the assessment of such structures vibrations. The model is 

based on a beam like description of the messenger cable and on a nonlinear formulation 

of the cross sections cyclic bending behavior. Hysteric damping property of the 

stockbridge damper was investigated. 

Kalombo et al. [14] have developed a mathematical model describing the bending 

stress of the stockbridge damper’s messenger cable near the clamped end. During 

damper’s operation, the damper’s messenger cable vibrates and bending stress is 

developed. 

Sakawa and Luo [21] developed a mathematical model and controlled the coupled 

bending and torsional vibration of flexible beams. An evolution equation which governs 
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coupled bending and torsional vibrations of flexible beams with a tip body is derived 

based on lagrangian dynamic. 

Gokdag and Kopmaz [22] have studied the coupled flexural–torsional free and 

forced vibrations of a beam with tip and/or in span attachments. First, a mathematical 

model is established, which consists of a beam with several tip attachments, i.e., a tip 

mass of non-negligible dimensions, a linear spring grounding the tip mass, and a torsional 

spring connected at the end of the beam. The modal functions of this model and the 

orthogonality condition among them are derived. For the purpose of verification the 

properties of the tip attachments are changed, and the numerical results are obtained. 

Havard [23] reviewed the fundamentals of conductor vibration control, 

stockbridge damper properties, the practices of damper application, the types of damage 

experienced, use of vibration recorders for critical spans, the impact of in-span masses 

such as aircraft warning markers, and some approaches to inspection protocols. 

Tigli [24] have shown an optimum design of dynamic vibration absorbers (DVAs) 

installed on linear damped systems that are subjected to random loads is studied and 

closed-form design formulas are provided. Another important finding of the paper is that 

for specific applications where all of the response parameters are desired to be minimized 

simultaneously, DVAs designed per velocity criteria provide the best overall performance 

with the least complexity in the design equations. 

 Wang [25] have described the three forms of conductor vibrations and the control 

technologies from utilities' practical point of view. As an example, a design consideration 

is discussed. This paper also captured the challenges of vibration control on high 

temperature low sag conductors, based on experiences in North America. 

In previous studies it was assumed that mass center of the damper is perfectly on the 

centroid axis and thus vibration of the stockbridge damper system only in bending mode 

was considered. But due to unavoidable imperfections, mass center is not likely to be 

exactly on the centroid axis. Therefore, vibration behavior of stockbridge dampers taking 

into account the effect of mass eccentricity should be rigorously explored. This was the 

prime objective of this research work.  

 

 

https://www.sciencedirect.com/science/article/abs/pii/S0022460X04009125?via%3Dihub#!
https://www.sciencedirect.com/topics/engineering/orthogonality-condition
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2.2 Brief descriptions of aeolian vibration damping devices 

In order to deal with the negative effects of aeolian vibrations, a variety of impact 

and tuned dampers are designed. Among them the most commonly used ones are 

torsional dampers, Elgra dampers, spiral dampers, spring-piston dampers, pneumatic 

dampers and stockbridge dampers [11-13]. Torsional dampers, Elgra dampers and spiral 

dampers are classified as the impact dampers that use collision energy to dissipate the 

vibration energy. Torsional dampers simply increase the interstrand friction of the 

conductor as a result of the torsional motion produced by the offset weights when the 

conductor vibrates. They are effective on conductors smaller than about 12.5 mm in 

diameter. Unfortunately, torsional dampers are efficient in a narrow frequency range and 

have a tendency to freeze up in the winter. Elgra dampers, on the other hand, are effective 

to give different frequency responses with their variety of plate-type weights. In a 

vibration activity, these weights move up and down on the spindle to dissipate the energy 

by the help of Neoprene washers but they are very noisy and cause excessive wear at the 

connection point of the conductor [11-13]. 

 

Figure 2.1: Tuned dampers a) spring-piston damper, b) pneumatic damper and 

stockbridge damper [11-13]. 

Spiral dampers are geometrically separated from the torsional dampers and the 

Elgra dampers but they also suppress the vibration by impacting against the conductor. 

Generally, spiral dampers are effective in the frequency range of 100 Hz to 300 Hz and 

these frequencies occur on conductors smaller than about 16 mm in diameter. Since the 

spiral damper suppresses the vibrations within its length, it should be made long enough 

to cover as many vibration loops as it can [13]. Spring-piston dampers, pneumatic 
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dampers and stockbridge dampers (Figure 2.1) are classified as the tuned dampers which 

are effective when their natural frequency coincide with the excitation frequency of the 

conductor and this working principle is discussed in more detail in the next subsection. 

Unlike the spring-piston dampers and the pneumatic dampers, the stockbridge dampers 

can be tuned to be effective over a wide range of frequency and they can dissipate 

vibrations in any directions. Since the stockbridge dampers are the focus of this study, 

they are discussed in more detail in subsections 2.2.1 and 2.2.2. 

2.2.1 Stockbridge damper 

 Stockbridge dampers are used to suppress aeolian vibrations on overhead 

transmission lines caused by the wind. It consists of two masses at the ends of a short 

length of cable (messenger) clamped to the main cable (conductor) as seen in Figure 2.2. 

Aeolian vibration is one of the causes of fatigue failure of power line conductors. The 

most common method used to protect conductors against this type of failure is to dissipate 

the energy transferred by the wind to the power line by means of suitable dynamic 

dampers. The most commonly used basic damper has been designed for the first time by 

G H Stockbridge in 1924 [14]. It is called stockbridge damper and consists of two masses 

rigidly attached to the ends of a double strand wire cable called messenger cable. The 

messenger cable is rigidly assembled to the power line by means of clamps. Figure 2.2 

shows the different parts of a stockbridge damper.  

 

Figure 2.2: Parts of a stockbridge damper [14]. 

 In this design, concrete blocks were placed symmetrically on the messenger cable 

as seen in Figure 2.3. 
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Figure 2.3: Original concrete block design of stockbridge damper [15]. 

 

2.2.2 Working principle of stockbridge damper 

 When the damper is placed on a vibrating conductor, vibrations pass down 

through the clamp and reach to the weights. Movement of the weights will produce 

bending of the messenger cable, which causes the individual wire strands in figure 2.4 to 

rub together and dissipate energy. This action constitutes the damping effect of the 

stockbridge damper.  

 

Figure 2.4: The messenger cable (left) and the individual wire strands (right) [17]. 

In the early designs, the messenger cable consists of 7 individual wire strands but 

once the importance of the messenger cable is realized, it has been started to construct 

modern designs with 19 individual wire strands on their messenger cable [16]. 

Appropriate choice of mass blocks, messenger cable length and stiffness of the damper 
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increases the mechanical impedance of the cable which in turn decreases oscillations of 

the main cable substantially. 

 

 In a symmetrical stockbridge damper, each of weight has two identical degrees of 

freedom (y, θ), which correspond to first and second modes of the damper, in the vertical 

plane. As illustrated in figure 2.5, the outer ends of the damper weights have the 

maximum displacement in the 1st mode and the inner ends of the damper weights have the 

maximum displacement in the 2nd mode [16]. On the other hand, asymmetric placement 

of the weights on the messenger cable and the usage of two different weights on the 

stockbridge damper provide the broadest effective frequency range in more advance 

designs. In general, the asymmetric stockbridge damper consists of two unequal masses 

attached to the end of two unequal lengths of wire strands, which are known as messenger 

cables. 

 

 

Figure 2.5:  Representations for a) the first mode, b) the second mode of a symmetrical 

stockbridge damper [18]. 

 

The ends of a power line span, where it is clamped to the transmission towers, are at most 

risk. Generally, there are two dampers per span which are at anti-nodes where the 

amplitude of the standing wave is a maximum. More than two dampers can be also 

installed if necessary on longer spans.  
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2.2.3 Bending parameters in stockbridge damper 

 Stockbridge damper is attached on the power line, therefore it moves with 

it through the wind. During its operation, the damper’s messenger cable vibrates and 

bending stress is developed [14].  

 

 

 

Figure 2.6:  Moment and force acting on the damper’s messenger cable [14]. 

 

During the vibration of stockbridge damper, the movement of damper’s weight is 

characterized by two degrees of freedom: the alternative motion of translation, y and the 

rotation,𝛳. Bending moment is also developed at the clamp attachment point of the cable. 

 

Different types of conductors are used in high voltage (132 kV, 230 kV and 400 kV) 

overhead transmission lines in Bangladesh.  Aeolian vibration of those transmission lines 

under typical weather condition of Bangladesh should be well understood to ensure safe 

and prolonged service of conductors. To suppress these aeolian vibrations on overhead 

transmission lines stockbridge dampers are used in Bangladesh.  

 

 

Clamped 
attachment 

point 

Damper attachment 
point 

Center of gravity, G 
Rotation, 𝛳 

 

Displacement, Y 

Bending 
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2.2.4 Specifications and material properties of stockbridge damper 

 

 

 

Figure 2.7: Asymmetric stockbridge damper. 

 

Description Symbol/ Unit Value 

Length of messenger cable (Long 

side) 

L [mm] 270 

Length of messenger cable (Short 

side) 

L [mm] 230 

Total mass of the damper m [kg] 4.5 

 
Damper mass in long side m [kg] 2.1 

Messenger cable mass in long side m [kg] 0.3 

Damper mass in short side m [kg] 1.9 

Messenger cable mass in short side m [kg] 0.2 

Messenger cable    

(Long side) 

Damper mass 

(Small) 

Damper mass 

(Big) 

Messenger cable    

(Short side) 
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Shear Modulus(Tensile steel) G [Pa] 79.3 × 109  

Diameter of messenger cable D [mm] 10 

Modulus of Elasticity (Tensile steel) E [Pa] 200 × 109 

Materials flexural rigidity EI [Nm2] 98.2 
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 CHAPTER 3                                            

                                                                 GOVERNING EQUATIONS                                                                      

3.1 General 

In many vibrational systems, like a stockbridge damper we can consider the mass 

to be lumped on a cantilever beam. Myklestad [9] devised a simple procedure for the 

calculation of the natural frequencies of such a system. Myklestad’s method was used to 

calculate the vibration of a cantilever beam, where only bending effect was examined. 

Many of these procedures were developed in the early years and may be considered as 

classical methods. Primarily, Myklestad’s method is used for uncoupled flexure vibration. 

However, natural modes of vibration of stockbridge dampers are likely to be coupled 

flexure-torsion vibration, which for higher modes differs considerably from those of 

uncoupled modes. 

Assumptions: 

(1) Stockbridge damper is modelled as a double cantilever beam. 

(2) Lumped masses are assumed on elastic axis of the cantilever beams. 

(3) Vibration of the stockbridge damper is considered in single, vertical plane. 

(4) The clamp attached point is considered as the fixed end for both sides of the 

stockbridge damper. 

3.2 Myklestad’s method for vibration in bending mode 

 When a beam is replaced by lumped masses connected by massless beam 

sections, a method developed by Myklestad, N. O. can be used to progressively compute 

the deflection, slope, moment and shear from one section to the next. This method can be 

applied to any lumped mass system, linear spring-mass systems, beams modeled by 

discrete masses and beam springs etc. 

  

Uncoupled flexural vibration: 

 Figure 3.1 shows a typical section of an idealized beam with lumped masses at 

different stations i, i+1 etc. By taking the free-body section in the manner indicated, it 

will be possible to write equations for the shear (V) and moment (M) at i+1 entirely in 
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terms of quantities at i. These can then be substituted into the geometric equations for 

 𝜃 and y. 

 

Figure 3.1 Typical section of an idealized beam [9]. 

From equilibrium considerations, we have  

                𝑉𝑖+1  =  𝑉𝑖  -  𝑚𝑖𝜔
2𝑦𝑖                           (3.2.1) 

               𝑀𝑖+1 =  𝑀𝑖 -  𝑉𝑖+1𝑙𝑖                                                 (3.2.2) 

From geometric considerations, using influence coefficients of uniform beam sections, we 

have  

𝜃𝑖+1 = 𝜃𝑖 + 𝑀𝑖+1  ( 𝑙 𝐸𝐼)⁄  i + 𝑉𝑖+1 (𝑙2 2𝐸𝐼) ⁄ i             (3.2.3) 

yi+1  = yi + 𝜃𝑖 𝑙𝑖 + 𝑀𝑖+1  (𝑙2 2𝐸𝐼)⁄ i  + 𝑉𝑖+1 (𝑙3 3𝐸𝐼)⁄ i  (3.2.4) 

Where, 

 ( 𝑙 𝐸𝐼)⁄ i = Slope at  𝑖 + 1 measured from a tangent at 𝑖 due to a unit moment at 𝑖 + 1 ; 

 ( 𝑙² 2𝐸𝐼)⁄ i = Slope at 𝑖 + 1 measured from a tangent at 𝑖 due to a unit shear at  𝑖 + 1= 

deflection at  𝑖 + 1 measured from a tangent at 𝑖 due to a unit moment at 𝑖 + 1 ; 

(𝑙3 3𝐸𝐼)⁄ i = Deflection at  𝑖 + 1 measured from a tangent at 𝑖 due to a unit shear at𝑖 + 1 ; 

Thus, Equations (3.2.1) through (3.2.4) in the sequence given enable the calculations to 

proceed from  𝑖  𝑡𝑜  𝑖 + 1 . 
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Boundary Conditions: 

 When an undamped system is vibrating freely at any one of its natural 

frequencies, no external force, torque, or moment is necessary to maintain the vibration. 

Also, the amplitude of the mode shape is immaterial to the vibration. Recognizing these 

facts, Myklestad proposed a method of calculation for the natural frequencies and mode 

shapes of uncoupled systems by assuming a frequency and starting with unit amplitude at 

free end of the system and progressively calculating the shear, moment and angular 

displacement to the other fixed end. The frequencies that result in zero displacement or 

compatible boundary conditions at the fixed end are the natural frequencies of the system.  

Four boundary conditions at each end, two are generally known. For example, a 

cantilever beam with 𝑖 =1 at the free end would have 𝑉1 = 𝑀1= 0. As the amplitude is 

arbitrary, we can choose 𝑦1= 1. Having done so, the slope 𝜃1is fixed to a value that is yet 

to be determined. Because of the linear character of the problem, the four quantities at the 

fixed end station (n) will be in the form, 

𝑉𝑛 = 𝑎1 + 𝑏1𝜃1                           (3.2.5) 

𝑀𝑛 = 𝑎2 + 𝑏2𝜃1                         (3.2.6) 

𝜃𝑛 = 𝑎3 + 𝑏3𝜃1                          (3.2.7) 

𝑦𝑛 = 𝑎4 + 𝑏4𝜃1                          (3.2.8) 

Where 𝑎𝑖, 𝑏𝑖 are constants and 𝜃1 is unknown. Thus, the frequencies that satisfy the 

boundary condition, θn= yn = 0 for the cantilever beam will establish θ1 and the natural 

frequencies of the beam i.e.          

                                           𝜃1= - 𝑎3/𝑏3                                (3.2.9) 

                                           𝑦𝑛 = 𝑎4 - (𝑎3/𝑏3) 𝑏4 = 0            (3.2.10) 

Hence by plotting 𝑦𝑛 vs ω, the natural frequencies of the beam can be found [9]. 
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Solution Procedures (Y vs ω Curves):  

We know, at fixed end of a cantilever beam the value of linear and angular displacement 

(𝜃𝑛= 𝑦𝑛 = 0) will be zero. Now from the 𝑦𝑛 vs ω plotting graph, zero crossing line 

corresponds to the values of ω are the natural frequencies of the system. 

The computation is started at free end. Since each of the quantities V, M, θ and y will be 

in the form a + b, they are arranged into two sections, each of which can be computed 

separately. The calculation for one section is started with V1 = M1= θ1=0 and  𝑦1=1.The 

another section, which are proportional to θ, are started with the initial values of V1 = 0, 

M1=0, θ1= 1θ, and  y1=0. To start the computation we note that the moment and shear at 

station l are zero. We can choose the deflection at station l to be 1.0, in which case the 

slope at this point becomes an unknownθ. We therefore carry out two sections of 

calculations for each quantity starting with θ1=0,  y1=1 and θ1=θ,  y1=0. The unknown 

slope θ1= θ is found by forcing 𝜃𝑛 at the fixed end to be zero, after which the deflection 

𝑦𝑛 can be calculated and plotted against ω. The natural frequencies of the system are 

those for which 𝑦𝑛 = 0. 

 

3.3 Coupled flexure-torsion vibration  

 Natural modes of vibration of stockbridge damper and other beam structures 

are often coupled flexure-torsion vibration, which for higher modes differs considerably 

from those of uncoupled modes. To treat such problems, we must model the beam which 

is shown in figures 3.3.1 and 3.3.2 .The elastic axis of the beam about which the torsional 

rotation takes place is assumed to be initially straight. It is able to twist. The principal 

axes of bending for all cross sections are parallel in the undeformed state. Masses are 

lumped at each station with its center of gravity at distance 𝑐𝑖 from the elastic axis and 𝐽𝑖 

is the mass moment of inertia of the section about the elastic axis, i.e.   

𝐽𝑖 = 𝐽𝑐𝑔 + 𝑚𝑖𝑐𝑖
2                                                          (3.3.1) 

Figure 3.3.1 and 3.3.2 shows the 𝑖 th section, from which the following equations can be 

written: 

                      𝑉𝑖+1  =  𝑉𝑖  - 𝑚𝑖𝜔
2( 𝑦𝑖 +  𝑐𝑖𝛷𝑖 )   (3.3.2) 

                           𝑀𝑖+1 =  𝑀𝑖 -  𝑉𝑖+1𝑙𝑖                            (3.3.3) 
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                 𝑇𝑖+1 =  𝑇𝑖 + 𝐽𝑖𝜔2𝜙𝑖 + 𝑚𝑖𝑐𝑖𝜔
2𝑦𝑖                                          (3.3.4) 

                 𝜃𝑖+1 = 𝜃𝑖 + 𝑀𝑖+1 ( 𝑙

𝐸𝐼
) i + 𝑉𝑖+1 ( 𝑙2

2𝐸𝐼
)  i                                      (3.3.5) 

               yi+1  =  yi + 𝜃𝑖 𝑙𝑖 + 𝑀𝑖+1 ( 𝑙2

2𝐸𝐼
) i + 𝑉𝑖+1 ( 𝑙3

3𝐸𝐼
) i                         (3.3.6) 

                 𝜙𝑖+1 =  𝜙𝑖 +  𝑇𝑖+1ℎ𝑖                             (3.3.7) 

Where, T = the torque, 

             h = the torsional influence coefficient = (𝑙 𝐺𝐼𝑝⁄ ), 

              𝜙 = the torsional rotation of elastic axis. 

 

 

 

 

Figure 3.3.1: Lumped mass system (Isometric view). 

 

𝐽𝑖 , 𝑚𝑖 
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Figure 3.3.2: 𝑖 th section of couple flexure-torsion vibration [9]. 

Boundary Conditions: 

 For free-ended beams, we have the following boundary conditions at tip to 

start the computation, 𝑉1 =  𝑀1 = 𝑇1 = 0 and θ1 = θ , 𝑦1 = 1,   𝜙1 =𝜙 and at the fixed end, 

y = 0, 𝜃 = 0 and 𝜙 = 0. Here, the quantities at any station are linearly related to  𝜃1 and 

𝜙1.    Natural frequencies are established by the satisfaction of the boundary conditions at 

the other end. Often, for symmetric beams such as the airplane wing, only one-half the 

beam needs to be considered. The satisfaction of the boundary conditions for the 

symmetric and anti-symmetric modes enables sufficient equations for the solution.  

Solution Procedures (Y vs ω Curves):  

  By using these boundary conditions, we solved the above coupled flexure-

torsion vibration equations (3.3.1-3.3.7) and found the natural frequency of the system. 

The computation is started at free end where the displacement is assumed unit amount (𝑦1 

= 1). We advanced our calculations from free end to the fixed end of the stockbridge 

damper modelled as a cantilever beam. We started our calculations with a single value of 

ω then found a single value of displacement (𝑦𝑛). Following the similar steps we found 

the different values of 𝑦𝑛 for various values of ω. These calculation procedures are 

performed by developing numerical codes which are available in appendix D. Hence by 

plotting 𝑦𝑛 vs. ω the natural frequencies of the cantilever beam was found. We know, at 

fixed end of the cantilever beam, the value of linear and angular displacement (𝜃𝑛= 𝑦𝑛 = 

0) will be zero. Now from the 𝑦𝑛 vs ω plotting graph, zero crossing line corresponds to 

the values of ω are the natural frequencies of the system. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

Natural modes of vibration of stockbridge damper and other beam structures are 

likely to be coupled flexure-torsion vibration which for higher modes differs considerably 

from those of uncoupled modes. In coupled flexure- torsion vibration analysis, there is 

assumed mass eccentricity (𝑐𝑖) between the elastic axis of the messenger cable and center 

of gravity of the stockbridge damper as explained in chapter 3. The values of mass 

eccentricities (𝑐𝑖) is taken from [10] according to ISO limit. The loss of energy from the 

oscillatory system results in the decay of amplitude of vibration.  

Generally, in forced vibration with damping, energy dissipation (𝑊𝑑) depends on 

many factors such as temperature, frequency or amplitude. We considered the simplest 

case of energy dissipation with viscous damping. The energy dissipated per cycle 

becomes,𝑊𝑑 = πcω𝑋2. Where, c= damping co-efficient, ω = natural frequency, X = 

amplitude of vibration. The preceding equation at resonance becomes, 𝑊𝑑= 2ζπk𝑋2 

where, ζ= damping ratio, k= spring constant. In present analysis ζ is very small and 

therefore was not considered in mathematical modelling. 

4.1 Validation of the computational procedure of uncoupled bending vibration 

analysis for 3 DOFS 

 The reliability of the numerical code has been accomplished by comparing the 

results generated by the code with the solutions for typical problems available in the 

literature [9]. The massless beam sections are assumed to be identical so that the 

influence coefficients for each section are equal (Figure 4.1.1). The validation of the 

computational procedure is done according to the problems of [9]. Results, in terms of 

zero crossing of displacement (y) versus natural frequency (ω) curves are generated by 

the procedure explained in chapter 3. 

 

 

 

 
Figure 4.1.1: Lumped parameter system [9]. 

m1 =100 kg  m2 = 150 kg m3 = 200 kg 

0.5 m 0.5 m 0.5 m 

 ① ②  ③  ④ 
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We start by calculating the natural frequency of a 3DOFS in uncoupled bending mode, 

which means there is no mass eccentricity (c1=0 mm, c2=0 mm and c3=0 mm) in this 

lumped mass system. The result of the natural frequency in this case is shown in Figure 

4.1.2. 

 
ω (rad/s) 

 
Figure 4.1.2 Displacement vs. Natural frequency in uncoupled bending vibration 

[Example problem in [9]]. 

 

 

Natural frequency (rad/s) calculated by present procedure and corresponding results in[9]: 

                ω1 = 24.5   [solution in [9] between 20 to 30 

 ω2 = 138.9 [solution in [9] 138.98] 

                     ω3 = 347.5 [solution in [9] between 340 to 350] 

 

Where ω1, ω2 and ω3 represent the first, second and third natural frequencies of the 

system respectively. As shown these computational results have matched with good 

accuracy with the results given in solutions of [9].  
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After ensuring the code's reliability, we shall investigate the stockbridge damper vibration 

effect both in uncoupled bending as well as coupled bending-twisting vibration in 

different modes. 

 

4.2 Stockbridge damper natural frequency analysis both in uncoupled bending and 

coupled bending-twisting vibration mode  

 The messenger cable on one side of the stockbridge damper is longer and the 

corresponding damper mass is greater than on the other side. The long and short sides of 

the stockbridge damper are separated into 2DOFS, 3DOFS, and 4DOFS respectively. The 

lumped masses are considered in equal and unequal distances for all DOFS. Next the 

effects of different parameters on vibration for these 2DOFS, 3DOFS & 4DOFS are 

described below. 

 

CASE 1: STOCKBRIDGE DAMPER ACTING AS A 2 DOFS (LONG SIDE)  

4.3:  Lumped masses are at equal distance (Long side) 

The stockbridge damper is modeled as a cantilever beam in this case, with the damper's 

mass divided into two parts. These two parts are thought to be equally spaced apart. 

Figure 4.3 displays the parameter-evaluated stockbridge damper as a two degree of 

freedom system. 

 

 

 

 

  

 

Figure 4.3: Lumped parameter system in stockbridge damper [Long side and lumped 

masses are at equal distance for 2DOFS]. 

 

 

  m1= 2.1 kg  m2  = 0.3 kg 

135 mm 135 mm 

    ① ② ③

 



Chapter 4                                                                                     Results and Discussion 

24 
 

Uncoupled bending vibration (𝒄𝒊 = 𝟎) (Long Side)  

We start by calculating the natural frequency of this 2 DOFS in the uncoupled bending 

mode, which means there is no mass eccentricity (c1=0 mm, c2=0 mm) in this lumped 

mass system. The result of the natural frequency, in this case is shown in Figure 4.3.1. 

 

 
ω (rad/s) 

 

Figure 4.3.1: Displacement vs. Natural frequency in uncoupled bending vibration for 2 

DOFS. 

Natural frequency (rad/s): 

 

 

 

Coupled bending-twisting vibration (𝒄𝒊   ≠ 𝟎) (Long Side) 

Here, we start by calculating the natural frequency of this 2DOFS in coupled bending-

twisting mode, which means there is acting some mass eccentricity (c1=0.1 mm and 

c2=0.05 mm) in this lumped mass system. The results of the natural frequency in this 

case, are shown in Figure 4.3.2. 
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 ω2 = 679  
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ω (rad/s) 

 

Figure 4.3.2: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS. 

 

Natural frequency (rad/s): 

 

 

 

Uncoupled bending and Coupled bending-twisting vibration comparison (Long 

Side) 

Graph 4.3.3 compares the influence of mass eccentricity on vibration between uncoupled 

bending and coupled bending-twisting vibration modes, which is generated using graphs 

4.3.1 and 4.3.2 respectively. 
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ω (rad/s) 
Figure 4.3.3: Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 2 DOFS.  

Table 1: Comparison of uncoupled bending & coupled bending-twisting natural 

frequency for 2 DOFS (Long side and lumped masses are at equal distance) 

The natural frequency has increased both in ω1 for mode shape 1 and ω2 for mode shape 

2 due to the effect of mass eccentricity, as seen in table 1. Where, ω1 and ω2 represent 

the first and second natural frequencies of the system respectively. After comparing the 

results between uncoupled bending and coupled bending-twisting vibration, now we 

calculate the natural frequency for different values of mass eccentricity. These are 

described in the following:    
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Bending vibration 
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Bending-twisting vibration 

(c1=0.1 mm, c2=0.05 mm) 

                           ω1 = 168                             ω1 = 169  

ω2 = 679     ω2 = 688  



Chapter 4                                                                                     Results and Discussion 

27 
 

Effect of increasing 𝒄𝒊 on coupled bending-twisting vibration (Long Side) 

The value of mass eccentricity is increased by double from the initial assuming value 

c1=0.1 mm, to c1=0.2 mm and c2=0.05 mm to c2=0.1 mm. After increasing 𝑐𝑖  the result 

of natural frequency is also increased for the same 2DOFS. The results are shown in 

figure 4.3.4. 

 

ω (rad/s) 
 

Figure 4.3.4: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS.  

 

Natural frequency (rad/s): 
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Effect of randomly increased value of 𝒄𝒊 on coupled bending-twisting vibration 

(Long Side) 

Now, the value of mass eccentricity of the same 2DOFS is randomly increased from the 

initial assuming value c1=0.1 mm, to c1=0.4 mm and c2=0.05 mm to c2=0.08 mm. In this 

case, natural frequency is also increased for both mode shape 1(ω1) and mode shape 2 

(ω2). The results are shown in figure 4.3.5. 

 

 

ω (rad/s) 
 

Figure 4.3.5: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS.  

 

Natural frequency (rad/s): 
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Effect of decreasing 𝒄𝒊 on coupled bending-twisting vibration (Long Side) 

Here, the value of mass eccentricity is decreased by half from the initial assuming value, 

c1=0.1 mm, to c1=0.05 mm and c2=0.05 mm to c2=0.025 mm. After decreasing, 𝑐𝑖 

natural frequency is decreased. The effect of decreasing mass eccentricity is shown in 

figure 4.3.6. 

 

 

ω (rad/s) 
 

Figure 4.3.6: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS.  

 

Natural frequency (rad/s): 
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4.4: Lumped masses are at unequal distance (Long side) 

In this scenario, the stockbridge damper is modeled as a cantilever beam, with the mass of 

the damper separated into two portions same as before but the distance between these two 

lumped masses is presumed to be unequal. The parameter evaluated stockbridge damper 

as a 2DOFS is shown in figure 4.4.  

 

 

 

 

 

 

 

 

 

Figure 4.4:  Lumped parameter system in stockbridge damper [Long side and lumped 

masses are at unequal distance for 2DOFS]. 

 
 
We calculated the natural frequency of this 2DOFS both in uncoupled bending (𝑐𝑖 = 0) as 

well as coupled bending-twisting (𝑐𝑖 ≠ 0) modes for different values of mass eccentricity 

same as before. The results of the natural frequency are shown in table 2. Table 2 is also 

shown the comparison of the natural frequency of the long side of the stockbridge damper 

when lumped masses are kept at an equal and unequal distances. 

 

 

 

 

 

 

 

m1= 2.1 kg    m2 = 0.3 kg 

160 mm 110 mm 

    ①  ② ③
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Table 2: Summary of the natural frequency of uncoupled bending and coupled 

bending-twisting vibration for 2 DOFS for different values of mass eccentricity 

(Long side and lumped masses are at equal and unequal distances) 

 

Eccentricity 
       (mm) 

Natural frequency at long side 
(rad/s) 

 Equal distance between 
lumped mass (mm) 

L1=L2=135 

Unequal distance between 
lumped mass (mm) 

L1=160 & L2=110 

c1=0 

c2=0 

ω1 = 168 

ω2 = 679 

ω1 = 191 

ω2 = 676 

c1=0.1 

c2=0.05 

ω1  = 169 

ω2 = 688 

 

ω1 = 192 

ω2 = 686 

 c1=0.2 

c2=0.1 

ω1 = 172 

ω2 = 718 

 

ω1 = 195 

ω2 = 717 

 c1=0.4 

c2=0.08 

ω1 = 173 

ω2 = 1254 

 

ω1 = 197 

ω2 = 800 

 c1=0.05 

c2=0.025 

ω1 = 168 

ω2 = 681 

 

ω1 = 191 

ω2 = 678 

  

Table 2 shows that the natural frequency has increased by increasing the value of mass 

eccentricity and vice versa both in the equal and unequal distance of the lumped masses. 

The natural frequency has increased in bending-twisting vibration mode (𝑐𝑖 ≠ 0) both in 

mode shape 1 (ω1) and mode shape 2 (ω2) compare to the uncoupled bending mode 

(𝑐𝑖 = 0). These results in table 2 are calculated only for the long side of the stockbridge 

damper. 
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CASE 2: STOCKBRIDGE DAMPER ACTING AS A 2 DOFS (SHORT SIDE) 

4.5: Lumped masses are at equal distance (Short side) 

In case 2, the same procedure followed on the short side to calculate the natural frequency 

of this 2 DOFS. The masses of the damper are separated into two portions. The distances 

between these two portions are presumed to be equal. The parameter evaluated by the 

stockbridge damper as a 2DOFS is shown in figure 4.5. 

 

 

 

  

 

 

Figure 4.5: Lumped parameter system in stockbridge damper [Short side and lumped 

masses are at equal distance for 2DOFS]. 

 

 

Uncoupled bending (𝒄𝒊 = 𝟎) and Coupled bending-twisting (𝒄𝒊   ≠ 𝟎) vibration 

comparison 

On the short side of the stockbridge damper, Graph 4.5.1 compares the effects of mass 

eccentricity on vibration between uncoupled bending and coupled bending-twisting 

vibration modes. There is no mass eccentricity in the uncoupled bending mode (c1=0 mm, 

c2=0 mm), but there is acting eccentricity in the coupled bending-twisting mode (c1=0.1 

mm and c2=0.05 mm). Due to the influence of mass eccentricity, which is depicted in 

figure 4.5.1 and the natural frequency has increased in the bending-twisting vibration 

mode. 

  m1= 1.9 kg   m2= 0.2 kg 

115 mm 115 mm 

    ① ② ③
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ω (rad/s) 
Figure 4.5.1: Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 2 DOFS.  

 

Table 3: Uncoupled bending & Coupled bending-twisting Natural Frequency 

Comparison for 2 DOFS (Short side and lumped masses are at equal distance) 

Table 3 shows the results of the natural frequency which is generated from figure 4.5.1. 

The natural frequency has increased in bending-twisting vibration mode both in ω1for 

mode shape 1 and ω2 for mode shape 2 compared to the uncoupled bending mode. But 

this change is not too large.  Similarly we calculate the natural frequency in short side for 

different values of mass eccentricity same as before. 
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Effect of increasing 𝒄𝒊 on coupled bending-twisting vibration (Short Side) 

The mass eccentricity is increased by double from the initially assumed value of c1=0.1 

mm, to c1=0.2 mm and c2=0.05 mm to c2=0.1 mm similar to the long side. The natural 

frequency corresponding to this mass eccentricity has increased which is shown in figure 

4.5.4. 

 

ω (rad/s) 
 

Figure 4.5.2: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS.  

 

Natural frequency (rad/s): 
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Effect of randomly increased value of 𝒄𝒊 on coupled bending-twisting vibration 

(Short Side) 

The natural frequency of the same problem is calculated by randomly increasing the mass 

eccentricity from  c1 =0.1 mm to c1=0.4 mm and c2 =0.05 mm to c2 =0.08 mm. The 

effect of increasing 𝑐𝑖  in natural frequency is shown in Figure 4.5.3. 

 

ω (rad/s) 
 

Figure 4.5.3: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS.  

 

 

Natural frequency (rad/s): 
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Effect of decreasing 𝒄𝒊 on coupled bending-twisting vibration (Short Side) 

After increasing the value of mass eccentricity, now we decreased by half of the initial 

assuming value of mass eccentricity to find the change of natural frequency of the 

identical problem. Mass eccentricity has decreased from c1=0.1 mm, to c1=0.05 mm and 

c2=0.05 mm to c2=0.025 mm. The corresponding results are shown in figure 4.5.6. The 

natural frequency obtained from this result has decreased by decreasing mass eccentricity. 

 

 

ω (rad/s) 
 

Figure 4.5.4: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS.  

 

 

Natural frequency (rad/s): 
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4.6: Lumped masses are at unequal distance (Short side) 

Figure 4.6 is represented the short side of the stockbridge damper. In the same way as 

before, the mass of the damper is considered into two portions and the distances between 

these two portions are presumed to be unequal. The parameter evaluated the stockbridge 

damper as a 2DOFS.  

 

 

 

 

 

 

 

 

Figure 4.6:  Lumped parameter system in stockbridge damper [Short side and lumped 

masses are at unequal distance for 2DOFS]. 

. 

 

 

 Similarly, we calculated the natural frequency of this short side (unequal distance 

between lumped mass) both in uncoupled bending (𝑐𝑖 = 0) as well as coupled bending-

twisting (𝑐𝑖 ≠ 0) modes for different values of mass eccentricity same as bofore.  The 

results of the natural frequency are shown in table 4. Table 4 is also shown the 

comparison of natural frequency of the short side when lumped masses are kept at equal 

and unequal distances. The graphs corresponding of the results are kept in Appendix-A. 

Sometimes the density of the materials is not uniform throughout the length. So, when we 

considered the lumped masses are at unequal distances, which will show the effect of 

change of natural frequency compare to keeping the lumped masses in equal distances.   

 

 

 

 

m1= 1.9 kg       m2= 0.2 kg 

140 mm 90 mm 

    ①  ② ③

 



Chapter 4                                                                                     Results and Discussion 

38 
 

Table 4: Summary of natural frequency of uncoupled bending and coupled bending-

twisting vibration for 2DOFS for different values of mass eccentricity (Short side 

and lumped masses are at equal and unequal distances) 

 

Eccentricity 

       (mm) 

                  Natural frequency (rad/s) 

Equal distance between 
lumped mass (mm) 

L1=L2=115 

Unequal distance between 
lumped mass (mm) 

L1=140 & L2=90 

c1=0 

c2=0 

ω1 = 242 

ω2 = 979 

ω1 = 315 

ω2 = 1035 

c1=0.1 

c2=0.05 

ω1 = 243 

ω2 = 997 

 

ω1 = 318 

ω2 = 1063 

 c1=0.2 

c2=0.1 

ω1 = 248 

ω2 = 1060 

 

ω1 = 325 

ω2 = 1168 

 c1=0.4 

c2=0.08 

ω1 = 254 

ω2 = 1629 

 

ω1 = 348 

ω2 = 1238 

 c1=0.05 

c2=0.025 

ω1 = 242 

ω2 = 984 

 

ω1 = 316 

ω2 = 1043 

  

Table 4 shows the results obtained from short side of the stockbridge damper. The natural 

frequency has also increased by increasing the value of mass eccentricity and vice versa 

in both distances. The natural frequency has also increased here in bending-twisting 

vibration mode (𝑐𝑖 ≠ 0) both in mode shape 1 (ω1) and mode shape 2 (ω2) compare to 

the uncoupled bending mode (𝑐𝑖 = 0). 

The natural frequency is increased when lumped masses are at unequal distance compare 

to equal distance. But it is not in likewise increased. When mass eccentricity has 

randomly increased for the values of c1=0.4 & c2=0.08, the natural frequency has 

decreased in mode shape 2.  
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Table 5: Summary of natural frequency of uncoupled bending and coupled bending-

twisting vibration for 2 DOFS for different values of mass eccentricity (Long side 

and short side where lumped masses are at equal and unequal distance) 

Eccentricity 

(mm) 

Natural frequency (rad/s) 

Long side (mm) Short side (mm) 

L1=L2=135 L1=160 & L2=110 L1=L2=115 L1=140 & L2=90 

c1=0 

c2=0 

ω1 = 168 

ω2 = 679 

ω1 = 191 

ω2 = 676 

ω1 = 242 

ω2 = 979 

ω1 = 315 

ω2 = 1035 

c1=0.1 

c2=0.05 

ω1 = 169 

ω2 = 688 

 

ω1 = 192 

ω2 = 686 

 

ω1 = 243 

ω2 = 997 

 

ω1 = 318 

ω2 = 1063 

 c1=0.2 

c2=0.1 

ω1 = 172 

ω2 = 718 

 

ω1 = 195 

ω2 = 717 

 

ω1 = 248 

ω2 = 1060 

 

ω1 = 325 

ω2 = 1168 

 c1=0.4 

c2=0.08 

ω1 = 173 

ω2 = 1254 

 

ω1 = 203 

ω2 = 800 

 

ω1 = 254 

ω2 = 1629 

 

ω1 = 348 

ω2 = 1238 

 c1=0.05 

c2=0.025 

ω1 = 168 

ω2 = 681 

 

ω1 = 191 

ω2 = 678 

 

ω1 = 242 

ω2 = 984 

 

ω1 = 316 

ω2 = 1043 

 Table 5 shows the whole results which are obtained on both sides of the stockbridge 

damper in 2 DOFS. The discussion against these obtained results of natural frequency is 

described below: 

Effect of mass eccentricity on natural frequency: 

Mass eccentricity has a great impact on natural frequency in the 2DOFS of the 

stockbridge damper shown in table 5. The natural frequency of uncoupled bending 

(𝑐𝑖 = 0) vibration mode is lower than the coupled bending-twisting (𝑐𝑖 ≠ 0) vibration 

mode i.e. the natural frequency is increased in coupled bending-twisting mode due to 

mass eccentricity. When we gradually increased the value of mass eccentricity, natural 

frequency is also increased both in ω1 for mode shape 1 and ω2 for mode shape 2 and 

vice versa. The difference in natural frequency is not too large compared to the immediate 

value of mass eccentricity. This impact is shown in table 5 on both sides of the 

stockbridge damper. 
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Effect of lumped mass distance on natural frequency: 

On the both sides, natural frequency is calculated by keeping the lumped masses are at an 

equal and unequal distance. We know that sometimes the density of the materials is not 

uniform throughout the entire length. To represent this ununiformed case, we considered 

lumped masses are at an equal and unequal distance.  On the long side, when lumped 

masses are at an unequal distance the natural frequency is increased in mode shape 1(ω1) 

but the natural frequency is decreased in mode shape 2(ω2) compare to the equal 

distance. On long side ω1 is increased by 20.1% and  ω2  is decreased by 45.3% for entire 

values of mass eccentricity. But on the short side, natural frequency is increased both in 

mode shape 1(ω1) 30.2 % and mode shape 2 (ω2) 63.4 % in unequal distance compare to 

the equal distance. 

 

CASE 3: STOCKBRIDGE DAMPER ACTING AS A 3 DOFS (LONG SIDE) 

In this case, we will find the effect of mass eccentricity by increasing the DOF while 

keeping the stockbridge damper's overall mass and length constant. On both sides, we 

treated the stockbridge damper as a 3 DOFS. When DOF is increased lumped masses are 

distributed in many positions over the entire length. 

4.7. Lumped masses are at equal distance (Long side) 

In this scenario, the stockbridge damper is modeled as a cantilever beam, with the mass of 

the damper separated into three portions. The distance between these three portions is 

presumed to be equal. The parameter evaluated the stockbridge damper as a 3DOFS on 

the long side which is shown in Figure 4.7.  

 

 

 

 

     

 

Figure 4.7: Lumped parameter system in stockbridge damper [Long side and lumped 

masses are at equal distance for 3DOFS]. 

  m1 = 2.1 kg m2 = 0.15 kg m3= 0.15 kg 

90 mm 90 mm 90 mm 

    ① ②    ③  ④ 
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Uncoupled bending vibration (𝒄𝒊 = 𝟎) (Long Side)  

Assuming that there is no mass eccentricity ( c1=0 mm, c2=0 mm and c3=0 mm), we first 

determine the natural frequency of these three DOFS in uncoupled bending mode. Figure 

4.7.1 displays the outcomes of the natural frequency in this instance. 

 

ω (rad/s) 

 

Figure 4.7.1: Displacement vs. Natural frequency in uncoupled bending vibration for 3 

DOFS. 

 

Natural frequency (rad/s): 

ω1 = 245 

ω2 = 803  

  ω3 = 3324  

Coupled bending-twisting vibration (𝒄𝒊   ≠ 𝟎) (Long Side) 

In this coupled bending-twisting vibration mode, there is acting some mass 

eccentricity.The values of mass eccentricity in station 1, station 2 and station 3 are c1=0.1 

mm, c2=0.05 mm and c3=0.01 mm respectively. After considering mass eccentricity, the 

results of the natural frequency in this case are shown in figure 4.7.2. 
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ω (rad/s) 

 

Figure 4.7.2: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS  

 

Natural frequency (rad/s): 

ω1 = 246  

ω2 = 808  

  ω3 = 3407  

 

 

Uncoupled bending and Coupled bending-twisting vibration comparison 

The graph 4.7.3 compares the influence of mass eccentricity on vibration between 

uncoupled bending and coupled bending-twisting vibration modes, which were generated 

using graphs 4.7.1 and 4.7.2 respectively. This graph 4.7.3 shows the mass eccentricity 

effect on natural frequency between uncoupled bending and coupled bending-twisting 

vibration.  
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ω (rad/s) 

Figure 4.7.3: Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 3 DOFS.  

 

Table 6: Uncoupled bending & coupled bending-twisting natural frequency 

comparison for 3 DOFS (Long side and lumped masses are at equal distance) 

The natural frequency has increased both in mode shape 1 (ω1); mode shape 2 (ω2) and 

mode shape 3 (ω3) due to the effect of mass eccentricity, as seen in table 6. Similarly, for 

coupled bending-twisting vibration, the mass eccentricity effect will be calculated for the 

following steps: 
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Natural frequency (rad/s) 

Bending vibration 

( c1=0, c2=0, c3=0) 
 

 

Bending-twisting vibration 

(c1=0.1 mm,c2=0.05 mm,c3=0.01 mm) 

 

ω1 = 245 ω1 = 246 

ω2 = 803  ω2 = 808 

ω3 = 3324  ω3 = 3407 
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Effect of increasing 𝒄𝒊 on coupled bending-twisting vibration (Long Side) 

The value of mass eccentricity is increased by double from the initial assuming value. 

The natural frequency of the identical problem is calculated by increasing the mass 

eccentricity from c1=0.1 mm, to c1=0.2 mm; c2=0.05 mm to c2=0.1 mm and c3=0.01 mm 

to c3=0.02 mm. The results are shown in figure 4.7.4. 

 

 

ω (rad/s) 

 

Figure 4.7.4: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS.  

 

Natural frequency (rad/s): 

ω1 = 248 

ω2 = 828 

ω3 = 3703 
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Effect of randomly increased value of 𝒄𝒊 on coupled bending-twisting vibration 

(Long Side) 

The natural frequency of the identical problem is calculated by increasing randomly of 

the mass eccentricity from c1=0.2 mm, to c1=0.4 mm; c2=0.1 mm to c2=0.08 mm. and 

c3=0.02 mm to c3=0.016 mm. After changing the values of mass eccentricity in every 

station, it affected the natural frequency of this 3 DOFS.  The obtained results are shown 

in figure 4.7.5. 

 

 

ω (rad/s) 

 

Figure 4.7.5: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS.  
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Effect of decreasing 𝒄𝒊 on coupled bending-twisting vibration (Long Side) 

Here, the value of mass eccentricity is decreased by half from the initial assuming value. 

Now the natural frequency of the identical problem is calculated for c1=0.05 mm; 

c2=0.025 mm and c3=0.005 mm. The effect of decreasing the value of mass eccentricity 

is shown in figure 4.7.6. 

 

 

ω (rad/s) 

 

Figure 4.7.6: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS.  

 

Natural frequency (rad/s): 

ω1 = 246 

ω2 = 803  

ω3 = 3344 
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Similarly, the effect of mass eccentricity is calculated by keeping the lumped masses at an 

unequal distance. We also calculated the natural frequency on the short side of this 

3DOFS following the same procedure. All of these results are shown in table 7 and 

corresponding graphs are kept in Appendix-B. 

 

Table 7: Summary of natural frequency of uncoupled bending and coupled bending-

twisting vibration for 3 DOFS for different values of mass eccentricity (Long side 

and Short side where lumped masses are at equal and unequal distances) 

 

Eccentricity 

(mm) 

Natural frequency (rad/s) 

Long side (mm) Short side (mm) 

L1=L2=L3=90 L1=110,L2=90 
& L3=70 

L1=L2=L3=76.7 L1=100,L2=75 
& L3=55 

c1=0 

c2=0 

c3=0 

ω1 = 245 

ω2 = 803 

ω3 = 3324 

 

ω1 = 274 

ω2 = 928 

ω3 = 3062 

 

 

ω1 = 336 

ω2 = 1129 

ω3 = 5129 

ω1 = 472 

ω2 = 1808 

ω3 = 6335 

c1=0.1 

c2=0.05 

c3=0.01 

ω1 = 246 

ω2 = 808 

ω3 = 3407 

ω1 = 275 

ω2 = 932 

ω3 = 3125 

ω1 = 368 

ω2 = 1141 

ω3 = 5310 

ω1 = 476 

ω2 = 1820 

ω3 = 6395 

c1=0.2 

c2=0.1 

c3=0.02 

ω1 = 248 

ω2 = 828 

ω3 = 3703 

ω1 = 278 

ω2 = 948 

ω3 = 3341 

ω1 = 371 

ω2 = 1182 

ω3 = 6005 

ω1 = 485 

ω2 = 1855 

ω3 = 6602 

c1=0.4 

c2=0.08 

c3=0.016 

ω1 = 254 

ω2 = 949 

ω3 = 5048 

ω1 = 283 

ω2 = 987 

ω3 = 3685 

ω1 = 374 

ω2 = 1253 

ω3 = 8901 

ω1 = 526 

ω2 = 2078 

ω3 = 9369 

c1=0.05 

c2=0.025 

c3=0.005 

ω1 = 246 

ω2 = 803 

ω3 = 3344 

ω1 = 274 

ω2 = 929 

ω3 = 3077 

ω1 = 366 

ω2 = 1133 

ω3 = 5173 

ω1 = 474 

ω2 = 1811 

ω3 = 6355 
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Table 7 shows the complete results of 3DOFS. The discussion against these obtained 

results is described below: 

Effect of mass eccentricity on natural frequency: 

The natural frequency of uncoupled bending (𝑐𝑖 = 0) vibration mode is lower than the 

coupled bending-twisting (𝑐𝑖 ≠ 0) vibration mode i.e. natural frequency is increased in 

coupled bending-twisting mode due to mass eccentricity. This mass eccentricity effect is 

similar to 2DOFS. When we gradually increased the value of mass eccentricity, the 

natural frequency is also increased both in mode shape 1(ω1) and mode shape 2(ω2), and 

mode shape 3(ω3) and vice versa. The difference in natural frequency is not too large 

compared to the immediate values of mass eccentricity. This impact is shown in table 7 

on both sides of the stockbridge damper. 

Effect of lumped mass distance on natural frequency: 

 On both sides, the natural frequency is calculated by keeping the lumped masses at an 

equal and unequal distance. On the long side, when lumped masses are at an unequal 

distance the natural frequency is increased in mode shape 1(ω1) by 15% and mode shape 

2(ω2) by 22.2% but the natural frequency is decreased in mode shape 3(ω3) by 39% 

compared to the equal distance for entire values of mass eccentricity. But in short side, 

natural frequency is increased both in mode shape 1(ω1) 43.7%, mode shape 2(ω2) 

83.4% and mode shape 3(ω3) 81.1% in unequal distance compare to the equal distance. 

So, with a change in lumped mass distances, the natural frequency will be increased in 

some mode shapes and will be decreased in some mode shapes.    

Effect of DOF on natural frequency: 

When DOF is increased, lumped masses are distributed in more positions. But the total 

mass remains to be constant. The natural frequency is increased by increasing DOF 

compared to 3DOFS with 2DOFS. The natural frequency is changed both in mode shape 

1(ω1) and mode shape 2(ω2) for both sides which is shown in table 7. On the long side 

and equal distance of lumped masses, the natural frequency is increased by 50.3% for 

mode shape 1(ω1) and 44.9% for mode shape 2 (ω2). In long side and unequal distance, 

natural frequency is increased 48.2% for mode shape 1(ω1) and 45.6% for mode shape 2 

(ω2). 
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A similar impact is shown on another side of the stockbridge damper. On short side and 

equal distance, the natural frequency in mode shape 1(ω1) and mode shape 2(ω2) is 

increased by 51.2% and 15.1% respectively. Now for the unequal distance, natural 

frequency in mode shape 1(ω1) and mode shape 2(ω2) is also increased by 50% and 

73.6% respectively. 

CASE 4: STOCKBRIDGE DAMPER ACTING AS A 4 DOFS (LONG SIDE)  

4.8. Lumped masses are at equal distance (Long side) 

In this scenario, the stockbridge damper is modeled as a cantilever beam, with the mass of 

the damper separated into four portions. The total length of the messenger cable is 

divided into four portions. The distance between these four portions is presumed to be 

equal. The parameter evaluated stockbridge damper as a four-degree of freedom system is 

shown in Figure 4.8. 

 

  

           

       

                                                                  

    

Figure 4.8: Lumped parameter system in stockbridge damper [Long side and lumped 

masses are at equal distance for 4 DOFS]. 

 

Uncoupled bending and Coupled bending-twisting vibration comparison 

Graph 4.8.1 compares the influence of mass eccentricity in vibration between uncoupled 

bending and coupled bending-twisting vibration modes. In uncoupled bending, there is no 

mass eccentricity ( c1=0 mm, c2=0 mm, c3=0 mm and c4=0 mm). But in twisting made, 

there is acting some eccentricity (c1=0.1 mm, c2=0.05 mm, c3=0.01mm, c4=0.001mm). 

 m1  = 2.1kg   

                          67.5 mm 

m3 = 0.1kg    m4=0.1 kg 

67.5 mm 67.5 mm 67.5 mm 

    ① ②   
 ④ 

 m2 = 0.1kg 

  ① ③ 
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ω (rad/s) 
 

Figure 4.8.1: Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 4 DOFS. 

 

Table 8: Uncoupled bending & coupled bending-twisting natural frequency 

comparison for 4 DOFS ((Long side and lumped masses are at equal distance) 
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The natural frequency has increased both in mode shape 1 (ω1); mode shape 2 (ω2), 

mode shape 3 (ω3), and mode shape 4 (ω4) due to the effect of mass eccentricity, as seen 

in table 8. 

Effect of increasing 𝒄𝒊 on coupled bending-twisting vibration (Long Side) 

The natural frequency of this 4 DOFS is calculated by increased the mass eccentricity 

from c1=0.1 mm, to c1=0.2 mm; c2=0.05 mm to c2=0.1 mm; c3=0.01 mm to c3=0.02 mm 

and c4=0.001 mm to c4=0.002 mm. All the values of mass eccentricity are increased by 

double from the initial assumed values. The result is shown in figure 4.8.2. 

 

ω (rad/s) 

 

Figure 4.8.2: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS.  
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Effect of randomly increased value of 𝒄𝒊 on coupled bending-twisting vibration 

(Long Side) 

The natural frequency of the same problem is calculated by increasing randomly the mass 

eccentricity from c1=0.1 mm, to c1=0.4 mm; c2=0.05 mm to c2=0.08 mm; c3=0.01 mm to 

c3=0.016 mm and c4=0.001 mm to c4=0.002 mm. The result is shown in figure 4.8.3. 

 

ω (rad/s) 

 

Figure 4.8.3: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS  
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Effect of decreasing 𝒄𝒊 on coupled bending-twisting vibration (Long Side) 

After increasing in two steps, here we decreased the value of mass eccentricity by fifty 

percent from the initial assuming values. Now the value of mass eccentricity will be 

c1=0.05 mm; c2=0.025 mm; c3=0.005 mm and c4=0.0025 mm. The natural frequency 

corresponding to this mass eccentricity is shown in figure 4.8.4. 

 

ω (rad/s) 

 

Figure 4.8.4: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS.  

 

Natural frequency (rad/s): 
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ω2= 989 

ω3= 3252 

ω4= 8674 

Following similar procedures, we calculated the natural frequency on the long side of the 

damper by keeping the lumped masses at an unequal distance. These results are presented 

in table 9 and corresponding graphs are kept in Appendix C. We also calculated the 
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natural frequency on the short side of the stockbridge damper. All of these results are 

presented in table 9 according to the different values of mass eccentricity. 

Table 9: Summary of natural frequency of uncoupled bending and coupled bending-

twisting vibration for 4 DOFS for different values of mass eccentricity (Long side 

and Short side where lumped masses are at equal and unequal distances) 

 

Eccentricity 

(mm) 

Natural frequency (rad/s) 

Long side (mm) Short side (mm) 

L1=L2=L3=L4=67.5 L1=77.5,L2=77.5, 

L3=57.5,L4=57.5 

L1=L2=L3=L4=57.5 L1=70,L2=70, 

L3=45,L4=45 

c1=0 

c2=0 

c3=0 

c4=0 

ω1 = 296 

ω2= 987 

ω3= 3232 

ω4= 8596 

 

ω1 = 315 

ω2= 1120 

ω3= 3205 

ω4= 8223 

 

ω1 = 153 

ω2= 887 

ω3= 2135 

ω4= 4437 

ω1 = 162 

ω2= 963 

ω3= 2225 

ω4= 4724 

c1=0.1 

c2=0.05 

c3=0.01 

c4=0.001 

ω1 = 297 

ω2= 994 

 ω3= 3303 

 ω4= 8910 

ω1 = 316 

 ω2= 1127 

  ω3= 3264 

 ω4= 8414 

ω1 = 154 

ω2= 905 

ω3= 2189 

ω4= 4640 

ω1 = 163 

 ω2= 978 

  ω3= 2276 

 ω4= 4810 

c1=0.2 

c2=0.1 

c3=0.02 

c4=0.002 

ω1 = 299 

ω2= 1014 

  ω3= 3553 

 ω4= 10231 

ω1 = 318 

ω2= 1147 

  ω3= 3464 

 ω4= 9156 

ω1 = 156 

ω2= 962 

ω3= 2393 

ω4= 5696 

ω1 = 165 

 ω2= 1029 

  ω3= 2470 

 ω4= 5178 

c1=0.4 

c2=0.08 

c3=0.016 

c4=0.002 

ω1 = 301 

ω2= 1020 

  ω3= 3915 

 ω4= 11261 

ω1 = 321 

 ω2= 1164 

  ω3= 3905 

 ω4= 9850 

ω1 = 158 

ω2= 966 

ω3= 2398 

ω4= 5764 

ω1 = 167 

 ω2= 1094 

  ω3= 2699 

 ω4= 5373 

c1=0.05 

c2=0.025 

c3=0.005 

c4=0.0025 

ω1 = 296 

ω2 = 989 

  ω3 = 3252 

 ω4 = 8674 

ω1 = 315 

 ω2 = 1122 

  ω3 = 3220 

 ω4 = 8272 

ω1 = 153 

ω2 = 892 

ω3 = 2149 

ω4 = 4485 

ω1 = 163 

ω2 = 968 

  ω3 = 2236 

 ω4 = 4746 
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The complete 4DOFS results for the stockbridge damper are displayed in table 9. Below 

is a description of the argument made about these findings: 

Effect of mass eccentricity on natural frequency: 

The natural frequency is increased in coupled bending-twisting (𝑐𝑖 ≠ 0) vibration 

compare to uncoupled bending (𝑐𝑖 = 0) vibration mode due to the effect of mass 

eccentricity.This mass eccentricity effect is similar to 2DOFS and 3DOFS. When we 

gradually increased the value of mass eccentricity in both sides of the stockbridge 

damper, natural frequency is also increased both in ω1 for mode shape 1, ω2 for mode 

shape 2, ω3 for mode shape 3 and ω4 mode shape 4 and vice versa. The difference of 

natural frequency is not too large comparing to the immediate value of mass eccentricity.  

Effect of lumped mass distance on natural frequency: 

 In both sides of the stockbridge damper, natural frequency is calculated by keeping the 

lumped masses are at equal and unequal distance. On the long side, when lumped masses 

are at an unequal distance the natural frequency is increased in mode shape 1(ω1) by 8.5 

% and mode shape 2(ω2) by 17.7% but the natural frequency is decreased in mode shape 

3 (ω3) by 17.8% and mode shape 4(ω4) by 26.5% compared to the equal distance of the 

lumped mass for entire values of mass eccentricity. Now on the short side, the natural 

frequency is increased both in mode shape 1(ω1) 9.2%, mode shape 2 (ω2) 22.6%, and 

mode shape 3 (ω3) 25.6 % in unequal distance compare to the equal distance but in mode 

shape 4(ω4), this value is randomly changed in unequal distance compare to the equal 

distance which is shown in table 9. 

Effect of DOF on natural frequency: 

When we increased DOF i.e. the entire mass of the body spread out in different positions 

on the elastic axis. Increasing DOF from 3DOFS to 4DOFS, the natural frequency is 

changed which is shown in table 9. The natural frequency is increased both in mode shape 

1(ω1), mode shape 2(ω2) and mode shape 3 (ω3) in long side compare to 3DOFS. In long 

side and equal distance of lumped masses, natural frequency is increased 22.4% for mode 

shape 1(ω1), 27% for mode shape 2(ω2) and17.1% for mode shape 3(ω3). In long side 

and unequal distance, natural frequency is increased 17.2% for mode shape 1(ω1), 25.3% 

for mode shape 2 (ω2) and 26.9% for mode shape 3(ω3). 



Chapter 4                                                                                     Results and Discussion 

56 
 

But the value of natural frequency is decreased on the short side compared to 3DOFS. In 

short side and equal distance, natural frequency in mode shape 1(ω1), mode shape 2(ω2) 

and mode shape 3(ω3) is decreased 54.4%, 28.8% and 75.9% respectively. Now for the 

short side and unequal distance, natural frequency in mode shape 1(ω1), mode shape 

2(ω2) and mode shape 3(ω3) is decreased 69%, 52.9% and 76.1% respectively. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS  

5.1 Conclusions 

 The study of the effect of mass eccentricity on vibration for uncoupled 

bending and coupled bending-twisting was done numerically. The general physical 

and geometrical features of a stockbridge damper, which is commonly used in 

Bangladesh to dampen vibration of overhead transmission lines, were investigated. In 

bending mode, we investigated the vibration characteristics of that stockbridge 

damper system. We found 2, 3, and 4 natural frequencies both in uncoupled bending 

and coupled bending-twisting mode when considering a stockbridge damper as 

2DOFS, 3DOFS, and 4DOFS respectively. Then we analyzed the effect of mass 

eccentricity in every DOFS and found the change of natural frequency between 

uncoupled bending and coupled bending-twisting vibration mode. We also compared 

the effect of mass eccentricity on natural frequency by changing the values of mass 

eccentricity.  

   Due to the mass eccentricity effect, bending-twisting analysis natural 

frequency is higher than bending analysis natural frequency in every mode and every 

DOFS. The values of mass eccentricity are likewise increased, which increases the 

natural frequency as well and vice versa for both sides of the stockbridge damper. So 

we can conclude that, in every mode section, bending-twisting analysis natural 

frequency is higher than bending analysis natural frequency but that change was not 

too drastic.  

 The natural frequency has also changed when lumped masses are kept at an 

equal and unequal distances according to the values of mass eccentricity for both 

sides of the stockbridge damper. In some cases, the natural frequency is increased for 

unequal distances compared to equal distances and in some other cases, it is 

decreased. DOF has similar effect on natural frequency of the stockbridge damper.  

 As the value of natural frequency is one of a system's most important factors, 

so the designers must be meticulous in their calculations. Otherwise, it might have an 

impact on the system's failure, usefulness, and lifespan. 
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 In this thesis the natural frequency of stockbridge damper was calculated 

using Myklestad and coupled flexure-torsion vibration method but this natural 

frequency can also be calculated using Dunkerley’s equations which are shortly 

presented in appendix E. 

 

5.2 Recommendations for future work 

Given the information obtained from this thesis a number of future works can be 

proposed: 

(1) 3D Modal analysis of this work in Ansys or any specialized software at 

different planes of stockbridge damper would be an interesting work for 

bending & bending-twisting analysis to see how stockbridge damper behaves 

at different positions. 

 

(2) The study of considering the stockbridge damper as a mechanical system with 

more than four degrees of freedom, due to the flexibility of the messenger 

cables. 

 

(3) The experimental study of the behavior of the conductor and the stockbridge 

damper to complement with the numerical data. 

 

(4) The stockbridge damper is made up of a variety of materials. The material 

employed in this thesis is high tense steel. The effect of mass eccentricity on 

the stockbridge damper can be compared using different materials. 

 
(5) As indicated in Appendix-E, Dunkerley's method can be used to determine the 

stockbridge damper's natural frequency, and the findings can be compared to 

those obtained using the Myklestad and Coupled Flexure-Torsion Vibration 

methods. 
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Appendix-A:  

Stockbridge damper acting as a 2 DOFS  

A.1: Lumped masses are at unequal distance (long side) 

 

 

 

 

 

 

 

 

Figure A.1:  Lumped parameter system in stockbridge damper [Long side & lumped 

masses are at unequal distance for 2DOFS]. 
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Figure A.1.1: Displacement vs. Natural frequency in uncoupled bending vibration for 2 

DOFS [c1=0 mm, c2=0 mm]. 
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Natural frequency (rad/s): 

 

 

 

ω (rad/s) 

         

Figure A.1.2: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS [c1=0.1 mm, c2=0.05 mm]. 
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Graph A.1.3 compares the influence of mass eccentricity on vibration between uncoupled 

bending and coupled bending-twisting vibration modes, which were generated using 

graphs A.1.1 and A.1.2 respectively. 
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ω (rad/s) 

Figure A.1.3: Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 2 DOFS. 
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Figure A.1.4: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS [c1=0.2 mm and c2=0.1 mm]. 
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Natural frequency (rad/s): 

ω1 = 195 

ω2 = 717 

 

 

ω (rad/s) 

 

Figure A.1.5: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS [c1=0.4 mm and c2=0.08 mm]. 
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ω (rad/s) 

Figure A.1.6: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS [c1=0.05 mm and c2=0.025 mm]. 
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Figure A.2:  Lumped parameter system in stockbridge damper [Short side & lumped 

masses are at unequal distance for 2DOFS]. 
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ω (rad/s) 

 

Figure A.2.1: Displacement vs. Natural frequency in uncoupled bending vibration for 2 

DOFS [c1=0 mm, c2=0 mm]. 
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ω (rad/s) 

         

Figure A.2.2: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS [c1=0.1 mm, c2=0.05 mm]. 
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Uncoupled bending and Coupled bending-twisting vibration comparison 

The graph A.2.3 compares the influence of mass eccentricity in vibration between 

uncoupled bending and coupled bending-twisting vibration modes, which were generated 

using graphs A.2.1 and A.2.2 respectively. 
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ω (rad/s) 

Figure A.2.3: Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 2 DOFS (short side unequal distance). 
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Figure A.2.4: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS [c1=0.2 mm, c2=0.1 mm]. 
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Natural frequency (rad/s): 

ω1 = 325 

ω2 = 1168 

 

 

ω (rad/s) 

 

Figure A.2.5: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS [c1=0.4 mm, c2=0.08 mm]. 
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ω (rad/s) 

 

Figure A.2.6: Displacement vs. Natural frequency in coupled bending-twisting vibration 

for 2 DOFS [c1=0.05 mm, c2=0.025 mm]. 
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Appendix-B 

Stockbridge damper acting as a 3 DOFS  

B.1. Lumped masses are at unequal distance (Long side) 

 

 

 

 

 

 

 

 

 

Figure B.1: Lumped parameter system in stockbridge damper [Long side & lumped 

masses are at unequal distance for 3DOFS]. 
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Figure B.1.1: Displacement vs. Natural frequency in uncoupled bending vibration for 3 

DOFS [c1=0 mm, c2=0 mm and c3=0 mm]. 
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Natural frequency (rad/s): 

ω1 = 274 

ω2 = 928 

ω3 = 3062 

 

 

            ω (rad/s) 

 

Figure B.1.2: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.1 mm, c2=0.05 mm and c3=0.01 mm].  
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Uncoupled bending and Coupled bending-twisting vibration comparison 

Graph B.1.3 compares the influence of mass eccentricity in vibration between uncoupled 

bending and coupled bending-twisting vibration modes, which were generated using 

graphs B.1.1 and B.1.2 respectively. 

 

ω (rad/s) 

Figure B.1.3:  Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 3 DOFS 
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ω (rad/s) 

 

Figure B.1.4: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.2 mm, c2=0.1 mm, c3=0.02 mm].  
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ω (rad/s) 

 

Figure B.1.5: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.4 mm; c2=0.08 mm and c3=0.016 mm].  
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ω (rad/s) 

 

Figure B.1.6: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.05 mm; c2=0.025 mm and c3=0.005 mm].  
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Figure B.2: Lumped parameter system in stockbridge damper [short side equal distance 

for 3DOFS]. 
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Figure B.2.1: Displacement vs. Natural frequency in uncoupled bending vibration for 3 

DOFS [c1=0 mm, c2=0 mm and c3=0 mm]. 
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ω (rad/s) 
 

Figure B.2.2: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.1 mm, c2=0.05 mm and c3=0.01 mm].  

 

Natural frequency (rad/s): 
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Uncoupled bending and Coupled bending-twisting vibration comparison 

The graph B.2.3 compares the influence of mass eccentricity in vibration between 

uncoupled bending and coupled bending-twisting vibration modes, which were generated 

using graphs B.2.1 and B.2.2 respectively.   
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ω (rad/s) 
Figure B.2.3: Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 3 DOFS.  

 

ω (rad/s) 
Figure B.2.4: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.2 mm, c2=0.1 mm and c3=0.02 mm]. 
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Natural frequency (rad/s): 

ω1 = 371 

ω2 = 1182 

ω3 = 6005 

 

 

ω (rad/s) 
 

Figure B.2.5: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.4 mm; c2=0.08 mm. and c3=0.016 mm].  
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Figure B.2.6: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.05 mm; c2=0.025 mm and c3=0.005 mm].  
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B.3: Lumped masses are at unequal distance (short side) 

 
 
 

 
 

 

 

Figure B.3: Lumped parameter system in stockbridge damper [Short side unequal 

distance for 3DOFS]. 
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ω (rad/s) 

 

Figure B.3.1: Displacement vs. Natural frequency in uncoupled bending vibration for 3 

DOFS [c1=0 mm, c2=0 mm and c3=0 mm]. 
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            ω (rad/s) 

 

Figure B.3.2: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.1 mm, c2=0.05 mm and c3=0.01 mm].  

 

Natural frequency (rad/s): 
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Uncoupled bending and Coupled bending-twisting vibration comparison 

The graph B.3.3 compares the influence of mass eccentricity in vibration between 

uncoupled bending and coupled bending-twisting vibration modes, which were generated 

using graphs B.3.1 and B.3.2 respectively. 
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ω (rad/s) 

Figure B.3.3:  Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 3 DOFS. 
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Figure B.3.4: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.2 mm; c2=0.1 mm and c3=0.02 mm].  
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Natural frequency (rad/s): 

ω1 = 485 

ω2 = 1855 

ω3 = 6602 

 

ω (rad/s) 
 

Figure B.3.5: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.4 mm; c2=0.08 mm. and c3=0.016 mm]. 
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ω (rad/s) 
 

Figure B.3.6: Displacement vs. Natural frequency in coupled bending vibration for 3 

DOFS [c1=0.05 mm; c2=0.025 mm and c3=0.005 mm].  
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Appendix-C 

Stockbridge damper acting as a 4 DOFS (Long side) 

C.1: Lumped masses are at unequal distance 

 

 

 

      

              ①                                                                ③                                                

Figure C.1: Lumped parameter system in stockbridge damper [Long side unequal distance 

for 4DOFS]. 

 

ω (rad/s) 
 

Figure C.1.1: Displacement vs. Natural frequency in uncoupled bending vibration for 4 

DOFS [c1=0 mm, c2=0 mm, c3=0 mm and c4=0 mm]. 
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Natural frequency (rad/s):     

ω1 = 315 

ω2= 1120 

ω3= 3205 

ω4= 8223 

 

ω (rad/s) 
 

Figure C.1.2: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.1 mm, c2=0.05 mm, c3=0.01 mm and c4=0.001 mm]. 
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Uncoupled bending and Coupled bending-twisting vibration comparison 

The graph C.1.3 compares the influence of mass eccentricity in vibration between 

uncoupled bending and coupled bending-twisting vibration modes, which were generated 

using graphs C.1.1 and C.1.2 respectively. 
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ω (rad/s) 
Figure C.1.3: Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 4 DOFS.  

 

ω (rad/s) 
Figure C.1.4: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.2 mm; c2=0.1 mm; c3=0.02 mm and c4=0.002 mm.]. 
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Natural frequency (rad/s): 

ω1 = 318 

ω2= 1147 

ω3= 3464 

ω4= 9156 

 

ω (rad/s) 
 

Figure C.1.5: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.3 mm; c2=0.08 mm; c3=0.016 mm and c4=0.002 mm]. 
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ω (rad/s) 
Figure C.1.6: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.05 mm, c2=0.025 mm, c3=0.005 mm and c4=0.0025 mm]. 
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Figure 3.2: Lumped parameter system in stockbridge damper [Short side equal distance 

for 4DOFS]. 
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ω (rad/s) 
 

Figure C. 2.1: Displacement vs. Natural frequency in uncoupled bending vibration for 4 

DOFS [c1=0 mm, c2=0 mm, c3=0 mm and c4=0 mm]. 
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ω (rad/s) 
 

Figure C.2.2: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.1 mm, c2=0.05 mm, c3=0.01 mm and c4=0.001 mm].  
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Uncoupled bending and Coupled bending-twisting vibration comparison 

The graph C.2.3 compares the influence of mass eccentricity in vibration between 

uncoupled bending and coupled bending-twisting vibration modes, which were generated 

using graphs C.2.1 and C. 2.2 respectively. 
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ω (rad/s) 
Figure C.2.3: Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 4 DOFS. 

 

ω (rad/s) 
Figure C.2.4: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.2 mm; c2=0.1 mm; c3=0.02 mm and o c4=0.002 mm].   
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Natural frequency (rad/s): 

ω1 = 156 

ω2= 962 

ω3= 2393 

ω4= 5696 
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Figure C.2.5: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.25 mm, c2=0.08 mm, c3=0.016 mm and c4=0.002 mm].  
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ω (rad/s) 
Figure C.2.6: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.05 mm; c2=0.025 mm; c3=0.005 mm and c4=0.0025 mm].  

 

Natural frequency (rad/s): 

ω1 = 153 

ω2 = 892 

ω3 = 2149 

ω4 = 4485 

C.3: Lumped masses are at unequal distance (Short side) 

 

 

 

 

        ①                                                   ③                                               

Figure C.3: Lumped parameter system in stockbridge damper [Short side unequal 

distance for 4DOFS]. 
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ω (rad/s) 
 

Figure C.3.1: Displacement vs. Natural frequency in uncoupled bending vibration for 4 

DOFS [c1=0 mm, c2=0 mm, c3=0 mm and c4=0 mm]. 

 

 

Natural frequency (rad/s):     

ω1 = 162 

ω2= 963 

ω3= 2225 

ω4= 4724 
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ω (rad/s) 
 

Figure C.3.2: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.1 mm, c2=0.05 mm, c3=0.01 mm and c4=0.001 mm]. 

 

Natural frequency (rad/s): 

ω1 = 163 

ω2= 978 

ω3= 2276 

ω4= 4810 

 

Uncoupled bending and Coupled bending-twisting vibration comparison 

The graph C.3.3 compares the influence of mass eccentricity in vibration between 

uncoupled bending and coupled bending-twisting vibration modes, which were generated 

using graphs C.3.1 and C.3.2 respectively. 
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ω (rad/s) 
Figure C.3.3: Displacement vs. Natural frequency in uncoupled bending and coupled 

bending-twisting vibration for 4 DOFS.  

 

ω (rad/s) 
Figure C.3.4: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.2 mm; c2=0.1 mm; c3=0.02 mm and c4=0.002 mm]. 
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Natural frequency (rad/s): 

ω1 = 165 

ω2= 1029 

ω3= 2470 

ω4= 5178 

 

 

ω (rad/s) 
 

Figure C.3.5: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.3 mm; c2=0.08 mm; c3=0.016 mm and c4=0.002 mm]. 

 

Natural frequency (rad/s): 

ω1 = 167 

ω2= 1094 

ω3= 2699 

ω4= 5373 
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ω (rad/s) 
 

Figure C.3.6: Displacement vs. Natural frequency in coupled bending vibration for 4 

DOFS [c1=0.05 mm; c2=0.025 mm; c3=0.005 mm and c4=0.0025 mm]. 

 

Natural frequency (rad/s): 

ω1 = 163 

ω2 = 968 

ω3 = 2236 

ω4 = 4746 
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Appendix-D 

Programming code 

Program for finding natural frequency for 2DOFS 

duplicate i=1,2 
v[i+1]=v[i]-mass[i]* omega^2*(y[i]+c[i]*phi[i]) 
M[i+1]=M[i]-v[i+1]*L[i] 
T[i+1]=T[i]+J[i]*omega^2 *phi[i]+mass[i]*c[i]*omega^2 *y[i] 
theta[i+1]=theta[i]+m[i+1]*L[i]/(ei) +v[i+1]*L[i]^2/(2*ei) 
y[i+1]=y[i]+theta[i]*L[i]+M[i+1]*L[i]^2/(2*ei) +v[i+1]*L[i]^3/(3*ei) 
phi[i+1]=phi[i]+T[i+1]*h[i] 
h[i]=L[i]/(G*ip) 
J[i]=MASS[i]*c[i]^2 
end 
L[1]= 
L[2]= 
L[3]= 
G=79.3*10^9 
i=4.91*10^(-10) 
c[1]= 
c[2]= 
ei=98.2 
mass[1]= 
mass[2]= 
mass[3]= 
v[1]=0 ;m[1]=0;T[1]=0;y[1]=1 
theta[3]=0 
phi[3]=0 
{omega=10} 

 
Program for finding natural frequency for 3DOFS 
duplicate i=1,3 
v[i+1]=v[i]-mass[i]* omega^2*(y[i]+c[i]*phi[i]) 
M[i+1]=M[i]-v[i+1]*L[i] 
T[i+1]=T[i]+J[i]*omega^2 *phi[i]+mass[i]*c[i]*omega^2 *y[i] 
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theta[i+1]=theta[i]+m[i+1]*L[i]/(ei) +v[i+1]*L[i]^2/(2*ei) 
y[i+1]=y[i]+theta[i]*L[i]+M[i+1]*L[i]^2/(2*ei) +v[i+1]*L[i]^3/(3*ei) 
phi[i+1]=phi[i]+T[i+1]*h[i] 
h[i]=L[i]/(G*ip) 
J[i]=MASS[i]*c[i]^2 
end 
L[1]= 
L[2]= 
L[3]= 
L[4]= 
G=79.3*10^9 
i=4.91*10^(-10) 
c[1]= 
c[2]= 
c[3]= 
ei=98.2 
mass[1]=  
mass[2]= 
mass[3]= 
mass[4]= 
v[1]=0 ;m[1]=0;T[1]=0;y[1]=1 
theta[4]=0 
phi[4]=0 
{omega=10} 

 
Program for finding natural frequency for 4DOFS 
duplicate i=1,4 
v[i+1]=v[i]-mass[i]* omega^2*(y[i]+c[i]*phi[i]) 
M[i+1]=M[i]-v[i+1]*L[i] 
T[i+1]=T[i]+J[i]*omega^2 *phi[i]+mass[i]*c[i]*omega^2 *y[i] 
theta[i+1]=theta[i]+m[i+1]*L[i]/(ei) +v[i+1]*L[i]^2/(2*ei) 
y[i+1]=y[i]+theta[i]*L[i]+M[i+1]*L[i]^2/(2*ei) +v[i+1]*L[i]^3/(3*ei) 
phi[i+1]=phi[i]+T[i+1]*h[i] 
h[i]=L[i]/(G*ip) 
J[i]=MASS[i]*c[i]^2 
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end 
L[1]= 
L[2]= 
L[3]= 
L[4]= 
L[5]= 
G=79.3*10^9 
i=4.91*10^(-10) 
c[1]= 
c[2]= 
c[3]= 
c[4]= 
ei=98.2 
mass[1]= 
mass[2]= 
mass[3]= 
mass[4]= 
v[1]=0 ;m[1]=0;T[1]=0;y[1]=1 
theta[5]=0 
phi[5]=0 
{omega=10} 
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Appendix E 

Alternating method for finding natural frequency 

Stockbridge damper has been modeled as a cantilever beam with a concentrated damper 

mass at it’s free end. The flexibility influence coefficients can be used to set up the 

equations with a force P and a moment M at the free end shown in figure E.1. The 

deflection and slope at the free end are 

y = 𝑎11P + 𝑎12M 

𝜃 = 𝑎21P + 𝑎22M 

 

Figure E.1: Deflection of a cantilever beam. 

This can be expressed by the matrix equation 

{
𝑦
𝜃

} = [
𝑎11 𝑎12

𝑎21 𝑎22
] 

The influence coefficients in this equation are 𝑎11 = ( 𝑙3

3𝐸𝐼
), 𝑎12=𝑎21= ( 𝑙2

2𝐸𝐼
),  𝑎22= 𝑙

𝐸𝐼
 . 

Dunkerley’s equation is useful for estimating the fundamental frequency of a system 

undergoing vibration testing. 

 

Figure E.2: Cross-sectional view of stockbridge damper mass. 
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For the basis of the Dunkerley’s equation [9], we examine the characteristic equation 

formulated from the flexibility coefficients, which is  

|
(𝑎11𝑚1  − 

1

ω2
) 𝑎12𝑚2 

𝑎21𝑚1 (𝑎22𝑚2  −  
1

ω2
)  

| 

                                = |
(

𝑙3

3𝐸𝐼
𝑚1  − λ2)

𝑙2

2𝐸𝐼
𝑚2

𝑙2

2𝐸𝐼
𝑚1  (

𝑙

𝐸𝐼
𝑚2  − λ2)

|                                                                                                          

Where, 1

ω2 =λ2, 𝑚1=2.45kg, H=0.08m, h=0.35m, 𝑚2= 𝐼𝑥𝑥= 1

12
{2.45*(0.08)2-

0.35*(0.35)2} = 1.25*10−3 kg𝑚2, l = 0.27 m, EI = 98.2 N𝑚2, 𝐿1= 0.13 m, 𝐿2 =0.04 m. 

Expanding this determinant, we obtain two degree equation in 
1

ω2
. 

 {( 𝑙3

3𝐸𝐼
𝑚1 -λ2) ( 𝑙

𝐸𝐼
𝑚2 -λ2)}-{( 𝑙2

2𝐸𝐼
𝑚1)( 

𝑙2

2𝐸𝐼
𝑚2)}=0 

The natural frequencies of the system are determined as ω1= 122 𝑟𝑎𝑑 𝑠⁄ , ω2= 695 𝑟𝑎𝑑 𝑠⁄ . 

By substituting into Dunkerly’s formula rearranged in the following form, the natural 

frequency of the system is determined as  

1

ω1
2 = 𝑎11𝑚1+ 𝑎22𝑚2 

 ω1 = 82 𝑟𝑎𝑑 𝑠⁄ . 
 
Where, ω1 is the fundamental natural frequency of the system. 


